Sample records for modulating compound as101

  1. The immunomodulatory tellurium compound ammonium trichloro (dioxoethylene-O,O') tellurate reduces anxiety-like behavior and corticosterone levels of submissive mice.

    PubMed

    Gross, Moshe; Stanciu, Emanuel; Kenigsbuch-Sredni, Dvora; Sredni, Benjamin; Pinhasov, Albert

    2017-09-01

    Ammonium trichloro (dioxoethylene-O,O') tellurate (AS101) is a synthetic organotellurium compound with potent immunomodulatory and neuroprotective properties shown to inhibit the function of integrin αvβ3, a presynaptic cell-surface-adhesion receptor. As partial deletion of αvβ3 downregulated reuptake of serotonin by the serotonin transporter, we hypothesized that AS101 may influence pathways regulating anxiety. AS101 was tested in the modulation of anxiety-like behavior using the selectively bred Submissive (Sub) mouse strain that develop anxiety-like behavior in response to an i.p. injection. Mice were treated daily with AS101 (i.p., 125 or 200 μg/kg) or vehicle for 3 weeks, after which their anxiety-like behavior was measured in the elevated plus maze. Animals were then culled for the measurement of serum corticosterone levels by ELISA and hippocampal expression of brain-derived neurotrophic factor (BDNF) by RT-PCR. Chronic administration of AS101 significantly reduced anxiety-like behavior of Sub mice in the elevated plus maze, according to both time spent and entries to open arms, relative to vehicle-treated controls. AS101 also markedly reduced serum corticosterone levels of the treated mice and increased their hippocampal BDNF expression. Anxiolytic-like effects of AS101 may be attributed to the modulation of the regulatory influence integrin of αvβ3 upon the serotonin transporter, suggesting a multifaceted mechanism by which AS101 buffers the hypothalamic-pituitary-adrenal axis response to injection stress, enabling recovery of hippocampal BDNF expression and anxiety-like behavior in Sub mice. Further studies should advance the potential of AS101 in the context of anxiety-related disorders.

  2. The Natural Carotenoid Crocetin and the Synthetic Tellurium Compound AS101 Protect the Ovary against Cyclophosphamide by Modulating SIRT1 and Mitochondrial Markers

    PubMed Central

    Rossi, Giulia; Bonomo, Isabelle; Provenzani, Alessandro; Carta, Gaspare; D'Alessandro, Anna Maria

    2017-01-01

    Cancer therapies are associated with increased infertility risk due to accelerated reproductive aging. Oxidative stress (OS) is a potential mechanism behind ovarian toxicity by cyclophosphamide (CPM), the most ovotoxic anticancer drug. An important sensor of OS is SIRT1, a NAD+-dependent deacetylase which regulates cellular defence and cell fate. This study investigated whether the natural carotenoid crocetin and the synthetic compound AS101 protect the ovary against CPM by modulating SIRT1 and mitochondrial markers. We found that the number of primordial follicles of female CD1 mice receiving crocetin plus CPM increased when compared with CPM alone and similar to AS101, whose protective effects are known. SIRT1 increased in CPM mouse ovaries revealing the occurrence of OS. Similarly, mitochondrial SIRT3 rose, whilst SOD2 and the mitochondrial biogenesis activator PGC1-α decreased, suggesting the occurrence of mitochondrial damage. Crocetin and AS101 administration prevented SIRT1 burst suggesting that preservation of redox balance can help the ovary to counteract ovarian damage by CPM. Decreased SIRT3 and increased SOD2 and PGC1-α in mice receiving crocetin or AS101 prior to CPM provide evidence for mitochondrial protection. Present results improve the knowledge of ovarian damage by CPM and may help to develop interventions for preserving fertility in cancer patients. PMID:29270246

  3. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds.

    PubMed

    Park, Yong-Soon; Dutta, Swarnalee; Ann, Mina; Raaijmakers, Jos M; Park, Kyungseok

    2015-05-29

    Volatile organic compounds (VOCs) from plant growth-promoting rhizobacteria (PGPR) play key roles in modulating plant growth and induced systemic resistance (ISR) to pathogens. Despite their significance, the physiological functions of the specific VOCs produced by Pseudomonas fluorescens SS101 (Pf.SS101) have not been precisely elucidated. The effects of Pf.SS101 and its VOCs on augmentation of plant growth promotion were investigated in vitro and in planta. A significant growth promotion was observed in plants exposed Pf.SS101 under both conditions, suggesting that its VOCs play a key role in promoting plant growth. Solid-phase micro-extraction (SPME) and a gas chromatography-mass spectrophotometer (GC-MS) system were used to characterize the VOCs emitted by Pf.SS101 and 11 different compounds were detected in samples inoculated this bacterium, including 13-Tetradecadien-1-ol, 2-butanone and 2-Methyl-n-1-tridecene. Application of these compounds resulted in enhanced plant growth. This study suggests that Pf.SS101 promotes the growth of plants via the release of VOCs including 13-Tetradecadien-1-ol, 2-butanone and 2-Methyl-n-1-tridecene, thus increasing understanding of the role of VOCs in plant-bacterial inter-communication. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Temporal effect of manipulating NeuroD1 expression with the synthetic small molecule KHS101 on morphine contextual memory.

    PubMed

    Zhang, Yue; Kibaly, Cherkaouia; Xu, Chi; Loh, Horace H; Law, Ping-Yee

    2017-11-01

    The treatment of opioid addiction is challenging because addicts are highly prone to relapse when the memory of the former drug experience is triggered by emotional or environmental cues. An emerging and promising concept in addiction biology is that by manipulating adult hippocampal neurogenesis, a phenomenon involved in learning and memory, drug reward-like behaviors and relapse can be attenuated. We tested a new synthetic compound, KHS101, in an animal model of drug-associated contextual memory. KHS101 has been reported to increase the expression of neurogenic differentiation 1 (NeuroD1), a transcription factor involved in adult neurogenesis, and to specifically induce neuronal differentiation both in vitro and in vivo. Our results indicated that the subcutaneous injection of 3 mg/kg KHS101 for 7 days before conditioned place preference (CPP) training prolonged CPP extinction, while the same treatment after training accelerated extinction. This effect paralleled that observed following temporally controlled, tetracycline-induced NeuroD1 overexpression. Furthermore, the effect of KHS101 may occur via its induction of NeuroD1 expression as demonstrated by the abolition of the KHS101-mediated modulation of morphine-induced CPP extinction after the stereotaxic injection of lentiviral NeuroD1 small interfering RNA into the dentate gyrus (DG) of the hippocampus. These results suggest that the KHS101-mediated modulation of neurogenesis at a critical stage of the conditioning or the extinction of an opioid-associated experience may disrupt the memory trace of the existing opioid-associated experience to facilitate the extinction of drug-associated contextual memory. This implies that KHS101 has therapeutic potential for the treatment of opioid addiction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Encapsulation Processing and Manufacturing Yield Analysis

    NASA Technical Reports Server (NTRS)

    Willis, P.

    1985-01-01

    Evaluation of the ethyl vinyl acetate (EVA) encapsulation system is presented. This work is part of the materials baseline needed to demonstrate a 30 year module lifetime capability. Process and compound variables are both being studied along with various module materials. Results have shown that EVA should be stored rolled up, and enclosed in a plastic bag to retard loss of peroxide curing agents. The TBEC curing agent has superior shelf life and processing than the earlier Lupersol-101 curing agent. Analytical methods were developed to test for peroxide content, and experimental methodologies were formalized.

  6. 47 CFR 101.811 - Modulation requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Modulation requirements. 101.811 Section 101.811 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.811 Modulation requirements. (a...

  7. 47 CFR 101.811 - Modulation requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Modulation requirements. 101.811 Section 101.811 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.811 Modulation requirements. (a...

  8. 47 CFR 101.811 - Modulation requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Modulation requirements. 101.811 Section 101.811 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.811 Modulation requirements. (a...

  9. 47 CFR 101.811 - Modulation requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Modulation requirements. 101.811 Section 101.811 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.811 Modulation requirements. (a...

  10. 47 CFR 101.141 - Microwave modulation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Microwave modulation. 101.141 Section 101.141 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.141 Microwave modulation. (a) Microwave transmitters employing digital...

  11. 47 CFR 101.141 - Microwave modulation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Microwave modulation. 101.141 Section 101.141 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.141 Microwave modulation. (a) Microwave transmitters employing digital...

  12. 47 CFR 101.811 - Modulation requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... signaling on frequencies below 500 MHz is not authorized. (b) When amplitude modulation is used, the... frequency modulation is used for single channel radiotelephony on frequencies below 500 MHz, the deviation... 47 Telecommunication 5 2010-10-01 2010-10-01 false Modulation requirements. 101.811 Section 101...

  13. Chemical methodology as a source of small-molecule checkpoint inhibitors and heat shock protein 70 (Hsp70) modulators.

    PubMed

    Huryn, Donna M; Brodsky, Jeffrey L; Brummond, Kay M; Chambers, Peter G; Eyer, Benjamin; Ireland, Alex W; Kawasumi, Masaoki; Laporte, Matthew G; Lloyd, Kayla; Manteau, Baptiste; Nghiem, Paul; Quade, Bettina; Seguin, Sandlin P; Wipf, Peter

    2011-04-26

    Unique chemical methodology enables the synthesis of innovative and diverse scaffolds and chemotypes and allows access to previously unexplored "chemical space." Compound collections based on such new synthetic methods can provide small-molecule probes of proteins and/or pathways whose functions are not fully understood. We describe the identification, characterization, and evolution of two such probes. In one example, a pathway-based screen for DNA damage checkpoint inhibitors identified a compound, MARPIN (ATM and ATR pathway inhibitor) that sensitizes p53-deficient cells to DNA-damaging agents. Modification of the small molecule and generation of an immobilized probe were used to selectively bind putative protein target(s) responsible for the observed activity. The second example describes a focused library approach that relied on tandem multicomponent reaction methodologies to afford a series of modulators of the heat shock protein 70 (Hsp70) molecular chaperone. The synthesis of libraries based on the structure of MAL3-101 generated a collection of chemotypes, each modulating Hsp70 function, but exhibiting divergent pharmacological activities. For example, probes that compromise the replication of a disease-associated polyomavirus were identified. These projects highlight the importance of chemical methodology development as a source of small-molecule probes and as a drug discovery starting point.

  14. Chemical methodology as a source of small-molecule checkpoint inhibitors and heat shock protein 70 (Hsp70) modulators

    PubMed Central

    Huryn, Donna M.; Brodsky, Jeffrey L.; Brummond, Kay M.; Chambers, Peter G.; Eyer, Benjamin; Ireland, Alex W.; Kawasumi, Masaoki; LaPorte, Matthew G.; Lloyd, Kayla; Manteau, Baptiste; Nghiem, Paul; Quade, Bettina; Seguin, Sandlin P.; Wipf, Peter

    2011-01-01

    Unique chemical methodology enables the synthesis of innovative and diverse scaffolds and chemotypes and allows access to previously unexplored “chemical space.” Compound collections based on such new synthetic methods can provide small-molecule probes of proteins and/or pathways whose functions are not fully understood. We describe the identification, characterization, and evolution of two such probes. In one example, a pathway-based screen for DNA damage checkpoint inhibitors identified a compound, MARPIN (ATM and ATR pathway inhibitor) that sensitizes p53-deficient cells to DNA-damaging agents. Modification of the small molecule and generation of an immobilized probe were used to selectively bind putative protein target(s) responsible for the observed activity. The second example describes a focused library approach that relied on tandem multicomponent reaction methodologies to afford a series of modulators of the heat shock protein 70 (Hsp70) molecular chaperone. The synthesis of libraries based on the structure of MAL3-101 generated a collection of chemotypes, each modulating Hsp70 function, but exhibiting divergent pharmacological activities. For example, probes that compromise the replication of a disease-associated polyomavirus were identified. These projects highlight the importance of chemical methodology development as a source of small-molecule probes and as a drug discovery starting point. PMID:21502524

  15. The immunomodulator, ammonium trichloro[1,2-ethanediolato-O,O']-tellurate, suppresses the propagation of herpes simplex virus 2 by reducing the infectivity of the virus progeny.

    PubMed

    Sheinboim, D; Hindiyeh, M; Mendelson, E; Albeck, M; Sredni, B; Dovrat, S

    2015-07-01

    Persistent investigations for the identification of novel anti-herpetic drugs are being conducted worldwide, as current treatment options are sometimes insufficient. The immunomodulator, ammonium trichloro[1,2‑ethanediolato‑O,O']‑tellurate (AS101), a non‑toxic tellurium (Ⅳ) compound, has been shown to exhibit anti‑viral activity against a variety of viruses in cell cultures and in animal models. In the present study, the anti‑viral activity of AS101 against herpes simplex virus (HSV)‑1 and 2 was investigated in vitro. The results demonstrated that AS101 significantly restricted HSV‑2-induced plaque formation and reduced the infectivity of the HSV‑2 yield, while HSV‑1 was affected to a lesser extent. The incubation of mature HSV‑1 and HSV‑2 viruses with AS101 had no effect on viral infectivity, indicating that the compound interrupts de novo viral synthesis. The addition of AS101 at up to 9 h post‑infection had almost the same effect as did the addition of the drug together with the virus (it maintained 80% of its total anti‑viral capacity). Quantitative PCR and immunofluoresence staining of viral structural proteins revealed that the viral DNA and protein synthesis stages were not interrupted by the administration of AS101. By contrast, in the presence of the compound, significantly fewer viable viruses (≥2 log reduction) were recovered from the AS10‑treated cell cultures. Of note, when we determined the viability of the intracellular virus, formed in the presence of the compound, a less severe (≤1 log) effect was observed. Taken together, these data strongly suggest that AS101 primarily interferes with late stages of viral replication, such as viral particle envelopment or egress, leading to the production of a defective virus progeny.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buragohain, Amlan; Couck, Sarah; Van Der Voort, Pascal

    Four existing and three new functionalized chromium terephthalates having MIL-101 topology and denoted as Cr-MIL-101-X (existing ones with X=–F, 1-F; –Cl, 2-Cl; –Br, 3-Br; –CH{sub 3}, 4-CH{sub 3}; new ones with X=–C{sub 6}H{sub 4}, 5-C{sub 6}H{sub 4}; –F{sub 2}, 6-F{sub 2}, –(CH{sub 3}){sub 2}, 7-(CH{sub 3}){sub 2}) were synthesized under hydrothermal conditions. All the materials except 5-C{sub 6}H{sub 4} could be prepared by a general synthetic route, in which the mixtures of CrO{sub 3}, H{sub 2}BDC-X (BDC=1,4-benzenedicarboxylate) linkers, conc. HCl and water with a molar ratio of 1:1:3.9:222.2 were reacted at 180 °C for 144 h. Compared to the 144more » h of synthesis time, three of the compounds, namely 1-Cl, 2-Br and 5-C{sub 6}H{sub 4}, could be prepared in much shorter reaction times (12–18 h at 180–210 °C). The materials possess high thermal stability up to 270–300 °C in an air atmosphere. The activated compounds exhibit significant porosity (S{sub BET} range: 1273–2135 m{sup 2} g{sup −1}). At 0 °C and 1 bar, the CO{sub 2} adsorption capacities of the compounds fall in the 1.7–2.9 mmol g{sup −1} range. Compounds 1-F and 6-F{sub 2} showed enhanced CO{sub 2} uptake values compared to parent Cr-MIL-101. The benzene adsorption capacities of the compounds lie in the range of 66.2–139.5 molecules per unit cell at 50 °C and p/p{sub 0}=0.35. The increased benzene uptake value of 1-F compared to un-functionalized Cr-MIL-101 and 4-CH{sub 3} suggests that the fluorination has induced more hydrophobicity in Cr-MIL-101 as compared to the methylation. - Graphical abstract: Benzene adsorption by seven functionalized Cr-MIL-101-X metal-organic framework (MOF) materials Display Omitted - Highlights: • Seven functionalized Cr-MIL-101-X materials were synthesized solvothermally. • All Cr-MIL-101-X materials exhibited high thermal stability up to 270–300 °C in air. • All Cr-MIL-101-X compounds displayed considerable porosity towards N{sub 2}, CO{sub 2} and benzene. • Mono- and di-fluorinated Cr-MIL-101 materials showed enhanced CO{sub 2} adsorption capacities. • Cr-MIL-101-F adsorbed more benzene than non- and methyl-functionalized Cr-MIL-101.« less

  17. Jumpstarting the cytochrome P450 catalytic cycle with a hydrated electron.

    PubMed

    Erdogan, Huriye; Vandemeulebroucke, An; Nauser, Thomas; Bounds, Patricia L; Koppenol, Willem H

    2017-12-29

    Cytochrome P450cam (CYP101Fe 3+ ) regioselectively hydroxylates camphor. Possible hydroxylating intermediates in the catalytic cycle of this well-characterized enzyme have been proposed on the basis of experiments carried out at very low temperatures and shunt reactions, but their presence has not yet been validated at temperatures above 0 °C during a normal catalytic cycle. Here, we demonstrate that it is possible to mimic the natural catalytic cycle of CYP101Fe 3+ by using pulse radiolysis to rapidly supply the second electron of the catalytic cycle to camphor-bound CYP101[FeO 2 ] 2+ Judging by the appearance of an absorbance maximum at 440 nm, we conclude that CYP101[FeOOH] 2+ (compound 0) accumulates within 5 μs and decays rapidly to CYP101Fe 3+ , with a k 440 nm of 9.6 × 10 4 s -1 All processes are complete within 40 μs at 4 °C. Importantly, no transient absorbance bands could be assigned to CYP101[FeO 2+ por •+ ] (compound 1) or CYP101[FeO 2+ ] (compound 2). However, indirect evidence for the involvement of compound 1 was obtained from the kinetics of formation and decay of a tyrosyl radical. 5-Hydroxycamphor was formed quantitatively, and the catalytic activity of the enzyme was not impaired by exposure to radiation during the pulse radiolysis experiment. The rapid decay of compound 0 enabled calculation of the limits for the Gibbs activation energies for the conversions of compound 0 → compound 1 → compound 2 → CYP101Fe 3+ , yielding a Δ G ‡ of 45, 39, and 39 kJ/mol, respectively. At 37 °C, the steps from compound 0 to the iron(III) state would take only 4 μs. Our kinetics studies at 4 °C complement the canonical mechanism by adding the dimension of time. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. APETx4, a Novel Sea Anemone Toxin and a Modulator of the Cancer-Relevant Potassium Channel KV10.1.

    PubMed

    Moreels, Lien; Peigneur, Steve; Galan, Diogo T; De Pauw, Edwin; Béress, Lászlo; Waelkens, Etienne; Pardo, Luis A; Quinton, Loïc; Tytgat, Jan

    2017-09-13

    The human ether-à-go-go channel (hEag1 or K V 10.1) is a cancer-relevant voltage-gated potassium channel that is overexpressed in a majority of human tumors. Peptides that are able to selectively inhibit this channel can be lead compounds in the search for new anticancer drugs. Here, we report the activity-guided purification and electrophysiological characterization of a novel K V 10.1 inhibitor from the sea anemone Anthopleura elegantissima . Purified sea anemone fractions were screened for inhibitory activity on K V 10.1 by measuring whole-cell currents as expressed in Xenopus laevis oocytes using the two-microelectrode voltage clamp technique. Fractions that showed activity on Kv10.1 were further purified by RP-HPLC. The amino acid sequence of the peptide was determined by a combination of MALDI- LIFT-TOF/TOF MS/MS and CID-ESI-FT-ICR MS/MS and showed a high similarity with APETx1 and APETx3 and was therefore named APETx4. Subsequently, the peptide was electrophysiologically characterized on K V 10.1. The selectivity of the toxin was investigated on an array of voltage-gated ion channels, including the cardiac human ether-à-go-go-related gene potassium channel (hERG or Kv11.1). The toxin inhibits K V 10.1 with an IC 50 value of 1.1 μM. In the presence of a similar toxin concentration, a shift of the activation curve towards more positive potentials was observed. Similar to the effect of the gating modifier toxin APETx1 on hERG, the inhibition of Kv10.1 by the isolated toxin is reduced at more positive voltages and the peptide seems to keep the channel in a closed state. Although the peptide also induces inhibitory effects on other K V and Na V channels, it exhibits no significant effect on hERG. Moreover, APETx4 induces a concentration-dependent cytotoxic and proapoptotic effect in various cancerous and noncancerous cell lines. This newly identified K V 10.1 inhibitor can be used as a tool to further characterize the oncogenic channel K V 10.1 or as a scaffold for the design and synthesis of more potent and safer anticancer drugs.

  19. In vivo evaluation of thiolated poly(acrylic acid) as a drug absorption modulator for MRP2 efflux pump substrates.

    PubMed

    Greindl, Melanie; Föger, Florian; Hombach, Juliane; Bernkop-Schnürch, Andreas

    2009-08-01

    Recently, several polymers have been reported to modulate drug absorption by inhibition of intestinal efflux pumps such as multidrug resistance proteins (MRPs) and P-glycoprotein (P-gp). The aim of the present study was to evaluate the efficiency of thiolated poly(acrylic acid) (PAA-Cys) to act as a drug absorption modulator for MRP2 efflux pump substrates in vivo, using sulforhodamine 101 as representative MRP2 substrate. In vitro, the permeation-enhancing effect of unmodified PAA and PAA(250)-Cys(,) displaying 580 micromol free thiol groups per gram polymer, was evaluated by using freshly excised rat intestinal mucosa mounted in Ussing-type chambers. In comparison to that of the buffer control, the sulforhodamine 101 transport in the presence of 0.5% unmodified PAA(250) and 0.5% (w/v) PAA(250)-Cys was 1.3- and 4.0-fold improved, respectively. In vivo, sulforhodamine 101 solutions containing 4% (w/v) unmodified PAA(250) or 4% (w/v) thiolated PAA(250) were orally given to rats. The PAA(250)-Cys solution increased the area under the plasma concentration-time curve (AUC(0-12)) of sulforhodamine 101 3.8-fold in comparison to control and 2.2-fold in comparison to unmodified PAA(250). This in vivo study revealed that PAA(250)-Cys significantly increased the oral bioavailability of MRP2 substrate sulforhodamine 101.

  20. Predominance of TH1 response in tumor-bearing mice and cancer patients treated with AS101.

    PubMed

    Sredni, B; Tichler, T; Shani, A; Catane, R; Kaufman, B; Strassmann, G; Albeck, M; Kalechman, Y

    1996-09-18

    Several studies have recently suggested that the immune response to malignant growths is regulated by distinct patterns of type 2 cytokine production. These cytokines, regulating the cytotoxic T-lymphocyte response in patients with advanced cancers, may be associated with disease progression. Evidence suggests that the T Helper 1 (TH1) and T Helper 2 (TH2) types of reaction are reciprocally regulated in vivo. The immunomodulator AS101 (ammonium trichloro[dioxoethylene-O,O']tellurate) was found to stimulate mouse and human cells to proliferate and secrete a variety of cytokines. Clinical trials using AS101 on cancer patients are now in progress. The aim of this study was to evaluate the ability of AS101 to modulate TH1 and TH2 responses in tumor-bearing mice and in patients with advanced cancer. In addition, we investigated the association between the predominance of each type of response with the antitumoral effects of AS101. Mice into which Lewis lung carcinoma (3LL) had been transplanted (n = 221) and cancer patients (n = 13) were treated with AS101 on alternate days, at 10 micrograms/mouse intraperitoneally, or for the patients, at 3 mg/m2 intravenously. The types were sarcoma, melanoma, and colon, lung, ovarian, and renal cancers. Cytokine levels were determined by immunoassay kits and compared with the paired Student's t test: in mice, they were tested in spleen cell supernatants; in humans, in sera and mononuclear cell supernatants. The chi-squared test was used to compare tumor volumes. All P values represent two-sided tests of statistical significance. Our results show that treatment of mice and patients with AS101 results in a clear predominance in TH1 responses, with a concomitant decrease in the TH2-type response. This was reflected by a significant enhancement in interleukin 2 (IL-2) and interferon gamma (IFN gamma) levels (P < .01) paralleled by a substantial decrease in IL-4 and IL-10 (P < .01). Moreover, the concentration of IL-12 was significantly increased (P < .01) in AS101-treated patients who also showed enhanced levels of natural and lymphokine-activated killer cell-mediated cytotoxicity. The statistically significant increases in IL-2 and IFN gamma levels, paralleled by the pronounced decrease in IL-4 and IL-10 in the AS101-treated mice, were associated with its antitumoral effects. In addition, systemic cotreatment of 3LL-transplanted mice with AS101 and anti-IL-12 antibodies partly abrogated the antitumoral effect of AS101. Immunotherapy with AS101 enhances TH1 function while interfering with the TH2 response. This TH1 trend may be related to the antitumor effects of AS101. Isolation and characterization of a distinct cytokine pattern in patients with advanced cancer treated with AS101 may contribute to the development of intervention strategies using this compound.

  1. Installation package maxi-therm S-101 heating module

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The installation, operation and maintenance of the Maxi-Therm S-101 Thermosypnon Heating Module is described. The Maxi-Therm S-101 is a packaged unit, complete with air filter, blower, electrical controls, and a thermosyphon liquid to air heat exchanger. It is intended for use in residential solar heating systems and can utilize off-peak electrical power.

  2. Murine and human CFTR exhibit different sensitivities to CFTR potentiators

    PubMed Central

    Cui, Guiying

    2015-01-01

    Development of therapeutic molecules with clinical efficacy as modulators of defective CFTR includes efforts to identify potentiators that can overcome or repair the gating defect in mutant CFTR channels. This has taken a great leap forward with the identification of the potentiator VX-770, now available to patients as “Kalydeco.” Other small molecules with different chemical structure also are capable of potentiating the activity of either wild-type or mutant CFTR, suggesting that there are features of the protein that may be targeted to achieve stimulation of channel activity by structurally diverse compounds. However, neither the mechanisms by which these compounds potentiate mutant CFTR nor the site(s) where these compounds bind have been identified. This knowledge gap partly reflects the lack of appropriate experimental models to provide clues toward the identification of binding sites. Here, we have compared the channel behavior and response to novel and known potentiators of human CFTR (hCFTR) and murine (mCFTR) expressed in Xenopus oocytes. Both hCFTR and mCFTR were blocked by GlyH-101 from the extracellular side, but mCFTR activity was increased with GlyH-101 applied directly to the cytoplasmic side. Similarly, glibenclamide only exhibited a blocking effect on hCFTR but both blocked and potentiated mCFTR in excised membrane patches and in intact oocytes. The clinically used CFTR potentiator VX-770 transiently increased hCFTR by ∼13% but potentiated mCFTR significantly more strongly. Our results suggest that mCFTR pharmacological sensitivities differ from hCFTR, which will provide a useful tool for identifying the binding sites and mechanism for these potentiators. PMID:26209275

  3. Ligand-Substitution Reactions of the Tellurium Compound AS-101 in Physiological Aqueous and Alcoholic Solutions.

    PubMed

    Silberman, Alon; Albeck, Michael; Sredni, Benjamin; Albeck, Amnon

    2016-11-07

    Since its first crystallization, the aqueous structure of the tellurium-containing experimental drug AS-101 has never been studied. We show that, under the aqueous conditions in which it is administered, AS-101 is subjected to an immediate ligand-substitution reaction with water, yielding a stable hydrolyzed oxide anion product that is identified, for the first time, to be TeOCl 3 - . Studying the structure of AS-101 in propylene glycol (PG), an alcoholic solvent often used for the topical and oral administration of AS-101, revealed the same phenomenon of ligand-substitution reaction between the alcoholic ligands. Upon exposure to water, the PG-substituted product is also hydrolyzed to the same tellurium(IV) oxide form, TeOCl 3 - .

  4. The immunomodulator AS101 suppresses production of inflammatory cytokines and ameliorates the pathogenesis of experimental autoimmune encephalomyelitis.

    PubMed

    Xie, Li; Chen, Jing; McMickle, Anthony; Awar, Nadia; Nady, Soad; Sredni, Benjamin; Drew, Paul D; Yu, Shiguang

    2014-08-15

    We reported that AS101 (organotellurium compound, trichloro(dioxoethylene-O,O') tellurate) inhibited the differentiation of Th17 cells and reduced the production of IL-17 and GM-CSF. In addition, AS101 promoted the production of IL-2 in activated T cells. Flow cytometric analysis showed that AS101 inhibited Th17 cell proliferation. AS101 blocked the activation of transcriptional factor NFAT, Stat3, and RORγt, and increased activation of Erk1/2, suggesting a mechanism of action of AS101. We further demonstrated that AS101 was effective in amelioration of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Finally, by real-time PCR analysis we showed that AS101 reduces the IL-17, IFN-γ, GM-CSF, and IL-6 mRNA expression in inflammatory cells of spinal cords. Additionally, flow cytometry analysis also indicated that the CD4+ T cells and IL-17 and GM-CSF-producing cells were reduced in the spinal cords of AS101 treated mice compared to those treated with PBS. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. The immunomodulator AS101suppresses production of inflammatory cytokines and ameliorates the pathogenesis of experimental autoimmune encephalomyelitis

    PubMed Central

    Xie, Li; Chen, Jing; McMickle, Anthony; Awar, Nadia; Nady, Soad; Sredni, Benjamin; Drew, Paul D.; Yu, Shiguang

    2014-01-01

    We reported that AS101 (organotellurium compound, trichloro(dioxoethylene-O,O′) tellurate) inhibited the differentiation of Th17 cells and reduced the production of IL-17 and GM-CSF. In addition, AS101 promoted the production of IL-2 in activated T cells. Flow cytometric analysis showed that AS101 inhibited Th17 cell proliferation. AS101 blocked the activation of transcriptional factor NFAT, Stat3, and RORγt, and increased activation of Erk1/2, suggesting a mechanism of action of AS101. We further demonstrated that AS101 was effective in amelioration of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Finally, by real-time PCR analysis we showed that AS101 reduces the IL-17, IFN-γ, GM-CSF, and IL-6 mRNA expression in inflammatory cells of spinal cords. Additionally, flow cytometry analysis also indicated that the CD4+ T cells and IL-17 and GM-CSF-producing cells were reduced in the spinal cords of AS101 treated mice compared to those treated with PBS. PMID:24975323

  6. Biological Activities of Fusarochromanone: a Potent Anti-cancer Agent

    DTIC Science & Technology

    2014-09-03

    experiments to more fully elucidate the detailed mechanism underlying this favorable feature of FC101. Like most other bioactive natural flavonoids , FC101...tribution, metabolism, and elimination of compounds in blood and tissues over time. FC101 is a flavonoid , and over 4,000 natural compounds have been... Flavonoids generally bind tightly to serum proteins (e.g., serum albumin) and thus substantial amounts are inaccessible to the desired bio- logical targets

  7. 47 CFR 101.521 - Spectrum utilization.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Spectrum utilization. 101.521 Section 101.521... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.521 Spectrum utilization. All... contain detailed descriptions of the modulation method, the channel time sharing method, any error...

  8. ASD: a comprehensive database of allosteric proteins and modulators

    PubMed Central

    Huang, Zhimin; Zhu, Liang; Cao, Yan; Wu, Geng; Liu, Xinyi; Chen, Yingyi; Wang, Qi; Shi, Ting; Zhao, Yaxue; Wang, Yuefei; Li, Weihua; Li, Yixue; Chen, Haifeng; Chen, Guoqiang; Zhang, Jian

    2011-01-01

    Allostery is the most direct, rapid and efficient way of regulating protein function, ranging from the control of metabolic mechanisms to signal-transduction pathways. However, an enormous amount of unsystematic allostery information has deterred scientists who could benefit from this field. Here, we present the AlloSteric Database (ASD), the first online database that provides a central resource for the display, search and analysis of structure, function and related annotation for allosteric molecules. Currently, ASD contains 336 allosteric proteins from 101 species and 8095 modulators in three categories (activators, inhibitors and regulators). Proteins are annotated with a detailed description of allostery, biological process and related diseases, and modulators with binding affinity, physicochemical properties and therapeutic area. Integrating the information of allosteric proteins in ASD should allow for the identification of specific allosteric sites of a given subtype among proteins of the same family that can potentially serve as ideal targets for experimental validation. In addition, modulators curated in ASD can be used to investigate potent allosteric targets for the query compound, and also help chemists to implement structure modifications for novel allosteric drug design. Therefore, ASD could be a platform and a starting point for biologists and medicinal chemists for furthering allosteric research. ASD is freely available at http://mdl.shsmu.edu.cn/ASD/. PMID:21051350

  9. 47 CFR 101.515 - Emissions and bandwidth.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Emissions and bandwidth. 101.515 Section 101... FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.515 Emissions and bandwidth. Different types of emissions may be authorized if the applicant describes fully the modulation...

  10. MF-101, an estrogen receptor beta agonist for the treatment of vasomotor symptoms in peri- and postmenopausal women.

    PubMed

    Stovall, Dale W; Pinkerton, Joann V

    2009-04-01

    During peri- and postmenopausal stages, the majority of women experience moderate-to-severe vasomotor symptoms, such as hot flashes and night sweats, that interfere with sleep and reduce quality of life. Estrogen alone or in combination with a progestagen has been the standard therapy for such vasomotor symptoms; however, this therapeutic regimen is associated with severe side effects, such as breast cancer or cardiovascular events. To provide a better treatment option for menopausal women, Bionovo Inc is developing the estrogen receptor (ER)beta-selective agonist MF-101. Selective ER agonists can stimulate either ERalpha or ERbeta and induce tissue-specific estrogen-like effects, thus providing a safer alternative to conventional hormone therapy. MF-101 is derived from 22 herbs that are traditionally used in Chinese medicine for the treatment of menopausal symptoms. MF-101 did not promote the growth of breast cancer cells or stimulate uterine growth in preclinical studies and, in a phase II trial, was demonstrated to be safe and more effective in reducing the frequency and severity of hot flashes in postmenopausal women compared with placebo. To confirm the safety and efficacy of MF-101, larger phase III trials were planned for 2009. Although MF-101 appears to be a promising therapeutic, the herbal composition of the drug may be a disadvantage, because of the increased risk of causing allergic reactions in the general population. Studies with the MF-101-isolated active compounds liquiritigen and chalcone demonstrated selectivity for ERbeta, with no induction of proliferative events. If these isolates were demonstrated to be as effective and safe in clinical trials as preliminary data suggest regarding MF-101, these compounds could change the way clinicians treat menopause-associated symptoms.

  11. Analytical test results for archived core composite samples from tanks 241-TY-101 and 241-TY-103

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, M.A.

    1993-07-16

    This report describes the analytical tests performed on archived core composite samples form a 1.085 sampling of the 241-TY-101 (101-TY) and 241-TY-103 (103-TY) single shell waste tanks. Both tanks are suspected of containing quantities of ferrocyanide compounds, as a result of process activities in the late 1950`s. Although limited quantities of the composite samples remained, attempts were made to obtain as much analytical information as possible, especially regarding the chemical and thermal properties of the material.

  12. COMMAND MODULE - APOLLO - INTERIOR - SPACECRAFT (S/C) 101 - PANEL - CONTROL - NORTH AMERICAN AVIATION (NAA), CA

    NASA Image and Video Library

    1967-01-27

    S67-23078 (27 Jan. 1967) --- Three astronauts (later to be named the Apollo 9 prime crew) in Apollo spacecraft 101 Command module during Apollo crew compartment fit and function test. Left to right are astronauts James A. McDivitt, David R. Scott, and Russell L. Schweickart.

  13. STS-101 crew take part in CEIT at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At SPACEHAB, in Titusville, Fla., STS-101 Mission Specialists Edward Tsang Lu (Ph.D.), at right, talks with workers about the SPACEHAB Logistics Double Module at left. The module is part of the payload for the mission. Lu and other crew members Commander James Donald Halsell Jr., Pilot Scott J. 'Doc' Horowitz (Ph.D.), and Mission Specialists Mary Ellen Weber (Ph.D), Jeffrey N. Williams, and Boris W. Morukov and Yuri Malenchenko , who are with the Russian Space Agency , are taking part in a Crew Equipment Interface Test. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.

  14. An Ethylene-Induced Regulatory Module Delays Flower Senescence by Regulating Cytokinin Content.

    PubMed

    Wu, Lin; Ma, Nan; Jia, Yangchao; Zhang, Yi; Feng, Ming; Jiang, Cai-Zhong; Ma, Chao; Gao, Junping

    2017-01-01

    In many plant species, including rose (Rosa hybrida), flower senescence is promoted by the gaseous hormone ethylene and inhibited by the cytokinin (CTK) class of hormones. However, the molecular mechanisms underlying these antagonistic effects are not well understood. In this study, we characterized the association between a pathogenesis-related PR-10 family gene from rose (RhPR10.1) and the hormonal regulation of flower senescence. Quantitative reverse transcription PCR analysis showed that RhPR10.1 was expressed at high levels during senescence in different floral organs, including petal, sepal, receptacle, stamen, and pistil, and that expression was induced by ethylene treatment. Silencing of RhPR10.1 expression in rose plants by virus-induced gene silencing accelerated flower senescence, which was accompanied by a higher ion leakage rate in the petals, as well as increased expression of the senescence marker gene RhSAG12 CTK content and the expression of three CTK signaling pathway genes were reduced in RhPR10.1-silenced plants, and the accelerated rate of petal senescence that was apparent in the RhPR10.1-silenced plants was restored to normal levels by CTK treatment. Finally, RhHB6, a homeodomain-Leu zipper I transcription factor, was observed to bind to the RhPR10.1 promoter, and silencing of its expression also promoted flower senescence. Our results reveal an ethylene-induced RhHB6-RhPR10.1 regulatory module that functions as a brake of ethylene-promoted senescence through increasing the CTK content. © 2017 American Society of Plant Biologists. All Rights Reserved.

  15. STS-101 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Six astronauts and a Russian cosmonaut comprised the STS-101 mission that launched aboard the Space Shuttle Atlantis on May 19, 2000 at 5:11 am (CDT). Seated in front are astronauts James D. Halsell (right), mission commander; and Scott J. Horowitz, pilot. Others, from the left, are Mary Ellen Weber, Jeffrey N. Williams, Yury V. Usachev, James S. Voss and Susan J. Helms, all mission specialists. Usachev represents the Russian Space Agency (RSA). The crew of the STS- 101 mission refurbished and replaced components in both the Zarya and Unity modules, with top priority being the Zarya module.

  16. α2-containing GABAA receptors expressed in hippocampal region CA3 control fast network oscillations

    PubMed Central

    Heistek, Tim S; Ruiperez-Alonso, Marta; Timmerman, A Jaap; Brussaard, Arjen B; Mansvelder, Huibert D

    2013-01-01

    GABAA receptors are critically involved in hippocampal oscillations. GABAA receptor α1 and α2 subunits are differentially expressed throughout the hippocampal circuitry and thereby may have distinct contributions to oscillations. It is unknown which GABAA receptor α subunit controls hippocampal oscillations and where these receptors are expressed. To address these questions we used transgenic mice expressing GABAA receptor α1 and/or α2 subunits with point mutations (H101R) that render these receptors insensitive to allosteric modulation at the benzodiazepine binding site, and tested how increased or decreased function of α subunits affects hippocampal oscillations. Positive allosteric modulation by zolpidem prolonged decay kinetics of hippocampal GABAergic synaptic transmission and reduced the frequency of cholinergically induced oscillations. Allosteric modulation of GABAergic receptors in CA3 altered oscillation frequency in CA1, while modulation of GABA receptors in CA1 did not affect oscillations. In mice having a point mutation (H101R) at the GABAA receptor α2 subunit, zolpidem effects on cholinergically induced oscillations were strongly reduced compared to wild-type animals, while zolpidem modulation was still present in mice with the H101R mutation at the α1 subunit. Furthermore, genetic knockout of α2 subunits strongly reduced oscillations, whereas knockout of α1 subunits had no effect. Allosteric modulation of GABAergic receptors was strongly reduced in unitary connections between fast spiking interneurons and pyramidal neurons in CA3 of α2H101R mice, but not of α1H101R mice, suggesting that fast spiking interneuron to pyramidal neuron synapses in CA3 contain α2 subunits. These findings suggest that α2-containing GABAA receptors expressed in the CA3 region provide the inhibition that controls hippocampal rhythm during cholinergically induced oscillations. PMID:23109109

  17. Synthesis, 68Ga-Radiolabeling, and Preliminary In Vivo Assessment of a Depsipeptide-Derived Compound as a Potential PET/CT Infection Imaging Agent

    PubMed Central

    Mokaleng, Botshelo B.; Ebenhan, Thomas; Ramesh, Suhas; Govender, Thavendran; Kruger, Hendrik G.; Hazari, Puja P.; Mishra, Anil K.; Marjanovic-Painter, Biljana; Zeevaart, Jan R.; Sathekge, Mike M.

    2015-01-01

    Noninvasive imaging is a powerful tool for early diagnosis and monitoring of various disease processes, such as infections. An alarming shortage of infection-selective radiopharmaceuticals exists for overcoming the diagnostic limitations with unspecific tracers such as 67/68Ga-citrate or 18F-FDG. We report here TBIA101, an antimicrobial peptide derivative that was conjugated to DOTA and radiolabeled with 68Ga for a subsequent in vitro assessment and in vivo infection imaging using Escherichia coli-bearing mice by targeting bacterial lipopolysaccharides with PET/CT. Following DOTA-conjugation, the compound was verified for its cytotoxic and bacterial binding behaviour and compound stability, followed by 68Gallium-radiolabeling. µPET/CT using 68Ga-DOTA-TBIA101 was employed to detect muscular E. coli-infection in BALB/c mice, as warranted by the in vitro results. 68Ga-DOTA-TBIA101-PET detected E. coli-infected muscle tissue (SUV = 1.3–2.4) > noninfected thighs (P = 0.322) > forearm muscles (P = 0.092) > background (P = 0.021) in the same animal. Normalization of the infected thigh muscle to reference tissue showed a ratio of 3.0 ± 0.8 and a ratio of 2.3 ± 0.6 compared to the identical healthy tissue. The majority of the activity was cleared by renal excretion. The latter findings warrant further preclinical imaging studies of greater depth, as the DOTA-conjugation did not compromise the TBIA101's capacity as targeting vector. PMID:25699267

  18. Site Evaluation Studies of the Massachusetts Bay Disposal Site for Ocean Disposal of Dredged Material

    DTIC Science & Technology

    1988-07-05

    Chemical Characteristics. 101 1. Water Quality. 101 a. Dissolved Oxygen. 101 b. pH. 103 c. Nutrients . 103 d. Turbidity 104 e. Metals. 105 f. Organics...20 - 3 PCB, ppb 10 (0.03) 0.012 0.022 10 102 c. Nutrients Nitrogen and phosphorous compounds are essential nutrients that are metabolized by primary...1973) described nitrate as the limiting nutrient in Massachusetts Bay. Water column analyses of nutri- ents (ammonia, nitrates and phosphorous) were

  19. STS-101 crew take part in CEIT at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Cape Canaveral, Fla., STS-101 crew members check out some of the cargo that will be carried on their mission. From left are Pilot Scott J. 'Doc' Horowitz (Ph.D.) and Mission Specialists Mary Ellen Weber, (Ph.D.), Jeffrey N. Williams, and Boris W. Morukov, who is with the Russian Space Agency (RSA). Other crew members are Commander James Donald Halsell Jr., Edward Tsang Lu (Ph.D.) and Yuri Malenchenko, also with RSA. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.

  20. STS-101 crew take part in CEIT at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Cape Canaveral, Fla., STS-101 crew members Edward Tsang Lu (Ph.D.) and Yuri Malenchenko, who is with the Russian Space Agency (RSA) check out part of the Russian crane Strela. Other crew members are Commander James Donald Halsell Jr., Pilot Scott Horowitz, and Mission Specialists Jeffrey N. Williams, Mary Ellen Weber, (Ph.D.) and Boris W. Morukov, also with RSA. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.

  1. STS-101 crew take part in CEIT at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Titusville, Fla., STS-101 crew members check out the SPACEHAB Logistics Double Module that will be part of the payload for their mission. The crew is composed of Commander James Donald Halsell Jr., Pilot Scott J. 'Doc' Horowitz (Ph.D.), and Mission Specialists Mary Ellen Weber (Ph.D.), Edward Tsang Lu (Ph.D.), Jeffrey N. Williams, and Yuri Malenchenko and Boris W. Morukov, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.

  2. STS-101 crew take part in CEIT at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At SPACEHAB, in Titusville, Fla., STS-101 crew members take part in a Crew Equipment Interface Test (CEIT). Here they are checking out the SPACEHAB Logistics Double Module. The crew is composed of Commander James Donald Halsell Jr., Pilot Scott J. 'Doc' Horowitz (Ph.D.), and Mission Specialists Mary Ellen Weber (Ph.D.), Edward Tsang Lu (Ph.D.), Jeffrey N. Williams, and Yuri Malenchenko and Boris W. Morukov, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.

  3. STS-101 crew take part in CEIT at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At SPACEHAB, in Titusville, Fla., STS-101 Mission Specialists Edward Tsang Lu (Ph.D.), Mary Ellen Weber (Ph.D.) and Boris W. Morukov, who is with the Russian Space Agency (RSA), stand inside the SPACEHAB Logistics Double Module, part of the payload for their mission. They and other crew members Commander James Donald Halsell Jr., Pilot Scott J. 'Doc' Horowitz (Ph.D.), and Mission Specialists Jeffrey N. Williams, and Yuri Malenchenko (also with RSA), are taking part in a Crew Equipment Interface Test. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.

  4. STS-101 crew take part in CEIT at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Cape Canaveral, Fla., members of the STS-101 crew learn how to manipulate the Russian crane Strela. At left is Yuri Malenchenko, who is with the Russian Space Agency (RSA); in the center is Edward Tsang Lu (Ph.D.); at right is Mission Specialist Jeffrey N. Williams. Other crew members are Commander James Donald Halsell Jr., Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber, (Ph.D.) and Boris W. Morukov (RSA). The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.

  5. STS-101 crew take part in CEIT at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a Crew Equipment Interface Test (CEIT), members of the STS-101 crew learn about some of the cargo that will be on their mission from workers at SPACEHAB, in Cape Canaveral, Fla. At left are Commander James Donald Halsell Jr., and Mission Specialist Mary Ellen Weber, (Ph.D.). Other crew members are Pilot Scott Horowitz, and Mission Specialists Edward Lu, Jeffrey N. Williams, and Boris W. Morukov and Yuri Malenchenko, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.

  6. STS-101 crew take part in CEIT at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a Crew Equipment Interface Test (CEIT), members of the STS-101 crew learn about some of the cargo that will be on their mission from workers at SPACEHAB, in Cape Canaveral, Fla. At left are Mission Specialists Boris W. Morukov and Yuri Malenchenko, who are with the Russian Space Agency. Other crew members are Commander James Donald Halsell Jr., Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber (Ph.D.), Edward Lu, and Jeffrey N. Williams, The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.

  7. STS-101 crew members meet family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Commander James D. Halsell Jr. waves as he stands with his wife Kathy during a meeting of the STS-101 crew with family and friends at Launch Pad 39A. Mission STS-101 will take the crew to the International Space Station to deliver logistics and supplies, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station as well. This will be the third assembly flight for the Space Station. Launch is targeted for April 24 at about 4:15 p.m. EDT from Launch Pad 39A.

  8. KSC-99pp1503

    NASA Image and Video Library

    1999-12-10

    KENNEDY SPACE CENTER, FLA. -- At SPACEHAB, in Titusville, Fla., STS-101 Mission Specialists Edward Tsang Lu (Ph.D.), at right, talks with workers about the SPACEHAB Logistics Double Module at left. The module is part of the payload for the mission. Lu and other crew members Commander James Donald Halsell Jr., Pilot Scott J. "Doc" Horowitz (Ph.D.), and Mission Specialists Mary Ellen Weber (Ph.D), Jeffrey N. Williams, and Boris W. Morukov and Yuri Malenchenko , who are with the Russian Space Agency , are taking part in a Crew Equipment Interface Test. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000

  9. Study on real-time images compounded using spatial light modulator

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Chen, Zhebo; Ni, Xuxiang; Lu, Zukang

    2007-01-01

    Image compounded technology is often used on film and its facture. In common, image compounded use image processing arithmetic, get useful object, details, background or some other things from the images firstly, then compounding all these information into one image. When using this method, the film system needs a powerful processor, for the process function is very complex, we get the compounded image for a few time delay. In this paper, we introduce a new method of image real-time compounded, use this method, we can do image composite at the same time with movie shot. The whole system is made up of two camera-lens, spatial light modulator array and image sensor. In system, the spatial light modulator could be liquid crystal display (LCD), liquid crystal on silicon (LCoS), thin film transistor liquid crystal display (TFTLCD), Deformable Micro-mirror Device (DMD), and so on. Firstly, one camera-lens images the object on the spatial light modulator's panel, we call this camera-lens as first image lens. Secondly, we output an image to the panel of spatial light modulator. Then, the image of the object and image that output by spatial light modulator will be spatial compounded on the panel of spatial light modulator. Thirdly, the other camera-lens images the compounded image to the image sensor, and we call this camera-lens as second image lens. After these three steps, we will gain the compound images by image sensor. For the spatial light modulator could output the image continuously, then the image will be compounding continuously too, and the compounding procedure is completed in real-time. When using this method to compounding image, if we will put real object into invented background, we can output the invented background scene on the spatial light modulator, and the real object will be imaged by first image lens. Then, we get the compounded images by image sensor in real time. The same way, if we will put real background to an invented object, we can output the invented object on the spatial light modulator and the real background will be imaged by first image lens. Then, we can also get the compounded images by image sensor real time. Commonly, most spatial light modulator only can do modulate light intensity, so we can only do compounding BW images if use only one panel which without color filter. If we will get colorful compounded image, we need use the system like three spatial light modulator panel projection. In the paper, the system's optical system framework we will give out. In all experiment, the spatial light modulator used liquid crystal on silicon (LCoS). At the end of the paper, some original pictures and compounded pictures will be given on it. Although the system has a few shortcomings, we can conclude that, using this system to compounding images has no delay to do mathematic compounding process, it is a really real time images compounding system.

  10. STS-101 crew take part in CEIT at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Cape Canaveral, Fla., STS-101 crew members check out some of the cargo that will be carried on their mission. From left are Mission Specialists Boris W. Morukov, who is with the Russian Space Agency (RSA), Jeffrey N. Williams, and Yuri Malenchenko, also with RSA. Other crew members are Commander James Donald Halsell Jr., Pilot Scott J. 'Doc' Horowitz (Ph.D.) and Mission Specialists Mary Ellen Weber, (Ph.D.) and Edward Tsang Lu (Ph.D.). The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.

  11. STS-101 crew take part in CEIT at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Titusville, Fla., STS-101 crew members check out the SPACEHAB Logistics Double Module that will be part of the payload for their mission. At right is Mission Specialist Mary Ellen Weber (Ph.D.), who is assisted by a SPACEHAB worker. Other crew members taking part in the CEIT are Commander James Donald Halsell Jr., Pilot Scott J. 'Doc' Horowitz (Ph.D.), and Mission Specialists Edward Tsang Lu (Ph.D.), Jeffrey N. Williams, and Yuri Malenchenko and Boris W. Morukov, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.

  12. STS-101 crew take part in CEIT at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Titusville, Fla., STS-101 crew members check out the SPACEHAB Logistics Double Module that will be part of the payload for their mission. From left are Commander James Donald Halsell Jr., Mission Specialist Mary Ellen Weber, (Ph.D.), Pilot Scott J. 'Doc' Horowitz (Ph.D.), and Mission Specialist Edward Tsang Lu (Ph.D.). Other crew members who are taking part in the CEIT are Mission Specialists Jeffrey N. Williams, and Boris W. Morukov and Yuri Malenchenko, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.

  13. STS-101 crew take part in CEIT at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Titusville, Fla., STS-101 crew members check out the SPACEHAB Logistics Double Module that will be part of the payload for their mission. At left are Commander James Donald Halsell Jr. and Pilot Scott J. 'Doc' Horowitz (Ph.D.); seated on the floor is Mission Specialist Edward Tsang Lu (Ph.D.). Other crew members who are taking part in the CEIT are Mission Specialists Mary Ellen Weber, (Ph.D.), Jeffrey N. Williams, and Boris W. Morukov and Yuri Malenchenko, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.

  14. STS-101 crew take part in CEIT at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Cape Canaveral, Fla., members of the STS-101 crew learn about some of the cargo that will be on their mission. At left are Mission Specialists Jeffrey N. Williams and Edward Tsang Lu (Ph.D.); at right are Commander James Donald Halsell Jr., and Mission Specialist Boris W. Morukov, who is with the Russian Space Agency (RSA). Other crew members are Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber, (Ph.D.) and Boris W. Morukov and Yuri Malenchenko, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000.

  15. Effect of vegetation type on treatment performance and bioelectric production of constructed wetland modules combined with microbial fuel cell (CW-MFC) treating synthetic wastewater.

    PubMed

    Saz, Çağdaş; Türe, Cengiz; Türker, Onur Can; Yakar, Anıl

    2018-03-01

    An operation of microcosm-constructed wetland modules combined with microbial fuel cell device (CW-MFC) was assessed for wastewater treatment and bioelectric generation. One of the crucial aims of the present experiment is also to determine effect of vegetation on wastewater treatment process and bioelectric production in wetland matrix with microbial fuel cell. Accordingly, CW-MFC modules with vegetation had higher treatment efficiency compared to unplanted wetland module, and average COD, NH 4 + , and TP removal efficiency in vegetated wetland modules were ranged from 85 to 88%, 95 to 97%, and 95 to 97%, respectively. However, the highest NO 3 - removal (63%) was achieved by unplanted control module during the experiment period. The maximum average output voltage, power density, and Coulombic efficiency were obtained in wetland module vegetated with Typha angustifolia for 1.01 ± 0.14 V, 7.47 ± 13.7 mWatt/m 2 , and 8.28 ± 10.4%, respectively. The results suggest that the presence of Typha angustifolia vegetation in the CW-MFC matrix provides the benefits for treatment efficiency and bioelectric production; thus, it increases microbial activities which are responsible for biodegradation of organic compounds and catalyzed to electron flow from anode to cathode. Consequently, we suggest that engineers can use vegetated wetland matrix with Typha angustifolia in CW-MFC module in order to maximize treatment efficiency and bioelectric production.

  16. Discovery of estrogen receptor α modulators from natural compounds in Si-Wu-Tang series decoctions using estrogen-responsive MCF-7 breast cancer cells.

    PubMed

    Liu, Li; Ma, Hongyue; Tang, Yuping; Chen, Wenxing; Lu, Yin; Guo, Jianming; Duan, Jin-Ao

    2012-01-01

    The binding between the estrogen receptor α (ER-α) and a variety of compounds in traditional Chinese formulae, Si-Wu-Tang (SWT) series decoctions, was studied using a stably-transfected human breast cancer cell line (MVLN). In 38 compounds tested from SWT series decoctions, the estrogen-like activity of 22 compounds was above 60% in 20 μg mL(-1). Furthermore, theoretical affinity of these compounds was certificated using the functional virtual screen of ER-α modulators by FlexX-Pharm. The accuracy of functional virtual screening of ER-α modulators could reach to 77.27%. The results showed that some compounds, such as organic acids and flavones in SWT series decoctions could be used as selective estrogen receptor modulators (SERMs) and could be selected for further development as potential agents for estrogen related diseases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. STS-101 crew members meet family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Mary Ellen Weber and her husband Jerome Elkind during a meeting of the STS-101 crew with family and friends at Launch Pad 39A. Mission STS-101 will take the crew to the International Space Station to deliver logistics and supplies, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station as well. This will be the third assembly flight for the Space Station. Launch is targeted for April 24 at about 4:15 p.m. EDT from Launch Pad 39A.

  18. STS-101 crew members meet family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Yuri Vladimirovich Usachev, a Russian cosmonaut, and his wife Vera Sergeevna Usacheva during a meeting of the STS-101 crew with family and friends at Launch Pad 39A. Mission STS-101 will take the crew to the International Space Station to deliver logistics and supplies, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station as well. This will be the third assembly flight for the Space Station. Launch is targeted for April 24 at about 4:15 p.m. EDT from Launch Pad 39A.

  19. Astronaut John Young ingresses Apollo spacecraft command module in training

    NASA Image and Video Library

    1968-07-05

    S68-40875 (5 July 1968) --- Astronaut John W. Young, Apollo 7 backup command module pilot, ingresses Apollo Spacecraft 101 Command Module during simulated altitude runs at the Kennedy Space Center's Pad 34.

  20. The Tellurium compound, AS101, increases SIRT1 level and activity and prevents type 2 diabetes

    PubMed Central

    Halperin-Sheinfeld, Meital; Gertler, Asaf; Okun, Eitan

    2012-01-01

    The histone deacetylase, SIRT1, plays a major role in glucose regulation and lipid metabolism. Ammonium Trichloro (dioxoethylene-o,o') Tellurate, AS101, is a potent in vitro and in vivo immunomodulator, with several potential therapeutic applications. AS101 administration resulted in upregulation of SIRT1 protein expression and activity. These effects were associated with decreased levels of serum insulin like growth factor-1 (IGF-1) and of insulin. The properties of AS101 prompted us to investigate its potential therapeutic role in rats with type 2 diabetes (T2D). T2D was induced by a high fat diet combined with a low dose of Streptozotocin (STZ). Treatment with AS101 before manifestation of hyperglycemia, resulted in increased insulin sensitivity, and decreased blood glucose levels, and prevented symptoms of diabetes including defective glucose clearance, fatty liver, and abnormal distribution of insulin-producing beta cells in the pancreas. Treatment after disease emergence resulted in partial restoration of normal glucose homeostasis. Diabetic rats showed a reduction in liver SIRT1 levels. In both treatment regimens the reduction in SIRT1 levels in the liver were blocked by AS101 consumption. Together, these findings demonstrate the therapeutic potential of AS101 for treating T2D, and for reversing impaired fat and glucose metabolism. PMID:22761194

  1. Aviation Maintenance Technology. General. G101 Aviation Mathematics and Physics. Instructor Material.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    These instructor materials for an aviation maintenance technology course contain three instructional modules covering safety, aviation mathematics, and aviation physics. Each module may contain an introduction and module objective, specific objectives, an instructor's module implementation guide, technical information supplements, transparency…

  2. 100 GHz FMCW Radar Module Based on Broadband Schottky-diode Transceiver

    NASA Astrophysics Data System (ADS)

    Jiang, Shu; Xu, Jinping; Dou, Jiangling; Wang, Wenbo

    2018-04-01

    We report on a W-band frequency-modulated continuous-wave (FMCW) radar module with fractional bandwidth over 10 %. To improve flatness over large operation bandwidth, the radar module is developed with focus on the 90-101 GHz modular transceiver, for which accurate modeling of Schottky diode in combination with an integrated design method are proposed in this work. Moreover, the nonlinearity compensation approach is introduced to further optimize the range resolution. To verify the design method and RF performance of the radar module, both measurements of critical components and ISAR imaging experiments are performed. The results demonstrate that high resolution in range and azimuth dimensions can be achieved based on the radar module, of which the receiving gain flatness and transmitting power flatness are better than ±1.3 dB and ±0.7 dB over 90 101 GHz, respectively.

  3. KSC-99pp1488

    NASA Image and Video Library

    1999-12-09

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test (CEIT), members of the STS-101 crew learn about some of the cargo that will be on their mission from workers at SPACEHAB, in Cape Canaveral, Fla. At left are Commander James Donald Halsell Jr., and Mission Specialist Mary Ellen Weber, (Ph.D.). Other crew members are Pilot Scott Horowitz, and Mission Specialists Edward Lu, Jeffrey N. Williams, and Boris W. Morukov and Yuri Malenchenko, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000

  4. KSC-99pp1487

    NASA Image and Video Library

    1999-12-09

    During a Crew Equipment Interface Test (CEIT), members of the STS-101 crew learn about some of the cargo that will be on their mission from workers at SPACEHAB, in Cape Canaveral, Fla. At left are Mission Specialists Boris W. Morukov and Yuri Malenchenko, who are with the Russian Space Agency. Other crew members are Commander James Donald Halsell Jr., Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber (Ph.D.), Edward Lu, and Jeffrey N. Williams, The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000

  5. KSC-99pp1490

    NASA Image and Video Library

    1999-12-09

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Cape Canaveral, Fla., members of the STS-101 crew learn how to manipulate the Russian crane Strela. At left is Yuri Malenchenko, who is with the Russian Space Agency (RSA); in the center is Edward Tsang Lu (Ph.D.); at right is Mission Specialist Jeffrey N. Williams. Other crew members are Commander James Donald Halsell Jr., Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber, (Ph.D.) and Boris W. Morukov (RSA). The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000

  6. KSC-99pp1500

    NASA Image and Video Library

    1999-12-10

    KENNEDY SPACE CENTER, FLA. -- At SPACEHAB, in Titusville, Fla., STS-101 crew members take part in a Crew Equipment Interface Test (CEIT). Here checking out the SPACEHAB Logistics Double Module are (left) Mission Specialists Mary Ellen Weber (Ph.D.), and (right) Edward Tsang Lu (Ph.D.). Other members of the crew taking part in the CEIT are Commander James Donald Halsell Jr., Pilot Scott J. "Doc" Horowitz (Ph.D.), and Mission Specialists Jeffrey N. Williams, and Yuri Malenchenko and Boris W. Morukov, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000

  7. KSC-99pp1498

    NASA Image and Video Library

    1999-12-10

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Titusville, Fla., STS-101 crew members check out the SPACEHAB Logistics Double Module that will be part of the payload for their mission. From left are Pilot Scott J. "Doc" Horowitz (Ph.D.), and Mission Specialists Edward Tsang Lu (Ph.D.) and Mary Ellen Weber (Ph.D.). Other crew members taking part in the CEIT are Commander James Donald Halsell Jr., Jeffrey N. Williams, and Yuri Malenchenko and Boris W. Morukov, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000

  8. KSC-99pp1491

    NASA Image and Video Library

    1999-12-09

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Cape Canaveral, Fla., STS-101 crew members Edward Tsang Lu (Ph.D.) and Yuri Malenchenko, who is with the Russian Space Agency (RSA) check out part of the Russian crane Strela. Other crew members are Commander James Donald Halsell Jr., Pilot Scott Horowitz, and Mission Specialists Jeffrey N. Williams, Mary Ellen Weber, (Ph.D.) and Boris W. Morukov, also with RSA. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000

  9. KSC-99pp1493

    NASA Image and Video Library

    1999-12-09

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Cape Canaveral, Fla., STS-101 crew members check out some of the cargo that will be carried on their mission. From left are Mission Specialists Boris W. Morukov, who is with the Russian Space Agency (RSA), Jeffrey N. Williams, and Yuri Malenchenko, also with RSA. Other crew members are Commander James Donald Halsell Jr., Pilot Scott J. "Doc" Horowitz (Ph.D.) and Mission Specialists Mary Ellen Weber, (Ph.D.) and Edward Tsang Lu (Ph.D.). The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000

  10. KSC-99pp1499

    NASA Image and Video Library

    1999-12-10

    KENNEDY SPACE CENTER, FLA. -- At SPACEHAB, in Titusville, Fla., STS-101 crew members take part in a Crew Equipment Interface Test (CEIT). Here they are checking out the SPACEHAB Logistics Double Module. The crew is composed of Commander James Donald Halsell Jr., Pilot Scott J. "Doc" Horowitz (Ph.D.), and Mission Specialists Mary Ellen Weber (Ph.D.), Edward Tsang Lu (Ph.D.), Jeffrey N. Williams, and Yuri Malenchenko and Boris W. Morukov, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000

  11. KSC-99pp1492

    NASA Image and Video Library

    1999-12-09

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Cape Canaveral, Fla., STS-101 crew members check out some of the cargo that will be carried on their mission. From left are Pilot Scott J. "Doc" Horowitz (Ph.D.) and Mission Specialists Mary Ellen Weber, (Ph.D.), Jeffrey N. Williams, and Boris W. Morukov, who is with the Russian Space Agency (RSA). Other crew members are Commander James Donald Halsell Jr., Edward Tsang Lu (Ph.D.) and Yuri Malenchenko, also with RSA. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000

  12. KSC-99pp1502

    NASA Image and Video Library

    1999-12-10

    KENNEDY SPACE CENTER, FLA. -- At SPACEHAB, in Titusville, Fla., STS-101 Mission Specialists Edward Tsang Lu (Ph.D.), Mary Ellen Weber (Ph.D.) and Boris W. Morukov, who is with the Russian Space Agency (RSA), stand inside the SPACEHAB Logistics Double Module, part of the payload for their mission. They and other crew members Commander James Donald Halsell Jr., Pilot Scott J. "Doc" Horowitz (Ph.D.), and Mission Specialists Jeffrey N. Williams, and Yuri Malenchenko (also with RSA), are taking part in a Crew Equipment Interface Test. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000

  13. KSC-99pp1501

    NASA Image and Video Library

    1999-12-10

    KENNEDY SPACE CENTER, FLA. -- At SPACEHAB, in Titusville, Fla., STS-101 crew members take part in a Crew Equipment Interface Test (CEIT). Here they are checking out the SPACEHAB Logistics Double Module. The crew is composed of Commander James Donald Halsell Jr., Pilot Scott J. "Doc" Horowitz (Ph.D.), and Mission Specialists Mary Ellen Weber (Ph.D.), Edward Tsang Lu (Ph.D.), Jeffrey N. Williams, and Yuri Malenchenko and Boris W. Morukov, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000

  14. KSC-99pp1496

    NASA Image and Video Library

    1999-12-10

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Titusville, Fla., STS-101 crew members check out the SPACEHAB Logistics Double Module that will be part of the payload for their mission. The crew is composed of Commander James Donald Halsell Jr., Pilot Scott J. "Doc" Horowitz (Ph.D.), and Mission Specialists Mary Ellen Weber (Ph.D.), Edward Tsang Lu (Ph.D.), Jeffrey N. Williams, and Yuri Malenchenko and Boris W. Morukov, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000

  15. Insight into structural requirements for selective and/or dual CXCR3 and CXCR4 allosteric modulators.

    PubMed

    Kolarič, Anja; Švajger, Urban; Tomašič, Tihomir; Brox, Regine; Frank, Theresa; Minovski, Nikola; Tschammer, Nuska; Anderluh, Marko

    2018-05-11

    Based on the previously published pyrazolopyridine-based hit compound for which negative allosteric modulation of both CXCR3 and CXCR4 receptors was disclosed, we designed, synthesized and biologically evaluated a set of novel, not only negative, but also positive allosteric modulators with preserved pyrazolopyridine core. Compound 9e is a dual negative modulator, inhibiting G protein activity of both receptors. For CXCR4 receptor para-substituted aromatic group of compounds distinguishes between negative and positive modulation. Para-methoxy substitution leads to functional antagonism, while para-chloro triggers agonism. Additionally, we discovered that chemotaxis is not completely correlated with G protein pathways. This is the first work in which we have on a series of compounds successfully demonstrated that it is possible to produce selective as well as dual-acting modulators of chemokine receptors, which is very promising for future research in the field of discovery of selective or dual modulators of chemokine receptors. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. 40 CFR 59.101 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Compound Emission Standards for Automobile Refinish Coatings § 59.101 Definitions. Adhesion promoter means... (U.S. EPA) or an authorized representative. Automobile means passenger cars, vans, motorcycles, trucks, and all other mobile equipment. Automobile refinish coating component means any portion of a...

  17. 40 CFR 59.101 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Compound Emission Standards for Automobile Refinish Coatings § 59.101 Definitions. Adhesion promoter means... (U.S. EPA) or an authorized representative. Automobile means passenger cars, vans, motorcycles, trucks, and all other mobile equipment. Automobile refinish coating component means any portion of a...

  18. 40 CFR 59.101 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Compound Emission Standards for Automobile Refinish Coatings § 59.101 Definitions. Adhesion promoter means... (U.S. EPA) or an authorized representative. Automobile means passenger cars, vans, motorcycles, trucks, and all other mobile equipment. Automobile refinish coating component means any portion of a...

  19. KSC-99pp1489

    NASA Image and Video Library

    1999-12-09

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Cape Canaveral, Fla., members of the STS-101 crew learn about some of the cargo that will be on their mission. At left are Mission Specialists Jeffrey N. Williams and Edward Tsang Lu (Ph.D.); at right are Commander James Donald Halsell Jr., and Mission Specialist Boris W. Morukov, who is with the Russian Space Agency (RSA). Other crew members are Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber, (Ph.D.) and Boris W. Morukov and Yuri Malenchenko, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB's Logistics Double Module. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000

  20. KSC-99pp1494

    NASA Image and Video Library

    1999-12-10

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Titusville, Fla., STS-101 crew members check out the SPACEHAB Logistics Double Module that will be part of the payload for their mission. At left are Commander James Donald Halsell Jr. and Pilot Scott J. "Doc" Horowitz (Ph.D.); seated on the floor is Mission Specialist Edward Tsang Lu (Ph.D.). Other crew members who are taking part in the CEIT are Mission Specialists Mary Ellen Weber, (Ph.D.), Jeffrey N. Williams, and Boris W. Morukov and Yuri Malenchenko, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000

  1. KSC-99pp1497

    NASA Image and Video Library

    1999-12-10

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Titusville, Fla., STS-101 crew members check out the SPACEHAB Logistics Double Module that will be part of the payload for their mission. At right is Mission Specialist Mary Ellen Weber (Ph.D.), who is assisted by a SPACEHAB worker. Other crew members taking part in the CEIT are Commander James Donald Halsell Jr., Pilot Scott J. "Doc" Horowitz (Ph.D.), and Mission Specialists Edward Tsang Lu (Ph.D.), Jeffrey N. Williams, and Yuri Malenchenko and Boris W. Morukov, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000

  2. KSC-99pp1495

    NASA Image and Video Library

    1999-12-10

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test (CEIT) at SPACEHAB, in Titusville, Fla., STS-101 crew members check out the SPACEHAB Logistics Double Module that will be part of the payload for their mission. From left are Commander James Donald Halsell Jr., Mission Specialist Mary Ellen Weber, (Ph.D.), Pilot Scott J. "Doc" Horowitz (Ph.D.), and Mission Specialist Edward Tsang Lu (Ph.D.). Other crew members who are taking part in the CEIT are Mission Specialists Jeffrey N. Williams, and Boris W. Morukov and Yuri Malenchenko, who are with the Russian Space Agency. The primary objective of the STS-101 mission is to complete the initial outfitting of the International Space Station, making it fully ready for the first long-term crew. The seven-member crew will transfer almost two tons of equipment and supplies from SPACEHAB. Additionally, they will unpack a shipment of supplies delivered earlier by a Russian Progress space tug and begin outfitting the newly arrived Zvezda Service Module. Three astronauts will perform two space walks to transfer and install parts of the Russian Strela cargo boom that are attached to SPACEHAB's Integrated Cargo Container, connect utility cables between Zarya and Zvezda, and install a magnetometer/pole assembly on the Service Module. Additional activities for the STS-101 astronauts include working with the Space Experiment Module (SEM-06) and the Mission to America's Remarkable Schools (MARS), two educational initiatives. STS-101 is scheduled for launch no earlier than March 16, 2000

  3. Effects of estrogen receptor modulators on cytoskeletal proteins in the central nervous system.

    PubMed

    Segura-Uribe, Julia J; Pinto-Almazán, Rodolfo; Coyoy-Salgado, Angélica; Fuentes-Venado, Claudia E; Guerra-Araiza, Christian

    2017-08-01

    Estrogen receptor modulators are compounds of interest because of their estrogenic agonistic/antagonistic effects and tissue specificity. These compounds have many clinical applications, particularly for breast cancer treatment and osteoporosis in postmenopausal women, as well as for the treatment of climacteric symptoms. Similar to estrogens, neuroprotective effects of estrogen receptor modulators have been described in different models. However, the mechanisms of action of these compounds in the central nervous system have not been fully described. We conducted a systematic search to investigate the effects of estrogen receptor modulators in the central nervous system, focusing on the modulation of cytoskeletal proteins. We found that raloxifene, tamoxifen, and tibolone modulate some cytoskeletal proteins such as tau, microtuble-associated protein 1 (MAP1), MAP2, neurofilament 38 (NF38) by different mechanisms of action and at different levels: neuronal microfilaments, intermediate filaments, and microtubule-associated proteins. Finally, we emphasize the importance of the study of these compounds in the treatment of neurodegenerative diseases since they present the benefits of estrogens without their side effects.

