Science.gov

Sample records for modulating immune cell

  1. "Natural Regulators": NK Cells as Modulators of T Cell Immunity.

    PubMed

    Schuster, Iona S; Coudert, Jerome D; Andoniou, Christopher E; Degli-Esposti, Mariapia A

    2016-01-01

    Natural killer (NK) cells are known as frontline responders capable of rapidly mediating a response upon encountering transformed or infected cells. Recent findings indicate that NK cells, in addition to acting as innate effectors, can also regulate adaptive immune responses. Here, we review recent studies on the immunoregulatory function of NK cells with a specific focus on their ability to affect the generation of early, as well as long-term antiviral T cell responses, and their role in modulating immune pathology and disease. In addition, we summarize the current knowledge of the factors governing regulatory NK cell responses and discuss origin, tissue specificity, and open questions about the classification of regulatory NK cells as classical NK cells versus group 1 innate lymphoid cells.

  2. Immune modulation by dendritic-cell-based cancer vaccines.

    PubMed

    Kumar, Chaitanya; Kohli, Sakshi; Bapsy, Poonamalle Parthasarathy; Vaid, Ashok Kumar; Jain, Minish; Attili, Venkata Sathya Suresh; Sharan, Bandana

    2017-03-01

    The interplay between host immunity and tumour cells has opened the possibility of targeting tumour cells by modulation of the human immune system. Cancer immunotherapy involves the treatment of a tumour by utilizing the recombinant human immune system components to target the pro-tumour microenvironment or by revitalizing the immune system with the ability to kill tumour cells by priming the immune cells with tumour antigens. In this review, current immunotherapy approaches to cancer with special focus on dendritic cell (DC)-based cancer vaccines are discussed. Some of the DC-based vaccines under clinical trials for various cancer types are highlighted. Establishing tumour immunity involves a plethora of immune components and pathways; hence, combining chemotherapy, radiation therapy and various arms of immunotherapy, after analysing the benefits of individual therapeutic agents, might be beneficial to the patient.

  3. Validation of Immune Cell Modules in Multicellular Transcriptomic Data

    PubMed Central

    Heather, James M.; Byng-Maddick, Rachel; Guppy, Naomi; Ellis, Matthew; Turner, Carolin T.; Chain, Benjamin M.; Noursadeghi, Mahdad

    2017-01-01

    Numerous gene signatures, or modules have been described to evaluate the immune cell composition in transcriptomes of multicellular tissue samples. However, significant diversity in module gene content for specific cell types is associated with heterogeneity in their performance. In order to rank modules that best reflect their purported association, we have generated the modular discrimination index (MDI) score that assesses expression of each module in the target cell type relative to other cells. We demonstrate that MDI scores predict modules that best reflect independently validated differences in cellular composition, and correlate with the covariance between cell numbers and module expression in human blood and tissue samples. Our analyses demonstrate that MDI scores provide an ordinal summary statistic that reliably ranks the accuracy of gene expression modules for deconvolution of cell type abundance in transcriptional data. PMID:28045996

  4. Glycan-Based Cell Targeting To Modulate Immune Responses.

    PubMed

    Johannssen, Timo; Lepenies, Bernd

    2017-04-01

    Glycosylation is an integral post-translational modification present in more than half of all eukaryotic proteins. It affects key protein functions, including folding, stability, and immunogenicity. Glycoengineering approaches, such as the use of bacterial N-glycosylation systems, or expression systems, including yeasts, insect cells, and mammalian cells, have enabled access to defined and homogenous glycoproteins. Given that glycan structures on proteins can be recognized by host lectin receptors, they may facilitate cell-specific targeting and immune modulation. Myeloid C-type lectin receptors (CLRs) expressed by antigen-presenting cells are attractive targets to shape immune responses. Multivalent glycan display on nanoparticles, liposomes, or dendrimers has successfully enabled CLR targeting. In this review, we discuss novel strategies to access defined glycan structures and highlight CLR targeting approaches for immune modulation.

  5. Stem Cell-Derived Extracellular Vesicles and Immune-Modulation

    PubMed Central

    Burrello, Jacopo; Monticone, Silvia; Gai, Chiara; Gomez, Yonathan; Kholia, Sharad; Camussi, Giovanni

    2016-01-01

    Extra-cellular vesicles (EVs) are bilayer membrane structures enriched with proteins, nucleic acids, and other active molecules and have been implicated in many physiological and pathological processes over the past decade. Recently, evidence suggests EVs to play a more dichotomic role in the regulation of the immune system, whereby an immune response may be enhanced or supressed by EVs depending on their cell of origin and its functional state. EVs derived from antigen (Ag)-presenting cells for instance, have been involved in both innate and acquired (or adaptive) immune responses, as Ag carriers or presenters, or as vehicles for delivering active signaling molecules. On the other hand, tumor and stem cell derived EVs have been identified to exert an inhibitory effect on immune responses by carrying immuno-modulatory effectors, such as transcriptional factors, non-coding RNA (Species), and cytokines. In addition, stem cell-derived EVs have also been reported to impair dendritic cell maturation and to regulate the activation, differentiation, and proliferation of B cells. They have been shown to control natural killer cell activity and to suppress the innate immune response (IIR). Studies reporting the role of EVs on T lymphocyte modulation are controversial. Discrepancy in literature may be due to stem cell culture conditions, methods of EV purification, EV molecular content, and functional state of both parental and target cells. However, mesenchymal stem cell-derived EVs were shown to play a more suppressive role by shifting T cells from an activated to a T regulatory phenotype. In this review, we will discuss how stem cell-derived EVs may contribute toward the modulation of the immune response. Collectively, stem cell-derived EVs mainly exhibit an inhibitory effect on the immune system. PMID:27597941

  6. Stem Cell-Derived Extracellular Vesicles and Immune-Modulation.

    PubMed

    Burrello, Jacopo; Monticone, Silvia; Gai, Chiara; Gomez, Yonathan; Kholia, Sharad; Camussi, Giovanni

    2016-01-01

    Extra-cellular vesicles (EVs) are bilayer membrane structures enriched with proteins, nucleic acids, and other active molecules and have been implicated in many physiological and pathological processes over the past decade. Recently, evidence suggests EVs to play a more dichotomic role in the regulation of the immune system, whereby an immune response may be enhanced or supressed by EVs depending on their cell of origin and its functional state. EVs derived from antigen (Ag)-presenting cells for instance, have been involved in both innate and acquired (or adaptive) immune responses, as Ag carriers or presenters, or as vehicles for delivering active signaling molecules. On the other hand, tumor and stem cell derived EVs have been identified to exert an inhibitory effect on immune responses by carrying immuno-modulatory effectors, such as transcriptional factors, non-coding RNA (Species), and cytokines. In addition, stem cell-derived EVs have also been reported to impair dendritic cell maturation and to regulate the activation, differentiation, and proliferation of B cells. They have been shown to control natural killer cell activity and to suppress the innate immune response (IIR). Studies reporting the role of EVs on T lymphocyte modulation are controversial. Discrepancy in literature may be due to stem cell culture conditions, methods of EV purification, EV molecular content, and functional state of both parental and target cells. However, mesenchymal stem cell-derived EVs were shown to play a more suppressive role by shifting T cells from an activated to a T regulatory phenotype. In this review, we will discuss how stem cell-derived EVs may contribute toward the modulation of the immune response. Collectively, stem cell-derived EVs mainly exhibit an inhibitory effect on the immune system.

  7. Retinoic Acid as a Modulator of T Cell Immunity.

    PubMed

    Bono, Maria Rosa; Tejon, Gabriela; Flores-Santibañez, Felipe; Fernandez, Dominique; Rosemblatt, Mario; Sauma, Daniela

    2016-06-13

    Vitamin A, a generic designation for an array of organic molecules that includes retinal, retinol and retinoic acid, is an essential nutrient needed in a wide array of aspects including the proper functioning of the visual system, maintenance of cell function and differentiation, epithelial surface integrity, erythrocyte production, reproduction, and normal immune function. Vitamin A deficiency is one of the most common micronutrient deficiencies worldwide and is associated with defects in adaptive immunity. Reports from epidemiological studies, clinical trials and experimental studies have clearly demonstrated that vitamin A plays a central role in immunity and that its deficiency is the cause of broad immune alterations including decreased humoral and cellular responses, inadequate immune regulation, weak response to vaccines and poor lymphoid organ development. In this review, we will examine the role of vitamin A in immunity and focus on several aspects of T cell biology such as T helper cell differentiation, function and homing, as well as lymphoid organ development. Further, we will provide an overview of the effects of vitamin A deficiency in the adaptive immune responses and how retinoic acid, through its effect on T cells can fine-tune the balance between tolerance and immunity.

  8. Retinoic Acid as a Modulator of T Cell Immunity

    PubMed Central

    Bono, Maria Rosa; Tejon, Gabriela; Flores-Santibañez, Felipe; Fernandez, Dominique; Rosemblatt, Mario; Sauma, Daniela

    2016-01-01

    Vitamin A, a generic designation for an array of organic molecules that includes retinal, retinol and retinoic acid, is an essential nutrient needed in a wide array of aspects including the proper functioning of the visual system, maintenance of cell function and differentiation, epithelial surface integrity, erythrocyte production, reproduction, and normal immune function. Vitamin A deficiency is one of the most common micronutrient deficiencies worldwide and is associated with defects in adaptive immunity. Reports from epidemiological studies, clinical trials and experimental studies have clearly demonstrated that vitamin A plays a central role in immunity and that its deficiency is the cause of broad immune alterations including decreased humoral and cellular responses, inadequate immune regulation, weak response to vaccines and poor lymphoid organ development. In this review, we will examine the role of vitamin A in immunity and focus on several aspects of T cell biology such as T helper cell differentiation, function and homing, as well as lymphoid organ development. Further, we will provide an overview of the effects of vitamin A deficiency in the adaptive immune responses and how retinoic acid, through its effect on T cells can fine-tune the balance between tolerance and immunity. PMID:27304965

  9. Regenerative function of immune system: Modulation of muscle stem cells.

    PubMed

    Saini, Jasdeep; McPhee, Jamie S; Al-Dabbagh, Sarah; Stewart, Claire E; Al-Shanti, Nasser

    2016-05-01

    Ageing is characterised by progressive deterioration of physiological systems and the loss of skeletal muscle mass is one of the most recognisable, leading to muscle weakness and mobility impairments. This review highlights interactions between the immune system and skeletal muscle stem cells (widely termed satellite cells or myoblasts) to influence satellite cell behaviour during muscle regeneration after injury, and outlines deficits associated with ageing. Resident neutrophils and macrophages in skeletal muscle become activated when muscle fibres are damaged via stimuli (e.g. contusions, strains, avulsions, hyperextensions, ruptures) and release high concentrations of cytokines, chemokines and growth factors into the microenvironment. These localised responses serve to attract additional immune cells which can reach in excess of 1×10(5) immune cell/mm(3) of skeletal muscle in order to orchestrate the repair process. T-cells have a delayed response, reaching peak activation roughly 4 days after the initial damage. The cytokines and growth factors released by activated T-cells play a key role in muscle satellite cell proliferation and migration, although the precise mechanisms of these interactions remain unclear. T-cells in older people display limited ability to activate satellite cell proliferation and migration which is likely to contribute to insufficient muscle repair and, consequently, muscle wasting and weakness. If the factors released by T-cells to activate satellite cells can be identified, it may be possible to develop therapeutic agents to enhance muscle regeneration and reduce the impact of muscle wasting during ageing and disease.

  10. Mast cells: new therapeutic target in helminth immune modulation.

    PubMed

    Vukman, K V; Lalor, R; Aldridge, A; O'Neill, S M

    2016-01-01

    Helminth infection and their secreted antigens have a protective role in many immune-mediated inflammatory disorders such as inflammatory bowel disease, rheumatoid arthritis and multiple sclerosis. However, studies have focused primarily on identifying immune protective mechanisms of helminth infection and their secreted molecules on dendritic cells and macrophages. Given that mast cells have been shown to be implicated in the pathogenesis and progression of many inflammatory disorders, their role should also be examined and considered as cellular target for helminth-based therapies. As there is a dearth of studies examining the interaction of helminth-derived antigens and mast cells, this review will focus on the role of mast cells during helminth infection and examine our current understanding of the involvement of mast cells in TH 1/TH 17-mediated immune disorders. In this context, potential mechanisms by which helminths could target the TH 1/TH 17 promoting properties of mast cells can be identified to unveil novel therapeutic mast cell driven targets in combating these inflammatory disorders.

  11. Immune checkpoint modulation for non-small cell lung cancer.

    PubMed

    Soria, Jean-Charles; Marabelle, Aurélien; Brahmer, Julie R; Gettinger, Scott

    2015-05-15

    Therapies targeting immune checkpoints have recently shown encouraging activity in patients with heavily pretreated advanced non-small cell lung cancer (NSCLC), independently of NSCLC histology or mutational status, with low toxicity profiles when used as monotherapy. Objective response rates of approximately 20% have been reported in patients with advanced NSCLC treated with antagonist antibodies targeting the immune checkpoint, programmed death 1 (PD-1) on activated T cells, or its primary ligand, programmed death ligand 1 (PD-L1) expressed within the tumor microenvironment. Response rates appear to be higher in patients with tumor PD-L1 expression documented by immunohistochemistry, although responses have been appreciated in patients with reportedly PD-L1-negative tumor specimens. Antibodies directed against cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), another immunosuppressive T-cell signaling molecule, are also being evaluated in clinical trials, with one randomized phase II trial demonstrating improved immune-related progression-free survival in lung cancer patients when added to standard chemotherapy. Additional clinical trials are combining anti-CTLA-4 antibodies with either anti-PD-1 or anti-PD-L1 antibodies. Combinations of other immune checkpoint antagonists or agonist antibodies with anti-PD-1 or anti-PD-L1 antibodies are also being pursued.

  12. Immune modulation by genetic modification of dendritic cells with lentiviral vectors.

    PubMed

    Liechtenstein, Therese; Perez-Janices, Noemi; Bricogne, Christopher; Lanna, Alessio; Dufait, Inès; Goyvaerts, Cleo; Laranga, Roberta; Padella, Antonella; Arce, Frederick; Baratchian, Mehdi; Ramirez, Natalia; Lopez, Natalia; Kochan, Grazyna; Blanco-Luquin, Idoia; Guerrero-Setas, David; Breckpot, Karine; Escors, David

    2013-09-01

    Our work over the past eight years has focused on the use of HIV-1 lentiviral vectors (lentivectors) for the genetic modification of dendritic cells (DCs) to control their functions in immune modulation. DCs are key professional antigen presenting cells which regulate the activity of most effector immune cells, including T, B and NK cells. Their genetic modification provides the means for the development of targeted therapies towards cancer and autoimmune disease. We have been modulating with lentivectors the activity of intracellular signalling pathways and co-stimulation during antigen presentation to T cells, to fine-tune the type and strength of the immune response. In the course of our research, we have found unexpected results such as the surprising immunosuppressive role of anti-viral signalling pathways, and the close link between negative co-stimulation in the immunological synapse and T cell receptor trafficking. Here we review our major findings and put them into context with other published work.

  13. Photodynamic immune modulation (PIM)

    NASA Astrophysics Data System (ADS)

    North, John R.; Hunt, David W. C.; Simkin, Guillermo O.; Ratkay, Leslie G.; Chan, Agnes H.; Lui, Harvey; Levy, Julia G.

    1999-09-01

    Photodynamic Therapy (PDT) is accepted for treatment of superficial and lumen-occluding tumors in regions accessible to activating light and is now known to be effective in closure of choroidal neovasculature in Age Related Macular Degeneration. PDT utilizes light absorbing drugs (photosensitizers) that generate the localized formation of reactive oxygen species after light exposure. In a number of systems, PDT has immunomodulatory effects; Photodynamic Immune Modulation (PIM). Using low- intensity photodynamic regimens applied over a large body surface area, progression of mouse autoimmune disease could be inhibited. Further, this treatment strongly inhibited the immunologically- medicated contact hypersensitivity response to topically applied chemical haptens. Immune modulation appears to result from selective targeting of activated T lymphocytes and reduction in immunostimulation by antigen presenting cells. Psoriasis, an immune-mediated skin condition, exhibits heightened epidermal cell proliferation, epidermal layer thickening and plaque formation at different body sites. In a recent clinical trial, approximately one-third of patients with psoriasis and arthritis symptoms (psoriatic arthritis) displayed a significant clinical improvement in several psoriasis-related parameters after four weekly whole-body PIM treatments with verteporfin. The safety profile was favorable. The capacity of PIM to influence other human immune disorders including rheumatoid arthritis is under extensive evaluation.

  14. Label-free haemogram using wavelength modulated Raman spectroscopy for identifying immune-cell subset

    NASA Astrophysics Data System (ADS)

    Ashok, Praveen C.; Praveen, Bavishna B.; Campbell, Elaine C.; Dholakia, Kishan; Powis, Simon J.

    2014-03-01

    Leucocytes in the blood of mammals form a powerful protective system against a wide range of dangerous pathogens. There are several types of immune cells that has specific role in the whole immune system. The number and type of immune cells alter in the disease state and identifying the type of immune cell provides information about a person's state of health. There are several immune cell subsets that are essentially morphologically identical and require external labeling to enable discrimination. Here we demonstrate the feasibility of using Wavelength Modulated Raman Spectroscopy (WMRS) with suitable machine learning algorithms as a label-free method to distinguish between different closely lying immune cell subset. Principal Component Analysis (PCA) was performed on WMRS data from single cells, obtained using confocal Raman microscopy for feature reduction, followed by Support Vector Machine (SVM) for binary discrimination of various cell subset, which yielded an accuracy >85%. The method was successful in discriminating between untouched and unfixed purified populations of CD4+CD3+ and CD8+CD3+ T lymphocyte subsets, and CD56+CD3- natural killer cells with a high degree of specificity. It was also proved sensitive enough to identify unique Raman signatures that allow clear discrimination between dendritic cell subsets, comprising CD303+CD45+ plasmacytoid and CD1c+CD141+ myeloid dendritic cells. The results of this study clearly show that WMRS is highly sensitive and can distinguish between cell types that are morphologically identical.

  15. Adjunct Strategies for Tuberculosis Vaccines: Modulating Key Immune Cell Regulatory Mechanisms to Potentiate Vaccination

    PubMed Central

    Jayashankar, Lakshmi; Hafner, Richard

    2016-01-01

    Tuberculosis (TB) remains a global health threat of alarming proportions, resulting in 1.5 million deaths worldwide. The only available licensed vaccine, Bacillus Calmette–Guérin, does not confer lifelong protection against active TB. To date, development of an effective vaccine against TB has proven to be elusive, and devising newer approaches for improved vaccination outcomes is an essential goal. Insights gained over the last several years have revealed multiple mechanisms of immune manipulation by Mycobacterium tuberculosis (Mtb) in infected macrophages and dendritic cells that support disease progression and block development of protective immunity. This review provides an assessment of the known immunoregulatory mechanisms altered by Mtb, and how new interventions may reverse these effects. Examples include blocking of inhibitory immune cell coreceptor checkpoints (e.g., programed death-1). Conversely, immune mechanisms that strengthen immune cell effector functions may be enhanced by interventions, including stimulatory immune cell coreceptors (e.g., OX40). Modification of the activity of key cell “immunometabolism” signaling pathway molecules, including mechanistic target of rapamycin, glycogen synthase kinase-3β, wnt/β-catenin, adenosine monophosophate-activated protein kinase, and sirtuins, related epigenetic changes, and preventing induction of immune regulatory cells (e.g., regulatory T cells, myeloid-derived suppressor cells) are powerful new approaches to improve vaccine responses. Interventions to favorably modulate these components have been studied primarily in oncology to induce efficient antitumor immune responses, often by potentiation of cancer vaccines. These agents include antibodies and a rapidly increasing number of small molecule drug classes that have contributed to the dramatic immune-based advances in treatment of cancer and other diseases. Because immune responses to malignancies and to Mtb share many similar mechanisms

  16. EV71-infected CD14(+) cells modulate the immune activity of T lymphocytes in rhesus monkeys.

    PubMed

    Wang, Jingjing; Pu, Jing; Huang, Hongtai; Zhang, Ying; Liu, Longding; Yang, Erxia; Zhou, Xiaofang; Ma, Na; Zhao, Hongling; Wang, Lichun; Xie, Zhenfeng; Tang, Donghong; Li, Qihan

    2013-07-01

    Preliminary studies of the major pathogen enterovirus 71 (EV71), a member of the Picornaviridae family, have suggested that EV71 may be a major cause of fatal hand, foot and mouth disease cases. Currently, the role of the pathological changes induced by EV71 infection in the immunopathogenic response remains unclear. Our study focused on the interaction between this virus and immunocytes and indicated that this virus has the ability to replicate in CD14(+) cells. Furthermore, these EV71-infected CD14(+) cells have the capacity to stimulate the proliferation of T cells and to enhance the release of certain functional cytokines. An adaptive immune response induced by the back-transfusion of EV71-infected CD14(+) cells was observed in donor neonatal rhesus monkeys. Based on these observations, the proposed hypothesis is that CD14(+) cells infected by the EV71 virus might modulate the anti-EV71 adaptive immune response by inducing simultaneous T-cell activation.