  4. Effects of estrogen receptor modulators on cytoskeletal proteins in the central nervous system

    PubMed Central

    Segura-Uribe, Julia J.; Pinto-Almazán, Rodolfo; Coyoy-Salgado, Angélica; Fuentes-Venado, Claudia E.; Guerra-Araiza, Christian

    2017-01-01

    Estrogen receptor modulators are compounds of interest because of their estrogenic agonistic/antagonistic effects and tissue specificity. These compounds have many clinical applications, particularly for breast cancer treatment and osteoporosis in postmenopausal women, as well as for the treatment of climacteric symptoms. Similar to estrogens, neuroprotective effects of estrogen receptor modulators have been described in different models. However, the mechanisms of action of these compounds in the central nervous system have not been fully described. We conducted a systematic search to investigate the effects of estrogen receptor modulators in the central nervous system, focusing on the modulation of cytoskeletal proteins. We found that raloxifene, tamoxifen, and tibolone modulate some cytoskeletal proteins such as tau, microtuble-associated protein 1 (MAP1), MAP2, neurofilament 38 (NF38) by different mechanisms of action and at different levels: neuronal microfilaments, intermediate filaments, and microtubule-associated proteins. Finally, we emphasize the importance of the study of these compounds in the treatment of neurodegenerative diseases since they present the benefits of estrogens without their side effects. PMID:28966632

  5. STS-101 Mission Specialists Helms, Usachev and Voss practice emergency exit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    As part of Terminal Countdown Demonstration (TCDT) activities, the STS-101 crew practices emergency egress from the orbiter at the 195-foot level of the Fixed Service Structure. Shown heading down the easily identified exit path, known as the 'yellow brick road,' are Mission Specialists Susan J. Helms (leading), Yuri Usachev of Russia and James Voss. The TCDT also includes a simulated launch countdown and familiarization with the payload. During their mission to the International Space Station, the STS- 101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight to the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  6. Herbal Compounds and Toxins Modulating TRP Channels

    PubMed Central

    Vriens, Joris; Nilius, Bernd; Vennekens, Rudi

    2008-01-01

    Although the benefits are sometimes obvious, traditional or herbal medicine is regarded with skepticism, because the mechanism through which plant compounds exert their powers are largely elusive. Recent studies have shown however that many of these plant compounds interact with specific ion channels and thereby modulate the sensing mechanism of the human body. Especially members of the Transient Receptor Potential (TRP) channels have drawn large attention lately as the receptors for plant-derived compounds such as capsaicin and menthol. TRP channels constitute a large and diverse family of channel proteins that can serve as versatile sensors that allow individual cells and entire organisms to detect changes in their environment. For this family, a striking number of empirical views have turned into mechanism-based actions of natural compounds. In this review we will give an overview of herbal compounds and toxins, which modulate TRP channels. PMID:19305789

  7. The metal-insulator transition in Fe(1.01-x)Cu(x)Se.

    PubMed

    Williams, A J; McQueen, T M; Ksenofontov, V; Felser, C; Cava, R J

    2009-07-29

    Iron selenide, Fe(1.01)Se, the layered parent compound of the recently discovered superconducting arsenide family, has previously been shown to be non-magnetic and superconducting with a critical temperature of 8 K. Here we show that copper can be substituted at the iron site in Fe(1.01)Se up to a solubility limit of 20-30%, after which a first-order transition to the three-dimensional CuFeSe(2) structure type is observed. As little as 1.5% copper is sufficient to suppress the superconductivity, and 4% drives the system through a metal-insulator transition. A local magnetic moment is introduced, which maximizes near 12% doping, where a spin-glass transition near 15 K is observed.

  8. Allosteric Modulation of protein oligomerization: an emerging approach to drug design

    NASA Astrophysics Data System (ADS)

    Gabizon, Ronen; Friedler, Assaf

    2014-03-01

    Many disease-related proteins are in equilibrium between different oligomeric forms. The regulation of this equilibrium plays a central role in maintaining the activity of these proteins in vitro and in vivo. Modulation of the oligomerization equilibrium of proteins by molecules that bind preferentially to a specific oligomeric state is emerging as a potential therapeutic strategy that can be applied to many biological systems such as cancer and viral infections. The target proteins for such compounds are diverse in structure and sequence, and may require different approaches for shifting their oligomerization equilibrium. The discovery of such oligomerization-modulating compounds is thus achieved based on existing structural knowledge about the specific target proteins, as well as on their interactions with partner proteins or with ligands. In silico design and combinatorial tools such as peptide arrays and phage display are also used for discovering compounds that modulate protein oligomerization. The current review highlights some of the recent developments in the design of compounds aimed at modulating the oligomerization equilibrium of proteins, including the "shiftides" approach developed in our lab.

  9. 40 CFR 63.101 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry § 63.101... 71. Organic hazardous air pollutant or organic HAP means one of the chemicals listed in table 2 of... or more organic reactants to produce one or more organic compounds. Air oxidation reactor includes...

  10. 40 CFR 63.101 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry § 63.101... 71. Organic hazardous air pollutant or organic HAP means one of the chemicals listed in table 2 of... or more organic reactants to produce one or more organic compounds. Air oxidation reactor includes...

  11. 40 CFR 63.101 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry § 63.101... 71. Organic hazardous air pollutant or organic HAP means one of the chemicals listed in table 2 of... or more organic reactants to produce one or more organic compounds. Air oxidation reactor includes...

  12. Studies on the chemical constituents from the stem and leaves of Tagetes erecta.

    PubMed

    Zhang, Yu; Zhang, Ting-Ting

    2010-09-01

    To investigate the chemical constituents of the stem and leaves of Tagetes erecta. The materials extracted with ethanol were first purified with D101 resin and then separated by repeated silica gel column chromatography as well as recrystallization to get single compounds. The chemical structures of the compounds were elucidated on the basis of physicochemical properties, spectroscopic analysis and comparing with standard sample and literatures. Six compounds were identified as 4'-methoxy-eupatolitin-3-O-glucoside (I), kaempferitrin (II), rutin (III), beta-sitosterol (IV), daucosterol (V) and gallic acid (VI). Compounds I, II, III are isolated from the plant for the first time; the compounds IV, V, VI are isolated from the stem and leaves of the plant for the first time.

  13. Environmental Modeling 101: Training Module

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) uses a variety of models to inform decisions that support its missions, this module provides an introduction to environmental modeling with examples of various models and life-cycles.

  14. 47 CFR 101.131 - Transmitter construction and installation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... by the licensee. (b) In any case where the maximum modulating frequency of a transmitter is prescribed by the Commission, the transmitter must be equipped with a low-pass or band-pass modulation filter of suitable performance characteristics. In those cases where a modulation limiter is employed, the...

  15. Disruption of the Arabidopsis Defense Regulator Genes SAG101, EDS1, and PAD4 Confers Enhanced Freezing Tolerance

    PubMed Central

    Chen, Qin-Fang; Xu, Le; Tan, Wei-Juan; Chen, Liang; Qi, Hua; Xie, Li-Juan; Chen, Mo-Xian; Liu, Bin-Yi; Yu, Lu-Jun; Yao, Nan; Zhang, Jian-Hua; Shu, Wensheng; Xiao, Shi

    2017-01-01

    In Arabidopsis, three lipase-like regulators, SAG101, EDS1, and PAD4, act downstream of resistance protein-associated defense signaling. Although the roles of SAG101, EDS1, and PAD4 in biotic stress have been extensively studied, little is known about their functions in plant responses to abiotic stresses. Here, we show that SAG101, EDS1, and PAD4 are involved in the regulation of freezing tolerance in Arabidopsis. With or without cold acclimation, the sag101, eds1, and pad4 single mutants, as well as their double mutants exhibited similarly enhanced tolerance to freezing temperatures. Upon cold exposure, the sag101, eds1, and pad4 mutants showed increased transcript levels of C-REPEAT/DRE BINDING FACTORs and their regulons, compared with wild type. Moreover, freezing-induced cell death and accumulation of hydrogen peroxide were ameliorated in sag101, eds1, and pad4 mutants. The sag101, eds1, and pad4 mutants had much lower salicylic acid (SA) and diacylglycerol (DAG) contents than wild type and exogenous application of SA and DAG compromised the freezing tolerance of the mutants. Furthermore, SA suppressed the cold-induced expression of DGATs and DGKs in wild-type leaves. These findings indicate that SAG101, EDS1, and PAD4 are involved in freezing response in Arabidopsis, at least in part, by modulating the homeostasis of SA and DAG. PMID:26149542

  16. KSC-00pp0373

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Changeout Room (PCR) at Launch Pad 39A check out the SPACEHAB Double Module before moving into the PCR. Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  17. KSC00pp0373

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Changeout Room (PCR) at Launch Pad 39A check out the SPACEHAB Double Module before moving into the PCR. Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  18. KSC-00pp0367

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and Integrated Cargo Carrier (ICC) inside is lifted up the Rotating Service Structure toward the Payload Changeout Room, an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  19. KSC00pp0367

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and Integrated Cargo Carrier (ICC) inside is lifted up the Rotating Service Structure toward the Payload Changeout Room, an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  20. Acute administration of ucf-101 ameliorates the locomotor impairments induced by a traumatic spinal cord injury.

    PubMed

    Reigada, D; Nieto-Díaz, M; Navarro-Ruiz, R; Caballero-López, M J; Del Águila, A; Muñoz-Galdeano, T; Maza, R M

    2015-08-06

    Secondary death of neural cells plays a key role in the physiopathology and the functional consequences of traumatic spinal cord injury (SCI). Pharmacological manipulation of cell death pathways leading to the preservation of neural cells is acknowledged as a main therapeutic goal in SCI. In the present work, we hypothesize that administration of the neuroprotective cell-permeable compound ucf-101 will reduce neural cell death during the secondary damage of SCI, increasing tissue preservation and reducing the functional deficits. To test this hypothesis, we treated mice with ucf-101 during the first week after a moderate contusive SCI. Our results reveal that ucf-101 administration protects neural cells from the deleterious secondary mechanisms triggered by the trauma, reducing the extension of tissue damage and improving motor function recovery. Our studies also suggest that the effects of ucf-101 may be mediated through the inhibition of HtrA2/OMI and the concomitant increase of inhibitor of apoptosis protein XIAP, as well as the induction of ERK1/2 activation and/or expression. In vitro assays confirm the effects of ucf-101 on both pathways as well as on the reduction of caspase cascade activation and apoptotic cell death in a neuroblastoma cell line. These results suggest that ucf-101 can be a promising therapeutic tool for SCI that deserves more detailed analyses. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Analysis of munitions constituents in IMX formulations by HPLC and HPLC-MS.

    PubMed

    Russell, A L; Seiter, J M; Coleman, J G; Winstead, B; Bednar, A J

    2014-10-01

    The use of Insensitive Munitions eXplosives (IMX) is increasing as the Army seeks to replace certain conventional munitions constituents, such as 2,4,6-trinitrotolene (TNT), for improved safety. The IMX formulations are more stable and therefore less prone to accidental detonation while designed to match the performance of legacy materials. Two formulations, IMX 101 and 104 are being investigated as a replacement for TNT in artillery rounds and composition B Army mortars, respectively. The chemical formulations of IMX-101 and 104 are comprised of four constituents;2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), 1-nitroguanidine (NQ), and Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) which are mixed in various ratios to achieve the desired performance. The current work details the analysis of the IMX constituents by single column HPLC-UV-ESI-MS. Detection limits determined are in agreement with similar HPLC analysis of compounds, ranging from 7 to 9μg/L. Gradient mobile phases are used to allow separation of the 4 target compounds in more complex mixture of other concomitant compounds. Mass spectra are used to confirm analyte identity with chromatographic retention time. Published by Elsevier B.V.

  2. Anticancer Natural Compounds as Epigenetic Modulators of Gene Expression

    PubMed Central

    Ratovitski, Edward A.

    2017-01-01

    Abstract: Accumulating evidence shows that hallmarks of cancer include: “genetic and epigenetic alterations leading to inactivation of cancer suppressors, overexpression of oncogenes, deregulation of intracellular signaling cascades, alterations of cancer cell metabolism, failure to undergo cancer cell death, induction of epithelial to mesenchymal transition, invasiveness, metastasis, deregulation of immune response and changes in cancer microenvironment, which underpin cancer development”. Natural compounds as bioactive ingredients isolated from natural sources (plants, fungi, marine life forms) have revolutionized the field of anticancer therapeutics and rapid developments in preclinical studies are encouraging. Natural compounds could affect the epigenetic molecular mechanisms that modulate gene expression, as well as DNA damage and repair mechanisms. The current review will describe the latest achievements in using naturally produced compounds targeting epigenetic regulators and modulators of gene transcription in vitro and in vivo to generate novel anticancer therapeutics. PMID:28367075

  3. NorA efflux pump inhibitory activity of coumarins from Mesua ferrea.

    PubMed

    Roy, Somendu K; Kumari, Neela; Pahwa, Sonika; Agrahari, Udai C; Bhutani, Kamlesh K; Jachak, Sanjay M; Nandanwar, Hemraj

    2013-10-01

    The purpose of this investigation was to study the modulator and efflux pump inhibitor activity of coumarins isolated from Mesua ferrea against clinical strains as well as NorA-over expressed strain of Staphylococcus aureus 1199B. Seven coumarins were tested for modulator activity using ethidium bromide (EtBr) as a substrate. Compounds 1, 4-7 modulated the MIC of EtBr by ≥ 2 fold against wild type clinical strains of S. aureus 1199 and S. aureus 1199B, whereas compounds 4-7 modulated the MIC of EtBr by ≥ 16 fold against MRSA 831. Compounds 1, 4-7 also reduced the MIC of norfloxacin by ≥ 8 fold against S. aureus 1199B, and 4-6 reduced the MIC of norfloxacin by ≥ 8 fold against MRSA 831 at half of their MICs. Inhibition of EtBr efflux by NorA-overproducing S. aureus 1199B and MRSA 831 confirmed the role of compounds 4-6 as NorA efflux pump inhibitors (EPI). Dose-dependent activity at sub-inhibitory concentration (6.25 μg/mL) suggested that compounds 4 and 5 are promising EPI compared to verapamil against 1199B and MRSA 831 strains. © 2013.

  4. The STS-101 crew takes part in CEIT activities at SPACEHAB.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Members of the STS-101 crew take part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, in Cape Canaveral, Fla., where they are learning about some of the equipment they will be working with on their mission to the International Space Station. Mission Specialist Susan Helms holds one component while Commander James Halsell and Mission Specialist Yuri Usachev look on, and Mission Specialists Mary Ellen Weber and Jeffrey Williams discuss another. Also taking part in the CEIT are Pilot Scott Horowitz and Mission Specialist James Voss. The green component on the table is an air duct to be installed in the Russian module Zarya to improve ventilation. The STS-101 crew will be responsible for preparing the Space Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station and deliver logistics and supplies. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch no earlier than April 13 from Launch Pad 39A.

  5. The STS-101 crew takes part in CEIT activities at SPACEHAB.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At SPACEHAB, in Cape Canaveral, Fla., STS-101 Mission Specialists Susan Helms and Yuri Usachev, with Commander James Halsell, handle an air duct to be installed during their mission to the International Space Station. The air duct is for the Russian module Zarya to improve ventilation. At right are Mission Specialists Jeffrey Williams and Mary Ellen Weber. In the background at left is Pilot Scott Horowitz. Not shown is Mission Specialist James Voss. The crew is taking part in Crew Equipment Interface Test (CEIT) activities to learn about some of the equipment they will be working with on their mission to the Space Station. The STS-101 crew will be responsible for preparing the Space Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station and deliver logistics and supplies. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch no earlier than April 13 from Launch Pad 39A.

  6. STS-101 crew members meet family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A light-hearted moment during a meeting of the STS-101 crew with family and friends at Launch Pad 39A. From left, Commander James D. Halsell Jr., Mission Specialist Mary Ellen Weber and Pilot Scott J. Horowitz. Mission STS-101 will take the crew to the International Space Station to deliver logistics and supplies, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station as well. This will be the third assembly flight for the Space Station. Launch is targeted for April 24 at about 4:15 p.m. EDT from Launch Pad 39A.

  7. Imidazoles and benzimidazoles as tubulin-modulators for anti-cancer therapy.

    PubMed

    Torres, Fernando C; García-Rubiño, M Eugenia; Lozano-López, César; Kawano, Daniel F; Eifler-Lima, Vera L; von Poser, Gilsane L; Campos, Joaquín M

    2015-01-01

    Imidazoles and benzimidazoles are privileged heterocyclic bioactive compounds used with success in the clinical practice of innumerous diseases. Although there are many advancements in cancer therapy, microtubules remain as one of the few macromolecular targets validated for planning active anti-cancer compounds, and the design of drugs that modulate microtubule dynamics in unknown sites of tubulin is one of the goals of the medicinal chemistry. The discussion of the role of new and commercially available imidazole and benzimidazole derivatives as tubulin modulators is scattered throughout scientific literature, and indicates that these compounds have a tubulin modulation mechanism different from that of tubulin modulators clinically available, such as paclitaxel, docetaxel, vincristine and vinblastine. In fact, recent literature indicates that these derivatives inhibit microtubule formation binding to the colchicine site, present good pharmacokinetic properties and are capable of overcoming multidrug resistance in many cell lines. The understanding of the mechanisms involved in the imidazoles/benzimidazoles modulation of microtubule dynamics is very important to develop new strategies to overcome the resistance to anti-cancer drugs and to discover new biomarkers and targets for cancer chemotherapy.

  8. KSC00pp0370

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- The doors of the payload canister open in the Payload Changeout Room (PCR) at Launch Pad 39A to reveal the SPACEHAB Double Module (bottom) and Integrated Cargo Carrier (ICC). Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  9. KSC00pp0371

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- The SPACEHAB Double Module (bottom) and Integrated Cargo Carrier (above) are ready to be moved from the payload canister into the Payload Changeout Room (PCR) at Launch Pad 39A. Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  10. KSC-00pp0371

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- The SPACEHAB Double Module (bottom) and Integrated Cargo Carrier (above) are ready to be moved from the payload canister into the Payload Changeout Room (PCR) at Launch Pad 39A. Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  11. KSC00pp0372

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- A closeup shows the Integrated Cargo Carrier (top) and SPACEHAB Double Module (below) ready to be moved into the Payload Changeout Room (PCR) at Launch Pad 39A. Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  12. KSC-00pp0370

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- The doors of the payload canister open in the Payload Changeout Room (PCR) at Launch Pad 39A to reveal the SPACEHAB Double Module (bottom) and Integrated Cargo Carrier (ICC). Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  13. KSC-00pp0372

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- A closeup shows the Integrated Cargo Carrier (top) and SPACEHAB Double Module (below) ready to be moved into the Payload Changeout Room (PCR) at Launch Pad 39A. Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  14. Metalloid compounds as drugs

    PubMed Central

    Sekhon, B. S.

    2013-01-01

    The six elements commonly known as metalloids are boron, silicon, germanium, arsenic, antimony, and tellurium. Metalloid containing compounds have been used as antiprotozoal drugs. Boron-based drugs, the benzoxaboroles have been exploited as potential treatments for neglected tropical diseases. Arsenic has been used as a medicinal agent and arsphenamine was the main drug used to treat syphilis. Arsenic trioxide has been approved for the treatment of acute promyelocytic leukemia. Pentavalent antimonials have been the recommended drug for visceral leishmaniasis and cutaneous leishmaniasis. Tellurium (IV) compounds may have important roles in thiol redox biological activity in the human body, and ammonium trichloro (dioxoethylene-O, O’-)tellurate (AS101) may be a promising agent for the treatment of Parkinson’s disease. Organosilicon compounds have been shown to be effective in vitro multidrug-resistance reverting agents. PMID:24019824

  15. Simulating forest fuel and fire risk dynamics across landscapes--LANDIS fuel module design

    Treesearch

    Hong S. He; Bo Z. Shang; Thomas R. Crow; Eric J. Gustafson; Stephen R. Shifley

    2004-01-01

    Understanding fuel dynamics over large spatial (103-106 ha) and temporal scales (101-103 years) is important in comprehensive wildfire management. We present a modeling approach to simulate fuel and fire risk dynamics as well as impacts of alternative fuel treatments. The...

  16. Alpha1- and alpha2-containing GABAA receptor modulation is not necessary for benzodiazepine-induced hyperphagia.

    PubMed

    Morris, H V; Nilsson, S; Dixon, C I; Stephens, D N; Clifton, P G

    2009-06-01

    Benzodiazepines increase food intake, an effect attributed to their ability to enhance palatability. We investigated which GABA(A) receptor subtypes may be involved in mediating benzodiazepine-induced hyperphagia. The role of the alpha2 subtype was investigated by observing the effects of midazolam, on the behavioural satiety sequence in mice with targeted deletion of the alpha2 gene (alpha2 knockout). Midazolam (0.125, 0.25 and 0.5mg/kg) increased food intake and the amount of time spent feeding in alpha2 knockout mice, suggesting that BZ-induced hyperphagia does not involve alpha2-containing GABA(A) receptors. We further investigated the roles of alpha1- and alpha3-containing GABA(A) receptors in mediating BZ-induced hyperphagia. We treated alpha2(H101R) mice, in which alpha2-containing receptors are rendered benzodiazepine insensitive, with L-838417, a compound which acts as a partial agonist at alpha2-, alpha3- and alpha5-receptors but is inactive at alpha1-containing receptors. L-838417 (10 and 30 mg/kg) increased food intake and the time spent feeding in both wildtype and alpha2(H101R) mice, demonstrating that benzodiazepine-induced hyperphagia does not require alpha1- and alpha2-containing GABA(A) receptors. These observations, together with evidence against the involvement of alpha5-containing GABA(A) receptors, suggest that alpha3-containing receptors mediate BZ-induced hyperphagia in the mouse.

  17. Optimisation and validation of the microwave-assisted extraction of phenolic compounds from rice grains.

    PubMed

    Setyaningsih, W; Saputro, I E; Palma, M; Barroso, C G

    2015-02-15

    A new microwave-assisted extraction (MAE) method has been investigated for the extraction of phenolic compounds from rice grains. The experimental conditions studied included temperature (125-175°C), microwave power (500-1000W), time (5-15min), solvent (10-90% EtOAc in MeOH) and solvent-to-sample ratio (10:1 to 20:1). The extraction variables were optimised by the response surface methodology. Extraction temperature and solvent were found to have a highly significant effect on the response value (p<0.0005) and the extraction time also had a significant effect (p<0.05). The optimised MAE conditions were as follows: extraction temperature 185°C, microwave power 1000W, extraction time 20min, solvent 100% MeOH, and solvent-to-sample ratio 10:1. The developed method had a high precision (in terms of CV: 5.3% for repeatability and 5.5% for intermediate precision). Finally, the new method was applied to real samples in order to investigate the presence of phenolic compounds in a wide variety of rice grains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. PORTRAIT - APOLLO 7 - PRIME CREW - KSC

    NASA Image and Video Library

    1968-05-22

    S68-33744 (22 May 1968) --- The prime crew of the first manned Apollo space mission, Apollo 7 (Spacecraft 101/Saturn 205), left to right, are astronauts Donn F. Eisele, command module pilot, Walter M. Schirra Jr., commander; and Walter Cunningham, lunar module pilot.

  19. Measurements of the hygroscopic and deliquescence properties of organic compounds of different solubilities in water and their relationship with cloud condensation nuclei activities.

    PubMed

    Chan, Man Nin; Kreidenweis, Sonia M; Chan, Chak K

    2008-05-15

    The initial phase (solid or aqueous droplet) of aerosol particles prior to activation is among the critical factors in determining their cloud condensation nuclei (CCN) activity. Single-particle levitation in an electrodynamic balance (EDB)was used to measure the phase transitions and hygroscopic properties of aerosol particles of 11 organic compounds with different solubilities (10(-1) to 102 g solute/100 g water). We use these data and other literature data to relate the CCN activity and hygroscopicity of organic compounds with different solubilities. The EDB data show that glyoxylic acid, 4-methylphthalic acid, monosaccharides (fructose and mannose), and disaccharides (maltose and lactose) did not crystallize and existed as metastable droplets at low relative humidity (RH). Hygroscopic data from this work and in the literature support earlier studies showing that the CCN activities of compounds with solubilities down to the order of 10(-1) g solute/100 g water can be predicted by standard Köhler theory with the assumption of complete dissolution of the solute at activation. We also demonstrate the use of evaporation data (or efflorescence data), which provides information on the water contents of metastable solutions below the compound deliquescence RH that can be extrapolated to higher dilutions, to predict the CCN activity of organic particles, particularly for sparingly soluble organic compounds that do not deliquesce at RH achievable in the EDB and in the hygroscopic tandem differential mobility analyzer.

  20. 18F-labeled Rhodamines as Potential Myocardial Perfusion Agents: Comparison of Pharmacokinetic Properties of Several Rhodamines

    PubMed Central

    Bartholoma, Mark D.; Zhang, Shaohui; Akurathi, Vamsidhar; Pacak, Christina A.; Dunning, Patricia; Fahey, Frederic H.; Cowan, Douglas B.; Treves, S. Ted; Packard, Alan B.

    2015-01-01

    Introduction We recently reported the development of the [18F]fluorodiethylene glycol ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging (MPI). This compound was developed by optimizing the ester moiety on the rhodamine B core, and its pharmacokinetic properties were found to be superior to those of the prototype ethyl ester. The goal of the present study was to optimize the rhodamine core while retaining the fluorodiethyleneglycol ester prosthetic group. Methods A series of different rhodamine cores (rhodamine 6G, rhodamine 101, and tetramethylrhodamine) were labeled with 18F using the corresponding rhodamine lactones as the precursors and [18F]fluorodiethylene glycol ester as the prosthetic group. The compounds were purified by semipreparative HPLC, and their biodistribution was measured in rats. Additionally, the uptake of the compounds was evaluated in isolated rat cardiomyocytes. Results As was the case with the different prosthetic groups, we found that the rhodamine core has a significant effect on the in vitro and in vivo properties of this series of compounds. Of the rhodamines evaluated to date, the pharmacologic properties of the 18F-labeled diethylene glycol ester of rhodamine 6G are superior to those of the 18F-labeled diethylene glycol esters of rhodamine B, rhodamine 101, and tetramethylrhodamine. As with 18F-labeled rhodamine B, [18F]rhodamine 6G was observed to localize in the mitochondria of isolated rat cardiomyocytes. Conclusions Based on these results, the 18F-labeled diethylene glycol ester of rhodamine 6G is the most promising potential PET MPI radiopharmaceutical of those that have been evaluated to date, and we are now preparing to carry out first-in-human clinical studies with this compound. PMID:26205075

  1. (18)F-labeled rhodamines as potential myocardial perfusion agents: comparison of pharmacokinetic properties of several rhodamines.

    PubMed

    Bartholomä, Mark D; Zhang, Shaohui; Akurathi, Vamsidhar; Pacak, Christina A; Dunning, Patricia; Fahey, Frederic H; Cowan, Douglas B; Treves, S Ted; Packard, Alan B

    2015-10-01

    We recently reported the development of the [(18)F]fluorodiethylene glycol ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging (MPI). This compound was developed by optimizing the ester moiety on the rhodamine B core, and its pharmacokinetic properties were found to be superior to those of the prototype ethyl ester. The goal of the present study was to optimize the rhodamine core while retaining the fluorodiethyleneglycol ester prosthetic group. A series of different rhodamine cores (rhodamine 6G, rhodamine 101, and tetramethylrhodamine) were labeled with (18)F using the corresponding rhodamine lactones as the precursors and [(18)F]fluorodiethylene glycol ester as the prosthetic group. The compounds were purified by semipreparative HPLC, and their biodistribution was measured in rats. Additionally, the uptake of the compounds was evaluated in isolated rat cardiomyocytes. As was the case with the different prosthetic groups, we found that the rhodamine core has a significant effect on the in vitro and in vivo properties of this series of compounds. Of the rhodamines evaluated to date, the pharmacologic properties of the (18)F-labeled diethylene glycol ester of rhodamine 6G are superior to those of the (18)F-labeled diethylene glycol esters of rhodamine B, rhodamine 101, and tetramethylrhodamine. As with (18)F-labeled rhodamine B, [(18)F]rhodamine 6G was observed to localize in the mitochondria of isolated rat cardiomyocytes. Based on these results, the (18)F-labeled diethylene glycol ester of rhodamine 6G is the most promising potential PET MPI radiopharmaceutical of those that have evaluated to date, and we are now preparing to carry out first-in-human clinical studies with this compound. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. KSC00pp0369

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and the Integrated Cargo Carrier (ICC) inside is lifted off the payload transporter toward the Payload Changeout Room (PCR) on the Rotating Service Structure (RSS). The PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. At right of the RSS is the Fixed Service Structure. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  3. KSC-00pp0368

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and Integrated Cargo Carrier (ICC) inside is lifted up the Rotating Service Structure (RSS) toward the Payload Changeout Room, an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. At right of the RSS is the Fixed Service Structure, topped by the 80-foot-tall fiberglass lightning mast. The primary payload on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  4. KSC00pp0368

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and Integrated Cargo Carrier (ICC) inside is lifted up the Rotating Service Structure (RSS) toward the Payload Changeout Room, an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. At right of the RSS is the Fixed Service Structure, topped by the 80-foot-tall fiberglass lightning mast. The primary payload on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  5. KSC-00pp0369

    NASA Image and Video Library

    2000-03-21

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and the Integrated Cargo Carrier (ICC) inside is lifted off the payload transporter toward the Payload Changeout Room (PCR) on the Rotating Service Structure (RSS). The PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. At right of the RSS is the Fixed Service Structure. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000

  6. Inhibition of Oncogenic Transcription Factor REL by the Natural Product Derivative Calafianin Monomer 101 Induces Proliferation Arrest and Apoptosis in Human B-Lymphoma Cell Lines.

    PubMed

    Yeo, Alan T; Chennamadhavuni, Spandan; Whitty, Adrian; Porco, John A; Gilmore, Thomas D

    2015-04-23

    Increased activity of transcription factor NF-κB has been implicated in many B-cell lymphomas. We investigated effects of synthetic compound calafianin monomer (CM101) on biochemical and biological properties of NF-κB. In human 293 cells, CM101 selectively inhibited DNA binding by overexpressed NF-κB subunits REL (human c-Rel) and p65 as compared to NF-κB p50, and inhibition of REL and p65 DNA binding by CM101 required a conserved cysteine residue. CM101 also inhibited DNA binding by REL in human B-lymphoma cell lines, and the sensitivity of several B-lymphoma cell lines to CM101-induced proliferation arrest and apoptosis correlated with levels of cellular and nuclear REL. CM101 treatment induced both phosphorylation and decreased expression of anti-apoptotic protein Bcl-XL, a REL target gene product, in sensitive B-lymphoma cell lines. Ectopic expression of Bcl-XL protected SUDHL-2 B-lymphoma cells against CM101-induced apoptosis, and overexpression of a transforming mutant of REL decreased the sensitivity of BJAB B-lymphoma cells to CM101-induced apoptosis. Lipopolysaccharide-induced activation of NF-κB signaling upstream components occurred in RAW264.7 macrophages at CM101 concentrations that blocked NF-κB DNA binding. Direct inhibitors of REL may be useful for treating B-cell lymphomas in which REL is active, and may inhibit B-lymphoma cell growth at doses that do not affect some immune-related responses in normal cells.

  7. Data Acquisition Unit for SATCOM Signal Analyzer

    DTIC Science & Technology

    1980-01-01

    APSIM simulator program APDEBUG debugging program APTEST diagnostic and test program MATH Library IOP-16 16 bit I/O port 223 APPENDIX C Table...3. SYNTEST Corporation, Frequency Synthesizer Module, Data Sheet, The Syntest SM-101 Frequency Synthesizer Module, not dated . 4. DATEL Systems Inc

  8. Child Development Programs (CDPs)

    DTIC Science & Technology

    1993-01-19

    Child Abuse Training Modules for Caregivers, DoD Child Abuse Training Modules for Family Child Care Providers, DoD Family Child Care Training Modules, DoD CDP Standards and Inspection Checklist, DoD Child Development Need Survey, The DoD School-Age Care Training Modules, and DD Form 2636, DoD Certificate to Operate Child Development Programs, consistent with reference (9). 4. Implements Pub. L. No. 101-189, Title XV (reference (h)). 5. Replaces references (i) through

  9. Similar decrease in spontaneous morphine abstinence by methadone and RB 101, an inhibitor of enkephalin catabolism.

    PubMed

    Ruiz, F; Fournié-Zaluski, M C; Roques, B P; Maldonado, R

    1996-09-01

    1. The dual inhibitor of enkephalin degrading enzymes, RB 101, is able to block endogenous enkephalin metabolism completely, leading to potent antinociceptive responses potentiated by blockade of CCKB receptors. In this study we have investigated the effects induced by RB 101 given alone, or with the CCKB antagonist, PD-134,308, on a model of spontaneous morphine withdrawal and substitutive maintenance in rats. 2. Animals were chronically treated with morphine for 7 days followed, 36 h after the interruption of drug administration, by a maintenance treatment for 5 days with methadone (2 mg kg-1, i.p.), clonidine (0.025 mg kg-1, i.p.), RB 101 (40 mg kg-1, i.p.), PD-134,308 (3 mg kg-1, i.p.) or a combination of RB 101 plus PD-134,308. Several behavioural observations were made during this period in order to evaluate the acute effects as well as the consequence of chronic maintenance induced on spontaneous withdrawal by the different treatments. 3. Methadone was the most effective compound in decreasing the spontaneous withdrawal syndrome after acute administration. Both, methadone and RB 101 had similar effectiveness in reducing opiate abstinence during the period of substitutive treatment. PD-134,308 did not show any effect when administered alone and did not modify the effect of RB 101. 4. Naloxone (1 mg kg-1, s.c.) failed to precipitate any sign of withdrawal when injected at the end of the chronic maintenance treatment suggesting that, under the present conditions, methadone and RB 101 did not induce significant physical opiate-dependence. 5. The mildness of the side effects induced by chronic RB 101, suggests that systemically active inhibitors of enkephalin catabolism could represent a promising treatment in the maintenance of opiate addicts.

  10. Similar decrease in spontaneous morphine abstinence by methadone and RB 101, an inhibitor of enkephalin catabolism.

    PubMed Central

    Ruiz, F.; Fournié-Zaluski, M. C.; Roques, B. P.; Maldonado, R.

    1996-01-01

    1. The dual inhibitor of enkephalin degrading enzymes, RB 101, is able to block endogenous enkephalin metabolism completely, leading to potent antinociceptive responses potentiated by blockade of CCKB receptors. In this study we have investigated the effects induced by RB 101 given alone, or with the CCKB antagonist, PD-134,308, on a model of spontaneous morphine withdrawal and substitutive maintenance in rats. 2. Animals were chronically treated with morphine for 7 days followed, 36 h after the interruption of drug administration, by a maintenance treatment for 5 days with methadone (2 mg kg-1, i.p.), clonidine (0.025 mg kg-1, i.p.), RB 101 (40 mg kg-1, i.p.), PD-134,308 (3 mg kg-1, i.p.) or a combination of RB 101 plus PD-134,308. Several behavioural observations were made during this period in order to evaluate the acute effects as well as the consequence of chronic maintenance induced on spontaneous withdrawal by the different treatments. 3. Methadone was the most effective compound in decreasing the spontaneous withdrawal syndrome after acute administration. Both, methadone and RB 101 had similar effectiveness in reducing opiate abstinence during the period of substitutive treatment. PD-134,308 did not show any effect when administered alone and did not modify the effect of RB 101. 4. Naloxone (1 mg kg-1, s.c.) failed to precipitate any sign of withdrawal when injected at the end of the chronic maintenance treatment suggesting that, under the present conditions, methadone and RB 101 did not induce significant physical opiate-dependence. 5. The mildness of the side effects induced by chronic RB 101, suggests that systemically active inhibitors of enkephalin catabolism could represent a promising treatment in the maintenance of opiate addicts. Images Figure 4 PMID:8872371

  11. Mahogunin regulates fusion between amphisomes/MVBs and lysosomes via ubiquitination of TSG101

    PubMed Central

    Majumder, P; Chakrabarti, O

    2015-01-01

    Aberrant metabolic forms of the prion protein (PrP), membrane-associated CtmPrP and cytosolic (cyPrP) interact with the cytosolic ubiquitin E3 ligase, Mahogunin Ring Finger-1 (MGRN1) and affect lysosomes. MGRN1 also interacts with and ubiquitinates TSG101, an ESCRT-I protein, involved in endocytosis. We report that MGRN1 modulates macroautophagy. In cultured cells, functional depletion of MGRN1 or overexpression of CtmPrP and cyPrP blocks autophagosome–lysosome fusion, alleviates the autophagic flux and its degradative competence. Concurrently, the degradation of cargo from the endo-lysosomal pathway is also affected. This is significant because catalytic inactivation of MGRN1 alleviates fusion of lysosomes with either autophagosomes (via amphisomes) or late endosomes (either direct or mediated through amphisomes), without drastically perturbing maturation of late endosomes, generation of amphisomes or lysosomal proteolytic activity. The compromised lysosomal fusion events are rescued by overexpression of TSG101 and/or its monoubiquitination in the presence of MGRN1. Thus, for the first time we elucidate that MGRN1 simultaneously modulates both autophagy and heterophagy via ubiquitin-mediated post-translational modification of TSG101. PMID:26539917

  12. Trace analysis of endocrine disrupting compounds in environmental water samples by use of solid-phase extraction and gas chromatography with mass spectrometry detection.

    PubMed

    Azzouz, Abdelmonaim; Ballesteros, Evaristo

    2014-09-19

    A novel analytical method using a continuous solid-phase extraction system in combination with gas chromatography-mass spectrometry for the simultaneous separation and determination of endocrine disrupting compounds (EDCs) is reported. The method was applied to major EDCs of various types including parabens, alkylphenols, phenylphenols, bisphenol A and triclosan in water. Samples were preconcentrated by using an automatic solid-phase extraction module containing a sorbent column, and retained analytes eluted with acetonitrile for derivatization with a mixture of N,O-bis(trimethylsilyl)trifluoroacetamide and trimethylchlorosilane. A number of variables potentially influencing recovery of the target compounds such as the type of SPE sorbent (Silica gel, Florisil, RP-C18, Amberlite XAD-2 and XAD-4, Oasis HLB and LiChrolut EN), eluent and properties of the water including pH and ionic strength, were examined. LiChrolut EN was found to be the most efficient sorbent for retaining the analytes, with ∼100% efficiency. The ensuing method was validated with good analytical results including low limits of detection (0.01-0.08ng/L for 100mL of sample) and good linearity (r(2)>0.997) throughout the studied concentration ranges. The method exhibited good accuracy (recoveries of 90-101%) and precision (relative standard deviations less than 7%) in the determination of EDCs in drinking, river, pond, well, swimming pool and waste water. Waste water samples were found to contain the largest number and highest concentrations of analytes (3.2-390ng/L). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. KSC00pp0478

    NASA Image and Video Library

    2000-04-07

    KENNEDY SPACE CENTER, FLA. -- As part of Terminal Countdown Demonstration (TCDT) activities, the STS-101 crew practices emergency egress from the orbiter at the 195-foot level of the Fixed Service Structure. Shown heading down the easily identified exit path, known as the "yellow brick road," are Mission Specialists Susan J. Helms (leading), Yury Usachev of Russia and James Voss. The TCDT also includes a simulated launch countdown and familiarization with the payload. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight to the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A

  14. KSC-00pp0478

    NASA Image and Video Library

    2000-04-07

    KENNEDY SPACE CENTER, FLA. -- As part of Terminal Countdown Demonstration (TCDT) activities, the STS-101 crew practices emergency egress from the orbiter at the 195-foot level of the Fixed Service Structure. Shown heading down the easily identified exit path, known as the "yellow brick road," are Mission Specialists Susan J. Helms (leading), Yury Usachev of Russia and James Voss. The TCDT also includes a simulated launch countdown and familiarization with the payload. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight to the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A

  15. Biodegradation of IMX-101 explosive formulation constituents: 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine.

    PubMed

    Richard, Thomas; Weidhaas, Jennifer

    2014-09-15

    Defense agencies are increasingly using insensitive munitions (IM) in place of explosives such as 2,4,6-trinitrotoluene. In this study simultaneous aerobic degradation of the IMX-101 formulation constituents 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine (NQ) was observed and degradation products were examined. Degradation products over four days of incubation included: nitrourea, 1,2-dihydro-3H-1,2,4-triazol-3-one, and 2,4-dinitrophenol. The enrichment culture maximum specific growth rate of 0.12h(-1) and half saturation constant of 288 mg L(-1) during degradation of IMX-101 as a sole nitrogen source suggest that enrichment culture growth kinetics may closely relate to those of other explosive and nitroaromatic compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Novel series of potent, nonsteroidal, selective androgen receptor modulators based on 7H-[1,4]oxazino[3,2-g]quinolin-7-ones.

    PubMed

    Higuchi, Robert I; Arienti, Kristen L; López, Francisco J; Mani, Neelakhanda S; Mais, Dale E; Caferro, Thomas R; Long, Yun Oliver; Jones, Todd K; Edwards, James P; Zhi, Lin; Schrader, William T; Negro-Vilar, Andrés; Marschke, Keith B

    2007-05-17

    Recent interest in orally available androgens has fueled the search for new androgens for use in hormone replacement therapy and as anabolic agents. In pursuit of this, we have discovered a series of novel androgen receptor modulators derived from 7H-[1,4]oxazino[3,2-g]quinolin-7-ones. These compounds were synthesized and evaluated in competitive binding assays and an androgen receptor transcriptional activation assay. A number of compounds from the series demonstrated single-digit nanomolar agonist activity in vitro. In addition, lead compound (R)-16e was orally active in established rodent models that measure androgenic and anabolic properties of these agents. In this assay, (R)-16e demonstrated full efficacy in muscle and only partially stimulated the prostate at 100 mg/kg. These data suggest that these compounds may be utilized as selective androgen receptor modulators or SARMs. This series represents a novel class of compounds for use in androgen replacement therapy.

  17. In vivo evaluation of anionic thiolated polymers as oral delivery systems for efflux pump inhibition.

    PubMed

    Palmberger, Thomas F; Laffleur, Flavia; Greindl, Melanie; Bernkop-Schnürch, Andreas

    2015-08-01

    Recently, the cationic polymer thiolated chitosan has been reported to modulate drug absorption by inhibition of intestinal efflux pumps. The objective of this study was to evaluate in vitro and in vivo whether thiolated anionic biopolymers also show an efflux pump inhibitory effect in order to improve intestinal transcellular drug uptake. Therefore, three thiomers have been synthesized due covalent attachment of cysteine to various polymer backbones: pectin-cysteine (pect-cys), carboxymethylcellulose-cysteine (CMC-cys) and alginate-cysteine (alg-cys). In vitro, the permeation enhancing properties of these thiomers and their corresponding unmodified polymers have been evaluated on rat small intestine in Ussing-type chambers, using sulforhodamine 101 (SR-101) as MRP2 model substrate. In comparison to buffer only, SR-101 transport in presence of pect-cys, CMC-cys and alg-cys was improved 1.5-fold, 1.8-fold and 3.0-fold, respectively. Due to the comparatively best in vitro performance of thiolated alginate, it has been chosen for in vivo studies: a SR-101 solution containing 4% (w/v) alg-cys led to an AUC0 ≥ 12 of SR-101 of 109 ng ml(-1)h in rats representing a 3.8-fold improvement in comparison to a SR-101 buffer solution. Unmodified alginate improved the AUC0 ≥ 12 of SR-101 by a factor of 1.9. These findings suggest thiolated alginate as promising auxiliary agent for drugs being anionic efflux pump substrates, since the oral bioavailability of a MRP2 substrate could be significantly improved. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. STS-101 Commander Halsell and crew after arriving for TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the Shuttle Landing Facility, STS-101 Commander James Halsell waves to the media as he and other crew members cross the tarmac to a waiting bus. At right is a film crew; in the foreground at left is Delores Green, flight crew support specialist lead for the astronaut crew quarters. Other crew members in the background are Mission Specialist Jeffrey Williams, Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber and Yuri Usachev. Not visible in the photo is Mission Specialist Susan Helms. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  19. 47 CFR 101.521 - Spectrum utilization.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... applicants for DEMS frequencies in the 10.6 GHz band must submit as part of the original application a... contain detailed descriptions of the modulation method, the channel time sharing method, any error detecting and/or correcting codes, any spatial frequency reuse system and the total data throughput capacity...

  20. Acute bioassays and hazard evaluation of representative contaminants detected in Great Lakes fish

    USGS Publications Warehouse

    Passino, Dora R. May; Smith, Stephen B.

    1987-01-01

    We have provided a hazard ranking for 19 classes of compounds representing many of the nearly 500 organic compounds identified by gas chromatography-mass spectrometry in lake trout (Salvelinus namaycush) and walleye (Stizostedion vitreum vitreum) from the Great Lakes and Lake St. Clair. We initially made a provisional hazard ranking based on available published and unpublished information on aquatic toxicity, bioaccumulation, occurrence and sources. Acute toxicity tests with Daphnia pulex at 17A°C in reconstituted hard water were performed with 30 compounds representative of the 19 classes that were highest in the provisional ranking. The resulting toxicity data, along with information on the compounds' occurrence in Great Lakes fish and their sources, were ranked and weighted and then used in calculating the revised hazard ranking. The 10 most hazardous classes, in descending order, are as follows (values shown are mean 48-h EC50s, in μ/ml): arene halides (e.g., polychlorinated biphenyls, DDT), 0.0011; phthalate esters, 0.133; chlorinated camphenes (toxaphene), 0.0082; polyaromatic hydrocarbons (PAHs; e.g., dimethylnaphthalene) and reduced derivatives, 1.01; chlorinated fused polycyclics (e.g., trans-nonachlor), 0.022; nitrogen-containing compounds (e.g., O-methylhydroxyl-amine), 1.35; alkyl halides (e.g., (bromomethyl)cyclohexene), 10.1; cyclic alkanes (e.g., cyclododecane), 20.9; silicon-containing compounds (e.g., dimethyldiethoxy silane), 1.25; and heterocyclic nitrogen compounds (e.g., nicotine), 2.48. We recommend that chronic bioassays be conducted with fish and invertebrates to determine the sublethal effects of the following classes of compounds, for which few toxicity data are available: PAHs, heterocyclic nitrogen compounds, other nitrogen-containing compounds, alkyl halides, cyclic alkanes and silicon-containing compounds. Information from these types of studies will aid researchers in determining the possible causal role these contaminants play in the decline and reproductive impairment of Great Lakes fish.

  1. 47 CFR 101.809 - Bandwidth and emission limitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... limitations. (a) Stations in this service operating on frequencies in the 27.23-27.28 MHz band will be authorized to employ only amplitude modulated or frequency modulated emission for radiotelephony. The... maintenance of the station. (b) Stations in the service operating on frequencies above 940 MHz may be...

  2. Sorption of Aromatic Compounds with Copolymer Sorbent Materials Containing β-Cyclodextrin

    PubMed Central

    Wilson, Lee D.; Mohamed, Mohamed H.; Berhaut, Christopher L.

    2011-01-01

    Urethane copolymer sorbent materials that incorporate β-cyclodextrin (CD) have been prepared and their sorption properties with chlorinated aromatic compounds (i.e., pentachlorophenol, 2,4-dichlorophenol and 2,4-dichlorophenoxy acetic acid) have been evaluated. The sorption properties of granular activated carbon (GAC) were similarly compared in aqueous solution at variable pH conditions. The sorbents displayed variable BET surface areas as follows: MDI-X copolymers (< 101 m2/g), CDI-X copolymers (< 101 m2/g), and granular activated carbon (GAC ~103 m2/g). The sorption capacities for the copolymers sorbents are listed in descending order, as follows: GAC > CDI-3 copolymer ≈ MDI-3 copolymer. The sorption capacity for the aromatic adsorbates with each sorbent are listed in descending order, as follows: 2,4-dichlorophenol > 2,4-dichlorophenoxy acetic acid > pentachlorophenol. In general, the differences in the sorption properties of the copolymer sorbents with the chlorinated organics were related to the following factors: (i) surface area of the sorbent; (ii) CD content and accessibility; and (iii) and the chemical nature of the sorbent material. PMID:28824156

  3. Chemical Composition and Labeling of Substances Marketed as Selective Androgen Receptor Modulators and Sold via the Internet.

    PubMed

    Van Wagoner, Ryan M; Eichner, Amy; Bhasin, Shalender; Deuster, Patricia A; Eichner, Daniel

    2017-11-28

    Recent reports have described the increasing use of nonsteroidal selective androgen receptor modulators, which have not been approved by the US Food and Drug Administration (FDA), to enhance appearance and performance. The composition and purity of such products is not known. To determine the chemical identity and the amounts of ingredients in dietary supplements and products marketed and sold through the internet as selective androgen receptor modulators and compare the analyzed contents with product labels. Web-based searches were performed from February 18, 2016, to March 25, 2016, using the Google search engine on the Chrome and Internet Explorer web browsers to identify suppliers selling selective androgen receptor modulators. The products were purchased and the identities of the compounds and their amounts were determined from April to August 2016 using chain-of-custody and World Anti-Doping Association-approved analytical procedures. Analytical findings were compared against the label information. Products marketed and sold as selective androgen receptor modulators. Chemical identities and the amount of ingredients in each product marketed and sold as selective androgen receptor modulators. Among 44 products marketed and sold as selective androgen receptor modulators, only 23 (52%) contained 1 or more selective androgen receptor modulators (Ostarine, LGD-4033, or Andarine). An additional 17 products (39%) contained another unapproved drug, including the growth hormone secretagogue ibutamoren, the peroxisome proliferator-activated receptor-δ agonist GW501516, and the Rev-ErbA agonist SR9009. Of the 44 tested products, no active compound was detected in 4 (9%) and substances not listed on the label were contained in 11 (25%). In only 18 of the 44 products (41%), the amount of active compound in the product matched that listed on the label. The amount of the compounds listed on the label differed substantially from that found by analysis in 26 of 44 products (59%). In this limited investigation involving chemical analyses of 44 products marketed as selective androgen receptor modulators and sold via the internet, most products contained unapproved drugs and substances. Only 52% contained selective androgen receptor modulators and many were inaccurately labeled.

  4. New metabolites in the degradation of fluorene by Arthrobacter sp. strain F101.

    PubMed

    Casellas, M; Grifoll, M; Bayona, J M; Solanas, A M

    1997-03-01

    Identification of new metabolites and demonstration of key enzyme activities support and extend the pathways previously reported for fluorene metabolism by Arthrobacter sp. strain F101. Washed-cell suspensions of strain F101 with fluorene accumulated 9-fluorenone, 4-hydroxy-9-fluorenone, 3-hydroxy-1-indanone, 1-indanone, 2-indanone, 3-(2-hydroxyphenyl) propionate, and a compound tentatively identified as a formyl indanone. Incubations with 2-indanone produced 3-isochromanone. The growth yield with fluorene as a sole source of carbon and energy corresponded to an assimilation of about 34% of fluorene carbon. About 7.4% was transformed into 9-fluorenol, 9-fluorenone, and 4-hydroxy-9-fluorenone. Crude extracts from fluorene-induced cells showed 3,4-dihydrocoumarin hydrolase and catechol 2,3-dioxygenase activities. These results and biodegradation experiments with the identified metabolites indicate that metabolism of fluorene by Arthrobacter sp. strain F101 proceeds through three independent pathways. Two productive routes are initiated by dioxygenation at positions 1,2 and 3,4, respectively. meta cleavage followed by an aldolase reaction and loss of C-1 yield the detected indanones. Subsequent biological Baeyer-Villiger reactions produce the aromatic lactones 3,4-dihydrocoumarin and 3-isochromanone. Enzymatic hydrolysis of the former gives 3-(2-hydroxyphenyl) propionate, which could be a substrate for a beta oxidation cycle, to give salicylate. Further oxidation of the latter via catechol and 2-hydroxymuconic semialdehyde connects with the central metabolism, allowing the utilization of all fluorene carbons. Identification of 4-hydroxy-9-fluorenone is consistent with an alternative pathway initiated by monooxygenation at C-9 to give 9-fluorenol and then 9-fluorenone. Although dioxygenation at 3,4 positions of the ketone apparently occurs, this reaction fails to furnish a subsequent productive oxidation of this compound.

  5. New metabolites in the degradation of fluorene by Arthrobacter sp. strain F101.

    PubMed Central

    Casellas, M; Grifoll, M; Bayona, J M; Solanas, A M

    1997-01-01

    Identification of new metabolites and demonstration of key enzyme activities support and extend the pathways previously reported for fluorene metabolism by Arthrobacter sp. strain F101. Washed-cell suspensions of strain F101 with fluorene accumulated 9-fluorenone, 4-hydroxy-9-fluorenone, 3-hydroxy-1-indanone, 1-indanone, 2-indanone, 3-(2-hydroxyphenyl) propionate, and a compound tentatively identified as a formyl indanone. Incubations with 2-indanone produced 3-isochromanone. The growth yield with fluorene as a sole source of carbon and energy corresponded to an assimilation of about 34% of fluorene carbon. About 7.4% was transformed into 9-fluorenol, 9-fluorenone, and 4-hydroxy-9-fluorenone. Crude extracts from fluorene-induced cells showed 3,4-dihydrocoumarin hydrolase and catechol 2,3-dioxygenase activities. These results and biodegradation experiments with the identified metabolites indicate that metabolism of fluorene by Arthrobacter sp. strain F101 proceeds through three independent pathways. Two productive routes are initiated by dioxygenation at positions 1,2 and 3,4, respectively. meta cleavage followed by an aldolase reaction and loss of C-1 yield the detected indanones. Subsequent biological Baeyer-Villiger reactions produce the aromatic lactones 3,4-dihydrocoumarin and 3-isochromanone. Enzymatic hydrolysis of the former gives 3-(2-hydroxyphenyl) propionate, which could be a substrate for a beta oxidation cycle, to give salicylate. Further oxidation of the latter via catechol and 2-hydroxymuconic semialdehyde connects with the central metabolism, allowing the utilization of all fluorene carbons. Identification of 4-hydroxy-9-fluorenone is consistent with an alternative pathway initiated by monooxygenation at C-9 to give 9-fluorenol and then 9-fluorenone. Although dioxygenation at 3,4 positions of the ketone apparently occurs, this reaction fails to furnish a subsequent productive oxidation of this compound. PMID:9055403

  6. Crystallographic Location and Mutational Analysis of Zn and Cd Inhibitory Sites and Role of Lipidic Carboxylates in Rescuing Proton Path Mutants in Cytochrome c Oxidase†

    PubMed Central

    Qin, Ling; Mills, Denise A.; Hiser, Carrie; Murphree, Anna; Garavito, R. Michael; Ferguson-Miller, Shelagh; Hosler, Jonathan

    2008-01-01

    Cytochrome c oxidase (CcO) transfers protons from the inner surface of the enzyme to the buried O2 reduction site through two different pathways, termed K and D, and from the outer surface via an undefined route. These proton paths can be inhibited by metals such as zinc or cadmium, but the sites of inhibition have not been established. Anomalous difference Fourier analyses of Rhodobacter sphaeroides CcO crystals, with cadmium added, reveal metal binding sites that include the proposed initial proton donor/acceptor of the K pathway, Glu-101 of subunit II. Mutant forms of CcO that lack Glu-101II (E101A and E101A/H96A) exhibit low activity and eliminate metal binding at this site. Significant activity is restored to E101A and E101A/H96A by adding the lipophilic carboxylic compounds, arachidonic acid and cholic acid, but not by their non-carboxylic analogues. These amphipathic acids likely provide their carboxylic groups as substitute proton donors/acceptors in the absence of Glu-101II, as previously observed for arachidonic acid in mutants that alter Asp-132I of the D pathway. The activity of E101A/H96A is still inhibited by zinc, but this remaining inhibition is nearly eliminated by removal of subunit III, which is known to alter the D pathway. The results identify the Glu-101/His-96 site of subunit II as the site of metal binding that inhibits the uptake of protons into the K pathway and indicate that subunit III contributes to zinc binding and/or inhibition of the D pathway. By removing subunit III from E101A/H96A, thereby eliminating zinc inhibition of the uptake of protons from the inner surface of CcO, we confirm that an external zinc binding site is involved in inhibiting the backflow of protons to the active site. PMID:17477548

  7. Autophagic compound database: A resource connecting autophagy-modulating compounds, their potential targets and relevant diseases.

    PubMed

    Deng, Yiqi; Zhu, Lingjuan; Cai, Haoyang; Wang, Guan; Liu, Bo

    2018-06-01

    Autophagy, a highly conserved lysosomal degradation process in eukaryotic cells, can digest long-lived proteins and damaged organelles through vesicular trafficking pathways. Nowadays, mechanisms of autophagy have been gradually elucidated and thus the discovery of small-molecule drugs targeting autophagy has always been drawing much attention. So far, some autophagy-related web servers have been available online to facilitate scientists to obtain the information relevant to autophagy conveniently, such as HADb, CTLPScanner, iLIR server and ncRDeathDB. However, to the best of our knowledge, there is not any web server available about the autophagy-modulating compounds. According to published articles, all the compounds and their relations with autophagy were anatomized. Subsequently, an online Autophagic Compound Database (ACDB) (http://www.acdbliulab.com/) was constructed, which contained information of 357 compounds with 164 corresponding signalling pathways and potential targets in different diseases. We achieved a great deal of information of autophagy-modulating compounds, including compounds, targets/pathways and diseases. ACDB is a valuable resource for users to access to more than 300 curated small-molecule compounds correlated with autophagy. Autophagic compound database will facilitate to the discovery of more novel therapeutic drugs in the near future. © 2017 John Wiley & Sons Ltd.

  8. Identification of cancer-cytotoxic modulators of PDE3A by predictive chemogenomics | Office of Cancer Genomics

    Cancer.gov

    High cancer death rates indicate the need for new anticancer therapeutic agents. Approaches to discovering new cancer drugs include target-based drug discovery and phenotypic screening. Here, we identified phosphodiesterase 3A modulators as cell-selective cancer cytotoxic compounds through phenotypic compound library screening and target deconvolution by predictive chemogenomics.

  9. Identification of Novel Human Breast Carcinoma (MDA-MB-231) Cell Growth Modulators from a Carbohydrate-Based Diversity Oriented Synthesis Library.

    PubMed

    Lenci, Elena; Innocenti, Riccardo; Biagioni, Alessio; Menchi, Gloria; Bianchini, Francesca; Trabocchi, Andrea

    2016-10-20

    The application of a cell-based growth inhibition on a library of skeletally different glycomimetics allowed for the selection of a hexahydro-2 H -furo[3,2- b ][1,4]oxazine compound as candidate inhibitors of MDA-MB-231 cell growth. Subsequent synthesis of analogue compounds and preliminary biological studies validated the selection of a valuable hit compound with a novel polyhydroxylated structure for the modulation of the breast carcinoma cell cycle mechanism.

  10. Aldehyde-alcohol reactions catalyzed under mild conditions by chromium(III) terephthalate metal organic framework (MIL-101) and phosphotungstic acid composites.

    PubMed

    Bromberg, Lev; Hatton, T Alan

    2011-12-01

    Porous materials based on chromium(III) terephthalate metal organic frameworks (MIL-101) and their composites with phosphotungstic acid (PTA) were studied as heterogeneous acid catalysts in aldehyde-alcohol reactions exemplified by acetaldehyde-phenol (A-P) condensation and dimethylacetal formation from benzaldehyde and methanol (B-M reaction). The MIL-101 was synthesized solvothermically in water, and the MIL101/PTA composite materials were obtained by either impregnation of the already prepared MIL-101 porous matrix with phosphotungstic acid solution or by solvothermic treatment of aqueous mixtures of Cr(NO(3))(3), and terephthalic and phosphotungstic acids. The MIL101/PTA materials appeared to be effective catalysts for both A-P and B-M reactions occurring at room temperature, with half-lives ranging from 0.5 h (A-P) to 1.5-2 h (B-M) and turnover numbers over 600 for A-P and over 2900 for the B-M reaction, respectively. A synergistic effect of the strong acidic moieties (PTA) addition to mildly acidic Brønsted and Lewis acid cites of the MIL-101 was observed with the MIL101/PTA composites. The ability of the PTA and MIL101/PTA materials to strongly absorb and condense acetaldehyde vapors was discovered, with the MIL101/PTA absorbing over 10-fold its dry weight of acetaldehyde condensate at room temperature. The acetaldehyde was converted rapidly to crotonaldehyde and higher-molecular-weight compounds while in contact with MIL-101 and MIL101/PTA materials. The stability of the MIL-101 and MIL101/PTA catalysts was assessed within four cycles of the 1-day alcohol-aldehyde reactions in terms of the overall catalyst recovery, PTA or Cr content, and reaction rate constants in each cycle. The loss of the catalyst over 4 cycles was approximately 10 wt % for all tested catalysts due to the incomplete recovery and minute dissolution of the components. The reaction rates in all cycles remained unchanged and the catalyst losses stopped after the third cycle. The developed MIL101/PTA composites appear to be feasible for industrial catalytic applications. © 2011 American Chemical Society

  11. The effect of grinding at various vacuum levels on the color, phenolics, and antioxidant properties of apple.

    PubMed

    Kim, Ah-Na; Kim, Hyun-Jin; Kerr, William L; Choi, Sung-Gil

    2017-02-01

    The purpose of this study was to evaluate the effect of grinding at different vacuum levels (2.67, 6.67, 13.33, 19.99, and 101.33kPa) on key quality factors of apple. In the control apple, ground at atmospheric pressure of 101.33kPa, the antioxidant activities rapidly decreased within the first 30min, then plateaued thereafter, while enzymatic browning increased. When apples were ground and held under vacuum, changes in color and antioxidant activity were much less, and the least change was measured in samples prepared at the lowest pressure. Model fitting of the data showed that antioxidant activity decreased as a function of the logarithm of the absolute pressure. The results from analysis for key phenolic compounds including chlorogenic acid, procyanidin B2, and epicatechin indicated that these compounds were least changed at vacuum grinding at 2.67kPa, compared to atmospheric grinding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Identification of novel modulators for ionotropic glutamate receptor, iGluA2 by in-silico screening

    PubMed Central

    2013-01-01

    Background Ionotropic glutamate receptors (iGluAs, IUPHAR nomenclature) are the major excitatory amino acid neurotransmitter receptors in the mammalian central nervous system (CNS). iGluAs are potential therapeutic drug targets for various neurological disorders including ischemia, epilepsy, Parkinson’s and Alzheimer’s diseases. The known iGluA modulators, cyclothiazide (CTZ), IDRA-21, and other benzothiadiazide derivatives (ALTZ, HCTZ, and CLTZ) bind to the ligand-binding domain of flip-form of iGluA2 at the dimer interface, thereby increasing steady-state activation by reducing desensitization. Methods To discover new modulator compounds, we performed virtual screening for the ligand binding domain (LBD) of iGluA2 against NCI Diversity Set III library containing 1597 compounds, and subsequently performed binding-energy analysis for selected compounds. The crystal structure of rat iGluA2 S1S2J (PDB ID: 3IJO) was used for docking studies. Results and conclusion From this study, we obtained four compounds: (1) 10-2(methoxyethyl)-3-phenylbenzo[g]pteridine-2,4-dione, (2) 2-benzo[e]benzotriazol-2-yl-aniline, (3) 9-nitro-6H-indolo-(2,3,-b)quinoxaline, and (4) 1-hydroxy-n-(3-nitrophenyl)-2-napthamide. The binding mode of these four compounds is very similar to that of abovementioned established modulators: two molecules of each compound independently bind to the protein symmetrically at the dimer interface; occupy the subsites B, C, B’ and C’; potentially interact with Ser518 and Ser775. Binding energy analysis shows that all the four hits are comparable to the drug molecule, CTZ, and hence, we propose that the discovered hits may be potential molecules to develop new chemical libraries for modulating the flip form of iGluA2 function. PMID:23855825

  13. Identification of novel modulators for ionotropic glutamate receptor, iGluA2 by in-silico screening.

    PubMed

    Padmanabhan, Balasundaram

    2013-07-15

    Ionotropic glutamate receptors (iGluAs, IUPHAR nomenclature) are the major excitatory amino acid neurotransmitter receptors in the mammalian central nervous system (CNS). iGluAs are potential therapeutic drug targets for various neurological disorders including ischemia, epilepsy, Parkinson's and Alzheimer's diseases. The known iGluA modulators, cyclothiazide (CTZ), IDRA-21, and other benzothiadiazide derivatives (ALTZ, HCTZ, and CLTZ) bind to the ligand-binding domain of flip-form of iGluA2 at the dimer interface, thereby increasing steady-state activation by reducing desensitization. To discover new modulator compounds, we performed virtual screening for the ligand binding domain (LBD) of iGluA2 against NCI Diversity Set III library containing 1597 compounds, and subsequently performed binding-energy analysis for selected compounds. The crystal structure of rat iGluA2 S1S2J (PDB ID: 3IJO) was used for docking studies. From this study, we obtained four compounds: (1) 10-2(methoxyethyl)-3-phenylbenzo[g]pteridine-2,4-dione, (2) 2-benzo[e]benzotriazol-2-yl-aniline, (3) 9-nitro-6H-indolo-(2,3,-b)quinoxaline, and (4) 1-hydroxy-n-(3-nitrophenyl)-2-napthamide. The binding mode of these four compounds is very similar to that of abovementioned established modulators: two molecules of each compound independently bind to the protein symmetrically at the dimer interface; occupy the subsites B, C, B' and C'; potentially interact with Ser518 and Ser775. Binding energy analysis shows that all the four hits are comparable to the drug molecule, CTZ, and hence, we propose that the discovered hits may be potential molecules to develop new chemical libraries for modulating the flip form of iGluA2 function.

  14. Characterization of Imidazopyridine Compounds as Negative Allosteric Modulators of Proton-Sensing GPR4 in Extracellular Acidification-Induced Responses

    PubMed Central

    Tobo, Ayaka; Tobo, Masayuki; Nakakura, Takashi; Ebara, Masashi; Tomura, Hideaki; Mogi, Chihiro; Im, Dong-Soon; Murata, Naoya; Kuwabara, Atsushi; Ito, Saki; Fukuda, Hayato; Arisawa, Mitsuhiro; Shuto, Satoshi; Nakaya, Michio; Kurose, Hitoshi; Sato, Koichi; Okajima, Fumikazu

    2015-01-01

    G protein-coupled receptor 4 (GPR4), previously proposed as the receptor for sphingosylphosphorylcholine, has recently been identified as the proton-sensing G protein-coupled receptor (GPCR) coupling to multiple intracellular signaling pathways, including the Gs protein/cAMP and G13 protein/Rho. In the present study, we characterized some imidazopyridine compounds as GPR4 modulators that modify GPR4 receptor function. In the cells that express proton-sensing GPCRs, including GPR4, OGR1, TDAG8, and G2A, extracellular acidification stimulates serum responsive element (SRE)-driven transcriptional activity, which has been shown to reflect Rho activity, with different proton sensitivities. Imidazopyridine compounds inhibited the moderately acidic pH-induced SRE activity only in GPR4-expressing cells. Acidic pH-stimulated cAMP accumulation, mRNA expression of inflammatory genes, and GPR4 internalization within GPR4-expressing cells were all inhibited by the GPR4 modulator. We further compared the inhibition property of the imidazopyridine compound with psychosine, which has been shown to selectively inhibit actions induced by proton-sensing GPCRs, including GPR4. In the GPR4 mutant, in which certain histidine residues were mutated to phenylalanine, proton sensitivity was significantly shifted to the right, and psychosine failed to further inhibit acidic pH-induced SRE activation. On the other hand, the imidazopyridine compound almost completely inhibited acidic pH-induced action in mutant GPR4. We conclude that some imidazopyridine compounds show specificity to GPR4 as negative allosteric modulators with a different action mode from psychosine, an antagonist susceptible to histidine residues, and are useful for characterizing GPR4-mediated acidic pH-induced biological actions. PMID:26070068

  15. Characterization of Imidazopyridine Compounds as Negative Allosteric Modulators of Proton-Sensing GPR4 in Extracellular Acidification-Induced Responses.

    PubMed

    Tobo, Ayaka; Tobo, Masayuki; Nakakura, Takashi; Ebara, Masashi; Tomura, Hideaki; Mogi, Chihiro; Im, Dong-Soon; Murata, Naoya; Kuwabara, Atsushi; Ito, Saki; Fukuda, Hayato; Arisawa, Mitsuhiro; Shuto, Satoshi; Nakaya, Michio; Kurose, Hitoshi; Sato, Koichi; Okajima, Fumikazu

    2015-01-01

    G protein-coupled receptor 4 (GPR4), previously proposed as the receptor for sphingosylphosphorylcholine, has recently been identified as the proton-sensing G protein-coupled receptor (GPCR) coupling to multiple intracellular signaling pathways, including the Gs protein/cAMP and G13 protein/Rho. In the present study, we characterized some imidazopyridine compounds as GPR4 modulators that modify GPR4 receptor function. In the cells that express proton-sensing GPCRs, including GPR4, OGR1, TDAG8, and G2A, extracellular acidification stimulates serum responsive element (SRE)-driven transcriptional activity, which has been shown to reflect Rho activity, with different proton sensitivities. Imidazopyridine compounds inhibited the moderately acidic pH-induced SRE activity only in GPR4-expressing cells. Acidic pH-stimulated cAMP accumulation, mRNA expression of inflammatory genes, and GPR4 internalization within GPR4-expressing cells were all inhibited by the GPR4 modulator. We further compared the inhibition property of the imidazopyridine compound with psychosine, which has been shown to selectively inhibit actions induced by proton-sensing GPCRs, including GPR4. In the GPR4 mutant, in which certain histidine residues were mutated to phenylalanine, proton sensitivity was significantly shifted to the right, and psychosine failed to further inhibit acidic pH-induced SRE activation. On the other hand, the imidazopyridine compound almost completely inhibited acidic pH-induced action in mutant GPR4. We conclude that some imidazopyridine compounds show specificity to GPR4 as negative allosteric modulators with a different action mode from psychosine, an antagonist susceptible to histidine residues, and are useful for characterizing GPR4-mediated acidic pH-induced biological actions.

  16. CD101, a Novel Echinocandin, Possesses Potent Antibiofilm Activity against Early and Mature Candida albicans Biofilms.

    PubMed

    Chandra, Jyotsna; Ghannoum, Mahmoud A

    2018-02-01

    Currently available echinocandins are generally effective against Candida biofilms, but the recent emergence of resistance has underscored the importance of developing new antifungal agents that are effective against biofilms. CD101 is a long-acting novel echinocandin with distinctive pharmacokinetic properties and improved stability and safety relative to other drugs in the same class. CD101 is currently being evaluated as a once-weekly intravenous (i.v.) infusion for the treatment of candidemia and invasive candidiasis. In this study, we determined (i) the effect of CD101 against early and mature phase biofilms formed by C. albicans in vitro and (ii) the temporal effect of CD101 on the formation of biofilms using time-lapse microscopy (TLM). Early- or mature-phase biofilms were formed on silicone elastomer discs and were exposed to the test compounds for 24 h and quantified by measuring their metabolic activity. Separate batches were observed under a confocal microscope or used to capture TLM images from 0 to 16 h. Measurements of their metabolic activity showed that CD101 (0.25 or 1 μg/ml) significantly prevented adhesion-phase cells from developing into mature biofilms ( P = 0.0062 or 0.0064, respectively) and eradicated preformed mature biofilms ( P = 0.04 or 0.01, respectively) compared to those of untreated controls. Confocal microscopy showed significant reductions in biofilm thicknesses for both early and mature phases ( P < 0.05). TLM showed that CD101 stopped the growth of adhesion- and early-phase biofilms within minutes. CD101-treated hyphae failed to grow into mature biofilms. These results suggest that CD101 may be effective in the prevention and treatment of biofilm-associated nosocomial infections. Copyright © 2018 Chandra and Ghannoum.

  17. RPF101, a new capsaicin-like analogue, disrupts the microtubule network accompanied by arrest in the G2/M phase, inducing apoptosis and mitotic catastrophe in the MCF-7 breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sá-Júnior, Paulo Luiz de; Pasqualoto, Kerly Fernanda Mesquita; Ferreira, Adilson Kleber

    Breast cancer is the world's leading cause of death among women. This situation imposes an urgent development of more selective and less toxic agents. The use of natural molecular fingerprints as sources for new bioactive chemical entities has proven to be a quite promising and efficient method. Capsaicin, which is the primary pungent compound in red peppers, was reported to selectively inhibit the growth of a variety tumor cell lines. Here, we report for the first time a novel synthetic capsaicin-like analogue, RPF101, which presents a high antitumor activity on MCF-7 cell line, inducing arrest of the cell cycle atmore » the G2/M phase through a disruption of the microtubule network. Furthermore, it causes cellular morphologic changes characteristic of apoptosis and a decrease of Δψm. Molecular modeling studies corroborated the biological findings and suggested that RPF101, besides being a more reactive molecule towards its target, may also present a better pharmacokinetic profile than capsaicin. All these findings support the fact that RPF101 is a promising anticancer agent. -- Highlights: ► We report for the first time that RPF101 possesses anticancer properties. ► RPF101 induces apoptosis of human breast cancer cells. ► RPF 101 decreases mitochondrial potential and induces DNA fragmentation.« less

  18. STS-101 crew members meet family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-101 crew gather during a meeting with family and friends at Launch Pad 39A. From left, Mission Specialist Susan J. Helms, Commander James D. Halsell Jr., Mission Specialist Mary Ellen Weber, Pilot Scott J. Horowitz and Mission Specialists Yuri Vladimirovich Usachev, Jeffery N. Williams and James S. Voss. In the background is the Space Shuttle Atlantis on the pad. Mission STS-101 will take the crew to the International Space Station to deliver logistics and supplies, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station as well. This will be the third assembly flight for the Space Station. Launch is targeted for April 24 at about 4:15 p.m. EDT from Launch Pad 39A.

  19. Selected phenolic compounds in cultivated plants: ecologic functions, health implications, and modulation by pesticides.

    PubMed Central

    Daniel, O; Meier, M S; Schlatter, J; Frischknecht, P

    1999-01-01

    Phenolic compounds are widely distributed in the plant kingdom. Plant tissues may contain up to several grams per kilogram. External stimuli such as microbial infections, ultraviolet radiation, and chemical stressors induce their synthesis. The phenolic compounds resveratrol, flavonoids, and furanocoumarins have many ecologic functions and affect human health. Ecologic functions include defense against microbial pathogens and herbivorous animals. Phenolic compounds may have both beneficial and toxic effects on human health. Effects on low-density lipoproteins and aggregation of platelets are beneficial because they reduce the risk of coronary heart disease. Mutagenic, cancerogenic, and phototoxic effects are risk factors of human health. The synthesis of phenolic compounds in plants can be modulated by the application of herbicides and, to a lesser extent, insecticides and fungicides. The effects on ecosystem functioning and human health are complex and cannot be predicted with great certainty. The consequences of the combined natural and pesticide-induced modulating effects for ecologic functions and human health should be further evaluated. PMID:10229712

  20. A Native Threonine Coordinates Ordered Water to Tune Light-Oxygen-Voltage (LOV) Domain Photocycle Kinetics and Osmotic Stress Signaling in Trichoderma reesei ENVOY.

    PubMed

    Lokhandwala, Jameela; Silverman Y de la Vega, Rafael I; Hopkins, Hilary C; Britton, Collin W; Rodriguez-Iglesias, Aroa; Bogomolni, Roberto; Schmoll, Monika; Zoltowski, Brian D

    2016-07-08

    Light-oxygen-voltage (LOV) domain-containing proteins function as small light-activated modules capable of imparting blue light control of biological processes. Their small modular nature has made them model proteins for allosteric signal transduction and optogenetic devices. Despite intense research, key aspects of their signal transduction mechanisms and photochemistry remain poorly understood. In particular, ordered water has been identified as a possible key mediator of photocycle kinetics, despite the lack of ordered water in the LOV active site. Herein, we use recent crystal structures of a fungal LOV protein ENVOY to interrogate the role of Thr(101) in recruiting water to the flavin active site where it can function as an intrinsic base to accelerate photocycle kinetics. Kinetic and molecular dynamic simulations confirm a role in solvent recruitment to the active site and identify structural changes that correlate with solvent recruitment. In vivo analysis of T101I indicates a direct role of the Thr(101) position in mediating adaptation to osmotic stress, thereby verifying biological relevance of ordered water in LOV signaling. The combined studies identify position 101 as a mediator of both allostery and photocycle catalysis that can impact organism physiology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Magnetic ordering-induced multiferroic behavior in [CH 3NH 3][Co(HCOO) 3] metal-organic framework.

    DOE PAGES

    Gomez-Aguirre, Lilian Claudia; Zapf, Vivien S.; Pato-Doldan, Breogan; ...

    2015-12-30

    Here, we present the first example of magnetic ordering-induced multiferroic behavior in a metal–organic framework magnet. This compound is [CH 3NH 3][Co(HCOO) 3] with a perovskite-like structure. The A-site [CH 3NH 3] + cation strongly distorts the framework, allowing anisotropic magnetic and electric behavior and coupling between them to occur. This material is a spin canted antiferromagnet below 15.9 K with a weak ferromagnetic component attributable to Dzyaloshinskii–Moriya (DM) interactions and experiences a discontinuous hysteretic magnetic-field-induced switching along [010] and a more continuous hysteresis along [101]. Coupling between the magnetic and electric order is resolved when the field is appliedmore » along this [101]: a spin rearrangement occurs at a critical magnetic field in the ac plane that induces a change in the electric polarization along [101] and [10-1]. The electric polarization exhibits an unusual memory effect, as it remembers the direction of the previous two magnetic-field pulses applied. The data are consistent with an inverse-DM mechanism for multiferroic behavior.« less

  2. Performance losses in rooftop-mounted PV modules from long-term environmental exposure at Las Cruces, New Mexico

    NASA Astrophysics Data System (ADS)

    Rosenthal, Andrew L.; Czanderna, A. W.; Pern, F. J.

    1999-03-01

    Forty-eight PV modules of four different types were instrumented and tested monthly for 3 years to measure and record the performance effects of environmental exposure. Two modules were removed from each set of 12 as a control and for "initial" characterization. As a secondary goal, the effects of mounting topology (open rack, integrated roof, conventional standoff mount) were also closely monitored. Current-voltage (I-V) curve data were archived and normalized according to accepted methods. The EVA pottant in all modules monitored was discolored to a deep yellow-to-brown color from prior exposures before the monitoring was begun. Modules showing observable performance degradation were removed from their mounts and prepared for in-depth analysis. During the 3-year monitoring period, 4 of the 10 Solarex a-Si modules stopped producing, 3 of the 10 Solarex MIT pc-Si modules lost from 5% to 10% efficiency, and 1 Mobil Ra-180 pc-Si module lost about 10% efficiency. For all of the other modules, a loss of less than 1% per year was recorded, which included all 10 of the Sovonics P-101 a-Si modules.

  3. Frequency-Accommodating Manchester Decoder

    NASA Technical Reports Server (NTRS)

    Vasquez, Mario J.

    1988-01-01

    No adjustment necessary to cover a 10:1 frequency range. Decoding circuit converts biphase-level pulse-code modulation to nonreturn-to-zero (NRZ)-level pulse-code modulation plus clock signal. Circuit accommodates input data rate of 50 to 500 kb/s. Tracks gradual changes in rate automatically, eliminating need for extra circuits and manual switching to adjust to different rates.

  4. A Low-Cost, Hands-on Module to Characterize Antimicrobial Compounds Using an Interdisciplinary, Biophysical Approach

    PubMed Central

    Kaushik, Karishma S.; Kessel, Ashley; Ratnayeke, Nalin; Gordon, Vernita D.

    2015-01-01

    We have developed a hands-on experimental module that combines biology experiments with a physics-based analytical model in order to characterize antimicrobial compounds. To understand antibiotic resistance, participants perform a disc diffusion assay to test the antimicrobial activity of different compounds and then apply a diffusion-based analytical model to gain insights into the behavior of the active antimicrobial component. In our experience, this module was robust, reproducible, and cost-effective, suggesting that it could be implemented in diverse settings such as undergraduate research, STEM (science, technology, engineering, and math) camps, school programs, and laboratory training workshops. By providing valuable interdisciplinary research experience in science outreach and education initiatives, this module addresses the paucity of structured training or education programs that integrate diverse scientific fields. Its low-cost requirements make it especially suitable for use in resource-limited settings. PMID:25602254

  5. Synthesis and crystal structures of inclusion compounds of 2,2'-dithiosalicylic acid and triethylamine/tripropylamine

    NASA Astrophysics Data System (ADS)

    Yang, Y. X.; Li, H. Y.; Wu, J. F.

    2015-12-01

    Herein we reported two new inclusion compounds of 2,2'-dithiosalicylic acid (C14H10O4S2, DTSA) and triethylamine and tripropylamine, [C14H8O4S 2 2- · [N+(C2H5)3]2 · H2O] (1) and [C14H10O4S2 · C14H8O4S 2 2- · [N+(C3H7)3]2] (2). Compound 1: triclinic P overline 1, a = 8.2159(2), b = 12.5724(3), c = 14.9203(3) Å, α = 97.0390(10), β = 101.4310(10)°, γ = 101.3370(10)°, V = 1460.06(6) Å3, Z = 2, R 1 = 0.0526, wR 2 = 0.1495; Compound 2: monoclinic P21/ c, a = 20.5178(13), b = 15.3623(8), c = 15.5529(9) Å, β = 102.036(3)°, V = 4794.5(5) Å3, Z = 4, R 1 = 0.0533, wR 2 = 0.1252. In these two crystal structures, DTSA utilizes conventional O-H···O hydrogen bonds to link to generate varied host lattices, in which the central N atoms of the guest amine molecules accept the protons of DTSA to form the corresponding cations to act as the couterions to develop the stable crystal structures. Noticeably, except Van der Waals forces usually existing between the host and guest molecules, the central N atoms of the guests of the two compounds can construct strong N-H…O hydrogen bonds with the related host molecules, which further enforce the host-guest interactions to help form the final inclusion compounds.

  6. KSC00pp0279

    NASA Image and Video Library

    2000-02-25

    KENNEDY SPACE CENTER, FLA. -- Members of the STS-101 crew take part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, in Cape Canaveral, Fla., where they are learning about some of the equipment they will be working with on their mission to the International Space Station. Mission Specialist Susan Helms holds one component while Commander James Halsell and Mission Specialist Yuri Usachev look on, and Mission Specialists Mary Ellen Weber and Jeffrey Williams discuss another. Also taking part in the CEIT are Pilot Scott Horowitz and Mission Specialist James Voss. The green component on the table is an air duct to be installed in the Russian module Zarya to improve ventilation. The STS-101 crew will be responsible for preparing the Space Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station and deliver logistics and supplies. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch no earlier than April 13 from Launch Pad 39A

  7. KSC-00pp0279

    NASA Image and Video Library

    2000-02-25

    KENNEDY SPACE CENTER, FLA. -- Members of the STS-101 crew take part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, in Cape Canaveral, Fla., where they are learning about some of the equipment they will be working with on their mission to the International Space Station. Mission Specialist Susan Helms holds one component while Commander James Halsell and Mission Specialist Yuri Usachev look on, and Mission Specialists Mary Ellen Weber and Jeffrey Williams discuss another. Also taking part in the CEIT are Pilot Scott Horowitz and Mission Specialist James Voss. The green component on the table is an air duct to be installed in the Russian module Zarya to improve ventilation. The STS-101 crew will be responsible for preparing the Space Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station and deliver logistics and supplies. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch no earlier than April 13 from Launch Pad 39A

  8. STS-101: Crew Activity Report / Flight Day 5

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The primary mission objective for STS-101 was to deliver supplies to the International Space Station, perform a space walk, and reboost the station from 230 statute miles to 250 statute miles. The commander of this mission was, James D. Haslsell. The crew was Scott J. Horowitz, the pilot, and mission specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev. This videotape shows the activities of the fifth day of the mission. The day's activities started with the opening of the hatch to the space station. Helms and Usachev then opened the hatch to the station's Unity Connecting Module. The crew also placed ducting throughout the Zarya Control Module to improve air circulation and prevent problems with stale air. Helms and Usachev are shown replacing two of six batteries to be replaced in this mission in the Zarya module. The crew began moving supplies into the space station. There are several shots of the interior of the space station.

  9. The use of a battery of pain models to detect analgesic properties of compounds: a two‐part four‐way crossover study

    PubMed Central

    Okkerse, Pieter; van Amerongen, Guido; de Kam, Marieke L.; Stevens, Jasper; Butt, Richard P.; Gurrell, Rachel; Dahan, Albert; van Gerven, Joop M.; Hay, Justin L.

    2017-01-01

    Aim The aim was to investigate the ability of a battery of pain models to detect analgesic properties of commonly used analgesics in healthy subjects. Methods The battery consisted of tests eliciting electrical, mechanical and thermal (contact heat and cold pressor)‐pain and included a UVB model, the thermal grill illusion and a paradigm of conditioned pain modulation. Subjects were administered fentanyl 3 μg kg–1, phenytoin 300 mg, (S)‐ketamine 10 mg and placebo (part I), or imipramine 100 mg, pregabalin 300 mg, ibuprofen 600 mg and placebo (part II). Pain measurements were performed at baseline and up to 10 h post‐dose. Endpoints were analysed using a mixed model analysis of variance. Results Sixteen subjects (8 female) completed each part. The pain tolerance threshold (PTT) for electrical stimulation was increased (all P < 0.05) compared to placebo for (S)‐ketamine (+10.1%), phenytoin (+8.5%) and pregabalin (+10.8%). The PTT for mechanical pain was increased by pregabalin (+14.1%). The cold pressor PTT was increased by fentanyl (+17.1%) and pregabalin (+46.4%). Normal skin heat pain detection threshold was increased by (S)‐ketamine (+3.3%), fentanyl (+2.8%) and pregabalin (+4.1%). UVB treated skin pain detection threshold was increased by fentanyl (+2.6%) and ibuprofen (+4.0%). No differences in conditioned pain modulation were observed. Conclusion This study shows that these pain models are able to detect changes in pain thresholds after administration of different classes of analgesics in healthy subjects. The analgesic compounds all showed a unique profile in their effects on the pain tasks administered. PMID:27862179

  10. The use of a battery of pain models to detect analgesic properties of compounds: a two-part four-way crossover study.

    PubMed

    Okkerse, Pieter; van Amerongen, Guido; de Kam, Marieke L; Stevens, Jasper; Butt, Richard P; Gurrell, Rachel; Dahan, Albert; van Gerven, Joop M; Hay, Justin L; Groeneveld, Geert Jan

    2017-05-01

    The aim was to investigate the ability of a battery of pain models to detect analgesic properties of commonly used analgesics in healthy subjects. The battery consisted of tests eliciting electrical, mechanical and thermal (contact heat and cold pressor)-pain and included a UVB model, the thermal grill illusion and a paradigm of conditioned pain modulation. Subjects were administered fentanyl 3 μg kg -1 , phenytoin 300 mg, (S)-ketamine 10 mg and placebo (part I), or imipramine 100 mg, pregabalin 300 mg, ibuprofen 600 mg and placebo (part II). Pain measurements were performed at baseline and up to 10 h post-dose. Endpoints were analysed using a mixed model analysis of variance. Sixteen subjects (8 female) completed each part. The pain tolerance threshold (PTT) for electrical stimulation was increased (all P < 0.05) compared to placebo for (S)-ketamine (+10.1%), phenytoin (+8.5%) and pregabalin (+10.8%). The PTT for mechanical pain was increased by pregabalin (+14.1%). The cold pressor PTT was increased by fentanyl (+17.1%) and pregabalin (+46.4%). Normal skin heat pain detection threshold was increased by (S)-ketamine (+3.3%), fentanyl (+2.8%) and pregabalin (+4.1%). UVB treated skin pain detection threshold was increased by fentanyl (+2.6%) and ibuprofen (+4.0%). No differences in conditioned pain modulation were observed. This study shows that these pain models are able to detect changes in pain thresholds after administration of different classes of analgesics in healthy subjects. The analgesic compounds all showed a unique profile in their effects on the pain tasks administered. © 2016 The British Pharmacological Society.

  11. Expression and Characterization of a Bifidobacterium adolescentis Beta-Mannanase Carrying Mannan-Binding and Cell Association Motifs

    PubMed Central

    Kulcinskaja, Evelina; Rosengren, Anna; Ibrahim, Romany; Kolenová, Katarína

    2013-01-01

    The gene encoding β-mannanase (EC 3.2.1.78) BaMan26A from the bacterium Bifidobacterium adolescentis (living in the human gut) was cloned and the gene product characterized. The enzyme was found to be modular and to contain a putative signal peptide. It possesses a catalytic module of the glycoside hydrolase family 26, a predicted immunoglobulin-like module, and two putative carbohydrate-binding modules (CBMs) of family 23. The enzyme is likely cell attached either by the sortase mechanism (LPXTG motif) or via a C-terminal transmembrane helix. The gene was expressed in Escherichia coli without the native signal peptide or the cell anchor. Two variants were made: one containing all four modules, designated BaMan26A-101K, and one truncated before the CBMs, designated BaMan26A-53K. BaMan26A-101K, which contains the CBMs, showed an affinity to carob galactomannan having a dissociation constant of 0.34 μM (8.8 mg/liter), whereas BaMan26A-53K did not bind, showing that at least one of the putative CBMs of family 23 is mannan binding. For BaMan26A-53K, kcat was determined to be 444 s−1 and Km 21.3 g/liter using carob galactomannan as the substrate at the optimal pH of 5.3. Both of the enzyme variants hydrolyzed konjac glucomannan, as well as carob and guar gum galactomannans to a mixture of oligosaccharides. The dominant product from ivory nut mannan was found to be mannotriose. Mannobiose and mannotetraose were produced to a lesser extent, as shown by high-performance anion-exchange chromatography. Mannobiose was not hydrolyzed, and mannotriose was hydrolyzed at a significantly lower rate than the longer oligosaccharides. PMID:23064345

  12. An agonist to the A3 adenosine receptor inhibits colon carcinoma growth in mice via modulation of GSK-3 beta and NF-kappa B.

    PubMed

    Fishman, Pnina; Bar-Yehuda, Sara; Ohana, Gil; Barer, Faina; Ochaion, Avivit; Erlanger, Abigail; Madi, Lea

    2004-04-01

    A(3) adenosine receptor (A(3)AR) activation with the specific agonist CF101 has been shown to inhibit the development of colon carcinoma growth in syngeneic and xenograft murine models. In the present study, we looked into the effect of CF101 on the molecular mechanisms involved in the inhibition of HCT-116 colon carcinoma in mice. In tumor lesions derived from CF101-treated mice, a decrease in the expression level of protein kinase A (PKA) and an increase in glycogen synthase kinase-3 beta (GSK-3 beta) was observed. This gave rise to downregulation of beta-catenin and its transcriptional gene products cyclin D1 and c-Myc. Further mechanistic studies in vitro revealed that these responses were counteracted by the selective A(3)AR antagonist MRS 1523 and by the GSK-3 beta inhibitors lithium and SB216763, confirming that the observed effects were A(3)AR and GSK-3 beta mediated. CF101 downregulated PKB/Akt expression level, resulting in a decrease in the level and DNA-binding capacity of NF-kappa B, both in vivo and in vitro. Furthermore, the PKA and PKB/Akt inhibitors H89 and Worthmannin mimicked the effect of CF101, supporting their involvement in mediating the response to the agonist. This is the first demonstration that A(3)AR activation induces colon carcinoma growth inhibition via the modulation of the key proteins GSK-3 beta and NF-kappa B.

  13. Magnetism of new metastable cobalt-nitride compounds.

    PubMed

    Balasubramanian, Balamurugan; Zhao, Xin; Valloppilly, Shah R; Beniwal, Sumit; Skomski, Ralph; Sarella, Anandakumar; Jin, Yunlong; Li, Xingzhong; Xu, Xiaoshan; Cao, Huibo; Wang, Haohan; Enders, Axel; Wang, Cai-Zhuang; Ho, Kai-Ming; Sellmyer, David J

    2018-06-06

    The search for new magnetic materials with high magnetization and magnetocrystalline anisotropy is important for a wide range of applications including information and energy processing. There is only a limited number of naturally occurring magnetic compounds that are suitable. This situation stimulates an exploration of new phases that occur far from thermal-equilibrium conditions, but their stabilization is generally inhibited due to high positive formation energies. Here a nanocluster-deposition method has enabled the discovery of a set of new non-equilibrium Co-N intermetallic compounds. The experimental search was assisted by computational methods including adaptive-genetic-algorithm and electronic-structure calculations. Conventional wisdom is that the interstitial or substitutional solubility of N in Co is much lower than that in Fe and that N in Co in equilibrium alloys does not produce materials with significant magnetization and anisotropy. By contrast, our experiments identify new Co-N compounds with favorable magnetic properties including hexagonal Co3N nanoparticles with a high saturation magnetic polarization (Js = 1.28 T or 12.8 kG) and an appreciable uniaxial magnetocrystalline anisotropy (K1 = 1.01 MJ m-3 or 10.1 Mergs per cm3). This research provides a pathway for uncovering new magnetic compounds with computational efficiency beyond the existing materials database, which is significant for future technologies.

  14. Investigation of a thiazolidinone derivative as an allosteric modulator of follicle stimulating hormone receptor: evidence for its ability to support follicular development and ovulation.

    PubMed

    Sriraman, Venkataraman; Denis, Deborah; de Matos, Daniel; Yu, Henry; Palmer, Stephen; Nataraja, Selva

    2014-05-15

    FSH signalling through its cognate receptor is critical for follicular development and ovulation. An earlier study had documented thiazolidinone derivatives to activate FSH receptor expressed in CHO cells and rat granulosa cells; however development of this compound for clinical use was halted for unobvious reasons. The objective of the current study is to extend the previous investigations in detail on the ability of thiazolidinone derivative (henceforth referred to as Compound 5) to activate FSH signalling and learn the barriers that preclude development of this derivative for clinical purposes. Our results demonstrate that the Compound 5 in a dose-dependent manner stimulated cAMP production, activated AKT and ERK signalling pathways and induced estradiol production in cultured rat granulosa cells. Compound 5 also caused dose-dependent increase in estradiol production from human granulosa cells. In increasingly more complex in vitro systems, Compound 5 was able to induce the expansion of mouse cumulus-oocyte-complex and support in vitro development of mouse preantral follicle to preovulatory stage and release of oocyte from the follicle. In vivo, the compound stimulated preovulatory follicular development and ovulation in immature rats. Pharmacokinetic and safety investigations reveal poor oral availability and genotoxicity. Together, our results document Compound 5 to act as a FSHR allosteric modulator but have poor pharmacological properties for development of an oral FSH receptor modulator. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. An in vitro comparative study of the antioxidant activity and SIRT1 modulation of natural compounds.

    PubMed

    Fusi, Jonathan; Bianchi, Sara; Daniele, Simona; Pellegrini, Silvia; Martini, Claudia; Galetta, Fabio; Giovannini, Luca; Franzoni, Ferdinando

    2018-05-01

    Oxidative stress arises from an imbalance between the production of free radicals and antioxidant defences. Several studies have suggested that dietary antioxidants (such as polyphenols and berberine) may counteract oxidative stress through the involvement of the Sirtuin 1/Adenosine Monophosphate-Activated Protein Kinase (SIRT1/AMPK) pathway. The aim of this study was to evaluate the direct and specific antioxidant activity of some natural compounds, as well as their ability to modulate the expression of SIRT1 and the activation of AMPK. Quercetin, tyrosol, ferulic acid, catechin, berberine and curcumin were evaluated for their specific and direct antioxidant activity with TOSC assay. Their ability to modulate SIRT1 and AMPK was assessed by immunoblotting assay, while their cytotoxicity by CellTiter-Blue Cell Viability Assay. No statistically significant decrease (p > 0.05) in the number of viable cells was found upon challenging with the natural compounds. Quercetin exhibited the highest antioxidant activity against peroxyl radical and peroxinitrate derivates, while curcumin showed the best anti-hydroxyl activity with respect to the other compounds and, most importantly, respect to the reference antioxidants. Finally, all the tested compounds significantly increased the SIRT1 expression and the activation of AMPK. Our results clearly disclose the specific antioxidant activity of these natural compounds and their ability to increase SIRT1 expression and AMPK activation. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording.

    PubMed

    Li, Xiangping; Zhang, Qiming; Chen, Xi; Gu, Min

    2013-10-02

    Graphene oxides (GOs) have emerged as precursors offering the potential of a cost-effective and large-scale production of graphene-based materials. Despite that their intrinsic fluorescence property has already brought interest of researchers for optical applications, to date, refractive-index modulation as one of the fundamental aspects of optical properties of GOs has received less attention. Here we reported on a giant refractive-index modulation on the order of 10(-2) to 10(-1), accompanied by a fluorescence intensity change, through the two-photon reduction of GOs. These features enabled a mechanism for multimode optical recording with the fluorescence contrast and the hologram-encoded refractive-index modulation in GO-dispersed polymers for security-enhanced high-capacity information technologies. Our results show that GO-polymer composites may provide a new material platform enabling flexible micro-/nano-photonic information devices.

  17. Phenolic constituents of shea (Vitellaria paradoxa) kernels.

    PubMed

    Maranz, Steven; Wiesman, Zeev; Garti, Nissim

    2003-10-08

    Analysis of the phenolic constituents of shea (Vitellaria paradoxa) kernels by LC-MS revealed eight catechin compounds-gallic acid, catechin, epicatechin, epicatechin gallate, gallocatechin, epigallocatechin, gallocatechin gallate, and epigallocatechin gallate-as well as quercetin and trans-cinnamic acid. The mean kernel content of the eight catechin compounds was 4000 ppm (0.4% of kernel dry weight), with a 2100-9500 ppm range. Comparison of the profiles of the six major catechins from 40 Vitellaria provenances from 10 African countries showed that the relative proportions of these compounds varied from region to region. Gallic acid was the major phenolic compound, comprising an average of 27% of the measured total phenols and exceeding 70% in some populations. Colorimetric analysis (101 samples) of total polyphenols extracted from shea butter into hexane gave an average of 97 ppm, with the values for different provenances varying between 62 and 135 ppm of total polyphenols.

  18. STS-101 Mission Specialist J.Williams arrives at KSC for TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Jeffrey Williams arrives at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft flown by STS- 101 Pilot Scott Horowitz. They and the rest of the crew are at KSC to take part in Terminal Countdown Demonstration Test (TCDT) activities that include emergency egress training and a dress rehearsal for launch. The other crew members are Commander James Halsell and Mission Specialists Mary Ellen Weber, James Voss, Susan Helms and Yuri Usachev. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  19. Graphene optical modulator

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Yin, Xiaobo; Wang, Feng; Zhang, Xiang

    2011-10-01

    Data communications have been growing at a speed even faster than Moore's Law, with a 44-fold increase expected within the next 10 years. Data Transfer on such scale would have to recruit optical communication technology and inspire new designs of light sources, modulators, and photodetectors. An ideal optical modulator will require high modulation speed, small device footprint and large operating bandwidth. Silicon modulators based on free carrier plasma dispersion effect and compound semiconductors utilizing direct bandgap transition have seen rapid improvement over the past decade. One of the key limitations for using silicon as modulator material is its weak refractive index change, which limits the footprint of silicon Mach-Zehnder interferometer modulators to millimeters. Other approaches such as silicon microring modulators reduce the operation wavelength range to around 100 pm and are highly sensitive to typical fabrication tolerances and temperature fluctuations. Growing large, high quality wafers of compound semiconductors, and integrating them on silicon or other substrates is expensive, which also restricts their commercialization. In this work, we demonstrate that graphene can be used as the active media for electroabsorption modulators. By tuning the Fermi energy level of the graphene layer, we induced changes in the absorption coefficient of graphene at communication wavelength and achieve a modulation depth above 3 dB. This integrated device also has the potential of working at high speed.

  20. Ketamine and Beyond: Investigations into the Potential of Glutamatergic Agents to Treat Depression

    PubMed Central

    Lener, Marc S.; Kadriu, Bashkim; Zarate, Carlos A.

    2017-01-01

    Clinical and preclinical studies suggest that dysfunction of the glutamatergic system is implicated in mood disorders such as major depressive disorder (MDD) and bipolar depression. In clinical studies of individuals with MDD and bipolar depression, rapid reductions in depressive symptoms have been observed in response to subanesthetic-dose ketamine, an agent whose mechanism of action involves the modulation of glutamatergic signaling. The findings from these studies have prompted the repurposing and/or development of other glutamatergic modulators for antidepressant efficacy, both as monotherapy or as an adjunct to conventional monoaminergic antidepressants. This review will highlight the evidence supporting the antidepressant effects of subanesthetic-dose ketamine as well as other glutamatergic modulators, such as D-cycloserine (DCS), riluzole, CP-101,606, CERC-301 (previously known as MK-0657), basimglurant, JNJ-40411813, dextromethorphan, nitrous oxide (N2O), GLYX-13, and esketamine. PMID:28194724

  1. STS-101 Mission Specialist Williams arrives at KSC for 4th launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Jeffrey N. Williams stands ready to begin preparations for the launch on May 18 after arriving at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.

  2. STS-101 Commander Halsell arrives at KSC for 4th launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Commander James D. Halsell Jr. arrives at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft to prepare for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.

  3. STS-101 M.S. Usachev arrives at KSC for 4th launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Yuri Usachev waves on his arrival KSC's Shuttle Landing Facility aboard a T-38 jet aircraft to prepare for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.

  4. A ring-distortion strategy to construct stereochemically complex and structurally diverse compounds from natural products

    NASA Astrophysics Data System (ADS)

    Huigens, Robert W., III; Morrison, Karen C.; Hicklin, Robert W.; Flood, Timothy A., Jr.; Richter, Michelle F.; Hergenrother, Paul J.

    2013-03-01

    High-throughput screening is the dominant method used to identify lead compounds in drug discovery. As such, the makeup of screening libraries largely dictates the biological targets that can be modulated and the therapeutics that can be developed. Unfortunately, most compound-screening collections consist principally of planar molecules with little structural or stereochemical complexity, compounds that do not offer the arrangement of chemical functionality necessary for the modulation of many drug targets. Here we describe a novel, general and facile strategy for the creation of diverse compounds with high structural and stereochemical complexity using readily available natural products as synthetic starting points. We show through the evaluation of chemical properties (which include fraction of sp3 carbons, ClogP and the number of stereogenic centres) that these compounds are significantly more complex and diverse than those in standard screening collections, and we give guidelines for the application of this strategy to any suitable natural product.

  5. ATR-101, a selective ACAT1 inhibitor, decreases ACTH-stimulated cortisol concentrations in dogs with naturally occurring Cushing's syndrome.

    PubMed

    Langlois, Daniel K; Fritz, Michele C; Schall, William D; Bari Olivier, N; Smedley, Rebecca C; Pearson, Paul G; Bailie, Marc B; Hunt, Stephen W

    2018-05-02

    Cushing's syndrome in humans shares many similarities with its counterpart in dogs in terms of etiology (pituitary versus adrenal causes), clinical signs, and pathophysiologic sequelae. In both species, treatment of pituitary- and adrenal-dependent disease is met with limitations. ATR-101, a selective inhibitor of ACAT1 (acyl coenzyme A:cholesterol acyltransferase 1), is a novel small molecule therapeutic currently in clinical development for the treatment of adrenocortical carcinoma, congenital adrenal hyperplasia, and Cushing's syndrome in humans. Previous studies in healthy dogs have shown that ATR-101 treatment led to rapid, dose-dependent decreases in adrenocorticotropic hormone (ACTH) stimulated cortisol levels. The purpose of this clinical study was to investigate the effects of ATR-101 in dogs with Cushing's syndrome. ATR-101 pharmacokinetics and activity were assessed in 10 dogs with naturally-occurring Cushing's syndrome, including 7 dogs with pituitary-dependent disease and 3 dogs with adrenal-dependent disease. ATR-101 was administered at 3 mg/kg PO once daily for one week, followed by 30 mg/kg PO once daily for one (n = 4) or three (n = 6) weeks. Clinical, biochemical, adrenal hormonal, and pharmacokinetic data were obtained weekly for study duration. ATR-101 exposure increased with increasing dose. ACTH-stimulated cortisol concentrations, the primary endpoint for the study, were significantly decreased with responders (9 of 10 dogs) experiencing a mean ± standard deviation reduction in cortisol levels of 50 ± 17% at study completion. Decreases in pre-ACTH-stimulated cortisol concentrations were observed in some dogs although overall changes in pre-ACTH cortisol concentrations were not significant. The compound was well-tolerated and no serious drug-related adverse effects were reported. This study highlights the potential utility of naturally occurring canine Cushing's syndrome as a model for human disease and provides proof of concept for ATR-101 as a novel agent for the treatment of endocrine disorders like Cushing's syndrome in humans.

  6. The future of type 1 cannabinoid receptor allosteric ligands.

    PubMed

    Alaverdashvili, Mariam; Laprairie, Robert B

    2018-02-01

    Allosteric modulation of the type 1 cannabinoid receptor (CB1R) holds great therapeutic potential. This is because allosteric modulators do not possess intrinsic efficacy, but instead augment (positive allosteric modulation) or diminish (negative allosteric modulation) the receptor's response to endogenous ligand. Consequently, CB1R allosteric modulators have an effect ceiling which allows for the tempering of CB1R signaling without the desensitization, tolerance, dependence, and psychoactivity associated with orthosteric compounds. Pain, movement disorders, epilepsy, obesity are all potential therapeutic targets for CB1R allosteric modulation. Several challenges exist for the development of CB1R allosteric modulators, such as receptor subtype specificity, translation to in vivo systems, and mixed allosteric/agonist/inverse agonist activity. Despite these challenges, elucidation of crystal structures of CB1R and compound design based on structure-activity relationships will advance the field. In this review, we will cover recent progress for CB1R allosteric modulators and discuss the future promise of this research.

  7. A Measure of the Broad Substrate Specificity of Enzymes Based on ‘Duplicate’ Catalytic Residues

    PubMed Central

    Chakraborty, Sandeep; Ásgeirsson, Bjarni; Rao, Basuthkar J.

    2012-01-01

    The ability of an enzyme to select and act upon a specific class of compounds with unerring precision and efficiency is an essential feature of life. Simultaneously, these enzymes often catalyze the reaction of a range of similar substrates of the same class, and also have promiscuous activities on unrelated substrates. Previously, we have established a methodology to quantify promiscuous activities in a wide range of proteins. In the current work, we quantitatively characterize the active site for the ability to catalyze distinct, yet related, substrates (BRASS). A protein with known structure and active site residues provides the framework for computing ‘duplicate’ residues, each of which results in slightly modified replicas of the active site scaffold. Such spatial congruence is supplemented by Finite difference Poisson Boltzmann analysis which filters out electrostatically unfavorable configurations. The congruent configurations are used to compute an index (BrassIndex), which reflects the broad substrate profile of the active site. We identify an acetylhydrolase and a methyltransferase as having the lowest and highest BrassIndex, respectively, from a set of non-homologous proteins extracted from the Catalytic Site Atlas. The acetylhydrolase, a regulatory enzyme, is known to be highly specific for platelet-activating factor. In the methyltransferase (PDB: 1QAM), various combinations of glycine (Gly38/40/42), asparagine (Asn101/11) and glutamic acid (Glu59/36) residues having similar spatial and electrostatic profiles with the specified scaffold (Gly38, Asn101 and Glu59) exemplifies the broad substrate profile such an active site may provide. ‘Duplicate’ residues identified by relaxing the spatial and/or electrostatic constraints can be the target of directed evolution methodologies, like saturation mutagenesis, for modulating the substrate specificity of proteins. PMID:23166637

  8. Redox Modulations, Antioxidants, and Neuropsychiatric Disorders

    PubMed Central

    Fraunberger, Erik A.; Laliberté, Victoria L. M.; Duong, Angela; Andreazza, Ana C.

    2016-01-01

    Although antioxidants, redox modulations, and neuropsychiatric disorders have been widely studied for many years, the field would benefit from an integrative and corroborative review. Our primary objective is to delineate the biological significance of compounds that modulate our redox status (i.e., reactive species and antioxidants) as well as outline their current role in brain health and the impact of redox modulations on the severity of illnesses. Therefore, this review will not enter into the debate regarding the perceived medical legitimacy of antioxidants but rather seek to clarify their abilities and limitations. With this in mind, antioxidants may be interpreted as natural products with significant pharmacological actions in the body. A renewed understanding of these often overlooked compounds will allow us to critically appraise the current literature and provide an informed, novel perspective on an important healthcare issue. In this review, we will introduce the complex topics of redox modulations and their role in the development of select neuropsychiatric disorders. PMID:26640614

  9. Optimization by Molecular Fine Tuning of Dihydro-β-agarofuran Sesquiterpenoids as Reversers of P-Glycoprotein-Mediated Multidrug Resistance.

    PubMed

    Callies, Oliver; Sánchez-Cañete, María P; Gamarro, Francisco; Jiménez, Ignacio A; Castanys, Santiago; Bazzocchi, Isabel L

    2016-03-10

    P-glycoprotein (P-gp) plays a crucial role in the development of multidrug resistance (MDR), a major obstacle for successful chemotherapy in cancer. Herein, we report on the development of a natural-product-based library of 81 dihydro-β-agarofuran sesquiterpenes (2-82) by optimization of the lead compound 1. The compound library was evaluated for its ability to inhibit P-gp-mediated daunomycin efflux in MDR cells. Selected analogues were further analyzed for their P-gp inhibition constant, intrinsic toxicity, and potency to reverse daunomycin and vinblastine resistances. Analogues 6, 24, 28, 59, and 66 were identified as having higher potency than compound 1 and verapamil, a first-generation P-gp modulator. SAR analysis revealed the size of the aliphatic chains and presence of nitrogen atoms are important structural characteristics to modulate reversal activity. The present study highlights the potential of these analogues as modulators of P-gp mediated MDR in cancer cells.

  10. Teaching crucial skills: An electrocardiogram teaching module for medical students.

    PubMed

    Chudgar, Saumil M; Engle, Deborah L; Grochowski, Colleen O'Connor; Gagliardi, Jane P

    2016-01-01

    Medical student performance in electrocardiogram (ECG) interpretation at our institution could be improved. Varied resources exist to teach students this essential skill. We created an ECG teaching module (ECGTM) of 75 cases representing 15 diagnoses to improve medical students' performance and confidence in ECG interpretation. Students underwent pre- and post-clerkship testing to assess ECG interpretation skills and confidence and also end-of-clinical-year testing in ECG and laboratory interpretation. Performance was compared for the years before and during ECGTM availability. Eighty-four percent of students (total n=101) reported using the ECGTM; 98% of those who used it reported it was useful. Students' performance and confidence were higher on the post-test. Students with access to the ECGTM (n=101) performed significantly better than students from the previous year (n=90) on the end-of-year ECG test. The continuous availability of an ECGTM was associated with improved confidence and ability in ECG interpretation. The ECGTM may be another available tool to help students as they learn to read ECGs. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Preparation and evaluation of sustained drug release from pluronic polyol rectal suppositories.

    PubMed

    Anderson, D; Amomo, M M

    2001-01-01

    Suppository dosage forms offer several advantages in drug delivery and can be compounded in a pharmacy setting for the needs of the individual patient. In this study, we have examined the use of Pluronic polyols in the development of sustained-release rectal suppository formulations. Solid and liquid Pluronic poyols (Pluronic L61, F68, L101, and F108) were combined in a weight ratio ranging from 80:20 (solid to liquid) to 70:30 to prepare the bases. The release behavior of a model drug, riboflavin, from the suppositories wee evaluated by means of the United Stated Pharmacopeia Basket Dissolution Method. When compared with the control Polybase suppository, which released 50% of the drug (t50) in about 7.23 minutes, Pluronic F68/L61 suppositories at an 80:20 weight ratio exhibited a t50 of 86.5 minutes (1.44 hours). Riboflavin release from suppositories made with Pluronic F108/L101 was even further delayed. The t50 of riboflavin from Pluronic F108/L101 suppositories at an 80:20 weight ratio, for instance, was 274.4 minutes (4.6 hours). The results of this study show that by choosing specific combinations of Pluronic polyols and weight ratios, compounding pharmacists can prepare sustained-release suppository formulations that can deliver drugs within minutes to hours. This flexibility of compounding sustained-release suppositories is beneficial, especially for the management of chronic pain in cancer patients.

  12. A new series of estrogen receptor modulators that display selectivity for estrogen receptor beta.

    PubMed

    Henke, Brad R; Consler, Thomas G; Go, Ning; Hale, Ron L; Hohman, Dana R; Jones, Stacey A; Lu, Amy T; Moore, Linda B; Moore, John T; Orband-Miller, Lisa A; Robinett, R Graham; Shearin, Jean; Spearing, Paul K; Stewart, Eugene L; Turnbull, Philip S; Weaver, Susan L; Williams, Shawn P; Wisely, G Bruce; Lambert, Millard H

    2002-12-05

    A series of 1,3,5-triazine-based estrogen receptor (ER) modulators that are modestly selective for the ERbeta subtype are reported. Compound 1, which displayed modest potency and selectivity for ERbeta vs ERalpha, was identified via high-throughput screening utilizing an ERbeta SPA-based binding assay. Subsequent analogue preparation resulted in the identification of compounds such as 21 and 43 that display 25- to 30-fold selectivity for ERbeta with potencies in the 10-30 nM range. These compounds profile as full antagonists at ERbeta and weak partial agonists at ERalpha in a cell-based reporter gene assay. In addition, the X-ray crystal structure of compound 15 complexed with the ligand binding domain of ERbeta has been solved and was utilized in the design of more conformationally restrained analogues such as 31 in an attempt to increase selectivity for the ERbeta subtype.

  13. Liver Zonation Index of Drug Transporter and Metabolizing Enzyme Protein Expressions in Mouse Liver Acinus.

    PubMed

    Tachikawa, Masanori; Sumiyoshiya, Yuna; Saigusa, Daisuke; Sasaki, Kazunari; Watanabe, Michitoshi; Uchida, Yasuo; Terasaki, Tetsuya

    2018-05-01

    The purpose of the present study was to clarify the molecular basis of zonated drug distributions in mouse liver based on the protein expression levels of transporters and metabolizing enzymes in periportal (PP) and pericentral (PC) vein regions of mouse hepatic lobules. The distributions of sulforhodamine 101 (SR-101), a substrate of organic anion transporting polypeptides (Oatps), and ribavirin, a substrate of equilibrative nucleoside transporter 1 (Ent1), were elucidated in frozen liver sections of mice, to which each compound had been intravenously administered. Regions strongly positive for SR-101 (SR-101 + ) and regions weakly positive or negative for SR-101 (SR-101 - ) were separated by laser microdissection. The zonated distribution of protein expression was quantified in terms of the liver zonation index. Quantitative targeted absolute proteomics revealed the selective expression of glutamine synthetase in the SR-101 + region, indicating predominant distribution of SR-101 in hepatocytes of the PC vein region. The protein levels of Oatp1a1, Oatp1b2, organic cation transporter 1 (Oct1), and cytochrome P450 (P450) 2e1 were greater in the PC vein regions, whereas the level of organic anion transporter 2 (Oat2) was greater in the PP vein regions. Mouse Oatp1a1 mediated SR-101 transport. On the other hand, there were no statistically significant differences in expression of Ent1, Na + -taurocholate cotransporting polypeptide, several canalicular transporters, P450 enzymes, and UDP-glucuronosyltransferases between the PP and PC vein regions. This is consistent with the almost uniform distribution of ribavirin in the liver. In conclusion, sinusoidal membrane transporters such as Oatp1a1, Oatp1b2, Oct1, and Oat2 appear to be determinants of the zonated distribution of drugs in the liver. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Curcumin―The Paradigm of a Multi-Target Natural Compound with Applications in Cancer Prevention and Treatment

    PubMed Central

    Teiten, Marie-Hélène; Eifes, Serge; Dicato, Mario; Diederich, Marc

    2010-01-01

    As cancer is a multifactor disease, it may require treatment with compounds able to target multiple intracellular components. We summarize here how curcumin is able to modulate many components of intracellular signaling pathways implicated in inflammation, cell proliferation and invasion and to induce genetic modulations eventually leading to tumor cell death. Clinical applications of this natural compound were initially limited by its low solubility and bioavailability in both plasma and tissues but combination with adjuvant and delivery vehicles was reported to largely improve bio-availability of curcumin. Moreover, curcumin was reported to act in synergism with several natural compounds or synthetic agents commonly used in chemotherapy. Based on this, curcumin could thus be considered as a good candidate for cancer prevention and treatment when used alone or in combination with other conventional treatments. PMID:22069551

  15. Garlic compounds modulate macrophage and T-lymphocyte functions.

    PubMed

    Lau, B H; Yamasaki, T; Gridley, D S

    1991-06-01

    Organosulfur compounds of garlic have been shown to inhibit growth of animal tumors and to modulate the activity of diverse chemical carcinogens. There is also evidence that garlic may modulate antitumor immunity. In this study, we determined the effects of an aqueous garlic extract and a protein fraction isolated from the extract on the chemiluminescent oxidative burst of the murine J774 macrophage cell line and thioglycollate-elicited peritoneal macrophages obtained from BALB/c mice. T-lymphocyte activity was determined using mouse splenocytes incubated with phytohemagglutinin, labeled with [3H]-thymidine and assayed for lymphoproliferation. Significant dose-related augmentation of oxidative burst was observed with garlic extract and the protein fraction. The protein fraction also enhanced the T-lymphocyte blastogenesis. The data suggest that garlic compounds may serve as biological response modifiers by augmenting macrophage and T-lymphocyte functions.

  16. KSC00pp0448

    NASA Image and Video Library

    2000-04-05

    KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, STS-101 Commander James Halsell waves to the media as he and other crew members cross the tarmac to a waiting bus. At right is a film crew; in the foreground at left is Delores Green, flight crew support specialist lead for the astronaut crew quarters. Other crew members in the background are Mission Specialist Jeffrey Williams, Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber and Yury Usachev. Not visible in the photo is Mission Specialist Susan Helms. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A

  17. KSC-00pp0448

    NASA Image and Video Library

    2000-04-05

    KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, STS-101 Commander James Halsell waves to the media as he and other crew members cross the tarmac to a waiting bus. At right is a film crew; in the foreground at left is Delores Green, flight crew support specialist lead for the astronaut crew quarters. Other crew members in the background are Mission Specialist Jeffrey Williams, Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber and Yury Usachev. Not visible in the photo is Mission Specialist Susan Helms. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A

  18. Enzymatic Catalytic Beds For Oxidation Of Alcohols

    NASA Technical Reports Server (NTRS)

    Jolly, Clifford D.; Schussel, Leonard J.

    1993-01-01

    Modules containing beds of enzymatic material catalyzing oxidation of primary alcohols and some other organic compounds developed for use in wastewater-treatment systems of future spacecraft. Designed to be placed downstream of multifiltration modules, which contain filters and sorbent beds removing most of non-alcoholic contaminants but fail to remove significant amounts of low-molecular-weight, polar, nonionic compounds like alcohols. Catalytic modules also used on Earth to oxidize primary alcohols and other compounds in wastewater streams and industrial process streams.

  19. Drug repurposing for aging research using model organisms.

    PubMed

    Ziehm, Matthias; Kaur, Satwant; Ivanov, Dobril K; Ballester, Pedro J; Marcus, David; Partridge, Linda; Thornton, Janet M

    2017-10-01

    Many increasingly prevalent diseases share a common risk factor: age. However, little is known about pharmaceutical interventions against aging, despite many genes and pathways shown to be important in the aging process and numerous studies demonstrating that genetic interventions can lead to a healthier aging phenotype. An important challenge is to assess the potential to repurpose existing drugs for initial testing on model organisms, where such experiments are possible. To this end, we present a new approach to rank drug-like compounds with known mammalian targets according to their likelihood to modulate aging in the invertebrates Caenorhabditis elegans and Drosophila. Our approach combines information on genetic effects on aging, orthology relationships and sequence conservation, 3D protein structures, drug binding and bioavailability. Overall, we rank 743 different drug-like compounds for their likelihood to modulate aging. We provide various lines of evidence for the successful enrichment of our ranking for compounds modulating aging, despite sparse public data suitable for validation. The top ranked compounds are thus prime candidates for in vivo testing of their effects on lifespan in C. elegans or Drosophila. As such, these compounds are promising as research tools and ultimately a step towards identifying drugs for a healthier human aging. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  20. Shear localization and size-dependent strength of YCd 6 quasicrystal approximant at the micrometer length scale

    DOE PAGES

    Song, Gyuho; Kong, Tai; Dusoe, Keith J.; ...

    2018-01-24

    Mechanical properties of materials are strongly dependent of their atomic arrangement as well as the sample dimension, particularly at the micrometer length scale. Here in this study, we investigated the small-scale mechanical properties of single-crystalline YCd 6, which is a rational approximant of the icosahedral Y-Cd quasicrystal. In situ microcompression tests revealed that shear localization always occurs on {101} planes, but the shear direction is not constrained to any particular crystallographic directions. Furthermore, the yield strengths show the size dependence with a power law exponent of 0.4. Shear localization on {101} planes and size-dependent yield strength are explained in termsmore » of a large interplanar spacing between {101} planes and the energetics of shear localization process, respectively. The mechanical behavior of the icosahedral Y-Cd quasicrystal is also compared to understand the influence of translational symmetry on the shear localization process in both YCd 6 and Y-Cd quasicrystal micropillars. Finally, the results of this study will provide an important insight in a fundamental understanding of shear localization process in novel complex intermetallic compounds.« less

  1. Shear localization and size-dependent strength of YCd 6 quasicrystal approximant at the micrometer length scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Gyuho; Kong, Tai; Dusoe, Keith J.

    Mechanical properties of materials are strongly dependent of their atomic arrangement as well as the sample dimension, particularly at the micrometer length scale. Here in this study, we investigated the small-scale mechanical properties of single-crystalline YCd 6, which is a rational approximant of the icosahedral Y-Cd quasicrystal. In situ microcompression tests revealed that shear localization always occurs on {101} planes, but the shear direction is not constrained to any particular crystallographic directions. Furthermore, the yield strengths show the size dependence with a power law exponent of 0.4. Shear localization on {101} planes and size-dependent yield strength are explained in termsmore » of a large interplanar spacing between {101} planes and the energetics of shear localization process, respectively. The mechanical behavior of the icosahedral Y-Cd quasicrystal is also compared to understand the influence of translational symmetry on the shear localization process in both YCd 6 and Y-Cd quasicrystal micropillars. Finally, the results of this study will provide an important insight in a fundamental understanding of shear localization process in novel complex intermetallic compounds.« less

  2. Compound A, a Selective Glucocorticoid Receptor Modulator, Enhances Heat Shock Protein Hsp70 Gene Promoter Activation

    PubMed Central

    Beck, Ilse M.; Drebert, Zuzanna J.; Hoya-Arias, Ruben; Bahar, Ali A.; Devos, Michael; Clarisse, Dorien; Desmet, Sofie; Bougarne, Nadia; Ruttens, Bart; Gossye, Valerie; Denecker, Geertrui; Lievens, Sam; Bracke, Marc; Tavernier, Jan; Declercq, Wim; Gevaert, Kris; Berghe, Wim Vanden; Haegeman, Guy; De Bosscher, Karolien

    2013-01-01

    Compound A possesses glucocorticoid receptor (GR)-dependent anti-inflammatory properties. Just like classical GR ligands, Compound A can repress NF-κB-mediated gene expression. However, the monomeric Compound A-activated GR is unable to trigger glucocorticoid response element-regulated gene expression. The heat shock response potently activates heat shock factor 1 (HSF1), upregulates Hsp70, a known GR chaperone, and also modulates various aspects of inflammation. We found that the selective GR modulator Compound A and heat shock trigger similar cellular effects in A549 lung epithelial cells. With regard to their anti-inflammatory mechanism, heat shock and Compound A are both able to reduce TNF-stimulated IκBα degradation and NF-κB p65 nuclear translocation. We established an interaction between Compound A-activated GR and Hsp70, but remarkably, although the presence of the Hsp70 chaperone as such appears pivotal for the Compound A-mediated inflammatory gene repression, subsequent novel Hsp70 protein synthesis is uncoupled from an observed CpdA-induced Hsp70 mRNA upregulation and hence obsolete in mediating CpdA’s anti-inflammatory effect. The lack of a Compound A-induced increase in Hsp70 protein levels in A549 cells is not mediated by a rapid proteasomal degradation of Hsp70 or by a Compound A-induced general block on translation. Similar to heat shock, Compound A can upregulate transcription of Hsp70 genes in various cell lines and BALB/c mice. Interestingly, whereas Compound A-dependent Hsp70 promoter activation is GR-dependent but HSF1-independent, heat shock-induced Hsp70 expression alternatively occurs in a GR-independent and HSF1-dependent manner in A549 lung epithelial cells. PMID:23935933

  3. STS-101 M.S. Helms arrives at KSC for 4th launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Susan Helms arrives at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft. The last to arrive, she and the rest of the crew will be preparing for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.

  4. STS-101 M.S. Weber arrives at KSC for 4th launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Mary Ellen Weber waves before climbing out of a T-38 jet aircraft at KSC's Shuttle Landing Facility. She and the rest of the crew will be preparing for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.

  5. STS-101 Pilot Horowitz arrives at KSC for 4th launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Pilot Scott J. Horowitz climbs out of a T-38 jet aircraft after arriving at KSC's Shuttle Landing Facility. He and the rest of the crew will begin preparing for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.

  6. Discovery of 1,5-Disubstituted Pyridones: A New Class of Positive Allosteric Modulators of the Metabotropic Glutamate 2 Receptor

    PubMed Central

    2010-01-01

    A series of 1,5-disubstituted pyridones was identified as positive allosteric modulators (PAMs) of the metabotropic glutamate receptor 2 (mGluR2) via high throughput screening (HTS). Subsequent SAR exploration led to the identification of several compounds with improved in vitro activity. Lead compound 8 was further profiled and found to attenuate the increase in PCP induced locomotor activity in mice. PMID:22778815

  7. Octahydropyrrolo[3,4-c]pyrrole negative allosteric modulators of mGlu1.

    PubMed

    Manka, Jason T; Rodriguez, Alice L; Morrison, Ryan D; Venable, Daryl F; Cho, Hyekyung P; Blobaum, Anna L; Daniels, J Scott; Niswender, Colleen M; Conn, P Jeffrey; Lindsley, Craig W; Emmitte, Kyle A

    2013-09-15

    Development of SAR in an octahydropyrrolo[3,4-c]pyrrole series of negative allosteric modulators of mGlu1 using a functional cell-based assay is described in this Letter. The octahydropyrrolo[3,4-c]pyrrole scaffold was chosen as an isosteric replacement for the piperazine ring found in the initial hit compound. Characterization of selected compounds in protein binding assays was used to identify the most promising analogs, which were then profiled in P450 inhibition assays in order to further assess the potential for drug-likeness within this series of compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Screen of FDA-approved drug library reveals compounds that protect hair cells from aminoglycosides and cisplatin

    PubMed Central

    Vlasits, Anna L.; Simon, Julian A.; Raible, David W.; Rubel, Edwin W; Owens, Kelly N.

    2012-01-01

    Loss of mechanosensory hair cells in the inner ear accounts for many hearing loss and balance disorders. Several beneficial pharmaceutical drugs cause hair cell death as a side effect. These include aminoglycoside antibiotics, such as neomycin, kanamycin and gentamicin, and several cancer chemotherapy drugs, such as cisplatin. Discovering new compounds that protect mammalian hair cells from toxic insults is experimentally difficult because of the inaccessibility of the inner ear. We used the zebrafish lateral line sensory system as an in vivo screening platform to survey a library of FDA-approved pharmaceuticals for compounds that protect hair cells from neomycin, gentamicin, kanamycin and cisplatin. Ten compounds were identified that provide protection from at least two of the four toxins. The resulting compounds fall into several drug classes, including serotonin and dopamine-modulating drugs, adrenergic receptor ligands, and estrogen receptor modulators. The protective compounds show different effects against the different toxins, supporting the idea that each toxin causes hair cell death by distinct, but partially overlapping, mechanisms. Furthermore, some compounds from the same drug classes had different protective properties, suggesting that they might not prevent hair cell death by their known target mechanisms. Some protective compounds blocked gentamicin uptake into hair cells, suggesting that they may block mechanotransduction or other routes of entry. The protective compounds identified in our screen will provide a starting point for studies in mammals as well as further research discovering the cellular signaling pathways that trigger hair cell death. PMID:22967486

  9. Virtual Screening and Molecular Dynamics Study of Potential Negative Allosteric Modulators of mGluR1 from Chinese Herbs.

    PubMed

    Jiang, Ludi; Zhang, Xianbao; Chen, Xi; He, Yusu; Qiao, Liansheng; Zhang, Yanling; Li, Gongyu; Xiang, Yuhong

    2015-07-15

    The metabotropic glutamate subtype 1 (mGluR1), a member of the metabotropic glutamate receptors, is a therapeutic target for neurological disorders. However, due to the lower subtype selectivity of mGluR1 orthosteric compounds, a new targeted strategy, known as allosteric modulators research, is needed for the treatment of mGluR1-related diseases. Recently, the structure of the seven-transmembrane domain (7TMD) of mGluR1 has been solved, which reveals the binding site of allosteric modulators and provides an opportunity for future subtype-selectivity drug design. In this study, a series of computer-aided drug design methods were utilized to discover potential mGluR1 negative allosteric modulators (NAMs). Pharmacophore models were constructed based on three different structure types of mGluR1 NAMs. After validation using the built-in parameters and test set, the optimal pharmacophore model of each structure type was selected and utilized as a query to screen the Traditional Chinese Medicine Database (TCMD). Then, three different hit lists of compounds were obtained. Molecular docking was used based on the latest crystal structure of mGluR1-7TMD to further filter these hits. As a compound with high QFIT and LibDock Score was preferred, a total of 30 compounds were retained. MD simulation was utilized to confirm the stability of potential compounds binding. From the computational results, thesinine-4'-O-β-d-glucoside, nigrolineaxanthone-P and nodakenin might exhibit negative allosteric moderating effects on mGluR1. This paper indicates the applicability of molecular simulation technologies for discovering potential natural mGluR1 NAMs from Chinese herbs.

  10. Availability of Acute and/or Subacute Toxicokinetic Data for Select Compounds for the Rat and Physiologically Based Pharmacokinetic (PBPK) Models for Rats and Humans for Those Compounds

    DTIC Science & Technology

    2017-05-04

    course data for blood were available for both high and low doses (Sanzgiri et al., 1995), while tissue data were available only for high doses...Naval Medical Research Unit Dayton AVAILABILITY OF ACUTE AND/OR SUBACUTE TOXICOKI- NETIC DATA FOR SELECT COMPOUNDS FOR THE RAT AND...provides that ‘Copyright protection under this title is not available for any work of the United States Government.’ Title 17 U.S.C. §101 defines a

  11. Modulation of Immune Function by Polyphenols: Possible Contribution of Epigenetic Factors

    PubMed Central

    Cuevas, Alejandro; Saavedra, Nicolás; Salazar, Luis A.; Abdalla, Dulcineia S. P.

    2013-01-01

    Several biological activities have been described for polyphenolic compounds, including a modulator effect on the immune system. The effects of these biologically active compounds on the immune system are associated to processes as differentiation and activation of immune cells. Among the mechanisms associated to immune regulation are epigenetic modifications as DNA methylation of regulatory sequences, histone modifications and posttranscriptional repression by microRNAs that influences the gene expression of key players involved in the immune response. Considering that polyphenols are able to regulate the immune function and has been also demonstrated an effect on epigenetic mechanisms, it is possible to hypothesize that there exists a mediator role of epigenetic mechanisms in the modulation of the immune response by polyphenols. PMID:23812304

  12. TRAIL-Based Anticancer Drug Development

    DTIC Science & Technology

    2002-07-01

    of myocardial ischemia / reperfusion injury by superinduction of inducible nitric oxide synthase. Circulation 2000; 101:2742-2748. 29. Seol DW...caspase-8 by Bcl - 2 . Modulation of caspase-8 and apoptosis may be a therapeutic strategy for sensitization of drug-resistant malignancies to radiation or...cytochrome c and activation of caspase-315 Both types I and II apopto- sis can be modulated by Bcl - 2 , a protein localized to the inner membrane of

  13. Kinetic analysis of polyoxometalate (POM) oxidation of non-phenolic lignin model compound

    Treesearch

    Tomoya Yokoyama; Hou-min Chang; Ira A. Weinstock; Richard S. Reiner; John F. Kadla

    2003-01-01

    Kinetic and reaction mechanism of non-phenolic lignin model compounds under anaerobic polyoxometalate (POM), Na5(+1.9)[SiV1(-0.1)MoW10(+0.1) 40], bleaching conditions were examined. Analyses using a syringyl type model, 1-(3,4,5-trimethoxyphenyl)ethanol (1), a guaiacyl type, 1-(3,4- imethoxyphenyl)ethanol (2), and 1- (4-ethoxy-3,5-dimethoxyphenyl)ethanol (3) suggest...

  14. Application of mass spectrometry technologies for the discovery of low-molecular weight modulators of enzymes and protein-protein interactions.

    PubMed

    Zehender, Hartmut; Mayr, Lorenz M

    2007-10-01

    In recent years, mass spectrometry has gained widespread use as an assay and screening technology in drug discovery because it enables sensitive, label-free detection of low-molecular weight modulators of biomolecules as well as sensitive and accurate detection of high-molecular weight modifications of biomolecules. Electrospray and matrix-assisted laser desorption ionization are the most widely used ionization techniques to identify chemical compounds interfering with enzymatic function, receptor-ligand binding or molecules modulating a protein-protein interaction of interest. Mass spectrometry based techniques are no longer restricted to screening in biochemical assay systems but have now become also applicable to imaging of biomolecules and chemical compounds in cell-based assay systems and even in highly complex tissue sections.

  15. Positive modulator of bone morphogenic protein-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua

    Compounds of the present invention of formula I and formula II are disclosed in the specification and wherein the compounds are modulators of Bone Morphogenic Protein activity. Compounds are synthetic peptides having a non-growth factor heparin binding region, a linker, and sequences that bind specifically to a receptor for Bone Morphogenic Protein. Uses of compounds of the present invention in the treatment of bone lesions, degenerative joint disease and to enhance bone formation are disclosed.

  16. Positive modulator of bone morphogenic protein-2

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY; Takahashi, Kazuyuki [Germantown, MD

    2009-01-27

    Compounds of the present invention of formula I and formula II are disclosed in the specification and wherein the compounds are modulators of Bone Morphogenic Protein activity. Compounds are synthetic peptides having a non-growth factor heparin binding region, a linker, and sequences that bind specifically to a receptor for Bone Morphogenic Protein. Uses of compounds of the present invention in the treatment of bone lesions, degenerative joint disease and to enhance bone formation are disclosed.

  17. Antioxidant and neurosedative properties of polyphenols and iridoids from Lippia alba.

    PubMed

    Hennebelle, Thierry; Sahpaz, Sevser; Gressier, Bernard; Joseph, Henry; Bailleul, François

    2008-02-01

    The neurosedative and antioxidative properties of some major compounds isolated from a citral chemotype of Lippia alba were investigated. Binding assays were performed on two CNS inhibitory targets: benzodiazepine and GABA(A) receptors. The most active compound was luteolin-7-diglucuronide, with half maximal inhibitory concentrations (IC(50)) of 101 and 40 microm, respectively. Fifteen compounds isolated from Lippia alba were tested for their radical scavenging capacities against DPPH. Four of the major compounds (verbascoside, calceolarioside E, luteolin-7-diglucuronide and theveside) were also tested for their antioxidant activity against superoxide radical-anion in cell-free (hypoxanthine-xanthine oxidase) and cellular (PMA-stimulated neutrophil granulocytes) systems.

  18. New screening strategy and analysis for identification of allosteric modulators for glucagon-like peptide-1 receptor using GLP-1 (9-36) amide.

    PubMed

    Nakane, Atsushi; Gotoh, Yusuke; Ichihara, Junji; Nagata, Hidetaka

    2015-12-15

    The glucagon-like peptide-1 receptor (GLP-1R) is an important physiologic regulator of insulin secretion and a major therapeutic target for diabetes mellitus. GLP-1 (7-36) amide (active form of GLP-1) is truncated to GLP-1 (9-36) amide, which has been described as a weak agonist of GLP-1R and the major form of GLP-1 in the circulation. New classes of positive allosteric modulators (PAMs) for GLP-1R may offer improved therapeutic profiles. To identify these new classes, we developed novel and robust primary and secondary high-throughput screening (HTS) systems in which PAMs were identified to enhance the GLP-1R signaling induced by GLP-1 (9-36) amide. Screening enabled identification of two compounds, HIT-465 and HIT-736, which possessed new patterns of modulation of GLP-1R. We investigated the ability of these compounds to modify GLP-1R signaling enhanced GLP-1 (9-36) amide- and/or GLP-1 (7-36) amide-mediated cyclic adenosine monophosphate (cAMP) accumulation. These compounds also had unique profiles with regard to allosteric modulation of multiple downstream signaling (PathHunter β-arrestin signaling, PathHunter internalization signaling, microscopy-based internalization assay). We found allosteric modulation patterns to be obviously different among HIT-465, HIT-736, and Novo Nordisk compound 2. This work may enable the design of new classes of drug candidates by targeting modulation of GLP-1 (7-36) amide and GLP-1 (9-36) amide. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. FRET and BRET-based biosensors in live cell compound screens.

    PubMed

    Robinson, Katie Herbst; Yang, Jessica R; Zhang, Jin

    2014-01-01

    Live cell compound screening with genetically encoded fluorescence or bioluminescence-based biosensors offers a potentially powerful approach to identify novel regulators of a signaling event of interest. In particular, compound screening in living cells has the added benefit that the entire signaling network remains intact, and thus the screen is not just against a single molecule of interest but against any molecule within the signaling network that may modulate the distinct signaling event reported by the biosensor in use. Furthermore, only molecules that are cell permeable or act at cell surface receptors will be identified as "hits," thus reducing further optimization of the compound in terms of cell penetration. Here we discuss a detailed protocol for using genetically encoded biosensors in living cells in a 96-well format for the execution of high throughput compound screens and the identification of small molecules which modulate a signaling event of interest.

  20. Natural products as an inspiration in the diversity-oriented synthesis of bioactive compound libraries

    PubMed Central

    Cordier, Christopher; Morton, Daniel; Murrison, Sarah; O'Leary-Steele, Catherine

    2008-01-01

    The purpose of diversity-oriented synthesis is to drive the discovery of small molecules with previously unknown biological functions. Natural products necessarily populate biologically relevant chemical space, since they bind both their biosynthetic enzymes and their target macromolecules. Natural product families are, therefore, libraries of pre-validated, functionally diverse structures in which individual compounds selectively modulate unrelated macromolecular targets. This review describes examples of diversity-oriented syntheses which have, to some extent, been inspired by the structures of natural products. Particular emphasis is placed on innovations that allow the synthesis of compound libraries that, like natural products, are skeletally diverse. Mimicking the broad structural features of natural products may allow the discovery of compounds that modulate the functions of macromolecules for which ligands are not known. The ability of innovations in diversity-oriented synthesis to deliver such compounds is critically assessed. PMID:18663392

  1. Caenorhabditis elegans as Model System in Pharmacology and Toxicology: Effects of Flavonoids on Redox-Sensitive Signalling Pathways and Ageing

    PubMed Central

    Koch, Karoline; Havermann, Susannah; Büchter, Christian

    2014-01-01

    Flavonoids are secondary plant compounds that mediate diverse biological activities, for example, by scavenging free radicals and modulating intracellular signalling pathways. It has been shown in various studies that distinct flavonoid compounds enhance stress resistance and even prolong the life span of organisms. In the last years the model organism C. elegans has gained increasing importance in pharmacological and toxicological sciences due to the availability of various genetically modified nematode strains, the simplicity of modulating genes by RNAi, and the relatively short life span. Several studies have been performed demonstrating that secondary plant compounds influence ageing, stress resistance, and distinct signalling pathways in the nematode. Here we present an overview of the modulating effects of different flavonoids on oxidative stress, redox-sensitive signalling pathways, and life span in C. elegans introducing the usability of this model system for pharmacological and toxicological research. PMID:24895670

  2. [Study on the analysis of organogermanium compounds by ion chromatography].

    PubMed

    Chen, Q; Mou, S; Hou, X; Ni, Z

    1997-05-01

    A new high performance ion exchange chromatographic method for separation and determination of three organogermanium compounds beta-carboxyethylgermanium sesquioxide (I), beta-(alpha-methyl) carboxyethylgermanium sesquioxide (II) and di-(beta-carboxyethyl) germanium hydroxide (III) has been developed. A Dionex DX-300 Ion Chromatograph equipped with a Dionex PED-II pulsed electrochemical detector (conductivity mode), a Dionex AMMS-1 anion micromembrane suppressor, and a Dionex ACI advanced computer interface coupled with AI-450 chromatographic software was employed. The separation was achieved by using a Dionex IonPac AS4A-SC column as analytical column, sodium tetraborate solution as eluent, and sulfuric acid solution as regenerant. For reducing run time, a gradient program was chosen. The detection limits (S/N = 3, expressed as germanium) for the three compounds were 0.038mg/L (I), 0.035mg/L (II) and 0.025mg/L (III), respectively. The method has been applied to the analysis of two tonic oral drinks, and the average recoveries for the three compounds ranged from 95%-101%. The results obtained were in agreement with those of hydride generation atomic fluorescence spectrometry (HG-AFS).

  3. Trimethylated homoserine functions as the major compatible solute in the globally significant oceanic cyanobacterium Trichodesmium.