  17. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity

    PubMed Central

    den Brok, M H M G M; Sutmuller, R P M; Nierkens, S; Bennink, E J; Frielink, C; Toonen, L W J; Boerman, O C; Figdor, C G; Ruers, T J M; Adema, G J

    2006-01-01

    Dendritic cells (DC) are professional antigen-presenting cells that play a pivotal role in the induction of immunity. Ex vivo-generated, tumour antigen-loaded mature DC are currently exploited as cancer vaccines in clinical studies. However, antigen loading and maturation of DC directly in vivo would greatly facilitate the application of DC-based vaccines. We formerly showed in murine models that radiofrequency-mediated tumour destruction can provide an antigen source for the in vivo induction of anti-tumour immunity, and we explored the role of DC herein. In this paper we evaluate radiofrequency and cryo ablation for their ability to provide an antigen source for DC and compare this with an ex vivo-loaded DC vaccine. The data obtained with model antigens demonstrate that upon tumour destruction by radiofrequency ablation, up to 7% of the total draining lymph node (LN) DC contained antigen, whereas only few DC from the conventional vaccine reached the LN. Interestingly, following cryo ablation the amount of antigen-loaded DC is almost doubled. Analysis of surface markers revealed that both destruction methods were able to induce DC maturation. Finally, we show that in situ tumour ablation can be efficiently combined with immune modulation by anti-CTLA-4 antibodies or regulatory T-cell depletion. These combination treatments protected mice from the outgrowth of tumour challenges, and led to in vivo enhancement of tumour-specific T-cell numbers, which produced more IFN-γ upon activation. Therefore, in situ tumour destruction in combination with immune modulation creates a unique, ‘in situ DC-vaccine' that is readily applicable in the clinic without prior knowledge of tumour antigens. PMID:16953240

  18. Modulation of Immune Responses by Exosomes Derived from Antigen-Presenting Cells

    PubMed Central

    Shenoda, Botros B.; Ajit, Seena K.

    2016-01-01

    Exosome-mediated signaling is important in mediating the inflammatory response. To exert their biological or pathophysiological functions in the recipient cells, exosomes deliver a diverse array of biomacromolecules including long and short coding and non-coding RNAs, proteins, and lipids. Exosomes secreted by antigen-presenting cells can confer therapeutic benefits by attenuating or stimulating the immune response. Exosomes play a crucial role in carrying and presenting functional major histocompatibility peptide complexes to modulate antigen-specific T cell responses. Exosomes from Dendritic Cells (DCs) can activate T and B cells and have been explored for their immunostimulatory properties in cancer therapy. The immunosuppressive properties of exosomes derived from macrophages and DCs can reduce inflammation in animal models for several inflammatory disorders. This review focuses on the protective role of exosomes in attenuating inflammation or augmenting immune response, emphasizing studies on exosomes derived from DCs and macrophages. PMID:27660518

  19. B cells expressing IL-10 mRNA modulate memory T cells after DNA-Hsp65 immunization

    PubMed Central

    Fontoura, I. C.; Trombone, A.P.F.; Almeida, L. P.; Lorenzi, J. C. C.; Rossetti, R. A. M.; Malardo, T.; Padilha, E.; Schluchting, W.; Silva, R. L. L.; Gembre, A. F.; Fiuza, J. E. C.; Silva, C. L.; Panunto-Castelo, A.; Coelho-Castelo, A. A. M.

    2015-01-01

    In DNA vaccines, the gene of interest is cloned into a bacterial plasmid that is engineered to induce protein production for long periods in eukaryotic cells. Previous research has shown that the intramuscular immunization of BALB/c mice with a naked plasmid DNA fragment encoding the Mycobacterium leprae 65-kDa heat-shock protein (pcDNA3-Hsp65) induces protection against M. tuberculosis challenge. A key stage in the protective immune response after immunization is the generation of memory T cells. Previously, we have shown that B cells capture plasmid DNA-Hsp65 and thereby modulate the formation of CD8+ memory T cells after M. tuberculosis challenge in mice. Therefore, clarifying how B cells act as part of the protective immune response after DNA immunization is important for the development of more-effective vaccines. The aim of this study was to investigate the mechanisms by which B cells modulate memory T cells after DNA-Hsp65 immunization. C57BL/6 and BKO mice were injected three times, at 15-day intervals, with 100 µg naked pcDNA-Hsp65 per mouse. Thirty days after immunization, the percentages of effector memory T (TEM) cells (CD4+ and CD8+/CD44high/CD62Llow) and memory CD8+ T cells (CD8+/CD44high/CD62Llow/CD127+) were measured with flow cytometry. Interferon γ, interleukin 12 (IL-12), and IL-10 mRNAs were also quantified in whole spleen cells and purified B cells (CD43−) with real-time qPCR. Our data suggest that a B-cell subpopulation expressing IL-10 downregulated proinflammatory cytokine expression in the spleen, increasing the survival of CD4+ TEM cells and CD8+ TEM/CD127+ cells. PMID:26397973

  20. Cigarette Smoke Modulates Repair and Innate Immunity following Injury to Airway Epithelial Cells

    PubMed Central

    Daniel, Nadia M.; van der Vlugt, Luciën E. P. M.; van Schadewijk, Annemarie; Taube, Christian; Hiemstra, Pieter S.

    2016-01-01

    Cigarette smoking is the main risk factor associated with chronic obstructive pulmonary disease (COPD), and contributes to COPD development and progression by causing epithelial injury and inflammation. Whereas it is known that cigarette smoke (CS) may affect the innate immune function of airway epithelial cells and epithelial repair, this has so far not been explored in an integrated design using mucociliary differentiated airway epithelial cells. In this study, we examined the effect of whole CS exposure on wound repair and the innate immune activity of mucociliary differentiated primary bronchial epithelial cells, upon injury induced by disruption of epithelial barrier integrity or by mechanical wounding. Upon mechanical injury CS caused a delayed recovery in the epithelial barrier integrity and wound closure. Furthermore CS enhanced innate immune responses, as demonstrated by increased expression of the antimicrobial protein RNase 7. These differential effects on epithelial repair and innate immunity were both mediated by CS-induced oxidative stress. Overall, our findings demonstrate modulation of wound repair and innate immune responses of injured airway epithelial cells that may contribute to COPD development and progression. PMID:27829065

  1. Immune Modulation in Hematologic Malignancies

    PubMed Central

    Dhodapkar, Madhav V.; Dhodapkar, Kavita M.

    2015-01-01

    The therapeutic potential of the immune system in the context of hematologic malignancies has long been appreciated particularly due to the curative impact of allogeneic hematopoietic stem cell transplantation. The role of immune system in shaping the biology and evolution of these tumors is now well recognized. While the contribution of the immune system in anti-tumor effects of certain therapies such as immune-modulatory drugs and monoclonal antibodies active in hematologic malignancies is quite evident, the immune system has also been implicated in anti-tumor effects of other targeted therapies. The horizon of immune-based therapies in hematologic malignancies is rapidly expanding with promising results from immune-modulatory drugs, immune-checkpoint blockade and adoptive cellular therapies, including genetically-modified T cells. Hematologic malignancies present distinct issues (relative to solid tumors) for the application of immune therapies due to differences in cell of origin/developmental niche of tumor cells, and patterns of involvement such as common systemic involvement of secondary lymphoid tissues. This article discusses the rapidly changing landscape of immune modulation in hematologic malignancies and emphasizes areas wherein hematologic malignancies present distinct opportunities for immunologic approaches to prevent or treat cancer. PMID:26320065

  2. In vitro effects of GSM modulated radiofrequency fields on human immune cells.

    PubMed

    Tuschl, Helga; Novak, Waltraud; Molla-Djafari, Hamid

    2006-04-01

    Despite the important role of the immune system in defending the body against infections and cancer, only few investigations on possible effects of radiofrequency (RF) radiation on function of human immune cells have been undertaken. Aim of the present investigation was therefore to assess whether GSM modulated RF fields have adverse effects on the functional competence of human immune cells. Within the frame of the multidisciplinary project "Biological effects of high frequency electromagnetic fields (EMF)" sponsored by the National Occupation Hazard Insurance Association (AUVA) in vitro investigations were carried out on human blood cells. Exposure was performed at GSM Basic 1950 MHz, an SAR of 1 mW/g in an intermittent mode (5 min "ON", 10 min "OFF") and a maximum Delta T of 0.06 degrees C for the duration of 8 h. The following immune parameters were evaluated: (1) the intracellular production of interleukin-2 (IL-2) and interferon (INF) gamma in lymphocytes, and IL-1 and tumor necrosis factor (TNF)-alpha in monocytes were evaluated with monoclonal antibodies. (2) The activity of immune-relevant genes (IL 1-alpha and beta, IL-2, IL-2-receptor, IL-4, macrophage colony stimulating factor (MCSF)-receptor, TNF-alpha, TNF-alpha-receptor) and housekeeping genes was analyzed with real time PCR. (3) The cytotoxicity of lymphokine activated killer cells (LAK cells) against a tumor cell line was determined in a flow cytometric test. For each parameter, blood samples of at least 15 donors were evaluated. No statistically significant effects of exposure were found and there is no indication that emissions from mobile phones are associated with adverse effects on the human immune system.

  3. Myogenic-induced mesenchymal stem cells are capable of modulating the immune response by regulatory T cells

    PubMed Central

    Joo, Sunyoung; Lim, Hyun Ju; Jackson, John D; Atala, Anthony

    2014-01-01

    Cell therapy for patients who have intractable muscle disorders may require highly regenerative cells from young, healthy allogeneic donors. Mesenchymal stem cells are currently under clinical investigation because they are known to induce muscle regeneration and believed to be immune privileged, thus making them suitable for allogeneic applications. However, it is unclear whether allogeneic and myogenic-induced mesenchymal stem cells retain their immunomodulatory characteristics. Therefore, our aim was to evaluate the effects of mesenchymal stem cell differentiation on the immune characteristics of cells in vitro. We investigated the immunologic properties of mesenchymal stem cells after myogenic induction. Mesenchymal stem cells were obtained from C57BL/6 mice and the C3H/10T1/2 murine mesenchymal stem cell line. Two different 5-aza-2′-deoxycytidine doses (0.5 and 3 µM) were evaluated for their effects on mesenchymal stem cell skeletal myogenic differentiation potential, immune antigen expression, and mixed lymphocytic reactions. Using a mixed lymphocytic reaction, we determined the optimal splenocyte proliferation inhibition dose. The induction of regulatory T cells was markedly increased by the addition of 3 µM 5-aza-2′-deoxycytidine–treated mesenchymal stem cells. Myogenic-induced mesenchymal stem cells do not elicit alloreactive lymphocyte proliferative responses and are able to modulate immune responses. These findings support the hypothesis that myogenic-induced mesenchymal stem cells may be transplantable across allogeneic barriers. PMID:24555015

  4. Photosensitizers for photodynamic immune modulation

    NASA Astrophysics Data System (ADS)

    North, John R.; Boch, Ronald; Hunt, David W. C.; Ratkay, Leslie G.; Simkin, Guillermo O.; Tao, Jing-Song; Richter, Anna M.; Levy, Julia G.

    2000-06-01

    PDT may be an effective treatment for certain immune-mediated disorders. The immunomodulatory action of PDT is likely a consequence of effects exerted at a number of levels including stimulation of specific cell signaling pathways, selective depletion of activated immune cells, alteration of receptor expression by immune and non-immune cells, and the modulation of cytokine availability. QLT0074, a potent photosensitizer that exhibits rapid clearance kinetics in vivo, is in development for the treatment of immune disorders. In comparison to the well-characterized and structurally related photosensitizer verteporfin, lower concentrations of QLT0074 were required to induce apoptosis in human blood T cells and keratinocytes using blue light for photoactivation. Both photosensitizers triggered the stress activated protein kinase (SAPK) and p38 (HOG1) pathways but not extracellularly regulated kinase (ERK) activity in mouse Pam212 keratinocytes. In cell signaling responses, QLT0074 was active at lower concentrations than verteporfin. For all in vitro test systems, the stronger photodynamic activity of QLT0074 was associated with a greater cell uptake of this photosensitize than verteporfin. In mouse immune models, sub-erythemogenic doses of QLT0074 in combination with whole body blue light irradiation inhibited the contact hypersensitivity response and limited the development of adjuvant-induced arthritis. QLT0074 exhibits activities that indicate it may be a favorable agent for the photodynamic treatment of human immune disease.

  5. Tight junction proteins expression and modulation in immune cells and multiple sclerosis

    PubMed Central

    Mandel, Ilana; Paperna, Tamar; Glass-Marmor, Lea; Volkowich, Anat; Badarny, Samih; Schwartz, Ilya; Vardi, Pnina; Koren, Ilana; Miller, Ariel

    2012-01-01

    Abstract The tight junction proteins (TJPs) are major determinants of endothelial cells comprising physiological vascular barriers such as the blood–brain barrier, but little is known about their expression and role in immune cells. In this study we assessed TJP expression in human leukocyte subsets, their induction by immune activation and modulation associated with autoimmune disease states and therapies. A consistent expression of TJP complexes was detected in peripheral blood leukocytes (PBLs), predominantly in B and T lymphocytes and monocytes, whereas the in vitro application of various immune cell activators led to an increase of claudin 1 levels, yet not of claudin 5. Claudins 1 and 5 levels were elevated in PBLs of multiple sclerosis (MS) patients in relapse, relative to patients in remission, healthy controls and patients with other neurological disorders. Interestingly, claudin 1 protein levels were elevated also in PBLs of patients with type 1 diabetes (T1D). Following glucocorticoid treatment of MS patients in relapse, RNA levels of JAM3 and CLDN5 and claudin 5 protein levels in PBLs decreased. Furthermore, a correlation between CLDN5 pre-treatment levels and clinical response phenotype to interferon-β therapy was detected. Our findings indicate that higher levels of leukocyte claudins are associated with immune activation and specifically, increased levels of claudin 5 are associated with MS disease activity. This study highlights a potential role of leukocyte TJPs in physiological states, and autoimmunity and suggests they should be further evaluated as biomarkers for aberrant immune activity and response to therapy in immune-mediated diseases such as MS. PMID:21762372

  6. Acupuncture and immune modulation.

    PubMed

    Kim, Sun Kwang; Bae, Hyunsu

    2010-10-28

    Acupuncture is probably the most popular alternative therapy practiced in the United States, Europe and many Asian countries. It has been applied clinically for more than 5 thousand years according to the ancient oriental medical theory. A great deal of acupuncture research has been achieved, with particular efforts toward understanding the pain control effects. In addition to the analgesic effect of acupuncture, an increasing number of studies have demonstrated that acupuncture treatment can control autonomic nerve system functions such as blood pressure regulation, sphincter Oddi relaxation, and immune modulation. Although only a limited number of controlled studies have assessed the efficacy of acupuncture, increasing clinical evidences support that EA treatment is effective for various immunological diseases including allergic disorders, infections, autoimmune diseases and immunodifficiency-syndromes. This review will address the mechanism of acupuncture in modulating various immune responses and the relationship between acupuncture mediated immune regulation and neurological involvement.

  7. Salmonella Modulates B Cell Biology to Evade CD8+ T Cell-Mediated Immune Responses

    PubMed Central

    Lopez-Medina, Marcela; Perez-Lopez, Araceli; Alpuche-Aranda, Celia; Ortiz-Navarrete, Vianney

    2014-01-01

    Although B cells and antibodies are the central effectors of humoral immunity, B cells can also produce and secrete cytokines and present antigen to helper T cells. The uptake of antigen is mainly mediated by endocytosis; thus, antigens are often presented by MHC-II molecules. However, it is unclear if B cells can present these same antigens via MHC-I molecules. Recently, Salmonella bacteria were found to infect B cells, allowing possible antigen cross-processing that could generate bacterial peptides for antigen presentation via MHC-I molecules. Here, we will discuss available knowledge regarding Salmonella antigen presentation by infected B cell MHC-I molecules and subsequent inhibitory effects on CD8+ T cells for bacterial evasion of cell-mediated immunity. PMID:25484884

  8. Neutrophils are dispensable in the modulation of T cell immunity against cutaneous HSV-1 infection

    PubMed Central

    Hor, Jyh Liang; Heath, William R.; Mueller, Scott N.

    2017-01-01

    Neutrophils rapidly infiltrate sites of inflammation during peripheral infection or tissue injury. In addition to their well described roles as pro-inflammatory phagocytes responsible for pathogen clearance, recent studies have demonstrated a broader functional repertoire including mediating crosstalk between innate and adaptive arms of the immune system. Specifically, neutrophils have been proposed to mediate antigen transport to lymph nodes (LN) to modulate T cell priming and to influence T cell migration to infected tissues. Using a mouse model of cutaneous herpes simplex virus type 1 (HSV-1) infection we explored potential contributions of neutrophils toward anti-viral immunity. While a transient, early influx of neutrophils was triggered by dermal scarification, we did not detect migration of neutrophils from the skin to LN. Furthermore, despite recruitment of neutrophils into LN from the blood, priming and expansion of CD4+ and CD8+ T cells was unaffected following neutrophil depletion. Finally, we found that neutrophils were dispensable for the migration of effector T cells into infected skin. Our study suggests that the immunomodulatory roles of neutrophils toward adaptive immunity may be context-dependent, and are likely determined by the type of pathogen and anatomical site of infection. PMID:28112242

  9. Killing Two Cells with One Stone: Pharmacologic BCL-2 Family Targeting for Cancer Cell Death and Immune Modulation

    PubMed Central

    Ludwig, Lindsey M.; Nassin, Michele L.; Hadji, Abbas; LaBelle, James L.

    2016-01-01

    A crucial component of regulating organismal homeostasis is maintaining proper cell number and eliminating damaged or potentially malignant cells. Apoptosis, or programed cell death, is the mechanism responsible for this equilibrium. The intrinsic apoptotic pathway is also especially important in the development and maintenance of the immune system. Apoptosis is essential for proper positive and negative selection during B- and T-cell development and for efficient contraction of expanded lymphocytes following an immune response. Tight regulation of the apoptotic pathway is critical, as excessive cell death can lead to immunodeficiency while apoptotic resistance can lead to aberrant lymphoproliferation and autoimmune disease. Dysregulation of cell death is implicated in a wide range of hematological malignancies, and targeting various components of the apoptotic machinery in these cases is an attractive chemotherapeutic strategy. A wide array of compounds has been developed with the purpose of reactivating the intrinsic apoptotic pathway. These compounds, termed BH3 mimetics are garnering considerable attention as they gain greater clinical oncologic significance. As their use expands, it will be imperative to understand the effects these compounds have on immune homeostasis. Uncovering their potential immunomodulatory activity may allow for administration of BH3 mimetics for direct tumor cell killing as well as novel therapies for a wide range of immune-based directives. This review will summarize the major proteins involved in the intrinsic apoptotic pathway and define their roles in normal immune development and disease. Clinical and preclinical BH3 mimetics are described within the context of what is currently known about their ability to affect immune function. Prospects for future antitumor immune amplification and immune modulation are then proposed. PMID:28066751

  10. Killing Two Cells with One Stone: Pharmacologic BCL-2 Family Targeting for Cancer Cell Death and Immune Modulation.

    PubMed

    Ludwig, Lindsey M; Nassin, Michele L; Hadji, Abbas; LaBelle, James L

    2016-01-01

    A crucial component of regulating organismal homeostasis is maintaining proper cell number and eliminating damaged or potentially malignant cells. Apoptosis, or programed cell death, is the mechanism responsible for this equilibrium. The intrinsic apoptotic pathway is also especially important in the development and maintenance of the immune system. Apoptosis is essential for proper positive and negative selection during B- and T-cell development and for efficient contraction of expanded lymphocytes following an immune response. Tight regulation of the apoptotic pathway is critical, as excessive cell death can lead to immunodeficiency while apoptotic resistance can lead to aberrant lymphoproliferation and autoimmune disease. Dysregulation of cell death is implicated in a wide range of hematological malignancies, and targeting various components of the apoptotic machinery in these cases is an attractive chemotherapeutic strategy. A wide array of compounds has been developed with the purpose of reactivating the intrinsic apoptotic pathway. These compounds, termed BH3 mimetics are garnering considerable attention as they gain greater clinical oncologic significance. As their use expands, it will be imperative to understand the effects these compounds have on immune homeostasis. Uncovering their potential immunomodulatory activity may allow for administration of BH3 mimetics for direct tumor cell killing as well as novel therapies for a wide range of immune-based directives. This review will summarize the major proteins involved in the intrinsic apoptotic pathway and define their roles in normal immune development and disease. Clinical and preclinical BH3 mimetics are described within the context of what is currently known about their ability to affect immune function. Prospects for future antitumor immune amplification and immune modulation are then proposed.

  11. Sympathetic Modulation of Immunity: Relevance to Disease

    PubMed Central

    Bellinger, Denise L.; Millar, Brooke A.; Perez, Sam; Carter, Jeff; Wood, Carlo; ThyagaRajan, Srinivasan; Molinaro, Christine; Lubahn, Cheri; Lorton, Dianne

    2008-01-01

    Optimal host defense against pathogens requires cross-talk between the nervous and immune systems. This paper reviews sympathetic-immune interaction, one major communication pathway, and its importance for health and disease. Sympathetic innervation of primary and secondary immune organs is described, as well as evidence for neurotransmission with cells of the immune system as targets. Most research thus far as focused on neural-immune modulation in secondary lymphoid organs, and have revealed complex sympathetic modulation resulting in both potentiation and inhibition of immune functions. SNS-immune interaction may enhance immune readiness during disease- or injury-induced ‘fight’ responses. Research also indicate that dysregulation of the SNS can significantly affect the progression of immune-mediated diseases. However, a better understanding of neural-immune interactions is needed to develop strategies for treatment of immune-mediated diseases that are designed to return homeostasis and restore normal functioning neural-immune networks. PMID:18308299

  12. Recent Patents Pertaining to Immune Modulation and Musculoskeletal Regeneration with Wharton's Jelly Cells

    PubMed Central

    Detamore, Michael S.

    2015-01-01

    Umbilical cord mesenchymal stromal cells (UCMSCs) are isolated from Wharton's jelly in the umbilical cord at birth, and offer advantages over adult mesenchymal stromal cells (MSCs) such as highly efficient isolation, faster proliferation in vitro, a broader differentiation potential, and non-invasive harvesting procedure. Their expansion and differentiation potential renders them a promising cell source for tissue engineering and clinical applications. This review discusses recent updates on the differentiation strategies for musculoskeletal tissue engineering including cartilage, bone, and muscle. In addition to tissue engineering applications, UCMSCs can be utilized to support hematopoiesis and modulate immune response. We review the patents relevant to the application of MSCs including UCMSCs in hematopoiesis and immune modulation. Finally, the current hurdles in the clinical translation of UCMSCs are discussed. During clinical translation, it is critical to develop large-scale manufacturing of UCMSCs as well as the composition of expansion and differentiation media. Four clinical trials to date have examined the safety and efficacy of UCMSCs. Once public banking of UCMSCs is available to supply matched allogeneic units and once UCMSC manufacturing is standardized, we anticipate that UCMSCs will be more widely used in clinical trials. PMID:26279972

  13. The cell surface receptor Slamf6 modulates innate immune responses during Citrobacter rodentium-induced colitis.

    PubMed

    van Driel, Boaz; Wang, Guoxing; Liao, Gongxian; Halibozek, Peter J; Keszei, Marton; O'Keeffe, Michael S; Bhan, Atul K; Wang, Ninghai; Terhorst, Cox

    2015-09-01

    The homophilic cell surface receptors CD150 (Slamf1) and CD352 (Slamf6) are known to modulate adaptive immune responses. Although the Th17 response was enhanced in Slamf6(-/-) C57BL/6 mice upon oral infection with Citrobacter rodentium, the pathologic consequences are indistinguishable from an infection of wild-type C57BL/6 mice. Using a reporter-based binding assay, we show that Slamf6 can engage structures on the outer cell membrane of several Gram(-) bacteria. Therefore, we examined whether Slamf6, like Slamf1, is also involved in innate responses to bacteria and regulates peripheral inflammation by assessing the outcome of C. rodentium infections in Rag(-/-) mice. Surprisingly, the pathology and immune responses in the lamina propria of C. rodentium-infected Slamf6(-/-) Rag(-/-) mice were markedly reduced as compared with those of Rag(-/-) mice. Infiltration of inflammatory phagocytes into the lamina propria was consistently lower in Slamf6(-/-) Rag(-/-) mice than in Rag(-/-) animals. Concomitant with the reduced systemic translocation of the bacteria was an enhanced production of IL-22, suggesting that Slamf6 suppresses a mucosal protective program. Furthermore, administering a mAb (330) that inhibits bacterial interactions with Slamf6 to Rag(-/-) mice ameliorated the infection compared with a control antibody. We conclude that Slamf6-mediated interactions of colonic innate immune cells with specific Gram(-) bacteria reduce mucosal protection and enhance inflammation, contributing to lethal colitis that is caused by C. rodentium infections in Rag(-/-) mice.

  14. Platelet serotonin modulates immune functions.

    PubMed

    Mauler, M; Bode, C; Duerschmied, D

    2016-01-01

    This short review addresses immune functions of platelet serotonin. Platelets transport serotonin at a high concentration in dense granules and release it upon activation. Besides haemostatic, vasotonic and developmental modulation, serotonin also influences a variety of immune functions (mediated by different serotonin receptors). First, platelet serotonergic effects are directed against invading pathogens via activation and proliferation of lymphocytes, modulation of cytokine release, and recruitment of neutrophils to sites of acute inflammation by induction of selectin expression on endothelial cells. Second, serotonin levels are elevated in autoimmune diseases, such as asthma or rheumatoid arthritis, and during tissue regeneration after ischemia of myocardium or brain. Specific antagonism of serotonin receptors appears to improve survival after myocardial infarction or sepsis and to attenuate asthmatic attacks in animal models. It will be of great clinical relevance if these findings can be translated into human applications. In conclusion, targeting immune modulatory effects of platelet serotonin may provide novel therapeutic options for common health problems.

  15. Probiotics as an Immune Modulator.

    PubMed

    Kang, Hye-Ji; Im, Sin-Hyeog

    2015-01-01

    Probiotics are nonpathogenic live microorganism that can provide a diverse health benefits on the host when consumed in adequate amounts. Probiotics are consumed in diverse ways including dairy product, food supplements and functional foods with specific health claims. Recently, many reports suggest that certain probiotic strains or multi strain mixture have potent immunomodulatory activity in diverse disorders including allergic asthma, atopic dermatitis and rheumatoid arthritis. However, underlying mechanism of action is still unclear and efficacy of probiotic administration is quite different depending on the type of strains and the amounts of doses. We and others have suggested that live probiotics or their metabolites could interact with diverse immune cells (antigen presenting cells and T cells) and confer them to have immunoregulatory functions. Through this interaction, probiotics could contribute to maintaining immune homeostasis by balancing pro-inflammatory and anti-inflammatory immune responses. However, the effect of probiotics in prevention or modulation of ongoing disease is quite diverse even within a same species. Therefore, identification of functional probiotics with specific immune regulatory property is a certainly important issue. Herein, we briefly review selection methods for immunomodulatory probiotic strains and the mechanism of action of probiotics in immune modulation.

  16. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells

    PubMed Central

    Horst, Andrea Kristina; Neumann, Katrin; Diehl, Linda; Tiegs, Gisa

    2016-01-01

    The liver is a tolerogenic organ with exquisite mechanisms of immune regulation that ensure upkeep of local and systemic immune tolerance to self and foreign antigens, but that is also able to mount effective immune responses against pathogens. The immune privilege of liver allografts was recognized first in pigs in spite of major histo-compatibility complex mismatch, and termed the “liver tolerance effect”. Furthermore, liver transplants are spontaneously accepted with only low-dose immunosuppression, and induce tolerance for non-hepatic co-transplanted allografts of the same donor. Although this immunotolerogenic environment is favorable in the setting of organ transplantation, it is detrimental in chronic infectious liver diseases like hepatitis B or C, malaria, schistosomiasis or tumorigenesis, leading to pathogen persistence and weak anti-tumor effects. The liver is a primary site of T-cell activation, but it elicits poor or incomplete activation of T cells, leading to their abortive activation, exhaustion, suppression of their effector function and early death. This is exploited by pathogens and can impair pathogen control and clearance or allow tumor growth. Hepatic priming of T cells is mediated by a number of local conventional and nonconventional antigen-presenting cells (APCs), which promote tolerance by immune deviation, induction of T-cell anergy or apoptosis, and generating and expanding regulatory T cells. This review will focus on the communication between classical and nonclassical APCs and lymphocytes in the liver in tolerance induction and will discuss recent insights into the role of innate lymphocytes in this process. PMID:27041638

  17. Regulatory T Cells, a Potent Immunoregulatory Target for CAM Researchers: Modulating Tumor Immunity, Autoimmunity and Alloreactive Immunity (III)

    PubMed Central

    Vojdani, Aristo; Erde, Jonathan

    2006-01-01

    Regulatory T (Treg) cells are the major arbiter of immune responses, mediating actions through the suppression of inflammatory and destructive immune reactions. Inappropriate Treg cell frequency or functionality potentiates the pathogenesis of myriad diseases with ranging magnitudes of severity. Lack of suppressive capability hinders restraint on immune responses involved in autoimmunity and alloreactivity, while excessive suppressive capacity effectively blocks processes necessary for tumor destruction. Although the etiology of dysfunctional Treg cell populations is under debate, the ramifications, and their mechanisms, are increasingly brought to light in the medical community. Methods that compensate for aberrant immune regulation may not address the underlying complications; however, they hold promise for the alleviation of debilitating immune system-related disorders. The dominant immunoregulatory nature of Treg cells, coupled with recent mechanistic knowledge of natural immunomodulatory compounds, highlights the importance of Treg cells to practitioners and researchers of complementary and alternative medicine (CAM). PMID:16951715

  18. Ginseng Protects Against Respiratory Syncytial Virus by Modulating Multiple Immune Cells and Inhibiting Viral Replication

    PubMed Central

    Lee, Jong Seok; Lee, Yu-Na; Lee, Young-Tae; Hwang, Hye Suk; Kim, Ki-Hye; Ko, Eun-Ju; Kim, Min-Chul; Kang, Sang-Moo

    2015-01-01

    Ginseng has been used in humans for thousands of years but its effects on viral infection have not been well understood. We investigated the effects of red ginseng extract (RGE) on respiratory syncytial virus (RSV) infection using in vitro cell culture and in vivo mouse models. RGE partially protected human epithelial (HEp2) cells from RSV-induced cell death and viral replication. In addition, RGE significantly inhibited the production of RSV-induced pro-inflammatory cytokine (TNF-α) in murine dendritic and macrophage-like cells. More importantly, RGE intranasal pre-treatment prevented loss of mouse body weight after RSV infection. RGE treatment improved lung viral clearance and enhanced the production of interferon (IFN-γ) in bronchoalveolar lavage cells upon RSV infection of mice. Analysis of cellular phenotypes in bronchoalveolar lavage fluids showed that RGE treatment increased the populations of CD8+ T cells and CD11c+ dendritic cells upon RSV infection of mice. Taken together, these results provide evidence that ginseng has protective effects against RSV infection through multiple mechanisms, which include improving cell survival, partial inhibition of viral replication and modulation of cytokine production and types of immune cells migrating into the lung. PMID:25658239

  19. Plasma phospholipid transfer protein (PLTP) modulates adaptive immune functions through alternation of T helper cell polarization

    PubMed Central

    Desrumaux, Catherine; Lemaire-Ewing, Stéphanie; Ogier, Nicolas; Yessoufou, Akadiri; Hammann, Arlette; Sequeira-Le Grand, Anabelle; Deckert, Valérie; Pais de Barros, Jean-Paul; Le Guern, Naïg; Guy, Julien; Khan, Naim A; Lagrost, Laurent

    2016-01-01

    Objective: Plasma phospholipid transfer protein (PLTP) is a key determinant of lipoprotein metabolism, and both animal and human studies converge to indicate that PLTP promotes atherogenesis and its thromboembolic complications. Moreover, it has recently been reported that PLTP modulates inflammation and immune responses. Although earlier studies from our group demonstrated that PLTP can modify macrophage activation, the implication of PLTP in the modulation of T-cell-mediated immune responses has never been investigated and was therefore addressed in the present study. Approach and results: In the present study, we demonstrated that PLTP deficiency in mice has a profound effect on CD4+ Th0 cell polarization, with a shift towards the anti-inflammatory Th2 phenotype under both normal and pathological conditions. In a model of contact hypersensitivity, a significantly impaired response to skin sensitization with the hapten-2,4-dinitrofluorobenzene (DNFB) was observed in PLTP-deficient mice compared to wild-type (WT) mice. Interestingly, PLTP deficiency in mice exerted no effect on the counts of total white blood cells, lymphocytes, granulocytes, or monocytes in the peripheral blood. Moreover, PLTP deficiency did not modify the amounts of CD4+ and CD8+ T lymphocyte subsets. However, PLTP-deficiency, associated with upregulation of the Th2 phenotype, was accompanied by a significant decrease in the production of the pro-Th1 cytokine interleukin 18 by accessory cells. Conclusions: For the first time, this work reports a physiological role for PLTP in the polarization of CD4+ T cells toward the pro-inflammatory Th1 phenotype. PMID:26320740

  20. Multifunctional nanorods serving as nanobridges to modulate T cell-mediated immunity.

    PubMed

    Son, Young Ju; Kim, Hyesung; Leong, Kam W; Yoo, Hyuk Sang

    2013-11-26

    Electrodeposited nanorods serving as multivalent bridges were fabricated and surface-decorated with ligands for immune cells. Gold and nickel solutions were sequentially electrodeposited on nanoporous anodized disc templates and the template was dissolved to retrieve bisegmented nanorods with different lengths. Gold and nickel segmented nanorods were surface-immobilized with mannose and RGD peptides to prepare immune-cell recruiting nanorods. Surface-functionalization of nanorods were confirmed by fluorescence-labeling of each ligands and confocal microscopy. Dendritic cells and T cells were co-incubated with the surface-functionalized nanorods, and the proximity between the nanorods and the immune cells was visualized by variable pressure scanning electron microscopy and confocal microscopy. The long nanorods were associated with the immune cells, whereas the shorter nanorods were rather endocytosed by cells, suggesting a feasibility of the longer nanorods as bridging for the cells. Cytokine releases from the immune cells were monitored by cultivating lipopolysaccharide-activated dendritic cells with T cells. Interleukine-2 and interferon-γ release profiles showed a strong correlation with the length of the nanorod, where the 4 μm nanorods induced the highest levels of cytokine release compared to 1 or 2 μm nanorods. Thus, we concluded that the proximity of the immune cells increased by bridging the immune cells with the nanobridging system, which subsequently increased cytokine release by facilitating the antigen presentation process.

  1. CCN1: a novel inflammation-regulated biphasic immune cell migration modulator.

    PubMed

    Löbel, Madlen; Bauer, Sandra; Meisel, Christian; Eisenreich, Andreas; Kudernatsch, Robert; Tank, Juliane; Rauch, Ursula; Kühl, Uwe; Schultheiss, Heinz-Peter; Volk, Hans-Dieter; Poller, Wolfgang; Scheibenbogen, Carmen

    2012-09-01

    In this study, we performed a comprehensive analysis of the effect of CCN1 on the migration of human immune cells. The molecule CCN1, produced by fibroblasts and endothelial cells, is considered as an important matrix protein promoting tissue repair and immune cell adhesion by binding various integrins. We recently reported that CCN1 therapy is able to suppress acute inflammation in vivo. Here, we show that CCN1 binds to various immune cells including T cells, B cells, NK cells, and monocytes. The addition of CCN1 in vitro enhances both actin polymerization and transwell migration. Prolonged incubation with CCN1, however, results in the inhibition of migration of immune cells by a mechanism that involves downregulation of PI3Kγ, p38, and Akt activation. Furthermore, we observed that immune cells themselves produce constitutively CCN1 and secretion is induced by pro-inflammatory stimuli. In line with this finding, patients suffering from acute inflammation had enhanced serum levels of CCN1. These findings extend the classical concept of CCN1 as a locally produced cell matrix adhesion molecule and suggest that CCN1 plays an important role in regulating immune cell trafficking by attracting and locally immobilizing immune cells.

  2. Engineering vaccines and niches for immune modulation.

    PubMed

    Purwada, Alberto; Roy, Krishnendu; Singh, Ankur

    2014-04-01

    Controlled modulation of immune response, especially the balance between immunostimulatory and immunosuppressive responses, is critical for a variety of clinical applications, including immunotherapies against cancer and infectious diseases, treatment of autoimmune disorders, transplant surgeries, regenerative medicine, prosthetic implants, etc. Our ability to precisely modify both innate and adaptive immune responses could provide new therapeutic directions in a variety of diseases. In the context of vaccines and immunotherapies, the interplay between antigen-presenting cells (e.g. dendritic cells and macrophages), B cells, T helper and killer subtypes, and regulatory T- and B-cell responses is critical for generating effective immunity against cancer, infectious diseases and autoimmune diseases. In recent years, immunoengineering has emerged as a new field that uses quantitative engineering tools to understand molecular-, cellular- and system-level interactions of the immune system and to develop design-driven approaches to control and modulate immune responses. Biomaterials are an integral part of this engineering toolbox and can exploit the intrinsic biological and mechanical cues of the immune system to directly modulate and train immune cells and direct their response to a particular phenotype. A large body of literature exists on strategies to evade or suppress the immune response in implants, transplantation and regenerative medicine. This review specifically focuses on the use of biomaterials for immunostimulation and controlled modulation, especially in the context of vaccines and immunotherapies against cancer, infectious diseases and autoimmune disorders. Bioengineering smart systems that can simultaneously deliver multiple bioactive agents in a controlled manner or can work as a niche for in situ priming and modulation of the immune system could significantly enhance the efficacy of next-generation immunotherapeutics. In this review, we describe our

  3. Glatiramer acetate attenuates neuropathic allodynia through modulation of adaptive immune cells.

    PubMed

    Leger, Tanya; Grist, John; D'Acquisto, Fulvio; Clark, Anna K; Malcangio, Marzia

    2011-05-01

    Immune-neuronal interactions contribute to neuropathic pain. Thus, immune-competent cells such as microglia may provide targets for pain relief, as may infiltrating lymphocytes. We evaluated the nature of the lymphocyte response in the spinal cord in association with the maintenance of neuropathic allodynia. We assessed T cell contribution to pain processing by targeting these cells with Glatiramer acetate (GA) which when administered systemically reversed neuropathic allodynia, inhibited microglia response and increased IL-10 and IL-4 expressing T cells in neuropathic dorsal horns. These studies advance understanding of lymphocyte contribution to chronic pain and reveal a new mechanism of T cell intervention.