    PubMed

    Pade, Nadin; Michalik, Dirk; Ruth, Wolfgang; Belkin, Natalia; Hess, Wolfgang R; Berman-Frank, Ilana; Hagemann, Martin

    2016-11-15

    The oceanic N 2 -fixing cyanobacterium Trichodesmium spp. form extensive surface blooms and contribute significantly to marine carbon and nitrogen cycles in the oligotrophic subtropical and tropical oceans. Trichodesmium grows in salinities from 27 to 43 parts per thousand (ppt), yet its salt acclimation strategy remains enigmatic because the genome of Trichodesmium erythraeum strain IMS101 lacks all genes for the biosynthesis of any known compatible solute. Using NMR and liquid chromatography coupled to mass spectroscopy, we identified the main compatible solute in T. erythraeum strain IMS101 as the quaternary ammonium compound N,N,N-trimethyl homoserine (or homoserine betaine) and elucidated its biosynthetic pathway. The identification of this compatible solute explains how Trichodesmium spp. can thrive in the marine system at varying salinities and provides further insight into the diversity of microbial salt acclimation.

  4. 1-Formyl-3-phenyl-5-(4-isopropylphenyl)-2-pyrazoline: Synthesis, characterization, antimicrobial activity and DFT studies

    NASA Astrophysics Data System (ADS)

    Sid, Assia; Messai, Amel; Parlak, Cemal; Kazancı, Nadide; Luneau, Dominique; Keşan, Gürkan; Rhyman, Lydia; Alswaidan, Ibrahim A.; Ramasami, Ponnadurai

    2016-10-01

    The structure of 1-formyl-3-phenyl-5-(4-isopropylphenyl)-2-pyrazoline synthesized as single crystal was investigated by FTIR, NMR, XRD. Experimental data were complemented by quantum mechanical calculations. XRD data show that the compound crystallizes in the triclinic system (P-1) via trans isomer (a = 6.4267(4) Å, b = 10.9259(12) Å, c = 12.4628(9) Å and α = 102.894(8)°, β = 102.535(6)°, γ = 101.633(7)°). Anti-microbial screening results indicate that the compound shows promising activity. The theoretically predicted and experimentally obtained parameters reveal further insight into pyrazoline systems.

  5. NMDA receptor modulators: an updated patent review (2013-2014).

    PubMed

    Strong, Katie L; Jing, Yao; Prosser, Anthony R; Traynelis, Stephen F; Liotta, Dennis C

    2014-12-01

    The NMDA receptor mediates a slow component of excitatory synaptic transmission, and NMDA receptor dysfunction has been implicated in numerous neurological disorders. Thus, interest in developing modulators that are capable of regulating the channel continues to be strong. Recent research has led to the discovery of a number of compounds that hold therapeutic and clinical value. Deeper insight into the NMDA intersubunit interactions and structural motifs gleaned from the recently solved crystal structures of the NMDA receptor should facilitate a deeper understanding of how these compounds modulate the receptor. This article discusses the known pharmacology of NMDA receptors. A discussion of the patent literature since 2012 is also included, with an emphasis on those that claimed new chemical entities as regulators of the NMDA receptor. The number of patents involving novel NMDA receptor modulators suggests a renewed interest in the NMDA receptor as a therapeutic target. Subunit-selective modulators continue to show promise, and the development of new subunit-selective NMDA receptor modulators appears poised for continued growth. Although a modest number of channel blocker patents were published, successful clinical outcomes involving ketamine have led to a resurgent interest in low-affinity channel blockers as therapeutics.

  6. The Replisome-Coupled E3 Ubiquitin Ligase Rtt101Mms22 Counteracts Mrc1 Function to Tolerate Genotoxic Stress

    PubMed Central

    Melnik, Andre; Wilson-Zbinden, Caroline; Schellhaas, René; Kastner, Lisa; Piwko, Wojciech; Dees, Martina; Picotti, Paola; Maric, Marija; Labib, Karim; Luke, Brian; Peter, Matthias

    2016-01-01

    Faithful DNA replication and repair requires the activity of cullin 4-based E3 ubiquitin ligases (CRL4), but the underlying mechanisms remain poorly understood. The budding yeast Cul4 homologue, Rtt101, in complex with the linker Mms1 and the putative substrate adaptor Mms22 promotes progression of replication forks through damaged DNA. Here we characterized the interactome of Mms22 and found that the Rtt101Mms22 ligase associates with the replisome progression complex during S-phase via the amino-terminal WD40 domain of Ctf4. Moreover, genetic screening for suppressors of the genotoxic sensitivity of rtt101Δ cells identified a cluster of replication proteins, among them a component of the fork protection complex, Mrc1. In contrast to rtt101Δ and mms22Δ cells, mrc1Δ rtt101Δ and mrc1Δ mms22Δ double mutants complete DNA replication upon replication stress by facilitating the repair/restart of stalled replication forks using a Rad52-dependent mechanism. Our results suggest that the Rtt101Mms22 E3 ligase does not induce Mrc1 degradation, but specifically counteracts Mrc1’s replicative function, possibly by modulating its interaction with the CMG (Cdc45-MCM-GINS) complex at stalled forks. PMID:26849847

  7. Immunomodulation and Anti-Inflammatory Effects of Garlic Compounds

    PubMed Central

    Arreola, Rodrigo; Quintero-Fabián, Saray; López-Roa, Rocío Ivette; Flores-Gutiérrez, Enrique Octavio; Reyes-Grajeda, Juan Pablo; Carrera-Quintanar, Lucrecia; Ortuño-Sahagún, Daniel

    2015-01-01

    The benefits of garlic to health have been proclaimed for centuries; however, only recently have Allium sativum and its derivatives been proposed as promising candidates for maintaining the homeostasis of the immune system. The complex biochemistry of garlic makes it possible for variations in processing to yield different preparations with differences in final composition and compound proportion. In this review, we assess the most recent experimental results, which indicate that garlic appears to enhance the functioning of the immune system by stimulating certain cell types, such as macrophages, lymphocytes, natural killer (NK) cells, dendritic cells, and eosinophils, by mechanisms including modulation of cytokine secretion, immunoglobulin production, phagocytosis, and macrophage activation. Finally, because immune dysfunction plays an important role in the development and progress of several diseases, we critically examined immunoregulation by garlic extracts and compounds isolated, which can contribute to the treatment and prevention of pathologies such as obesity, metabolic syndrome, cardiovascular disorders, gastric ulcer, and even cancer. We concluded that A. sativum modulates cytokine secretion and that such modulation may provide a mechanism of action for many of their therapeutic effects. PMID:25961060

  8. Immunomodulation and anti-inflammatory effects of garlic compounds.

    PubMed

    Arreola, Rodrigo; Quintero-Fabián, Saray; López-Roa, Rocío Ivette; Flores-Gutiérrez, Enrique Octavio; Reyes-Grajeda, Juan Pablo; Carrera-Quintanar, Lucrecia; Ortuño-Sahagún, Daniel

    2015-01-01

    The benefits of garlic to health have been proclaimed for centuries; however, only recently have Allium sativum and its derivatives been proposed as promising candidates for maintaining the homeostasis of the immune system. The complex biochemistry of garlic makes it possible for variations in processing to yield different preparations with differences in final composition and compound proportion. In this review, we assess the most recent experimental results, which indicate that garlic appears to enhance the functioning of the immune system by stimulating certain cell types, such as macrophages, lymphocytes, natural killer (NK) cells, dendritic cells, and eosinophils, by mechanisms including modulation of cytokine secretion, immunoglobulin production, phagocytosis, and macrophage activation. Finally, because immune dysfunction plays an important role in the development and progress of several diseases, we critically examined immunoregulation by garlic extracts and compounds isolated, which can contribute to the treatment and prevention of pathologies such as obesity, metabolic syndrome, cardiovascular disorders, gastric ulcer, and even cancer. We concluded that A. sativum modulates cytokine secretion and that such modulation may provide a mechanism of action for many of their therapeutic effects.

  9. 49 CFR 1248.101 - Commodity codes required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Chemical and Fertilizer Minerals. 14711 Barite. 14713 Potash, soda and borate. 14714 Phosphate rock. 14715... Organic Chemicals. 2812 Sodium, potassium, and other basic inorganic chemical compounds and chlorine... industrial organic chemicals. 28184 Alcohols. 2819 Miscellaneous industrial inorganic chemicals. 28193...

  10. Aquatic toxicity of photo-degraded insensitive munition 101 (IMX-101) constituents.

    PubMed

    Kennedy, Alan J; Poda, Aimee R; Melby, Nicolas L; Moores, Lee C; Jordan, Shinita M; Gust, Kurt A; Bednar, Anthony J

    2017-08-01

    Insensitive munitions are desirable alternatives to historically used formulations, such as 2,4,6-trinitrotoluene (TNT), because of their so-called insensitivity to unintended detonation. The insensitive munition IMX-101 is a mixture of 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine (NQ). Environmental releases of munitions may be from production wastewaters or training; these munitions may be exposed to ultraviolet (UV) light. Therefore, it is useful to understand the relative toxicity of IMX-101 and its constituents both before and after photodegradation. The intent of the present study was to generate relative hazard information by exposing the standard ecotoxicological model Ceriodaphnia dubia to each insensitive munition constituent individually and to IMX-101 before and after the exposure solution was irradiated in a UV photoreactor. Without photodegradation, DNAN was more toxic (median lethal concentration [LC50] = 43 mg/L) than the other 2 constituents and it contributed predominantly to the toxicity of IMX-101 (LC50 = 206 mg/L) based on toxic units. Toxicity was observed only at high levels of NQ (LC50 = 1174 mg/L) and pH-adjusted NTO (LC50 = 799 mg/L). The toxicity of IMX-101 is lower than literature-reported TNT toxicity. Photodegradation efficiency was greater at lower insensitive munition concentrations. The observed degradation was greatest for NQ (42-99%), which in turn corresponded to the greatest relative increase in toxicity (100-1000-fold). Modest percent of degradation (4-18%) and increases in phototoxicity (2-100-fold) were observed for NTO and DNAN. Photodegraded NQ products were the predominant source of toxicity of photodegraded IMX-101. Future work involves research to enable analytical and computational confirmation of the specific degradation compounds inducing the observed photoenhanced toxicity. Environ Toxicol Chem 2017;36:2050-2057. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. © 2017 SETAC.

  11. Genome-wide analysis of bacterial determinants of plant growth promotion and induced systemic resistance by Pseudomonas fluorescens.

    PubMed

    Cheng, Xu; Etalo, Desalegn W; van de Mortel, Judith E; Dekkers, Ester; Nguyen, Linh; Medema, Marnix H; Raaijmakers, Jos M

    2017-11-01

    Pseudomonas fluorescens strain SS101 (Pf.SS101) promotes growth of Arabidopsis thaliana, enhances greening and lateral root formation, and induces systemic resistance (ISR) against the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Here, targeted and untargeted approaches were adopted to identify bacterial determinants and underlying mechanisms involved in plant growth promotion and ISR by Pf.SS101. Based on targeted analyses, no evidence was found for volatiles, lipopeptides and siderophores in plant growth promotion by Pf.SS101. Untargeted, genome-wide analyses of 7488 random transposon mutants of Pf.SS101 led to the identification of 21 mutants defective in both plant growth promotion and ISR. Many of these mutants, however, were auxotrophic and impaired in root colonization. Genetic analysis of three mutants followed by site-directed mutagenesis, genetic complementation and plant bioassays revealed the involvement of the phosphogluconate dehydratase gene edd, the response regulator gene colR and the adenylsulfate reductase gene cysH in both plant growth promotion and ISR. Subsequent comparative plant transcriptomics analyses strongly suggest that modulation of sulfur assimilation, auxin biosynthesis and transport, steroid biosynthesis and carbohydrate metabolism in Arabidopsis are key mechanisms linked to growth promotion and ISR by Pf.SS101. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Modulation and synchronization technique for MF-TDMA system

    NASA Technical Reports Server (NTRS)

    Faris, Faris; Inukai, Thomas; Sayegh, Soheil

    1994-01-01

    This report addresses modulation and synchronization techniques for a multi-frequency time division multiple access (MF-TDMA) system with onboard baseband processing. The types of synchronization techniques analyzed are asynchronous (conventional) TDMA, preambleless asynchronous TDMA, bit synchronous timing with a preamble, and preambleless bit synchronous timing. Among these alternatives, preambleless bit synchronous timing simplifies onboard multicarrier demultiplexer/demodulator designs (about 2:1 reduction in mass and power), requires smaller onboard buffers (10:1 to approximately 3:1 reduction in size), and provides better frame efficiency as well as lower onboard processing delay. Analysis and computer simulation illustrate that this technique can support a bit rate of up to 10 Mbit/s (or higher) with proper selection of design parameters. High bit rate transmission may require Doppler compensation and multiple phase error measurements. The recommended modulation technique for bit synchronous timing is coherent QPSK with differential encoding for the uplink and coherent QPSK for the downlink.

  13. Charge modulation in two-dimensional compounds

    NASA Astrophysics Data System (ADS)

    Monceau, Pierre

    2015-03-01

    Although the first measurements demonstrating charge modulation were performed forty years ago, many open questions are now the matter of intense research. In the first part of this short review, some recent results obtained on transition metal dichalcogenides (MX2) compounds will be presented such as: mechanism of the Peierls transition, effect of strong electron-phonon coupling, soft mode in the phonon dispersion, chirality effects,....Charge order, ferroelectricity, frustration, glassiness in organic 2D systems will be the subject of the second part. The third part will be devoted to describe the properties of a new family of 2D compounds, namely rare earth tritellurides, in which the size of the rare earth determine the charge density wave transition temperature.

  14. STS-101 Mission Specialist Williams takes his seat in Atlantis during TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Jeffrey N. Williams takes his seat inside Space Shuttle Atlantis before taking part in a simulated launch countdown. The countdown is part of Terminal Countdown Demonstration Test (TCDT) activities that also include emergency egress training and familiarization with the payload. Other crew members taking part are Commander James D. Halsell Jr., Pilot Scott J. 'Doc' Horowitz and Mission Specialists Mary Ellen Weber, James Voss, Susan Helms, and Yuri Usachev of Russia. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  15. STS-101 crew members Weber and Williams take their seats in Atlantis during TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialists Mary Ellen Weber (left) and Jeffrey N. Williams (right) happily settle into their seats inside Space Shuttle Atlantis for a simulated launch countdown. The countdown is part of Terminal Countdown Demonstration Test (TCDT) activities that also include emergency egress training and familiarization with the payload. Other crew members taking part are Commander James D. Halsell Jr., Pilot Scott J. 'Doc' Horowitz and Mission Specialists James Voss, Susan Helms and Yuri Usachev of Russia. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  16. The Description and Validation of a Computationally-Efficient CH4-CO-OH (ECCOHv1.01) Chemistry Module for 3D Model Applications

    NASA Technical Reports Server (NTRS)

    Elshorbany, Yasin F.; Duncan, Bryan N.; Strode, Sarah A.; Wang, James S.; Kouatchou, Jules

    2016-01-01

    We present the Efficient CH4-CO-OH (ECCOH) chemistry module that allows for the simulation of the methane, carbon monoxide, and hydroxyl radical (CH4-CO- OH) system, within a chemistry climate model, carbon cycle model, or Earth system model. The computational efficiency of the module allows many multi-decadal sensitivity simulations of the CH4-CO-OH system, which primarily determines the global atmospheric oxidizing capacity. This capability is important for capturing the nonlinear feedbacks of the CH4-CO-OH system and understanding the perturbations to methane, CO, and OH, and the concomitant impacts on climate. We implemented the ECCOH chemistry module in the NASA GEOS-5 atmospheric global circulation model (AGCM), performed multiple sensitivity simulations of the CH4-CO-OH system over 2 decades, and evaluated the model output with surface and satellite data sets of methane and CO. The favorable comparison of output from the ECCOH chemistry module (as configured in the GEOS- 5 AGCM) with observations demonstrates the fidelity of the module for use in scientific research.

  17. A High-Content Small Molecule Screen Identifies Sensitivity of Glioblastoma Stem Cells to Inhibition of Polo-Like Kinase 1

    PubMed Central

    Danovi, Davide; Folarin, Amos; Gogolok, Sabine; Ender, Christine; Elbatsh, Ahmed M. O.; Engström, Pär G.; Stricker, Stefan H.; Gagrica, Sladjana; Georgian, Ana; Yu, Ding; U, Kin Pong; Harvey, Kevin J.; Ferretti, Patrizia; Paddison, Patrick J.; Preston, Jane E.; Abbott, N. Joan; Bertone, Paul; Smith, Austin; Pollard, Steven M.

    2013-01-01

    Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults and there are few effective treatments. GBMs contain cells with molecular and cellular characteristics of neural stem cells that drive tumour growth. Here we compare responses of human glioblastoma-derived neural stem (GNS) cells and genetically normal neural stem (NS) cells to a panel of 160 small molecule kinase inhibitors. We used live-cell imaging and high content image analysis tools and identified JNJ-10198409 (J101) as an agent that induces mitotic arrest at prometaphase in GNS cells but not NS cells. Antibody microarrays and kinase profiling suggested that J101 responses are triggered by suppression of the active phosphorylated form of polo-like kinase 1 (Plk1) (phospho T210), with resultant spindle defects and arrest at prometaphase. We found that potent and specific Plk1 inhibitors already in clinical development (BI 2536, BI 6727 and GSK 461364) phenocopied J101 and were selective against GNS cells. Using a porcine brain endothelial cell blood-brain barrier model we also observed that these compounds exhibited greater blood-brain barrier permeability in vitro than J101. Our analysis of mouse mutant NS cells (INK4a/ARF−/−, or p53−/−), as well as the acute genetic deletion of p53 from a conditional p53 floxed NS cell line, suggests that the sensitivity of GNS cells to BI 2536 or J101 may be explained by the lack of a p53-mediated compensatory pathway. Together these data indicate that GBM stem cells are acutely susceptible to proliferative disruption by Plk1 inhibitors and that such agents may have immediate therapeutic value. PMID:24204733

  18. Design and synthesis of tricyclic tetrahydroquinolines as a new series of nonsteroidal selective androgen receptor modulators (SARMs).

    PubMed

    Nagata, Naoya; Miyakawa, Motonori; Amano, Seiji; Furuya, Kazuyuki; Yamamoto, Noriko; Inoguchi, Kiyoshi

    2011-03-15

    Some tricyclic tetrahydroquinolines (THQs) were found to have the potential of a new series of nonsteroidal selective androgen receptor modulators (SARMs). Compound 5b was first designed and synthesized under our hypothesis based on a four-point pharmacophoric requirement of the 3-carbonyl, 18-methyl, 17-hydroxyl, and 13-quaternary carbon groups of dihydrotestosterone (DHT). It was revealed that this compound exhibits not only a strong androgen receptor (AR) agonistic activity (EC(50)=9.2 nM) but also the highest selectivity in binding affinity to AR among the steroid hormone receptors. Furthermore, this compound showed a weak virilizing effect with retention of the desired anabolic effect as compared with DHT in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Characterization of the intrinsic activity for a novel class of cannabinoid receptor ligands: Indole Quinuclidine analogues

    PubMed Central

    Franks, Lirit N.; Ford, Benjamin M.; Madadi, Nikhil R.; Penthala, Narsimha R.; Crooks, Peter A.; Prather, Paul L.

    2014-01-01

    Our laboratory recently reported that a group of novel indole quinuclidine analogues bind with nanomolar affinity to cannabinoid type-1 and type-2 receptors. This study characterized the intrinsic activity of these compounds by determining whether they exhibit agonist, antagonist, or inverse agonist activity at cannabinoid type-1 and/or type-2 receptors. Cannabinoid receptors activate Gi/Go-proteins that then proceed to inhibit activity of the downstream intracellular effector adenylyl cyclase. Therefore, intrinsic activity was quantified by measuring the ability of compounds to modulate levels of intracellular cAMP in intact cells. Concerning cannabinoid type-1 receptors endogenously expressed in Neuro2A cells, a single analogue exhibited agonist activity, while eight acted as neutral antagonists and two possessed inverse agonist activity. For cannabinoid type-2 receptors stably expressed in CHO cells, all but two analogues acted as agonists; these two exceptions exhibited inverse agonist activity. Confirming specificity at cannabinoid type-1 receptors, modulation of adenylyl cyclase activity by all proposed agonists and inverse agonists was blocked by co-incubation with the neutral cannabinoid type-1 antagonist O-2050. All proposed cannabinoid type-1 receptor antagonists attenuated adenylyl cyclase modulation by cannabinoid agonist CP-55,940. Specificity at cannabinoid type-2 receptors was confirmed by failure of all compounds to modulate adenylyl cyclase activity in CHO cells devoid of cannabinoid type-2 receptors. Further characterization of select analogues demonstrated concentration-dependent modulation of adenylyl cyclase activity with potencies similar to their respective affinities for cannabinoid receptors. Therefore, indole quinuclidines are a novel structural class of compounds exhibiting high affinity and a range of intrinsic activity at cannabinoid type-1 and type-2 receptors. PMID:24858620

  20. Synthesis, biological evaluation and molecular modelling of diversely functionalized heterocyclic derivatives as inhibitors of acetylcholinesterase/butyrylcholinesterase and modulators of Ca2+ channels and nicotinic receptors.

    PubMed

    Marco, José L; de los Ríos, Cristóbal; García, Antonio G; Villarroya, Mercedes; Carreiras, M Carmo; Martins, Carla; Eleutério, Ana; Morreale, Antonio; Orozco, M; Luque, F Javier

    2004-05-01

    The synthesis and the biological activity of compounds 5-40 as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as modulators of voltage-dependent Ca(2+) channels and nicotinic receptors, are described. These molecules are tacrine analogues, which have been prepared from polyfunctionalized 6-amino-5-cyano-4H-pyrans, 6-amino-5-cyano-pyridines and 5-amino-2-aryl-3-cyano-1,3-oxazoles via Friedländer reaction with selected cycloalkanones. These compounds are moderate acetylcholinesterase and butyrylcholinesterase inhibitors, the BuChE/AChE selectivity of the most active molecules ranges from 10.0 (compound 29) to 76.9 (compound 16). Interestingly, the 'oxazolo-tacrine' derivatives are devoid of any activity. All compounds showed an important inhibitory effect on the nicotinic acetylcholine receptor. Most of them also blocked L-type Ca(2+) channels, and three of them, 64, 19 and 67, the non-L type of Ca(2+) channels. Molecular modelling studies suggest that these compounds might bind at the peripheral binding site of AChE, which opens the possibility to design inhibitors able to bind at both, the catalytic and peripheral binding sites of the enzyme.

  1. Antagonism at the NR2B subunit of NMDA receptors induces increased connectivity of the prefrontal and subcortical regions regulating reward behavior.

    PubMed

    Gass, Natalia; Becker, Robert; Sack, Markus; Schwarz, Adam J; Reinwald, Jonathan; Cosa-Linan, Alejandro; Zheng, Lei; von Hohenberg, Christian Clemm; Inta, Dragos; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang; Gass, Peter; Sartorius, Alexander

    2018-04-01

    Evidence indicates that ketamine's rapid antidepressant efficacy likely results from its antagonism of NR2B-subunit-containing NMDA receptors (NMDAR). Since ketamine equally blocks NR2A- and NR2B-containing NMDAR, and has affinity to other receptors, NR2B-selective drugs might have improved therapeutic efficiency and side effect profile. We aimed to compare the effects of (S)-ketamine and two different types of NR2B-selective antagonists on functional brain networks in rats, in order to find common circuits, where their effects intersect, and that might explain their antidepressant action. The experimental design comprised four parallel groups of rats (N = 37), each receiving (S)-Ketamine, CP-101,606, Ro 25-6981 or saline. After compound injection, we acquired resting-state functional magnetic resonance imaging time series. We used graph theoretical approach to calculate brain network properties. Ketamine and CP-101,606 diminished the global clustering coefficient and small-worldness index. At the nodal level, all compounds induced increased connectivity of the regions mediating reward and cognitive aspects of emotional processing, such as ventromedial prefrontal cortex, septal nuclei, and nucleus accumbens. The dorsal hippocampus and regions involved in sensory processing and aversion, such as superior and inferior colliculi, exhibited an opposite effect. The effects common to ketamine and NR2B-selective compounds were localized to the same brain regions as those reported in depression, but in the opposite direction. The upregulation of the reward circuitry might partially underlie the antidepressant and anti-anhedonic effects of the antagonists and could potentially serve as a translational imaging phenotype for testing putative antidepressants, especially those targeting the NR2B receptor subtype.

  2. Measurements of volatile organic compounds during the 2006 TexAQS/GoMACCS campaign: Industrial influences, regional characteristics, and diurnal dependencies of the OH reactivity

    NASA Astrophysics Data System (ADS)

    Gilman, Jessica B.; Kuster, William C.; Goldan, Paul D.; Herndon, Scott C.; Zahniser, Mark S.; Tucker, Sara C.; Brewer, W. Alan; Lerner, Brian M.; Williams, Eric J.; Harley, Robert A.; Fehsenfeld, Fred C.; Warneke, Carsten; de Gouw, Joost A.

    2009-04-01

    An extensive set of volatile organic compounds (VOCs) and other gas phase species were measured in situ aboard the NOAA R/V Ronald H. Brown as the ship sailed in the Gulf of Mexico and the Houston and Galveston Bay (HGB) area as part of the Texas Air Quality (TexAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) conducted from July-September 2006. The magnitudes of the reactivities of CH4, CO, VOCs, and NO2 with the hydroxyl radical, OH, were determined in order to quantify the contributions of these compounds to potential ozone formation. The average total OH reactivity (ROH,TOTAL) increased from 1.01 s-1 in the central gulf to 10.1 s-1 in the HGB area as a result of the substantial increase in the contribution from VOCs and NO2. The increase in the measured concentrations of reactive VOCs in the HGB area compared to the central gulf was explained by the impact of industrial emissions, the regional distribution of VOCs, and the effects of local meteorology. By compensating for the effects of boundary layer mixing, the diurnal profiles of the OH reactivity were used to characterize the source signatures and relative magnitudes of biogenic, anthropogenic (urban + industrial), and oxygenated VOCs as a function of the time of day. The source of reactive oxygenated VOCs (e.g., formaldehyde) was determined to be almost entirely from secondary production. The secondary formation of oxygenated VOCs, in addition to the continued emissions of reactive anthropogenic VOCs, served to sustain elevated levels of OH reactivity throughout the time of peak ozone production.

  3. Designing small molecules to target cryptic pockets yields both positive and negative allosteric modulators

    PubMed Central

    Moeder, Katelyn E.; Ho, Chris M. W.; Zimmerman, Maxwell I.; Frederick, Thomas E.; Bowman, Gregory R.

    2017-01-01

    Allosteric drugs, which bind to proteins in regions other than their main ligand-binding or active sites, make it possible to target proteins considered “undruggable” and to develop new therapies that circumvent existing resistance. Despite growing interest in allosteric drug discovery, rational design is limited by a lack of sufficient structural information about alternative binding sites in proteins. Previously, we used Markov State Models (MSMs) to identify such “cryptic pockets,” and here we describe a method for identifying compounds that bind in these cryptic pockets and modulate enzyme activity. Experimental tests validate our approach by revealing both an inhibitor and two activators of TEM β-lactamase (TEM). To identify hits, a library of compounds is first virtually screened against either the crystal structure of a known cryptic pocket or an ensemble of structures containing the same cryptic pocket that is extracted from an MSM. Hit compounds are then screened experimentally and characterized kinetically in individual assays. We identify three hits, one inhibitor and two activators, demonstrating that screening for binding to allosteric sites can result in both positive and negative modulation. The hit compounds have modest effects on TEM activity, but all have higher affinities than previously identified inhibitors, which bind the same cryptic pocket but were found, by chance, via a computational screen targeting the active site. Site-directed mutagenesis of key contact residues predicted by the docking models is used to confirm that the compounds bind in the cryptic pocket as intended. Because hit compounds are identified from docking against both the crystal structure and structures from the MSM, this platform should prove suitable for many proteins, particularly targets whose crystal structures lack obvious druggable pockets, and for identifying both inhibitory and activating small-molecule modulators. PMID:28570708

  4. Tsg101 regulates PI(4,5)P2/Ca2+ signaling for HIV-1 Gag assembly

    PubMed Central

    Ehrlich, Lorna S.; Medina, Gisselle N.; Photiadis, Sara; Whittredge, Paul B.; Watanabe, Susan; Taraska, Justin W.; Carter, Carol A.

    2014-01-01

    Our previous studies identified the 1,4,5-inositol trisphosphate receptor (IP3R), a channel mediating release of Ca2+ from ER stores, as a cellular factor differentially associated with HIV-1 Gag that might facilitate ESCRT function in virus budding. Channel opening requires activation that is initiated by binding of 1,4,5-triphosphate (IP3), a product of phospholipase C (PLC)-mediated PI(4,5)P2 hydrolysis. The store emptying that follows stimulates store refilling which requires intact PI(4,5)P2. Raising cytosolic Ca2+ promotes viral particle production and our studies indicate that IP3R and the ER Ca2+ store are the physiological providers of Ca2+ for Gag assembly and release. Here, we show that Gag modulates ER store gating and refilling. Cells expressing Gag exhibited a higher cytosolic Ca2+ level originating from the ER store than control cells, suggesting that Gag induced release of store Ca2+. This property required the PTAP motif in Gag that recruits Tsg101, an ESCRT-1 component. Consistent with cytosolic Ca2+ elevation, Gag accumulation at the plasma membrane was found to require continuous IP3R activation. Like other IP3R channel modulators, Gag was detected in physical proximity to the ER and to endogenous IP3R, as indicated respectively by total internal reflection fluorescence (TIRF) and immunoelectron microscopy (IEM) or indirect immunofluorescence. Reciprocal co-immunoprecipitation suggested that Gag and IP3R proximity is favored when the PTAP motif in Gag is intact. Gag expression was also accompanied by increased PI(4,5)P2 accumulation at the plasma membrane, a condition favoring store refilling capacity. Supporting this notion, Gag particle production was impervious to treatment with 2-aminoethoxydiphenyl borate, an inhibitor of a refilling coupling interaction. In contrast, particle production by a Gag mutant lacking the PTAP motif was reduced. We conclude that a functional PTAP L domain, and by inference Tsg101 binding, confers Gag with an ability to modulate both ER store Ca2+ release and ER store refilling. PMID:24904548

  5. Spongionella Secondary Metabolites, Promising Modulators of Immune Response through CD147 Receptor Modulation

    PubMed Central

    Sánchez, Jon Andoni; Alfonso, Amparo; Rodriguez, Ines; Alonso, Eva; Cifuentes, José Manuel; Bermudez, Roberto; Rateb, Mostafa E.; Jaspars, Marcel; Houssen, Wael E.; Ebel, Rainer; Tabudravu, Jioji; Botana, Luís M.

    2016-01-01

    The modulation of the immune system can have multiple applications such as cancer treatment, and a wide type of processes involving inflammation where the potent chemotactic agent cyclophilin A (Cyp A) is implicated. The Porifera phylum, in which Spongionella is encompassed, is the main producer of marine bioactive compounds. Four secondary metabolites obtained from Spongionella (Gracilin H, A, L, and Tetrahydroaplysulphurin-1) were described to hit Cyp A and to block the release of inflammation mediators. Based on these results, some role of Spongionella compounds on other steps of the signaling pathway mediated by this chemotactic agent can be hypothesized. In the present paper, we studied the effect of these four compounds on the surface membrane CD147 receptor expression, on the extracellular levels of Cyp A and on the ability to migrate of concanavalin (Con A)-activated T lymphocytes. Similar to a well-known immunosuppressive agent cyclosporine A (CsA), Gracilin H, A, L, and tetrahydroaplysulphurin-1 were able to reduce the CD147 membrane expression and to block the release of Cyp A to the medium. Besides, by using Cyp A as chemotactic agent, T cell migration was inhibited when cells were previously incubated with Gracilin A and Gracilin L. These positive results lead us to test the in vivo effect of Gracilin H and L in a mouse ear delayed hypersensitive reaction. Thus, both compounds efficiently reduce the ear swelling as well as the inflammatory cell infiltration. These results provide more evidences for their potential therapeutic application in immune-related diseases of Spongionella compounds. PMID:27822214

  6. Spongionella Secondary Metabolites, Promising Modulators of Immune Response through CD147 Receptor Modulation.

    PubMed

    Sánchez, Jon Andoni; Alfonso, Amparo; Rodriguez, Ines; Alonso, Eva; Cifuentes, José Manuel; Bermudez, Roberto; Rateb, Mostafa E; Jaspars, Marcel; Houssen, Wael E; Ebel, Rainer; Tabudravu, Jioji; Botana, Luís M

    2016-01-01

    The modulation of the immune system can have multiple applications such as cancer treatment, and a wide type of processes involving inflammation where the potent chemotactic agent cyclophilin A (Cyp A) is implicated. The Porifera phylum, in which Spongionella is encompassed, is the main producer of marine bioactive compounds. Four secondary metabolites obtained from Spongionella (Gracilin H, A, L, and Tetrahydroaplysulphurin-1) were described to hit Cyp A and to block the release of inflammation mediators. Based on these results, some role of Spongionella compounds on other steps of the signaling pathway mediated by this chemotactic agent can be hypothesized. In the present paper, we studied the effect of these four compounds on the surface membrane CD147 receptor expression, on the extracellular levels of Cyp A and on the ability to migrate of concanavalin (Con A)-activated T lymphocytes. Similar to a well-known immunosuppressive agent cyclosporine A (CsA), Gracilin H, A, L, and tetrahydroaplysulphurin-1 were able to reduce the CD147 membrane expression and to block the release of Cyp A to the medium. Besides, by using Cyp A as chemotactic agent, T cell migration was inhibited when cells were previously incubated with Gracilin A and Gracilin L. These positive results lead us to test the in vivo effect of Gracilin H and L in a mouse ear delayed hypersensitive reaction. Thus, both compounds efficiently reduce the ear swelling as well as the inflammatory cell infiltration. These results provide more evidences for their potential therapeutic application in immune-related diseases of Spongionella compounds.

  7. Design, synthesis, and biological characterization of metabolically stable selective androgen receptor modulators.

    PubMed

    Marhefka, Craig A; Gao, Wenqing; Chung, Kiwon; Kim, Juhyun; He, Yali; Yin, Donghua; Bohl, Casey; Dalton, James T; Miller, Duane D

    2004-02-12

    A series of nonsteroidal ligands were synthesized as second-generation agonists for the androgen receptor (AR). These ligands were designed to eliminate metabolic sites identified in one of our first-generation AR agonists, which was inactive in vivo due to its rapid metabolism to inactive constituents. The binding affinity of these compounds was evaluated using AR isolated from rat ventral prostate. These second-generation compounds bound the AR in a high affinity and stereoselective manner, with K(i) values ranging from about 4 to 130 nM. The ability of these ligands to stimulate AR-mediated transcriptional activation was examined in cells transfected with the human AR and a hormone-dependent luciferase reporter gene. Although some compounds were unable to stimulate AR-mediated transcription, several demonstrated activity similar to that of dihydrotestosterone (DHT, an endogenous steroidal ligand for the AR). We also evaluated the in vivo pharmacologic activity of selected compounds in castrated male rats. Three compounds were identified as selective androgen receptor modulators (SARMs), exhibiting significant anabolic activity while having only moderate to minimal androgenic activity in vivo.

  8. Design, Synthesis, and Biological Characterization of Metabolically Stable Selective Androgen Receptor Modulators

    PubMed Central

    Marhefka, Craig A.; Gao, Wenqing; Chung, Kiwon; Kim, Juhyun; He, Yali; Yin, Donghua; Bohl, Casey; Dalton, James T.; Miller, Duane D.

    2007-01-01

    A series of nonsteroidal ligands were synthesized as second-generation agonists for the androgen receptor (AR). These ligands were designed to eliminate metabolic sites identified in one of our first-generation AR agonists, which was inactive in vivo due to its rapid metabolism to inactive constituents. The binding affinity of these compounds was evaluated using AR isolated from rat ventral prostate. These second-generation compounds bound the AR in a high affinity and stereoselective manner, with Ki values ranging from about 4 to 130 nM. The ability of these ligands to stimulate AR-mediated transcriptional activation was examined in cells transfected with the human AR and a hormone-dependent luciferase reporter gene. Although some compounds were unable to stimulate AR-mediated transcription, several demonstrated activity similar to that of dihydrotestosterone (DHT, an endogenous steroidal ligand for the AR). We also evaluated the in vivo pharmacologic activity of selected compounds in castrated male rats. Three compounds were identified as selective androgen receptor modulators (SARMs), exhibiting significant anabolic activity while having only moderate to minimal androgenic activity in vivo. PMID:14761201

  9. A Flavonoid Compound Promotes Neuronal Differentiation of Embryonic Stem Cells via PPAR-β Modulating Mitochondrial Energy Metabolism.

    PubMed

    Mei, Yu-Qin; Pan, Zong-Fu; Chen, Wen-Teng; Xu, Min-Hua; Zhu, Dan-Yan; Yu, Yong-Ping; Lou, Yi-Jia

    2016-01-01

    Relatively little is known regarding mitochondrial metabolism in neuronal differentiation of embryonic stem (ES) cells. By using a small molecule, present research has investigated the pattern of cellular energy metabolism in neural progenitor cells derived from mouse ES cells. Flavonoid compound 4a faithfully facilitated ES cells to differentiate into neurons morphologically and functionally. The expression and localization of peroxisome proliferator-activated receptors (PPARs) were examined in neural progenitor cells. PPAR-β expression showed robust upregulation compared to solvent control. Treatment with PPAR-β agonist L165041 alone or together with compound 4a significantly promoted neuronal differentiation, while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound 4a. Consistently, knockdown of PPAR-β in ES cells abolished compound 4a-induced neuronal differentiation. Interestingly, we found that mitochondrial fusion protein Mfn2 was also abolished by sh-PPAR-β, resulting in abnormal mitochondrial Ca2+ ([Ca2+]M) transients as well as impaired mitochondrial bioenergetics. In conclusion, we demonstrated that by modulating mitochondrial energy metabolism through Mfn2 and mitochondrial Ca2+, PPAR-β took an important role in neuronal differentiation induced by flavonoid compound 4a.

  10. A Flavonoid Compound Promotes Neuronal Differentiation of Embryonic Stem Cells via PPAR-β Modulating Mitochondrial Energy Metabolism

    PubMed Central

    Mei, Yu-qin; Pan, Zong-fu; Chen, Wen-teng; Xu, Min-hua; Zhu, Dan-yan; Yu, Yong-ping; Lou, Yi-jia

    2016-01-01

    Relatively little is known regarding mitochondrial metabolism in neuronal differentiation of embryonic stem (ES) cells. By using a small molecule, present research has investigated the pattern of cellular energy metabolism in neural progenitor cells derived from mouse ES cells. Flavonoid compound 4a faithfully facilitated ES cells to differentiate into neurons morphologically and functionally. The expression and localization of peroxisome proliferator-activated receptors (PPARs) were examined in neural progenitor cells. PPAR-β expression showed robust upregulation compared to solvent control. Treatment with PPAR-β agonist L165041 alone or together with compound 4a significantly promoted neuronal differentiation, while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound 4a. Consistently, knockdown of PPAR-β in ES cells abolished compound 4a-induced neuronal differentiation. Interestingly, we found that mitochondrial fusion protein Mfn2 was also abolished by sh-PPAR-β, resulting in abnormal mitochondrial Ca2+ ([Ca2+]M) transients as well as impaired mitochondrial bioenergetics. In conclusion, we demonstrated that by modulating mitochondrial energy metabolism through Mfn2 and mitochondrial Ca2+, PPAR-β took an important role in neuronal differentiation induced by flavonoid compound 4a. PMID:27315062

  11. Identification of ion-channel modulators that protect against aminoglycoside-induced hair cell death

    PubMed Central

    Kenyon, Emma J.; Kirkwood, Nerissa K.; Kitcher, Siân R.; O’Reilly, Molly; Cantillon, Daire M.; Goodyear, Richard J.; Secker, Abigail; Baxendale, Sarah; Bull, James C.; Waddell, Simon J.; Whitfield, Tanya T.; Ward, Simon E.; Kros, Corné J.; Richardson, Guy P.

    2017-01-01

    Aminoglycoside antibiotics are used to treat life-threatening bacterial infections but can cause deafness due to hair cell death in the inner ear. Compounds have been described that protect zebrafish lateral line hair cells from aminoglycosides, but few are effective in the cochlea. As the aminoglycosides interact with several ion channels, including the mechanoelectrical transducer (MET) channels by which they can enter hair cells, we screened 160 ion-channel modulators, seeking compounds that protect cochlear outer hair cells (OHCs) from aminoglycoside-induced death in vitro. Using zebrafish, 72 compounds were identified that either reduced loading of the MET-channel blocker FM 1-43FX, decreased Texas red–conjugated neomycin labeling, or reduced neomycin-induced hair cell death. After testing these 72 compounds, and 6 structurally similar compounds that failed in zebrafish, 13 were found that protected against gentamicin-induced death of OHCs in mouse cochlear cultures, 6 of which are permeant blockers of the hair cell MET channel. None of these compounds abrogated aminoglycoside antibacterial efficacy. By selecting those without adverse effects at high concentrations, 5 emerged as leads for developing pharmaceutical otoprotectants to alleviate an increasing clinical problem. PMID:29263311

  12. Identification of ion-channel modulators that protect against aminoglycoside-induced hair cell death.

    PubMed

    Kenyon, Emma J; Kirkwood, Nerissa K; Kitcher, Siân R; O'Reilly, Molly; Derudas, Marco; Cantillon, Daire M; Goodyear, Richard J; Secker, Abigail; Baxendale, Sarah; Bull, James C; Waddell, Simon J; Whitfield, Tanya T; Ward, Simon E; Kros, Corné J; Richardson, Guy P

    2017-12-21

    Aminoglycoside antibiotics are used to treat life-threatening bacterial infections but can cause deafness due to hair cell death in the inner ear. Compounds have been described that protect zebrafish lateral line hair cells from aminoglycosides, but few are effective in the cochlea. As the aminoglycosides interact with several ion channels, including the mechanoelectrical transducer (MET) channels by which they can enter hair cells, we screened 160 ion-channel modulators, seeking compounds that protect cochlear outer hair cells (OHCs) from aminoglycoside-induced death in vitro. Using zebrafish, 72 compounds were identified that either reduced loading of the MET-channel blocker FM 1-43FX, decreased Texas red-conjugated neomycin labeling, or reduced neomycin-induced hair cell death. After testing these 72 compounds, and 6 structurally similar compounds that failed in zebrafish, 13 were found that protected against gentamicin-induced death of OHCs in mouse cochlear cultures, 6 of which are permeant blockers of the hair cell MET channel. None of these compounds abrogated aminoglycoside antibacterial efficacy. By selecting those without adverse effects at high concentrations, 5 emerged as leads for developing pharmaceutical otoprotectants to alleviate an increasing clinical problem.

  13. In situ generation of a hydroxyl radical by nanoporous activated carbon derived from rice husk for environmental applications: kinetic and thermodynamic constants.

    PubMed

    Karthikeyan, S; Sekaran, G

    2014-03-07

    The objective of this investigation is to evaluate the hydroxyl radical (˙OH) generation using nanoporous activated carbon (NPAC), derived from rice husk, and dissolved oxygen in water. The in situ production of the ˙OH radical was confirmed through the DMPO spin trapping method in EPR spectroscopy and quantitative determination by a deoxyribose assay procedure. NPAC served as a heterogeneous catalyst to degrade 2-deoxy-d-ribose (a reference compound) using hydroxyl radical generated from dissolved oxygen in water at temperatures in the range 313-373 K and pH 6, with first order rate constants (k = 9.2 × 10(-2) min(-1), k = 1.2 × 10(-1) min(-1), k = 1.3 × 10(-1) min(-1) and k = 1.68 × 10(-1) min(-1)). The thermodynamic constants for the generation of hydroxyl radicals by NPAC and dissolved oxygen in water were ΔG -1.36 kJ mol(-1) at 313 K, ΔH 17.73 kJ mol(-1) and ΔS 61.01 J mol(-1) K(-1).

  14. Structural and Functional Analysis of Two New Positive Allosteric Modulators of GluA2 Desensitization and Deactivation

    PubMed Central

    Timm, David E.; Benveniste, Morris; Weeks, Autumn M.; Nisenbaum, Eric S.

    2011-01-01

    At the dimer interface of the extracellular ligand-binding domain of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors a hydrophilic pocket is formed that is known to interact with two classes of positive allosteric modulators, represented by cyclothiazide and the ampakine 2H,3H,6aH-pyrrolidino(2,1–3′,2′)1,3-oxazino(6′,5′-5,4)benzo(e)1,4-dioxan-10-one (CX614). Here, we present structural and functional data on two new positive allosteric modulators of AMPA receptors, phenyl-1,4-bis-alkylsulfonamide (CMPDA) and phenyl-1,4-bis-carboxythiophene (CMPDB). Crystallographic data show that these compounds bind within the modulator-binding pocket and that substituents of each compound overlap with distinct moieties of cyclothiazide and CX614. The goals of the present study were to determine 1) the degree of modulation by CMPDA and CMPDB of AMPA receptor deactivation and desensitization; 2) whether these compounds are splice isoform-selective; and 3) whether predictions of mechanism of action could be inferred by comparing molecular interactions between the ligand-binding domain and each compound with those of cyclothiazide and CX614. CMPDB was found to be more isoform-selective than would be predicted from initial binding assays. It is noteworthy that these new compounds are both more potent and more effective and may be more clinically relevant than the AMPA receptor modulators described previously. PMID:21543522

  15. Amino acid and peptide prodrugs of diphenylpropanones positive allosteric modulators of α7 nicotinic receptors with analgesic activity.

    PubMed

    Balsera, Beatriz; Mulet, José; Sala, Salvador; Sala, Francisco; de la Torre-Martínez, Roberto; González-Rodríguez, Sara; Plata, Adrián; Naesens, Lieve; Fernández-Carvajal, Asia; Ferrer-Montiel, Antonio; Criado, Manuel; Pérez de Vega, María Jesús; González-Muñiz, Rosario

    2018-01-01

    α7 Nicotinic acetylcholine receptors (nAChRs) are ion channels implicated in a number of CNS pathological processes, including pain and psychiatric, cognitive and inflammatory diseases. Comparing with orthosteric agonism, positive allosteric modulation of these channels constitutes an interesting approach to achieve selectivity versus other nicotinic receptors. We have recently described new chalcones and 1,3-diphenylpropanones as positive allosteric modulators (PAMs) of α7 nAChRs, which proved to have good analgesic activities but poor pharmacokinetic properties. Here we report the preparation of amino acid and peptide derivatives as prodrugs of these modulators with the aim of improving their in vivo biological activity. While the valine derivative showed very short half life in aqueous solutions to be considered a prodrug, Val-Val and Val-Pro-Val are suitable precursors of the parent 1,3-diphenylpropanones, via chemical and enzymatic transformation, respectively. Compounds 19 (Val-Val) and 21 (Val-Pro-Val), prodrugs of the 2',5',4-trihydroxy-1,3-diphenylpropan-1-one 3, showed significant antinociceptive activity in in vivo assays. The best compound, 21, displayed a better profile in the analgesia test than its parent compound 3, exhibiting about the same potency but long-lasting effects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Ketamine induces a robust whole-brain connectivity pattern that can be differentially modulated by drugs of different mechanism and clinical profile.

    PubMed

    Joules, R; Doyle, O M; Schwarz, A J; O'Daly, O G; Brammer, M; Williams, S C; Mehta, M A

    2015-11-01

    Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has been studied in relation to the glutamate hypothesis of schizophrenia and increases dissociation, positive and negative symptom ratings. Ketamine effects brain function through changes in brain activity; these activity patterns can be modulated by pre-treatment of compounds known to attenuate the effects of ketamine on glutamate release. Ketamine also has marked effects on brain connectivity; we predicted that these changes would also be modulated by compounds known to attenuate glutamate release. Here, we perform task-free pharmacological magnetic resonance imaging (phMRI) to investigate the functional connectivity effects of ketamine in the brain and the potential modulation of these effects by pre-treatment of the compounds lamotrigine and risperidone, compounds hypothesised to differentially modulate glutamate release. Connectivity patterns were assessed by combining windowing, graph theory and multivariate Gaussian process classification. We demonstrate that ketamine has a robust effect on the functional connectivity of the human brain compared to saline (87.5 % accuracy). Ketamine produced a shift from a cortically centred, to a subcortically centred pattern of connections. This effect is strongly modulated by pre-treatment with risperidone (81.25 %) but not lamotrigine (43.75 %). Based on the differential effect of these compounds on ketamine response, we suggest the observed connectivity effects are primarily due to NMDAR blockade rather than downstream glutamatergic effects. The connectivity changes contrast with amplitude of response for which no differential effect between pre-treatments was detected, highlighting the necessity of these techniques in forming an informed view of the mechanistic effects of pharmacological compounds in the human brain.

  17. NSAID-derived gamma-secretase modulators. Part III: Membrane anchoring.

    PubMed

    Baumann, Stefanie; Höttecke, Nicole; Schubenel, Robert; Baumann, Karlheinz; Schmidt, Boris

    2009-12-15

    Selective lowering of Abeta(42) levels with small-molecule substrate targeting gamma-secretase modulators (sGSMs), such as some non-steroidal anti-inflammatory drugs, is a promising therapeutic approach for Alzheimer's disease. Here we present N-substituted carbazole- and O-substituted fenofibrate-derived sGSMs and their activity data. Seven out of 19 screened compounds exhibited promising activity against Abeta(42) secretion at a low micromolar level. We presume that the sGSMs interact with lys624 at the membrane interface and that the lipophilic substituents anchor the compound orientation in the membrane.

  18. 49 CFR 172.101 - Purpose and use of hazardous materials table.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Forbidden Forbidden A 48, 87, 126 I Air bag inflators, or Air bag modules, or Seat-belt pretensioners. 1.4G UN0503 II 1.4G 161 None 62 None Forbidden 75 kg 02 Air bag inflators, or Air bag modules, or Seat-belt pretensioners. 9 UN3268 III 9 160 166 166 166 25 kg 100 kg A Air, compressed 2.2 UN1002 2.2 78 306, 307 302 302...

  19. LAUNCH - APOLLO VII - KSC

    NASA Image and Video Library

    1968-10-11

    S68-48666 (11 Oct. 1968) --- The Apollo 7/Saturn IB space vehicle is launched from the Kennedy Space Center's Launch Complex 34 at 11:03 a.m. (EDT), Oct. 11, 1968. Apollo 7 (Spacecraft 101/Saturn 205) is the first of several manned flights aimed at qualifying the spacecraft for the half-million-mile round trip to the moon. Aboard the Apollo spacecraft are astronauts Walter M. Schirra Jr., commander; Donn F. Eisele, command module pilot; and Walter Cunningham, lunar module pilot.

  20. Conversion of the LXR-agonist TO-901317--from inverse to normal modulation of gamma-secretase by addition of a carboxylic acid and a lipophilic anchor.

    PubMed

    Narlawar, Rajeshwar; Baumann, Karlheinz; Czech, Christian; Schmidt, Boris

    2007-10-01

    TO-901317, a LXR agonist, is an inverse modulator of Alzheimer's disease associated gamma-secretase. We synthesized TO-901317 analogous compound but replaced the hexafluorocarbinol moiety by an oxyacetic acid functionality and hypothesized that the replacement would change the mode of action from an inverse modulation to normal modulation of gamma-secretase. As anticipated, acid 9 was found to be an effective modulator of gamma-secretase and displayed activity at low micromolar concentration. This significant modification can be applied to several inverse gamma-secretase modulators. Such modulators may preserve the cleavage of other gamma-secretase substrates such as Notch.

  1. In vitro anti-glycation and anti-oxidant properties of synthesized Schiff bases.

    PubMed

    Jhaumeer-Laulloo, Sabina; Bhowon, Minu Gupta; Mungur, Shabneez; Mahomoodally, Mohamad Fawzi; Subratty, Anwar Hussein

    2012-05-01

    A series of mono, bis and mixed Schiff bases (1-7) were synthesised and evaluated for potential anti-glycation and anti-oxidant activities using the bovine serum albumin-glucose assay and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical assay respectively. All compounds showed significant (p<0.05) antiglycating activities with IC50 values (4.02x10(-24)±0.1-2.88x10(-1)±1.35 mM) which were lower than the standard positive control aminoguanidine (IC50: 1.51x10(-3)±2.11 mM). Moreover, compounds 1-7 were found to possess significant (p<0.05) DPPH radical scavenging properties with SC50 values (1.31x10(-19)±0.05 to 2.25x10(-1)±1.24 mM) lower than the standard ascorbic acid (SC50: 5.50x10(-3)±2.11 mM). Compound 6 was found to be the most potent anti-glycating molecule (IC50 value: 4.02x10(-24)±0.1 mM) while compound 5 was the most potent anti-oxidant molecule (SC50: 1.31x10(-19)±0.05 mM); both being significantly lower (p<0.05) than the respective positive controls used. The present data showed that the number of phenolic OH together with structural changes influence both the anti-glycation and anti-oxidant observed herein. This study provides for the first time a series of potential template molecules for possible pharmaceutical applications that warrant further investigation as potential anti-glycation and anti-oxidant agents which could be of importance in metabolic diseases including diabetes mellitus.

  2. Synthesis and evaluation of 2-(3-arylureido)pyridines and 2-(3-arylureido)pyrazines as potential modulators of Aβ-induced mitochondrial dysfunction in Alzheimer's disease.

    PubMed

    Elkamhawy, Ahmed; Park, Jung-Eun; Hassan, Ahmed H E; Pae, Ae Nim; Lee, Jiyoun; Park, Beoung-Geon; Roh, Eun Joo

    2018-01-20

    A series of 2-(3-arylureido)pyridines and 2-(3-benzylureido)pyridines were synthesized and evaluated as potential modulators for amyloid beta (Aβ)-induced mitochondrial dysfunction in Alzheimer's disease (AD). The blocking activities of forty one small molecules against Aβ-induced mitochondrial permeability transition pore (mPTP) opening were evaluated by JC-1 assay which measures the change of mitochondrial membrane potential (ΔΨm). The inhibitory activity of twenty five compounds against Aβ-induced mPTP opening was superior to that of the standard cyclosporin A (CsA). Six hit compounds have been identified as likely safe in regards to mitochondrial and cellular safety and subjected to assessment for their protective effect against Aβ-induced deterioration of ATP production and cytotoxicity. Among them, compound 7fb has been identified as a lead compound protecting neuronal cells against 67% of neurocytotoxicity and 43% of suppression of mitochondrial ATP production induced by 5 μM concentrations of Aβ. Using CDocker algorithm, a molecular docking model presented a plausible binding mode for these compounds with cyclophilin D (CypD) receptor as a major component of mPTP. Hence, this report presents compound 7fb as a new nonpeptidyl mPTP blocker which would be promising for further development of Alzheimer's disease (AD) therapeutics. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Wnt-related SynGAP1 is a neuroprotective factor of glutamatergic synapses against Aβ oligomers

    PubMed Central

    Codocedo, Juan F.; Montecinos-Oliva, Carla; Inestrosa, Nibaldo C.

    2015-01-01

    Wnt-5a is a synaptogenic factor that modulates glutamatergic synapses and generates neuroprotection against Aβ oligomers. It is known that Wnt-5a plays a key role in the adult nervous system and synaptic plasticity. Emerging evidence indicates that miRNAs are actively involved in the regulation of synaptic plasticity. Recently, we showed that Wnt-5a is able to control the expression of several miRNAs including miR-101b, which has been extensively studied in carcinogenesis. However, its role in brain is just beginning to be explored. That is why we aim to study the relationship between Wnt-5a and miRNAs in glutamatergic synapses. We performed in silico analysis which predicted that miR-101b may inhibit the expression of synaptic GTPase-Activating Protein (SynGAP1), a Ras GTPase-activating protein critical for the development of cognition and proper synaptic function. Through overexpression of miR-101b, we showed that miR-101b is able to regulate the expression of SynGAP1 in an hippocampal cell line. Moreover and consistent with a decrease of miR-101b, Wnt-5a enhances SynGAP expression in cultured hippocampal neurons. Additionally, Wnt-5a increases the activity of SynGAP in a time-dependent manner, with a similar kinetic to CaMKII phosphorylation. This also, correlates with a modulation in the SynGAP clusters density. On the other hand, Aβ oligomers permanently decrease the number of SynGAP clusters. Interestingly, when neurons are co-incubated with Wnt-5a and Aβ oligomers, we do not observe the detrimental effect of Aβ oligomers, indicating that, Wnt-5a protects neurons from the synaptic failure triggered by Aβ oligomers. Overall, our findings suggest that SynGAP1 is part of the signaling pathways induced by Wnt-5a. Therefore, possibility exists that SynGAP is involved in the synaptic protection against Aβ oligomers. PMID:26124704

  4. MicroRNA-101 mediates the suppressive effect of laminar shear stress on mTOR expression in vascular endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kui; Fan, Wendong; Wang, Xing

    Highlights: Black-Right-Pointing-Pointer Laminar shear stress upregulates miR-101 expression in vascular endothelial cells. Black-Right-Pointing-Pointer miR-101 represses mTOR expression through a specific 3 Prime UTR binding site. Black-Right-Pointing-Pointer Overexpression of miR-101 inhibits G1/S transition and endothelial cell proliferation. Black-Right-Pointing-Pointer Blockade of miR-101 attenuates the suppressive effect of laminar flow on mTOR expression. -- Abstract: Shear stress associated with blood flow plays an important role in regulating gene expression and cell function in endothelial cells (ECs). MicroRNAs (miRNAs) are highly conserved, small non-coding RNAs that negatively regulate the expression of target genes by binding to the mRNA 3 Prime -untranslated region (3 Primemore » UTR) at the posttranscriptional level involved in diverse cellular processes. This study demonstrates that microRNA-101 in response to laminar shear stress (LSS) is involved in the flow regulation of gene expression in ECs. qRT-PCR analysis showed that miR-101 expression was significantly upregulated in human umbilical vein endothelial cells (HUVECs) exposed to 12 dyn/cm{sup 2} laminar shear stress for 12 h. We found that transfection of miR-101 significantly decreased the luciferase activity of plasmid reporter containing the 3 Prime UTR of mammalian target of rapamycin (mTOR) gene. Western analysis revealed that the protein level of mTOR was significantly reduced in ECs transfected with miR-101. Furthermore, miR-101 overexpression induced cell cycle arrest at the G1/S transition and suppressed endothelial cell proliferation. Finally, transfection of miR-101 inhibitors attenuated the suppressive effects of LSS on mTOR expression, which identified the efficacy of loss-of-function of miR-101 in laminar flow-treated ECs. In conclusion, we have demonstrated that upregulation of miR-101 in response to LSS contributes to the suppressive effects of LSS on mTOR expression and EC proliferation. These studies advance our understanding of the posttranscriptional mechanisms by which shear stress modulates endothelial homeostasis.« less

  5. Studying a Drug-like, RNA-Focused Small Molecule Library Identifies Compounds That Inhibit RNA Toxicity in Myotonic Dystrophy.

    PubMed

    Rzuczek, Suzanne G; Southern, Mark R; Disney, Matthew D

    2015-12-18

    There are many RNA targets in the transcriptome to which small molecule chemical probes and lead therapeutics are desired. However, identifying compounds that bind and modulate RNA function in cellulo is difficult. Although rational design approaches have been developed, they are still in their infancies and leave many RNAs "undruggable". In an effort to develop a small molecule library that is biased for binding RNA, we computationally identified "drug-like" compounds from screening collections that have favorable properties for binding RNA and for suitability as lead drugs. As proof-of-concept, this collection was screened for binding to and modulating the cellular dysfunction of the expanded repeating RNA (r(CUG)(exp)) that causes myotonic dystrophy type 1. Hit compounds bind the target in cellulo, as determined by the target identification approach Competitive Chemical Cross-Linking and Isolation by Pull-down (C-ChemCLIP), and selectively improve several disease-associated defects. The best compounds identified from our 320-member library are more potent in cellulo than compounds identified by high-throughput screening (HTS) campaigns against this RNA. Furthermore, the compound collection has a higher hit rate (9% compared to 0.01-3%), and the bioactive compounds identified are not charged; thus, RNA can be "drugged" with compounds that have favorable pharmacological properties. Finally, this RNA-focused small molecule library may serve as a useful starting point to identify lead "drug-like" chemical probes that affect the biological (dys)function of other RNA targets by direct target engagement.

  6. OPTIMIZATION OF MULTICOMPONENT PERVAPORATION FOR REMOVAL OF VOLATILE ORGANIC COMPOUNDS FROM WATER

    EPA Science Inventory

    Optimal operation of a hollow fiber membrane module for pervaporative removal of multicomponent volatile organic compounds (VOCs) from wastewater was studied. A shell-and-tube heat-exchange type of hollow fiber module was considered for treatment of a wastewater containing toluen...

  7. STS-101 crew members Helms, Voss and Usachev during suitup

    NASA Technical Reports Server (NTRS)

    2000-01-01

    While suiting up in the Operations and Checkout Building, STS-101 Mission Specialists (standing) Susan J. Helms, James S. Voss and (sitting) Yuri Usachev of Russia reveal their happiness to be just hours away from launch of Space Shuttle Atlantis. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station.

  8. STS-101 Space Shuttle Atlantis after RSS rollback at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Rotating Service Structure (left) begins rolling back from Space Shuttle Atlantis on Launch Pad 39A. Atlantis is targeted for liftoff at 4:15 p.m. EDT April 24 on mission STS-101. The mission will take the crew of seven to the International Space Station to deliver logistics and supplies and prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station.

  9. Toxicological characterisation of two novel selective aryl hydrocarbon receptor modulators in Sprague-Dawley rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahiout, Selma, E-mail: selma.mahiout@helsinki.fi

    The aryl hydrocarbon receptor (AHR) mediates the toxicity of dioxins, but also plays important physiological roles. Selective AHR modulators, which elicit some effects imparted by this receptor without causing the marked toxicity of dioxins, are presently under intense scrutiny. Two novel such compounds are IMA-08401 (N-acetyl-N-phenyl-4-acetoxy-5-chloro-1, 2-dihydro-1-methyl-2-oxo-quinoline-3-carboxamide) and IMA-07101 (N-acetyl-N-(4-trifluoromethylphenyl)-4-acetoxy-1, 2-dihydro-5-methoxy-1-methyl-2-oxo-quinoline-3-carboxamide). They represent, as diacetyl prodrugs, AHR-active metabolites of the drug compounds laquinimod and tasquinimod, respectively, which are intended for the treatment of autoimmune diseases and cancer. Here, we toxicologically assessed the novel compounds in Sprague-Dawley rats, after a single dose (8.75–92.5 mg/kg) and 5-day repeated dosing at the highestmore » doses achievable (IMA-08401: 100 mg/kg/day; and IMA-07101: 75 mg/kg/day). There were no overt clinical signs of toxicity, but body weight gain was marginally retarded, and the treatments induced minimal hepatic extramedullary haematopoiesis. Further, both the absolute and relative weights of the thymus were significantly decreased. Cyp1a1 gene expression was substantially increased in all tissues examined. The hepatic induction profile of other AHR battery genes was distinct from that caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The only marked alterations in serum clinical chemistry variables were a reduction in triglycerides and an increase in 3-hydroxybutyrate. Liver and kidney retinol and retinyl palmitate concentrations were affected largely in the same manner as reported for TCDD. In vitro, the novel compounds activated CYP1A1 effectively in H4IIE cells. Altogether, these novel compounds appear to act as potent activators of the AHR, but lack some major characteristic toxicities of dioxins. They therefore represent promising new selective AHR modulators. - Highlights: • IMA-08401 and IMA-07101 are novel, effective activators of the AHR. • In rats, they lacked the wasting syndrome and thyroid imbalance typical of TCDD. • They also affected the AHR-battery genes in a distinct manner. • Therefore, the compounds appear to represent promising new selective AHR modulators. • They may have potential as drug compound candidates and research tools.« less

  10. Chondriotin sulfate disaccharides as a bioactive compound modified the murine gut microbiome under healthy and stressed conditions

    USDA-ARS?s Scientific Manuscript database

    Chondriotin sulfate (CS) has been widely used for medical and nutraceutical purposes due to its roles in maintaining tissue structural integrity. We investigated if CS disaccharides may act as a bioactive compound and modulate gut microbial composition in mice. Our data show that CS disaccharides su...

  11. Monitoring the apple polyphenol oxidase-modulated adduct formation of phenolic and amino compounds.

    PubMed

    Reinkensmeier, Annika; Steinbrenner, Katrin; Homann, Thomas; Bußler, Sara; Rohn, Sascha; Rawel, Hashadrai M

    2016-03-01

    Minimally processed fruit products such as smoothies are increasingly coming into demand. However, they are often combined with dairy ingredients. In this combination, phenolic compounds, polyphenoloxidases, and amino compounds could interact. In this work, a model approach is presented where apple serves as a source for a high polyphenoloxidase activity for modulating the reactions. The polyphenoloxidase activity ranged from 128 to 333nakt/mL in different apple varieties. From these, 'Braeburn' was found to provide the highest enzymatic activity. The formation and stability of resulting chromogenic conjugates was investigated. The results show that such adducts are not stable and possible degradation mechanisms leading to follow-up products formed are proposed. Finally, apple extracts were used to modify proteins and their functional properties characterized. There were retaining antioxidant properties inherent to phenolic compounds after adduct formation. Consequently, such interactions may also be utilized to improve the textural quality of food products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Metabolites from nematophagous fungi and nematicidal natural products from fungi as alternatives for biological control. Part II: metabolites from nematophagous basidiomycetes and non-nematophagous fungi.

    PubMed

    Degenkolb, Thomas; Vilcinskas, Andreas

    2016-05-01

    In this second section of a two-part mini-review article, we introduce 101 further nematicidal and non-nematicidal secondary metabolites biosynthesized by nematophagous basidiomycetes or non-nematophagous ascomycetes and basidiomycetes. Several of these compounds have promising nematicidal activity and deserve further and more detailed analysis. Thermolides A and B, omphalotins, ophiobolins, bursaphelocides A and B, illinitone A, pseudohalonectrins A and B, dichomitin B, and caryopsomycins A-C are excellent candidates or lead compounds for the development of biocontrol strategies for phytopathogenic nematodes. Paraherquamides, clonostachydiol, and nafuredins offer promising leads for the development of formulations against the intestinal nematodes of ruminants.

  13. Phytochemicals modulate carcinogenic signaling pathways in breast and hormone-related cancers

    PubMed Central

    Cojocneanu Petric, Roxana; Braicu, Cornelia; Raduly, Lajos; Zanoaga, Oana; Dragos, Nicolae; Monroig, Paloma; Dumitrascu, Dan; Berindan-Neagoe, Ioana

    2015-01-01

    Over the years, nutrition and environmental factors have been demonstrated to influence human health, specifically cancer. Owing to the fact that cancer is a leading cause of death worldwide, efforts are being made to elucidate molecular mechanisms that trigger or delay carcinogenesis. Phytochemicals, in particular, have been shown to modulate oncogenic processes through their antioxidant and anti-inflammatory activities and their ability to mimic the chemical structure and activity of hormones. These compounds can act not only by influencing oncogenic proteins, but also by modulating noncoding RNAs such as microRNAs and long noncoding RNAs. Although we are only beginning to understand the complete effects of many natural compounds, such as phytochemicals, researchers are motivated to combine these agents with traditional, chemo-based, or hormone-based therapies to fight against cancer. Since ongoing studies continue to prove effective, herein we exalt the importance of improving dietary choices as a chemo-preventive strategy. PMID:26273208

  14. Biodegradation of pharmaceuticals in hospital wastewater by staged Moving Bed Biofilm Reactors (MBBR).

    PubMed

    Casas, Mònica Escolà; Chhetri, Ravi Kumar; Ooi, Gordon; Hansen, Kamilla M S; Litty, Klaus; Christensson, Magnus; Kragelund, Caroline; Andersen, Henrik R; Bester, Kai

    2015-10-15

    Hospital wastewater represents a significant input of pharmaceuticals into municipal wastewater. As Moving Bed Biofilm Reactors (MBBRs) appear to remove organic micro-pollutants, hospital wastewater was treated with a pilot plant consisting of three MBBRs in series. The removal of pharmaceuticals was studied in two experiments: 1) A batch experiment where pharmaceuticals were spiked to each reactor and 2) a continuous flow experiment at native concentrations. DOC removal, nitrification as well as removal of pharmaceuticals (including X-ray contrast media, β-blockers, analgesics and antibiotics) occurred mainly in the first reactor. In the batch experiment most of the compounds followed a single first-order kinetics degradation function, giving degradation rate constants ranged from 5.77 × 10(-3) to 4.07 h(-1), from -5.53 × 10(-3) to 9.24 × 10(-1) h(-1) and from 1.83 × 10(-3) to 2.42 × 10(-1) h(-1) for first, second and third reactor respectively. Generally, the highest removal rate constants were found in the first reactor while the lowest were found in the third one. This order was inverted for most compounds, when the removal rate constants were normalized to biomass, indicating that the last tank had the most effective biofilms. In the batch experiment, 21 out of 26 compounds were assessed to be degraded with more than 20% within the MBBR train. In the continuous flow experiment the measured removal rates were lower than those estimated from the batch experiments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Natural products as modulator of autophagy with potential clinical prospects.

    PubMed

    Wang, Peiqi; Zhu, Lingjuan; Sun, Dejuan; Gan, Feihong; Gao, Suyu; Yin, Yuanyuan; Chen, Lixia

    2017-03-01

    Natural compounds derived from living organisms are well defined for their remarkable biological and pharmacological properties likely to be translated into clinical use. Therefore, delving into the mechanisms by which natural compounds protect against diverse diseases may be of great therapeutic benefits for medical practice. Autophagy, an intricate lysosome-dependent digestion process, with implications in a wide variety of pathophysiological settings, has attracted extensive attention over the past few decades. Hitherto, accumulating evidence has revealed that a large number of natural products are involved in autophagy modulation, either inducing or inhibiting autophagy, through multiple signaling pathways and transcriptional regulators. In this review, we summarize natural compounds regulating autophagy in multifarious diseases including cancer, neurodegenerative diseases, cardiovascular diseases, metabolic diseases, and immune diseases, hoping to inspire further investigation of the underlying mechanisms of natural compounds and to facilitate their clinical use for multiple human diseases.

  16. Discovery of the glycogen phosphorylase-modulating activity of a resveratrol glucoside by using a virtual screening protocol optimized for solvation effects.

    PubMed

    Mavrokefalos, Nikolaos; Myrianthopoulos, Vassilios; Chajistamatiou, Aikaterini S; Chrysina, Evangelia D; Mikros, Emmanuel

    2015-04-01

    The identification of natural products that can modulate blood glucose levels is of great interest as it can possibly facilitate the utilization of mild interventions such as herbal medicine or functional foods in the treatment of chronic diseases like diabetes. One of the established drug targets for antihyperglycemic therapy is glycogen phosphorylase. To evaluate the glycogen phosphorylase inhibitory properties of an in-house compound collection consisting to a large extent of natural products, a stepwise virtual and experimental screening protocol was devised and implemented. The fact that the active site of glycogen phosphorylase is highly hydrated emphasized that a methodological aspect needed to be efficiently addressed prior to an in silico evaluation of the compound collection. The effect of water molecules on docking calculations was regarded as a key parameter in terms of virtual screening protocol optimization. Statistical analysis of 125 structures of glycogen phosphorylase and solvent mapping focusing on the active site hydration motif in combination with a retrospective screening revealed the importance of a set of 29 crystallographic water molecules for achieving high enrichment as to the discrimination between active compounds and inactive decoys. The scaling of Van der Waals radii of system atoms had an additional effect on screening performance. Having optimized the in silico protocol, a prospective evaluation of the in-house compound collection derived a set of 18 top-ranked natural products that were subsequently evaluated in vitro for their activity as glycogen phosphorylase inhibitors. Two phenolic glucosides with glycogen phosphorylase-modulating activity were identified, whereas the most potent compound affording mid-micromolar inhibition was a glucosidic derivative of resveratrol, a stilbene well-known for its wide range of biological activities. Results show the possible phytotherapeutic and nutraceutical potential of products common in the Mediterranean countries, such as red wine and Vitis products in general or green raw salads and herbal preparations, where such compounds are abundant. Georg Thieme Verlag KG Stuttgart · New York.