  4. Glycans from Fasciola hepatica Modulate the Host Immune Response and TLR-Induced Maturation of Dendritic Cells

    PubMed Central

    Rodríguez, Ernesto; Noya, Verónica; Cervi, Laura; Chiribao, María Laura; Brossard, Natalie; Chiale, Carolina; Carmona, Carlos; Giacomini, Cecilia; Freire, Teresa

    2015-01-01

    Helminths express various carbohydrate-containing glycoconjugates on their surface, and they release glycan-rich excretion/secretion products that can be very important in their life cycles, infection and pathology. Recent evidence suggests that parasite glycoconjugates could play a role in the evasion of the immune response, leading to a modified Th2-polarized immune response that favors parasite survival in the host. Nevertheless, there is limited information about the nature or function of glycans produced by the trematode Fasciola hepatica, the causative agent of fasciolosis. In this paper, we investigate whether glycosylated molecules from F. hepatica participate in the modulation of host immunity. We also focus on dendritic cells, since they are an important target of immune-modulation by helminths, affecting their activity or function. Our results indicate that glycans from F. hepatica promote the production of IL-4 and IL-10, suppressing IFNγ production. During infection, this parasite is able to induce a semi-mature phenotype of DCs expressing low levels of MHCII and secrete IL-10. Furthermore, we show that parasite glycoconjugates mediate the modulation of LPS-induced maturation of DCs since their oxidation restores the capacity of LPS-treated DCs to secrete high levels of the pro-inflammatory cytokines IL-6 and IL-12/23p40 and low levels of the anti-inflammatory cytokine IL-10. Inhibition assays using carbohydrates suggest that the immune-modulation is mediated, at least in part, by the recognition of a mannose specific-CLR that signals by recruiting the phosphatase Php2. The results presented here contribute to the understanding of the role of parasite glycosylated molecules in the modulation of the host immunity and might be useful in the design of vaccines against fasciolosis. PMID:26720149

  5. Glycans from Fasciola hepatica Modulate the Host Immune Response and TLR-Induced Maturation of Dendritic Cells.

    PubMed

    Rodríguez, Ernesto; Noya, Verónica; Cervi, Laura; Chiribao, María Laura; Brossard, Natalie; Chiale, Carolina; Carmona, Carlos; Giacomini, Cecilia; Freire, Teresa

    2015-12-01

    Helminths express various carbohydrate-containing glycoconjugates on their surface, and they release glycan-rich excretion/secretion products that can be very important in their life cycles, infection and pathology. Recent evidence suggests that parasite glycoconjugates could play a role in the evasion of the immune response, leading to a modified Th2-polarized immune response that favors parasite survival in the host. Nevertheless, there is limited information about the nature or function of glycans produced by the trematode Fasciola hepatica, the causative agent of fasciolosis. In this paper, we investigate whether glycosylated molecules from F. hepatica participate in the modulation of host immunity. We also focus on dendritic cells, since they are an important target of immune-modulation by helminths, affecting their activity or function. Our results indicate that glycans from F. hepatica promote the production of IL-4 and IL-10, suppressing IFNγ production. During infection, this parasite is able to induce a semi-mature phenotype of DCs expressing low levels of MHCII and secrete IL-10. Furthermore, we show that parasite glycoconjugates mediate the modulation of LPS-induced maturation of DCs since their oxidation restores the capacity of LPS-treated DCs to secrete high levels of the pro-inflammatory cytokines IL-6 and IL-12/23p40 and low levels of the anti-inflammatory cytokine IL-10. Inhibition assays using carbohydrates suggest that the immune-modulation is mediated, at least in part, by the recognition of a mannose specific-CLR that signals by recruiting the phosphatase Php2. The results presented here contribute to the understanding of the role of parasite glycosylated molecules in the modulation of the host immunity and might be useful in the design of vaccines against fasciolosis.

  6. The hepatocyte growth factor (HGF)-MET receptor tyrosine kinase signaling pathway: Diverse roles in modulating immune cell functions.

    PubMed

    Ilangumaran, Subburaj; Villalobos-Hernandez, Alberto; Bobbala, Diwakar; Ramanathan, Sheela

    2016-06-01

    Hepatocyte growth factor (HGF) signaling via the MET receptor is essential for embryonic development and tissue repair. On the other hand, deregulated MET signaling promotes tumor progression in diverse types of cancers. Even though oncogenic MET signaling remains the major research focus, the HGF-MET axis has also been implicated in diverse aspects of immune cell development and functions. In the presence of other hematopoietic growth factors, HGF promotes the development of erythroid, myeloid and lymphoid lineage cells and thrombocytes. In monocytes and macrophages responding to inflammatory stimuli, induction of autocrine HGF-MET signaling can contribute to tissue repair via stimulating anti-inflammatory cytokine production. HGF-MET signaling can also modulate adaptive immune response by facilitating the migration of Langerhans cells and dendritic cells to draining lymph nodes. However, MET signaling has also been shown to induce tolerogenic dendritic cells in mouse models of graft-versus-host disease and experimental autoimmune encephalomyelitis. HGF-MET axis is also implicated in promoting thymopoiesis and the survival and migration of B lymphocytes. Recent studies have shown that MET signaling induces cardiotropism in activated T lymphocytes. Further understanding of the HGF-MET axis in the immune system would allow its therapeutic manipulation to improve immune cell reconstitution, restore immune homeostasis and to treat immuno-inflammatory diseases.

  7. Neutrophilic myeloid-derived suppressor cells in cord blood modulate innate and adaptive immune responses

    PubMed Central

    Rieber, N; Gille, C; Köstlin, N; Schäfer, I; Spring, B; Ost, M; Spieles, H; Kugel, H A; Pfeiffer, M; Heininger, V; Alkhaled, M; Hector, A; Mays, L; Kormann, M; Zundel, S; Fuchs, J; Handgretinger, R; Poets, C F; Hartl, D

    2013-01-01

    Neonates show an impaired anti-microbial host defence, but the underlying immune mechanisms are not understood fully. Myeloid-derived suppressor cells (MDSCs) represent an innate immune cell subset characterized by their capacity to suppress T cell immunity. In this study we demonstrate that a distinct MDSC subset with a neutrophilic/granulocytic phenotype (Gr-MDSCs) is highly increased in cord blood compared to peripheral blood of children and adults. Functionally, cord blood isolated Gr-MDSCs suppressed T cell proliferation efficiently as well as T helper type 1 (Th1), Th2 and Th17 cytokine secretion. Beyond T cells, cord blood Gr-MDSCs controlled natural killer (NK) cell cytotoxicity in a cell contact-dependent manner. These studies establish neutrophilic Gr-MDSCs as a novel immunosuppressive cell subset that controls innate (NK) and adaptive (T cell) immune responses in neonates. Increased MDSC activity in cord blood might serve as key fetomaternal immunosuppressive mechanism impairing neonatal host defence. Gr-MDSCs in cord blood might therefore represent a therapeutic target in neonatal infections. PMID:23701226

  8. Neutrophilic myeloid-derived suppressor cells in cord blood modulate innate and adaptive immune responses.

    PubMed

    Rieber, N; Gille, C; Köstlin, N; Schäfer, I; Spring, B; Ost, M; Spieles, H; Kugel, H A; Pfeiffer, M; Heininger, V; Alkhaled, M; Hector, A; Mays, L; Kormann, M; Zundel, S; Fuchs, J; Handgretinger, R; Poets, C F; Hartl, D

    2013-10-01

    Neonates show an impaired anti-microbial host defence, but the underlying immune mechanisms are not understood fully. Myeloid-derived suppressor cells (MDSCs) represent an innate immune cell subset characterized by their capacity to suppress T cell immunity. In this study we demonstrate that a distinct MDSC subset with a neutrophilic/granulocytic phenotype (Gr-MDSCs) is highly increased in cord blood compared to peripheral blood of children and adults. Functionally, cord blood isolated Gr-MDSCs suppressed T cell proliferation efficiently as well as T helper type 1 (Th1), Th2 and Th17 cytokine secretion. Beyond T cells, cord blood Gr-MDSCs controlled natural killer (NK) cell cytotoxicity in a cell contact-dependent manner. These studies establish neutrophilic Gr-MDSCs as a novel immunosuppressive cell subset that controls innate (NK) and adaptive (T cell) immune responses in neonates. Increased MDSC activity in cord blood might serve as key fetomaternal immunosuppressive mechanism impairing neonatal host defence. Gr-MDSCs in cord blood might therefore represent a therapeutic target in neonatal infections.

  9. Role of Immune Cells in the Course of Central Nervous System Injury: Modulation with Natural Products.

    PubMed

    Magrone, Thea; Russo, Matteo Antonio; Jirillo, Emilio

    2016-01-01

    Immune cells actively participate to the central nervous system (CNS) injury either damaging or protecting neural tissue with release of various mediators. Residential microglia and monocyte-derived macrophages play a fundamental role within the injured CNS and, here, special emphasis will be placed on M1 and M2 macrophages for their different functional activities. On the other hand, peripheral T regulatory (Treg) cells exert antiinflammatory activities in the diseased host. In this respect, activation of Treg cells by nutraceuticals may represent a novel approach to treat neuroinflammation. Omega-3 fatty acids and polyphenols will be described as substances endowed with antioxidant and anti-inflammatory activities. However, taking into account that Treg cells act in the later phase of CNS injury, favoring immune suppression, manipulation of host immune system with both substances requires caution to avoid undesired side effects.

  10. NK cells modulate the lung dendritic cell-mediated Th1/Th17 immunity during intracellular bacterial infection.

    PubMed

    Shekhar, Sudhanshu; Peng, Ying; Gao, Xiaoling; Joyee, Antony G; Wang, Shuhe; Bai, Hong; Zhao, Lei; Yang, Jie; Yang, Xi

    2015-10-01

    The impact of the interaction between NK cells and lung dendritic cells (LDCs) on the outcome of respiratory infections is poorly understood. In this study, we investigated the effect and mechanism of NK cells on the function of LDCs during intracellular bacterial lung infection of Chlamydia muridarum in mice. We found that the naive mice receiving LDCs from C. muridarum-infected NK-cell-depleted mice (NK-LDCs) showed more serious body weight loss, bacterial burden, and pathology upon chlamydial challenge when compared with the recipients of LDCs from infected sham-treated mice (NK+LDCs). Cytokine analysis of the local tissues of the former compared with the latter exhibited lower levels of Th1 (IFN-γ) and Th17 (IL-17), but higher levels of Th2 (IL-4), cytokines. Consistently, NK-LDCs were less efficient in directing C. muridarum-specific Th1 and Th17 responses than NK+LDCs when cocultured with CD4(+) T cells. In NK cell/LDC coculture experiments, the blockade of NKG2D receptor reduced the production of IL-12p70, IL-6, and IL-23 by LDCs. The neutralization of IFN-γ in the culture decreased the production of IL-12p70 by LDCs, whereas the blockade of TNF-α resulted in diminished IL-6 production. Our findings demonstrate that NK cells modulate LDC function to elicit Th1/Th17 immunity during intracellular bacterial infection.

  11. Interferon-β Modulates the Innate Immune Response against Glioblastoma Initiating Cells

    PubMed Central

    Wolpert, Fabian; Happold, Caroline; Reifenberger, Guido; Florea, Ana-Maria; Deenen, René; Roth, Patrick; Neidert, Marian Christoph; Lamszus, Katrin; Westphal, Manfred; Weller, Michael; Eisele, Günter

    2015-01-01

    Immunotherapy targeting glioblastoma initiating cells (GIC) is considered a promising strategy. However, GIC are prone to evade immune response and there is a need for potent adjuvants. IFN-β might enhance the immune response and here we define its net effect on the innate immunogenicity of GIC. The transcriptomes of GIC treated with IFN-β and controls were assessed by microarray-based expression profiling for altered expression of immune regulatory genes. Several genes involved in adaptive and innate immune responses were regulated by IFN-β. We validated these results using reverse transcription (RT)-PCR and flow cytometry for corresponding protein levels. The up-regulation of the NK cell inhibitory molecules HLA-E and MHC class I was balanced by immune stimulating effects including the up-regulation of nectin-2. In 3 out of 5 GIC lines tested we found a net immune stimulating effect of IFN-β in cytotoxicity assays using NKL cells as effectors. IFN-β therefore warrants further investigation as an adjuvant for immunotherapy targeting GIC. PMID:26441059

  12. Interferon-β Modulates the Innate Immune Response against Glioblastoma Initiating Cells.

    PubMed

    Wolpert, Fabian; Happold, Caroline; Reifenberger, Guido; Florea, Ana-Maria; Deenen, René; Roth, Patrick; Neidert, Marian Christoph; Lamszus, Katrin; Westphal, Manfred; Weller, Michael; Eisele, Günter

    2015-01-01

    Immunotherapy targeting glioblastoma initiating cells (GIC) is considered a promising strategy. However, GIC are prone to evade immune response and there is a need for potent adjuvants. IFN-β might enhance the immune response and here we define its net effect on the innate immunogenicity of GIC. The transcriptomes of GIC treated with IFN-β and controls were assessed by microarray-based expression profiling for altered expression of immune regulatory genes. Several genes involved in adaptive and innate immune responses were regulated by IFN-β. We validated these results using reverse transcription (RT)-PCR and flow cytometry for corresponding protein levels. The up-regulation of the NK cell inhibitory molecules HLA-E and MHC class I was balanced by immune stimulating effects including the up-regulation of nectin-2. In 3 out of 5 GIC lines tested we found a net immune stimulating effect of IFN-β in cytotoxicity assays using NKL cells as effectors. IFN-β therefore warrants further investigation as an adjuvant for immunotherapy targeting GIC.

  13. High dose and low dose Lactobacilli acidophilus exerted differential immune modulating effects on T cell immune responses induced by an oral human rotavirus vaccine in gnotobiotic pigs

    PubMed Central

    Wen, Ke; Li, Guohua; Bui, Tammy; Liu, Fangning; Li, Yanru; Kocher, Jacob; Lin, Lin; Yang, Xingdong; Yuan, Lijuan

    2011-01-01

    Background Strain-specific effects of probiotics in pro- or anti-inflammatory immune responses have been well recognized. Several proinflammatory Lactobacillus strains have been shown to act as adjuvants to enhance the immunogenicity of vaccines. However, dose effects of probiotics in modulating immune responses are not clearly understood. This study examined the dose effects of Lactobacillus acidophilus (LA) NCFM strain on T cell immune responses to rotavirus vaccination in a gnotobiotic (Gn) pig model. Methods Frequencies of IFN-γ producing CD4+ and CD8+ T cell and IL-10 and TGF-β producing CD4+CD25+ and CD4+CD25- regulatory T (Treg) cell responses were determined in the intestinal and systemic lymphoid tissues of Gn pigs vaccinated with an oral human rotavirus vaccine in conjunction with low dose (5 feedings; up to 106 colony forming units [CFU]/dose) or high dose (14 feedings; up to 109 CFU/dose) or without LA feeding. Results Low dose LA significantly promoted IFN-γ producing T cell responses and down-regulated Treg cell responses and their TGF-β and IL-10 productions in all the tissues compared to the high dose LA and control groups. To the contrary, high dose LA increased the frequencies of Treg cells in most of the tissues compared to the control groups. The dose effects of LA on IFN-γ producing T cell and CD4+CD25- Treg cell immune responses were similar in the intestinal and systemic lymphoid tissues and were independent from the vaccination. Conclusion Thus the same probiotic strain in different doses can either promote or suppress IFN-γ producing T cell or Treg cell immune responses. These findings have significant implications in the use of probiotic lactobacilli as immunostimulatory versus immunoregulatory agents. Probiotics can be ineffective or even detrimental if not used at the optimal dosage for the appropriate purposes. PMID:22178726

  14. BP8, a novel peptide from avian immune system, modulates B cell developments.

    PubMed

    Liu, Xiao-Dong; Zhou, Bin; Feng, Xiu-Li; Cao, Rui-Bing; Chen, Pu-Yan

    2014-12-01

    The bursa of Fabricius (BF) is the key humoral immune organ unique to birds, and is critical for early B-lymphocyte proliferation and differentiation. However, the molecular basis and mechanisms through which the BF regulates B cell development are not fully understood. In this study, we isolated and identified a new bursal peptide (BP8, AGHTKKAP) by RP-HPLC and MALDI-TOF-MS. BP8 promoted colony-forming pre-B formation, bound B cell precursor, regulated B cell development in vitro as well as in vivo, upstream of the EBF-E2A-Pax5 regulatory complex and increased immunoglobulin secretion. These data revealed a bursal-derived multifunctional factor BP8 as a novel biomaterial which is essential for the development of the immune system. This study elucidates further the mechanisms involved in humoral immune system and has implications in treating human diseases.

  15. GanedenBC30™ cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro

    PubMed Central

    2010-01-01

    Background This study was performed to evaluate anti-inflammatory and immune modulating properties of the probiotic, spore-forming bacterial strain: Bacillus coagulans: GBI-30, (PTA-6086, GanedenBC30TM). In addition, cell wall and metabolite fractions were assayed separately to address whether biological effects were due to cell wall components only, or whether secreted compounds from live bacteria had additional biological properties. The spores were heat-activated, and bacterial cultures were grown. The culture supernatant was harvested as a source of metabolites (MTB), and the bacteria were used to isolate cell wall fragments (CW). Both of these fractions were compared in a series of in vitro assays. Results Both MTB and CW inhibited spontaneous and oxidative stress-induced ROS formation in human PMN cells and increased the phagocytic activity of PMN cells in response to bacteria-like carboxylated fluorospheres. Both fractions supported random PMN and f-MLP-directed PMN cell migration, indicating a support of immune surveillance and antibacterial defense mechanisms. In contrast, low doses of both fractions inhibited PMN cell migration towards the inflammatory mediators IL-8 and LTB4. The anti-inflammatory activity was strongest for CW, where the PMN migration towards IL-8 was inhibited down to dilutions of 1010. Both MTB and CW induced the expression of the CD69 activation marker on human CD3- CD56+ NK cells, and enhanced the expression of CD107a when exposed to K562 tumor cells in vitro. The fractions directly modulated cytokine production, inducing production of the Th2 cytokines IL-4, IL-6, and IL-10, and inhibiting production of IL-2. Both fractions further modulated mitogen-induced cytokine production in the following manner: Both fractions enhanced the PHA-induced production of IL-6 and reduced the PHA-induced production of TNF-alpha. Both fractions enhanced the PWM-induced production of TNF-alpha and IFN-gamma. In addition, MTB also enhanced both the PHA

  16. The Unfolded Protein Response in Homeostasis and Modulation of Mammalian Immune Cells.

    PubMed

    Martins, Ana Sofia; Alves, Inês; Helguero, Luisa; Domingues, Maria Rosário; Neves, Bruno Miguel

    2016-11-01

    The endoplasmic reticulum (ER) plays important roles in eukaryotic protein folding and lipid biosynthesis. Several exogenous and endogenous cellular sources of stress can perturb ER homeostasis leading to the accumulation of unfolded proteins in the lumen. Unfolded protein accumulation triggers a signal-transduction cascade known as the unfolded protein response (UPR), an adaptive mechanism which aims to protect cells from protein aggregates and to restore ER functions. Further to this protective mechanism, in immune cells, UPR molecular effectors have been shown to participate in a wide range of biological processes such as cell differentiation, survival and immunoglobulin and cytokine production. Recent findings also highlight the involvement of the UPR machinery in the maturational program and antigen presentation capacities of dendritic cells. UPR is therefore a key element in immune system homeostasis with direct implications on both adaptive and innate immune responses. The present review summarizes the knowledge on the emerging roles of UPR signaling cascades in mammalian immune cells as well as the consequences of their dysregulation in relation to the pathogenesis of several diseases.

  17. Complement modulation of T cell immune responses during homeostasis and disease.

    PubMed

    Clarke, Elizabeth V; Tenner, Andrea J

    2014-11-01

    The complement system is an ancient and critical effector mechanism of the innate immune system as it senses, kills, and clears infectious and/or dangerous particles and alerts the immune system to the presence of the infection and/or danger. Interestingly, an increasing number of reports have demonstrated a clear role for complement in the adaptive immune system as well. Of note, a number of recent studies have identified previously unknown roles for complement proteins, receptors, and regulators in T cell function. Here, we will review recent data demonstrating the influence of complement proteins C1q, C3b/iC3b, C3a (and C3aR), and C5a (and C5aR) and complement regulators DAF (CD55) and CD46 (MCP) on T cell function during homeostasis and disease. Although new concepts are beginning to emerge in the field of complement regulation of T cell function, future experiments should focus on whether complement is interacting directly with the T cell or is having an indirect effect on T cell function via APCs, the cytokine milieu, or downstream complement activation products. Importantly, the identification of the pivotal molecular pathways in the human systems will be beneficial in the translation of concepts derived from model systems to therapeutic targeting for treatment of human disorders.

  18. Cloned, CD117 selected human amniotic fluid stem cells are capable of modulating the immune response.

    PubMed

    Moorefield, Emily C; McKee, Elizabeth E; Solchaga, Luis; Orlando, Guisseppe; Yoo, James J; Walker, Steve; Furth, Mark E; Bishop, Colin E

    2011-01-01

    Amniotic fluid stem (AFS) cells are broadly multipotent, can be expanded extensively in culture, are not tumorigenic and can be readily cryopreserved for cell banking. Mesenchymal stem cells (MSC) show immunomodulatory activity and secrete a wide spectrum of cytokines and chemokines that suppress inflammatory responses, block mixed lymphocyte reactions (MLR) and other immune reactions, and have proven therapeutic against conditions such as graft-versus-host disease. AFS cells resemble MSCs in many respects including surface marker expression and differentiation potential. We therefore hypothesized that AFS cells may exhibit similar immunomodulatory capabilities. We present data to demonstrate that direct contact with AFS cells inhibits lymphocyte activation. In addition, we show that cell-free supernatants derived from AFS cells primed with total blood monocytes or IL-1β, a cytokine released by monocytes and essential in mediation of the inflammatory response, also inhibited lymphocyte activation. Further investigation of AFS cell-free supernatants by protein array revealed secretion of multiple factors in common with MSCs that are known to be involved in immune regulation including growth related oncogene (GRO) and monocyte chemotactic protein (MCP) family members as well as interleukin-6 (IL-6). AFS cells activated by PBMCs released several additional cytokines as compared to BM-MSCs, including macrophage inflammatory protein-3α (MIP-3α), MIP-1α and Activin. AFS cells also released higher levels of MCP-1 and lower levels of MCP-2 compared to BM-MSCs in response to IL-1β activation. This suggests that there may be some AFS-specific mechanisms of inhibition of lymphocyte activation. Our results indicate that AFS cells are able to suppress inflammatory responses in vitro and that soluble factors are an essential component in the communication between lymphocytes and AFS cells. Their extensive self-renewal capacity, possibility for banking and absence of

  19. Splenectomy inhibits non-small cell lung cancer growth by modulating anti-tumor adaptive and innate immune response.

    PubMed

    Levy, Liran; Mishalian, Inbal; Bayuch, Rachel; Zolotarov, Lida; Michaeli, Janna; Fridlender, Zvi G

    2015-04-01

    It has been shown that inhibitors of the immune system reside in the spleen and inhibit the endogenous antitumor effects of the immune system. We hypothesized that splenectomy would inhibit the growth of relatively large non-small lung cancer (NSCLC) tumors by modulating the systemic inhibition of the immune system, and in particular Myeloid Derived Suppressor Cells (MDSC). The effect of splenectomy was evaluated in several murine lung cancer models. We found that splenectomy reduces tumor growth and the development of lung metastases, but only in advanced tumors. In immune-deficient NOD-SCID mice the effect of splenectomy on tumor growth and metastatic spread disappeared. Splenectomy significantly reduced the presence of MDSC, and especially monocytic-MDSC in the circulation and inside the tumor. Specific reduction of the CCR2+ subset of monocytic MDSC was demonstrated, and the importance of the CCL2-CCR2 axis was further shown by a marked reduction in CCL2 following splenectomy. These changes were followed by changes in the macrophages contents of the tumors to become more antitumorigenic, and by increased activation of CD8(+) Cytotoxic T-cells (CTL). By MDSC depletion, and adoptive transfer of MDSCs, we demonstrated that the effect of splenectomy on tumor growth was substantially mediated by MDSC cells. We conclude that the spleen is an important contributor to tumor growth and metastases, and that splenectomy can blunt this effect by depletion of MDSC, changing the amount and characteristics of myeloid cells and enhancing activation of CTL.

  20. P02.07INTERFERON-β MODULATES THE INNATE IMMUNE RESPONSE AGAINST GLIOBLASTOMA INITIATING CELLS

    PubMed Central

    Wolpert, F.; Happold, C.; Roth, P.; Reifenberger, G.; Weller, M.; Eisele, G.

    2014-01-01

    The prognosis of glioblastoma remains dismal. Immunotherapy is a promising approach with the need of well-defined targets and potent adjuvants. Glioma-initiating cells (GIC) with stem cell properties are such an attractive target for immunotherapy. However, the immunogenicity of GIC seems limited. Interferon (IFN)-β exerts immune-activating effects like enhanced antigen processing, up-regulation of co-stimulatory molecules and enhanced natural killer (NK) cell activity and thus might enhance an immune response against GIC. Moreover, IFN-β exerts direct anti-GIC cell activities. Thus, IFN-β warrants being further evaluated as an adjuvant for anti-glioblastoma immunotherapies. Here we define the net effect of IFN-β treatment on the innate immunogenicity of GIC. Employing Affymetrix-based transcriptomic profiling, we identified alterations in the expression of several immune regulatory genes in a panel of well-defined GIC lines upon treatment with IFN-β. The up-regulation of immunosuppressive human leukocyte antigen (HLA)-E was contrasted by enhanced surface levels of immune activating nectin-2 while the level of NKG2D ligands remained largely unaltered. In NK cell lysis assays, the immunogenicity of 2 of 3 GIC lines was increased upon IFN-β treatment and further enhanced upon gene silencing of HLA-E using RNA interference. Our data indicate that treatment with IFN-β alters the innate immunogenicity of GIC by increased expression of nectin-2, reverted in part by the concurrent upregulation of HLA-E.

  1. The Soil Bacterium Methylococcus capsulatus Bath Interacts with Human Dendritic Cells to Modulate Immune Function

    PubMed Central

    Indrelid, Stine; Kleiveland, Charlotte; Holst, René; Jacobsen, Morten; Lea, Tor

    2017-01-01

    The prevalence of inflammatory bowel disease (IBD) has increased in Western countries during the course of the twentieth century, and is evolving to be a global disease. Recently we showed that a bacterial meal of a non-commensal, non-pathogenic methanotrophic soil bacterium, Methylococcus capsulatus Bath prevents experimentally induced colitis in a murine model of IBD. The mechanism behind the effect has this far not been identified. Here, for the first time we show that M. capsulatus, a soil bacterium adheres specifically to human dendritic cells, influencing DC maturation, cytokine production, and subsequent T cell activation, proliferation and differentiation. We characterize the immune modulatory properties of M. capsulatus and compare its immunological properties to those of another Gram-negative gammaproteobacterium, the commensal Escherichia coli K12, and the immune modulatory Gram-positive probiotic bacterium, Lactobacillus rhamnosus GG in vitro. M. capsulatus induces intermediate phenotypic and functional DC maturation. In a mixed lymphocyte reaction M. capsulatus-primed monocyte-derived dendritic cells (MoDCs) enhance T cell expression of CD25, the γ-chain of the high affinity IL-2 receptor, supports cell proliferation, and induce a T cell cytokine profile different from both E. coli K12 and Lactobacillus rhamnosus GG. M. capsulatus Bath thus interacts specifically with MoDC, affecting MoDC maturation, cytokine profile, and subsequent MoDC directed T cell polarization. PMID:28293233

  2. Modulation of Immune Functions by Foods

    PubMed Central

    2004-01-01

    Evidence is rapidly accumulating as to the beneficial effects of foods. However, it is not always clear whether the information is based on data evaluated impartially in a scientific fashion. Human research into whether foods modulate immune functions in either intervention studies or randomized controlled trials can be classified into three categories according to the physical state of subjects enrolled for investigation: (i) studies examining the effect of foods in healthy individuals; (ii) studies analyzing the effect of foods on patients with hypersensitivity; and (iii) studies checking the effect of foods on immunocompromized subjects, including patients who had undergone surgical resection of cancer and newborns. The systematization of reported studies has made it reasonable to conclude that foods are able to modulate immune functions manifesting as either innate immunity (phagocytic activity, NK cell activity) or acquired immunity (T cell response, antibody production). Moreover, improvement of immune functions by foods can normalize the physical state of allergic patients or cancer patients, and may reduce the risk of diseases in healthy individuals. Therefore, it is valuable to assess the immune-modulating abilities of foods by measuring at least one parameter of either innate or acquired immunity. PMID:15841257

  3. The expression of an immune-related phenoloxidase gene is modulated in Ciona intestinalis ovary, test cells, embryos and larva.

    PubMed

    Parrinello, Daniela; Sanfratello, Maria A; Vizzini, Aiti; Cammarata, Matteo

    2015-03-01

    Two distinct Ciona intestinalis phenoloxidases (CinPO1, 2) had previously been cloned and sequenced. The CinPO2 is involved in innate immunity and is expressed by inflammatory hemocytes that populate the tunic and pharynx vessels as a response to LPS inoculation. In situ hybridization and immunohistochemistry assays on histological section, showed that the expression of this gene and the produced protein are shared with oogenesis, embryogenesis and larval morphogenesis. Intriguingly, upregulation of gene transcription was found in the test cell layer that envelopes the ovary follicle, ovulated egg, and gastrula, as well as it was modulated in the zygotic nucleus of outer balstomers of 32-cell embryo, neurula presumptive epidermis tissue and larval mesenchyme. The anti-CinPO2 antibodies, specific for adult inflammatory cells, recognize epitopes in the cytoplasm of ovarian oocytes, ovulated eggs, development stages and larval mesenchyme. The overall findings disclose the precocious activation of the CinPO2 immunity-related gene, and show a developmentally programmed expression of this phenoloxidase. Furthermore, these findings support the multifunctional roles of immunity-related genes and allows us to explore new perspectives on ascidian development and immunity.

  4. Immune Regulation by Pericytes: Modulating Innate and Adaptive Immunity

    PubMed Central

    Navarro, Rocío; Compte, Marta; Álvarez-Vallina, Luis; Sanz, Laura

    2016-01-01

    Pericytes (PC) are mural cells that surround endothelial cells in small blood vessels. PC have traditionally been credited with structural functions, being essential for vessel maturation and stabilization. However, an accumulating body of evidence suggests that PC also display immune properties. They can respond to a series of pro-inflammatory stimuli and are able to sense different types of danger due to their expression of functional pattern-recognition receptors, contributing to the onset of innate immune responses. In this context, PC not only secrete a variety of chemokines but also overexpress adhesion molecules such as ICAM-1 and VCAM-1 involved in the control of immune cell trafficking across vessel walls. In addition to their role in innate immunity, PC are involved in adaptive immunity. It has been reported that interaction with PC anergizes T cells, which is attributed, at least in part, to the expression of PD-L1. As components of the tumor microenvironment, PC can also modulate the antitumor immune response. However, their role is complex, and further studies will be required to better understand the crosstalk of PC with immune cells in order to consider them as potential therapeutic targets. In any case, PC will be looked at with new eyes by immunologists from now on. PMID:27867386

  5. Modulation of dendritic cell innate and adaptive immune functions by oral and sublingual immunotherapy.

    PubMed

    Frischmeyer-Guerrerio, Pamela A; Keet, Corinne A; Guerrerio, Anthony L; Chichester, Kristin L; Bieneman, Anja P; Hamilton, Robert G; Wood, Robert A; Schroeder, John T

    2014-11-01

    Sublingual (SLIT) and oral immunotherapy (OIT) are promising treatments for food allergy, but underlying mechanisms are poorly understood. Dendritic cells (DCs) induce and maintain Th2-type allergen-specific T cells, and also regulate innate immunity through their expression of Toll-like receptors (TLRs). We examined how SLIT and OIT influenced DC innate and adaptive immune responses in children with IgE-mediated cow's milk (CM) allergy. SLIT, but not OIT, decreased TLR-induced IL-6 secretion by myeloid DCs (mDCs). SLIT and OIT altered mDC IL-10 secretion, a potent inhibitor of FcεRI-dependent pro-inflammatory responses. OIT uniquely augmented IFN-α and decreased IL-6 secretion by plasmacytoid DCs (pDCs), which was associated with reduced TLR-induced IL-13 release in pDC-T cell co-cultures. Both SLIT and OIT decreased Th2 cytokine secretion to CM in pDC-T, but not mDC-T, co-cultures. Therefore, SLIT and OIT exert unique effects on DC-driven innate and adaptive immune responses, which may inhibit allergic inflammation and promote tolerance.

  6. Modulation by gamma interferon of antiviral cell-mediated immune responses in vivo.

    PubMed Central

    Utermöhlen, O; Dangel, A; Tárnok, A; Lehmann-Grube, F

    1996-01-01

    Mice were infected with lymphocytic choriomeningitis virus and injected once 24 h later with a monoclonal antibody directed against gamma interferon. In comparison with controls, the increase of numbers of CD8+ T cells and the generation of virus-specific cytotoxic T lymphocytes in spleens and virus clearance from organs were diminished, as was the ability of spleen cells to transmit adoptive immunity to infected recipients. The same treatment slightly but consistently lessened rather than augmented the virus titers early in infection, which was also observed in thymusless nu/nu mice. Injection into infected mice of the lymphokine itself in quantities probably higher than are produced endogenously resulted in lower virus titers in spleens but higher titers in livers. The adoptive immunity in infected mice achieved by infusion of immune spleen cells was not altered by treating the recipients with gamma interferon monoclonal antibody. Such treatment did not measurably affect the production of antiviral serum antibodies. We conclude that in lymphocytic choriomeningitis virus-infected mice, gamma interferon is needed for the generation of antivirally active CD8+ T lymphocytes, and furthermore that in this experimental model, direct antiviral effects of the lymphokine elude detection. PMID:8627670

  7. Transcriptional modulation using HDACi depsipeptide promotes immune cell-mediated tumor destruction of murine B16 melanoma.

    PubMed

    Murakami, Takashi; Sato, Atsuko; Chun, Nicole A L; Hara, Mayumi; Naito, Yuki; Kobayashi, Yukiko; Kano, Yasuhiko; Ohtsuki, Mamitaro; Furukawa, Yusuke; Kobayashi, Eiji

    2008-06-01

    With melanoma, as with many other malignancies, aberrant transcriptional repression is a hallmark of refractory cancer. To restore gene expression, use of a histone deacetylase inhibitor (HDACi) is expected to be effective. Our recent DNA micro-array analysis showed that the HDACi depsipeptide (FK228) significantly enhances gp100 antigen expression. Herein, we demonstrate that depsipeptide promotes tumor-specific T-cell-mediated killing of B16/F10 murine melanoma cells. First, by a quantitative assay of caspase-3/7 activity, a sublethal dose of depsipeptide was determined (ED50: 5 nM), in which p21(Waf1/Cip1) and Fas were sufficiently evoked concomitantly with histone H3 acetylation. Second, the sublethal dose of depsipeptide treatment with either a recombinant Fas ligand or tumor-specific T cells synergistically enhanced apoptotic cell death in B16/F10 cells in vitro. Furthermore, we found that depsipeptide increased levels of perforin in T cells. Finally, in vivo metastatic growth of B16/F10 in the lung was significantly inhibited by a combination of depsipeptide treatment and immune cell adoptive transfer from immunized mice using irradiated B16 cells and gp100-specific (Pmel-1) TCR transgenic mice (P<0.05, vs cell transfer alone). Consequently, employment of a transcriptional modulation strategy using HDACis might prove to be a useful pretreatment for human melanoma immunotherapy.

  8. Modulation of innate immune responses during human T-cell leukemia virus (HTLV-1) pathogenesis.

    PubMed

    Olière, Stéphanie; Douville, Renée; Sze, Alexandre; Belgnaoui, S Mehdi; Hiscott, John

    2011-08-01

    Infection with the Human T-cell Leukemia virus type I (HTLV-1) retrovirus results in a number of diverse pathologies, including the aggressive, fatal T-cell malignancy adult T-cell leukemia (ATL) and the chronic, progressive neurologic disorder termed HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Worldwide, it is estimated there are 15-20 million HTLV-1-infected individuals; although the majority of HTLV-1-infected individuals remain asymptomatic carriers (AC) during their lifetime, 2-5% of AC develops either ATL or HAM/TSP, but never both. Regardless of asymptomatic status or clinical outcome, HTLV-1 carriers are at high risk of opportunistic infection. The progression to pathological HTLV-1 disease is in part attributed to the failure of the innate and adaptive immune system to control virus spread. The innate immune response against retroviral infection requires recognition of viral pathogen-associated molecular patterns (PAMPs) through pattern-recognition receptors (PRR) dependent pathways, leading to the induction of host antiviral and inflammatory responses. Recent studies have begun to characterize the interplay between HTLV-1 infection and the innate immune response and have identified distinct gene expression profiles in patients with ATL or HAM/TSP--upregulation of growth regulatory pathways in ATL and constitutive activation of antiviral and inflammatory pathways in HAM/STP. In this review, we provide an overview of the replicative lifecycle of HTLV-1 and the distinct pathologies associated with HTLV-1 infection. We also explore the innate immune mechanisms that respond to HTLV-1 infection, the strategies used by HTLV-1 to subvert these defenses and their contribution to HTLV-1-associated diseases.

  9. Apigenin, a Natural Flavonoid, Attenuates EAE Severity Through the Modulation of Dendritic Cell and Other Immune Cell Functions.

    PubMed

    Ginwala, Rashida; McTish, Emily; Raman, Chander; Singh, Narendra; Nagarkatti, Mitzi; Nagarkatti, Prakash; Sagar, Divya; Jain, Pooja; Khan, Zafar K

    2016-03-01

    Apigenin, a natural flavonoid, found in several plants, fruits, vegetables, herbs, and spices, is known to have anti-oxidant and anti-inflammatory properties that are evident in the use of these substances for centuries as medicinal approaches to treat asthma, insomnia, Parkinson's disease, neuralgia, and shingles. However, there is a considerable dearth of information regarding its effect on immune cells, especially dendritic cells (DC) that maintain the critical balance between an immunogenic and tolerogenic immune response, in an immunospecialized location like the central nervous system (CNS). In this paper we looked at the anti-inflammatory properties of Apigenin in restoration of immune function and the resultant decrease in neuroinflammation. In vivo, a significant reduction in severity of experimental autoimmune encephalomyelitis (EAE) progression and relapse was observed in C57BL/6 (progressive) and SJL/J (relapse-remitting) mouse models of multiple sclerosis upon treatment with Apigenin. Apigenin treated EAE mice show decreased expression of α4 integrin and CLEC12A on splenic DCs and an increased retention of immune cells in the periphery compared to untreated EAE mice. This correlated consequently with immunohistochemistry findings of decreased immune cell infiltration and reduced demyelination in the CNS. These results indicate a protective role of Apigenin against the neurodegenerative effects resulting from the entry of DC stimulated pathogenic T cells into the CNS thus implicating a potential therapy for neuroinflammatory disease.

  10. Cysteinyl leukotriene receptor-1 antagonists as modulators of innate immune cell function.

    PubMed

    Theron, A J; Steel, H C; Tintinger, G R; Gravett, C M; Anderson, R; Feldman, C

    2014-01-01

    Cysteinyl leukotrienes (cysLTs) are produced predominantly by cells of the innate immune system, especially basophils, eosinophils, mast cells, and monocytes/macrophages. Notwithstanding potent bronchoconstrictor activity, cysLTs are also proinflammatory consequent to their autocrine and paracrine interactions with G-protein-coupled receptors expressed not only on the aforementioned cell types, but also on Th2 lymphocytes, as well as structural cells, and to a lesser extent neutrophils and CD8(+) cells. Recognition of the involvement of cysLTs in the immunopathogenesis of various types of acute and chronic inflammatory disorders, especially bronchial asthma, prompted the development of selective cysLT receptor-1 (cysLTR1) antagonists, specifically montelukast, pranlukast, and zafirlukast. More recently these agents have also been reported to possess secondary anti-inflammatory activities, distinct from cysLTR1 antagonism, which appear to be particularly effective in targeting neutrophils and monocytes/macrophages. Underlying mechanisms include interference with cyclic nucleotide phosphodiesterases, 5'-lipoxygenase, and the proinflammatory transcription factor, nuclear factor kappa B. These and other secondary anti-inflammatory mechanisms of the commonly used cysLTR1 antagonists are the major focus of the current review, which also includes a comparison of the anti-inflammatory effects of montelukast, pranlukast, and zafirlukast on human neutrophils in vitro, as well as an overview of both the current clinical applications of these agents and potential future applications based on preclinical and early clinical studies.