  17. Positive Modulators of the N-Methyl-d-aspartate Receptor: Structure-Activity Relationship Study of Steroidal 3-Hemiesters.

    PubMed

    Krausova, Barbora; Slavikova, Barbora; Nekardova, Michaela; Hubalkova, Pavla; Vyklicky, Vojtech; Chodounska, Hana; Vyklicky, Ladislav; Kudova, Eva

    2018-05-24

    Here, we report the synthesis of pregn-5-ene and androst-5-ene dicarboxylic acid esters and explore the structure-activity relationship (SAR) for their modulation of N-methyl-d-aspartate receptors (NMDARs). All compounds were positive modulators of recombinant GluN1/GluN2B receptors (EC 50 varying from 1.8 to 151.4 μM and E max varying from 48% to 452%). Moreover, 10 compounds were found to be more potent GluN1/GluN2B receptor modulators than endogenous pregnenolone sulfate (EC 50 = 21.7 μM). The SAR study revealed a relationship between the length of the residues at carbon C-3 of the steroid molecule and the positive modulatory effect at GluN1/GluN2B receptors for various D-ring modifications. A selected compound, 20-oxo-pregnenolone hemiadipate, potentiated native NMDARs to a similar extent as GluN1/GluN2A-D receptors and inhibited AMPARs and GABA A R responses. These results provide a unique opportunity for the development of new steroid based drugs with potential use in the treatment of neuropsychiatric disorders involving hypofunction of NMDARs.

  18. Studies in search of selective detection of isomeric biogenic hexen-1-ols and hexanal by flowing afterglow tandem mass spectrometry using [H3O]+ and [NO]+ reagent ions.

    PubMed

    Dhooghe, Frederik; Vansintjan, Robbe; Schoon, Niels; Amelynck, Crist

    2012-08-30

    Plants emit a blend of oxygenated volatile C(6) compounds, known as green leaf volatiles (GLVs), in response to leaf tissue damage related to stress conditions. On-line chemical ionization mass spectrometry (CI-MS) techniques have often been used to study the dynamics of these emissions but they fail to selectively detect some important GLV compounds. A flowing afterglow tandem mass spectrometer (FA-TMS) was used to investigate the feasibility of selective on-line detection of isomeric hexen-1-ols and hexanal. Product ions at m/z 101 and 83 from chemical ionization (CI) of these compounds by [H(3)O](+), and product ions at m/z 100, 99, 83, 82 and 72 from CI by [NO](+), have been subjected to collision-induced dissociation (CID) in the collision cell of the TMS at center-of-mass energies ranging between 0 and 9 eV. CID of product ions at m/z 101 and 83 from CI of GLVs with [H(3)O](+) and of product ions at m/z 83, 82 and 72 from CI of GLVs with [NO](+) resulted in identical fragmentation patterns for all measured compounds, ruling out any selectivity. However, CID of product ions at m/z 100 and 99 from CI by [NO](+) led to CID product ions with abundances differing largely between the compounds, allowing the fast selective detection of 2-hexen-1-ols, 3-hexen-1-ols and hexanal with a chosen accuracy within a well-defined range of relative concentrations. This research illustrates that, in contrast to common CI-MS techniques, FA-TMS allows the selective detection of hexanal in a mixture of hexanal and hexen-1-ols with a chosen accuracy for a well-defined range of relative concentrations and represents a step forward in the search for selective detection of GLVs in CI-TMS. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Workers begin removing PDU from STS-101 Atlantis

    NASA Technical Reports Server (NTRS)

    2000-01-01

    United Space Alliance technicians at Launch Pad 39A look at the site of the power drive unit (PDU) for the rudder/speed brake on Shuttle Atlantis. From left are Mark Noel, Tod Biddle and Bob Wright. Shuttle managers decided to replace the faulty PDU, about the size of an office copy machine, at the launch pad. If successful, launch preparations will continue as planned, with liftoff targeted for April 24 at 4:15 p.m. on mission STS-101. The mission is the third assembly flight for the International Space Station, carrying logistics and supplies to the Space Station, plus the crew will be preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station.

  20. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases

    PubMed Central

    Forte, Maurizio; Damato, Antonio; Ambrosio, Mariateresa; Puca, Annibale A.; Sciarretta, Sebastiano; Frati, Giacomo; Vecchione, Carmine

    2016-01-01

    Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases. PMID:27651855

  1. New polyacetylenes glycoside from Eclipta prostrate with DGAT inhibitory activity.

    PubMed

    Meng, Xiao; Li, Ban-Ban; Lin, Xin; Jiang, Yi-Yu; Zhang, Le; Li, Hao-Ze; Cui, Long

    2018-06-08

    One new polyacetylene glycoside eprostrata Ⅰ (1), together with seven known compounds (2-8), were isolated from Eclipta prostrata. Their structures were elucidated on the basis of spectroscopic and physico-chemical analyses. All the isolates were evaluated inhibitory activity on DGAT in an in vitro assay. Compounds 1-8 were found to exhibit inhibitory activity of DGAT1 with IC 50 values ranging from 74.4 ± 1.3 to 101.1 ± 1.1 μM.

  2. A new ent-clerodane diterpenoid from Crassocephalum bauchiense Huch. (Asteraceae).

    PubMed

    Tchinda, Alembert T; Mouokeu, Simplice R; Ngono, Rosalie A N; Ebelle, Madeleine R E; Mokale, Aristide L K; Nono, Diane K; Frédérich, Michel

    2015-01-01

    A phytochemical investigation of the whole plant of Crassocephalum bauchiense Huch. resulted in the isolation of a new clerodane diterpenoid, ent-2β,18,19-trihydroxycleroda-3,13-dien-16,15-olide (1), together with two known flavonoids 3',5-dihydroxy-4',5',6,7,8-pentamethoxyflavone (2) and 4',5-dihydroxy-3',5',6,7,8-pentamethoxyflavone (3). The compounds were tested against the chloroquine-sensitive 3D7 strain of Plasmodium falciparum. Compound 2 showed weak activity (IC50 = 10.1 g/mL) whilst compounds 1 and 3 were inactive. The structures of the compounds were elucidated by using detailed spectral analyses, especially (1)H and (13)C NMR, (1)H-(1)H COSY, NOESY, HMBC and HR-ESI-MS.

  3. A glimpse on biological activities of tellurium compounds.

    PubMed

    Cunha, Rodrigo L O R; Gouvea, Iuri E; Juliano, Luiz

    2009-09-01

    Tellurium is a rare element which has been regarded as a toxic, non-essential trace element and its biological role is not clearly established to date. Besides of that, the biological effects of elemental tellurium and some of its inorganic and organic derivatives have been studied, leading to a set of interesting and promising applications. As an example, it can be highlighted the uses of alkali-metal tellurites and tellurates in microbiology, the antioxidant effects of organotellurides and diorganoditellurides and the immunomodulatory effects of the non-toxic inorganic tellurane, named AS-101, and the plethora of its uses. Inasmuch, the nascent applications of organic telluranes (organotelluranes) as protease inhibitors and its applications in disease models are the most recent contribution to the scenario of the biological effects and applications of tellurium and its compounds discussed in this manuscript.

  4. A Hierarchical Modulation Coherent Communication Scheme for Simultaneous Four-State Continuous-Variable Quantum Key Distribution and Classical Communication

    NASA Astrophysics Data System (ADS)

    Yang, Can; Ma, Cheng; Hu, Linxi; He, Guangqiang

    2018-06-01

    We present a hierarchical modulation coherent communication protocol, which simultaneously achieves classical optical communication and continuous-variable quantum key distribution. Our hierarchical modulation scheme consists of a quadrature phase-shifting keying modulation for classical communication and a four-state discrete modulation for continuous-variable quantum key distribution. The simulation results based on practical parameters show that it is feasible to transmit both quantum information and classical information on a single carrier. We obtained a secure key rate of 10^{-3} bits/pulse to 10^{-1} bits/pulse within 40 kilometers, and in the meantime the maximum bit error rate for classical information is about 10^{-7}. Because continuous-variable quantum key distribution protocol is compatible with standard telecommunication technology, we think our hierarchical modulation scheme can be used to upgrade the digital communication systems to extend system function in the future.

  5. STS-101 Mission Specialist Williams practices driving an M-113 during TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Seated on top of an M-113 personnel carrier, Capt. George Hoggard of the KSC/CCAFS Fire Department gives instruction to STS-101 Mission Specialist Yuri Usachev (right), who is in the driver seat. In the rear are Mission Specialists James Voss (holding a camera), Jeffrey N. Williams, Pilot Scott J. 'Doc' Horowitz and Mary Ellen Weber. Other crew members taking part are Commander James D. Halsell Jr. and Mission Specialist Susan J. Helms. The training is part of Terminal Countdown Demonstration Test (TCDT) activities that include emergency egress training and a simulated launch countdown. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  6. STS-101 crew talks with the media after TCDT activities at the pad

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After Terminal Countdown Demonstration Test (TCDT) activities at Launch Pad 39A, the STS-101 crew talk to the media. At the far left is George Diller, with NASA Public Affairs, who is moderating the event. At the microphone Commander James D. Halsell Jr. answers a question. Next to him, standing left to right, are Pilot Scott J. 'Doc' Horowitz and Mission Specialists Mary Ellen Weber, Jeffrey N. Williams, James Voss, Susan J. Helms and Yuri Usachev of Russia. The TCDT includes emergency egress training and a simulated launch countdown. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  7. Identification of Novel G Protein–Coupled Receptor 143 Ligands as Pharmacologic Tools for Investigating X-Linked Ocular Albinism

    PubMed Central

    De Filippo, Elisabetta; Manga, Prashiela; Schiedel, Anke C.

    2017-01-01

    Purpose GPR143 regulates melanosome biogenesis and organelle size in pigment cells. The mechanisms underlying receptor function remain unclear. G protein–coupled receptors (GPCRs) are excellent pharmacologic targets; thus, we developed and applied a screening approach to identify potential GPR143 ligands and chemical modulators. Methods GPR143 interacts with β-arrestin; we therefore established a β-arrestin recruitment assay to screen for compounds that modulate activity. Because GPR143 is localized intracellularly, screening with the wild-type receptor would be restricted to agents absorbed by the cell. For the screen we used a mutant receptor, which shows similar basal activity as the wild type but traffics to the plasma membrane. We tested two compound libraries and investigated validated hits for their effects on melanocyte pigmentation. Results GPR143, which showed high constitutive activity in the β-arrestin assay, was inhibited by several compounds. The three validated inhibitors (pimozide, niclosamide, and ethacridine lactate) were assessed for impact on melanocytes. Pigmentation and expression of tyrosinase, a key melanogenic enzyme, were reduced by all compounds. Because GPR143 appears to be constitutively active, these compounds may turn off its activity. Conclusions X-linked ocular albinism type I, characterized by developmental eye defects, results from GPR143 mutations. Identifying pharmacologic agents that modulate GPR143 activity will contribute significantly to our understanding of its function and provide novel tools with which to study GPCRs in melanocytes and retinal pigment epithelium. Pimozide, one of three GPR143 inhibitors identified in this study, maybe be a good lead structure for development of more potent compounds and provide a platform for design of novel therapeutic agents. PMID:28632878

  8. Selective GABA(A) α5 positive allosteric modulators improve cognitive function in aged rats with memory impairment.

    PubMed

    Koh, Ming Teng; Rosenzweig-Lipson, Sharon; Gallagher, Michela

    2013-01-01

    A condition of excess activity in the hippocampal formation is observed in the aging brain and in conditions that confer additional risk during aging for Alzheimer's disease. Compounds that act as positive allosteric modulators at GABA(A) α5 receptors might be useful in targeting this condition because GABA(A) α5 receptors mediate tonic inhibition of principal neurons in the affected network. While agents to improve cognitive function in the past focused on inverse agonists, which are negative allosteric modulators at GABA(A) α5 receptors, research supporting that approach used only young animals and predated current evidence for excessive hippocampal activity in age-related conditions of cognitive impairment. Here, we used two compounds, Compound 44 [6,6-dimethyl-3-(3-hydroxypropyl)thio-1-(thiazol-2-yl)-6,7-dihydro-2-benzothiophen-4(5H)-one] and Compound 6 [methyl 3,5-diphenylpyridazine-4-carboxylate], with functional activity as potentiators of γ-aminobutyric acid at GABA(A) α5 receptors, to test their ability to improve hippocampal-dependent memory in aged rats with identified cognitive impairment. Improvement was obtained in aged rats across protocols differing in motivational and performance demands and across varying retention intervals. Significant memory improvement occurred after either intracereboventricular infusion with Compound 44 (100 μg) in a water maze task or systemic administration with Compound 6 (3 mg/kg) in a radial arm maze task. Furthermore, systemic administration improved behavioral performance at dosing shown to provide drug exposure in the brain and in vivo receptor occupancy in the hippocampus. These data suggest a novel approach to improve neural network function in clinical conditions of excess hippocampal activity. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Application of response surface methodology to optimise supercritical carbon dioxide extraction of volatile compounds from Crocus sativus.

    PubMed

    Shao, Qingsong; Huang, Yuqiu; Zhou, Aicun; Guo, Haipeng; Zhang, Ailian; Wang, Yong

    2014-05-01

    Crocus sativus has been used as a traditional Chinese medicine for a long time. The volatile compounds of C. sativus appear biologically active and may act as antioxidants as well as anticonvulsants, antidepressants and antitumour agents. In order to obtain the highest possible yield of essential oils from C. sativus, response surface methodology was employed to optimise the conditions of supercritical fluid carbon dioxide extraction of the volatile compounds from C. sativus. Four factorswere investigated: temperature, pressure, extraction time and carbon dioxide flow rate. Furthermore, the chemical compositions of the volatile compounds extracted by supercritical fluid extraction were compared with those obtained by hydro-distillation and Soxhlet extraction. The optimum extraction conditions were found to be: optimised temperature 44.9°C, pressure 34.9 MPa, extraction time 150.2 min and CO₂ flow rate 10.1 L h⁻¹. Under these conditions, the mean extraction yield was 10.94 g kg⁻¹. The volatile compounds extracted by supercritical fluid extraction and Soxhlet extraction contained a large amount of unsaturated fatty acids. Response surface methodology was successfully applied for supercritical fluid CO₂ extraction optimisation of the volatile compounds from C. sativus. The study showed that pressure and CO₂ flow rate had significant effect on volatile compounds yield produced by supercritical fluid extraction. This study is beneficial for the further research operating on a large scale. © 2013 Society of Chemical Industry.

  10. Thermal lens and all optical switching of new organometallic compound doped polyacrylamide gel

    NASA Astrophysics Data System (ADS)

    Badran, Hussain Ali

    In this work thermal lens spectrometry (TLS) is applied to investigate the thermo-optical properties of new organometallic compound containing azomethine group, Dichloro bis [2-(2-hydroxybenzylideneamino)-5-methylphenyl] telluride platinum(II), doped polyacrylamide gel using transistor-transistor logic (TTL) modulated cw 532 nm laser beam as an excitation beam modulated at 10 Hz frequency and probe beam wavelength 635 nm at 14 mW. The technique is applied to determine the thermal diffusivities, ds/dT and the linear thermal expansion coefficient of the sample. All-optical switching effects with low background and high stability are demonstrated.

  11. 47 CFR 101.111 - Emission limitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... using transmissions other than those employing digital modulation techniques: (i) On any frequency removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: At least 25 decibels; (ii) On any frequency removed from the assigned frequency by more...

  12. Enhancing action of positive allosteric modulators through the design of dimeric compounds.

    PubMed

    Drapier, Thomas; Geubelle, Pierre; Bouckaert, Charlotte; Nielsen, Lise; Laulumaa, Saara; Goffin, Eric; Dilly, Sébastien; Francotte, Pierre; Hanson, Julien; Pochet, Lionel; Kastrup, Jette Sandholm; Pirotte, Bernard

    2018-05-18

    The present study describes the identification of highly potent dimeric 1,2,4-benzothiadiazine 1,1-dioxide (BTD)-type positive allosteric modulators of the AMPA receptors (AMPApams) obtained by linking two monomeric BTD scaffolds through their respective 6-positions. Using previous X-ray data from monomeric BTDs co-crystallized with the GluA2o ligand-binding domain (LBD), a molecular modeling approach was performed to predict the preferred dimeric combinations. Two 6,6-ethylene-linked dimeric BTD compounds (16 and 22) were prepared and evaluated as AMPApams on HEK293 cells expressing GluA2o(Q) (calcium flux experiment). These compounds were found to be about 10,000 times more potent than their respective monomers, the most active dimeric compound being the bis-4-cyclopropyl-substituted compound 22 [6,6'-(ethane-1,2-diyl)bis(4-cyclopropyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide], with an EC50 value of 1.4 nM. As a proof of concept, the bis-4-methyl-substituted dimeric compound 16 (EC50 = 13 nM) was successfully co-crystallized with the GluA2o-LBD and was found to occupy the two BTD binding sites at the LBD dimer interface.

  13. STS-101 Mission Specialist Helms suits up for second launch attempt.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, STS-101 Mission Specialist Susan J. Helms (left) and a suit technician grin with anticipation for a successful second attempt at launch of Space Shuttle Atlantis on mission STS-101. The previous day's launch attempt was scrubbed due to high cross winds at the Shuttle Landing Facility. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. Liftoff is targeted for 3:52 p.m. EDT. The mission is expected to last about 10 days, with Atlantis landing at KSC Saturday, May 6, about 11:53 a.m. EDT.

  14. STS-101 crew waves to media after arriving at KSC for 4th launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Members of the STS-101 crew wave at media and photographers at KSC's Shuttle Landing Facility after their landing the night of May 14. Standing left to right are Mission Specialists Yuri Usachev, James Voss, Mary Ellen Weber and Jeff Williams; Commander James Halsell; and Pilot Scott Horowitz. Not present is Mission Specialist Susan Helms, who arrived later. The crew will be preparing for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.

  15. High-efficiency THz modulator based on phthalocyanine-compound organic films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Ting; Zhang, Bo, E-mail: bzhang@cnu.edu.cn, E-mail: sjl-phy@cnu.edu.cn; Shen, Jingling, E-mail: bzhang@cnu.edu.cn, E-mail: sjl-phy@cnu.edu.cn

    2015-02-02

    We report a high efficiency, broadband terahertz (THz) modulator following a study of phthalocyanine-compound organic films irradiated with an external excitation laser. Both transmission and reflection modulations of each organic/silicon bilayers were measured using THz time-domain and continuous-wave systems. For very low intensities, the experimental results show that AlClPc/Si can achieve a high modulation factor for transmission and reflection, indicating that AlClPc/Si has a superior modulation efficiency compared with the other films (CuPc and SnCl{sub 2}Pc). In contrast, the strong attenuation of the transmitted and reflected THz waves revealed that a nonlinear absorption process takes place at the organic/silicon interface.

  16. Peroxisome proliferator-activated receptor α ligands and modulators from dietary compounds: Types, screening methods and functions.

    PubMed

    Yang, Haixia; Xiao, Lei; Wang, Nanping

    2017-04-01

    Peroxisome proliferator-activated receptor α (PPARα) plays a key role in lipid metabolism and glucose homeostasis and a crucial role in the prevention and treatment of metabolic diseases. Natural dietary compounds, including nutrients and phytochemicals, are PPARα ligands or modulators. High-throughput screening assays have been developed to screen for PPARα ligands and modulators in our diet. In the present review, we discuss recent advances in our knowledge of PPARα, including its structure, function, and ligand and modulator screening assays, and summarize the different types of dietary PPARα ligands and modulators. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  17. DEMONSTRATION OF PILOT-SCALE PERVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. II. HOLLOW FIBER MEMBRANE MODULES

    EPA Science Inventory

    Pilot-scale demonstration of pervaporation-based removal of volatile organic compounds from a surfactant enhanced aquifer remediation (SEAR) fluid has been conducted at USEPA's Test & Evaluation Facility using hollow fiber membrane modules. The membranes consisted of microporous...

  18. [Soya isoflavones and evidences on cardiovascular protection].

    PubMed

    González Cañete, Natalia; Durán Agüero, Samuel

    2014-06-01

    Soya isoflavones represent a group of non-nutritive, bioactive compounds, of non-steroidal phenolic nature that are present in soy bean and derived foods. They share with other compounds the capacity of binding to estrogenic receptors from different cells and tissues so that they may act as phytoestrogens. The current interest in these compounds comes from the knowledge that in Asian populations with high levels of their consumption the prevalence of cancer and cardiovascular disease is lower, as compared to the Western countries populations. This cardiovascular benefit would be the result not only of the modulation of plasma lipids, which is a widely studied mechanism. This paper reviews the published evidence about the beneficial effects of soya isoflavones and the different mechanisms of action that would benefit cardiovascular health and that surpass the mechanisms traditionally approached such as the modulation of plasma lipids, and that implicate the regulation of cellular and enzymatic functions in situations such as inflammation, thrombosis, and atherosclerotic progression. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  19. A separable surface-enhanced Raman scattering substrate modified with MIL-101 for detection of overlapping and invisible compounds after thin-layer chromatography development.

    PubMed

    Zhang, Bin Bin; Shi, Yi; Chen, Hui; Zhu, Qing Xia; Lu, Feng; Li, Ying Wei

    2018-01-02

    By coupling surface-enhanced Raman spectroscopy (SERS) with thin-layer chromatography (TLC), a powerful method for detecting complex samples was successfully developed. However, in the TLC-SERS method, metal nanoparticles serving as the SERS-active substrate are likely to disturb the detection of target compounds, particularly in overlapping compounds after TLC development. In addition, the SERS detection of compounds that are invisible under both visible light and UV 254/365 after TLC development is still a significant challenge. In this study, we demonstrated a facile strategy to fabricate a TLC plate with metal-organic framework-modified gold nanoparticles as a separable SERS substrate, on which all separated components, including overlapping and invisible compounds, could be detected by a point-by-point SERS scan along the developing direction. Rhodamine 6G (R6G) was used as a probe to evaluate the performance of the substrate. The results indicated that the substrate provided good sensitivity and reproducibility, and optimal SERS signals could be collected in 5 s. Furthermore, this new substrate exhibited a long shelf life. Thus, our method has great potential for the sensitive and rapid detection of overlapping and invisible compounds in complex samples after TLC development. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  20. PLZT block data composers operated in differential phase mode. [lanthanum-modified lead zirconate titanate ceramic device for digital holographic memory

    NASA Technical Reports Server (NTRS)

    Drake, M. D.; Klingler, D. E.

    1973-01-01

    The use of PLZT ceramics with the 7/65/35 composition in block data composer (BDC) input devices for holographic memory systems has previously been described for operation in the strain biased, scattering, and edge effect modes. A new and promising mode of BDC operation is the differential phase mode in which each element of a matrix array BDC acts as a phase modulator. The phase modulation results from a phase difference in the optical path length between the electrically poled and depoled states of the PLZT. It is shown that a PLZT BDC can be used as a matrix-type phase modulator to record and process digital data by the differential phase mode in a holographic recording/processing system with readout contrast ratios of between 10:1 and 15:1. The differential phase mode has the advantages that strain bias is not required and that the thickness and strain variations in the PLZT are cancelled out.

  1. Monosaccharides as Scaffolds for the Synthesis of Novel Compounds

    NASA Astrophysics Data System (ADS)

    Murphy, Paul V.; Velasco-Torrijos, Trinidad

    This chapter focuses on monosaccharides and scaffolds their derivatives as scaffolds for the synthesis of primarily bioactive compounds. Such carbohydrate derivatives have been designed to modulate mainly protein-protein and peptide-protein interactions although modulators of carbohydrate-protein and carbohydrate-nucleic acid interactions have also been of interest. The multiple hydroxyl groups that are present on saccharides have made pyranose, furanose and iminosugars ideal templates or scaffolds to which recognition or pharmacophoric groups can be grafted to generate novel compounds for medicinal chemistry. The synthesis of compounds for evaluations require strategies for regioselective reactions of saccharide hydroxyl groups and use of orthogonally stable protecting groups. Syntheses have been carried out on the solid phase and in solution. Also the use of uronic acids, amino sugars and sugar amino acids has facilitated the synthesis of peptidomimetics and prospecting libraries as they enable, through presence of amino or carboxylic acid groups, chemoselective approaches to be employed in solution and on solid phase. Sugar amino acids are readily incorporated, as peptide isosteres, to generate sugar-peptide hybrids or for the synthesis of novel carbopeptoids . The synthesis of new cyclic compounds, derived in part from saccharides, and their application as scaffolds is an emerging area and recent examples include spirocyclic compounds, benzodiazepine-saccharide hybrids and macrolide-saccharide hybrids. Potent bioactive saccharide derivatives have been identified that include enzyme inhibitors , somatostatin receptor ligands, integrin ligands, anti-viral compounds, shiga toxin inhibitors and cell growth inhibitors. Some saccharide derivatives have demonstrated improved cellular permeability when compared with peptides and are in clinical trials.

  2. pH-Independent Recognition of Polyhydroxy Compounds by Niobium(V) Porphyrin Complex with Unique Sugar Selectivity.

    PubMed

    Doi, Takuya; Kachikawa, Norihide; Yasui, Takashi; Yuchi, Akio

    2017-01-01

    The niobium(V) complex with tetraphenylporphin having OH - as an auxilliay ligand exists as a dimeric complex, [Nb 2 (tpp) 2 O 3 ] at a total concentration >10 -4.5 mol dm -3 , and reacts with an aliphatic or aromatic polyhydroxy compound to form a monomeric complex containing chelate rings by coordination of the deprotonated species, and to cause an appreciable UV-Vis spectral change. In contrast to phenylboronic acid (PBA), the reactivity of [Nb 2 (tpp) 2 O 3 ] is independent of pH at least between 4 and 8. Aliphatic comounds are more reactive than aromatic compounds in dioxane-water, while the reactivity order is reversed in the two-phase reaction. The sugar selectivity order of [Nb 2 (tpp) 2 O 3 ] in dioxane-water (10:1) (sorbose > fructose > mannose > arabinose, galactose > glucose) is appreciably different from that of PBA (fructose > sorbose > arabinose > galactose > mannose > glucose). This may be related to the difference in size of the Lewis acidic center.

  3. Implications of miR166 and miR159 induction to the basal response mechanisms of an andigena potato (Solanum tuberosum subsp. andigena) to salinity stress, predicted from network models in Arabidopsis.

    PubMed

    Kitazumi, Ai; Kawahara, Yoshihiro; Onda, Ty S; De Koeyer, David; de los Reyes, Benildo G

    2015-01-01

    MicroRNA (miRNA) mediated changes in gene expression by post-transcriptional modulation of major regulatory transcription factors is a potent mechanism for integrating growth and stress-related responses. Exotic plants including many traditional varieties of Andean potatoes (Solanum tuberosum subsp. andigena) are known for better adaptation to marginal environments. Stress physiological studies confirmed earlier reports on the salinity tolerance potentials of certain andigena cultivars. Guided by the hypothesis that certain miRNAs play important roles in growth modulation under suboptimal conditions, we identified and characterized salinity stress-responsive miRNA-target gene pairs in the andigena cultivar Sullu by parallel analysis of noncoding and coding RNA transcriptomes. Inverse relationships were established by the reverse co-expression between two salinity stress-regulated miRNAs (miR166, miR159) and their target transcriptional regulators HD-ZIP-Phabulosa/Phavulota and Myb101, respectively. Based on heterologous models in Arabidopsis, the miR166-HD-ZIP-Phabulosa/Phavulota network appears to be involved in modulating growth perhaps by mediating vegetative dormancy, with linkages to defense-related pathways. The miR159-Myb101 network may be important for the modulation of vegetative growth while also controlling stress-induced premature transition to reproductive phase. We postulate that the induction of miR166 and miR159 under salinity stress represents important network hubs for balancing gene expression required for basal growth adjustments.

  4. Phytochemicals as potent modulators of autophagy for cancer therapy.

    PubMed

    Moosavi, Mohammad Amin; Haghi, Atousa; Rahmati, Marveh; Taniguchi, Hiroaki; Mocan, Andrei; Echeverría, Javier; Gupta, Vijai K; Tzvetkov, Nikolay T; Atanasov, Atanas G

    2018-06-28

    The dysregulation of autophagy is involved in the pathogenesis of a broad range of diseases, and accordingly universal research efforts have focused on exploring novel compounds with autophagy-modulating properties. While a number of synthetic autophagy modulators have been identified as promising cancer therapy candidates, autophagy-modulating phytochemicals have also attracted attention as potential treatments with minimal side effects. In this review, we firstly highlight the importance of autophagy and its relevance in the pathogenesis and treatment of cancer. Subsequently, we present the data on common phytochemicals and their mechanism of action as autophagy modulators. Finally, we discuss the challenges associated with harnessing the autophagic potential of phytochemicals for cancer therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Cannabidiol enhances the inhibitory effects of Δ9-tetrahydrocannabinol on human glioblastoma cell proliferation and survival

    PubMed Central

    Marcu, Jahan P.; Christian, Rigel T.; Lau, Darryl; Zielinski, Anne J.; Horowitz, Maxx P.; Lee, Jasmine; Pakdel, Arash; Allison, Juanita; Limbad, Chandani; Moore, Dan H.; Yount, Garret L.; Desprez, Pierre-Yves; McAllister, Sean D.

    2009-01-01

    The cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor agonist, Δ9-tetrahydrocannabinol (THC), has been shown to be a broad range inhibitor of cancer in culture and in vivo, and is currently being used in a clinical trial for the treatment of glioblastoma. It has been suggested that other plant-derived cannabinoids, which do not interact efficiently with CB1 and CB2 receptors, can modulate the actions of Δ9-THC. However, there are conflicting reports as to what extent other cannabinoids can modulate Δ9-THC activity, and most importantly, it is not clear whether other cannabinoid compounds can either potentiate or inhibit the actions of Δ9-THC. We therefore tested cannabidiol (CBD), the second most abundant plant derived cannabiniod, in combination with Δ9-THC. In U251 and SF126 glioblastoma cell lines, Δ9-THC and CBD acted synergistically to inhibit cell proliferation. The treatment of glioblastoma cells with both compounds led to significant modulations of the cell cycle and induction of reactive oxygen species (ROS) and apoptosis as well as specific modulations of extracellular signal-regulated kinase (ERK) and caspase activities. These specific changes were not observed with either compound individually, indicating that the signal transduction pathways affected by the combination treatment were unique. Our results suggest that the addition of CBD to Δ9-THC may improve the overall effectiveness of Δ9-THC in the treatment of glioblastoma in cancer patients. PMID:20053780

  6. High Throughput Techniques for Discovering New Glycine Receptor Modulators and their Binding Sites

    PubMed Central

    Gilbert, Daniel F.; Islam, Robiul; Lynagh, Timothy; Lynch, Joseph W.; Webb, Timothy I.

    2009-01-01

    The inhibitory glycine receptor (GlyR) is a member of the Cys-loop receptor family that mediates inhibitory neurotransmission in the central nervous system. These receptors are emerging as potential drug targets for inflammatory pain, immunomodulation, spasticity and epilepsy. Antagonists that specifically inhibit particular GlyR isoforms are also required as pharmacological probes for elucidating the roles of particular GlyR isoforms in health and disease. Although a substantial number of both positive and negative GlyR modulators have been identified, very few of these are specific for the GlyR over other receptor types. Thus, the potential of known compounds as either therapeutic leads or pharmacological probes is limited. It is therefore surprising that there have been few published studies describing attempts to discover novel GlyR isoform-specific modulators. The first aim of this review is to consider various methods for efficiently screening compounds against these receptors. We conclude that an anion sensitive yellow fluorescent protein is optimal for primary screening and that automated electrophysiology of cells stably expressing GlyRs is useful for confirming hits and quantitating the actions of identified compounds. The second aim of this review is to demonstrate how these techniques are used in our laboratory for the purpose of both discovering novel GlyR-active compounds and characterizing their binding sites. We also describe a reliable, cost effective method for transfecting HEK293 cells in single wells of a 384-well plate using nanogram quantities of plasmid DNA. PMID:19949449

  7. Discovery of Natural Products as Novel and Potent FXR Antagonists by Virtual Screening

    NASA Astrophysics Data System (ADS)

    Diao, Yanyan; Jiang, Jing; Zhang, Shoude; Li, Shiliang; Shan, Lei; Huang, Jin; Zhang, Weidong; Li, Honglin

    2018-04-01

    Farnesoid X receptor (FXR) is a member of nuclear receptor family involved in multiple physiological processes through regulating specific target genes. The critical role of FXR as a transcriptional regulator makes it a promising target for diverse diseases, especially those related to metabolic disorders such as diabetes and cholestasis. However, the underlying activation mechanism of FXR is still a blur owing to the absence of proper FXR modulators. To identify potential FXR modulators, an in-house natural product database (NPD) containing over 4000 compounds was screened by structure-based virtual screening strategy and subsequent hit-based similarity searching method. After the yeast two-hybrid (Y2H) assay, six natural products were identified as FXR antagonists which blocked the CDCA-induced SRC-1 association. The IC50 values of compounds 2a, a diterpene bearing polycyclic skeleton, and 3a, named daphneone with chain scaffold, are as low as 1.29 μM and 1.79 μM, respectively. Compared to the control compound guggulsterone (IC50 = 6.47 μM), compounds 2a and 3a displayed 5-fold and 3-fold higher antagonistic activities against FXR, respectively. Remarkably, the two representative compounds shared low topological similarities with other reported FXR antagonists. According to the putative binding poses, the molecular basis of these antagonists against FXR was also elucidated in this report.

  8. Synthesis, pharmacology and molecular docking on multifunctional tacrine-ferulic acid hybrids as cholinesterase inhibitors against Alzheimer's disease.

    PubMed

    Zhu, Jie; Yang, Hongyu; Chen, Yao; Lin, Hongzhi; Li, Qi; Mo, Jun; Bian, Yaoyao; Pei, Yuqiong; Sun, Haopeng

    2018-12-01

    The cholinergic hypothesis has long been a "polar star" in drug discovery for Alzheimer's disease (AD), resulting in many small molecules and biological drug candidates. Most of the drugs marketed for AD are cholinergic. Herein, we report our efforts in the discovery of cholinesterases inhibitors (ChEIs) as multi-target-directed ligands. A series of tacrine-ferulic acid hybrids have been designed and synthesised. All these compounds showed potent acetyl-(AChE) and butyryl cholinesterase(BuChE) inhibition. Among them, the optimal compound 10g, was the most potent inhibitor against AChE (electrophorus electricus (eeAChE) half maximal inhibitory concentration (IC 50 ) = 37.02 nM), it was also a strong inhibitor against BuChE (equine serum (eqBuChE) IC 50  = 101.40 nM). Besides, it inhibited amyloid β-protein self-aggregation by 65.49% at 25 μM. In subsequent in vivo scopolamine-induced AD models, compound 10g obviously ameliorated the cognition impairment and showed preliminary safety in hepatotoxicity evaluation. These data suggest compound 10g as a promising multifunctional agent in the drug discovery process against AD.

  9. Spartan service module finite element modeling technique and analysis

    NASA Technical Reports Server (NTRS)

    Lindenmoyer, A. J.

    1985-01-01

    Sounding rockets have served as a relatively inexpensive and easy method of carrying experiments into the upper atmosphere. Limited observation time and pointing capabilities suggested the development of a new sounding rocket type carrier compatible with NASA's Space Transportation System. This concept evolved into the Spartan program, now credited with a successful Spartan 101 mission launched in June 1985. The next series of Spartans will use a service module primary structure. This newly designed reusable and universal component in the Spartan carrier system required thorough analysis and evaluation for flight certification. Using advanced finite element modeling techniques, the structure was analyzed and determined acceptable by meeting strict design goals and will be tested for verification of the analytical results.

  10. [Simultaneously preparation of grams of high purity tyrosol, crenulatin and salidroside from Rhodiola crenulata].

    PubMed

    Luo, Xin; Wang, Xue-jing; Li, Shi-ping; Zhang, Qiao; Zhao, Yi-wu; Huang Wen-zhe; Wang, Zhen-zhong; Xiao, Wei

    2015-04-01

    Tyrosol, crenulatin and salidroside are the main active constituents of Rhodiola crenulata, with extensive pharmacological activities. In the study, grams of high purity tyrosol, crenulatin and salidroside were simultaneously separated from R. crenulata by the first time. Firstly, R. crenulata was extracted by 70% alcohol. Then, with the yields of three compounds as the index, the macroporous resin was optimized. At last, grams of high purity tyrosol, crenulatin and salidroside were isolated by D-101 macroporousresin, purified by column chromatography. Detected by HPLC, the purity of three compounds were higher than 98%. This method has the advantages of simple process and operation, less dosage of organic solvent, highly yield and reproducibility, suitable for the simultaneously preparation of tyrosol, crenulatin and salidroside.

  11. [Determination of six main components in compound theophylline tablet by convolution curve method after prior separation by column partition chromatography

    NASA Technical Reports Server (NTRS)

    Zhang, S. Y.; Wang, G. F.; Wu, Y. T.; Baldwin, K. M. (Principal Investigator)

    1993-01-01

    On a partition chromatographic column in which the support is Kieselguhr and the stationary phase is sulfuric acid solution (2 mol/L), three components of compound theophylline tablet were simultaneously eluted by chloroform and three other components were simultaneously eluted by ammonia-saturated chloroform. The two mixtures were determined by computer-aided convolution curve method separately. The corresponding average recovery and relative standard deviation of the six components were as follows: 101.6, 1.46% for caffeine; 99.7, 0.10% for phenacetin; 100.9, 1.31% for phenobarbitone; 100.2, 0.81% for theophylline; 99.9, 0.81% for theobromine and 100.8, 0.48% for aminopyrine.

  12. SEPARATION AND PURIFICATION OF TWO MINOR COMPOUNDS FROM RADIX ISATIDIS BY INTEGRATIVE MPLC AND HSCCC WITH PREPARATIVE HPLC.

    PubMed

    Liang, Zhenjie; Li, Bin; Liang, Yong; Su, Yaping; Ito, Yoichiro

    2015-01-01

    Radix isatidis has been widely used as a Chinese traditional medicine for its anti-virus and anticancer activities where the minor components may contribute to these beneficial pharmaceutical effects. In order to enrich the target minor compounds effectively and rapidly, extraction, medium-pressure liquid chromatography (MPLC), high-speed countercurrent chromatography (HSCCC) and preparative high-performance liquid chromatography (pre-HPLC) were integratively used for separation and purification of two target minor compounds indole-3-acetonitrile-6-O-β-D-glucopyranoside (target 1) and clemastanin B (target 2) in the present study. Radix isatidis was dried, pulverized and extracted with 50% methanol at room temperature, then concentrated and subjected to pretreatment with D-101 macroporous resin chromatography and extraction by MPLC. The first target compound was separated by MPLC at the purity raised to 70-80%, but without the second minor compounds which were irreversibly adsorbed by C18 solid support. Therefore, the second target compound in the crude extract was directly separated by HSCCC at purity of 80-90%. Finally these refined samples were further separated by pre-HPLC to obtain a high purity at 98-99%. The chemical structure identification of each target compound was carried out by IR, ESI-MS and 1 H NMR.

  13. Imidazopyridine-Based Fatty Acid Synthase Inhibitors That Show Anti-HCV Activity and in Vivo Target Modulation.

    PubMed

    Oslob, Johan D; Johnson, Russell J; Cai, Haiying; Feng, Shirley Q; Hu, Lily; Kosaka, Yuko; Lai, Julie; Sivaraja, Mohanram; Tep, Samnang; Yang, Hanbiao; Zaharia, Cristiana A; Evanchik, Marc J; McDowell, Robert S

    2013-01-10

    Potent imidazopyridine-based inhibitors of fatty acid synthase (FASN) are described. The compounds are shown to have antiviral (HCV replicon) activities that track with their biochemical activities. The most potent analogue (compound 19) also inhibits rat FASN and inhibits de novo palmitate synthesis in vitro (cell-based) as well as in vivo.

  14. Imidazopyridine-Based Fatty Acid Synthase Inhibitors That Show Anti-HCV Activity and in Vivo Target Modulation

    PubMed Central

    2012-01-01

    Potent imidazopyridine-based inhibitors of fatty acid synthase (FASN) are described. The compounds are shown to have antiviral (HCV replicon) activities that track with their biochemical activities. The most potent analogue (compound 19) also inhibits rat FASN and inhibits de novo palmitate synthesis in vitro (cell-based) as well as in vivo. PMID:24900571

  15. A human tissue-based functional assay platform to evaluate the immune function impact of small molecule inhibitors that target the immune system.

    PubMed

    St Pierre, Cristina; Guo, Jane; Shin, John D; Engstrom, Laura W; Lee, Hyun-Hee; Herbert, Alan; Surdi, Laura; Baker, James; Salmon, Michael; Shah, Sanjiv; Ellis, J Michael; Houshyar, Hani; Crackower, Michael A; Kleinschek, Melanie A; Jones, Dallas C; Hicks, Alexandra; Zaller, Dennis M; Alves, Stephen E; Ramadas, Ravisankar A

    2017-01-01

    While the immune system is essential for the maintenance of the homeostasis, health and survival of humans, aberrant immune responses can lead to chronic inflammatory and autoimmune disorders. Pharmacological modulation of drug targets in the immune system to ameliorate disease also carry a risk of immunosuppression that could lead to adverse outcomes. Therefore, it is important to understand the 'immune fingerprint' of novel therapeutics as they relate to current and, clinically used immunological therapies to better understand their potential therapeutic benefit as well as immunosuppressive ability that might lead to adverse events such as infection risks and cancer. Since the mechanistic investigation of pharmacological modulators in a drug discovery setting is largely compound- and mechanism-centric but not comprehensive in terms of immune system impact, we developed a human tissue based functional assay platform to evaluate the impact of pharmacological modulators on a range of innate and adaptive immune functions. Here, we demonstrate that it is possible to generate a qualitative and quantitative immune system impact of pharmacological modulators, which might help better understand and predict the benefit-risk profiles of these compounds in the treatment of immune disorders.

  16. 77 FR 15454 - Notice of Application for Special Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... thereof New Special Permits 15547-N Southern California 49 CFR 172.101 Column To authorize the Edison (SCE... To authorize the Helicopters, LLC dba Column (9B), 172.200, transportation in New Air Helicopters 172... explosive compounds (not greater than 3%) in bulk. (mode 1) [[Page 15455

  17. Yeast ratio is a critical factor for sequential fermentation of papaya wine by Williopsis saturnus and Saccharomyces cerevisiae

    PubMed Central

    Lee, Pin-Rou; Kho, Stephanie Hui Chern; Yu, Bin; Curran, Philip; Liu, Shao-Quan

    2013-01-01

    Summary The growth kinetics and fermentation performance of Williopsis saturnus and Saccharomyces cerevisiae at ratios of 10:1, 1:1 and 1:10 (W.:S.) were studied in papaya juice with initial 7-day fermentation by W. saturnus, followed by S. cerevisiae. The growth kinetics of W. saturnus were similar at all ratios, but its maximum cell count decreased as the proportion of S. cerevisiae was increased. Conversely, there was an early death of S. cerevisiae at the ratio of 10:1. Williopsis saturnus was the dominant yeast at 10:1 ratio that produced papaya wine with elevated concentrations of acetate esters. On the other hand, 1:1 and 1:10 ratios allowed the coexistence of both yeasts which enabled the flavour-enhancing potential of W. saturnus as well as the ethyl ester and alcohol-producing abilities of S. cerevisiae. In particular, 1:1 and 1:10 ratios resulted in production of more ethyl esters, alcohols and 2-phenylethyl acetate. However, the persistence of both yeasts at 1:1 and 1:10 ratios led to formation of high levels of acetic acid. The findings suggest that yeast ratio is a critical factor for sequential fermentation of papaya wine by W. saturnus and S. cerevisiae as a strategy to modulate papaya wine flavour. PMID:23171032

  18. Yeast ratio is a critical factor for sequential fermentation of papaya wine by Williopsis saturnus and Saccharomyces cerevisiae.

    PubMed

    Lee, Pin-Rou; Kho, Stephanie Hui Chern; Yu, Bin; Curran, Philip; Liu, Shao-Quan

    2013-07-01

    The growth kinetics and fermentation performance of Williopsis saturnus and Saccharomyces cerevisiae at ratios of 10:1, 1:1 and 1:10 (W.:S.) were studied in papaya juice with initial 7-day fermentation by W.saturnus, followed by S. cerevisiae. The growth kinetics of W. saturnus were similar at all ratios, but its maximum cell count decreased as the proportion of S. cerevisiae was increased. Conversely, there was an early death of S. cerevisiae at the ratio of 10:1. Williopsis saturnus was the dominant yeast at 10:1 ratio that produced papaya wine with elevated concentrations of acetate esters. On the other hand, 1:1 and 1:10 ratios allowed the coexistence of both yeasts which enabled the flavour-enhancing potential of W.saturnus as well as the ethyl ester and alcohol-producing abilities of S. cerevisiae. In particular, 1:1 and 1:10 ratios resulted in production of more ethyl esters, alcohols and 2-phenylethyl acetate. However, the persistence of both yeasts at 1:1 and 1:10 ratios led to formation of high levels of acetic acid. The findings suggest that yeast ratio is a critical factor for sequential fermentation of papaya wine by W.saturnus and S. cerevisiae as a strategy to modulate papaya wine flavour. © 2012 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. Intrinsically High Thermoelectric Performance in AgInSe2 n-Type Diamond-Like Compounds.

    PubMed

    Qiu, Pengfei; Qin, Yuting; Zhang, Qihao; Li, Ruoxi; Yang, Jiong; Song, Qingfeng; Tang, Yunshan; Bai, Shengqiang; Shi, Xun; Chen, Lidong

    2018-03-01

    Diamond-like compounds are a promising class of thermoelectric materials, very suitable for real applications. However, almost all high-performance diamond-like thermoelectric materials are p-type semiconductors. The lack of high-performance n-type diamond-like thermoelectric materials greatly restricts the fabrication of diamond-like material-based modules and their real applications. In this work, it is revealed that n-type AgInSe 2 diamond-like compound has intrinsically high thermoelectric performance with a figure of merit ( zT ) of 1.1 at 900 K, comparable to the best p-type diamond-like thermoelectric materials reported before. Such high zT is mainly due to the ultralow lattice thermal conductivity, which is fundamentally limited by the low-frequency Ag-Se "cluster vibrations," as confirmed by ab initio lattice dynamic calculations. Doping Cd at Ag sites significantly improves the thermoelectric performance in the low and medium temperature ranges. By using such high-performance n-type AgInSe 2 -based compounds, the diamond-like thermoelectric module has been fabricated for the first time. An output power of 0.06 W under a temperature difference of 520 K between the two ends of the module is obtained. This work opens a new window for the applications using the diamond-like thermoelectric materials.

  20. Phyto-SERM Constitutes from Flemingia macrophylla

    PubMed Central

    Lai, Wan-Chun; Tsui, Ya-Ting; Singab, Abdel Nasser B.; El-Shazly, Mohamed; Du, Ying-Chi; Hwang, Tsong-Long; Wu, Chin-Chung; Yen, Ming-Hong; Lee, Ching-Kuo; Hou, Ming-Feng; Wu, Yang-Chang; Chang, Fang-Rong

    2013-01-01

    The methanolic extract of Flemingia macrophylla roots exhibited significant estrogenic activity in the transgenic plant assay system which was comparable to the activity of soybean extract. Utilizing estrogenic activity-guided fractionation, one new compound, fleminigin, together with 23 known compounds were isolated from F. macrophylla roots’ methanolic extract. The structure of the new compound was identified based on intensive spectroscopic analysis and the full spectral data for one of the isolated compounds, flemichin E, was introduced for the first time in the current investigation. The estrogenic and anti-estrogenic activities of the isolated compounds were evaluated revealing that the isolated isoflavonoids may act as partial estrogen agonists, as well as antagonists. Additionally, the anti-inflammatory and the cytotoxic activities of the isolated compounds were studied. These results suggested the potential applications of F. macrophylla extract and its isolated compounds as selective estrogen receptor modulators (SERMs). PMID:23896592

  1. Workers begin removing PDU from STS-101 Atlantis

    NASA Technical Reports Server (NTRS)

    2000-01-01

    With coverings removed from a site near the tail of Space Shuttle Atlantis, Tod Biddle, a United Space Alliance (USA) technician, points to the power drive unit (PDU) inside. The PDU controls the rudder/speed brake on the orbiter. The hands at right belong to Bob Wright, also a USA technician. Shuttle managers decided to replace the faulty PDU, about the size of an office copy machine, at the launch pad. If successful, launch preparations will continue as planned, with liftoff targeted for April 24 at 4:15 p.m. on mission STS-101. The mission is the third assembly flight for the International Space Station, carrying logistics and supplies to the Space Station, plus the crew will be preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station.

  2. Workers begin removing PDU from STS-101 Atlantis

    NASA Technical Reports Server (NTRS)

    2000-01-01

    United Space Alliance technicians (left to right) Tod Biddle, Bob Wright and Mark Noel (hidden) remove the coverings from a site near the tail of Space Shuttle Atlantis to reveal the power drive unit (PDU) inside. The PDU controls the rudder/speed brake on the orbiter. Shuttle managers decided to replace the faulty PDU, about the size of an office copy machine, at the launch pad. If successful, launch preparations will continue as planned, with liftoff targeted for April 24 at 4:15 p.m. on mission STS-101. The mission is the third assembly flight for the International Space Station, carrying logistics and supplies to the Space Station, plus the crew will be preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station.

  3. Dietary phenolic compounds selectively inhibit the individual subunits of maltase-glucoamylase and sucrase-isomaltase with the potential of modulating glucose release

    USDA-ARS?s Scientific Manuscript database

    In this study, it was hypothesized that dietary phenolic compounds selectively inhibit the individual C- and N-terminal (Ct, Nt) subunits of the two small intestinal alpha-glucosidases, maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI), for a modulated glycemic carbohydrate digestion. The inhi...

  4. A small-molecule activator induces ULK1-modulating autophagy-associated cell death in triple negative breast cancer.

    PubMed

    Ouyang, Liang; Zhang, Lan; Fu, Leilei; Liu, Bo

    2017-04-03

    ULK1 (unc-51 like autophagy activating kinase 1) is well known to be required to initiate the macroautophagy/autophagy process, and thus activation of ULK1-modulating autophagy/autophagy-associated cell death (ACD) may be a possible therapeutic strategy in triple negative breast cancer (TNBC). Here, our integrated The Cancer Genome Atlas (TCGA) data set, tissue microarray-based analyses and multiple biologic evaluations together demonstrate a new small-molecule activator of ULK1 for better understanding of how ULK1, the mammalian homolog of yeast Atg1, as a potential drug target can regulate ACD by the ULK complex (ULK1-ATG13-RB1CC1/FIP200-ATG101), as well as other possible ULK1 interactors, including ATF3, RAD21 and CASP3/caspase3 in TNBC. Moreover, such new inspiring findings may help us discover that this activator of ULK1 (LYN-1604) with its anti-tumor activity and ACD-modulating mechanisms can be further exploited as a small-molecule candidate drug for future TNBC therapy.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Kedar G.; Pannu, Satinderpall S.

    An integrated circuit system having an integrated circuit (IC) component which is able to have its functionality destroyed upon receiving a command signal. The system may involve a substrate with the IC component being supported on the substrate. A module may be disposed in proximity to the IC component. The module may have a cavity and a dissolving compound in a solid form disposed in the cavity. A heater component may be configured to heat the dissolving compound to a point of sublimation where the dissolving compound changes from a solid to a gaseous dissolving compound. A triggering mechanism maymore » be used for initiating a dissolution process whereby the gaseous dissolving compound is allowed to attack the IC component and destroy a functionality of the IC component.« less

  6. Enhancing Perception of Contaminated Food through Acid-Mediated Modulation of Taste Neuron Responses

    PubMed Central

    Chen, Yan; Amrein, Hubert

    2015-01-01

    SUMMARY Background Natural foods not only contain nutrients, but also non-nutritious and potentially harmful chemicals. Thus, animals need to evaluate food content in order to make adequate feeding decisions. Results Here, we investigate the effects of acids on the taste neuron responses and on taste behavior of desirable, nutritious sugars and sugar/bitter compound mixtures in Drosophila melanogaster. Using Ca2+ imaging, we show that acids neither activate sweet nor bitter taste neurons in tarsal taste sensilla. However, they suppress responses to bitter compounds in bitter-sensing neurons. Moreover, acids reverse suppression of bitter compounds exerted on sweet-sensing neurons. Consistent with these observations, behavioral analyses show that bitter compound-mediated inhibition on feeding behavior is alleviated by acids. To investigate the cellular mechanism by which acids modulate these effects, we silenced bitter sensing gustatory neurons. Surprisingly, this intervention had little effect on acid-mediated de-repression of sweet neuron or feeding responses to either sugar/bitter compound mixtures, or sugar/bitter compound/acid mixtures, suggesting two independent pathways by which bitter compounds are sensed. Conclusions Our investigations reveal that acids, when presented in dietary relevant concentrations, enhance the perception of sugar/bitter compound mixtures. Drosophila’s natural food sources - fruits and cohabitating yeast - are rich in sugars and acids, but are rapidly colonized by microorganisms, such as fungi, protozoan parasites and bacteria, many of which produce bitter compounds. We propose that acids present in most fruits counteract the inhibitory effects of these bitter compounds during feeding. PMID:25131671

  7. Sodium deoxycholate-decorated zein nanoparticles for a stable colloidal drug delivery system

    PubMed Central

    Gagliardi, Agnese; Paolino, Donatella; Iannone, Michelangelo; Palma, Ernesto

    2018-01-01

    Background The use of biopolymers is increasing in drug delivery, thanks to the peculiar properties of these compounds such as their biodegradability, availability, and the possibility of modulating their physico-chemical characteristics. In particular, protein-based systems such as albumin are able to interact with many active compounds, modulating their biopharmaceutical properties. Zein is a protein of 20–40 kDa made up of many hydrophobic amino acids, generally regarded as safe (GRAS) and used as a coating material. Methods In this investigation, zein was combined with various surfactants in order to obtain stable nanosystems by means of the nanoprecipitation technique. Specific parameters, eg, temperature, pH value, Turbiscan Stability Index, serum stability, in vitro cytotoxicity and entrapment efficiency of various model compounds were investigated, in order to identify the nanoformulation most useful for a systemic drug delivery application. Results The use of non-ionic and ionic surfactants such as Tween 80, poloxamer 188, and sodium deoxycholate allowed us to obtain nanoparticles characterized by a mean diameter of 100–200 nm when a protein concentration of 2 mg/mL was used. The surface charge was modulated by means of the protein concentration and the nature of the stabilizer. The most suitable nanoparticle formulation to be proposed as a colloidal drug delivery system was obtained using sodium deoxycholate (1.25% w/v) because it was characterized by a narrow size distribution, a good storage stability after freeze-drying and significant feature of retaining lipophilic and hydrophilic compounds. Conclusion The sodium deoxycholate-coated zein nanoparticles are stable biocompatible colloidal carriers to be used as useful drug delivery systems. PMID:29430179

  8. Secondary metabolites from Pinus mugo Turra subsp. mugo growing in the Majella National Park (Central Apennines, Italy).

    PubMed

    Venditti, Alessandro; Serrilli, Anna Maria; Vittori, Sauro; Papa, Fabrizio; Maggi, Filippo; Di Cecco, Mirella; Ciaschetti, Gianpiero; Bruno, Maurizio; Rosselli, Sergio; Bianco, Amandodoriano

    2013-11-01

    In this study, we examined the composition regarding secondary metabolites of P. mugo Turra ssp. mugo growing in the protected area of Majella National Park, which is the southernmost station of the habitat of this species. Both the nonpolar and polar fractions were considered. In particular, the essential-oil composition showed a high variety of compounds, and 109 compounds were detected, and 101 were identified, among which abietane-type compounds have a taxonomic relevance. Abietanes were also isolated from the polar fraction, together with an acylated flavonol and a remarkably high amount of shikimic acid. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  9. APC10.1 cells as a model for assessing the efficacy of potential chemopreventive agents in the Apc(Min) mouse model in vivo.

    PubMed

    Sale, Stewart; Fong, Isabel L; de Giovanni, Carla; Landuzzi, Lorena; Brown, Karen; Steward, William P; Gescher, Andreas J

    2009-11-01

    Apc(Min) mice are widely used for mechanism and efficacy studies associated with the development of chemopreventive agents. APC10.1 cells have been derived from Apc(Min) mouse adenomas and retain the heterozygous Apc genotype. We tested the hypothesis that this cell type may provide an in vitro model to predict chemopreventive activity of agents in the Apc(Min) mouse in vivo. The growth inhibitory properties of 14 putative colorectal cancer chemopreventive agents, tricin, apigenin, 3',4',5',5,7-pentamethoxyflavone, resveratrol, curcumin, 3,4-methylenedioxy-3',4',5'-trimethoxychalcone (DMU135), 3,4,5,4'-tetramethoxystilbene (DMU212), celecoxib, aspirin, piroxicam, all-trans-retinoic acid, difluoromethylornithine (DFMO), quercetin and cyanidin-3-glucoside, were studied in this cell line, and the IC(50) values were calculated. The IC(50) values were plotted against previously published data of reduction of adenoma numbers caused by these agents in Apc(Min) mice. The correlation co-efficient was 0.678 (p<0.01), suggesting that there was a tentative correlation between the ability to inhibit the growth of APC10.1 cells and the ability to delay adenoma development in vivo. If this relationship is supported by using further agents, APC10.1 cells may serve in the future as an initial screen to prioritise compounds for assessing chemopreventive efficacy in Apc(Min) mice in vivo. Such a screen could reduce the number of animals required to find active agents, help reduce costs and increase throughput.

  10. Preparation of an aminopropyl imidazole-modified silica gel as a sorbent for solid-phase extraction of carboxylic acid compounds and polycyclic aromatic hydrocarbons.

    PubMed

    Wang, Na; Guo, Yong; Wang, Licheng; Liang, Xiaojing; Liu, Shujuan; Jiang, Shengxiang

    2014-05-21

    In this paper, a kind of aminopropyl imidazole-modified silica sorbent was synthesized and used as a solid-phase extraction (SPE) sorbent for the determination of carboxylic acid compounds and polycyclic aromatic hydrocarbons (PAHs). The resultant aminopropyl imidazole-modified silica sorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis (EA) to ensure the successful binding of aminopropyl imidazole on the surface of silica gel. Then the aminopropyl imidazole-modified silica sorbent served as a SPE sorbent for the enrichment of carboxylic acid compounds and PAHs. The new sorbent exhibited high extraction efficiency towards the tested compounds and the results show that such a sorbent can offer multiple intermolecular interactions: electrostatic, π-π, and hydrophobic interactions. Several parameters affecting the extraction recovery, such as the pH of sample solution, the pH of eluent, the solubility of eluent, the volume of eluent, and sample loading, were also investigated. Under the optimized conditions, the proposed method was applied to the analysis of four carboxylic acid compounds and four PAHs in environmental water samples. Good linearities were obtained for all the tested compounds with R(2) larger than 0.9903. The limits of detection were found to be in the range of 0.0065-0.5 μg L(-1). The recovery values of spiked river water samples were from 63.2% to 112.3% with relative standard deviations (RSDs) less than 10.1% (n = 4).

  11. STS-120 landing

    NASA Image and Video Library

    2007-11-07

    (left to right) NASA Administrator Michael Griffin, NASA Assistant Administrator for Public Affairs David Mould and NASA Space Shuttle Manager Wayne Hale watch as the space shuttle Discovery comes in for landing at NASA's Kennedy Space Center, Fla., completing the 15-day STS-120 mission to the International Space Station. Discovery landed at 1:01pm EST Wednesday after a mission that included on-orbit construction of the station with the installation of the Harmony Node 2 module and the relocation of the P6 truss. Photo Credit: 'NASA/Bill Ingalls"

  12. 07pd3206

    NASA Image and Video Library

    2007-11-07

    (left to right) NASA Administrator Michael Griffin, NASA Assistant Administrator for Public Affairs David Mould and NASA Space Shuttle Manager Wayne Hale watch as the space shuttle Discovery comes in for landing at NASA's Kennedy Space Center, Fla., completing the 15-day STS-120 mission to the International Space Station. Discovery landed at 1:01pm EST Wednesday after a mission that included on-orbit construction of the station with the installation of the Harmony Node 2 module and the relocation of the P6 truss. Photo Credit: 'NASA/Bill Ingalls"

  13. Pharmacodynamics of selective androgen receptor modulators.

    PubMed

    Yin, Donghua; Gao, Wenqing; Kearbey, Jeffrey D; Xu, Huiping; Chung, Kiwon; He, Yali; Marhefka, Craig A; Veverka, Karen A; Miller, Duane D; Dalton, James T

    2003-03-01

    The present study aimed to identify selective androgen receptor modulators (SARMs) with in vivo pharmacological activity. We examined the in vitro and in vivo pharmacological activity of four chiral, nonsteroidal SARMs synthesized in our laboratories. In the in vitro assays, these compounds demonstrated moderate to high androgen receptor (AR) binding affinity, with K(i) values ranging from 4 to 37 nM, and three of the compounds efficaciously stimulated AR-mediated reporter gene expression. The compounds were then administered subcutaneously to castrated rats to appraise their in vivo pharmacological activity. Androgenic activity was evaluated by the ability of these compounds to maintain the weights of prostate and seminal vesicle, whereas levator ani muscle weight was used as a measure of anabolic activity. The maximal response (E(max)) and dose for half-maximal effect (ED(50)) were determined for each compound and compared with that observed for testosterone propionate (TP). Compounds S-1 and S-4 demonstrated in vivo androgenic and anabolic activity, whereas compounds S-2 and S-3 did not. The activities of S-1 and S-4 were tissue-selective in that both compounds stimulated the anabolic organs more than the androgenic organs. These two compounds were less potent and efficacious than TP in androgenic activity, but their anabolic activity was similar to or greater than that of TP. Neither S-1 nor S-4 caused significant luteinizing hormone or follicle stimulating hormone suppression at doses near the ED(50) value. Thus, compounds S-1 and S-4 were identified as SARMs with potent and tissue-selective in vivo pharmacological activity, and represent the first members of a new class of SARMs with selective anabolic effects.

  14. High-Throughput Screening of Na(V)1.7 Modulators Using a Giga-Seal Automated Patch Clamp Instrument.

    PubMed

    Chambers, Chris; Witton, Ian; Adams, Cathryn; Marrington, Luke; Kammonen, Juha

    2016-03-01

    Voltage-gated sodium (Na(V)) channels have an essential role in the initiation and propagation of action potentials in excitable cells, such as neurons. Of these channels, Na(V)1.7 has been indicated as a key channel for pain sensation. While extensive efforts have gone into discovering novel Na(V)1.7 modulating compounds for the treatment of pain, none has reached the market yet. In the last two years, new compound screening technologies have been introduced, which may speed up the discovery of such compounds. The Sophion Qube(®) is a next-generation 384-well giga-seal automated patch clamp (APC) screening instrument, capable of testing thousands of compounds per day. By combining high-throughput screening and follow-up compound testing on the same APC platform, it should be possible to accelerate the hit-to-lead stage of ion channel drug discovery and help identify the most interesting compounds faster. Following a period of instrument beta-testing, a Na(V)1.7 high-throughput screen was run with two Pfizer plate-based compound subsets. In total, data were generated for 158,000 compounds at a median success rate of 83%, which can be considered high in APC screening. In parallel, IC50 assay validation and protocol optimization was completed with a set of reference compounds to understand how the IC50 potencies generated on the Qube correlate with data generated on the more established Sophion QPatch(®) APC platform. In summary, the results presented here demonstrate that the Qube provides a comparable but much faster approach to study Na(V)1.7 in a robust and reliable APC assay for compound screening.

  15. Towards functional selectivity for α6β3γ2 GABAA receptors: a series of novel pyrazoloquinolinones

    PubMed Central

    Treven, Marco; Siebert, David C B; Holzinger, Raphael; Bampali, Konstantina; Fabjan, Jure; Varagic, Zdravko; Wimmer, Laurin; Steudle, Friederike; Scholze, Petra; Schnürch, Michael; Mihovilovic, Marko D

    2017-01-01

    Background and Purpose The GABAA receptors are ligand‐gated ion channels, which play an important role in neurotransmission. Their variety of binding sites serves as an appealing target for many clinically relevant drugs. Here, we explored the functional selectivity of modulatory effects at specific extracellular α+/β− interfaces, using a systematically varied series of pyrazoloquinolinones. Experimental Approach Recombinant GABAA receptors were expressed in Xenopus laevis oocytes and modulatory effects on GABA‐elicited currents by the newly synthesized and reference compounds were investigated by the two‐electrode voltage clamp method. Key Results We identified a new compound which, to the best of our knowledge, shows the highest functional selectivity for positive modulation at α6β3γ2 GABAA receptors with nearly no residual activity at the other αxβ3γ2 (x = 1–5) subtypes. This modulation was independent of affinity for α+/γ− interfaces. Furthermore, we demonstrated for the first time a compound that elicits a negative modulation at specific extracellular α+/β− interfaces. Conclusion and Implications These results constitute a major step towards a potential selective positive modulation of certain α6‐containing GABAA receptors, which might be useful to elicit their physiological role. Furthermore, these studies pave the way towards insights into molecular principles that drive positive versus negative allosteric modulation of specific GABAA receptor isoforms. PMID:29127702

  16. Modulated Structures of Homologous Compounds In MO 3(ZnO) m( M=In, Ga; m=Integer) Described by Four-Dimensional Superspace Group

    NASA Astrophysics Data System (ADS)

    Li, Chunfei; Bando, Yoshio; Nakamura, Masaki; Onoda, Mitsuko; Kimizuka, Noboru

    1998-09-01

    The modulated structures appearing in the homologous compounds InMO3(ZnO)m(M=In, Ga;m=integer) were observed by using a high-resoultion transmission electron microscope and are described based on a four-dimensional superspace group. The electron diffraction patterns for compounds withmlarger than 6 reveal extra spots, indicating the formation of a modulated structure. The subcell structures form=odd and even numbers are assigned to be either monoclinic or orthorhombic, respectively. On the other hand, extra spots can be indexed by one-dimensional modulated structure. The possible space groups for the subcell structure areCm,C2, andC2/mform=odd numbers, while those form=even numbers areCcm21andCcmm, respectively. Then, corresponding possible superspace groups are assigned to bePC2s,PCmoverline1, andPC2/msoverline1for oddmnumbers andPCcm211overline1overline1andPCcmm1overline11for evenmnumbers. Based on the superspace group determination, a structure model for a one-dimensional modulated structure is proposed.

  17. Alleviation of Multiple Asthmatic Pathologic Features with Orally Available and Subtype Selective GABAA Receptor Modulators.

    PubMed

    Forkuo, Gloria S; Nieman, Amanda N; Yuan, Nina Y; Kodali, Revathi; Yu, Olivia B; Zahn, Nicolas M; Jahan, Rajwana; Li, Guanguan; Stephen, Michael Rajesh; Guthrie, Margaret L; Poe, Michael M; Hartzler, Benjamin D; Harris, Ted W; Yocum, Gene T; Emala, Charles W; Steeber, Douglas A; Stafford, Douglas C; Cook, James M; Arnold, Leggy A

    2017-06-05

    We describe pharmacokinetic and pharmacodynamic properties of two novel oral drug candidates for asthma. Phenolic α 4 β 3 γ 2 GABA A R selective compound 1 and acidic α 5 β 3 γ 2 selective GABA A R positive allosteric modulator compound 2 relaxed airway smooth muscle ex vivo and attenuated airway hyperresponsiveness (AHR) in a murine model of asthma. Importantly, compound 2 relaxed acetylcholine contracted human tracheal airway smooth muscle strips. Oral treatment of compounds 1 and 2 decreased eosinophils in bronchoalveolar lavage fluid in ovalbumin sensitized and challenged mice, thus exhibiting anti-inflammatory properties. Additionally, compound 1 reduced the number of lung CD4 + T lymphocytes and directly modulated their transmembrane currents by acting on GABA A Rs. Excellent pharmacokinetic properties were observed, including long plasma half-life (up to 15 h), oral availability, and extremely low brain distribution. In conclusion, we report the selective targeting of GABA A Rs expressed outside the brain and demonstrate reduction of AHR and airway inflammation with two novel orally available GABA A R ligands.

  18. STS-101: Crew Activity Report CAR/Flight Day 04 Highlights

    NASA Technical Reports Server (NTRS)

    2000-01-01

    On this fourth day of the STS-101 Atlantis mission, the flight crew, Commander James D. Halsell Jr., Pilot Scott J. Horowitz, and Mission Specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev are seen performing final preparations for the scheduled space walk. Horowitz, Williams and Voss are seen in the mid-deck before the space walk. Horowitz and Weber are also seen in the flight deck, powering-up the robot-arm. During the space walk Voss is seen checking the American Cargo Crane-Orbital Replacement Unit Transfer Device. Voss and Williams are shown securing the American-built crane that was installed on the station last year. They are seen as they install the final parts (boom extension) of a Russian-built crane on the station. Voss and Williams are also shown as they replace a faulty antenna for one of the station's communications systems on the Unity Module, and install several handrails and a camera cable on the station's exterior.

  19. Occurrence, Ecological and Human Health Risks, and Seasonal Variations of Phenolic Compounds in Surface Water and Sediment of a Potential Polluted River Basin in China.

    PubMed

    Zhou, Mo; Zhang, Jiquan; Sun, Caiyun

    2017-09-27

    Five phenolic compounds in water and sediment of Yinma River Basin were investigated. The average concentration of phenol was the highest in water samples as well as in sediment samples during the wet season, 101.68 ng/L and 127.76 ng/g, respectively. 2,4,6-Trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP) was not detected in some sampling sites. Shitou Koumen Reservoir and the neighboring area were the severest areas of phenolic pollution. The lower reach was more polluted in three water seasons than the middle reach and upper reach. Phenol had ecological risks in sediment during three water seasons. 2-Nitrophenol (2-NP) and 2,4-dichlorophenol (2,4-DCP) had ecological risks in sediment in both the normal and wet season. The concentrations of five phenolic compounds from high to low were in the wet season, normal season, and dry season in water and sediment, respectively. There were middle risks in water of total concentrations for five phenolic compounds in several sampling sites. Total concentrations for five phenolic compounds in sediment had high ecological risks in all sampling sites. However, there was no human health risk in the Yinma River Basin.

  20. Occurrence, Ecological and Human Health Risks, and Seasonal Variations of Phenolic Compounds in Surface Water and Sediment of a Potential Polluted River Basin in China

    PubMed Central

    Zhou, Mo; Sun, Caiyun

    2017-01-01

    Five phenolic compounds in water and sediment of Yinma River Basin were investigated. The average concentration of phenol was the highest in water samples as well as in sediment samples during the wet season, 101.68 ng/L and 127.76 ng/g, respectively. 2,4,6-Trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP) was not detected in some sampling sites. Shitou Koumen Reservoir and the neighboring area were the severest areas of phenolic pollution. The lower reach was more polluted in three water seasons than the middle reach and upper reach. Phenol had ecological risks in sediment during three water seasons. 2-Nitrophenol (2-NP) and 2,4-dichlorophenol (2,4-DCP) had ecological risks in sediment in both the normal and wet season. The concentrations of five phenolic compounds from high to low were in the wet season, normal season, and dry season in water and sediment, respectively. There were middle risks in water of total concentrations for five phenolic compounds in several sampling sites. Total concentrations for five phenolic compounds in sediment had high ecological risks in all sampling sites. However, there was no human health risk in the Yinma River Basin. PMID:28953252

  1. N-Acetylglutaminoyl-S-farnesyl-L-cysteine (SIG-1191): an anti-inflammatory molecule that increases the expression of the aquaglyceroporin, aquaporin-3, in human keratinocytes.