  11. Bovine milk RNases modulate pro-inflammatory responses induced by nucleic acids in cultured immune and epithelial cells.

    PubMed

    Gupta, Sandeep K; Haigh, Brendan J; Seyfert, Hans-Martin; Griffin, Frank J; Wheeler, Thomas T

    2017-03-01

    Activation of innate immune receptors by exogenous substances is crucial for the detection of microbial pathogens and a subsequent inflammatory response. The inflammatory response to microbial lipopolysaccharide via Toll-like receptor 4 (TLR4) is facilitated by soluble accessory proteins, but the role of such proteins in the activation of other pathogen recognition receptors for microbial nucleic acid is not well understood. Here we demonstrate that RNase4 and RNase5 purified from bovine milk bind to Salmonella typhimurium DNA and stimulate pro-inflammatory responses induced by nucleic acid mimetics and S. typhimurium DNA in an established mouse macrophage cell culture model, RAW264.7, as well as in primary bovine mammary epithelial cells. RNase4 and 5 also modulated pro-inflammatory signalling in response to nucleic acids in bovine peripheral blood mononuclear cells, although producing a distinct response. These results support a role for RNase4 and RNase5 in mediating inflammatory signals in both immune and epithelial cells, involving mechanisms that are cell-type specific.

  12. Platelets modulate the immune response following trauma by interaction with CD4+ T regulatory cells in a mouse model.

    PubMed

    Bergmann, Christian B; Hefele, Friederike; Unger, Marina; Huber-Wagner, Stefan; Biberthaler, Peter; van Griensven, Martijn; Hanschen, Marc

    2016-04-01

    CD4+ T regulatory cells (Tregs) play a pivotal role in the anti-inflammatory immune response following trauma. The mechanisms of CD4+ Treg activation are mostly unknown. Here, we hypothesize that platelets regulate CD4+ Treg activation following trauma. In a murine burn injury model (male C57Bl/6N mice), depletion of platelets or CD4+ Tregs was conducted. Draining lymph nodes, blood and spleen were harvested 2 h and 7 days after trauma. CD4+ Treg activation was measured using phospho- and conventional flow cytometry. Platelet activation was analyzed using thromboelastometry and flow cytometry. Trauma differentially activates CD4+ T cells, early after trauma only CD4+ Tregs are activated. Following burn injury, platelets augment the activation of CD4+ Tregs. This effect could only be seen early after trauma. While CD4+ Tregs influence hemostasis early following trauma, platelet activation markers were unchanged. Beyond their role in hemostasis, platelets are able to modulate the immunologic host response to trauma-induced injury by augmenting the activation of CD4+ Tregs. CD4+ Treg activation following trauma is considered protective. In addition, CD4+ Tregs are capable of modulating the hemostatic function of platelets. For the first time, we could show reciprocal activation of platelets and CD4+ Tregs as part of the protective immune response following trauma.

  13. TiO2 nanoparticle-induced ROS correlates with modulated immune cell function

    NASA Astrophysics Data System (ADS)

    Maurer-Jones, Melissa A.; Christenson, Jenna R.; Haynes, Christy L.

    2012-12-01

    Design of non-toxic nanoparticles will be greatly facilitated by understanding the nanoparticle-cell interaction mechanism on a cell function level. Mast cells are important cells for the immune system's first line of defense, and we can utilize their exocytotic behavior as a model cellular function as it is a conserved process across cell types and species. Perturbations in exocytosis can also have implications for whole organism health. One proposed mode of toxicity is nanoparticle-induced reactive oxygen species (ROS), particularly for titanium dioxide (TiO2) nanoparticles. Herein, we have correlated changes in ROS with the perturbation of the critical cell function of exocytosis, using UV light to induce greater levels of ROS in TiO2 exposed cells. The primary culture mouse peritoneal mast cells (MPMCs) were exposed to varying concentrations of TiO2 nanoparticles for 24 h. ROS content was determined using 2,7-dihydrodichlorofluorescein diacetate (DCFDA). Cellular viability was determined with the MTT and Trypan blue assays, and exocytosis was measured by the analytical electrochemistry technique of carbon-fiber microelectrode amperometry. MPMCs exposed to TiO2 nanoparticles experienced a dose-dependent increase in total ROS content. While there was minimal impact of ROS on cellular viability, there is a correlation between ROS amount and exocytosis perturbation. As nanoparticle-induced ROS increases, there is a significant decrease (45 %) in the number of serotonin molecules being released during exocytosis, increase (26 %) in the amount of time for each exocytotic granule to release, and decrease (28 %) in the efficiency of granule trafficking and docking. This is the first evidence that nanoparticle-induced ROS correlates with chemical messenger molecule secretion, possibly making a critical connection between functional impairment and mechanisms contributing to that impairment.

  14. Dynamic Modulation of Innate Immune Response by Varying Dosages of Lipopolysaccharide (LPS) in Human Monocytic Cells*

    PubMed Central

    Morris, Matthew C.; Gilliam, Elizabeth A.; Button, Julia; Li, Liwu

    2014-01-01

    Innate monocytes and macrophages can be dynamically programmed into distinct states depending upon the strength of external stimuli. Innate programming may bear significant relevance to the pathogenesis and resolution of human inflammatory diseases. However, systems analyses with regard to the dynamic programming of innate leukocytes are lacking. In this study, we focused on the dynamic responses of human promonocytic THP-1 cells to lipopolysaccharide (LPS). We observed that varying dosages of LPS differentially modulate the expression of selected pro- and anti- inflammatory mediators such as IL-6 and IL-33. Super-low dosages of LPS preferentially induced the pro-inflammatory mediator IL-6, while higher dosages of LPS induced both IL-6 and IL-33. Mechanistically, we demonstrated that super-low and high doses of LPS cause differential activation of GSK3 and Akt, as well as the transcription factors FoxO1 and CREB. Inhibition of GSK3 enabled THP-1 cells to express IL-33 when challenged with super-low dose LPS. On the other hand, activation of CREB with adenosine suppressed IL-6 expression. Taken together, our study reveals a dynamic modulation of monocytic cells in response to varying dosages of endotoxin, and may shed light on our understanding of the dynamic balance that controls pathogenesis and resolution of inflammatory diseases. PMID:24970893

  15. Role of IL-10-producing regulatory B cells in modulating T-helper cell immune responses during silica-induced lung inflammation and fibrosis

    PubMed Central

    Liu, Fangwei; Dai, Wujing; Li, Chao; Lu, Xiaowei; Chen, Ying; Weng, Dong; Chen, Jie

    2016-01-01

    Silicosis is characterized by chronic lung inflammation and fibrosis, which are seriously harmful to human health. Previous research demonstrated that uncontrolled T-helper (Th) cell immune responses were involved in the pathogenesis of silicosis. Lymphocytes also are reported to have important roles. Existing studies on lymphocyte regulation of Th immune responses were limited to T cells, such as the regulatory T (Treg) cell, which could negatively regulate inflammation and promote the process of silicosis. However, other regulatory subsets in silicosis have not been investigated in detail, and the mechanism of immune homeostasis modulation needs further exploration. Another regulatory lymphocyte, the regulatory B cell, has recently drawn increasing attention. In this study, we comprehensively showed the role of IL-10-producing regulatory B cell (B10) in a silicosis model of mice. B10 was inducible by silica instillation. Insufficient B10 amplified inflammation and attenuated lung fibrosis by promoting the Th1 immune response. Insufficient B10 clearly inhibited Treg and decreased the level of IL-10. Our study indicated that B10 could control lung inflammation and exacerbate lung fibrosis by inhibiting Th1 response and modulating the Th balance. The regulatory function of B10 could be associated with Treg induction and IL-10 secretion. PMID:27354007

  16. Foxp3+ T cells inhibit antitumor immune memory modulated by mTOR inhibition.

    PubMed

    Wang, Yanping; Sparwasser, Tim; Figlin, Robert; Kim, Hyung L

    2014-04-15

    Inhibition of mTOR signaling enhances antitumor memory lymphocytes. However, pharmacologic mTOR inhibition also enhances regulatory T-cell (Treg) activity. To counter this effect, Treg control was added to mTOR inhibition in preclinical models. Tregs were controlled with CD4-depleting antibodies because CD4 depletion has high translational potential and already has a well-established safety profile in patients. The antitumor activity of the combination therapy was CD8 dependent and controlled growth of syngeneic tumors even when an adoptive immunotherapy was not used. Lymphocytes resulting from the combination therapy could be transferred into naïve mice to inhibit aggressive growth of lung metastases. The combination therapy enhanced CD8 memory formation as determined by memory markers and functional studies of immune recall. Removal of FoxP3-expressing T lymphocytes was the mechanism underlying immunologic memory formation following CD4 depletion. This was confirmed using transgenic DEREG (depletion of regulatory T cells) mice to specifically remove Foxp3(+) T cells. It was further confirmed with reciprocal studies where stimulation of immunologic memory because of CD4 depletion was completely neutralized by adoptively transferring tumor-specific Foxp3(+) T cells. Also contributing to tumor control, Tregs that eventually recovered following CD4 depletion were less immunosuppressive. These results provide a rationale for further study of mTOR inhibition and CD4 depletion in patients.

  17. Tasquinimod modulates tumor-infiltrating myeloid cells and improves the antitumor immune response to PD-L1 blockade in bladder cancer.

    PubMed

    Nakhlé, Jessica; Pierron, Valérie; Bauchet, Anne-Laure; Plas, Pascale; Thiongane, Amath; Meyer-Losic, Florence; Schmidlin, Fabien

    2016-06-01

    The infiltration of myeloid cells helps tumors to overcome immune surveillance and imparts resistance to cancer immunotherapy. Thus, strategies to modulate the effects of these immune cells may offer a potential therapeutic benefit. We report here that tasquinimod, a novel immunotherapy which targets S100A9 signaling, reduces the immunosuppressive properties of myeloid cells in preclinical models of bladder cancer (BCa). As single anticancer agent, tasquinimod treatment was effective in preventing early stage tumor growth, but did not achieve a clear antitumor effect in advanced tumors. Investigations of this response revealed that tasquinimod induces an increase in the expression of a negative regulator of T cell activation, Programmed-death-ligand 1 (PD-L1). This markedly weakens its antitumor immunity, yet provokes an "inflamed" milieu rendering tumors more prone to T cell-mediated immune attack by PD-L1 blockade. Interestingly, the combination of tasquinimod with an Anti-PD-L1 antibody enhanced the antitumor immune response in bladder tumors. This combination synergistically modulated tumor-infiltrating myeloid cells, thereby strongly affecting proliferation and activation of effector T cells. Together, our data provide insight into the rational combination of therapies that activate both innate and adaptive immune system, such as the association of S100A9-targeting agents with immune checkpoints inhibitors, to improve the response to cancer immunotherapeutic agents in BCa.

  18. Tasquinimod modulates tumor-infiltrating myeloid cells and improves the antitumor immune response to PD-L1 blockade in bladder cancer

    PubMed Central

    Nakhlé, Jessica; Pierron, Valérie; Bauchet, Anne-Laure; Plas, Pascale; Thiongane, Amath; Meyer-Losic, Florence; Schmidlin, Fabien

    2016-01-01

    ABSTRACT The infiltration of myeloid cells helps tumors to overcome immune surveillance and imparts resistance to cancer immunotherapy. Thus, strategies to modulate the effects of these immune cells may offer a potential therapeutic benefit. We report here that tasquinimod, a novel immunotherapy which targets S100A9 signaling, reduces the immunosuppressive properties of myeloid cells in preclinical models of bladder cancer (BCa). As single anticancer agent, tasquinimod treatment was effective in preventing early stage tumor growth, but did not achieve a clear antitumor effect in advanced tumors. Investigations of this response revealed that tasquinimod induces an increase in the expression of a negative regulator of T cell activation, Programmed-death-ligand 1 (PD-L1). This markedly weakens its antitumor immunity, yet provokes an “inflamed” milieu rendering tumors more prone to T cell-mediated immune attack by PD-L1 blockade. Interestingly, the combination of tasquinimod with an Anti-PD-L1 antibody enhanced the antitumor immune response in bladder tumors. This combination synergistically modulated tumor-infiltrating myeloid cells, thereby strongly affecting proliferation and activation of effector T cells. Together, our data provide insight into the rational combination of therapies that activate both innate and adaptive immune system, such as the association of S100A9-targeting agents with immune checkpoints inhibitors, to improve the response to cancer immunotherapeutic agents in BCa. PMID:27471612

  19. C-type lectin receptor DCIR modulates immunity to tuberculosis by sustaining type I interferon signaling in dendritic cells

    PubMed Central

    Troegeler, Anthony; Mercier, Ingrid; Cougoule, Céline; Pietretti, Danilo; Colom, André; Duval, Carine; Vu Manh, Thien-Phong; Capilla, Florence; Poincloux, Renaud; Pingris, Karine; Nigou, Jérôme; Rademann, Jörg; Dalod, Marc; Verreck, Frank A. W.; Al Saati, Talal; Lugo-Villarino, Geanncarlo; Lepenies, Bernd; Hudrisier, Denis; Neyrolles, Olivier

    2017-01-01

    Immune response against pathogens is a tightly regulated process that must ensure microbial control while preserving integrity of the infected organs. Tuberculosis (TB) is a paramount example of a chronic infection in which antimicrobial immunity is protective in the vast majority of infected individuals but can become detrimental if not finely tuned. Here, we report that C-type lectin dendritic cell (DC) immunoreceptor (DCIR), a key component in DC homeostasis, is required to modulate lung inflammation and bacterial burden in TB. DCIR is abundantly expressed in pulmonary lesions in Mycobacterium tuberculosis-infected nonhuman primates during both latent and active disease. In mice, we found that DCIR deficiency impairs STAT1-mediated type I IFN signaling in DCs, leading to increased production of IL-12 and increased differentiation of T lymphocytes toward Th1 during infection. As a consequence, DCIR-deficient mice control M. tuberculosis better than WT animals but also develop more inflammation characterized by an increased production of TNF and inducible NOS (iNOS) in the lungs. Altogether, our results reveal a pathway by which a C-type lectin modulates the equilibrium between infection-driven inflammation and pathogen’s control through sustaining type I IFN signaling in DCs. PMID:28069953

  20. Evidence of cell-mediated immune contrasuppression in lepromatous leprosy: modulation of a putative T contrasuppressor cell-subset.

    PubMed Central

    González-Amaro, R; Salazar-González, J F; Baranda, L; Abud-Mendoza, C; Moncada, B; García, R; Alcocer-Varela, J

    1988-01-01

    Some lepromatous leprosy (LL) patients are characterized by the presence of activated suppressor T cells that specifically inhibit the immune response to Mycobacterium leprae antigens. Immune contrasuppressor (CS) cell activity antagonize suppressor function. Whereas the former function has been extensively studied in leprosy, the latter has not been explored. We studied the peripheral blood mononuclear cells (PBMNC) of 20 patients with leprosy (10 lepromatous and 10 tuberculoid) and six healthy contacts. We found CS-like activity in the PBMNC from some LL patients when assayed in vitro using lepromin as antigen. This CS-like function was found in CD8+, vicia villosa adherent (VV+) T cells. CS-like activity was not detected in PBMNC from either tuberculoid patients or healthy contacts. Pre-treatment of CD8+, VV+ cells with either recombinant IL-2 (5 u/ml) or recombinant interferon-gamma (1,000 u/ml) did not modify significantly their putative CS function. However, in 50% of lepromatous patients the pre-incubation of CD8+, VV+ cells with both lymphokines together increased significantly the CS-like activity. These data suggest that the in vitro immune response to M. leprae in some LL patients can be augmented by either modifying numerically the contrasuppressor T cells or activating them with lymphokines. PMID:3133142

  1. Processing of whey modulates proliferative and immune functions in intestinal epithelial cells.

    PubMed

    Nguyen, Duc Ninh; Sangild, Per T; Li, Yanqi; Bering, Stine B; Chatterton, Dereck E W

    2016-02-01

    Whey protein concentrate (WPC) is often subjected to heat treatment during industrial processing, resulting in protein denaturation and loss of protein bioactivity. We hypothesized that WPC samples subjected to different degrees of thermal processing are associated with different levels of bioactive proteins and effects on proliferation and immune response in intestinal epithelial cells (IEC). The results showed that low-heat-treated WPC had elevated levels of lactoferrin and transforming growth factor-β2 compared with that of standard WPC. The level of aggregates depended on the source of whey, with the lowest level being found in WPC derived from acid whey. Following acid activation, WPC from acid whey enhanced IEC proliferation compared with WPC from sweet whey or nonactivated WPC. Low-heat-treated WPC from acid whey induced greater secretion of IL-8 in IEC than either standard WPC from acid whey or low-heat-treated WPC from sweet whey. Following acid activation (to activate growth factors), low-heat-treated WPC from sweet whey induced higher IL-8 levels in IEC compared with standard WPC from sweet whey. In conclusion, higher levels of bioactive proteins in low-heat-treated WPC, especially from acid whey, may enhance proliferation and cytokine responses of IEC. These considerations could be important to maintain optimal bioactivity of infant formulas, including their maturational and immunological effects on the developing intestine.

  2. Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function.

    PubMed

    Pan, Ping-Ying; Wang, George X; Yin, Bingjiao; Ozao, Junko; Ku, Teresa; Divino, Celia M; Chen, Shu-Hsia

    2008-01-01

    Tumor growth induced a significant increase of myeloid-derived suppressor cells (MDSCs) in the tumor-bearing host. In our previous study, we showed that MDSCs induced tumor-specific T-cell tolerance and the development of T regulatory cells (Tregs). Tumor-derived factors have been implicated in the accumulation of MDSCs. We hypothesize that reduction of MDSC accumulation in tumor-bearing hosts, through the blockade of tumor factors, can prevent T-cell anergy and Treg development and thereby improve immune therapy for the treatment of advanced tumors. Several tumor-derived factors were identified by gene array analysis. Among the candidate factors, stem- cell factor (SCF) is expressed by various human and murine carcinomas and was selected for further study. Mice bearing tumor cells with SCF siRNA knockdown exhibited significantly reduced MDSC expansion and restored proliferative responses of tumor-infiltrating T cells. More importantly, blockade of SCF receptor (ckit)-SCF interaction by anti-ckit prevented tumor-specific T-cell anergy, Treg development, and tumor angiogenesis. Furthermore, the prevention of MDSC accumulation in conjunction with immune activation therapy showed synergistic therapeutic effect when treating mice bearing large tumors. This information supports the notion that modulation of MDSC development may be required to achieve effective immune-enhancing therapy for the treatment of advanced tumors.

  3. Interferon Lambda: Modulating Immunity in Infectious Diseases

    PubMed Central

    Syedbasha, Mohammedyaseen; Egli, Adrian

    2017-01-01

    Interferon lambdas (IFN-λs; IFNL1-4) modulate immunity in the context of infections and autoimmune diseases, through a network of induced genes. IFN-λs act by binding to the heterodimeric IFN-λ receptor (IFNLR), activating a STAT phosphorylation-dependent signaling cascade. Thereby hundreds of IFN-stimulated genes are induced, which modulate various immune functions via complex forward and feedback loops. When compared to the well-characterized IFN-α signaling cascade, three important differences have been discovered. First, the IFNLR is not ubiquitously expressed: in particular, immune cells show significant variation in the expression levels of and susceptibilities to IFN-λs. Second, the binding affinities of individual IFN-λs to the IFNLR varies greatly and are generally lower compared to the binding affinities of IFN-α to its receptor. Finally, genetic variation in the form of a series of single-nucleotide polymorphisms (SNPs) linked to genes involved in the IFN-λ signaling cascade has been described and associated with the clinical course and treatment outcomes of hepatitis B and C virus infection. The clinical impact of IFN-λ signaling and the SNP variations may, however, reach far beyond viral hepatitis. Recent publications show important roles for IFN-λs in a broad range of viral infections such as human T-cell leukemia type-1 virus, rotaviruses, and influenza virus. IFN-λ also potentially modulates the course of bacterial colonization and infections as shown for Staphylococcus aureus and Mycobacterium tuberculosis. Although the immunological processes involved in controlling viral and bacterial infections are distinct, IFN-λs may interfere at various levels: as an innate immune cytokine with direct antiviral effects; or as a modulator of IFN-α-induced signaling via the suppressor of cytokine signaling 1 and the ubiquitin-specific peptidase 18 inhibitory feedback loops. In addition, the modulation of adaptive immune functions via macrophage and

  4. Novel Immune Modulating Cellular Vaccine for Prostate Cancer

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-13-1-0423 TITLE: Novel immune modulating cellular vaccine for prostate cancer PRINCIPAL INVESTIGATOR: Smita Nair...2014 2. REPORT TYPE Annual 3. DATES COVERED 30 Sept 2013 to 29 Sept 2014 4. TITLE AND SUBTITLE Novel immune modulating cellular vaccine for...that will safely enhance vaccine -mediated immunity. This lead cellular therapy, called DC-PAPvac-C, consists of dendritic cells (DCs) co-transfected

  5. Pericytes: brain-immune interface modulators

    PubMed Central

    Hurtado-Alvarado, Gabriela; Cabañas-Morales, Adrian M.; Gómez-Gónzalez, Beatriz

    2014-01-01

    The premise that the central nervous system is immune-privileged arose from the fact that direct contact between immune and nervous cells is hindered by the blood–brain barrier. However, the blood–brain barrier also comprises the interface between the immune and nervous systems by secreting chemo-attractant molecules and by modulating immune cell entry into the brain. The majority of published studies on the blood–brain barrier focus on endothelial cells (ECs), which are a critical component, but not the only one; other cellular components include astroglia, microglia, and pericytes. Pericytes are poorly studied in comparison with astrocytes or ECs; they are mesenchymal cells that can modify their ultrastructure and gene expression in response to changes in the central nervous system microenvironment. Pericytes have a unique synergistic relationship with brain ECs in the regulation of capillary permeability through secretion of cytokines, chemokines, nitric oxide, matrix metalloproteinases, and by means of capillary contraction. Those pericyte manifestations are related to changes in blood–brain barrier permeability by an increase in endocytosis-mediated transport and by tight junction disruption. In addition, recent reports demonstrate that pericytes control the migration of leukocytes in response to inflammatory mediators by up-regulating the expression of adhesion molecules and releasing chemo-attractants; however, under physiological conditions they appear to be immune-suppressors. Better understanding of the immune properties of pericytes and their participation in the effects of brain infections, neurodegenerative diseases, and sleep loss will be achieved by analyzing pericyte ultrastructure, capillary coverage, and protein expression. That knowledge may provide a mechanism by which pericytes participate in the maintenance of the proper function of the brain-immune interface. PMID:24454281

  6. Raloxifene and antiestrogenic gonadorelin inhibits intestinal tumorigenesis by modulating immune cells and decreasing stem-like cells.

    PubMed

    Janakiram, Naveena B; Mohammed, Altaf; Brewer, Misty; Bryant, Taylor; Biddick, Laura; Lightfoot, Stan; Pathuri, Gopal; Gali, Hariprasad; Rao, Chinthalapally V

    2014-03-01

    Studies suggest that estrogen plays a contributing role in colorectal cancer. This project examined the preventive effects of raloxifene, a selective estrogen receptor modulator (SERM), and gonadorelin, an antiestrogenic drug, in female Apc(Min/+) mouse intestinal tumorigenesis. Six-week-old Apc(Min/+)mice were fed diet containing 1 ppm raloxifene or control diet. Gonadorelin (150 ng/mouse) was injected subcutaneously into one treatment group. Intestinal tumors were evaluated for tumor multiplicity and size. Mice treated with raloxifene and gonadorelin showed colon tumor inhibition of 80% and 75%, respectively. Both drugs significantly inhibited small intestinal tumor multiplicity and size (75%-65%, P < 0.0001). Raloxifene and gonadorelin showed significant tumor inhibition with 98% and 94% inhibition of polyps >2 mm in size. In mice fed with raloxifene or injected with gonadorelin, tumors showed significantly reduced proliferating cell nuclear antigen expression (58%-65%, P < 0.0001). Raloxifene treatment decreased β-catenin, cyclin D1, laminin 1β, Ccl6, and stem-like cells (Lgr 5, EpCAM, CD44/CD24), as well as suppressed inflammatory genes (COX-2, mPGES-1, 5-LOX,). Gonadorelin showed significant decrease in COX-2, mPGES-1, iNOS, and stem-like cells or increased NK cells and chemokines required for NK cells. Both drugs were effective in suppressing tumor growth albeit with different mechanisms. These observations show that either suppression of estrogen levels or modulation of estrogen receptor dramatically suppresses small intestinal and colonic tumor formation in female Apc(Min/+) mice. These results support the concept of chemoprevention by these agents in reducing endogenous levels of estrogen or modulating ER signaling.

  7. Retinoic Acid and Its Role in Modulating Intestinal Innate Immunity

    PubMed Central

    Czarnewski, Paulo; Das, Srustidhar; Parigi, Sara M.; Villablanca, Eduardo J.

    2017-01-01

    Vitamin A (VA) is amongst the most well characterized food-derived nutrients with diverse immune modulatory roles. Deficiency in dietary VA has not only been associated with immune dysfunctions in the gut, but also with several systemic immune disorders. In particular, VA metabolite all-trans retinoic acid (atRA) has been shown to be crucial in inducing gut tropism in lymphocytes and modulating T helper differentiation. In addition to the widely recognized role in adaptive immunity, increasing evidence identifies atRA as an important modulator of innate immune cells, such as tolerogenic dendritic cells (DCs) and innate lymphoid cells (ILCs). Here, we focus on the role of retinoic acid in differentiation, trafficking and the functions of innate immune cells in health and inflammation associated disorders. Lastly, we discuss the potential involvement of atRA during the plausible crosstalk between DCs and ILCs. PMID:28098786

  8. Role of T cell TGF beta signaling in intestinal cytokine responses and helminthic immune modulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Colonization with helminthic parasites down-regulates inflammation in murine colitis and improves activity scores in human inflammatory bowel disease. Helminths induce mucosal regulatory T cells, which are important for intestinal immunologic homeostasis. Regulatory T cell function involves cytoki...

  9. [Prolactin as a modulator of antiparasitic immunity].

    PubMed

    Płociński, Przemysław; Dzitko, Katarzyna; Długońska, Henryka

    2007-01-01

    Prolactin (PRL) is a polypeptide hormone of the pituitary origin, that expresses over 300 separate biological activities, including its involvement in the regulation of immune functions. The hormone's immune capacities are related, among others, to comitogenic activity, prevention of immune cell apoptosis, stimulation of interleukins and antibodies production. Prolactin acts as a potent positive modulator of immunity to some protozoan parasites. It is well established that the hormone stimulates IFN-gamma and many other TH1-type cytokines production during Toxoplasma gondii, Leishmania sp. and Acanthamoeba castellanii infections. Recent studies suggest that human prolactin may be a regulator of antiparasitic activity against Plasmodium falciparum. On the other hand pregnancy-associated hyperprolactinemia may have a relevant contribution to reactivation of latent infections caused by many helminthic parasites, like Ancylostoma sp. or Necator sp. It is possibly connected with the process of transmammary transmission of hookworm infection to breast-fed newborns. Moreover, an increase in endogenous circulating prolactin during late pregnancy and lactation in ewes infected with Haemonchus contortus, promotes the phenomenon of periparturient egg rise. High prolactin levels have also been seen in dairy cattle suffering from other trichostrongylids infections. In this article we have discussed the role of prolactin as an important regulator of immunity to parasites.

  10. Peroxiredoxin 5 modulates immune response in Drosophila

    PubMed Central

    Radyuk, Svetlana N.; Michalak, Katarzyna; Klichko, Vladimir I.; Benes, Judith; Orr, William C.

    2010-01-01

    Background Peroxiredoxins are redox-sensing enzymes with multiple cellular functions. Previously, we reported on the potent antioxidant function of Drosophila peroxiredoxin 5 (dPrx5). Studies with mammalian and human cells suggest that peroxiredoxins can modulate immune-related signaling. Methods Survivorship studies and bacteriological analysis were used to determine resistance of flies to fungal and bacterial infections. RT-PCR and immunoblot analyses determined expression of dPrx5 and immunity factors in response to bacterial challenge. Double mutants for dprx5 gene and genes comprising the Imd/Relish and dTak1/Basket branches of the immune signaling pathways were used in epistatic analysis. Results The dprx5 mutant flies were more resistant to bacterial infection than controls, while flies overexpressing dPrx5 were more susceptible. The enhanced resistance to bacteria was accompanied by rapid induction of the Imd-dependent antimicrobial peptides, phosphorylation of the JNK kinase Basket and altered transcriptional profiling of the transient response genes, puckered, ets21C and relish, while the opposite effects were observed in flies over-expressing dPrx5. Epistatic analysis of double mutants, using attacin D and Puckered as read outs of activation of the Imd and JNK pathways, implicated dPrx5 function in the control of the dTak1-JNK arm of immune signaling. Conclusions Differential effects on fly survivorship suggested a trade-off between the antioxidant and immune functions of dPrx5. Molecular and epistatic analyses identified dPrx5 as a negative regulator in the dTak1-JNK arm of immune signaling. General significance Our findings suggest that peroxiredoxins play an important modulatory role in the Drosophila immune response. PMID:20600624

  11. Human Decidual Stromal Cells as a Component of the Implantation Niche and a Modulator of Maternal Immunity

    PubMed Central

    Vinketova, Kameliya; Mourdjeva, Milena

    2016-01-01

    The human decidua is a specialized tissue characterized by embryo-receptive properties. It is formed during the secretory phase of menstrual cycle from uterine mucosa termed endometrium. The decidua is composed of glands, immune cells, blood and lymph vessels, and decidual stromal cells (DSCs). In the process of decidualization, which is controlled by oestrogen and progesterone, DSCs acquire specific functions related to recognition, selection, and acceptance of the allogeneic embryo, as well as to development of maternal immune tolerance. In this review we discuss the relationship between the decidualization of DSCs and pathological obstetrical and gynaecological conditions. Moreover, the critical influence of DSCs on local immune cells populations as well as their relationship to the onset and maintenance of immune tolerance is described. PMID:27239344

  12. Adipocytes as immune regulatory cells

    PubMed Central

    Vielma, Silvana A.; Klein, Richard L.; Levingston, Corinne A.; Young, M. Rita I.

    2013-01-01

    Obesity is a chronic inflammatory state and adipocytes are capable of contributing to this inflammation by their production of inflammatory mediators. The present study used fibroblast-derived adipocytes and normal spleen cells as a model to determine if adipocytes can also serve as immune regulatory cells by modulating the functions of conventional immune cells. Media conditioned by the adipocytes stimulated release of the Th1-type cytokines IL-2, IFN-γ and GM-CSF from cultures of normal spleen cells. The adipocytes also stimulated spleen cell release of inhibitory cytokines, although to varying degrees. This included IL-10, IL-13 and, to a lesser extent, IL-4. Spleen cell production of the inflammatory cytokines IL-6, TNF-α and IL-9 was stimulated by adipocytes, although production of the Th17-derived cytokine, IL-17, was not stimulated. The adipocyte-conditioned medium did not stimulate production of predominantly monocytes-derived chemokines CXCL9, CCL2, CCL3, CCL4, but stimulated production of the predominantly T-cell-derived chemokine CCL5. In all cases where cytokine/chemokine production from spleen cells was stimulated by adipocytes, it was to a far greater level than was produced by the adipocytes themselves. Studies initiated to determine the identity of the adipocyte-derived mediators showed that the spleen cell modulation could not be attributed to solely adiponectin or leptin. Studies to determine the source of some of the cytokines whose production was stimulated by adipocytes showed that expression of the inflammatory cytokine IL-6 was not increased in either CD4+ or CD8+ T-cell. When the splenic T-cells were examined for IFN-γ, the adipocyte stimulation of IFN-γ was within CD8+ T-cells, not CD4+ T-cells. These studies show that adipocytes may be able to serve as immune regulatory cells to stimulate conventional immune cells to release a spectrum of immune mediators. PMID:23587489

  13. A platform to screen for C-type lectin receptor-binding carbohydrates and their potential for cell-specific targeting and immune modulation.

    PubMed

    Maglinao, Maha; Eriksson, Magdalena; Schlegel, Mark K; Zimmermann, Stephanie; Johannssen, Timo; Götze, Sebastian; Seeberger, Peter H; Lepenies, Bernd

    2014-02-10

    Myeloid C-type lectin receptors (CLRs) in innate immunity represent a superfamily of pattern recognition receptors that recognize carbohydrate structures on pathogens and self-antigens. The primary interaction of an antigen-presenting cell and a pathogen shapes the following immune response. Therefore, the identification of CLR ligands that can either enhance or modulate the immune response is of interest. We have developed a screening platform based on glycan arrays to identify immune modulatory carbohydrate ligands of CLRs. A comprehensive library of CLRs was expressed by fusing the extracellular part of each respective CLR, the part containing the carbohydrate-recognition domain (CRD), to the Fc fragment of human IgG1 molecules. CLR-Fc fusion proteins display the CRD in a dimeric form, are properly glycosylated, and can be detected by a secondary antibody with a conjugated fluorophore. Thus, they are valuable tools for high-throughput screening. We were able to identify novel carbohydrate binders of CLRs using the glycan array technology. These CLR-binding carbohydrates were then covalently attached to the model antigen ovalbumin. The ovalbumin neoglycoconjugates were used in a dendritic cell/T cell co-culture assay to stimulate transgenic T cells in vitro. In addition, mice were immunized with these conjugates to analyze the immune modulatory properties of the CLR ligands in vivo. The CLR ligands induced an increased Th1 cytokine production in vitro and modulated the humoral response in vivo. The platform described here allows for the identification of CLR ligands, as well as the evaluation of each ligand's cell-specific targeting and immune modulatory properties.

  14. Immunobiotic Lactobacillus rhamnosus strains differentially modulate antiviral immune response in porcine intestinal epithelial and antigen presenting cells

    PubMed Central

    2014-01-01

    Background Previous findings suggested that Lactobacillus rhamnosus CRL1505 is able to increase resistance of children to intestinal viral infections. However, the intestinal cells, cytokines and receptors involved in the immunoregulatory effect of this probiotic strain have not been fully characterized. Results We aimed to gain insight into the mechanisms involved in the immunomodulatory effect of the CRL1505 strain and therefore evaluated in vitro the crosstalk between L. rhamnosus CRL1505, porcine intestinal epithelial cells (IECs) and antigen presenting cells (APCs) from swine Peyer’s patches in order to deepen our knowledge about the mechanisms, through which this strain may help preventing viral diarrhoea episodes. L. rhamnosus CRL1505 was able to induce IFN–α and –β in IECs and improve the production of type I IFNs in response to poly(I:C) challenge independently of Toll-like receptor (TLR)-2 or TLR9 signalling. In addition, the CRL1505 strain induced mRNA expression of IL-6 and TNF-α via TLR2 in IECs. Furthermore, the strain significantly increased surface molecules expression and cytokine production in intestinal APCs. The improved Th1 response induced by L. rhamnosus CRL1505 was triggered by TLR2 signalling and included augmented expression of MHC-II and co-stimulatory molecules and expression of IL-1β, IL-6, and IFN-γ in APCs. IL-10 was also significantly up-regulated by CRL1505 in APCs. Conclusions It was recently reviewed the emergence of TLR agonists as new ways to transform antiviral treatments by introducing panviral therapeutics with less adverse effects than IFN therapies. The use of L. rhamnosus CRL1505 as modulator of innate immunity and inductor of antiviral type I IFNs, IFN-γ, and regulatory IL-10 clearly offers the potential to overcome this challenge. PMID:24886142

  15. The mitochondrial fission factor dynamin-related protein 1 modulates T-cell receptor signalling at the immune synapse

    PubMed Central

    Baixauli, Francesc; Martín-Cófreces, Noa B; Morlino, Giulia; Carrasco, Yolanda R; Calabia-Linares, Carmen; Veiga, Esteban; Serrador, Juan M; Sánchez-Madrid, Francisco

    2011-01-01

    During antigen-specific T-cell activation, mitochondria mobilize towards the vicinity of the immune synapse. We show here that the mitochondrial fission factor dynamin-related protein 1 (Drp1) docks at mitochondria, regulating their positioning and activity near the actin-rich ring of the peripheral supramolecular activation cluster (pSMAC) of the immune synapse. Mitochondrial redistribution in response to T-cell receptor engagement was abolished by Drp1 silencing, expression of the phosphomimetic mutant Drp1S637D and the Drp1-specific inhibitor mdivi-1. Moreover, Drp1 knockdown enhanced mitochondrial depolarization and T-cell receptor signal strength, but decreased myosin phosphorylation, ATP production and T-cell receptor assembly at the central supramolecular activation cluster (cSMAC). Our results indicate that Drp1-dependent mitochondrial positioning and activity controls T-cell activation by fuelling central supramolecular activation cluster assembly at the immune synapse. PMID:21326213

  16. The mitochondrial fission factor dynamin-related protein 1 modulates T-cell receptor signalling at the immune synapse.

    PubMed

    Baixauli, Francesc; Martín-Cófreces, Noa B; Morlino, Giulia; Carrasco, Yolanda R; Calabia-Linares, Carmen; Veiga, Esteban; Serrador, Juan M; Sánchez-Madrid, Francisco

    2011-04-06

    During antigen-specific T-cell activation, mitochondria mobilize towards the vicinity of the immune synapse. We show here that the mitochondrial fission factor dynamin-related protein 1 (Drp1) docks at mitochondria, regulating their positioning and activity near the actin-rich ring of the peripheral supramolecular activation cluster (pSMAC) of the immune synapse. Mitochondrial redistribution in response to T-cell receptor engagement was abolished by Drp1 silencing, expression of the phosphomimetic mutant Drp1S637D and the Drp1-specific inhibitor mdivi-1. Moreover, Drp1 knockdown enhanced mitochondrial depolarization and T-cell receptor signal strength, but decreased myosin phosphorylation, ATP production and T-cell receptor assembly at the central supramolecular activation cluster (cSMAC). Our results indicate that Drp1-dependent mitochondrial positioning and activity controls T-cell activation by fuelling central supramolecular activation cluster assembly at the immune synapse.

  17. A dual character of flavonoids in influenza A virus replication and spread through modulating cell-autonomous immunity by MAPK signaling pathways.

    PubMed

    Dong, Wenjuan; Wei, Xiuli; Zhang, Fayun; Hao, Junfeng; Huang, Feng; Zhang, Chunling; Liang, Wei

    2014-11-28

    Flavonoids are well known as a large class of polyphenolic compounds, which have a variety of physiological activities, including anti-influenza virus activity. The influenza A/WSN/33 infected A549 cells have been used to screen anti-influenza virus drugs from natural flavonoid compounds library. Unexpectedly, some flavonoid compounds significantly inhibited virus replication, while the others dramatically promoted virus replication. In this study, we attempted to understand these differences between flavonoid compounds in their antivirus mechanisms. Hesperidin and kaempferol were chosen as representatives of both sides, each of which exhibited the opposite effects on influenza virus replication. Our investigation revealed that the opposite effects produced by hesperidin and kaempferol on influenza virus were due to inducing the opposite cell-autonomous immune responses by selectively modulating MAP kinase pathways: hesperidin up-regulated P38 and JNK expression and activation, thus resulting in the enhanced cell-autonomous immunity; while kaempferol dramatically down-regulated p38 and JNK expression and activation, thereby suppressing cell-autonomous immunity. In addition, hesperidin restricted RNPs export from nucleus by down-regulating ERK activation, but kaempferol promoted RNPs export by up-regulating ERK activation. Our findings demonstrate that a new generation of anti-influenza virus drugs could be developed based on selective modulation of MAP kinase pathways to stimulate cell-autonomous immunity.