    PubMed

    Fernández, José R; Webb, Corey; Rouzard, Karl; Voronkov, Michael; Huber, Kristen L; Stock, Jeffry B; Stock, Maxwell; Gordon, Joel S; Perez, Eduardo

    2017-03-01

    Isoprenylcysteine (IPC) small molecules were discovered as signal transduction modulating compounds ~25 years ago. More recently, IPC molecules have demonstrated antioxidant and anti-inflammatory properties in a variety of dermal cells as well as antimicrobial activity, representing a novel class of compounds to ameliorate skin conditions and disease. Here, we demonstrate a new IPC compound, N-acetylglutaminoyl-S-farnesyl-L-cysteine (SIG-1191), which inhibits UVB-induced inflammation blocking pro-inflammatory cytokine interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) production. To investigate further the previously reported hydrating potential of IPC compounds, SIG-1191 was tested for its ability to modulate aquaporin expression. Specifically, aquaporin 3 (AQP3) the most abundant aquaporin found in skin has been reported to play a key role in skin hydration, elasticity and barrier repair. Results show here for the first time that SIG-1191 increases AQP3 expression in both cultured normal human epidermal keratinocytes as well as when applied topically in a three-dimensional (3D) reconstructed human skin equivalent. Additionally, SIG-1191 dose dependently increased AQP3 protein levels, as determined by specific antibody staining, in the epidermis of the 3D skin equivalents. To begin to elucidate which signaling pathways SIG-1191 may be modulating to increase AQP3 levels, we used several pharmacological pathway inhibitors and determined that AQP3 expression is mediated by the Mitogen-activated protein kinase/Extracellular signal-regulated kinase kinase (MEK) pathway. Altogether, these data suggest SIG-1191 represents a new IPC derivative with anti-inflammatory activity that may also promote increased skin hydration based on its ability to increase AQP3 levels.

  2. Benzodiazepine-induced anxiolysis and reduction of conditioned fear are mediated by distinct GABAA receptor subtypes in mice

    PubMed Central

    Smith, Kiersten S.; Engin, Elif; Meloni, Edward G.; Rudolph, Uwe

    2012-01-01

    GABAA receptor modulating drugs such as benzodiazepines (BZs) have been used to treat anxiety disorders for over five decades. In order to determine whether the same or different GABAA receptor subtypes are necessary for the anxiolytic-like action of BZs in unconditioned anxiety and conditioned fear models, we investigated the role of different GABAA receptor subtypes by challenging wild type, α1(H101R), α2(H101R) and α3(H126R) mice bred on the C57BL/6J background with diazepam or chlordiazepoxide in the elevated plus maze and the fear-potentiated startle paradigms. Both drugs significantly increased open arm exploration in the elevated plus maze in wild type, α1(H101R) and α3(H126R), but this effect was abolished in α2(H101R) mice; these were expected results based on previous published results. In contrast, while administration of diazepam and chlordiazepoxide significantly attenuated fear-potentiated startle (FPS) in wild type mice and α3(H126R) mice, the fear-reducing effects of these drugs were absent in both α1(H101R) and α2(H101R) point mutants, indicating that both α1- and α2-containing GABAA receptors are necessary for BZs to exert their effects on conditioned fear responses.. Our findings illustrate both an overlap and a divergence between the GABAA receptor subtype requirements for the impact of BZs, specifically that both α1- and α2-containing GABAA receptors are necessary for BZs to reduce conditioned fear whereas only α2-containing GABAA receptors are needed for BZ-induced anxiolysis in unconditioned tests of anxiety. This raises the possibility that GABAergic pharmacological interventions for specific anxiety disorders can be differentially tailored. PMID:22465203

  3. Efficacy and Safety of MIN-101: A 12-Week Randomized, Double-Blind, Placebo-Controlled Trial of a New Drug in Development for the Treatment of Negative Symptoms in Schizophrenia.

    PubMed

    Davidson, Michael; Saoud, Jay; Staner, Corinne; Noel, Nadine; Luthringer, Elisabeth; Werner, Sandra; Reilly, Joseph; Schaffhauser, Jean-Yves; Rabinowitz, Jonathan; Weiser, Mark; Luthringer, Remy

    2017-12-01

    The authors assessed the efficacy, safety, and tolerability of MIN-101, a compound with affinities for sigma-2 and 5-HT 2A receptors and no direct dopamine affinities, in comparison with placebo in treating negative symptoms in stabilized patients with schizophrenia. The trial enrolled 244 patients who had been symptomatically stable for at least 3 months and had scores of at least 20 on the negative subscale of the Positive and Negative Syndrome Scale (PANSS). After at least 5 days' withdrawal from all antipsychotic medication, patients were randomly assigned to receive placebo or 32 mg/day or 64 mg/day of MIN-101 for 12 weeks. The primary outcome measure was the PANSS negative factor score (pentagonal structure model). Secondary outcome measures were PANSS total score and scores on the Clinical Global Impressions Scale (CGI), the Brief Negative Symptom Scale, the Brief Assessment of Cognition in Schizophrenia, and the Calgary Depression Scale for Schizophrenia. A statistically significant difference in PANSS negative factor score was observed, with lower scores for the MIN-101 32 mg/day and 64 mg/day groups compared with the placebo group (effect sizes, d=0.45 and d=0.57, respectively). Supporting these findings were similar effects on several of the secondary outcome measures, such as the PANSS negative symptom, total, and activation factor scores, the CGI severity item, and the Brief Negative Symptom Scale. There were no statistically significant differences in PANSS positive scale score between the MIN-101 and placebo groups. No clinically significant changes were observed in vital signs, routine laboratory values, weight, metabolic indices, and Abnormal Involuntary Movement Scale score. MIN-101 demonstrated statistically significant efficacy in reducing negative symptoms and good tolerability in stable schizophrenia patients.

  4. [Modulating expression of key genes within β-carotene synthetic pathway in recombinant Escherichia coli with RBS library to improve β-carotene production].

    PubMed

    Dai, Guanping; Sun, Tao; Miao, Liangtian; Li, Qingyan; Xiao, Dongguang; Zhang, Xueli

    2014-08-01

    β-carotene belongs to carotenoids family, widely applied in pharmaceuticals, neutraceuticals, cosmetics and food industries. In this study, three key genes (dxs, idi, and crt operon) within β-carotene synthetic pathway in recombinant Escherichia coli strain CAR005 were modulated with RBS Library to improve β-carotene production. There were 7%, 11% and 17% increase of β-carotene yield respectively after modulating dxs, idi and crt operon genes with RBS Library, demonstrating that modulating gene expression with regulatory parts libraries would have more opportunities to obtain optimal production of target compound. Combined modulation of crt operon, dxs and idi genes led to 35% increase of β-carotene yield compared to parent strain CAR005. The optimal gene expression strength identified in single gene modulation would not be the optimal strength when used in combined modulation. Our study provides a new strategy for improving production of target compound through modulation of gene expression.

  5. Traumatic Brain Injury: A Guide for Caregivers of Service Members and Veterans

    DTIC Science & Technology

    2010-01-01

    Fracture - Module 1, pages 2, 15, 22, 26...pages 6, 9, 13-16, 20, 22, 25, 27 Skull Fracture - Companion, page 9; Module 1, pages 14-15, 22, 26 Simple Fracture - Module 1, page 15 Compound... Fracture - Module 1, page 15 Depressed Skull Fracture - Module 1, page 15 Basal Skull Fracture - Module 1, page 15 Sleep Changes - Module 2, pages

  6. Real-time compound sonography of the rotator-cuff: evaluation of artefact reduction and image definition.

    PubMed

    De Candia, Alessandro; Doratiotto, Stefsano; Paschina, Elio; Segatto, Enrica; Pelizzo, Francesco; Bazzocchi, Massimo

    2003-04-01

    The aim of this study was to compare real time compound sonography with conventional sonography in the evaluation of rotator cuff tears. A prospective study was performed on 50 supraspinatus tendons in 101 patients treated by surgical acromioplasty. The surgeon described 33 (66%) full-thickness tears and 17 (34%) partial-thickness tears. All tendons were examined by conventional sonography and real time compound sonography on the day before surgery. The techniques were compared by evaluating the images for freedom from artefacts, contrast resolution and overall image definition. Real time compound sonography proved to be superior to conventional sonography as regards freedom from artefacts in 50 cases out of 50 (100%). It was superior to conventional sonography in evaluating the image contrast resolution in 45 cases out of 50 (90%), and superior to conventional sonography in overall image definition in 45 out of 50 cases (90%). Real-time compound sonography reduces the intrinsic artefacts of conventional sonography and allows better overall image definition. In particular, the digital technique allowed us to study the rotator cuff with better contrast resolution and sharper and more detailed images than did conventional sonography.

  7. Genetic interactions between a phospholipase A2 and the Rim101 pathway components in S. cerevisiae reveal a role for this pathway in response to changes in membrane composition and shape

    PubMed Central

    Mattiazzi, M.; Jambhekar, A.; Kaferle, P.; DeRisi, J. L.; Križaj, I.

    2010-01-01

    Modulating composition and shape of biological membranes is an emerging mode of regulation of cellular processes. We investigated the global effects that such perturbations have on a model eukaryotic cell. Phospholipases A2 (PLA2s), enzymes that cleave one fatty acid molecule from membrane phospholipids, exert their biological activities through affecting both membrane composition and shape. We have conducted a genome-wide analysis of cellular effects of a PLA2 in the yeast Saccharomyces cerevisiae as a model system. We demonstrate functional genetic and biochemical interactions between PLA2 activity and the Rim101 signaling pathway in S. cerevisiae. Our results suggest that the composition and/or the shape of the endosomal membrane affect the Rim101 pathway. We describe a genetically and functionally related network, consisting of components of the Rim101 pathway and the prefoldin, retromer and SWR1 complexes, and predict its functional relation to PLA2 activity in a model eukaryotic cell. This study provides a list of the players involved in the global response to changes in membrane composition and shape in a model eukaryotic cell, and further studies are needed to understand the precise molecular mechanisms connecting them. Electronic supplementary material The online version of this article (doi:10.1007/s00438-010-0533-8) contains supplementary material, which is available to authorized users. PMID:20379744

  8. Processing and characterization of device solder interconnection and module attachment for power electronics modules

    NASA Astrophysics Data System (ADS)

    Haque, Shatil

    This research is focused on the processing of an innovative three-dimensional packaging architecture for power electronics building blocks with soldered device interconnections and subsequent characterization of the module's critical interfaces. A low-cost approach termed metal posts interconnected parallel plate structure (MPIPPS) was developed for packaging high-performance modules of power electronics building blocks (PEBB). The new concept implemented direct bonding of copper posts, not wire bonding of fine aluminum wires, to interconnect power devices as well as joining the different circuit planes together. We have demonstrated the feasibility of this packaging approach by constructing PEBB modules (consisting of Insulated Gate Bipolar Transistors (IGBTs), diodes, and a few gate driver elements and passive components). In the 1st phase of module fabrication with IGBTs with Si3N 4 passivation, we had successfully fabricated packaged devices and modules using the MPIPPS technique. These modules were tested electrically and thermally, and they operated at pulse-switch and high power stages up to 6kW. However, in the 2nd phase of module fabrication with polyimide passivated devices, we experienced significant yield problems due to metallization difficulties of these devices. The under-bump metallurgy scheme for the development of a solderable interface involved sputtering of Ti-Ni-Cu and Cr-Cu, and an electroless deposition of Zn-Ni-Au metallization. The metallization process produced excellent yield in the case of Si3N4 passivated devices. However, under the same metallization schemes, devices with a polyimide passivation exhibited inconsistent electrical contact resistance. We found that organic contaminants such as hydrocarbons remain in the form of thin monolayers on the surface, even in the case of as-received devices from the manufacturer. Moreover, in the case of polyimide passivated devices, plasma cleaning introduced a few carbon constituents on the surface, which was not observed in the case of Si3N4 passivated devices. X-Ray Photoelectron Spectroscopy (XPS) Spectra showed evidence of possible carbon contaminants, such as carbide (˜282.9eV) and graphite (˜284.3eV) on the surface at binding energies below the binding energy of the hydrocarbon peak (C 1s at 285eV). Whereas above the hydrocarbon peak energy level, carbon-nitrogen compounds, single bond carbon compounds (˜285.9eV) and double bond carbon compounds (˜288.5eV) were evident. The majority of the carbon composition on the pad surface was associated with hydrocarbons, which were hydrophobic in nature, thus making the device contact pad less wettable. (Abstract shortened by UMI.)

  9. 47 CFR 101.139 - Authorization of transmitters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... assigned frequency in the 890-940 MHz band and has not been certificated, may continue to be used by the... export) or importation of equipment employing digital modulation techniques in the 3700-4200, 5925-6425... equipment for operation in the 21,200-23,600 MHz band must meet: (1) The 0.001% frequency tolerance...

  10. Modulation of T-type Ca2+ channels by Lavender and Rosemary extracts

    PubMed Central

    El Alaoui, Chaymae; Chemin, Jean; Fechtali, Taoufiq

    2017-01-01

    Medicinal plants represent a significant reservoir of unexplored substances for early-stage drug discovery. Of interest, two flowering Mediterranean plants have been used for thousands of years for their beneficial effects on nervous disorders, including anxiety and mood. However, the therapeutic potential of these plants regarding their ability to target ion channels and neuronal excitability remains largely unknown. Towards this goal, we have investigated the ability of Lavender and Rosemary to modulate T-type calcium channels (TTCCs). TTCCs play important roles in neuronal excitability, neuroprotection, sensory processes and sleep. These channels are also involved in epilepsy and pain. Using the whole-cell patch-clamp technique, we have characterized how Lavender and Rosemary extracts, as well as their major active compounds Linalool and Rosmarinic acid, modulate the electrophysiological properties of recombinant TTCCs (CaV3.2) expressed in HEK-293T cells. Both the methanolic and essential oil extracts as well as the active compounds of these plants inhibit Cav3.2 current in a concentration-dependent manner. In addition, these products also induce a negative shift of the steady-state inactivation of CaV3.2 current with no change in the activation properties. Taken together, our findings reveal that TTCCs are a molecular target of the Lavender and Rosemary compounds, suggesting that inhibition of TTCCs could contribute to the anxiolytic and the neuroprotective effects of these plants. PMID:29073181

  11. The structurally related auxin and melatonin tryptophan-derivatives and their roles in Arabidopsis thaliana and in the human malaria parasite Plasmodium falciparum.

    PubMed

    Koyama, Fernanda C; Carvalho, Thais L G; Alves, Eduardo; da Silva, Henrique B; de Azevedo, Mauro F; Hemerly, Adriana S; Garcia, Célia R S

    2013-01-01

    Indole compounds are involved in a range of functions in many organisms. In the human malaria parasite Plasmodium falciparum, melatonin and other tryptophan derivatives are able to modulate its intraerythrocytic cycle, increasing the schizont population as well as parasitemia, likely through ubiquitin-proteasome system (UPS) gene regulation. In plants, melatonin regulates root development, in a similar way to that described for indoleacetic acid, suggesting that melatonin and indoleacetic acid could co-participate in some physiological processes due to structural similarities. In the present work, we evaluate whether the chemical structure similarity found in indoleacetic acid and melatonin can lead to similar effects in Arabidopsis thaliana lateral root formation and P. falciparum cell cycle modulation, as well as in the UPS of gene regulation, by qRT-PCR. Our data show that P. falciparum is not able to respond to indoleacetic acid either in the modulation of the intraerythrocytic cycle or in the gene regulation mediated by the UPS as observed for melatonin. The similarities of these indole compounds are not sufficient to confer synergistic functions in P. falciparum cell cycle modulation, but could interplay in A. thaliana lateral root formation. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.

  12. STS-101 crew poses for a photo at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During a break in Terminal Countdown Demonstration (TCDT) activities, the STS-101 crew poses for a photo at Launch Pad 39A. They are at the 195-foot level of the Fixed Service Structure for emergency egress training. Standing, from left to right, are Mission Specialist James Voss, Commander James D. Halsell Jr., and Mission Specialists Jeffrey N. Williams, Mary Ellen Weber and Yuri Usachev of Russia. Kneeling in front are Pilot Scott J. 'Doc' Horowitz and Mission Specialist Susan J. Helms. Behind them are the white solid rocket booster and orange external tank attached to Space Shuttle Atlantis. The TCDT also includes a simulated launch countdown and familiarization with the payload. During their mission to the International Space Station, the STS- 101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  13. Selenium- and Tellurium-Based Antioxidants for Modulating Inflammation and Effects on Osteoblastic Activity

    PubMed Central

    Lu, Xi; Mestres, Gemma; Singh, Vijay Pal; Effati, Pedram; Poon, Jia-Fei; Engman, Lars; Karlsson Ott, Marjam

    2017-01-01

    Increased oxidative stress plays a significant role in the etiology of bone diseases. Heightened levels of H2O2 disrupt bone homeostasis, leading to greater bone resorption than bone formation. Organochalcogen compounds could act as free radical trapping agents or glutathione peroxidase mimetics, reducing oxidative stress in inflammatory diseases. In this report, we synthesized and screened a library of organoselenium and organotellurium compounds for hydrogen peroxide scavenging activity, using macrophagic cell lines RAW264.7 and THP-1, as well as human mono- and poly-nuclear cells. These cells were stimulated to release H2O2, using phorbol 12-myristate 13-acetate, with and without organochalogens. Released H2O2 was then measured using a chemiluminescent assay over a period of 2 h. The screening identified an organoselenium compound which scavenged H2O2 more effectively than the vitamin E analog, Trolox. We also found that this organoselenium compound protected MC3T3 cells against H2O2-induced toxicity, whereas Trolox did not. The organoselenium compound exhibited no cytotoxicity to the cells and had no deleterious effects on cell proliferation, viability, or alkaline phosphatase activity. The rapidity of H2O2 scavenging and protection suggests that the mechanism of protection is due to the direct scavenging of extracellular H2O2. This compound is a promising modulators of inflammation and could potentially treat diseases involving high levels of oxidative stress. PMID:28216602

  14. Flavonoid Dimers as Bivalent Modulators for Pentamidine and Sodium Stiboglucanate Resistance in Leishmania▿

    PubMed Central

    Wong, Iris L. K.; Chan, Kin-Fai; Burkett, Brendan A.; Zhao, Yunzhe; Chai, Yi; Sun, Hongzhe; Chan, Tak Hang; Chow, Larry M. C.

    2007-01-01

    Drug resistance by overexpression of ATP-binding cassette (ABC) transporters is an impediment in the treatment of leishmaniasis. Flavonoids are known to reverse multidrug resistance (MDR) in Leishmania and mammalian cancers by inhibiting ABC transporters. Here, we found that synthetic flavonoid dimers with three (compound 9c) or four (compound 9d) ethylene glycol units exhibited a significantly higher reversing activity than other shorter or longer ethylene glycol-ligated dimers, with ∼3-fold sensitization of pentamidine and sodium stibogluconate (SSG) resistance in Leishmania, respectively. This modulatory effect was dosage dependent and not observed in apigenin monomers with the linker, suggesting that the modulatory effect is due to its bivalent nature. The mechanism of reversal activity was due to increased intracellular accumulation of pentamidine and total antimony in Leishmania. Compared to other MDR modulators such as verapamil, reserpine, quinine, quinacrine, and quinidine, compounds 9c and 9d were the only agents that can reverse SSG resistance. In terms of reversing pentamidine resistance, 9c and 9d have activities comparable to those of reserpine and quinacrine. Modulators 9c and 9d exhibited reversal activity on pentamidine resistance among LeMDR1−/−, LeMDR1+/+, and LeMDR1-overexpressed mutants, suggesting that these modulators are specific to a non-LeMDR1 pentamidine transporter. The LeMDR1 copy number is inversely related to pentamidine resistance, suggesting that it might be involved in importing pentamidine into the mitochondria. In summary, bivalency could be a useful strategy for the development of more potent ABC transporter modulators and flavonoid dimers represent a promising reversal agent for overcoming pentamidine and SSG resistance in parasite Leishmania. PMID:17194831

  15. A Comparative Analysis of Synthetic Quorum Sensing Modulators in Pseudomonas aeruginosa: New Insights into Mechanism, Active Efflux Susceptibility, Phenotypic Response, and Next-Generation Ligand Design.

    PubMed

    Moore, Joseph D; Rossi, Francis M; Welsh, Michael A; Nyffeler, Kayleigh E; Blackwell, Helen E

    2015-11-25

    Quorum sensing (QS) is a chemical signaling mechanism that allows bacterial populations to coordinate gene expression in response to social and environmental cues. Many bacterial pathogens use QS to initiate infection at high cell densities. Over the past two decades, chemical antagonists of QS in pathogenic bacteria have attracted substantial interest for use both as tools to further elucidate QS mechanisms and, with further development, potential anti-infective agents. Considerable recent research has been devoted to the design of small molecules capable of modulating the LasR QS receptor in the opportunistic pathogen Pseudomonas aeruginosa. These molecules hold significant promise in a range of contexts; however, as most compounds have been developed independently, comparative activity data for these compounds are scarce. Moreover, the mechanisms by which the bulk of these compounds act are largely unknown. This paucity of data has stalled the choice of an optimal chemical scaffold for further advancement. Herein, we submit the best-characterized LasR modulators to standardized cell-based reporter and QS phenotypic assays in P. aeruginosa, and we report the first comprehensive set of comparative LasR activity data for these compounds. Our experiments uncovered multiple interesting mechanistic phenomena (including a potential alternative QS-modulatory ligand binding site/partner) that provide new, and unexpected, insights into the modes by which many of these LasR ligands act. The lead compounds, data trends, and mechanistic insights reported here will significantly aid the design of new small molecule QS inhibitors and activators in P. aeruginosa, and in other bacteria, with enhanced potencies and defined modes of action.

  16. Metabolic and Microbial Modulation of the Large Intestine Ecosystem by Non-Absorbed Diet Phenolic Compounds: A Review.

    PubMed

    Mosele, Juana I; Macià, Alba; Motilva, Maria-José

    2015-09-18

    Phenolic compounds represent a diverse group of phytochemicals whose intake is associated with a wide spectrum of health benefits. As consequence of their low bioavailability, most of them reach the large intestine where, mediated by the action of local microbiota, a series of related microbial metabolites are accumulated. In the present review, gut microbial transformations of non-absorbed phenolic compounds are summarized. Several studies have reached a general consensus that unbalanced diets are associated with undesirable changes in gut metabolism that could be detrimental to intestinal health. In terms of explaining the possible effects of non-absorbed phenolic compounds, we have also gathered information regarded their influence on the local metabolism. For this purpose, a number of issues are discussed. Firstly, we consider the possible implications of phenolic compounds in the metabolism of colonic products, such as short chain fatty acids (SCFA), sterols (cholesterol and bile acids), and microbial products of non-absorbed proteins. Due to their being recognized as affective antioxidant and anti-inflammatory agents, the ability of phenolic compounds to counteract or suppress pro-oxidant and/or pro-inflammatory responses, triggered by bowel diseases, is also presented. The modulation of gut microbiota through dietetic maneuvers including phenolic compounds is also commented on. Although the available data seems to assume positive effects in terms of gut health protection, it is still insufficient for solid conclusions to be extracted, basically due to the lack of human trials to confirm the results obtained by the in vitro and animal studies. We consider that more emphasis should be focused on the study of phenolic compounds, particularly in their microbial metabolites, and their power to influence different aspects of gut health.

  17. STS-101 crew members enjoy a snack before getting ready for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, the STS-101 crew gathers for a snack before suiting up for launch. From left are Mission Specialists Mary Ellen Weber and Yuri Usachev of Russia; Pilot Scott J. Horowitz; Commander James D. Halsell Jr.; and Mission Specialists Jeffrey N. Williams, Susan J. Helms and James S. Voss. The mission will take the crew to the International Space Station to deliver logistics and supplies and prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station.

  18. The application of photovoltaic roof shingles to residential and commercial buildings

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.; Sanchez, L. E.

    1978-01-01

    The recent development of a shingle-type solar-cell module makes it possible to incorporate easily photovoltaic power generation into the sloping roofs of residential or commercial buildings. These modules, which use a closely packed array of nineteen 53-mm-diameter circular solar cells, are capable of producing 101 watts/sq m of module area under standard operating conditions. This module performance is achievable by the use of solar cells with an average efficiency of 13.3 percent at 1 kW/sq m air-mass-1.5 insolation and at a cell temperature of 28 C. When these modules are mounted on a sloping south-facing roof which is insulated on the rear surface, the annual energy generated at the maximum power operating point will vary from 255.6 to 137.3 kWh/sq m of module area depending on the site location, with Albuquerque, NM, and Seattle, WA, representing the highest and lowest values of the thirteen sites considered.

  19. The metabotropic glutamate receptors: structure, activation mechanism and pharmacology.

    PubMed

    Pin, Jean-Philippe; Acher, Francine

    2002-06-01

    The metabotropic glutamate receptors are G-protein coupled receptors (GPCR) involved in the regulation of many synapses, including most glutamatergic fast excitatory synapses. Eight subtypes have been identified that can be classified into three groups. The molecular characterization of these receptors revealed proteins much more complex than any other GPCRs. They are composed of a Venus Flytrap (VFT) module where glutamate binds, connected to a heptahelical domain responsible for G-protein coupling. Recent data including the structure of the VFT module determined with and without glutamate, indicate that these receptors function as dimers. Moreover a number of intracellular proteins can regulate their targeting and transduction mechanism. Such structural features of mGlu receptors offer multiple possibilities for synthetic compounds to modulate their activity. In addition to agonists and competitive antagonists acting at the glutamate binding site, a number of non-competitive antagonists with inverse agonist activity, and positive allosteric modulators have been discovered. These later compounds share specific properties that make them good candidates for therapeutic applications. First, their non-amino acid structure makes them pass more easily the blood brain barrier. Second, they are much more selective than any other compound identified so far, being the first subtype selective molecules. Third, for the negative modulators, their non competitive mechanism of action makes them relatively unaffected by high concentrations of glutamate that may be present in disease states (e.g. stroke, epilepsy, neuropathic pain, etc.). Fourth, like the benzodiazepines acting at the GABA(A) receptors, the positive modulators offer a new way to increase the activity of these receptors in vivo, with a low risk of inducing their desensitization. The present review article focuses on the specific structural features of these receptors and highlights the various possibilities these offer for drug development.

  20. A toxic RNA catalyzes the in cellulo synthesis of its own inhibitor.

    PubMed

    Rzuczek, Suzanne G; Park, HaJeung; Disney, Matthew D

    2014-10-06

    Potent modulators of RNA function can be assembled in cellulo by using the cell as a reaction vessel and a disease-causing RNA as a catalyst. When designing small molecule effectors of function, a balance between permeability and potency must be struck. Low molecular weight compounds are more permeable whereas higher molecular weight compounds are more potent. The advantages of both types of compounds could be synergized if low molecular weight molecules could be transformed into potent, multivalent ligands by a reaction that is catalyzed by binding to a target in cells expressing a genetic defect. It was shown that this approach is indeed viable in cellulo. Small molecule modules with precisely positioned alkyne and azide moieties bind adjacent internal loops in r(CCUG)(exp), the causative agent of myotonic dystrophy type 2 (DM2), and are transformed into oligomeric, potent inhibitors of DM2 RNA dysfunction by a Huisgen 1,3-dipolar cycloaddition reaction, a variant of click chemistry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Mentha spicata L. infusions as sources of antioxidant phenolic compounds: emerging reserve lots with special harvest requirements.

    PubMed

    Rita, Ingride; Pereira, Carla; Barros, Lillian; Santos-Buelga, Celestino; Ferreira, Isabel C F R

    2016-10-12

    Mentha spicata L., commonly known as spearmint, is widely used in both fresh and dry forms, for infusion preparation or in European and Indian cuisines. Recently, with the evolution of the tea market, several novel products with added value are emerging, and the standard lots have evolved to reserve lots, with special harvest requirements that confer them with enhanced organoleptic and sensorial characteristics. The apical leaves of these batches are collected in specific conditions having, then, a different chemical profile. In the present study, standard and reserve lots of M. spicata were assessed in terms of the antioxidants present in infusions prepared from the different lots. The reserve lots presented the highest concentration in all the compounds identified in relation to the standard lots, with 326 and 188 μg mL -1 of total phenolic compounds, respectively. Both types of samples presented rosmarinic acid as the most abundant phenolic compound, at concentrations of 169 and 101 μg mL -1 for reserve and standard lots, respectively. The antioxidant activity was higher in the reserve lots which had the highest total phenolic compounds content, with EC 50 values ranging from 152 to 336 μg mL -1 . The obtained results provide scientific information that may allow the consumer to make a conscientious choice.

  2. Fully digital programmable optical frequency comb generation and application.

    PubMed

    Yan, Xianglei; Zou, Xihua; Pan, Wei; Yan, Lianshan; Azaña, José

    2018-01-15

    We propose a fully digital programmable optical frequency comb (OFC) generation scheme based on binary phase-sampling modulation, wherein an optimized bit sequence is applied to phase modulate a narrow-linewidth light wave. Programming the bit sequence enables us to tune both the comb spacing and comb-line number (i.e., number of comb lines). The programmable OFCs are also characterized by ultra-flat spectral envelope, uniform temporal envelope, and stable bias-free setup. Target OFCs are digitally programmed to have 19, 39, 61, 81, 101, or 201 comb lines and to have a 100, 50, 20, 10, 5, or 1 MHz comb spacing. As a demonstration, a scanning-free temperature sensing system using a proposed OFC with 1001 comb lines was also implemented with a sensitivity of 0.89°C/MHz.

  3. Developing, Implementing, and Evaluating the Educational Module Students Active Learning via Internet Observations (SALIO) in Undergraduate Nursing Education.

    PubMed

    Salzmann-Erikson, Martin; Bjuhr, Marie; Mårtensson, Gunilla

    2017-04-01

    This study aimed not only to describe the development and implementation of the module but also to evaluate the nursing students' perceptions. A cross-sectional design including 101 students who were asked to participate and answer a survey. We describe the development of the pedagogic module Students Active Learning via Internet Observations based on situated learning. The findings show that learning about service users' own lived experiences via web-based platforms was instructive according to the students: 81% agreed to a high or very high degree. Another important finding was that 96% of students responded that the module had clinical relevance for nursing work. We argue that learning that engages students with data that are contextually and culturally situated is important for developing competence in caregiving. © 2015 Wiley Periodicals, Inc.

  4. Effect of lone-electron-pair cations on the orientation of crystallographic shear planes in anion-deficient perovskites.

    PubMed

    Batuk, Dmitry; Batuk, Maria; Abakumov, Artem M; Tsirlin, Alexander A; McCammon, Catherine; Dubrovinsky, Leonid; Hadermann, Joke

    2013-09-03

    Factors affecting the structure and orientation of the crystallographic shear (CS) planes in anion-deficient perovskites were investigated using the (Pb(1-z)Sr(z))(1-x)Fe(1+x)O(3-y) perovskites as a model system. The isovalent substitution of Sr(2+) for Pb(2+) highlights the influence of the A cation electronic structure because these cations exhibit very close ionic radii. Two compositional ranges have been identified in the system: 0.05 ≤ z ≤ 0.2, where the CS plane orientation gradually varies but stays close to (203)p, and 0.3 ≤ z ≤ 0.45 with (101)p CS planes. The incommensurately modulated structure of Pb0.792Sr0.168Fe1.040O2.529 was refined from neutron powder diffraction data using the (3 + 1)D approach (space group X2/m(α0γ), X = (1/2, 1/2, 1/2, 1/2), a = 3.9512(1) Å, b = 3.9483(1) Å, c = 3.9165(1) Å, β = 93.268(2)°, q = 0.0879(1)a* + 0.1276(1)c*, RF = 0.023, RP = 0.029, and T = 900 K). A comparison of the compounds with different CS planes indicates that the orientation of the CS planes is governed mainly by the stereochemical activity of the lone-electron-pair cations inside the perovskite blocks.

  5. Chemical composition and modulation of bacterial drug resistance of the essential oil from leaves of Croton grewioides.

    PubMed

    de Medeiros, Vivianne Marcelino; do Nascimento, Yuri Mangueira; Souto, Augusto Lopes; Madeiro, Sara Alves Lucena; Costa, Vicente Carlos de Oliveira; Silva, Suellen Maria P M; Falcão Silva, Vivyanne Dos Santos; Agra, Maria de Fátima; de Siqueira-Júnior, José Pinto; Tavares, Josean Fechine

    2017-10-01

    The essential oil from leaves of Croton grewioides Baill was obtained by hydrodistillation using Clevenger apparatus, and its chemical composition was analyzed by GC-MS, where 18 compounds were identified, mostly as monoterpenes (55.56%) and sesquiterpenes (44.44%), in which the major constituent was the α-pinene (47.43%). The essential oil of Croton grewioides (EOCg) and its major compound (α-pinene) were evaluated as modulators of antibiotic resistance in strain SA-1199B and IS-58 of Staphylococcus aureus that overexpresses efflux protein. The minimum inhibitory concentrations (MICs) of the antibiotics were determined by the microdilution assay in the absence and in the presence of sub-inhibitory concentration of EOCg and α-pinene. Although the EOCg and α-pinene did not indicate relevant antibacterial activity in vitro, they acted as antibiotic resistance modulators, i.e., EOCg in combination with norfloxacin, reducted its MIC, by 64× whereas in combination with tetracycline it was observed a reduction of 4×. Additionally, it was observed a MIC reduction of tetracycline by 32×, when combined with α-pinene. The results suggest that EOCg and α-pinene modulate or even reverse bacterial resistance as a putative efflux pump inhibitor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Highly selective peroxisome proliferator-activated receptor δ (PPARδ) modulator demonstrates improved safety profile compared to GW501516.

    PubMed

    Lagu, Bharat; Kluge, Arthur F; Goddeeris, Matthew M; Tozzo, Effie; Fredenburg, Ross A; Chellur, Shekar; Senaiar, Ramesh S; Jaleel, Mahaboobi; Babu, D Ravi Krishna; Tiwari, Nirbhay K; Takahashi, Taisuke; Patane, Michael A

    2017-11-04

    Compound 1 regulates significantly fewer genes than the PPARδ modulator, GW501516. Both compounds are efficacious in a thermal injury model of muscle regeneration. The restricted gene profile of 1 relative to GW501516 suggests that 1 may be pharmacoequivalent to GW501516 with fewer PPAR-related safety concerns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Open innovation for phenotypic drug discovery: The PD2 assay panel.

    PubMed

    Lee, Jonathan A; Chu, Shaoyou; Willard, Francis S; Cox, Karen L; Sells Galvin, Rachelle J; Peery, Robert B; Oliver, Sarah E; Oler, Jennifer; Meredith, Tamika D; Heidler, Steven A; Gough, Wendy H; Husain, Saba; Palkowitz, Alan D; Moxham, Christopher M

    2011-07-01

    Phenotypic lead generation strategies seek to identify compounds that modulate complex, physiologically relevant systems, an approach that is complementary to traditional, target-directed strategies. Unlike gene-specific assays, phenotypic assays interrogate multiple molecular targets and signaling pathways in a target "agnostic" fashion, which may reveal novel functions for well-studied proteins and discover new pathways of therapeutic value. Significantly, existing compound libraries may not have sufficient chemical diversity to fully leverage a phenotypic strategy. To address this issue, Eli Lilly and Company launched the Phenotypic Drug Discovery Initiative (PD(2)), a model of open innovation whereby external research groups can submit compounds for testing in a panel of Lilly phenotypic assays. This communication describes the statistical validation, operations, and initial screening results from the first PD(2) assay panel. Analysis of PD(2) submissions indicates that chemical diversity from open source collaborations complements internal sources. Screening results for the first 4691 compounds submitted to PD(2) have confirmed hit rates from 1.6% to 10%, with the majority of active compounds exhibiting acceptable potency and selectivity. Phenotypic lead generation strategies, in conjunction with novel chemical diversity obtained via open-source initiatives such as PD(2), may provide a means to identify compounds that modulate biology by novel mechanisms and expand the innovation potential of drug discovery.

  8. Enhancing perception of contaminated food through acid-mediated modulation of taste neuron responses.

    PubMed

    Chen, Yan; Amrein, Hubert

    2014-09-08

    Natural foods contain not only nutrients, but also nonnutritious and potentially harmful chemicals. Thus, animals need to evaluate food content in order to make adequate feeding decisions. Here, we investigate the effects of acids on the taste neuron responses and on taste behavior of desirable, nutritious sugars and sugar/bitter compound mixtures in Drosophila melanogaster. Using Ca2+ imaging, we show that acids activate neither sweet nor bitter taste neurons in tarsal taste sensilla. However, they suppress responses to bitter compounds in bitter-sensing neurons. Moreover, acids reverse suppression of bitter compounds exerted on sweet-sensing neurons. Consistent with these observations, behavioral analyses show that bitter-compound-mediated inhibition on feeding behavior is alleviated by acids. To investigate the cellular mechanism by which acids modulate these effects, we silenced bitter-sensing gustatory neurons. Surprisingly, this intervention had little effect on acid-mediated derepression of sweet neuron or feeding responses to either sugar/bitter compound mixtures or sugar/bitter compound/acid mixtures, suggesting that there are two independent pathways by which bitter compounds are sensed. Our investigations reveal that acids, when presented in dietary relevant concentrations, enhance the perception of sugar/bitter compound mixtures. Drosophila's natural food sources-fruits and cohabitating yeast-are rich in sugars and acids but are rapidly colonized by microorganisms, such as fungi, protozoan parasites, and bacteria, many of which produce bitter compounds. We propose that the acids present in most fruits counteract the inhibitory effects of these bitter compounds during feeding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Intrinsically High Thermoelectric Performance in AgInSe2 n‐Type Diamond‐Like Compounds

    PubMed Central

    Qiu, Pengfei; Qin, Yuting; Zhang, Qihao; Li, Ruoxi; Song, Qingfeng; Tang, Yunshan; Bai, Shengqiang

    2017-01-01

    Abstract Diamond‐like compounds are a promising class of thermoelectric materials, very suitable for real applications. However, almost all high‐performance diamond‐like thermoelectric materials are p‐type semiconductors. The lack of high‐performance n‐type diamond‐like thermoelectric materials greatly restricts the fabrication of diamond‐like material‐based modules and their real applications. In this work, it is revealed that n‐type AgInSe2 diamond‐like compound has intrinsically high thermoelectric performance with a figure of merit (zT) of 1.1 at 900 K, comparable to the best p‐type diamond‐like thermoelectric materials reported before. Such high zT is mainly due to the ultralow lattice thermal conductivity, which is fundamentally limited by the low‐frequency Ag‐Se “cluster vibrations,” as confirmed by ab initio lattice dynamic calculations. Doping Cd at Ag sites significantly improves the thermoelectric performance in the low and medium temperature ranges. By using such high‐performance n‐type AgInSe2‐based compounds, the diamond‐like thermoelectric module has been fabricated for the first time. An output power of 0.06 W under a temperature difference of 520 K between the two ends of the module is obtained. This work opens a new window for the applications using the diamond‐like thermoelectric materials. PMID:29593972

  10. Riluzole activates TRPC5 channels independently of PLC activity

    PubMed Central

    Richter, Julia M; Schaefer, Michael; Hill, Kerstin

    2014-01-01

    BACKGROUND AND PURPOSE The transient receptor potential channel C5 (TRPC5) is a Ca2+-permeable cation channel, which is predominantly expressed in the brain. TRPC5 is activated in a PLC-dependent manner by, as yet, unidentified endogenous messengers. Recently, modulators of TRPC5, like Ca2+, pH and phospholipids, have been identified. However, the role of TRPC5 in vivo is only poorly understood. Novel specific modulators of TRPC5 might help to elucidate its function. EXPERIMENTAL APPROACH Novel modulators of TRPC5 were identified in a compound screening of approved drugs and natural compounds. The potency and selectivity of TRPC5-activating compounds were determined by fluorometric calcium imaging. The biophysical properties of channel activation by these compounds were analysed using electrophysiological measurements. KEY RESULTS Riluzole was identified as a novel activator of TRPC5 (EC50 9.2 ± 0.5 μM) and its mechanism of action was shown to be independent of G protein signalling and PLC activity. Riluzole-induced TRPC5 currents were potentiated by La3+ and, utilizing TRPC5 mutants that lack La3+ binding sites, it was confirmed that riluzole and La3+ activate TRPC5 by different mechanisms. Recordings of excised inside-out patches revealed a relatively direct effect of riluzole on TRPC5. CONCLUSIONS AND IMPLICATIONS Riluzole can activate TRPC5 heterologously expressed in HEK293 cells as well as those endogenously expressed in the U-87 glioblastoma cell line. Riluzole does not activate any other member of the TRPC family and could, therefore, despite its action on other ion channels, be a useful pharmacological tool for identifying TRPC5-specific currents in immortalized cell lines or in acutely isolated primary cells. PMID:24117252

  11. VIBRATING PERVAPORATION MODULES: EFFECT OF MODULE DESIGN ON PERFORMANCE

    EPA Science Inventory

    A third commercial-scale vibrating pervaporation membrane module was fabricated and evaluated for the separation of volatile organic compounds (VOCs) from aqueous solutions. Experiments with surrogate solutions of four hydrophobic VOCs (1,1,1-trichloroethane (TCA), trichloroethy...

  12. Therapeutic androgen receptor ligands

    PubMed Central

    Allan, George F.; Sui, Zhihua

    2003-01-01

    In the past several years, the concept of tissue-selective nuclear receptor ligands has emerged. This concept has come to fruition with estrogens, with the successful marketing of drugs such as raloxifene. The discovery of raloxifene and other selective estrogen receptor modulators (SERMs) has raised the possibility of generating selective compounds for other pathways, including androgens (that is, selective androgen receptor modulators, or SARMs). PMID:16604181

  13. Negative Allosteric Modulators Selective for The NR2B Subtype of The NMDA Receptor Impair Cognition in Multiple Domains

    PubMed Central

    Weed, Michael R; Bookbinder, Mark; Polino, Joseph; Keavy, Deborah; Cardinal, Rudolf N; Simmermacher-Mayer, Jean; Cometa, Fu-ni L; King, Dalton; Thangathirupathy, Srinivasan; Macor, John E; Bristow, Linda J

    2016-01-01

    Antidepressant activity of N-methyl-D-aspartate (NMDA) receptor antagonists and negative allosteric modulators (NAMs) has led to increased investigation of their behavioral pharmacology. NMDA antagonists, such as ketamine, impair cognition in multiple species and in multiple cognitive domains. However, studies with NR2B subtype-selective NAMs have reported mixed results in rodents including increased impulsivity, no effect on cognition, impairment or even improvement of some cognitive tasks. To date, the effects of NR2B-selective NAMs on cognitive tests have not been reported in nonhuman primates. The current study evaluated two selective NR2B NAMs, CP101,606 and BMT-108908, along with the nonselective NMDA antagonists, ketamine and AZD6765, in the nonhuman primate Cambridge Neuropsychological Test Automated Battery (CANTAB) list-based delayed match to sample (list-DMS) task. Ketamine and the two NMDA NR2B NAMs produced selective impairments in memory in the list-DMS task. AZD6765 impaired performance in a non-specific manner. In a separate cohort, CP101,606 impaired performance of the nonhuman primate CANTAB visuo-spatial Paired Associates Learning (vsPAL) task with a selective impairment at more difficult conditions. The results of these studies clearly show that systemic administration of a selective NR2B NAM can cause transient cognitive impairment in multiple cognitive domains. PMID:26105137

  14. Identification of the Benzyloxyphenyl Pharmacophore: A Structural Unit That Promotes Sodium Channel Slow Inactivation

    PubMed Central

    2012-01-01

    Four compounds that contained the N-benzyl 2-amino-3-methoxypropionamide unit were evaluated for their ability to modulate Na+ currents in catecholamine A differentiated CAD neuronal cells. The compounds differed by the absence or presence of either a terminal N-acetyl group or a (3-fluoro)benzyloxy moiety positioned at the 4′-benzylamide site. Analysis of whole-cell patch-clamp electrophysiology data showed that the incorporation of the (3-fluoro)benzyloxy unit, to give the (3-fluoro)benzyloxyphenyl pharmacophore, dramatically enhanced the magnitude of Na+ channel slow inactivation. In addition, N-acetylation markedly increased the stereoselectivity for Na+ channel slow inactivation. Furthermore, we observed that Na+ channel frequency (use)-dependent block was maintained upon inclusion of this pharmacophore. Confirmation of the importance of the (3-fluoro)benzyloxyphenyl pharmacophore was shown by examining compounds where the N-benzyl 2-amino-3-methoxypropionamide unit was replaced by a N-benzyl 2-amino-3-methylpropionamide moiety, as well as examining a series of compounds that did not contain an amino acid group but retained the pharmacophore unit. Collectively, the data indicated that the (3-fluoro)benzyloxyphenyl unit is a novel pharmacophore for the modulation of Na+ currents. PMID:23259039

  15. Structure-activity relationships of substituted N-benzyl piperidines in the GBR series: Synthesis of 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-1-(2-trifluoromethylbenzyl)piperidine, an allosteric modulator of the serotonin transporter.

    PubMed

    Boos, Terrence L; Greiner, Elisabeth; Calhoun, W Jason; Prisinzano, Thomas E; Nightingale, Barbara; Dersch, Christina M; Rothman, Richard B; Jacobson, Arthur E; Rice, Kenner C

    2006-06-01

    A series of 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-(substituted benzyl) piperidines with substituents at the ortho and meta positions in the aromatic ring of the N-benzyl side chain were synthesized and their affinities and selectivities for the dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET) were determined. One analogue, 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-1-(2-trifluoromethylbenzyl)piperidine (the C(2)-trifluoromethyl substituted compound), has been found to act as an allosteric modulator of hSERT binding and function. It had little affinity for any of the transporters. Several compounds showed affinity for the DAT in the low nanomolar range and displayed a broad range of SERT/DAT selectivity ratios and very little affinity for the NET. The pharmacological tools provided by the availability of compounds with varying transporter affinity and selectivity could be used to obtain additional information about the properties a compound should have to act as a useful pharmacotherapeutic agent for cocaine addiction and help unravel the pharmacological mechanisms relevant to stimulant abuse.

  16. [Chemical constituents of leaves of Psidium guajava].

    PubMed

    Shao, Meng; Wang, Ying; Jian, Yu-Qing; Sun, Xue-Gang; Huang, Xiao-Jun; Zhang, Xiao-Qi; Ye, Wen-Cai

    2014-03-01

    To study the chemical constituents of the 95% ethanol extract of Psidium guajava. Compounds were separated by using a combination of various chromatographic methods including silica gel, D101 macroporous resin, ODS, Sephadex LH-20 and preparative HPLC. Their structures were elucidated by physicochemical properties and spectral data Eighteen compounds were isolated and identified as (+) -globulol (1), clovane-2beta, 9alpha-diol (2), 2beta-acetoxyclovan-9alpha-ol (3), (+) -caryolane-1 ,9beta-diol (4), ent-T-muurolol (5), clov-2-ene-9alpha-ol (6), isophytol (7), tamarixetin (8), gossypetin (9), quercetin (10), kaempferol (11), guajaverin (12), avicularin (13), chrysin 6-C-glucoside (14), 3'-O-methyl-3, 4-methylenedioxyellagic acid 4'-O-beta-D-glucopyranoside (15), p-hydroxy-benzoic acid (16), guavinoside A (17) and guavinoside B (18). Compounds 2-9 and 14-16 were isolated from this plant for the first time. The ethanol extract showed 61.3% inhibition against the proliferation of colon cancer cell line SW480.

  17. SAHA-based novel HDAC inhibitor design by core hopping method.

    PubMed

    Zang, Lan-Lan; Wang, Xue-Jiao; Li, Xiao-Bo; Wang, Shu-Qing; Xu, Wei-Ren; Xie, Xian-Bin; Cheng, Xian-Chao; Ma, Huan; Wang, Run-Ling

    2014-11-01

    The catalytic activity of the histone deacetylase (HDAC) is directly relevant to the pathogenesis of cancer, and HDAC inhibitors represented a promising strategy for cancer therapy. SAHA (suberoanilide hydroxamic acid), an effective HDAC inhibitor, is an anti-cancer agent against T-cell lymphoma. However, SAHA has adverse effects such as poor pharmacokinetic properties and severe toxicities in clinical use. In order to identify better HDAC inhibitors, a compound database was established by core hopping of SAHA, which was then docked into HDAC-8 (PDB ID: 1T69) active site to select a number of candidates with higher docking score and better interaction with catalytic zinc ion. Further ADMET prediction was done to give ten compounds. Molecular dynamics simulation of the representative compound 101 was performed to study the stability of HDAC8-inhibitor system. This work provided an approach to design novel high-efficiency HDAC inhibitors with better ADMET properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Identification of new drug candidates against Borrelia burgdorferi using high-throughput screening.

    PubMed

    Pothineni, Venkata Raveendra; Wagh, Dhananjay; Babar, Mustafeez Mujtaba; Inayathullah, Mohammed; Solow-Cordero, David; Kim, Kwang-Min; Samineni, Aneesh V; Parekh, Mansi B; Tayebi, Lobat; Rajadas, Jayakumar

    2016-01-01

    Lyme disease is the most common zoonotic bacterial disease in North America. It is estimated that >300,000 cases per annum are reported in USA alone. A total of 10%-20% of patients who have been treated with antibiotic therapy report the recrudescence of symptoms, such as muscle and joint pain, psychosocial and cognitive difficulties, and generalized fatigue. This condition is referred to as posttreatment Lyme disease syndrome. While there is no evidence for the presence of viable infectious organisms in individuals with posttreatment Lyme disease syndrome, some researchers found surviving Borrelia burgdorferi population in rodents and primates even after antibiotic treatment. Although such observations need more ratification, there is unmet need for developing the therapeutic agents that focus on removing the persisting bacterial form of B. burgdorferi in rodent and nonhuman primates. For this purpose, high-throughput screening was done using BacTiter-Glo assay for four compound libraries to identify candidates that stop the growth of B. burgdorferi in vitro. The four chemical libraries containing 4,366 compounds (80% Food and Drug Administration [FDA] approved) that were screened are Library of Pharmacologically Active Compounds (LOPAC1280), the National Institutes of Health Clinical Collection, the Microsource Spectrum, and the Biomol FDA. We subsequently identified 150 unique compounds, which inhibited >90% of B. burgdorferi growth at a concentration of <25 µM. These 150 unique compounds comprise many safe antibiotics, chemical compounds, and also small molecules from plant sources. Of the 150 unique compounds, 101 compounds are FDA approved. We selected the top 20 FDA-approved molecules based on safety and potency and studied their minimum inhibitory concentration and minimum bactericidal concentration. The promising safe FDA-approved candidates that show low minimum inhibitory concentration and minimum bactericidal concentration values can be chosen as lead molecules for further advanced studies.

  19. Chromatogram-Bioactivity Correlation-Based Discovery and Identification of Three Bioactive Compounds Affecting Endothelial Function in Ginkgo Biloba Extract.

    PubMed

    Liu, Hong; Tan, Li-Ping; Huang, Xin; Liao, Yi-Qiu; Zhang, Wei-Jian; Li, Pei-Bo; Wang, Yong-Gang; Peng, Wei; Wu, Zhong; Su, Wei-Wei; Yao, Hong-Liang

    2018-05-03

    Discovery and identification of three bioactive compounds affecting endothelial function in Ginkgo biloba Extract (GBE) based on chromatogram-bioactivity correlation analysis. Three portions were separated from GBE via D101 macroporous resin and then re-combined to prepare nine GBE samples. 21 compounds in GBE samples were identified through UFLC-DAD-Q-TOF-MS/MS. Correlation analysis between compounds differences and endothelin-1 (ET-1) in vivo in nine GBE samples was conducted. The analysis results indicated that three bioactive compounds had close relevance to ET-1: Kaempferol-3- O -α-l-glucoside, 3- O -{2- O -{6- O -[P-OH-trans-cinnamoyl]-β-d-glucosyl}-α-rhamnosyl} Quercetin isomers, and 3- O -{2- O -{6- O -[P-OH-trans-cinnamoyl]-β-d-glucosyl}-α-rhamnosyl} Kaempferide. The discovery of bioactive compounds could provide references for the quality control and novel pharmaceuticals development of GRE. The present work proposes a feasible chromatogram-bioactivity correlation based approach to discover the compounds and define their bioactivities for the complex multi-component systems.

  20. Initial characterization of a low-molecular-weight factor enhancing the checkpoint response.

    PubMed

    Fan, Xiaoxiang; Cheong, Nge; Iliakis, George

    2010-10-01

    In higher eukaryotes, DNA double-strand breaks (DSBs) induced by ionizing radiation activate checkpoints that delay progression through the cell cycle. Compared to delays in other phases of the cell cycle, delays induced in G(2) are longer and frequently correlate with resistance to killing by radiation. Therefore, modulation of the G(2) checkpoint offers a means to modulate cellular radiosensitivity. Although compounds are known that reduce the G(2) checkpoint and act as radiosensitizers, compounds enhancing this checkpoint have not been reported. Here we summarize evidence for a factor with such properties. We show that a highly radioresistant rat embryo fibroblast (REF) cell line displays a strong G(2) checkpoint partly as a result of a factor excreted into the growth medium by nonirradiated cells. Various tests indicate that this G(2)-arrest modulating activity (GAMA) is a small molecule showing detectable retention only after passing through filters with a molecular weight cutoff limit of less than 1,000 Da. GAMA is heat stable and resistant to treatment with proteases or nucleases. Electroelution tests show that GAMA is uncharged at neutral pH, a result that is in agreement with the observed failure to bind S- or Q-Sepharose. Investigations on the mechanism of GAMA function indicate ligand-receptor interactions and allow the classification of cells as producers, responders or both. Compounds with properties such as those of GAMA bridge intercellular communication with the DNA damage response and may function as radioprotectors.

  1. JPRS Report, Science & Technology, Japan, 4th Intelligent Robots Symposium, Volume 1

    DTIC Science & Technology

    1989-03-16

    Iikura, et al. , "System Study of Japan Experimental Module Manipulator System," the Third Space Station Lecture Meeting, 1987, pp 49-50. 6. Iwata...and Honma, "Requirement of Functions of OSV," the Third Space Station Lecture Meeting, 1987, pp 101-102. 7. K. Yamada, K. Tsuchiya, and S. Tadakawa

  2. Topological Quantum Information in a 3D Neutral Atom Array

    DTIC Science & Technology

    2015-01-02

    being only weakly in the Lamb-Dicke Figure 1: Projection sideband cooling. The pink curves show the (from left to right) Δn=+1,0,-1 and-2 transitions...45 154012 (2012). 4. C. Knoernschild, T. Kim, P. Maunz, S. G. Crain, and J. Kim, “Stable optical phase modulation with micromirrors ,” Opt. Express

  3. Antimonide-Based Compound Semiconductors for Low-Power Electronics

    DTIC Science & Technology

    2013-01-01

    A, Madan HS, Kirk AP, Zhao DA, Mourey DA, Hudait MK, et al. Fermi level unpinning of GaSb (100) using plasma enhanced atomic layer deposition of...et al. Atomic layer deposition of Al2O3 on GaSb using in situ hydrogen plasma exposure. Appl Phys Lett. 2012;101: 231601. [18] Ali A, Madan H

  4. Effects of homocysteine and its related compounds on oxygen consumption of the rat heart tissue homogenate: the role of different gasotransmitters.

    PubMed

    Uzelac, Jovana Jakovljević; Stanić, Marina; Krstić, Danijela; Čolović, Mirjana; Djurić, Dragan

    2017-11-29

    The objective of this study was to investigate in vitro effects of 10 µM DL-homocysteine (DL-Hcy), DL-homocysteine thiolactone-hydrochloride (DL-Hcy TLHC), and L-homocysteine thiolactone-hydrochloride (L-Hcy TLHC) on the oxygen consumption of rat heart tissue homogenate, as well as the involvement of the gasotransmitters NO, H 2 S and CO in the effects of the most toxic homocysteine compound, DL-Hcy TLHC. The possible contribution of the gasotransmitters in these effects was estimated by using the appropriate inhibitors of their synthesis (N ω -nitro-L-arginine methyl ester (L-NAME), DL-propargylglycine (DL-PAG), and zinc protoporphyrin IX (ZnPPR IX), respectively). The oxygen consumption of rat heart tissue homogenate was measured by Clark/type oxygen electrode in the absence and presence of the investigated compounds. All three homocysteine-based compounds caused a similar decrease in the oxygen consumption rate compared to control: 15.19 ± 4.01%, 12.42 ± 1.01%, and 16.43 ± 4.52% for DL-Hcy, DL-Hcy TLHC, or L-Hcy TLHC, respectively. All applied inhibitors of gasotransmitter synthesis also decreased the oxygen consumption rate of tissue homogenate related to control: 13.53 ± 1.35% for L-NAME (30 µM), 5.32 ± 1.23% for DL-PAG (10 µM), and 5.56 ± 1.39% for ZnPPR IX (10 µM). Simultaneous effect of L-NAME (30 µM) or ZnPPR IX (10 µM) with DL-Hcy TLHC (10 µM) caused a larger decrease of oxygen consumption compared to each of the substances individually. However, when DL-PAG (10 µM) was applied together with DL-Hcy TLHC (10 µM), it attenuated the effect of DL-Hcy TLHC from 12.42 ± 1.01 to 9.22 ± 1.58%. In conclusion, cardiotoxicity induced by Hcy-related compounds, which was shown in our previous research, could result from the inhibition of the oxygen consumption, and might be mediated by the certain gasotransmitters.

  5. Seaweed and human health.

    PubMed

    Brown, Emma S; Allsopp, Philip J; Magee, Pamela J; Gill, Chris I R; Nitecki, Sonja; Strain, Conall R; McSorley, Emeir M

    2014-03-01

    Seaweeds may have an important role in modulating chronic disease. Rich in unique bioactive compounds not present in terrestrial food sources, including different proteins (lectins, phycobiliproteins, peptides, and amino acids), polyphenols, and polysaccharides, seaweeds are a novel source of compounds with potential to be exploited in human health applications. Purported benefits include antiviral, anticancer, and anticoagulant properties as well as the ability to modulate gut health and risk factors for obesity and diabetes. Though the majority of studies have been performed in cell and animal models, there is evidence of the beneficial effect of seaweed and seaweed components on markers of human health and disease status. This review is the first to critically evaluate these human studies, aiming to draw attention to gaps in current knowledge, which will aid the planning and implementation of future studies.

  6. Photo-degradation of 2,4-dinitroanisole (DNAN): An emerging munitions compound.

    PubMed

    Taylor, Susan; Walsh, Marianne E; Becher, Julie B; Ringelberg, David B; Mannes, Philip Z; Gribble, Gordon W

    2017-01-01

    The US military is developing insensitive munitions (IM) that are less sensitive to shock and high temperatures to minimize unintentional detonations. DNAN (2,4-dinitroanisole) is one of the main ingredients of these IM formulations. During live-fire training, chunks of IM formulations are scattered by partial detonations and, once on the soil, they weather and dissolve. DNAN changes color when exposed to sunlight suggesting that it photodegrades into other compounds. We investigated the photo-degradation of DNAN both as a pure solid and as part of solid IM formulations, IMX101, IMX104 and PAX21. The concentrations of degradation products found were small, <1%, relative to DNAN concentrations. We saw transient peaks in the chromatograms indicating intermediate, unstable products but we consistently found methoxy nitrophenols and methoxy nitroanilines. We also found one unknown in most of the samples and other unknowns less frequently. Published by Elsevier Ltd.

  7. Improved Thermal Modulator for Gas Chromatography

    NASA Technical Reports Server (NTRS)

    Hasselbrink, Ernest Frederick, Jr.; Hunt, Patrick J.; Sacks, Richard D.

    2008-01-01

    An improved thermal modulator has been invented for use in a variant of gas chromatography (GC). The variant in question denoted as two-dimensional gas chromatography (2DGC) or GC-GC involves the use of three series-connected chromatographic columns, in the form of capillary tubes coated interiorly with suitable stationary phases (compounds for which different analytes exhibit different degrees of affinity). The two end columns are relatively long and are used as standard GC columns. The thermal modulator includes the middle column, which is relatively short and is not used as a standard GC column: instead, its temperature is modulated to affect timed adsorption and desorption of analyte gases between the two end columns in accordance with a 2DGC protocol.

  8. Anthocyanins as inflammatory modulators and the role of the gut microbiota.

    PubMed

    Morais, Carina Almeida; de Rosso, Veridiana Vera; Estadella, Débora; Pisani, Luciana Pellegrini

    2016-07-01

    The health benefits of consuming fruits that are rich in polyphenols, especially anthocyanins, have been the focus of recent in vitro and in vivo investigations. Thus, greater attention is being directed to the reduction of the inflammatory process associated with the intestinal microbiota and the mechanism underlying these effects because the microbiota has been closely associated with the metabolism of these compounds in the gastrointestinal tract. Further interest lies in the ability of these metabolites to modulate the growth of specific intestinal bacteria. Thus, this review examines studies involving the action of the anthocyanins that are present in many fruits and their effect in the modulating the inflammatory process associated with the interaction between the host and the gut microbiota. The findings of both in vitro and in vivo studies suggest a potential antiinflammatory effect of these compounds, which seem to inhibit activation of the signaling pathway mediated by the transcription factor NFκB. This effect is associated with modulation of a beneficial gut microbiota, particularly an increase in Bifidobacterium strains. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Resistance-modifying Activity in Vinblastine-resistant Human Breast Cancer Cells by Oligosaccharides Obtained from Mucilage of Chia Seeds (Salvia hispanica).

    PubMed

    Rosas-Ramírez, Daniel G; Fragoso-Serrano, Mabel; Escandón-Rivera, Sonia; Vargas-Ramírez, Alba L; Reyes-Grajeda, Juan P; Soriano-García, Manuel

    2017-06-01

    The multidrug resistance (MDR) phenotype is considered as a major cause of the failure in cancer chemotherapy. The acquisition of MDR is usually mediated by the overexpression of drug efflux pumps of a P-glycoprotein. The development of compounds that mitigate the MDR phenotype by modulating the activity of these transport proteins is an important yet elusive target. Here, we screened the saponification and enzymatic degradation products from Salvia hispanica seed's mucilage to discover modulating compounds of the acquired resistance to chemotherapeutic in breast cancer cells. Preparative-scale recycling HPLC was used to purify the hydrolysis degradation products. All compounds were tested in eight different cancer cell lines and Vero cells. All compounds were noncytotoxic at the concentration tested against the drug-sensitive and multidrug-resistant cells (IC 50  > 29.2 μM). For the all products, a moderate vinblastine-enhancing activity from 4.55-fold to 6.82-fold was observed. That could be significant from a therapeutic perspective. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Dietary phenolic compounds selectively inhibit the individual subunits of maltase-glucoamylase and sucrase-isomaltase with the potential of modulating glucose release.

    PubMed

    Simsek, Meric; Quezada-Calvillo, Roberto; Ferruzzi, Mario G; Nichols, Buford L; Hamaker, Bruce R

    2015-04-22

    In this study, it was hypothesized that dietary phenolic compounds selectively inhibit the individual C- and N-terminal (Ct, Nt) subunits of the two small intestinal α-glucosidases, maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI), for a modulated glycemic carbohydrate digestion. The inhibition by chlorogenic acid, caffeic acid, gallic acid, (+)-catechin, and (-)-epigallocatechin gallate (EGCG) on individual recombinant human Nt-MGAM and Nt-SI and on mouse Ct-MGAM and Ct-SI was assayed using maltose as the substrate. Inhibition constants, inhibition mechanisms, and IC50 values for each combination of phenolic compound and enzymatic subunit were determined. EGCG and chlorogenic acid were found to be more potent inhibitors for selectively inhibiting the two subunits with highest activity, Ct-MGAM and Ct-SI. All compounds displayed noncompetitive type inhibition. Inhibition of fast-digesting Ct-MGAM and Ct-SI by EGCG and chlorogenic acid could lead to a slow, but complete, digestion of starch for improved glycemic response of starchy foods with potential health benefit.

  11. An interferon-beta promoter reporter assay for high throughput identification of compounds against multiple RNA viruses.

    PubMed

    Guo, Fang; Zhao, Xuesen; Gill, Tina; Zhou, Yan; Campagna, Matthew; Wang, Lijuan; Liu, Fei; Zhang, Pinghu; DiPaolo, Laura; Du, Yanming; Xu, Xiaodong; Jiang, Dong; Wei, Lai; Cuconati, Andrea; Block, Timothy M; Guo, Ju-Tao; Chang, Jinhong

    2014-07-01

    Virus infection of host cells is sensed by innate pattern recognition receptors (PRRs) and induces production of type I interferons (IFNs) and other inflammatory cytokines. These cytokines orchestrate the elimination of the viruses but are occasionally detrimental to the hosts. The outcomes and pathogenesis of viral infection are largely determined by the specific interaction between the viruses and their host cells. Therefore, compounds that either inhibit viral infection or modulate virus-induced cytokine response should be considered as candidates for managing virus infection. The aim of the study was to identify compounds in both categories, using a single cell-based assay. Our screening platform is a HEK293 cell-based reporter assay where the expression of a firefly luciferase is under the control of a human IFN-β promoter. We have demonstrated that infection of the reporter cell line with a panel of RNA viruses activated the reporter gene expression that correlates quantitatively with the levels of virus replication and progeny virus production, and could be inhibited in a dose-dependent manner by known antiviral compound or inhibitors of PRR signal transduction pathways. Using Dengue virus as an example, a pilot screening of a small molecule library consisting of 26,900 compounds proved the concept that the IFN-β promoter reporter assay can serve as a convenient high throughput screening platform for simultaneous discovery of antiviral and innate immune response modulating compounds. A representative antiviral compound from the pilot screening, 1-(6-ethoxybenzo[d]thiazol-2-yl)-3-(3-methoxyphenyl) urea, was demonstrated to specifically inhibit several viruses belonging to the family of flaviviridae. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Novel PI3K/Akt Inhibitors Screened by the Cytoprotective Function of Human Immunodeficiency Virus Type 1 Tat

    PubMed Central

    Kim, Dong-Hyun; Kim, Baek

    2011-01-01

    The PI3K/Akt pathway regulates various stress-related cellular responses such as cell survival, cell proliferation, metabolism and protein synthesis. Many cancer cell types display the activation of this pathway, and compounds inhibiting this cell survival pathway have been extensively evaluated as anti-cancer agents. In addition to cancers, several human viruses, such as HTLV, HPV, HCV and HIV-1, also modulate this pathway, presumably in order to extend the life span of the infected target cells for productive viral replication. The expression of HIV-1 Tat protein exhibited the cytoprotective effect in macrophages and a human microglial cell line by inhibiting the negative regulator of this pathway, PTEN. This cytoprotective effect of HIV-1 appears to contribute to the long-term survival and persistent HIV-1 production in human macrophage reservoirs. In this study we exploited the PI3K/Akt dependent cytoprotective effect of Tat-expressing CHME5 cells. We screened a collection of compounds known to modulate inflammation, and identified three novel compounds: Lancemaside A, Compound K and Arctigenin that abolished the cytoprotective phenotype of Tat-expressing CHME5 cells. All three compounds antagonized the kinase activity of Akt. Further detailed signaling studies revealed that each of these three compounds targeted different steps of the PI3K/Akt pathway. Arctigenin regulates the upstream PI3K enzyme from converting PIP2 to PIP3. Lancemaside A1 inhibited the movement of Akt to the plasma membrane, a critical step for Akt activation. Compound K inhibited Akt phosphorylation. This study supports that Tat-expressing CHME5 cells are an effective model system for screening novel PI3K/Akt inhibitors. PMID:21765914

  13. Antinociceptive effects of HUF-101, a fluorinated cannabidiol derivative.

    PubMed

    Silva, Nicole R; Gomes, Felipe V; Fonseca, Miriam D; Mechoulam, Raphael; Breuer, Aviva; Cunha, Thiago M; Guimarães, Francisco S

    2017-10-03

    Cannabidiol (CBD) is a phytocannabinoid with multiple pharmacological effects and several potential therapeutic properties. Its low oral bioavailability, however, can limit its clinical use. Preliminary results indicate that fluorination of the CBD molecule increases its pharmacological potency. Here, we investigated whether HUF-101 (3, 10, and 30mg/kg), a fluorinated CBD analogue, would induce antinociceptive effects. HUF-101 effects were compared to those induced by CBD (10, 30, and 90mg/kg) and the cannabinoid CB 1/2 receptor agonist WIN55,212-2 (1, 3, and 5mg/kg). These drugs were tested in male Swiss mice submitted to the following models predictive to antinociceptive drugs: hot plate, acetic acid-induced writhing, and carrageenan-induced inflammatory hyperalgesia. To evaluate the involvement of CB 1 and CB 2 receptors in HUF-101 and CBD effects, mice received the CB 1 receptor antagonist AM251 (1 or 3mg/kg) or the CB 2 receptor antagonist AM630 (1 or 3mg/kg) 30min before HUF-101, CBD, or WIN55,212-2. In the hot plate test, HUF-101 (30mg/kg) and WIN55,212-2 (5mg/kg) induced antinociceptive effects, which were attenuated by the pretreatment with AM251 and AM630. In the abdominal writhing test, CBD (30 and 90mg/kg), HUF-101 (30mg/kg), and WIN55,212-2 (3 and 5mg/kg) induced antinociceptive effects indicated by a reduction in the number of writhing. Whereas the pretreatment with AM630 did not mitigate the effects induced by any drug in this test, the pretreatment with AM251 attenuated the effect caused by WIN55,212-2. In the carrageenan-induced hyperalgesia test, CBD (30 and 90mg/kg), HUF-101 (3, 10 and 30mg/kg) and WIN55,212-2 (1mg/kg) decreased the intensity of mechanical hyperalgesia measured by the electronic von Frey method. The effects of all compounds were attenuated by the pretreatment with AM251 and AM630. Additionally, we evaluated whether HUF-101 would induce the classic cannabinoid CB 1 receptor-mediated tetrad (hypolocomotion, catalepsy, hypothermia, and antinociception). Unlike WIN55,212-2, CBD and HUF-101 did not induce the cannabinoid tetrad. These findings show that HUF-101 produced antinociceptive effects at lower doses than CBD, indicating that the addition of fluoride improved its pharmacological profile. Furthermore, some of the antinociceptive effects of CBD and HUF-101 effects seem to involve the activation of CB 1 and CB 2 receptors. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol

    PubMed Central

    2012-01-01

    Background Glycerol has enhanced its biotechnological importance since it is a byproduct of biodiesel synthesis. A study of Escherichia coli physiology during growth on glycerol was performed combining transcriptional-proteomic analysis as well as kinetic and stoichiometric evaluations in the strain JM101 and certain derivatives with important inactivated genes. Results Transcriptional and proteomic analysis of metabolic central genes of strain JM101 growing on glycerol, revealed important changes not only in the synthesis of MglB, LamB and MalE proteins, but also in the overexpression of carbon scavenging genes: lamB, malE, mglB, mglC, galP and glk and some members of the RpoS regulon (pfkA, pfkB, fbaA, fbaB, pgi, poxB, acs, actP and acnA). Inactivation of rpoS had an important effect on stoichiometric parameters and growth adaptation on glycerol. The observed overexpression of poxB, pta, acs genes, glyoxylate shunt genes (aceA, aceB, glcB and glcC) and actP, suggested a possible carbon flux deviation into the PoxB, Acs and glyoxylate shunt. In this scenario acetate synthesized from pyruvate with PoxB was apparently reutilized via Acs and the glyoxylate shunt enzymes. In agreement, no acetate was detected when growing on glycerol, this strain was also capable of glycerol and acetate coutilization when growing in mineral media and derivatives carrying inactivated poxB or pckA genes, accumulated acetate. Tryptophanase A (TnaA) was synthesized at high levels and indole was produced by this enzyme, in strain JM101 growing on glycerol. Additionally, in the isogenic derivative with the inactivated tnaA gene, no indole was detected and acetate and lactate were accumulated. A high efficiency aromatic compounds production capability was detected in JM101 carrying pJLBaroGfbrtktA, when growing on glycerol, as compared to glucose. Conclusions The overexpression of several carbon scavenging, acetate metabolism genes and the absence of acetate accumulation occurred in JM101 cultures growing on glycerol. To explain these results it is proposed that in addition to the glycolytic metabolism, a gluconeogenic carbon recycling process that involves acetate is occurring simultaneously in this strain when growing on glycerol. Carbon flux from glycerol can be efficiently redirected in JM101 strain into the aromatic pathway using appropriate tools. PMID:22513097

  15. CFTR modulates RPS27 gene expression using chloride anion as signaling effector.

    PubMed

    Valdivieso, Ángel G; Mori, Consuelo; Clauzure, Mariángeles; Massip-Copiz, Macarena; Santa-Coloma, Tomás A

    2017-11-01

    In Cystic Fibrosis (CF), the impairment of the CFTR channel activity leads to a variety of alterations, including differential gene expression. However, the CFTR signaling mechanisms remain unclear. Recently, culturing IB3-1 CF cells under different intracellular Cl - concentrations ([Cl - ] i ), we observed several Cl - -dependent genes and further characterized one of them as RPS27. Thus, we hypothesized that Cl - might act as a signaling effector for CFTR signaling. Here, to test this idea, we study RPS27 expression in T84 cells modulating the CFTR activity by using CFTR inhibitors. First, we observed that incubation of T84 cells with increasing concentrations of the CFTR inhibitors CFTR(inh)-172 or GlyH-101 determined a progressive increase in the relative [Cl - ] i (using the Cl - fluorescent probe SPQ). The [Cl - ] i rise was concomitant with a dose-dependent down-regulation of RPS27. These results imply that CFTR inhibition produce Cl - accumulation and that RPS27 expression can be modulated by CFTR inhibition. Therefore, Cl - behaves as a signaling effector for CFTR in the modulation of RPS27 expression. In addition, the IL-1β receptor antagonist IL1RN or the JNK inhibitor SP600125, both restored the down-regulation of RPS27 induced by CFTRinh-172, implying a role of autocrine IL-1β and JNK signaling downstream of Cl - in RPS27 modulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Avco Lycoming QCGAT program design cycle, demonstrated performance and emissions

    NASA Technical Reports Server (NTRS)

    Fogel, P.; Koschier, A.

    1980-01-01

    A high bypass ratio, twin spool turbofan engine of modular design which incorporates a front fan module driven by a modified LTS101 core engine was tested. The engine is housed in a nacelle incorporating full length fan ducting with sound treatment in both the inlet and fan discharge flow paths. Design goals of components and results of component tests are presented together with full engine test results. The rationale behind the combustor design selected for the engine is presented as well as the emissions test results. Total system (engine and nacelle) test results are included.

  17. Highly oxygenated bisabolenes and an acetylene from Matricaria aurea.

    PubMed

    Ahmed, A A; Abou Elela, M

    1999-06-01

    Reinvestigation of the aerial parts of Matricaria aurea led to the isolation of three new bisabolenes and a new acetylene. The structures of the four compounds, namely (1R*,2R*,3R*,6R*,7R*)1,2,3,6,7- pentahydroxy-bisabol-10(11)-ene, (1R*,2R*,3R*,6R*,7R*)1,2,3,6,7-pentahydroxy-1-acetoxy-bisabol-10(1 1)-ene, (1R*,2R*,3R*,6R*,7R*)1,2,3,6,7-pentahydroxy-2-acetoxy-bisabol-10(1 1)-ene and (3S*,4S*,5R*)-(E)-3,4-dihydroxy-2-(hexa-2,4-diynyliden)-1,6- dioxaspiro-(4,5)decane, were deduced from the high field NMR studies.

  18. KSC-07pd3206

    NASA Image and Video Library

    2007-11-07

    KENNEDY SPACE CENTER, FLA. -- (From left) NASA Administrator Michael Griffin, NASA Assistant Administrator for Public Affairs David Mould and NASA Space Shuttle Manager Wayne Hale watch as the space shuttle Discovery comes in for landing at NASA's Kennedy Space Center, Fla., completing the 15-day, STS-120 mission to the International Space Station. Discovery landed at 1:01 p.m. EST Wednesday after a mission that included on-orbit construction of the station with the installation of the Harmony Node 2 module and the relocation of the P6 truss. Photo credit: NASA/Bill Ingalls

  19. Mass Spectral Studies of 1-(2-Chloroethoxy)-2-[(2-chloroethyl)thio] Ethane and Related Compounds Using Gas ChromatographyMass Spectrometry and Gas ChromatographyTriple-Quadrupole Mass Spectrometry

    DTIC Science & Technology

    2016-02-01

    NOTES 14. ABSTRACT: The electron impact and collision-induced- dissociation mass spectra of 1-(2-chloroethoxy)-2-[(2-chloroethyl)thio] ethane and 10...Collision-ion dissociation (CID) Triple-quadrupole mass spectrometry (QQQ) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...ratio, 10:1), and a 1.0 µL volume of sample was placed on the column. Nitrogen was used as the collision gas for the collision-induced dissociation (CID

  20. Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization

    NASA Astrophysics Data System (ADS)

    Seko, Atsuto; Togo, Atsushi; Hayashi, Hiroyuki; Tsuda, Koji; Chaput, Laurent; Tanaka, Isao

    2015-11-01

    Compounds of low lattice thermal conductivity (LTC) are essential for seeking thermoelectric materials with high conversion efficiency. Some strategies have been used to decrease LTC. However, such trials have yielded successes only within a limited exploration space. Here, we report the virtual screening of a library containing 54 779 compounds. Our strategy is to search the library through Bayesian optimization using for the initial data the LTC obtained from first-principles anharmonic lattice-dynamics calculations for a set of 101 compounds. We discovered 221 materials with very low LTC. Two of them even have an electronic band gap <1 eV , which makes them exceptional candidates for thermoelectric applications. In addition to those newly discovered thermoelectric materials, the present strategy is believed to be powerful for many other applications in which the chemistry of materials is required to be optimized.

  1. Identification of small molecule Hes1 modulators as potential anticancer chemotherapeutics.

    PubMed

    Sail, Vibhavari; Hadden, M Kyle

    2013-03-01

    Hes1 is a key transcriptional regulator primarily controlled by the Notch signaling pathway, and recent studies have demonstrated both an oncogenic and tumor suppressor role for Hes1, depending on the cell type. Small molecules that activate and inhibit Hes1 activity hold promise as future anticancer chemotherapeutics. We have utilized a cell-based dual luciferase assay to identify modulators of Hes1 expression in a medium-throughput format. A modest screen was performed in HCT-116 colon cancer cell lines, and two small molecules were identified and characterized as Hes1 regulators. Compound 3 induced Hes1 expression and exhibited anticancer effects in pulmonary carcinoid tumor cells, a cell type in which the upregulated Notch/Hes1 signaling plays a tumor suppressive role. Treatment of HCT-116 cells with compound 12 resulted in Hes1 downregulation and antitumor effects. © 2012 John Wiley & Sons A/S.

  2. Palytoxins and cytoskeleton: An overview.

    PubMed

    Louzao, M Carmen; Ares, Isabel R; Cagide, Eva; Espiña, Begoña; Vilariño, Natalia; Alfonso, Amparo; Vieytes, Mercedes R; Botana, Luis M

    2011-03-01

    Cytoskeleton is a dynamic structure essential for a wide variety of normal cellular processes, including the maintenance of cell shape and morphology, volume regulation, membrane dynamics and signal transduction. Cytoskeleton is organized into microtubules, actin meshwork and intermediate filaments. Actin has been identified as a major target for destruction during apoptosis and is also important under pathological conditions such as cancers. Several natural compounds actively modulate actin organization by specific signaling cascades being useful tools to study cytoskeleton dynamics. Palytoxin is a large bioactive compound, first isolated from zoanthids, with a complex structure and different analogs such as ostreocin-D or ovatoxin-a. This toxin has been identified as a potent tumor promoter and cytotoxic molecule, which leads to actin filament distortion and triggers cell death or apoptosis. In this review we report the findings on the involvement of palytoxin and analogues modulating the actin cytoskeleton within different cellular models. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Modulation of miR-203 and its regulators as a function of time during the development of 7, 12 dimethylbenz [a] anthracene induced mouse skin tumors in presence or absence of the antitumor agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Prakash; Gupta, Krishna P., E-mail: krishnag522@yahoo.co.in

    2014-07-15

    We investigated the chemopreventive effects of naturally occurring compounds like butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG) individually or in combination in 7, 12-dimethylbenz [a] anthracene (DMBA) treated mouse skin at 4 and 16 weeks, the time before and after the tumor development. DMBA application did not show any skin tumors at 4 weeks but well defined tumors appeared at 16 weeks. BA, NA or CAG prevented the tumor development significantly but the protection was highly enhanced when all these compounds were given together. In order to see the molecular changes progressing with tumors, we showed the downregulationmore » of tumor suppressor miR-203 at 16 weeks and upregulation of histone deacetylases (HDAC), DNA methyltransferase, promoter methylation of miR-203 at 4 or 16 weeks. Regulators of micro RNA biogenesis such as DICER1 and Ago2 were also deregulated by DMBA. Proto-oncogene c-myc and BMI1 were upregulated and tumor suppressor gene p16 was downregulated by DMBA as a function of time. Effects of BA, NA or CAG were more pronounced after 16 weeks as compared to 4 weeks in preventing the tumor development and altered gene expression. Concomitant administration of BA, NA and CAG tried to prevent these alterations more effectively than that of individual compound possibly by regulating miR-203 status through epigenetic or biogenetic modulations before and after the tumor development. Study provides a rationale for chemoprevention by combination of different compounds targeting miR-203. - Highlights: • DMBA modulates miR-203 and its regulator before and after the onset of tumors. • Suppression of miR-203 and p16 could be the result of gene promoter methylation. • BA, NA or CAG prevents the effects of DMBA. • Combination of BA, NA or CAG is more effective in preventing the DMBA modulations.« less

  4. AMPK modulatory activity of olive-tree leaves phenolic compounds: Bioassay-guided isolation on adipocyte model and in silico approach.

    PubMed

    Jiménez-Sánchez, Cecilia; Olivares-Vicente, Mariló; Rodríguez-Pérez, Celia; Herranz-López, María; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto; Encinar, José Antonio; Micol, Vicente

    2017-01-01

    Olive-tree polyphenols have demonstrated potential for the management of obesity-related pathologies. We aimed to explore the capacity of Olive-tree leaves extract to modulate triglyceride accumulation and AMP-activated protein kinase activity (AMPK) on a hypertrophic adipocyte model. Intracellular triglycerides and AMPK activity were measured on the hypertrophic 3T3-L1 adipocyte model by AdipoRed and immunofluorescence microscopy, respectively. Reverse phase high performance liquid chromatography coupled to time-of-flight mass detection with electrospray ionization (RP-HPLC-ESI-TOF/MS) was used for the fractionation of the extract and the identification of the compounds. In-silico molecular docking of the AMPK alpha-2, beta and gamma subunits with the identified compounds was performed. Olive-tree leaves extract decreased the intracellular lipid accumulation through AMPK-dependent mechanisms in hypertrophic adipocytes. Secoiridoids, cinnamic acids, phenylethanoids and phenylpropanoids, flavonoids and lignans were the candidates predicted to account for this effect. Molecular docking revealed that some compounds may be AMPK-gamma modulators. The modulatory effects of compounds over the alpha and beta AMPK subunits appear to be less probable. Olive-tree leaves polyphenols modulate AMPK activity, which may become a therapeutic aid in the management of obesity-associated disturbances. The natural occurrence of these compounds may have important nutritional implications for the design of functional ingredients.

  5. AMPK modulatory activity of olive–tree leaves phenolic compounds: Bioassay-guided isolation on adipocyte model and in silico approach

    PubMed Central

    Jiménez-Sánchez, Cecilia; Olivares-Vicente, Mariló; Rodríguez-Pérez, Celia; Herranz-López, María; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto; Encinar, José Antonio; Micol, Vicente

    2017-01-01

    Scope Olive-tree polyphenols have demonstrated potential for the management of obesity-related pathologies. We aimed to explore the capacity of Olive-tree leaves extract to modulate triglyceride accumulation and AMP-activated protein kinase activity (AMPK) on a hypertrophic adipocyte model. Methods Intracellular triglycerides and AMPK activity were measured on the hypertrophic 3T3-L1 adipocyte model by AdipoRed and immunofluorescence microscopy, respectively. Reverse phase high performance liquid chromatography coupled to time-of-flight mass detection with electrospray ionization (RP-HPLC-ESI-TOF/MS) was used for the fractionation of the extract and the identification of the compounds. In-silico molecular docking of the AMPK alpha-2, beta and gamma subunits with the identified compounds was performed. Results Olive-tree leaves extract decreased the intracellular lipid accumulation through AMPK-dependent mechanisms in hypertrophic adipocytes. Secoiridoids, cinnamic acids, phenylethanoids and phenylpropanoids, flavonoids and lignans were the candidates predicted to account for this effect. Molecular docking revealed that some compounds may be AMPK-gamma modulators. The modulatory effects of compounds over the alpha and beta AMPK subunits appear to be less probable. Conclusions Olive-tree leaves polyphenols modulate AMPK activity, which may become a therapeutic aid in the management of obesity-associated disturbances. The natural occurrence of these compounds may have important nutritional implications for the design of functional ingredients. PMID:28278224

  6. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models.

    PubMed

    Schur, Rebecca M; Gao, Songqi; Yu, Guanping; Chen, Yu; Maeda, Akiko; Palczewski, Krzysztof; Lu, Zheng-Rong

    2018-01-24

    No clinically approved therapies are currently available that prevent the onset of photoreceptor death in retinal degeneration. Signaling between retinal neurons is regulated by the release and uptake of neurotransmitters, wherein GABA is the main inhibitory neurotransmitter. In this work, novel 3-chloropropiophenone derivatives and the clinical anticonvulsants tiagabine and vigabatrin were tested to modulate GABA signaling and protect against light-induced retinal degeneration. Abca4 -/- Rdh8 -/- mice, an accelerated model of retinal degeneration, were exposed to intense light after prophylactic injections of one of these compounds. Imaging and functional assessments of the retina indicated that these compounds successfully protected photoreceptor cells from degeneration to maintain a full-visual-field response. Furthermore, these compounds demonstrated a strong safety profile in wild-type mice and did not compromise visual function or damage the retina, despite repeated administration. These results indicate that modulating inhibitory GABA signaling can offer prophylactic protection against light-induced retinal degeneration.-Schur, R. M., Gao, S., Yu, G., Chen, Y., Maeda, A., Palczewski, K., Lu, Z.-R. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models.

  7. Workers begin removing PDU from STS-101 Atlantis

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Technicians at Launch Pad 39A begin removing thermal blankets and panels from a site near the tail of Space Shuttle Atlantis in order to reach the power drive unit (PDU) inside. The PDU controls the rudder/speed brake on the orbiter. From left to right are Mark Noel, Bob Wright and Tod Biddle, with United Space Alliance. Shuttle managers decided to replace the faulty PDU, about the size of an office copy machine, at the launch pad. If successful, launch preparations will continue as planned, with liftoff targeted for April 24 at 4:15 p.m. on mission STS-101. The mission is the third assembly flight for the International Space Station, carrying logistics and supplies to the Space Station, plus the crew will be preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station.

  8. STS-101: Crew Activity Report / Flight Day 6

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The primary mission objective for STS-101 was to deliver supplies to the International Space Station, perform a space walk, and reboost the station from 230 statute miles to 250 statute miles. The commander of this mission was, James D. Halsell. The crew was Scott J. Horowitz, the pilot, and mission specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev. This videotape shows the activities of the sixth day of the flight. The videotape begins with a shot of the Space Station. The narrator remarks that the transfer of supplies and equipment is continuing and the videotape shows the replacing of fans and smoke detectors. There is a group picture on board the station, after which a few questions were asked. The quality of the air inside the station is remarked on as being good. The quality of the air being a concern and one of the reasons for the mission. One of the new batteries was shown being installed in the Zarya Control Module.

  9. Protection of Historical Wood against Microbial Degradation-Selection and Application of Microbiocides.

    PubMed

    Koziróg, Anna; Rajkowska, Katarzyna; Otlewska, Anna; Piotrowska, Małgorzata; Kunicka-Styczyńska, Alina; Brycki, Bogumił; Nowicka-Krawczyk, Paulina; Kościelniak, Marta; Gutarowska, Beata

    2016-08-22

    The aim of this study was to select effective and safe microbiocides for the disinfection and protection of historical wooden surfaces at the former Auschwitz II-Birkenau concentration and extermination camp. We tested seven active compounds against bacteria and moulds, of which didecyldimethylammonium chloride and N-(3-aminopropyl)-N-dodecylpropane-1,3-diamine were effective even at 0.02%-2%. Subsequently, eight microbiocides containing the selected active ingredients were chosen and applied three times on the surface of wood samples colonized by bacteria and moulds. ABM-1 and ABM-2-6% solution; Rocima 101-8%; Preventol R 80-12%; Acticide 706 LV-15% and Boramon-30% were the most effective disinfectants. Under laboratory conditions, ABM-1, Boramon and Rocima 101 ensured antimicrobial protection of new wood samples for six months. In situ, 30% Boramon and 8% Rocima 101 applied by spraying effectively protected the historical wood from bacterial and mould growth for 12 and 3 months, respectively. Colour and luminance of the new wood were not altered after exposure to the biocides. Boramon and Rocima 101, applied by the spraying method, caused no significant change in the colour of the historical wood. Results from this study were used to develop a procedure for the protection of wood in historical buildings against biodeterioration.

  10. Protection of Historical Wood against Microbial Degradation—Selection and Application of Microbiocides

    PubMed Central

    Koziróg, Anna; Rajkowska, Katarzyna; Otlewska, Anna; Piotrowska, Małgorzata; Kunicka-Styczyńska, Alina; Brycki, Bogumił; Nowicka-Krawczyk, Paulina; Kościelniak, Marta; Gutarowska, Beata

    2016-01-01

    The aim of this study was to select effective and safe microbiocides for the disinfection and protection of historical wooden surfaces at the former Auschwitz II-Birkenau concentration and extermination camp. We tested seven active compounds against bacteria and moulds, of which didecyldimethylammonium chloride and N-(3-aminopropyl)-N-dodecylpropane-1,3-diamine were effective even at 0.02%–2%. Subsequently, eight microbiocides containing the selected active ingredients were chosen and applied three times on the surface of wood samples colonized by bacteria and moulds. ABM-1 and ABM-2—6% solution; Rocima 101—8%; Preventol R 80—12%; Acticide 706 LV—15% and Boramon—30% were the most effective disinfectants. Under laboratory conditions, ABM-1, Boramon and Rocima 101 ensured antimicrobial protection of new wood samples for six months. In situ, 30% Boramon and 8% Rocima 101 applied by spraying effectively protected the historical wood from bacterial and mould growth for 12 and 3 months, respectively. Colour and luminance of the new wood were not altered after exposure to the biocides. Boramon and Rocima 101, applied by the spraying method, caused no significant change in the colour of the historical wood. Results from this study were used to develop a procedure for the protection of wood in historical buildings against biodeterioration. PMID:27556450

  11. Combination of cheminformatics and bioinformatics to explore the chemical basis of the rhizomes and aerial parts of Dioscorea nipponica Makino.

    PubMed

    Li, Xu-Zhao; Zhang, Shuai-Nan; Yang, Xu-Yan

    2017-12-01

    This study was aimed to explore the chemical basis of the rhizomes and aerial parts of Dioscorea nipponica Makino (DN). The pharmacokinetic profiles of the compounds from DN were calculated via ACD/I-Lab and PreADMET program. Their potential therapeutic and toxicity targets were screened through the DrugBank's or T3DB's ChemQuery structure search. Eleven of 48 compounds in the rhizomes and over half of the compounds in the aerial parts had moderate or good human oral bioavailability. Twenty-three of 48 compounds in the rhizomes and 40/43 compounds from the aerial parts had moderate or good permeability to intestinal cells. Forty-three of 48 compounds from the rhizomes and 18/43 compounds in the aerial parts bound weakly to the plasma proteins. Eleven of 48 compounds in the rhizomes and 36/43 compounds of the aerial parts might pass across the blood-brain barrier. Forty-three 48 compounds in the rhizomes and 18/43 compounds from the aerial parts showed low renal excretion ability. The compounds in the rhizomes possessed 391 potential therapeutic targets and 216 potential toxicity targets. Additionally, the compounds from the aerial parts possessed 101 potential therapeutic targets and 183 potential toxicity targets. These findings indicated that combination of cheminformatics and bioinformatics may facilitate achieving the objectives of this study. © 2017 Royal Pharmaceutical Society.

  12. Antimutagenic Compounds of White Shrimp (Litopenaeus vannamei): Isolation and Structural Elucidation

    PubMed Central

    López-Saiz, Carmen-María; Hernández, Javier; Cinco-Moroyoqui, Francisco-Javier; Velázquez, Carlos; Ocaño-Higuera, Víctor-Manuel; Plascencia-Jatomea, Maribel; Robles-Sánchez, Maribel; Machi-Lara, Lorena; Burgos-Hernández, Armando

    2016-01-01

    According to the World Health Organization, cancer is the main cause of mortality worldwide; thus, the search of chemopreventive compounds to prevent the disease has become a priority. White shrimp (Litopenaeus vannamei) has been reported as a source of compounds with chemopreventive activities. In this study, shrimp lipids were extracted and then fractionated in order to isolate those compounds responsible for the antimutagenic activity. The antimutagenic activity was assessed by the inhibition of the mutagenic effect of aflatoxin B1 on TA98 and TA100 Salmonella tester strains using the Ames test. Methanolic fraction was responsible for the highest antimutagenic activity (95.6 and 95.9% for TA98 and TA100, resp.) and was further separated into fifteen different subfractions (M1–M15). Fraction M8 exerted the highest inhibition of AFB1 mutation (96.5 and 101.6% for TA98 and TA100, resp.) and, after further fractionation, four subfractions M8a, M8b, M8c, and M8d were obtained. Data from 1H and 13C NMR, and mass spectrometry analysis of fraction M8a (the one with the highest antimutagenic activity), suggest that the compound responsible for its antimutagenicity is an apocarotenoid. PMID:27006678

  13. Cation–cation interactions and cation exchange in a series of isostructural framework uranyl tungstates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balboni, Enrica; Burns, Peter C., E-mail: pburns@nd.edu; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556

    2014-05-01

    The isotypical compounds (UO{sub 2}){sub 3}(WO{sub 6})(H{sub 2}O){sub 5} (1), Ag(UO{sub 2}){sub 3}(WO{sub 6})(OH)(H{sub 2}O){sub 3} (2), K(UO{sub 2}){sub 3}(WO{sub 6})OH(H{sub 2}O){sub 4} (3), Rb(UO{sub 2}){sub 3}(WO{sub 6})(OH)(H{sub 2}O){sub 3.5} (4), and Cs(UO{sub 2}){sub 3}(WO{sub 6})OH(H{sub 2}O){sub 3} (5) were synthesized, characterized, and their structures determined. Each crystallizes in space group Cc. (1): a=12.979 (3), b=10.238 (2), c=11.302 (2), β=102.044 (2); (2): a=13.148 (2), b=9.520 (1), c=11.083 (2), β=101.568 (2); (3): a=13.111 (8), b=9.930 (6), c=11.242 (7), β=101.024 (7); (4): a=12.940 (2), b=10.231 (2), c=11.259(2), β=102.205 (2); (5): a=12.983 (3), b=10.191 (3), c=11.263 (4), β=101.661 (4). Compounds 1–5 are amore » framework of uranyl and tungsten polyhedra containing cation–cation interactions. The framework has three symmetrically distinct U(VI) cations, one tungsten, sixteen to eighteen oxygen atoms, and in 2–5, one monovalent cation. Each atom occupies a general position. Each U(VI) cation is present as a typical (UO{sub 2}){sup 2+} uranyl ion in an overall pentagonal bipyramidal coordination environment. Each pentagonal bipyramid shares two equatorial edges with two other pentagonal bipyramids, forming a trimer. Trimers are connected into chains by edge-sharing with WO{sub 6} octahedra. Chains are linked through cation–cation interactions between two symmetrically independent uranyl ions. This yields a remarkably complex system of intersecting channels that extend along [0 0 1] and [−1 1 0]. The cation exchange properties of 2 and 3 were characterized at room temperature and at 140 °C. - Graphical abstract: Chains of uranium and tungsten polyhedra are connected into a three dimensional framework by cation–cation interactions occurring between two symmetrically independent uranyl pentagonal bipyramids. Monovalent cations present in channels within the structure can be exchanged by room temperature or mild hydrothermal treatments. The framework of these compounds is robust to cation exchange and heat. (yellow polyhedra=uranium pentagonal bipyramids; blue polyhedra=tungsten octahedral, purple balls=K; yellow balls=Na; grey balls=Tl). - Highlights: • Five isostructural uranyl tungstates compounds were synthesized hydrothermally. • The structures consist of a chains of uranium and tungstate polyhedral. • Chains are connected into a framework by cation–cation interactions. • Cation exchange does not alter the structural integrity of the compounds. • Cation exchange was successful at room temperature and mild hydrothermal conditions.« less

  14. Half-Heusler (TiZrHf)NiSn Unileg Module with High Powder Density.

    PubMed

    Populoh, Sascha; Brunko, Oliver C; Gałązka, Krzysztof; Xie, Wenjie; Weidenkaff, Anke

    2013-03-27

    (TiZrHf)NiSn half-Heusler compounds were prepared by arc melting and their thermoelectric properties characterized in the temperature range between 325 K and 857 K, resulting in a Figure of Merit ZT ≈ 0.45. Furthermore, the prepared samples were used to construct a unileg module. This module was characterized in a homemade thermoelectric module measurement stand and yielded 275 mW/cm² and a maximum volumetric power density of 700 mW/cm³. This was reached using normal silver paint as a contacting material; from an improved contacting, much higher power yields are to be expected.

  15. Half-Heusler (TiZrHf)NiSn Unileg Module with High Powder Density

    PubMed Central

    Populoh, Sascha; Brunko, Oliver C.; Gałązka, Krzysztof; Xie, Wenjie; Weidenkaff, Anke

    2013-01-01

    (TiZrHf)NiSn half-Heusler compounds were prepared by arc melting and their thermoelectric properties characterized in the temperature range between 325 K and 857 K, resulting in a Figure of Merit ZT ≈ 0.45. Furthermore, the prepared samples were used to construct a unileg module. This module was characterized in a homemade thermoelectric module measurement stand and yielded 275 mW/cm2 and a maximum volumetric power density of 700 mW/cm3. This was reached using normal silver paint as a contacting material; from an improved contacting, much higher power yields are to be expected. PMID:28809212

  16. Centella asiatica attenuates Aβ – induced neurodegenerative spine loss and dendritic simplification

    PubMed Central

    Gray, Nora E; Zweig, Jonathan A; Murchison, Charles; Caruso, Maya; Matthews, Donald G; Kawamoto, Colleen; Harris, Christopher J; Quinn, Joseph F; Soumyanath, Amala

    2017-01-01

    The medicinal plant Centella asiatica has long been used to improve memory and cognitive function. We have previously shown that a water extract from the plant (CAW) is neuroprotective against the deleterious cognitive effects of amyloid-β (Aβ) exposure in a mouse model of Alzheimer’s disease, and improves learning and memory in healthy aged mice as well. This study explores the physiological underpinnings of those effects by examining how CAW, as well as chemical compounds found within the extract, modulate synaptic health in Aβ-exposed neurons. Hippocampal neurons from amyloid precursor protein over-expressing Tg2576 mice and their wild-type (WT) littermates were used to investigate the effect of CAW and various compounds found within the extract on Aβ-induced dendritic simplification and synaptic loss. CAW enhanced arborization and spine densities in WT neurons and prevented the diminished outgrowth of dendrites and loss of spines caused by Aβ exposure in Tg2576 neurons. Triterpene compounds present in CAW were found to similarly improve arborization although they did not affect spine density. In contrast caffeoylquinic acid (CQA) compounds from CAW were able to modulate both of these endpoints, although there was specificity as to which CQAs mediated which effect. These data suggest that CAW, and several of the compounds found therein, can improve dendritic arborization and synaptic differentiation in the context of Aβ exposure which may underlie the cognitive improvement observed in response to the extract in vivo. Additionally, since CAW, and its constituent compounds, also improved these endpoints in WT neurons, these results may point to a broader therapeutic utility of the extract beyond Alzheimer’s disease. PMID:28279707

  17. Synthesis and Evaluation of N-phenyl-3-sulfamoyl-benzamide Derivatives as Capsid Assembly Modulators inhibiting Hepatitis B Virus (HBV).

    PubMed

    Vandyck, Koen; Rombouts, Geert; Stoops, Bart; Tahri, Abdellah; Vos, Ann; Verschueren, Wim; Wu, Yiming; Yang, Jingmei; Hou, Fuliang; Huang, Bing; Vergauwen, Karen; Dehertogh, Pascale; Berke, Jan-Martin; Raboisson, Pierre Jean Marie Bernard

    2018-06-15

    Small molecule induced Hepatitis B virus (HBV) capsid assembly modulation is considered an attractive approach for new antiviral therapies against HBV. Here we describe efforts towards the discovery of a HBV capsid assembly modulator in a hit-to-lead optimization, resulting in JNJ-632, a tool compound used to further profile the mode of action. Administration of JNJ-632 (54) in HBV genotype D infected chimeric mice, resulted in a 2.77 log reduction of the HBV DNA viral load.

  18. Structure-Based Approach To Identify 5-[4-Hydroxyphenyl]pyrrole-2-carbonitrile Derivatives as Potent and Tissue Selective Androgen Receptor Modulators.

    PubMed

    Unwalla, Ray; Mousseau, James J; Fadeyi, Olugbeminiyi O; Choi, Chulho; Parris, Kevin; Hu, Baihua; Kenney, Thomas; Chippari, Susan; McNally, Christopher; Vishwanathan, Karthick; Kilbourne, Edward; Thompson, Catherine; Nagpal, Sunil; Wrobel, Jay; Yudt, Matthew; Morris, Carl A; Powell, Dennis; Gilbert, Adam M; Chekler, Eugene L Piatnitski

    2017-07-27

    In an effort to find new and safer treatments for osteoporosis and frailty, we describe a novel series of selective androgen receptor modulators (SARMs). Using a structure-based approach, we identified compound 7, a potent AR (ARE EC 50 = 0.34 nM) and selective (N/C interaction EC 50 = 1206 nM) modulator. In vivo data, an AR LBD X-ray structure of 7, and further insights from modeling studies of ligand receptor interactions are also presented.

  19. Diversity, Novelty, and Antimicrobial Activity of Endophytic Actinobacteria From Mangrove Plants in Beilun Estuary National Nature Reserve of Guangxi, China.

    PubMed

    Jiang, Zhong-Ke; Tuo, Li; Huang, Da-Lin; Osterman, Ilya A; Tyurin, Anton P; Liu, Shao-Wei; Lukyanov, Dmitry A; Sergiev, Petr V; Dontsova, Olga A; Korshun, Vladimir A; Li, Fei-Na; Sun, Cheng-Hang

    2018-01-01

    Endophytic actinobacteria are one of the important pharmaceutical resources and well known for producing different types of bioactive substances. Nevertheless, detection of the novelty, diversity, and bioactivity on endophytic actinobacteria isolated from mangrove plants are scarce. In this study, five different mangrove plants, Avicennia marina, Aegiceras corniculatum, Kandelia obovota, Bruguiera gymnorrhiza , and Thespesia populnea , were collected from Beilun Estuary National Nature Reserve in Guangxi Zhuang Autonomous Region, China. A total of 101 endophytic actinobacteria strains were recovered by culture-based approaches. They distributed in 7 orders, 15 families, and 28 genera including Streptomyces, Curtobacterium, Mycobacterium, Micrococcus, Brevibacterium, Kocuria, Nocardioides, Kineococcus, Kytococcus, Marmoricola, Microbacterium, Micromonospora, Actinoplanes, Agrococcus, Amnibacterium, Brachybacterium, Citricoccus, Dermacoccus, Glutamicibacter, Gordonia, Isoptericola, Janibacter, Leucobacter, Nocardia, Nocardiopsis, Pseudokineococcus, Sanguibacter , and Verrucosispora . Among them, seven strains were potentially new species of genera Nocardioides, Streptomyces, Amnibacterium, Marmoricola , and Mycobacterium . Above all, strain 8BXZ-J1 has already been characterized as a new species of the genus Marmoricola . A total of 63 out of 101 strains were chosen to screen antibacterial activities by paper-disk diffusion method and inhibitors of ribosome and DNA biosynthesis by means of a double fluorescent protein reporter. A total of 31 strains exhibited positive results in at least one antibacterial assay. Notably, strain 8BXZ-J1 and three other potential novel species, 7BMP-1, 5BQP-J3, and 1BXZ-J1, all showed antibacterial bioactivity. In addition, 21 strains showed inhibitory activities against at least one "ESKAPE" resistant pathogens. We also found that Streptomyces strains 2BBP-J2 and 1BBP-1 produce bioactive compound with inhibitory activity on protein biosynthesis as result of translation stalling. Meanwhile, Streptomyces strain 3BQP-1 produces bioactive compound inducing SOS-response due to DNA damage. In conclusion, this study proved mangrove plants harbored a high diversity of cultivable endophytic actinobacteria, which can be a promising source for discovery of novel species and bioactive compounds.

  20. Diversity, Novelty, and Antimicrobial Activity of Endophytic Actinobacteria From Mangrove Plants in Beilun Estuary National Nature Reserve of Guangxi, China

    PubMed Central

    Jiang, Zhong-ke; Tuo, Li; Huang, Da-lin; Osterman, Ilya A.; Tyurin, Anton P.; Liu, Shao-wei; Lukyanov, Dmitry A.; Sergiev, Petr V.; Dontsova, Olga A.; Korshun, Vladimir A.; Li, Fei-na; Sun, Cheng-hang

    2018-01-01

    Endophytic actinobacteria are one of the important pharmaceutical resources and well known for producing different types of bioactive substances. Nevertheless, detection of the novelty, diversity, and bioactivity on endophytic actinobacteria isolated from mangrove plants are scarce. In this study, five different mangrove plants, Avicennia marina, Aegiceras corniculatum, Kandelia obovota, Bruguiera gymnorrhiza, and Thespesia populnea, were collected from Beilun Estuary National Nature Reserve in Guangxi Zhuang Autonomous Region, China. A total of 101 endophytic actinobacteria strains were recovered by culture-based approaches. They distributed in 7 orders, 15 families, and 28 genera including Streptomyces, Curtobacterium, Mycobacterium, Micrococcus, Brevibacterium, Kocuria, Nocardioides, Kineococcus, Kytococcus, Marmoricola, Microbacterium, Micromonospora, Actinoplanes, Agrococcus, Amnibacterium, Brachybacterium, Citricoccus, Dermacoccus, Glutamicibacter, Gordonia, Isoptericola, Janibacter, Leucobacter, Nocardia, Nocardiopsis, Pseudokineococcus, Sanguibacter, and Verrucosispora. Among them, seven strains were potentially new species of genera Nocardioides, Streptomyces, Amnibacterium, Marmoricola, and Mycobacterium. Above all, strain 8BXZ-J1 has already been characterized as a new species of the genus Marmoricola. A total of 63 out of 101 strains were chosen to screen antibacterial activities by paper-disk diffusion method and inhibitors of ribosome and DNA biosynthesis by means of a double fluorescent protein reporter. A total of 31 strains exhibited positive results in at least one antibacterial assay. Notably, strain 8BXZ-J1 and three other potential novel species, 7BMP-1, 5BQP-J3, and 1BXZ-J1, all showed antibacterial bioactivity. In addition, 21 strains showed inhibitory activities against at least one “ESKAPE” resistant pathogens. We also found that Streptomyces strains 2BBP-J2 and 1BBP-1 produce bioactive compound with inhibitory activity on protein biosynthesis as result of translation stalling. Meanwhile, Streptomyces strain 3BQP-1 produces bioactive compound inducing SOS-response due to DNA damage. In conclusion, this study proved mangrove plants harbored a high diversity of cultivable endophytic actinobacteria, which can be a promising source for discovery of novel species and bioactive compounds. PMID:29780376

  1. Dry etching method for compound semiconductors

    DOEpatents

    Shul, Randy J.; Constantine, Christopher

    1997-01-01

    A dry etching method. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators.

  2. Dry etching method for compound semiconductors

    DOEpatents

    Shul, R.J.; Constantine, C.

    1997-04-29

    A dry etching method is disclosed. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators. 1 fig.

  3. HPLC-Based Activity Profiling: Discovery of Piperine as a Positive GABAA Receptor Modulator Targeting a Benzodiazepine-Independent Binding Site

    PubMed Central

    Zaugg, Janine; Baburin, Igor; Strommer, Barbara; Kim, Hyun-Jung; Hering, Steffen; Hamburger, Matthias

    2011-01-01

    A plant extract library was screened for GABAA receptor activity making use of a two-microelectrode voltage clamp assay on Xenopus laevis oocytes. An ethyl acetate extract of black pepper fruits [Piper nigrum L. (Piperaceae) 100 μg/mL] potentiated GABA-induced chloride currents through GABAA receptors (composed of α1, β2, and γ2S subunits) by 169.1 ± 2.4%. With the aid of an HPLC-based activity profiling approach, piperine (5) was identified as the main active compound, together with 12 structurally related less active or inactive piperamides (1–4, 6–13). Identification was achieved by on-line high-resolution mass spectrometry and off-line microprobe 1D and 2D NMR spectroscopy, using only milligram amounts of extract. Compound 5 induced a maximum potentiation of the chloride currents by 301.9 ± 26.5% with an EC50 of 52.4 ± 9.4 μM. A comparison of the modulatory activity of 5 and other naturally occurring piperamides enabled insights into structural features critical for GABAA receptor modulation. The stimulation of chloride currents through GABAA receptors by compound 5 was not antagonized by flumazenil (10 μM). These data show that piperine (5) represents a new scaffold of positive allosteric GABAA receptor modulators targeting a benzodiazepine-independent binding site. PMID:20085307

  4. Stimulatory effects of Cuminum cyminum and flavonoid glycoside on Cyclosporine-A and restraint stress induced immune-suppression in Swiss albino mice.

    PubMed

    Chauhan, Prashant Singh; Satti, Naresh Kumar; Suri, Krishan Avtar; Amina, Musarat; Bani, Sarang

    2010-04-15

    Many herbs and spices are known to modulate the immune system and have been shown to restore the immunity in immuno-compromised individuals. Spices generally used to increase the taste and flavor of food also has the history of usage as an ayurvedic medicine. Therefore to explore the health modulating effects of Cuminum cyminum and to identify the active compound, immunomodulatory properties were evaluated using flowcytometry and ELISA in normal and immune-suppressed animals. C. cyminum and compound 1 stimulated the T cells and Th1 cytokines expression in normal animals. Swiss albino mice subjected to Cyclosporine-A induced immune-suppression were dosed orally with C. cyminum (25, 50, 100 and 200 mg/kg) on consecutive days. The results showed that administration significantly increased T cells (CD4 and CD8) count and Th1 predominant immune response in a dose dependent manner thereby suggesting immunomodulatory activity through modulation of T lymphocytes expression. In restraint stress induced immune-suppressed animals, compound 1 countered the depleted T lymphocytes, decreased the elevated corticosterone levels and size of adrenal glands and increased the weight of thymus and spleen. Based on the data we may conclude that C. cyminum is a potent immunomodulator and may develop as a lead to recover the immunity of immuno-compromised individuals. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Generation of oscillating gene regulatory network motifs

    NASA Astrophysics Data System (ADS)

    van Dorp, M.; Lannoo, B.; Carlon, E.

    2013-07-01

    Using an improved version of an evolutionary algorithm originally proposed by François and Hakim [Proc. Natl. Acad. Sci. USAPNASA60027-842410.1073/pnas.0304532101 101, 580 (2004)], we generated small gene regulatory networks in which the concentration of a target protein oscillates in time. These networks may serve as candidates for oscillatory modules to be found in larger regulatory networks and protein interaction networks. The algorithm was run for 105 times to produce a large set of oscillating modules, which were systematically classified and analyzed. The robustness of the oscillations against variations of the kinetic rates was also determined, to filter out the least robust cases. Furthermore, we show that the set of evolved networks can serve as a database of models whose behavior can be compared to experimentally observed oscillations. The algorithm found three smallest (core) oscillators in which nonlinearities and number of components are minimal. Two of those are two-gene modules: the mixed feedback loop, already discussed in the literature, and an autorepressed gene coupled with a heterodimer. The third one is a single gene module which is competitively regulated by a monomer and a dimer. The evolutionary algorithm also generated larger oscillating networks, which are in part extensions of the three core modules and in part genuinely new modules. The latter includes oscillators which do not rely on feedback induced by transcription factors, but are purely of post-transcriptional type. Analysis of post-transcriptional mechanisms of oscillation may provide useful information for circadian clock research, as recent experiments showed that circadian rhythms are maintained even in the absence of transcription.

  6. Functional Validation of Virtual Screening for Novel Agents with General Anesthetic Action at Ligand-Gated Ion Channels

    PubMed Central

    Heusser, Stephanie A.; Howard, Rebecca J.; Borghese, Cecilia M.; Cullins, Madeline A.; Broemstrup, Torben; Lee, Ui S.; Lindahl, Erik; Carlsson, Jens

    2013-01-01

    GABAA receptors play a crucial role in the actions of general anesthetics. The recently published crystal structure of the general anesthetic propofol bound to Gloeobacter violaceus ligand-gated ion channel (GLIC), a bacterial homolog of GABAA receptors, provided an opportunity to explore structure-based ligand discovery for pentameric ligand-gated ion channels (pLGICs). We used molecular docking of 153,000 commercially available compounds to identify molecules that interact with the propofol binding site in GLIC. In total, 29 compounds were selected for functional testing on recombinant GLIC, and 16 of these compounds modulated GLIC function. Active compounds were also tested on recombinant GABAA receptors, and point mutations around the presumed binding pocket were introduced into GLIC and GABAA receptors to test for binding specificity. The potency of active compounds was only weakly correlated with properties such as lipophilicity or molecular weight. One compound was found to mimic the actions of propofol on GLIC and GABAA, and to be sensitive to mutations that reduce the action of propofol in both receptors. Mutant receptors also provided insight about the position of the binding sites and the relevance of the receptor’s conformation for anesthetic actions. Overall, the findings support the feasibility of the use of virtual screening to discover allosteric modulators of pLGICs, and suggest that GLIC is a valid model system to identify novel GABAA receptor ligands. PMID:23950219

  7. Antihypertensive effect of caffeic acid and its analogs through dual renin-angiotensin-aldosterone system inhibition.

    PubMed

    Bhullar, Khushwant S; Lassalle-Claux, Grégoire; Touaibia, Mohamed; Rupasinghe, H P Vasantha

    2014-05-05

    Hypertension is a crucial risk factor for cardiovascular diseases and contributes to one third of global mortality. In addition to conventional antihypertensive drugs such as captopril, naturally occurring phytochemicals and their analogs are used for reducing the risk and occurrence of hypertension. Herein, we demonstrate the possible use of caffeic acid and its derivatives in the treatment of hypertension through multi-target modulation of renin-angiotensin-aldosterone system (RAAS). Caffeic acid along with its nineteen novel derivatives, chlorogenic acid, quercetin and captopril were all investigated for the inhibition of renin and angiotensin converting enzyme (ACE) activities and production of aldosterone. Compound 22 with CH2CH(Ph)2 moiety exhibited the strongest renin inhibition (IC50=229µM) among all compounds tested (P≤0.05). Caffeic acid was the weakest renin inhibitor (IC50=5704µM) among all the compounds assayed. Similar to renin inhibition, compound 22 (IC50=9.1µM) also exhibited about 47 times stronger ACE inhibition compared to the parent compound. Analysis of aldosterone revealed that compound 8 with n-Pr moiety was the strongest modulator of aldosterone production among all the derivatives (P≤0.05). Toxicity analysis using human fibroblasts (WI-38 cells) confirmed the non-toxic manifestations of caffeic acid and its derivatives in comparison to clinically used drug captopril. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Two structurally distinct chalcone dimers from Helichrysum zivojinii and their activities in cancer cell lines.

    PubMed

    Aljančić, Ivana S; Vučković, Ivan; Jadranin, Milka; Pešić, Milica; Dorđević, Iris; Podolski-Renić, Ana; Stojković, Sonja; Menković, Nebojša; Vajs, Vlatka E; Milosavljević, Slobodan M

    2014-02-01

    Dimers tomoroside A (1) and tomoroside B (2) of the co-occuring known chalcone monomer (3), along with the seven known flavonoid glucosides (4-10), were isolated from the aerial parts of Helichrysum zivojinii Černjavski & Soška. The structures of the isolated compounds were elucidated by spectroscopic techniques. Compound 1 inhibited topo IIα and hif-1α expression and stimulated doxorubicin anticancer effect, while 2 increased the expression of hif-1α, probably acting as antioxidant and redox status modulator. Notably, 2 synergized with Tipifarnib showing potential to improve the action of this new chemotherapeutic involved in the modulation of mitogene activated protein (MAP) kinase signaling pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Investigation of Test Methods, Material Properties, and Processes for Solar Cell Encapsulents

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The technical activities were directed toward the assessment of encapsulation processes for use with ethylene/vinyl acetate copolymer as the pottant. Potentially successful formulations were prepared by compounding the raw polymer with ultraviolet absorbers and crosslinking agents to give stabilized and curable compositions. The compounded resin was then converted to a more useful form with an extruder to give pottant in sheets that could be more easily used in lamination. After experimenting with various techniques, the vacuum-bag process was found to be an excellent encapsulation method. Miniature single-celled and multi-celled solar modules of both substrate and superstrate designs were prepared by this technique. The resulting modules were of good appearance, were bubble-free, and successfully passed the thermal cycle test.

  10. N-Substituted carbazolyloxyacetic acids modulate Alzheimer associated gamma-secretase.

    PubMed

    Narlawar, Rajeshwar; Pérez Revuelta, Blanca I; Baumann, Karlheinz; Schubenel, Robert; Haass, Christian; Steiner, Harald; Schmidt, Boris

    2007-01-01

    N-Sulfonylated and N-alkylated carbazolyloxyacetic acids were investigated for the inhibition and modulation of the Alzheimer's disease associated gamma-secretase. The introduction of a lipophilic substituent, which may vary from arylsulfone to alkyl, turned 2-carbazolyloxyacetic acids into potent gamma-secretase modulators. This resulted in the selective reduction of Abeta(42) and an increase of the less aggregatory Abeta(38) fragment by several compounds (e.g., 7d and 8c). Introduction of an electron donating group at position 6 and 8 of N-substituted carbazolyloxyacetic acids either decreased the activity or inversed modulation. The most active compounds displayed activity on amyloid precursor protein (APP) overexpressing cell lines in the low micromolar range and little or no effect on the gamma-secretase cleavage at the epsilon-site.

  11. Quinolones Modulate Ghrelin Receptor Signaling: Potential for a Novel Small Molecule Scaffold in the Treatment of Cachexia.

    PubMed

    Torres-Fuentes, Cristina; Pastor-Cavada, Elena; Cano, Rafael; Kandil, Dalia; Shanahan, Rachel; Juan, Rocio; Shaban, Hamdy; McGlacken, Gerard P; Schellekens, Harriët

    2018-05-30

    Cachexia is a metabolic wasting disorder characterized by progressive weight loss, muscle atrophy, fatigue, weakness, and appetite loss. Cachexia is associated with almost all major chronic illnesses including cancer, heart failure, obstructive pulmonary disease, and kidney disease and significantly impedes treatment outcome and therapy tolerance, reducing physical function and increasing mortality. Current cachexia treatments are limited and new pharmacological strategies are needed. Agonists for the growth hormone secretagogue (GHS-R1a), or ghrelin receptor, prospectively regulate the central regulation of appetite and growth hormone secretion, and therefore have tremendous potential as cachexia therapeutics. Non-peptide GHS-R1a agonists are of particular interest, especially given the high gastrointestinal degradation of peptide-based structures, including that of the endogenous ligand, ghrelin, which has a half-life of only 30 min. However, few compounds have been reported in the literature as non-peptide GHS-R1a agonists. In this paper, we investigate the in vitro potential of quinolone compounds to modulate the GHS-R1a in both transfected human cells and mouse hypothalamic cells. These chemically synthesized compounds demonstrate a promising potential as GHS-R1a agonists, shown by an increased intracellular calcium influx. Further studies are now warranted to substantiate and exploit the potential of these novel quinolone-based compounds as orexigenic therapeutics in conditions of cachexia and other metabolic and eating disorders.

  12. Effect of Germination and Fermentation Process on the Antioxidant Compounds of Quinoa Seeds.

    PubMed

    Carciochi, Ramiro Ariel; Galván-D'Alessandro, Leandro; Vandendriessche, Pierre; Chollet, Sylvie

    2016-12-01

    Quinoa (Chenopodium quinoa) seed has gained a great interest in the last years, mainly due to its nutritional properties and its content of antioxidant substances with health-promoting properties in humans. In this work, the effect of germination time and fermentation on the levels of antioxidant compounds (ascorbic acid, tocopherol isomers and phenolic compounds) and antioxidant activity of quinoa seeds was evaluated. Fermentation was carried out naturally by the microorganisms present in the seeds or by inoculation with two Saccharomyces cerevisiae strains (used for baking and brewing). Ascorbic acid and total tocopherols were significantly increased (p ≤ 0.05) after 72 h of germination process in comparison with raw quinoa seeds, whilst fermentation caused a decrease in both types of compounds. Phenolic compounds and antioxidant capacity were improved using both bioprocesses, being this effect more noticeable for germination process (101 % of increase after three days of germination). Germination and fermentation proved to be desirable procedures for producing enriched ingredients with health-promoting antioxidant compounds in a natural way.

  13. Apollo 7 prime crew during water egress training in Gulf of Mexico

    NASA Image and Video Library

    1968-08-05

    S68-46604 (5 Aug. 1968) --- The prime crew of the first manned Apollo mission (Spacecraft 101/Saturn 205) is seen in Apollo Command Module Boilerplate 1102 during water egress training in the Gulf of Mexico. In foreground is astronaut Walter M. Schirra Jr., in center is astronaut Donn F. Eisele, and in background is astronaut Walter Cunningham.

  14. Simultaneous determination of sucralose and related compounds by high-performance liquid chromatography with evaporative light scattering detection.

    PubMed

    Yan, Wenwu; Wang, Nani; Zhang, Peimin; Zhang, Jiajie; Wu, Shuchao; Zhu, Yan

    2016-08-01

    Sucralose is widely used in food and beverages as sweetener. Current synthesis approaches typically provide sucralose products with varying levels of related chlorinated carbohydrates which can affect the taste and flavor-modifying properties of sucralose. Quantification of related compounds in sucralose is often hampered by the lack of commercially available standards. In this work, nine related compounds were purified (purity>97%) and identified by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR), then a rapid and simple HPLC coupled with evaporative light scattering detection (ELSD) method has been developed for the simultaneous determination of sucralose and related compounds. Under optimized conditions, the method showed good linearity in the range of 2-600μgmL(-1) with determination coefficients R(2)⩾0.9990. Moreover, low limits of detection in the range of 0.5-2.0μgmL(-1) and good repeatability (RSD<3%, n=6) were obtained. Recoveries were from 96.8% to 101.2%. Finally, the method has been successfully applied to sucralose quality control and purification process monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Oral TNFα Modulation Alters Neutrophil Infiltration, Improves Cognition and Diminishes Tau and Amyloid Pathology in the 3xTgAD Mouse Model

    PubMed Central

    Gabbita, S. Prasad; Johnson, Ming F.; Kobritz, Naomi; Eslami, Pirooz; Poteshkina, Aleksandra; Varadarajan, Sridhar; Turman, John; Zemlan, Frank; Harris-White, Marni E.

    2015-01-01

    Cytokines such as TNFα can polarize microglia/macrophages into different neuroinflammatory types. Skewing of the phenotype towards a cytotoxic state is thought to impair phagocytosis and has been described in Alzheimer’s Disease (AD). Neuroinflammation can be perpetuated by a cycle of increasing cytokine production and maintenance of a polarized activation state that contributes to AD progression. In this study, 3xTgAD mice, age 6 months, were treated orally with 3 doses of the TNFα modulating compound isoindolin-1,3 dithione (IDT) for 10 months. We demonstrate that IDT is a TNFα modulating compound both in vitro and in vivo. Following long-term IDT administration, mice were assessed for learning & memory and tissue and serum were collected for analysis. Results demonstrate that IDT is safe for long-term treatment and significantly improves learning and memory in the 3xTgAD mouse model. IDT significantly reduced paired helical filament tau and fibrillar amyloid accumulation. Flow cytometry of brain cell populations revealed that IDT increased the infiltrating neutrophil population while reducing TNFα expression in this population. IDT is a safe and effective TNFα and innate immune system modulator. Thus small molecule, orally bioavailable modulators are promising therapeutics for Alzheimer’s disease. PMID:26436670

  16. GABAA receptor activity modulating piperine analogs: In vitro metabolic stability, metabolite identification, CYP450 reaction phenotyping, and protein binding.

    PubMed

    Zabela, Volha; Hettich, Timm; Schlotterbeck, Götz; Wimmer, Laurin; Mihovilovic, Marko D; Guillet, Fabrice; Bouaita, Belkacem; Shevchenko, Bénédicte; Hamburger, Matthias; Oufir, Mouhssin

    2018-01-01

    In a screening of natural products for allosteric modulators of GABA A receptors (γ-aminobutyric acid type A receptor), piperine was identified as a compound targeting a benzodiazepine-independent binding site. Given that piperine is also an activator of TRPV1 (transient receptor potential vanilloid type 1) receptors involved in pain signaling and thermoregulation, a series of piperine analogs were prepared in several cycles of structural optimization, with the aim of separating GABA A and TRPV1 activating properties. We here investigated the metabolism of piperine and selected analogs in view of further cycles of lead optimization. Metabolic stability of the compounds was evaluated by incubation with pooled human liver microsomes, and metabolites were analyzed by UHPLC-Q-TOF-MS. CYP450 isoenzymes involved in metabolism of compounds were identified by reaction phenotyping with Silensomes™. Unbound fraction in whole blood was determined by rapid equilibrium dialysis. Piperine was the metabolically most stable compound. Aliphatic hydroxylation, and N- and O-dealkylation were the major routes of oxidative metabolism. Piperine was exclusively metabolized by CYP1A2, whereas CYP2C9 contributed significantly in the oxidative metabolism of all analogs. Extensive binding to blood constituents was observed for all compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A combined temperature-dependent electron and single-crystal X-ray diffraction study of the fresnoite compound Rb 2V 4+V 25+O 8

    NASA Astrophysics Data System (ADS)

    Withers, Ray L.; Höche, Thomas; Liu, Yun; Esmaeilzadeh, Saeid; Keding, Ralf; Sales, Brian

    2004-10-01

    High-purity Rb2V3O8 has been grown and temperature-dependent electron and single-crystal X-ray diffraction used to carefully investigate its fresnoite-type reciprocal lattice. In contrast to other recently investigated representatives of the fresnoite family of compounds, Rb2V3O8 is not incommensurately modulated with an incommensurate basal plane primary modulation wave vector given by q∼0.3 <110>*. A careful low-temperature electron diffraction study has, however, revealed the existence of weak incommensurate satellite reflections characterized by the primitive primary modulation wave vector q1∼0.16c*. The reciprocal space positioning of these incommensurate satellite reflections, the overall (3+1)-d superspace group symmetry, as well as the shapes of the refined displacement ellipsoids determined from single-crystal XRD refinement, are all consistent with their arising from a distinct type of condensed rigid unit modes (RUMs) of distortion of the Rb2V3O8 parent structure.

  18. Assessment of the potential activity of major dietary compounds as selective estrogen receptor modulators in two distinct cell models for proliferation and differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecomte, Sylvain; Lelong, Marie; Bourgine, Gaëlle

    Estrogen receptors (ERs) α and β are distributed in most tissues of women and men. ERs are bound by estradiol (E2), a natural hormone, and mediate the pleiotropic and tissue-specific effects of E2, such as proliferation of breast epithelial cells or protection and differentiation of neuronal cells. Numerous environmental molecules, called endocrine disrupting compounds, also interact with ERs. Phytoestrogens belong to this large family and are considered potent therapeutic molecules that act through their selective estrogen receptor modulator (SERM) activity. Using breast cancer cell lines as a model of estrogen-dependent proliferation and a stably ER-expressing PC12 cell line as amore » model of neuronal differentiating cells, we studied the SERM activity of major dietary compounds, such as apigenin, liquiritigenin, daidzein, genistein, coumestrol, resveratrol and zearalenone. The ability of these compounds to induce ER-transactivation and breast cancer cell proliferation and enhance Nerve Growth Factor (NGF) -induced neuritogenesis was assessed. Surprisingly, although all compounds were able to activate the ER through an estrogen responsive element reporter gene, they showed differential activity toward proliferation or differentiation. Apigenin and resveratrol showed a partial or no proliferative effect on breast cancer cells but fully contributed to the neuritogenesis effect of NGF. However, daidzein and zearalenone showed full effects on cellular proliferation but did not induce cellular differentiation. In summary, our results suggest that the therapeutic potential of phytoestrogens can diverge depending on the molecule and the phenotype considered. Hence, apigenin and resveratrol might be used in the development of therapeutics for breast cancer and brain diseases. - Highlights: • SERM activity of dietary compounds on proliferation and differentiation is studied. • All the dietary compounds tested transactivate estrogen receptors. • Apigenin and resveratrol could be good candidates for future therapeutics. • Daidzein and zearalenone are to be avoided to maintain human health.« less

  19. Increasing human Th17 differentiation through activation of orphan nuclear receptor retinoid acid-related orphan receptor γ (RORγ) by a class of aryl amide compounds.

    PubMed

    Zhang, Wei; Zhang, Jing; Fang, Leiping; Zhou, Ling; Wang, Shuai; Xiang, Zhijun; Li, Yuan; Wisely, Bruce; Zhang, Guifeng; An, Gang; Wang, Yonghui; Leung, Stewart; Zhong, Zhong

    2012-10-01

    In a screen for small-molecule inhibitors of retinoid acid-related orphan receptor γ (RORγ), we fortuitously discovered that a class of aryl amide compounds behaved as functional activators of the interleukin 17 (IL-17) reporter in Jurkat cells. Three of these compounds were selected for further analysis and found to activate the IL-17 reporter with potencies of ∼0.1 μM measured by EC₅₀. These compounds were shown to directly bind to RORγ by circular dichroism-based thermal stability experiments. Furthermore, they can enhance an in vitro Th17 differentiation process in human primary T cells. As RORγ remains an orphan nuclear receptor, discovery of these aryl amide compounds as functional agonists will now provide pharmacological tools for us to dissect functions of RORγ and facilitate drug discovery efforts for immune-modulating therapies.

  20. Nano-scale Stripe Structures on FeTe Observed by Low-temperature STM/STS

    NASA Astrophysics Data System (ADS)

    Sugimoto, A.; Ukita, R.; Ekino, T.

    We have investigated the nano-scale stripe structures on a parent compound of the iron chalcogenide superconductor Fe1+dTe (d=0.033) by using low-temperature scanning tunneling microscopy (STM). The STM topographies and the dI/dV maps show clear stripe structures with the period of twice as large as the Te-Te atomic displacement (~0.76 nm = 2a0, a0 is lattice constant), in addition to weak modulation with the same period of lattice constant (~0.38 nm). The bias-voltage dependence of both STM topographies and dI/dV maps show the several kinds of the stripe structures. The 2a0 modulations are similar to the bicollinear spin order of the parent compound FeTe, indicating the possibility of the coupling with spin density wave and electronic structures.

  1. Quantitative High-Throughput Identification of Drugs as Modulators of Human Constitutive Androstane Receptor

    PubMed Central

    Lynch, Caitlin; Zhao, Jinghua; Huang, Ruili; Xiao, Jingwei; Li, Linhao; Heyward, Scott; Xia, Menghang; Wang, Hongbing

    2015-01-01

    The constitutive androstane receptor (CAR, NR1I3) plays a key role in governing the transcription of numerous hepatic genes that involve xenobiotic metabolism/clearance, energy homeostasis, and cell proliferation. Thus, identification of novel human CAR (hCAR) modulators may not only enhance early prediction of drug-drug interactions but also offer potentially novel therapeutics for diseases such as metabolic disorders and cancer. In this study, we have generated a double stable cell line expressing both hCAR and a CYP2B6-driven luciferase reporter for quantitative high-throughput screening (qHTS) of hCAR modulators. Approximately 2800 compounds from the NIH Chemical Genomics Center Pharmaceutical Collection were screened employing both the activation and deactivation modes of the qHTS. Activators (115) and deactivators (152) of hCAR were identified from the primary qHTS, among which 10 agonists and 10 antagonists were further validated in the physiologically relevant human primary hepatocytes for compound-mediated hCAR nuclear translocation and target gene expression. Collectively, our results reveal that hCAR modulators can be efficiently identified through this newly established qHTS assay. Profiling drug collections for hCAR activity would facilitate the prediction of metabolism-based drug-drug interactions, and may lead to the identification of potential novel therapeutics. PMID:25993555

  2. Supplementing Blends of Sugars, Amino Acids, and Secondary Metabolites to the Diet of Termites (Reticulitermes flavipes) Drive Distinct Gut Bacterial Communities.

    PubMed

    Huang, Xing-Feng; Chaparro, Jacqueline M; Reardon, Kenneth F; Judd, Timothy M; Vivanco, Jorge M

    2016-10-01

    Although it is well known that diet is one of the major modulators of the gut microbiome, how the major components of diet shape the gut microbial community is not well understood. Here, we developed a simple system that allows the investigation of the impact of given compounds as supplements of the diet on the termite gut microbiome. The 16S rRNA pyrosequencing analysis revealed that feeding termites different blends of sugars and amino acids did not majorly impact gut community composition; however, ingestion of blends of secondary metabolites caused shifts in gut bacterial community composition. The supplementation of sugars and amino acids reduced the richness significantly, and sugars alone increased the evenness of the gut bacterial community significantly. Secondary metabolites created the most dramatic effects on the microbial community, potentially overriding the effect of other types of compounds. Furthermore, some microbial groups were stimulated specifically by particular groups of compounds. For instance, termites fed with secondary metabolites contained more Firmicutes and Spirochaetes compared to the other treatments. In conclusion, our results suggest that the termite (Reticulitermes flavipes) can be used as a simple and effective system to test the effects of particular chemical compounds in modulating the gut microbiome.

  3. Discovery and study of novel protein tyrosine phosphatase 1B inhibitors

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Chen, Xi; Feng, Changgen

    2017-10-01

    Protein tyrosine phosphatase 1B (PTP1B) is considered to be a target for therapy of type II diabetes and obesity. So it is of great significance to take advantage of a computer aided drug design protocol involving the structured-based virtual screening with docking simulations for fast searching small molecule PTP1B inhibitors. Based on optimized complex structure of PTP1B bound with specific inhibitor of IX1, structured-based virtual screening against a library of natural products containing 35308 molecules, which was constructed based on Traditional Chinese Medicine database@ Taiwan (TCM database@ Taiwan), was conducted to determine the occurrence of PTP1B inhibitors using the Lubbock module and CDOCKER module from Discovery Studio 3.1 software package. The results were further filtered by predictive ADME simulation and predictive toxic simulation. As a result, 2 good drug-like molecules, namely para-benzoquinone compound 1 and Clavepictine analogue 2 were identified ultimately with the dock score of original inhibitor (IX1) and the receptor as a threshold. Binding model analyses revealed that these two candidate compounds have good interactions with PTP1B. The PTP1B inhibitory activity of compound 2 hasn't been reported before. The optimized compound 2 has higher scores and deserves further study.

  4. Divergent Mechanistic Routes for the Formation of gem-Dimethyl Groups in the Biosynthesis of Complex Polyketides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poust, S; Phelan, RM; Deng, K

    The gem-dimethyl groups in polyketide-derived natural products add steric bulk and, accordingly, lend increased stability to medicinal compounds, however, our ability to rationally incorporate this functional group in modified natural products is limited. In order to characterize the mechanism of gem-dimethyl group formation, with a goal toward engineering of novel compounds containing this moiety, the gem-dimethyl group producing polyketide synthase (PKS) modules of yersiniabactin and epothilone were characterized using mass spectrometry. The work demonstrated, contrary to the canonical understanding of reaction order in PKSs, that methylation can precede condensation in gem-dimethyl group producing PKS modules. Experiments showed that both PKSsmore » are able to use dimethylmalonyl acyl carrier protein (ACP) as an extender unit. Interestingly, for epothilone module8, use of dimethylmalonyl-ACP appeared to be the sole route to form a gem-dimethylated product, while the yersiniabactin PKS could methylate before or after ketosynthase condensation.« less

  5. Modulating effect of new potential antimelanomic agents, spin-labeled triazenes and nitrosoureas on the DOPA-oxidase activity of tyrosinase.

    PubMed

    Gadjeva, V; Zheleva, A; Raikova, E

    1999-07-01

    The modulating effect of newly synthesized alkylating spin labeled triazene and spin labeled nitrosourea derivatives on the DOPA-oxidase activity of mushroom tyrosinase has been investigated by Bumett's spectrophotometric method (Burnett et al., 1967). All spin labeled triazenes have exhibited activating effect on DOPA-oxidase activity of tyrosinase, whereas clinically used triazene (DTIC), which does not contain nitroxide moiety, have showed inhibiting effect. At the same experimental conditions the spin labeled aminoacid nitrosoureas have showed dual effect - activating, in the beginning of the enzyme reaction and inhibiting later on. It is deduced that the activating effect of the spin labeled compounds is due to the nitroxide moiety and the inhibiting effect of all compounds depends on their half-life time. This study might contribute to make more clear the mechanism of action of the new compounds and on the other hand would come in quite useful as a preliminary prognosis for their antimelanomic activity.

  6. Effect of counter ions of arginine as an additive for the solubilization of protein and aromatic compounds.

    PubMed

    Yoshizawa, Shunsuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2016-10-01

    Arginine is widely used in biotechnological application, but mostly with chloride counter ion. Here, we examined the effects of various anions on solubilization of aromatic compounds and reduced lysozyme and on refolding of the lysozyme. All arginine salts tested increased the solubility of propyl gallate with acetate much more effectively than chloride. The effects of arginine salts were compared with those of sodium or guanidine salts, indicating that the ability of anions to modulate the propyl gallate solubility is independent of the cation. Comparison of transfer free energy of propyl gallate between sodium and arginine salts indicates that the interaction of propyl gallate is more favorable with arginine than sodium. On the contrary, the solubility of aromatic amino acids is only slightly modulated by anions, implying that there is specific interaction between acetic acid and propyl gallate. Unlike their effects on the solubility of small aromatic compounds, the solubility of reduced lysozyme was much higher in arginine chloride than in arginine acetate or sulfate. Consistent with high solubility, refolding of reduced lysozyme was most effective in arginine chloride. These results suggest potential broader applications of arginine modulated by different anions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Thermodynamic behavior of glassy state of structurally related compounds.

    PubMed

    Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2008-08-01

    Thermodynamic properties of amorphous pharmaceutical forms are responsible for enhanced solubility as well as poor physical stability. The present study was designed to investigate the differences in thermodynamic parameters arising out of disparate molecular structures and associations for four structurally related pharmaceutical compounds--celecoxib, valdecoxib, rofecoxib, and etoricoxib. Conventional and modulated temperature differential scanning calorimetry were employed to study glass forming ability and thermodynamic behavior of the glassy state of model compounds. Glass transition temperature of four glassy compounds was in a close range of 327.6-331.8 K, however, other thermodynamic parameters varied considerably. Kauzmann temperature, strength parameter and fragility parameter showed rofecoxib glass to be most fragile of the four compounds. Glass forming ability of the compounds fared similar in the critical cooling rate experiments, suggesting that different factors were determining the glass forming ability and subsequent behavior of the compounds in glassy state. A comprehensive understanding of such thermodynamic facets of amorphous form would help in rationalizing the approaches towards development of stable glassy pharmaceuticals.

  8. Synergistic chondroprotective effects of curcumin and resveratrol in human articular chondrocytes: inhibition of IL-1beta-induced NF-kappaB-mediated inflammation and apoptosis.

    PubMed

    Csaki, Constanze; Mobasheri, Ali; Shakibaei, Mehdi

    2009-01-01

    Currently available treatments for osteoarthritis (OA) are restricted to nonsteroidal anti-inflammatory drugs, which exhibit numerous side effects and are only temporarily effective. Thus novel, safe and more efficacious anti-inflammatory agents are needed for OA. Naturally occurring polyphenolic compounds, such as curcumin and resveratrol, are potent agents for modulating inflammation. Both compounds mediate their effects by targeting the NF-kappaB signalling pathway. We have recently demonstrated that in chondrocytes resveratrol modulates the NF-kappaB pathway by inhibiting the proteasome, while curcumin modulates the activation of NF-kappaB by inhibiting upstream kinases (Akt). However, the combinational effects of these compounds in chondrocytes has not been studied and/or compared with their individual effects. The aim of this study was to investigate the potential synergistic effects of curcumin and resveratrol on IL-1beta-stimulated human chondrocytes in vitro using immunoblotting and electron microscopy. Treatment with curcumin and resveratrol suppressed NF-kappaB-regulated gene products involved in inflammation (cyclooxygenase-2, matrix metalloproteinase (MMP)-3, MMP-9, vascular endothelial growth factor), inhibited apoptosis (Bcl-2, Bcl-xL, and TNF-alpha receptor-associated factor 1) and prevented activation of caspase-3. IL-1beta-induced NF-kappaB activation was suppressed directly by cocktails of curcumin and resveratrol through inhibition of Ikappakappa and proteasome activation, inhibition of IkappaBalpha phosphorylation and degradation, and inhibition of nuclear translocation of NF-kappaB. The modulatory effects of curcumin and resveratrol on IL-1beta-induced expression of cartilage specific matrix and proinflammatory enzymes were mediated in part by the cartilage-specific transcription factor Sox-9. We propose that combining these natural compounds may be a useful strategy in OA therapy as compared with separate treatment with each individual compound.

  9. Effect of Radiotherapy and Chemotherapy on the Risk of Mucositis During Intensity-Modulated Radiation Therapy for Oropharyngeal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanguineti, Giuseppe, E-mail: gsangui1@jhmi.edu; Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD; Sormani, Maria Pia

    2012-05-01

    Purpose: To define the roles of radiotherapy and chemotherapy on the risk of Grade 3+ mucositis during intensity-modulated radiation therapy (IMRT) for oropharyngeal cancer. Methods and Materials: 164 consecutive patients treated with IMRT at two institutions in nonoverlapping treatment eras were selected. All patients were treated with a dose painting approach, three dose levels, and comprehensive bilateral neck treatment under the supervision of the same radiation oncologist. Ninety-three patients received concomitant chemotherapy (cCHT) and 14 received induction chemotherapy (iCHT). Individual information of the dose received by the oral mucosa (OM) was extracted as absolute cumulative dose-volume histogram (DVH), corrected formore » the elapsed treatment days and reported as weekly (w) DVH. Patients were seen weekly during treatment, and peak acute toxicity equal to or greater than confluent mucositis at any point during the course of IMRT was considered the endpoint. Results: Overall, 129 patients (78.7%) reached the endpoint. The regions that best discriminated between patients with/without Grade 3+ mucositis were found at 10.1 Gy/w (V10.1) and 21 cc (D21), along the x-axis and y-axis of the OM-wDVH, respectively. On multivariate analysis, D21 (odds ratio [OR] = 1.016, 95% confidence interval [CI], 1.009-1.023, p < 0.001) and cCHT (OR = 4.118, 95% CI, 1.659-10.217, p = 0.002) were the only independent predictors. However, V10.1 and D21 were highly correlated (rho = 0.954, p < 0.001) and mutually interchangeable. cCHT would correspond to 88.4 cGy/w to at least 21 cc of OM. Conclusions: Radiotherapy and chemotherapy act independently in determining acute mucosal toxicity; cCHT increases the risk of mucosal Grade 3 toxicity Almost-Equal-To 4 times over radiation therapy alone, and it is equivalent to an extra Almost-Equal-To 6.2 Gy to 21 cc of OM over a 7-week course.« less

  10. Garrett solar Brayton engine/generator status

    NASA Astrophysics Data System (ADS)

    Anson, B.

    1982-07-01

    The solar advanced gas turbine (SAGT-1) is being developed by the Garrett Turbine Engine Company, for use in a Brayton cycle power conversion module. The engine is derived from the advanced gas turbine (AGT101) now being developd by Garrett and Ford Motor Company for automotive use. The SAGT Program is presently funded for the design, fabrication and test of one engine at Garrett's Phoenix facility. The engine when mated with a solar receiver is called a power conversion module (PCU). The PCU is scheduled to be tested on JPL's test bed concentrator under a follow on phase of the program. Approximately 20 kw of electrical power will be generated.

  11. The First Negative Allosteric Modulator for Dopamine D2 and D3 Receptors, SB269652 May Lead to a New Generation of Antipsychotic Drugs.

    PubMed

    Rossi, Mario; Fasciani, Irene; Marampon, Francesco; Maggio, Roberto; Scarselli, Marco

    2017-06-01

    D 2 and D 3 dopamine receptors belong to the largest family of cell surface proteins in eukaryotes, the G protein-coupled receptors (GPCRs). Considering their crucial physiologic functions and their relatively accessible cellular locations, GPCRs represent one of the most important classes of therapeutic targets. Until recently, the only strategy to develop drugs regulating GPCR activity was through the identification of compounds that directly acted on the orthosteric sites for endogenous ligands. However, many efforts have recently been made to identify small molecules that are able to interact with allosteric sites. These sites are less well-conserved, therefore allosteric ligands have greater selectivity on the specific receptor. Strikingly, the use of allosteric modulators can provide specific advantages, such as an increased selectivity for GPCR subunits and the ability to introduce specific beneficial therapeutic effects without disrupting the integrity of complex physiologically regulated networks. In 2010, our group unexpectedly found that N -[(1r,4r)-4-[2-(7-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-1H-indole-2-carboxamide (SB269652), a compound supposed to interact with the orthosteric binding site of dopamine receptors, was actually a negative allosteric modulator of D 2 - and D 3 -receptor dimers, thus identifying the first allosteric small molecule acting on these important therapeutic targets. This review addresses the progress in understanding the molecular mechanisms of interaction between the negative modulator SB269652 and D 2 and D 3 dopamine receptor monomers and dimers, and surveys the prospects for developing new dopamine receptor allosteric drugs with SB269652 as the leading compound. U.S. Government work not protected by U.S. copyright.

  12. Micro-explosion of compound drops

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Kuei; Lin, Ta-Hui

    2014-08-01

    Introducing water into spray combustion systems, by either water-in-oil emulsification or supplementary water injection, is one of the major techniques for combustion improvement and NOx reduction. Plentiful researches are available on combustion of water-in-oil emulsion fuel drops. The emulsified liquid is a heterogeneous mixture of immiscible liquids. One component forms the continuous phase and the other component forms the discrete phase. The discrete phase consists of globules of the one fluid that are suspended in the continuous phase fluid. Water-in-oil emulsions are commonly considered for combustion applications because emulsions can result in micro-explosion, thereby reducing the average drop diameter to enhance liquid vaporization, and suppressing the formation of soot and NOx. However, the water addition generally does not exceed about 20% for smooth engine operations[!, 21. The combustion characteristics and micro-explosion of emulsion drop were studied by many researchers. The micro-explosion of water in fuel emulsion drops was caused by very fast growth of superheated water vapor bubbles, its superheat limits must be lower than the boiling point temperature of the fuel. These bubbles were primarily governed by the pressure difference between the superheated vapor and the liquid, and by the inertia imparted to the liquid by the motion of the bubble surface[3 6 In this study, we used a coaxial nozzle to generation the multi-component drop. The different type of water-in-oil fuel drops called the compound drops. Unlike an emulsion drop, a compound drop consists of a water core and a fuel shell, which can originate from the phase separation of emulsion[7, 81 or a water drop colliding with a fuel drop[9, 101 Burning and micro-explosion of compound drops have been found to be distinct from those of emulsion drops[9-111 Wang et al.[9 , 101 studied the combustion characteristics of collision merged alkane-water drops. The merged drops appeared in adhesive and inserted manners. The drop ignition delay time increased with increasing water content. The average burning rate of alkane-water drops decreased with increasing water content. In the burning process, hexadecane-water drops exhibited flash vaporization or flame extinction. Heterogeneous explosion was occasionally observed in drops with trapped air bubbles. The air bubbles were assumed to be the nucleation points of the heterogeneous explosions. Chen and Lin[11 studied the characteristics of water-in-dodecane compound drop with different water content, diameter of drop and environmental oxygen concentration. The vaporization rate increased with increasing environmental oxygen concentration. The compound drops micro-exploded during the burning process in a random way. The number of micro-explosions was majorly influenced by drop diameter, followed by environmental oxygen concentration. Water content had a weaker effect on micro-explosion. As available literature and research results of compound drop burning are scarce, their combustion and micro-explosion behaviors are still poorly understood. In this regard, we changed the drop nature as compound drops to study their combustion characteristics and micro-explosion phenomena.

  13. Crystal structure of rubidium methyl-diazo-tate.

    PubMed

    Grassl, Tobias; Korber, Nikolaus

    2017-02-01

    The title compound, Rb + ·H 3 CN 2 O - , has been crystallized in liquid ammonia as a reaction product of the reductive ammonolysis of the natural compound streptozocin. Elemental rubidium was used as reduction agent as it is soluble in liquid ammonia, forming a blue solution. Reductive bond cleavage in biogenic materials under kinetically controlled conditions offers a new approach to gain access to sustainably produced raw materials. The anion is nearly planar [dihedral angle O-N-N-C = -0.4 (2)°]. The Rb + cation has a coordination number of seven, and coordinates to five anions. One anion is bound via both its N atoms, one by both O and N, two anions are bound by only their O atoms, and the last is bound via the N atom adjacent to the methyl group. The diazo-tate anions are bridged by cations and do not exhibit any direct contacts with each other. The cations form corrugated layers that propagate in the (-101) plane.

  14. Variable field-of-view visible and near-infrared polarization compound-eye endoscope.

    PubMed

    Kagawa, K; Shogenji, R; Tanaka, E; Yamada, K; Kawahito, S; Tanida, J

    2012-01-01

    A multi-functional compound-eye endoscope enabling variable field-of-view and polarization imaging as well as extremely deep focus is presented, which is based on a compact compound-eye camera called TOMBO (thin observation module by bound optics). Fixed and movable mirrors are introduced to control the field of view. Metal-wire-grid polarizer thin film applicable to both of visible and near-infrared lights is attached to the lenses in TOMBO and light sources. Control of the field-of-view, polarization and wavelength of the illumination realizes several observation modes such as three-dimensional shape measurement, wide field-of-view, and close-up observation of the superficial tissues and structures beneath the skin.

  15. PM CHEMISTRY

    EPA Science Inventory

    Although PM2.5 can be directly introduced into the atmosphere through primary emissions, its mass concentration is also strongly affected by secondary processes such as nucleation or condensation of nonvolatile and semivolatile compounds on pre-existing aerosols. Chemical modules...

  16. Polyphenols, their metabolites and derivatives as drug leads.

    PubMed

    Almeida, Filipa A; Dos Santos, Cláudia Nunes; Ventura, Maria Rita

    2018-05-15

    In this non-comprehensive review, the potential of natural polyphenols as lead compounds for the design and synthesis of new molecules with potential application in several diseases was highlighted. Organic synthesis has been essential for the development of new analogues of naturally found polyphenols, providing a wide range of structural modifications for structure-activity relationship studies and improving or modulating the biological activity of the promising compounds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Discovery of novel brain permeable and G protein-biased beta-1 adrenergic receptor partial agonists for the treatment of neurocognitive disorders

    PubMed Central

    Yi, Bitna; Jahangir, Alam; Evans, Andrew K.; Briggs, Denise; Ravina, Kristine; Ernest, Jacqueline; Farimani, Amir B.; Sun, Wenchao; Rajadas, Jayakumar; Green, Michael; Feinberg, Evan N.; Pande, Vijay S.

    2017-01-01

    The beta-1 adrenergic receptor (ADRB1) is a promising therapeutic target intrinsically involved in the cognitive deficits and pathological features associated with Alzheimer’s disease (AD). Evidence indicates that ADRB1 plays an important role in regulating neuroinflammatory processes, and activation of ADRB1 may produce neuroprotective effects in neuroinflammatory diseases. Novel small molecule modulators of ADRB1, engineered to be highly brain permeable and functionally selective for the G protein with partial agonistic activity, could have tremendous value both as pharmacological tools and potential lead molecules for further preclinical development. The present study describes our ongoing efforts toward the discovery of functionally selective partial agonists of ADRB1 that have potential therapeutic value for AD and neuroinflammatory disorders, which has led to the identification of the molecule STD-101-D1. As a functionally selective agonist of ADRB1, STD-101-D1 produces partial agonistic activity on G protein signaling with an EC50 value in the low nanomolar range, but engages very little beta-arrestin recruitment compared to the unbiased agonist isoproterenol. STD-101-D1 also inhibits the tumor necrosis factor α (TNFα) response induced by lipopolysaccharide (LPS) both in vitro and in vivo, and shows high brain penetration. Other than the therapeutic role, this newly identified, functionally selective, partial agonist of ADRB1 is an invaluable research tool to study mechanisms of G protein-coupled receptor signal transduction. PMID:28746336

  18. Discovery of novel brain permeable and G protein-biased beta-1 adrenergic receptor partial agonists for the treatment of neurocognitive disorders.

    PubMed

    Yi, Bitna; Jahangir, Alam; Evans, Andrew K; Briggs, Denise; Ravina, Kristine; Ernest, Jacqueline; Farimani, Amir B; Sun, Wenchao; Rajadas, Jayakumar; Green, Michael; Feinberg, Evan N; Pande, Vijay S; Shamloo, Mehrdad

    2017-01-01

    The beta-1 adrenergic receptor (ADRB1) is a promising therapeutic target intrinsically involved in the cognitive deficits and pathological features associated with Alzheimer's disease (AD). Evidence indicates that ADRB1 plays an important role in regulating neuroinflammatory processes, and activation of ADRB1 may produce neuroprotective effects in neuroinflammatory diseases. Novel small molecule modulators of ADRB1, engineered to be highly brain permeable and functionally selective for the G protein with partial agonistic activity, could have tremendous value both as pharmacological tools and potential lead molecules for further preclinical development. The present study describes our ongoing efforts toward the discovery of functionally selective partial agonists of ADRB1 that have potential therapeutic value for AD and neuroinflammatory disorders, which has led to the identification of the molecule STD-101-D1. As a functionally selective agonist of ADRB1, STD-101-D1 produces partial agonistic activity on G protein signaling with an EC50 value in the low nanomolar range, but engages very little beta-arrestin recruitment compared to the unbiased agonist isoproterenol. STD-101-D1 also inhibits the tumor necrosis factor α (TNFα) response induced by lipopolysaccharide (LPS) both in vitro and in vivo, and shows high brain penetration. Other than the therapeutic role, this newly identified, functionally selective, partial agonist of ADRB1 is an invaluable research tool to study mechanisms of G protein-coupled receptor signal transduction.

  19. STS-101 crew have a snack before getting ready for launch again

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, the STS-101 crew gathers for a snack before suiting up for launch for the second time. The previous day's launch attempt was scrubbed due to high cross winds at the Shuttle Landing Facility. From left are Mission Specialists Mary Ellen Weber and Yuri Usachev of Russia; Pilot Scott J. Horowitz; Commander James D. Halsell Jr.; and Mission Specialists Jeffrey N. Williams, Susan J. Helms and James S. Voss. The mission will take the crew to the International Space Station to deliver logistics and supplies and prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station.

  20. Aging properties of Kodak type 101 emulsions

    NASA Technical Reports Server (NTRS)

    Dohne, B.; Feldman, U.; Neupert, W.

    1984-01-01

    Aging tests for several batches of Kodak type 101 emulsion show that storage conditions significantly influence how well the film will maintain its sensitometric properties, with sensitivity and density increasing to a maximum during this period. Any further aging may result in higher fog levels and sensitivity loss. It is noted that storage in an environment free of photographically active compounds allows film property optimization, and that film batches with different sensitivities age differently. Emulsions with maximum 1700-A sensitivity are 2.5 times faster than those at the low end of the sensitivity scale. These sensitive emulsions exhibit significantly accelerated changes in aging properties. Their use in space applications requires careful consideration of time and temperature profiles, encouraging the use of less sensitive emulsions when the controllability of these factors is limited.

  1. New flavone-cyanoacetamide hybrids with combination of cholinergic, antioxidant, modulation β-amyloid aggregation and neuroprotection properties as innovative multifunctional therapeutic candidates for Alzheimer's disease and unraveling their mechanism of action with acetylcholinesterase.

    PubMed

    Jeelan Basha, Shaik; Mohan, Penumala; Yeggoni, Daniel Pushparaju; Babu, Zinka Raveendra; Kumar, Palaka Bhagath; Dinakara Rao, Ampasala; Subramanyam, Rajagopal; Damu, Amooru Gangaiah

    2018-05-10

    In line with the modern multi target-directed ligand paradigm of Alzheimer's disease (AD), a series of nineteen compounds composed of flavone and cyanoacetamide groups have been synthesized and evaluated as multifunctional agents against AD. Biological evaluation demonstrated that compounds 7j, 7n, 7o, 7r and 7s exhibited excellent inhibitory potency (AChE, IC50 0.271 ± 0.012 to ± 0.075 M) and good selectivity toward acetylcholinesterase, significant antioxidant activity, good modulation effects on self-induced A aggregation, low cytotoxicity and neuroprotection in human neuroblastoma SK-N-SH cells. Further, an inclusive study on the interaction of 7j, 7n, 7o, 7r and 7s with AChE at physiological pH 7.2 using fluorescence, circular dichroism and molecular docking methods suggesting that these derivatives bind strongly to peripheral anionic site of AChE mostly through hydrophobic interactions. Overall, the multifunctional profiles and strong AChE binding affinity highlight these compounds as promising prototypes for further pursuit of innovative multifunctional drugs for AD.

  2. Polyphenol Compound as a Transcription Factor Inhibitor.

    PubMed

    Park, Seyeon

    2015-10-30

    A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor-DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein-protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1), c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and β-catenin/T cell factor (Tcf)).

  3. Quantitative analysis of active compounds in pharmaceutical preparations by use of attenuated total-reflection Fourier transform mid-infrared spectrophotometry and the internal standard method.

    PubMed

    Sastre Toraño, J; van Hattum, S H

    2001-10-01

    A new method is presented for the quantitative analysis of compounds in pharmaceutical preparations Fourier transform (FT) mid-infrared (MIR) spectroscopy with an attenuated total reflection (ATR) module. Reduction of the quantity of overlapping absorption bands, by interaction of the compound of interest with an appropriate solvent, and the employment of an internal standard (IS), makes MIR suitable for quantitative analysis. Vigabatrin, as active compound in vigabatrin 100-mg capsules, was used as a model compound for the development of the method. Vigabatrin was extracted from the capsule content with water after addition of a sodium thiosulfate IS solution. The extract was concentrated by volume reduction and applied to the FTMIR-ATR module. Concentrations of unknown samples were calculated from the ratio of the vigabatrin band area (1321-1610 cm(-1)) and the IS band area (883-1215 cm(-1)) using a calibration standard. The ratio of the area of the vigabatrin peak to that of the IS was linear with the concentration in the range of interest (90-110 mg, in twofold; n=2). The accuracy of the method in this range was 99.7-100.5% (n=5) with a variability of 0.4-1.3% (n=5). The comparison of the presented method with an HPLC assay showed similar results; the analysis of five vigabatrin 100-mg capsules resulted in a mean concentration of 102 mg with a variation of 2% with both methods.

  4. Neuronal activity patterns in the mediodorsal thalamus and related cognitive circuits are modulated by metabotropic glutamate receptors

    PubMed Central

    Copeland, C.S.; Neale, S.A.; Salt, T.E.

    2015-01-01

    The mediodorsal thalamus (MD) likely plays an important role in cognition as it receives abundant afferent connections from the amygdala and prefrontal cortex (PFC). Indeed, disturbed activity within the MD is thought to precipitate cognitive deficits associated with schizophrenia. As compounds acting at the Group II metabotropic glutamate (mGlu) receptors (subtypes mGlu2/mGlu3) have efficacy in animal models of schizophrenia, we investigated whether a Group II agonist and an mGlu2 positive allosteric modulator (PAM) could modulate MD activity. Extracellular single-unit recordings were made in vivo from MD neurones in anaesthetised rats. Responses were elicited by electrical stimulation of the PFC and/or amygdala, with Group II compounds locally applied as required. The Group II agonist reduced inhibition evoked in the MD: an effect manifested as an increase in short-latency responses, and a decrease in long-latency burst-firing. This disinhibitory action of the Group II receptors in the MD represents a mechanism of potential therapeutic importance as increased inhibition in the MD has been associated with cognitive deficit-onset. Furthermore, as co-application of the mGlu2 PAM did not potentiate the Group II agonist effects in the MD, we suggest that the Group II disinhibitory effect is majority-mediated via mGlu3. This heterogeneity in Group II receptor thalamic physiology bears consequence, as compounds active exclusively at the mGlu2 subtype are unlikely to perturb maladapted MD firing patterns associated with cognitive deficits, with activity at mGlu3 receptors possibly more appropriate. Indeed, polymorphisms in the mGlu3, but not the mGlu2, gene have been detected in patients with schizophrenia. PMID:25576798

  5. KSC00pp0490

    NASA Image and Video Library

    2000-04-11

    KENNEDY SPACE CENTER, FLA. -- Seen here in a closeup is a GetAway Special (GAS) known as SEM, part of the payload on mission STS-101, in the payload bay on Space Shuttle Atlantis prior to door closure. The SEM program is student-developed, focusing on the science of zero-gravity and microgravity. Selected student experiments on this sixth venture are testing the effects of space on Idaho tubers, seeds, paint, yeast, film, liquids, electronics and magnetic chips. SEM-06 is one of two GAS experiments. The other is MARS, part of the KSC Space Life Sciences Outreach Program. It includes 20 participating schools (ranging from elementary to high school) from all over the nation and one in Canada who have been involved in KSC Space Life Sciences projects over the past seven years. The MARS payload has 20 tubes filled with materials for various classroom investigations designed by the MARS schools. The primary mission of STS-101 is to deliver logistics and supplies to the International Space Station, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A

  6. KSC-00pp0490

    NASA Image and Video Library

    2000-04-11

    KENNEDY SPACE CENTER, FLA. -- Seen here in a closeup is a GetAway Special (GAS) known as SEM, part of the payload on mission STS-101, in the payload bay on Space Shuttle Atlantis prior to door closure. The SEM program is student-developed, focusing on the science of zero-gravity and microgravity. Selected student experiments on this sixth venture are testing the effects of space on Idaho tubers, seeds, paint, yeast, film, liquids, electronics and magnetic chips. SEM-06 is one of two GAS experiments. The other is MARS, part of the KSC Space Life Sciences Outreach Program. It includes 20 participating schools (ranging from elementary to high school) from all over the nation and one in Canada who have been involved in KSC Space Life Sciences projects over the past seven years. The MARS payload has 20 tubes filled with materials for various classroom investigations designed by the MARS schools. The primary mission of STS-101 is to deliver logistics and supplies to the International Space Station, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A

  7. Live birth after artificial oocyte activation using a ready-to-use ionophore: a prospective multicentre study.

    PubMed

    Ebner, Thomas; Montag, Markus; Montag, M; Van der Ven, K; Van der Ven, H; Ebner, T; Shebl, O; Oppelt, P; Hirchenhain, J; Krüssel, J; Maxrath, B; Gnoth, C; Friol, K; Tigges, J; Wünsch, E; Luckhaus, J; Beerkotte, A; Weiss, D; Grunwald, K; Struller, D; Etien, C

    2015-04-01

    Artificial oocyte activation has been proposed as a suitable means to overcome the problem of failed or impaired fertilization after intracytoplasmic sperm injection (ICSI). In a multicentre setting artificial oocyte activation was applied to 101 patients who were diagnosed with fertilization abnormalities (e.g. less than 50% fertilized oocytes) in a previous conventional ICSI cycle. Female gametes were activated for 15 min immediately after ICSI using a ready-to-use Ca(2+)-ionophore solution (A23187). Fertilization, pregnancy and live birth rates were compared with the preceding cycle without activation. The fertilization rate of 48% in the study cycles was significantly higher compared with the 25% in the control cycles (P < 0.001). Further splitting of the historical control group into failed (0%), low (1-30%) and moderate fertilization rate (31-50%) showed that all groups significantly benefitted (P < 0.001) in the ionophore cycle. Fewer patients had their embryo transfer cancelled compared with their previous treatments (1/101 versus 15/101). In total, 99% of the patients had an improved outcome with A23187 application resulting in a 28% live birth rate (35 babies). These data suggest that artificial oocyte activation using a ready-to-use compound is an efficient method. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  8. 133. ARAII SL1 burial ground. Shows gravel path from ARAII ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    133. ARA-II SL-1 burial ground. Shows gravel path from ARA-II compound to the burial ground, detail of security fence and entry gate, and sign "Danger radiation hazard." F. C. Torkelson Company 842-area-101-1. Date: October 1961. Ineel index code no. 059-0101-00-851-150723. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  9. Antimicrobial activity of synthetic bornyl benzoates against Trypanosoma cruzi

    PubMed Central

    Corrêa, P R C; Miranda, R R S; Duarte, L P; Silva, G D F; Filho, S A Vieira; Okuma, A A; Carazza, F; Morgado-Díaz, J A; Pinge-Filho, P; Yamauchi, L M; Nakamura, C V; Yamada-Ogatta, S F

    2012-01-01

    We report here for the first time the in vitro effects of (1S,2R,4S)-1,7,7-trimethyl-bicyclo[2.2.1]heptan-2-yl-3′,4′,5′-trimethoxy benzoate (1) and (1S,2R,4S)-1,7,7-trimethyl-bicyclo[2.2.1]heptan-2-yl benzoate (2) on the growth and ultrastructure of Trypanosoma cruzi. These two synthetic compounds exerted an antiproliferative effect on the epimastigote forms of the parasite. The ICs50/72h of two synthetic L-bornyl benzoates, 1 and 2, was 10.1 and 12.8 μg/ml, respectively. Both compounds were more selective against epimastigotes than HEp-2 cells. Ultrastructural analysis revealed intense cytoplasmic vacuolization and the appearance of cytoplasmic materials surrounded by membranes. The treatment of peritoneal macrophages with compounds 1 and 2 caused a significant decrease in the number of T. cruzi-infected cells. L-Bornyl benzoate derivatives may serve as a potential source for the development of more effective and safer chemotherapeutic agents against T. cruzi infections. PMID:22943546

  10. Measurement of toxic volatile organic compounds in indoor air of semiconductor foundries using multisorbent adsorption/thermal desorption coupled with gas chromatography-mass spectrometry.

    PubMed

    Wu, Chien-Hou; Lin, Ming-Nan; Feng, Chien-Tai; Yang, Kuang-Ling; Lo, Yu-Shiu; Lo, Jiunn-Guang

    2003-05-09

    A method for the qualitative and quantitative analysis of volatile organic compounds (VOCs) in the air of class-100 clean rooms at semiconductor fabrication facilities was developed. Air samples from two semiconductor factories were collected each hour on multisorbent tubes (including Carbopack B, Carbopack C, and Carbosieve SIII) with a 24-h automatic active sampling system and analyzed using adsorption/thermal desorption coupled with gas chromatography-mass spectrometry. Experimental parameters, including thermal desorption temperature, desorption time, and cryofocusing temperature, were optimized. The average recoveries and the method detection limits for the target compounds were in the range 94-101% and 0.31-0.89 ppb, respectively, under the conditions of a 1 L sampling volume and 80% relative humidity. VOCs such as acetone, isopropyl alcohol, 2-heptanone, and toluene, which are commonly used in the semiconductor and electronics industries, were detected and accurately quantified with the established method. Temporal variations of the analyte concentrations observed were attributed to the improper use of organic solvents during operation.

  11. Space photovoltaic modules based on reflective optics

    NASA Technical Reports Server (NTRS)

    Andreev, V. M.; Larionov, V. R.; Rumyantsev, V. D.; Shvarts, M. Z.

    1995-01-01

    The conceptual design and experimental results for two types of space application concentrator photovoltaic modules, employing reflective optical elements, are presented. The first type is based on the use of compound parabolic concentrators, the second type is based on the use of line-focus parabolic troughs. Lightweight concentrators are formed with nickel foil coated silver with a diamond-like carbon layer protection. Secondary optical elements, including lenses and cones, are introduced for a better matching of concentrators and solar cells. Both types of modules are characterized by concentration ratios in the range 20x to 30x, depending on the chosen range of misorientation angles. The estimated specific parameters of these modules operating with single junction AlGaAs/GaAs solar cells are 240 W/sq m and 3 kg/sq m.

  12. Risk assessment of the cumulative acute exposure of Hungarian population to organophosphorus pesticide residues with regard to consumers of plant based foods.

    PubMed

    Zentai, Andrea; Szabó, István J; Kerekes, Kata; Ambrus, Árpád

    2016-03-01

    Based on the Hungarian pesticide residues monitoring data of the last five years and the consumption data collected within a 3-day dietary record survey in 2009 (more than 2 million pesticide residue results and almost 5000, 0-101-year-old consumers 3 non-consecutive-day personal fruit and vegetable consumption data), the cumulative acute exposure of organophosphorus pesticide residues was evaluated. The relative potency factor approach was applied, with acephate chosen as index compound. According to our conservative calculation method, applying the measured residues only, the 99.95% of the 99th percentiles of calculated daily intakes was at or below 87 μg/kgbwday, indicating that the cumulative acute exposure of the whole Hungarian population (including all age classes) to organophosphorus compounds was not a health concern. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Nootropic α7 nicotinic receptor allosteric modulator derived from GABAA receptor modulators

    PubMed Central

    Ng, Herman J.; Whittemore, Edward R.; Tran, Minhtam B.; Hogenkamp, Derk J.; Broide, Ron S.; Johnstone, Timothy B.; Zheng, Lijun; Stevens, Karen E.; Gee, Kelvin W.

    2007-01-01

    Activation of brain α7 nicotinic acetylcholine receptors (α7 nAChRs) has broad therapeutic potential in CNS diseases related to cognitive dysfunction, including Alzheimer's disease and schizophrenia. In contrast to direct agonist activation, positive allosteric modulation of α7 nAChRs would deliver the clinically validated benefits of allosterism to these indications. We have generated a selective α7 nAChR-positive allosteric modulator (PAM) from a library of GABAA receptor PAMs. Compound 6 (N-(4-chlorophenyl)-α-[[(4-chloro-phenyl)amino]methylene]-3-methyl-5-isoxazoleacet-amide) evokes robust positive modulation of agonist-induced currents at α7 nAChRs, while preserving the rapid native characteristics of desensitization, and has little to no efficacy at other ligand-gated ion channels. In rodent models, it corrects sensory-gating deficits and improves working memory, effects consistent with cognitive enhancement. Compound 6 represents a chemotype for allosteric activation of α7 nAChRs, with therapeutic potential in CNS diseases with cognitive dysfunction. PMID:17470817

  14. Physiological roles of taurine in heart and muscle

    PubMed Central

    2010-01-01

    Taurine (aminoethane sulfonic acid) is an ubiquitous compound, found in very high concentrations in heart and muscle. Although taurine is classified as an amino acid, it does not participate in peptide bond formation. Nonetheless, the amino group of taurine is involved in a number of important conjugation reactions as well as in the scavenging of hypochlorous acid. Because taurine is a fairly inert compound, it is an ideal modulator of basic processes, such as osmotic pressure, cation homeostasis, enzyme activity, receptor regulation, cell development and cell signalling. The present review discusses several physiological functions of taurine. First, the observation that taurine depletion leads to the development of a cardiomyopathy indicates a role for taurine in the maintenance of normal contractile function. Evidence is provided that this function of taurine is mediated by changes in the activity of key Ca2+ transporters and the modulation Ca2+ sensitivity of the myofibrils. Second, in some species, taurine is an established osmoregulator, however, in mammalian heart the osmoregulatory function of taurine has recently been questioned. Third, taurine functions as an indirect regulator of oxidative stress. Although this action of taurine has been widely discussed, its mechanism of action is unclear. A potential mechanism for the antioxidant activity of taurine is discussed. Fourth, taurine stabilizes membranes through direct interactions with phospholipids. However, its inhibition of the enzyme, phospholipid N-methyltransferase, alters the phosphatidylcholine and phosphatidylethanolamine content of membranes, which in turn affects the function of key proteins within the membrane. Finally, taurine serves as a modulator of protein kinases and phosphatases within the cardiomyocyte. The mechanism of this action has not been studied. Taurine is a chemically simple compound, but it has profound effects on cells. This has led to the suggestion that taurine is an essential or semi-essential nutrient for many mammals. PMID:20804594

  15. Physiological roles of taurine in heart and muscle.

    PubMed

    Schaffer, Stephen W; Jong, Chian Ju; Ramila, K C; Azuma, Junichi

    2010-08-24

    Taurine (aminoethane sulfonic acid) is an ubiquitous compound, found in very high concentrations in heart and muscle. Although taurine is classified as an amino acid, it does not participate in peptide bond formation. Nonetheless, the amino group of taurine is involved in a number of important conjugation reactions as well as in the scavenging of hypochlorous acid. Because taurine is a fairly inert compound, it is an ideal modulator of basic processes, such as osmotic pressure, cation homeostasis, enzyme activity, receptor regulation, cell development and cell signalling. The present review discusses several physiological functions of taurine. First, the observation that taurine depletion leads to the development of a cardiomyopathy indicates a role for taurine in the maintenance of normal contractile function. Evidence is provided that this function of taurine is mediated by changes in the activity of key Ca2+ transporters and the modulation Ca2+ sensitivity of the myofibrils. Second, in some species, taurine is an established osmoregulator, however, in mammalian heart the osmoregulatory function of taurine has recently been questioned. Third, taurine functions as an indirect regulator of oxidative stress. Although this action of taurine has been widely discussed, its mechanism of action is unclear. A potential mechanism for the antioxidant activity of taurine is discussed. Fourth, taurine stabilizes membranes through direct interactions with phospholipids. However, its inhibition of the enzyme, phospholipid N-methyltransferase, alters the phosphatidylcholine and phosphatidylethanolamine content of membranes, which in turn affects the function of key proteins within the membrane. Finally, taurine serves as a modulator of protein kinases and phosphatases within the cardiomyocyte. The mechanism of this action has not been studied. Taurine is a chemically simple compound, but it has profound effects on cells. This has led to the suggestion that taurine is an essential or semi-essential nutrient for many mammals.

  16. KSC-00pp0497

    NASA Image and Video Library

    2000-04-13

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, a worker watches as the plastic-covered replacement Power Drive Unit (PDU) for Space Shuttle Atlantis is lifted by crane toward the tail. The PDU controls the rudder/speed brake on the orbiter. Atlantis is scheduled to lift off April 24 at 4:15 p.m. EDT on mission STS-101, the third flight to the International Space Station. The primary mission is to carry logistics and supplies to the Space Station, plus the crew will be preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000

  17. KSC00pp0497

    NASA Image and Video Library

    2000-04-13

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, a worker watches as the plastic-covered replacement Power Drive Unit (PDU) for Space Shuttle Atlantis is lifted by crane toward the tail. The PDU controls the rudder/speed brake on the orbiter. Atlantis is scheduled to lift off April 24 at 4:15 p.m. EDT on mission STS-101, the third flight to the International Space Station. The primary mission is to carry logistics and supplies to the Space Station, plus the crew will be preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000

  18. Target Gas Effects on Collision-Induced Dissociation of Peptides in a Tandem Four-Sector Mass Spectrometer.

    DTIC Science & Technology

    1991-05-01

    it is due to lysine and/or pyroglutamic acid . No data were given to support this so experiments were conducted to attempt to confirm the source and the...fragmentation pathways with higher activation energies than by simple cleavages between amino acid residues or by losses of simple neutrals such as...Avg Mass Compound Avg Mass H2 1.01 Acetic Acid 5.50 H20 6.00 Alanine 6.85 C02 - 14.66 Glucose 7.51 CH4 3.2i Benzene 6.51 MeOH 5.34 Butanol 4.94

  19. Electrodeposited silk coatings for bone implants.

    PubMed

    Elia, Roberto; Michelson, Courtney D; Perera, Austin L; Brunner, Teresa F; Harsono, Masly; Leisk, Gray G; Kugel, Gerard; Kaplan, David L

    2015-11-01

    The aim of this study was to characterize the mechanical properties and drug elution features of silk protein-based electrodeposited dental implant coatings. Silk processing conditions were modified to obtain coatings with a range of mechanical properties on titanium studs. These coatings were assessed for adhesive strength and dissolution, with properties tuned using water vapor annealing or glycerol incorporation to modulate crystalline content. Coating reproducibility was demonstrated over a range of silk concentrations from 1% to 10%. Surface roughness of titanium substrates was altered using industry relevant acid etching and grit blasting, and the effect of surface topography on silk coating adhesion was assessed. Florescent compounds were incorporated into the silk coatings, which were modulated for crystalline content, to achieve four days of sustained release of the compounds. This silk electrogelation technique offers a safe and relatively simple approach to generate mechanically robust, biocompatible, and degradable implant coatings that can also be functionalized with bioactive compounds to modulate the local regenerative tissue environment. © 2014 Wiley Periodicals, Inc.

  20. Electrodeposited silk coatings for bone implants

    PubMed Central

    Elia, Roberto; Michelson, Courtney D.; Perera, Austin L.; Brunner, Teresa F.; Harsono, Masly; Leisk, Gray G.; Kugel, Gerard; Kaplan, David L.

    2014-01-01

    The aim of this study was to characterize the mechanical properties and drug elution features of silk protein-based electrodeposited dental implant coatings. Silk processing conditions were modified to obtain coatings with a range of mechanical properties on titanium studs. These coatings were assessed for adhesive strength and dissolution, with properties tuned using water vapor annealing or glycerol incorporation to modulate crystalline content. Coating reproducibility was demonstrated over a range of silk concentrations from 1 to 10%. Surface roughness of titanium substrates was altered using industry relevant acid etching and grit blasting, and the effect of surface topography on silk coating adhesion was assessed. Florescent compounds were incorporated into the silk coatings, which were modulated for crystalline content, to achieve four days of sustained release of the compounds. This silk electrogelation technique offers a safe and relatively simple approach to generate mechanically robust, biocompatible and degradable implant coatings that can also be functionalized with bioactive compounds to modulate the local regenerative tissue environment. PMID:25545462

  1. Effect of Nitrogen Compounds on Shrimp Litopenaeus vannamei: Histological Alterations of the Antennal Gland.

    PubMed

    Fregoso-López, Marcela G; Morales-Covarrubias, María S; Franco-Nava, Miguel A; Ponce-Palafox, Jesús T; Fierro-Sañudo, Juan F; Ramírez-Rochín, Javier; Páez-Osuna, Federico

    2018-06-01

    Two experimental modules with different stocking densities (M1 = 70 and M2 = 120 shrimp m -2 ) were examined weekly during 72-day culture cycle at low-salinity water (1.9 g L -1 ) and zero-water exchange to examine the effects of water quality deterioration on the antennal gland (AG) of shrimp. Results showed survival rates of 87.7% and 11.9% in M1 and M2, respectively. Water temperature, pH, dissolved oxygen, and chlorophyll a were not significantly different between modules but the concentrations of the nitrogen compounds were significantly different between modules with the exception of nitrite-N, showing a higher histological alteration index in M2 (32 ± 10) than M1 (22 ± 0) with a strong correlation with the nitrogen compounds. During the last weeks was evidenced in M1 inflammation and hemocytic and hemolymph infiltration, while in M2, melanization, hemocytic melanized nodules and cells with kariorrexis.

  2. A Method to Test the Effect of Environmental Cues on Mating Behavior in Drosophila melanogaster.

    PubMed

    Gorter, Jenke A; Billeter, Jean-Christophe

    2017-07-17

    An individual's sexual drive is influenced by genotype, experience and environmental conditions. How these factors interact to modulate sexual behaviors remains poorly understood. In Drosophila melanogaster, environmental cues, such as food availability, affect mating activity offering a tractable system to investigate the mechanisms modulating sexual behavior. In D. melanogaster, environmental cues are often sensed via the chemosensory gustatory and olfactory systems. Here, we present a method to test the effect of environmental chemical cues on mating behavior. The assay consists of a small mating arena containing food medium and a mating couple. The mating frequency for each couple is continuously monitored for 24 h. Here we present the applicability of this assay to test environmental compounds from an external source through a pressurized air system as well as manipulation of the environmental components directly in the mating arena. The use of a pressurized air system is especially useful to test the effect of very volatile compounds, while manipulating components directly in the mating arena can be of value to ascertain a compound's presence. This assay can be adapted to answer questions about the influence of genetic and environmental cues on mating behavior and fecundity as well as other male and female reproductive behaviors.

  3. Development of GREET Catalyst Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhichao; Dunn, Jennifer B.; Cronauer, Donald C.

    2014-09-01

    Catalysts are critical inputs for many pathways that convert biomass into biofuels. Energy consumption and greenhouse gas (GHG) emissions during the production of catalysts and chemical inputs influence the life-cycle energy consumption, and GHG emissions of biofuels and need to be considered in biofuel life-cycle analysis (LCA). In this report, we develop energy and material flows for the production of three different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5]) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™)more » catalyst module. They were selected because they are consumed in existing U.S. Department of Energy (DOE) analyses of biofuel processes. For example, a thermochemical ethanol production pathway (indirect gasification and mixed alcohol synthesis) developed by the National Renewable Energy Laboratory (NREL) uses olivine, DEPG, and tar reforming and alcohol synthesis catalysts (Dutta et al., 2011). ZSM-5 can be used in biofuel production pathways such as catalytic upgrading of sugars into hydrocarbons (Biddy and Jones, 2013). Other uses for these compounds and catalysts are certainly possible. In this report, we document the data sources and methodology we used to develop material and energy flows for the catalysts and compounds in the GREET catalyst module. In Section 2 we focus on compounds used in the model Dutta et al. (2011) developed. In Section 3, we report material and energy flows associated with ZSM-5 production. Finally, in Section 4, we report results.« less

  4. Larvicidal activity of Zanthoxylum acanthopodium essential oil against the malaria mosquitoes, Anopheles anthropophagus and Anopheles sinensis.

    PubMed

    He, Qi; Wang, Wenxia; Zhu, Liang

    2018-05-15

    Zanthoxylum acanthopodium has insecticidal effect in Chinese traditional medicine. In this study, the essential oil from the dried Zanthoxylum plant was used as a larvicidal compound against the malaria mosquitoes, Anopheles anthropophagus and Anopheles sinensis. Compounds in the Zanthoxylum essential oil were investigated by gas chromatography and mass spectroscopy (GC-MS). The larvicidal bioassays of the whole oil, as well as the main compounds in the oil (estragole and eucalyptol) were performed using WHO method. In total, 63 main compounds (99.32%) were found in the oils, including estragole (15.46%), eucalyptol (10.94%), β-caryophyllene (5.52%), cis-linalool oxide (3.76%), cis-limonene oxide (3.06%). A dose-dependent effect on mortality was recorded with increasing concentrations of essential oil and compounds increasing mortality of the larvae. Larvicidal bioassays revealed that 24 h LC 50 of the whole essential oil was 36.00 mg/L and LC 90 was 101.49 mg/L against An. anthropophagus, while LC 50 was 49.02 mg/L and LC 90 was 125.18 mg/L against An. sinensis. Additionally, 24 h LC 50 of estragole were 38.56 and 41.67 mg/L against An. anthropophagus and An. sinensis, respectively, while the related LC 90 were 95.90 and 107.89 mg/L. LC 50 of eucalyptol were 42.41 and 45.49 mg/L against An. anthropophagus and An. sinensis, while the related LC 90 were 114.45 and 124.95 mg/L. The essential oil of Z. acanthopodium and its several major compounds may have potential for use in the control of malaria mosquitoes.

  5. High-Throughput Screens to Discover Small-Molecule Modulators of Ryanodine Receptor Calcium Release Channels

    PubMed Central

    Rebbeck, Robyn T.; Essawy, Maram M.; Nitu, Florentin R.; Grant, Benjamin D.; Gillispie, Gregory D.; Thomas, David D.; Bers, Donald M.; Cornea, Razvan L.

    2017-01-01

    Using time-resolved fluorescence resonance energy transfer (FRET), we have developed and validated the first high-throughput screening (HTS) method to discover compounds that modulate an intracellular Ca2+ channel, the ryanodine receptor (RyR), for therapeutic applications. Intracellular Ca2+ regulation is critical for striated muscle function, and RyR is a central player. At resting [Ca2+], increased propensity of channel opening due to RyR dysregulation is associated with severe cardiac and skeletal myopathies, diabetes and neurological disorders. This leaky state of the RyR is an attractive target for pharmacological agents to treat such pathologies. Our FRET-based HTS detects RyR binding of accessory proteins calmodulin or FKBP12.6. Under conditions that mimic a pathological state, we carried out a screen of the 727-compound NIH Clinical Collection, which yielded six compounds that reproducibly changed FRET by >3SD. Dose-response of FRET and [3H]ryanodine binding readouts reveal that five hits reproducibly alter RyR1 structure and activity. One compound increased FRET and inhibited RyR1, which was only significant at nM [Ca2+], and accentuated without CaM present. These properties characterize a compound that could mitigate RyR1 leak. An excellent z′-factor and the tight correlation between structural and functional readouts validate this first HTS method to identify RyR modulators. PMID:27760856

  6. Measurement of the cross section of the residues from the 11B-induced reaction on 89Y and 93Nb: Production of 97Ru and Rhm101

    NASA Astrophysics Data System (ADS)

    Kumar, Deepak; Maiti, Moumita

    2017-06-01

    Background: The heavy-ion induced reactions on intermediate mass targets are complex in nature, even at the low energies. To understand those nuclear reaction phenomena in detail, more experimental studies are required in a wide range of energies. Purpose: Investigation of heavy-ion reactions by measuring production cross sections of the residues produced in the 11B-induced reactions on 89Y and 93Nb at low energies, near and above the barrier, and to check the effectiveness of the different nuclear models to explain them. Further, aim is also to optimize the production parameters of neutron deficient medically relevant 97Ru and Rhm101 radioisotopes produced in those reactions, respectively. Method: The 11B beam was allowed to impinge on 89Y and 93Nb foils supported by an aluminum (Al) catcher foil, arranged in a stack, in 27.5-58.7 and 30.6-62.3 MeV energy range, respectively. The off-line γ -ray spectrometry was carried out after the end of bombardment to measure the activity of the radionuclides produced in each foil and cross sections were calculated. Measured cross-sectional data were analyzed in terms of compound and precompound model calculations. Results: The measured cross sections of Ru,9597, 96,95,94Tc, Mom93, Ym90 radionuclides produced in the 11B+89Y reaction, and 101,100,99Pd, 101m,100,99mRh, 97Ru produced in the 11B+93Nb reaction showed good agreement with the model calculations based on the Hauser-Feshbach formulation and exciton model. Unlike theoretical estimation, consistent production of Ym90 was observed in the 11B+89Y reaction. Substantial pre-equilibrium contribution was noticed in the 3 n reaction channel in both reactions. Conclusions: Theoretical estimations confirmed that major production yields are mostly contributed by the compound reaction process. Pre-equilibrium emissions contributed at the high energy tail of the 3 n channel for both reactions. Moreover, an indirect signature of a direct reaction influence was also observed in the Ym90 production.

  7. High efficiency compound semiconductor concentrator photovoltaics

    NASA Technical Reports Server (NTRS)

    Borden, P.; Gregory, P.; Saxena, R.; Owen, R.; Moore, O.

    1980-01-01

    Special emphasis was given to the high yield pilot production of packaged AlGaAs/GaAs concentrator solar cells, using organometallic VPE for materials growth, the demonstration of a concentrator module using 12 of these cells which achieved 16.4 percent conversion efficiency at 50 C coolant inlet temperature, and the demonstration of a spectral splitting converter module that achieved in excess of 20 percent efficiency. This converter employed ten silicon and ten AlGaAs cells with a dichroic filter functioning as the beam splitter. A monolithic array of AlGaAs/GaAs solar cells is described.

  8. Modulation of the Acetone/Butanol Ratio during Fermentation of Corn Stover-Derived Hydrolysate by Clostridium beijerinckii Strain NCIMB 8052.

    PubMed

    Liu, Zi-Yong; Yao, Xiu-Qing; Zhang, Quan; Liu, Zhen; Wang, Ze-Jie; Zhang, Yong-Yu; Li, Fu-Li

    2017-04-01

    Producing biobutanol from lignocellulosic biomass has shown promise to ultimately reduce greenhouse gases and alleviate the global energy crisis. However, because of the recalcitrance of a lignocellulosic biomass, a pretreatment of the substrate is needed which in many cases releases soluble lignin compounds (SLCs), which inhibit growth of butanol-producing clostridia. In this study, we found that SLCs changed the acetone/butanol ratio (A/B ratio) during butanol fermentation. The typical A/B molar ratio during Clostridium beijerinckii NCIMB 8052 batch fermentation with glucose as the carbon source is about 0.5. In the present study, the A/B molar ratio during batch fermentation with a lignocellulosic hydrolysate as the carbon source was 0.95 at the end of fermentation. Structural and redox potential changes of the SLCs were characterized before and after fermentation by using gas chromatography/mass spectrometry and electrochemical analyses, which indicated that some exogenous SLCs were involved in distributing electron flow to C. beijerinckii , leading to modulation of the redox balance. This was further demonstrated by the NADH/NAD + ratio and trxB gene expression profile assays at the onset of solventogenic growth. As a result, the A/B ratio of end products changed significantly during C. beijerinckii fermentation using corn stover-derived hydrolysate as the carbon source compared to glucose as the carbon source. These results revealed that SLCs not only inhibited cell growth but also modulated the A/B ratio during C. beijerinckii butanol fermentation. IMPORTANCE Bioconversion of lignocellulosic feedstocks to butanol involves pretreatment, during which hundreds of soluble lignin compounds (SLCs) form. Most of these SLCs inhibit growth of solvent-producing clostridia. However, the mechanism by which these compounds modulate electron flow in clostridia remains elusive. In this study, the results revealed that SLCs changed redox balance by producing oxidative stress and modulating electron flow as electron donors. Production of H 2 and acetone was stimulated, while butanol production remained unchanged, which led to a high A/B ratio during C. beijerinckii fermentation using corn stover-derived hydrolysate as the carbon source. These observations provide insight into utilizing C. beijerinckii to produce butanol from a lignocellulosic biomass. Copyright © 2017 American Society for Microbiology.

  9. Modulation of the Acetone/Butanol Ratio during Fermentation of Corn Stover-Derived Hydrolysate by Clostridium beijerinckii Strain NCIMB 8052

    PubMed Central

    Liu, Zi-Yong; Yao, Xiu-Qing; Zhang, Quan; Liu, Zhen; Wang, Ze-Jie; Zhang, Yong-Yu

    2017-01-01

    ABSTRACT Producing biobutanol from lignocellulosic biomass has shown promise to ultimately reduce greenhouse gases and alleviate the global energy crisis. However, because of the recalcitrance of a lignocellulosic biomass, a pretreatment of the substrate is needed which in many cases releases soluble lignin compounds (SLCs), which inhibit growth of butanol-producing clostridia. In this study, we found that SLCs changed the acetone/butanol ratio (A/B ratio) during butanol fermentation. The typical A/B molar ratio during Clostridium beijerinckii NCIMB 8052 batch fermentation with glucose as the carbon source is about 0.5. In the present study, the A/B molar ratio during batch fermentation with a lignocellulosic hydrolysate as the carbon source was 0.95 at the end of fermentation. Structural and redox potential changes of the SLCs were characterized before and after fermentation by using gas chromatography/mass spectrometry and electrochemical analyses, which indicated that some exogenous SLCs were involved in distributing electron flow to C. beijerinckii, leading to modulation of the redox balance. This was further demonstrated by the NADH/NAD+ ratio and trxB gene expression profile assays at the onset of solventogenic growth. As a result, the A/B ratio of end products changed significantly during C. beijerinckii fermentation using corn stover-derived hydrolysate as the carbon source compared to glucose as the carbon source. These results revealed that SLCs not only inhibited cell growth but also modulated the A/B ratio during C. beijerinckii butanol fermentation. IMPORTANCE Bioconversion of lignocellulosic feedstocks to butanol involves pretreatment, during which hundreds of soluble lignin compounds (SLCs) form. Most of these SLCs inhibit growth of solvent-producing clostridia. However, the mechanism by which these compounds modulate electron flow in clostridia remains elusive. In this study, the results revealed that SLCs changed redox balance by producing oxidative stress and modulating electron flow as electron donors. Production of H2 and acetone was stimulated, while butanol production remained unchanged, which led to a high A/B ratio during C. beijerinckii fermentation using corn stover-derived hydrolysate as the carbon source. These observations provide insight into utilizing C. beijerinckii to produce butanol from a lignocellulosic biomass. PMID:28130305

  10. The Association of Palmitoylethanolamide with Luteolin Decreases Neuroinflammation and Stimulates Autophagy in Parkinson's Disease Model.

    PubMed

    Siracusa, Rosalba; Paterniti, Irene; Impellizzeri, Daniela; Cordaro, Marika; Crupi, Rosalia; Navarra, Michele; Cuzzocrea, Salvatore; Esposito, Emanuela

    2015-01-01

    Parkinson's disease (PD) is a disorder resulted by degeneration of dopaminergic neurons. To counteract the neuroinflammation and oxidative stress of PD, we decided to test a new composite constituted by palmitoylethanolamide (PEA) and luteolin (Lut), in a mass ratio of 10:1, respectively (co-ultraPEALut). In this study the neuroprotective property of the new compound was investigated. For the in vivo model of PD, mice received four injections of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP). Starting 24 h after the first administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we treated animals with co-ultraPEALut daily until 7 days. On day 8, brains were processed for Western blotting and immunohistochemical analysis. Treatment with co-ultraPEALut reduced the specific markers of PD (tyrosine hydroxylase immunopositive), and the increased levels of activated astrocytes and pro-inflammatory cytokines as well as inducible nitric oxide synthase. Further, the possible association of autophagy with the beneficial effects of coultraPEALut. Western blot analysis and immunofluorescence staining showed that co-ultraPEALut administration increased autophagy process. These data were confirmed by an in vitro model, using SH-SY5Y neuroblastoma cells. Western blot analysis showed that co-ultraPEALut pre-treatment maintained high Beclin-1 and p62 expression, while continued to inhibit the p70S6K expression. Altogether, these results put forward that treatment with co-ultraPEALut is able to modulate both the neuroinflammatory process and the autophagic pathway involved in PD, actions which may underlie its neuroprotective effect.

  11. Novel small molecule modulators of plant growth and development identified by high-content screening with plant pollen.

    PubMed

    Chuprov-Netochin, Roman; Neskorodov, Yaroslav; Marusich, Elena; Mishutkina, Yana; Volynchuk, Polina; Leonov, Sergey; Skryabin, Konstantin; Ivashenko, Andrey; Palme, Klaus; Touraev, Alisher

    2016-09-06

    Small synthetic molecules provide valuable tools to agricultural biotechnology to circumvent the need for genetic engineering and provide unique benefits to modulate plant growth and development. We developed a method to explore molecular mechanisms of plant growth by high-throughput phenotypic screening of haploid populations of pollen cells. These cells rapidly germinate to develop pollen tubes. Compounds acting as growth inhibitors or stimulators of pollen tube growth are identified in a screen lasting not longer than 8 h high-lighting the potential broad applicability of this assay to prioritize chemicals for future mechanism focused investigations in plants. We identified 65 chemical compounds that influenced pollen development. We demonstrated the usefulness of the identified compounds as promotors or inhibitors of tobacco and Arabidopsis thaliana seed growth. When 7 days old seedlings were grown in the presence of these chemicals twenty two of these compounds caused a reduction in Arabidopsis root length in the range from 4.76 to 49.20 % when compared to controls grown in the absence of the chemicals. Two of the chemicals sharing structural homology with thiazolidines stimulated root growth and increased root length by 129.23 and 119.09 %, respectively. The pollen tube growth stimulating compound (S-02) belongs to benzazepin-type chemicals and increased Arabidopsis root length by 126.24 %. In this study we demonstrate the usefulness of plant pollen tube based assay for screening small chemical compound libraries for new biologically active compounds. The pollen tubes represent an ultra-rapid screening tool with which even large compound libraries can be analyzed in very short time intervals. The broadly applicable high-throughput protocol is suitable for automated phenotypic screening of germinating pollen resulting in combination with seed germination assays in identification of plant growth inhibitors and stimulators.

  12. Synthesis and pharmacological evaluation of polyfunctional benzimidazole-NSAID chimeric molecules combining anti-inflammatory, immunomodulatory and antioxidant activities.

    PubMed

    Bansal, Yogita; Silakari, Om

    2014-11-01

    Polyfunctional compounds comprise a novel class of therapeutic agents for treatment of multifactorial diseases. The present study reports a series of benzimidazole-non-steroidal anti-inflammatory drugs (NSAIDs) conjugates (1-10) as novel polyfunctional compounds synthesized in the presence of orthophosphoric acid. The compounds were evaluated for anti-inflammatory (carageenan-induced paw edema model), immunomodulatory (direct haemagglutination test and carbon clearance index models), antioxidant (in vitro and in vivo) and for ulcerogenic effects. Each of the compound has retained the anti-inflammatory activity of the corresponding parent NSAID while exhibiting significantly reduced gastric ulcers. Additionally, the compounds are found to possess potent immunostimulatory and antioxidant activities. The compound 8 was maximally potent (antibody titre value 358.4 ± 140.21, carbon clearance index 0.053 ± 0.002 and antioxidant EC50 value 0.03 ± 0.006). These compounds, exhibiting such multiple pharmacological activities, can be taken as lead for the development of potent drugs for the treatment of chronic multifactorial diseases involving inflammation, immune system modulation and oxidative stress such as cancers. The Lipinski's parameters suggested the compounds to be bear drug like properties.

  13. Curcumin and its synthetic analogue dimethoxycurcumin differentially modulates antioxidant status of normal human peripheral blood mononuclear cells.

    PubMed

    Simon, Emmanuel; Aswini, P; Sameer Kumar, V B; Mankadath, Gokuldas

    2018-05-01

    Curcumin is a polyphenol derived from the herb Curcuma longa, which has been extensively studied in terms of its antitumour, antioxidant, and chemopreventive activity as well as various other effects. In the present work we compared curcumin with its synthetic analogue dimethoxycurcumin (dimc) in terms of its antioxidant enzyme-modulating effects in human peripheral blood mononuclear cells (PBMC). We found that these compounds modulate antioxidant enzymes differentially. Both curcumin and dimethoxycurcumin effected a decrease in lipid peroxidation status in PBMC, however, curcumin had better activity in this regard. An increase in the activity of catalase was seen in the case of curcumin-treated PBMC, whereas dimc increased catalase activity significantly to almost twofold level. Real time-polymerase chain reaction (RT-PCR) analysis revealed significant up-regulation of catalase at mRNA level post treatment with curcumin as well as dimc, however, dimc had better activity in this regard. Glutathione reductase (GR) activity and reduced glutathione levels increased in the case of peripheral blood mononuclear cells (PBMC) treated with curcumin, however, the trend was reversed with dimethoxycurcumin where, both glutathione reductase activity and reduced glutathione levels were significantly reduced. RT-PCR analysis of glutathione reductase mRNA levels showed decrease in mRNA levels post treatment with dimethoxycurcumin (dimc) further corroborating GR enzyme assay results, however, we could not obtain significant result post curcumin treatment. NFkB reporter assay and western blot analysis of nuclear as well as cytosolic fractions of NFkB revealed that curcumin inhibits NFkB activation whereas inhibition was much less with dimc. It has been reported that curcumin and dimc exerts differential cytotoxicity in normal and tumour cells and the reason for this had been attributed to the differential uptake of these compounds by normal cells and tumour cells. Based on our results we propose that differential modulation of antioxidant enzymes via NFkB pathway could be the reason behind differential cytotoxicity of dimc as well as curcumin in normal cells and tumour cells in addition to differential uptake of these compounds as reported previously.

  14. Efficient modulation of γ-aminobutyric acid type A receptors by piperine derivatives.

    PubMed

    Schöffmann, Angela; Wimmer, Laurin; Goldmann, Daria; Khom, Sophia; Hintersteiner, Juliane; Baburin, Igor; Schwarz, Thomas; Hintersteininger, Michael; Pakfeifer, Peter; Oufir, Mouhssin; Hamburger, Matthias; Erker, Thomas; Ecker, Gerhard F; Mihovilovic, Marko D; Hering, Steffen

    2014-07-10

    Piperine activates TRPV1 (transient receptor potential vanilloid type 1 receptor) receptors and modulates γ-aminobutyric acid type A receptors (GABAAR). We have synthesized a library of 76 piperine analogues and analyzed their effects on GABAAR by means of a two-microelectrode voltage-clamp technique. GABAAR were expressed in Xenopus laevis oocytes. Structure-activity relationships (SARs) were established to identify structural elements essential for efficiency and potency. Efficiency of piperine derivatives was significantly increased by exchanging the piperidine moiety with either N,N-dipropyl, N,N-diisopropyl, N,N-dibutyl, p-methylpiperidine, or N,N-bis(trifluoroethyl) groups. Potency was enhanced by replacing the piperidine moiety by N,N-dibutyl, N,N-diisobutyl, or N,N-bistrifluoroethyl groups. Linker modifications did not substantially enhance the effect on GABAAR. Compound 23 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dipropyl-2,4-pentadienamide] induced the strongest modulation of GABAA (maximal GABA-induced chloride current modulation (IGABA-max = 1673% ± 146%, EC50 = 51.7 ± 9.5 μM), while 25 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dibutyl-2,4-pentadienamide] displayed the highest potency (EC50 = 13.8 ± 1.8 μM, IGABA-max = 760% ± 47%). Compound 23 induced significantly stronger anxiolysis in mice than piperine and thus may serve as a starting point for developing novel GABAAR modulators.

  15. Efficient Modulation of γ-Aminobutyric Acid Type A Receptors by Piperine Derivatives

    PubMed Central

    2014-01-01

    Piperine activates TRPV1 (transient receptor potential vanilloid type 1 receptor) receptors and modulates γ-aminobutyric acid type A receptors (GABAAR). We have synthesized a library of 76 piperine analogues and analyzed their effects on GABAAR by means of a two-microelectrode voltage-clamp technique. GABAAR were expressed in Xenopus laevis oocytes. Structure–activity relationships (SARs) were established to identify structural elements essential for efficiency and potency. Efficiency of piperine derivatives was significantly increased by exchanging the piperidine moiety with either N,N-dipropyl, N,N-diisopropyl, N,N-dibutyl, p-methylpiperidine, or N,N-bis(trifluoroethyl) groups. Potency was enhanced by replacing the piperidine moiety by N,N-dibutyl, N,N-diisobutyl, or N,N-bistrifluoroethyl groups. Linker modifications did not substantially enhance the effect on GABAAR. Compound 23 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dipropyl-2,4-pentadienamide] induced the strongest modulation of GABAA (maximal GABA-induced chloride current modulation (IGABA-max = 1673% ± 146%, EC50 = 51.7 ± 9.5 μM), while 25 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dibutyl-2,4-pentadienamide] displayed the highest potency (EC50 = 13.8 ± 1.8 μM, IGABA-max = 760% ± 47%). Compound 23 induced significantly stronger anxiolysis in mice than piperine and thus may serve as a starting point for developing novel GABAAR modulators. PMID:24905252

  16. Natural product-inspired cascade synthesis yields modulators of centrosome integrity.

    PubMed

    Dückert, Heiko; Pries, Verena; Khedkar, Vivek; Menninger, Sascha; Bruss, Hanna; Bird, Alexander W; Maliga, Zoltan; Brockmeyer, Andreas; Janning, Petra; Hyman, Anthony; Grimme, Stefan; Schürmann, Markus; Preut, Hans; Hübel, Katja; Ziegler, Slava; Kumar, Kamal; Waldmann, Herbert

    2011-12-25

    In biology-oriented synthesis, the scaffolds of biologically relevant compound classes inspire the synthesis of focused compound collections enriched in bioactivity. This criterion is, in particular, met by the scaffolds of natural products selected in evolution. The synthesis of natural product-inspired compound collections calls for efficient reaction sequences that preferably combine multiple individual transformations in one operation. Here we report the development of a one-pot, twelve-step cascade reaction sequence that includes nine different reactions and two opposing kinds of organocatalysis. The cascade sequence proceeds within 10-30 min and transforms readily available substrates into complex indoloquinolizines that resemble the core tetracyclic scaffold of numerous polycyclic indole alkaloids. Biological investigation of a corresponding focused compound collection revealed modulators of centrosome integrity, termed centrocountins, which caused fragmented and supernumerary centrosomes, chromosome congression defects, multipolar mitotic spindles, acentrosomal spindle poles and multipolar cell division by targeting the centrosome-associated proteins nucleophosmin and Crm1.

  17. Involvement of PKC and ROS in the cytotoxic mechanism of anti-leukemic decursin and its derivatives and their structure-activity relationship in human K562 erythroleukemia and U937 myeloleukemia cells.

    PubMed

    Kim, Hyeon Ho; Sik Bang, Sung; Seok Choi, Jin; Han, Hogyu; Kim, Ik-Hwan

    2005-06-08

    Protein kinase C (PKC) plays an important role in the proliferation and differentiation of various cell types including normal and leukemic hematopoietic cells. Recently, various PKC modulators were used as a chemotherapeutic agent of leukemia. Decursin (1), a pyranocoumarin from Angelica gigas, exhibits the cytotoxic effects on various human cancer cell lines and in vitro PKC activation. For the development of more effective anticancer agents with PKC modulation activity, 11 decursin derivatives 2-12 were chemically synthesized and evaluated for their ability to act as a tumor-suppressing PKC activator and as an antagonist to phorbol 12-myristate 13-acetate (PMA), a tumor-promoting PKC activator. In the presence of phosphatidylserine (PS), all of 12 compounds 1-12 activated PKC (mainly alpha, beta, and gamma isozymes) but only three compounds 1-3 activated PKC even in the absence of PS. Six compounds 1-6 containing the coumarin structure were cytotoxic to human K562 erythroleukemia and U937 myeloleukemia cells. A cytotoxic mechanism of decursin and its derivatives was investigated using TUR cells, a PKC betaII-deficient variant of U937 cells. Among six compounds 1-6 with cytotoxicity to K562 and U937 leukemia cells, only three compounds 1-3 were cytotoxic to TUR cells. Therefore, compounds 1-3 and 4-6 inhibit the proliferation of leukemia cells in a PKC betaII-independent and dependent manner, respectively, indicating that the side chain of compounds determines the dependency of their cytotoxicity on PKC betaII. To further elucidate the cytotoxic mechanism of compounds 1 and 2, levels of PKC isozymes and generation of reactive oxygen species (ROS) were investigated. Compounds 1-2 induced the down-regulation of PKC alpha and betaII in K562 cells and the production of ROS in U937 cells. Thus, PKC and ROS are probably important factors in the cytotoxic mechanism of compounds 1-2. From these results, the structure-activity relationship of decursin and its derivatives is as follows: (i) the coumarin structure is required for anti-leukemic activity and (ii) the side chain is a determinant of PKC activation and the cytotoxic mechanism in leukemia cells.

  18. GABAB Receptor Positive Modulation Decreases Selective Molecular and Behavioral Effects of Cocaine

    PubMed Central

    Lhuillier, Loic; Mombereau, Cedric; Cryan, John F.; Kaupmann, Klemens

    2006-01-01

    Exposure to cocaine induces selective behavioral and molecular adaptations. In rodents, acute cocaine induces increased locomotor activity whereas prolonged drug exposure results in behavioral locomotor sensitization, which is thought to be a consequence of drug–induced neuroadaptive changes. Recent attention has been given to compounds activating GABAB receptors as potential anti-addictive therapies. In particular the principle of allosteric positive GABAB receptor modulators is very promising in this respect, as positive modulators lack the sedative and muscle relaxant properties of full GABAB receptor agonists such as baclofen. Here we investigated the effects of systemic application of the GABAB receptor positive modulator GS39783 in animals treated with acute and chronic cocaine administration. Both GS39783 and baclofen dose-dependently attenuated acute cocaine-induced hyperlocomotion. Furthermore, both compounds also efficiently blocked cocaine-induced Fos induction in the striatal complex. In chronic studies GS39783 induced a modest attenuation of cocaine-induced locomotor sensitization. Chronic cocaine induces the accumulation of the transcription factor ΔFosB and up regulates cAMP-response-element-binding-protein (CREB) and dopamine-and-cAMP-regulated-phosphoprotein of 32 kd (DARPP-32). GS39783 blocked the induction/activation of DARPP-32 and CREB in the nucleus accumbens and dorsal striatum and partially inhibited ΔFosB accumulation in the dorsal striatum. In summary our data provide evidence that GS39783 attenuates the acute behavioral effects of cocaine exposure in rodents and in addition prevents the induction of selective long-term adaptive changes in dopaminergic signaling pathways. Further investigation of GABAB receptor positive modulation as a novel therapeutic strategy for the treatment of cocaine dependence and possibly other drugs of abuse is therefore warranted. PMID:16710312

  19. Gas sorption and transition-metal cation separation with a thienothiophene based zirconium metal–organic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SK, Mostakim; Grzywa, Maciej; Volkmer, Dirk

    2015-12-15

    The modulated synthesis of the thienothiophene based zirconium metal–organic framework (MOF) material having formula [Zr{sub 6}O{sub 4}(OH){sub 4}(DMTDC){sub 6}]·4.8DMF·10H{sub 2}O (1) (H{sub 2}DMTDC=3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylic acid; DMF=N,N'-dimethylformamide) was carried out by heating a mixture of ZrCl{sub 4}, H{sub 2}DMTDC linker and benzoic acid (used as a modulator) with a molar ratio of 1:1:30 in DMF at 150 °C for 24 h. Systematic investigations have been performed in order to realize the effect of ZrCl{sub 4}/benzoic acid molar ratio on the crystallinity of the material. The activation (i.e., the removal of the guest solvent molecules from the pores) of as-synthesized compound was achievedmore » by stirring it with methanol and subsequently heating under vacuum. A combination of X-ray diffraction (XRD), Fourier transform infrared (FT-IR), thermogravimetric (TG) and elemental analysis was used to examine the phase purity of the as-synthesized and thermally activated 1. The material displays high thermal stability up to 310 °C in an air atmosphere. As revealed from the XRD measurements, the compound retains its crystallinity when treated with water, acetic acid and 1 M HCl solutions. The N{sub 2} and CO{sub 2} sorption analyses suggest that the material possesses remarkably high microporosity (S{sub BET}=1236 m{sup 2} g{sup −1}; CO{sub 2} uptake=3.5 mmol g{sup −1} at 1 bar and 0 °C). The compound also shows selective adsorption behavior for Cu{sup 2+} over Co{sup 2+} and Ni{sup 2+} ions. - Graphical abstract: Selective transition-metal cation adsorption by a thienothiophene based zirconium metal–organic framework material. - Highlights: • The modulated synthesis of a thienothiophene based Zr(IV) MOF has been described. • Effect of metal salt/modulator ratio on the crystallinity was thoroughly studied. • The compound showed high thermal and physiochemical stability. • N{sub 2} and CO{sub 2} sorption experiments revealed significantly high microporosity. • The material showed high adsorption selectivity for Cu{sup 2+} over Co{sup 2+} and Ni{sup 2+} ions.« less

  20. Thermodynamics and structural analysis of positive allosteric modulation of the ionotropic glutamate receptor GluA2.

    PubMed

    Krintel, Christian; Frydenvang, Karla; Olsen, Lars; Kristensen, Maria T; de Barrios, Oriol; Naur, Peter; Francotte, Pierre; Pirotte, Bernard; Gajhede, Michael; Kastrup, Jette S

    2012-01-01

    Positive allosteric modulators of the ionotropic glutamate receptor-2 (GluA2) are promising compounds for the treatment of cognitive disorders, e.g. Alzheimer's disease. These modulators bind within the dimer interface of the LBD (ligand-binding domain) and stabilize the agonist-bound conformation slowing receptor desensitization and/or deactivation. In the present study, we employ isothermal titration calorimetry to determine binding affinities and thermodynamic details of binding of modulators of GluA2. A mutant of the LBD of GluA2 (LBD-L483Y-N754S) that forms a stable dimer in solution was used. The potent GluA2 modulator BPAM-97 was used as a reference compound. Evidence that BPAM-97 binds in the same pocket as the well-known GluA2 modulator cyclothiazide was obtained from X-ray structures. The LBD-L483Y-N754S:BPAM-97 complex has a Kd of 5.6 μM (ΔH=-4.9 kcal/mol, -TΔS=-2.3 kcal/mol; where 1 kcal≈4.187 kJ). BPAM-97 was used in a displacement assay to determine a Kd of 0.46 mM (ΔH=-1.2 kcal/mol, -TΔS=-3.3 kcal/mol) for the LBD-L483Y-N754S:IDRA-21 complex. The major structural factors increasing the potency of BPAM-97 over IDRA-21 are the increased van der Waals contacts to, primarily, Met496 in GluA2 imposed by the ethyl substituent of BPAM-97. These results add important information on binding affinities and thermodynamic details, and provide a new tool in the development of drugs against cognitive disorders.

Top