  18. [Cystatin C--modulator of immune processes].

    PubMed

    Wittek, Natalia; Majewska, Ewa

    2010-01-01

    Cystatin C is a lowmolecular protein (13 kDa) that inhibits the activity of lysosomal cysteine proteinases with the strongest activity against cathepsin B and H. The recent experiments show that the level of cystatin C is independented of chronic and acute inflammatory process which frequently coexist with end stage renal diseases. Recent studies challange the theory because a higher concentration of cystatin C in serum correlated well with a higher concentration of inflammatory markers such as a CRP and fibrinogen in the patients. In vitro experiments on cultured monocytes and macrophages discovered that after stimulation by LPS and INF the expression of the cystatin C gene and synthesis of this protein was reduced. Cystatin C plays important modulatory function in regulation of the natural immunity, protecting our body against viruses, bacteries and parasites. Moreover, cystatin C binds the C4 component and modulates activation of the classical complement pathway. The experiments also show that cystatin C could influence non-specific immune response through the inhibition of the superoxide anion generation (respiratory burst), phagocytosis, chemotaxis and apoptosis of neutrophils. Similarly, the cystatin C can modulate the specific immune response through the inhibition of cathepsin S, bindining membrane receptors for TGF-beta or increasing MHC class II expression on dendritic cells.

  19. Immune modulation of glycosaminoglycan derived from P. lewisi in TNF-α stimulated cells.

    PubMed

    Ahn, Mi-Young; Kim, Soon-Ja; Kim, NamJung; Hwang, Jae Sam; Yun, Eun Young

    2015-11-01

    Poecilocoris lewisi (Korean name: "Kwangdaenolinjae") is a red-striped gold stink bug (insect) which has been used as a crude drug in traditional medicine of East Asia and Korea. In this study, ethanol extract and glycosaminoglycan from P. lewisi (Pl GAG), as an active substance among its components, were investigated for their potential anti-inflammatory actions. They were found to be a potent inducer of nitric oxide (NO) production from calf pulmonary artery endothelial (CPAE) cells and a stimulator of endothelial nitric oxide synthase in a dose-dependent manner. The anti-inflammatory activities were also evaluated by determining the level of adhesion molecules related to atherogenesis and pro-inflammatory cytokines, such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), secretory phospholipase A2, and prostaglandin E2, stimulated by tumor necrosis factor (TNF)-α in human umbilical vein endothelial cells (HUVEC). They also showed inhibitory effects on vascular endothelial growth factor (VEGF) production in HUVECs. Matrix metalloproteinases (MMP-2 and 9) were also inhibited by treatment with this extract or glycosaminoglycan. Furthermore, this GAG showed cytotoxicity against CT-26 colon cancer cells whereas having no cytotoxicity in CHO normal cells. Monosaccharide (amino, acidic, neutral monosaccharides) composition of used GAG was characterized by trimethylsilylated GC-MS analysis method.

  20. Checkpoint modulation--A new way to direct the immune system against renal cell carcinoma.

    PubMed

    Bedke, Jens; Kruck, Stephan; Gakis, Georgios; Stenzl, Arnulf; Goebell, Peter J

    2015-01-01

    The introduction of targeted therapies like the tyrosine kinase (TKI) and mammalian target of rapamycin (mTOR) inhibitors has improved patients' survival in general. Nevertheless the prognosis remains limited. Therapies with a new mode of action are urgently warranted, especially those who would provoke long-term responders or long-lasting complete remissions as observed with unspecific immunotherapy with the cytokines interleukin-2 and interferon-α. In the recent years a deeper understanding of the underlying immunology of T cell activation led to the development of checkpoint inhibitors, which are mainly monocloncal antibodies and which enhances the presence of the co-stimulatory signals needed for T cell activation or priming. This review discusses the clinical data and ongoing studies available for the inhibition of the PD-1 (CD279) and CTLA-4 (CD152) axis in mRCC. In addition, potential future immunological targets are discussed. This approach of T-cell activation or re-activation by immunological checkpoint inhibition holds the inherent promise to directly affect the tumor cell and thereby to potentially cure a subset of patients with mRCC.

  1. Epstein-Barr Virus Encoded dUTPase Containing Exosomes Modulate Innate and Adaptive Immune Responses in Human Dendritic Cells and Peripheral Blood Mononuclear Cells

    PubMed Central

    Ariza, Maria Eugenia; Rivailler, Pierre; Glaser, Ronald; Chen, Min; Williams, Marshall V.

    2013-01-01

    We have recently demonstrated that Epstein-Barr virus (EBV)-encoded deoxyuridine triphosphate nucleotidohydrolase (dUTPase) modulates innate immunity in human primary monocyte-derived macrophages through toll-like receptor (TLR) 2 leading to NF-κB activation and the production of pro-inflammatory cytokines. Our previous depletion studies indicated that dendritic cells (DCs) may also be a target of the EBV-encoded dUTPase. However, the role of EBV-encoded dUTPase in DC activation/function and its potential contribution to the inflammatory cellular milieu characteristic of EBV-associated diseases remains poorly understood. In the present study, we demonstrate that EBV-encoded dUTPase significantly altered the expression of genes involved in oncogenesis, inflammation and viral defense mechanisms in human primary DCs by microarray analysis. Proteome array studies revealed that EBV-encoded dUTPase modulates DC immune responses by inducing the secretion of pro-inflammatory TH1/TH17 cytokines. More importantly, we demonstrate that EBV-encoded dUTPase is secreted in exosomes from chemically induced Raji cells at sufficient levels to induce NF-κB activation and cytokine secretion in primary DCs and peripheral blood mononuclear cells (PBMCs). Interestingly, the production of pro-inflammatory cytokines in DCs and PBMCs was TLR2-dependent. Together these findings suggest that the EBV-encoded dUTPase may act as an intercellular signaling molecule capable of modulating the cellular microenvironment and thus, it may be important in the pathophysiology of EBV related diseases. PMID:23894549

  2. Epstein-Barr virus encoded dUTPase containing exosomes modulate innate and adaptive immune responses in human dendritic cells and peripheral blood mononuclear cells.

    PubMed

    Ariza, Maria Eugenia; Rivailler, Pierre; Glaser, Ronald; Chen, Min; Williams, Marshall V

    2013-01-01

    We have recently demonstrated that Epstein-Barr virus (EBV)-encoded deoxyuridine triphosphate nucleotidohydrolase (dUTPase) modulates innate immunity in human primary monocyte-derived macrophages through toll-like receptor (TLR) 2 leading to NF-κB activation and the production of pro-inflammatory cytokines. Our previous depletion studies indicated that dendritic cells (DCs) may also be a target of the EBV-encoded dUTPase. However, the role of EBV-encoded dUTPase in DC activation/function and its potential contribution to the inflammatory cellular milieu characteristic of EBV-associated diseases remains poorly understood. In the present study, we demonstrate that EBV-encoded dUTPase significantly altered the expression of genes involved in oncogenesis, inflammation and viral defense mechanisms in human primary DCs by microarray analysis. Proteome array studies revealed that EBV-encoded dUTPase modulates DC immune responses by inducing the secretion of pro-inflammatory TH1/TH17 cytokines. More importantly, we demonstrate that EBV-encoded dUTPase is secreted in exosomes from chemically induced Raji cells at sufficient levels to induce NF-κB activation and cytokine secretion in primary DCs and peripheral blood mononuclear cells (PBMCs). Interestingly, the production of pro-inflammatory cytokines in DCs and PBMCs was TLR2-dependent. Together these findings suggest that the EBV-encoded dUTPase may act as an intercellular signaling molecule capable of modulating the cellular microenvironment and thus, it may be important in the pathophysiology of EBV related diseases.

  3. Human herpesviruses-encoded dUTPases: a family of proteins that modulate dendritic cell function and innate immunity

    PubMed Central

    Ariza, Maria Eugenia; Glaser, Ronald; Williams, Marshall V.

    2014-01-01

    We have previously shown that Epstein-Barr virus (EBV)-encoded dUTPase can modulate innate immune responses through the activation of TLR2 and NF-κB signaling. However, whether this novel immune function of the dUTPase is specific for EBV or a common property of the Herpesviridae family is not known. In this study, we demonstrate that the purified viral dUTPases encoded by herpes simplex virus type 2 (HSV-2), human herpesvirus-6A (HHV-6A), human herpesvirus-8 (HHV-8) and varicella-zoster virus (VZV) differentially activate NF-κB through ligation of TLR2/TLR1 heterodimers. Furthermore, activation of NF-κB by the viral dUTPases was inhibited by anti-TLR2 blocking antibodies (Abs) and the over-expression of dominant-negative constructs of TLR2, lacking the TIR domain, and MyD88 in human embryonic kidney 293 cells expressing TLR2/TLR1. In addition, treatment of human dendritic cells and PBMCs with the herpesviruses-encoded dUTPases from HSV-2, HHV-6A, HHV-8, and VZV resulted in the secretion of the inflammatory cytokines IL-1β, IL-6, IL-8, IL-12, TNF-α, IL-10, and IFN-γ. Interestingly, blocking experiments revealed that the anti-TLR2 Ab significantly reduced the secretion of cytokines by the various herpesviruses-encoded dUTPases (p < 0.05). To our knowledge, this is the first report demonstrating that a non-structural protein encoded by herpesviruses HHV-6A, HHV-8, VZV and to a lesser extent HSV-2 is a pathogen-associated molecular pattern. Our results reveal a novel function of the virus-encoded dUTPases, which may be important to the pathophysiology of diseases caused by these viruses. More importantly, this study demonstrates that the immunomodulatory functions of dUTPases are a common property of the Herpesviridae family and thus, the dUTPase could be a potential target for the development of novel therapeutic agents against infections caused by these herpesviruses. PMID:25309527

  4. Human herpesviruses-encoded dUTPases: a family of proteins that modulate dendritic cell function and innate immunity.

    PubMed

    Ariza, Maria Eugenia; Glaser, Ronald; Williams, Marshall V

    2014-01-01

    We have previously shown that Epstein-Barr virus (EBV)-encoded dUTPase can modulate innate immune responses through the activation of TLR2 and NF-κB signaling. However, whether this novel immune function of the dUTPase is specific for EBV or a common property of the Herpesviridae family is not known. In this study, we demonstrate that the purified viral dUTPases encoded by herpes simplex virus type 2 (HSV-2), human herpesvirus-6A (HHV-6A), human herpesvirus-8 (HHV-8) and varicella-zoster virus (VZV) differentially activate NF-κB through ligation of TLR2/TLR1 heterodimers. Furthermore, activation of NF-κB by the viral dUTPases was inhibited by anti-TLR2 blocking antibodies (Abs) and the over-expression of dominant-negative constructs of TLR2, lacking the TIR domain, and MyD88 in human embryonic kidney 293 cells expressing TLR2/TLR1. In addition, treatment of human dendritic cells and PBMCs with the herpesviruses-encoded dUTPases from HSV-2, HHV-6A, HHV-8, and VZV resulted in the secretion of the inflammatory cytokines IL-1β, IL-6, IL-8, IL-12, TNF-α, IL-10, and IFN-γ. Interestingly, blocking experiments revealed that the anti-TLR2 Ab significantly reduced the secretion of cytokines by the various herpesviruses-encoded dUTPases (p < 0.05). To our knowledge, this is the first report demonstrating that a non-structural protein encoded by herpesviruses HHV-6A, HHV-8, VZV and to a lesser extent HSV-2 is a pathogen-associated molecular pattern. Our results reveal a novel function of the virus-encoded dUTPases, which may be important to the pathophysiology of diseases caused by these viruses. More importantly, this study demonstrates that the immunomodulatory functions of dUTPases are a common property of the Herpesviridae family and thus, the dUTPase could be a potential target for the development of novel therapeutic agents against infections caused by these herpesviruses.

  5. Antithymocyte globulin combined with cyclosporine A down-regulates T helper 1 cells by modulating T cell immune response cDNA 7 in aplastic anemia.

    PubMed

    Zhu, Feng; Qiao, Jianlin; Zhong, Xiao-min; Wu, Qing-yun; Chen, Wei; Yao, Yao; Niu, Ming-shan; Fu, Chun-ling; Zeng, Ling-yu; Li, Zhen-yu; Xu, Kai-lin

    2015-07-01

    Antithymocyte globulin (ATG) combined with cyclosporine A (CsA) has been widely used as a standard regimen in the treatment of aplastic anemia (AA), especially in severe aplastic anemia (SAA). Abnormally activated T cells might be the immune pathogenesis of AA. T cell immune response cDNA 7 (TIRC7) has been demonstrated its essential role in T cell activation; however, little is known about the role of TIRC7 in AA. In this study, we documented that TIRC7 levels in CsA group were higher than that in ATG + CsA (AC) group only in the follow-up phase (P < 0.05; P < 0.05); nevertheless, TIRC7 levels in SAA group were elevated than non severe aplastic anemia group not only in the treatment phase (P < 0.05; P < 0.05) but also in the follow-up phase (P < 0.05; P < 0.01). The trend of changes of T helper (Th) 1, Th17 and Th22 levels before and after treatment was similar to the changes of TIRC7 levels in either AC group or CsA group. Thus, TIRC7 might be involved in the pathogenesis of AA and AC might down-regulate Th1 cells by modulating the expression of TIRC7 in AA.

  6. The Effects of Benzofuran-2-Carboxylic Acid Derivatives as Countermeasures in Immune Modulation and Cancer Cell Inhibition

    NASA Astrophysics Data System (ADS)

    Sundaresan, A.; Marriott, K.; Mao, J.; Bhuiyan, S.; Denkins, P.

    2015-06-01

    Microgravity and radiation exposure experienced during space flights result in immune system suppression. In long-term spaceflight, the crew is exposed to space radiation, microgravity, infectious agents from other crew members, and microbial contamination, all of which have a significant impact on the body's immune system and may contribute to the development of autoimmune diseases, allergic reactions, and/or cancer initiation. Many studies have revealed strong effects of microgravity on immune cell function, and microgravity is now considered as one of the major causes of immune dysfunction during space flight (Sundaresan, Int. J. Transp. Phenom. 12(1-2), 93-100, 2011; Martinelli et al., IEEE Eng. Biol. Med. 28(4), 85-90, 2009). We screened two newly synthetized derivatives of benzofuran 2-carboxylic acid, KMEG and KM12. The former KMEG was assessed for lymphoproliferative activities while the latter, KM12, was used in an array of cancer cell lines for testing its cancer inhibiting effects. For ground-based studies, synthetic benzofuran-2-carboxylic acid derivatives were assessed for biological effects in several scenarios, which involved exposure to modeled microgravity and radiation, as well as their immune enhancement and anti-cancer effects. Initial findings indicate that the benzofuran-2-carboxylic acid derivatives possibly have immune enhancing and anti-tumor properties in human lymphocytes and cancer cells exposed to analog spaceflight conditions modeled microgravity and γ-radiation).

  7. Immune modulation of resistance artery remodelling.

    PubMed

    Schiffrin, Ernesto L

    2012-01-01

    Low-grade inflammation plays a role in cardiovascular disease. The innate and the adaptive immune responses participate in mechanisms that contribute to inflammatory responses. It has been increasingly appreciated that different subsets of lymphocytes and the cytokines they produce modulate the vascular remodelling that occurs in cardiovascular disease. Effector T cells such as T-helper (Th) 1 (interferon-γ-producing) and Th2 lymphocytes (that produce interleukin-4), as well as Th17 (that produce interleukin-17), and T suppressor lymphocytes including regulatory T cells (Treg), which express the transcription factor forkhead box P3 (Foxp3), are involved in the remodelling of small arteries that occurs under the action of angiotensin II, deoxycorticosterone-salt and aldosterone-salt, as well as in models of hypertension such as the Dahl-salt-sensitive rat. The mechanism whereby the immune system is activated is unclear, but it has been suggested that neo-antigens may be generated by the elevation of blood pressure or other stimuli, leading to the activation of the immune response. Activated Th1 may contribute to vascular remodelling directly on blood vessels via effects of the cytokines produced or indirectly by actions on the kidney. The protective effect of Treg may be mediated similarly directly or via renal effects. These data offer promise for the discovery of new therapeutic targets to ameliorate vascular remodelling, which could lead to improved outcome in cardiovascular disease in humans.

  8. Analysing immune cell migration.

    PubMed

    Beltman, Joost B; Marée, Athanasius F M; de Boer, Rob J

    2009-11-01

    The visualization of the dynamic behaviour of and interactions between immune cells using time-lapse video microscopy has an important role in modern immunology. To draw robust conclusions, quantification of such cell migration is required. However, imaging experiments are associated with various artefacts that can affect the estimated positions of the immune cells under analysis, which form the basis of any subsequent analysis. Here, we describe potential artefacts that could affect the interpretation of data sets on immune cell migration. We propose how these errors can be recognized and corrected, and suggest ways to prevent the data analysis itself leading to biased results.

  9. Abrogation of donor T-cell IL-21 signaling leads to tissue-specific modulation of immunity and separation of GVHD from GVL

    PubMed Central

    Hanash, Alan M.; Kappel, Lucy W.; Yim, Nury L.; Nejat, Rebecca A.; Goldberg, Gabrielle L.; Smith, Odette M.; Rao, Uttam K.; Dykstra, Lindsay; Na, Il-Kang; Holland, Amanda M.; Dudakov, Jarrod A.; Liu, Chen; Murphy, George F.; Leonard, Warren J.; Heller, Glenn

    2011-01-01

    IL-21 is a proinflammatory cytokine produced by Th17 cells. Abrogation of IL-21 signaling has recently been shown to reduce GVHD while retaining graft-versus-leukemia/lymphoma (GVL) responses. However, the mechanisms by which IL-21 may lead to a separation of GVHD and GVL remain incompletely understood. In a murine MHC-mismatched BM transplantation model, we observed that IL-21 receptor knockout (IL-21R KO) donor T cells mediate decreased systemic and gastrointestinal GVHD in recipients of a transplant. This reduction in GVHD was associated with expansion of transplanted donor regulatory T cells and with tissue-specific modulation of Th-cell function. IL-21R KO and wild-type donor T cells showed equivalent alloactivation, but IL-21R KO T cells showed decreased infiltration and inflammatory cytokine production within the mesenteric lymph nodes. However, Th-cell cytokine production was maintained peripherally, and IL-21R KO T cells mediated equivalent immunity against A20 and P815 hematopoietic tumors. In summary, abrogation of IL-21 signaling in donor T cells leads to tissue-specific modulation of immunity, such that gastrointestinal GVHD is reduced, but peripheral T-cell function and GVL capacity are retained. IL-21 is thus an exciting target for therapeutic intervention and improvement of clinical transplantation outcomes. PMID:21596854

  10. Opioid System Modulates the Immune Function: A Review

    PubMed Central

    Liang, Xuan; Liu, Renyu; Chen, Chunhua; Ji, Fang; Li, Tianzuo

    2016-01-01

    Opioid receptors and their ligands produce powerful analgesia that is effective in perioperative period and chronic pain managements accompanied with various side effects including respiratory depression, constipation and addiction etc. Opioids can also interfere with the immune system, not only participating in the function of the immune cells, but also modulating innate and acquired immune responses. The traditional notion of opioids is immunosuppressive. Recent studies indicate that the role of opioid receptors on immune function is complicated, working through various different mechanisms. Different opioids or opioids administrations show various effects on the immune system: immunosuppressive, immunostimulatory, or dual effect. It is important to elucidate the relationship between opioids and immune function, since immune system plays critical role in various physiological and pathophysiological processes, including the inflammation, tumor growth and metastasis, drug abuse, and so on. This review article tends to have an overview of the recent work and perspectives on opioids and the immune function. PMID:26985446

  11. Opioid System Modulates the Immune Function: A Review.

    PubMed

    Liang, Xuan; Liu, Renyu; Chen, Chunhua; Ji, Fang; Li, Tianzuo

    Opioid receptors and their ligands produce powerful analgesia that is effective in perioperative period and chronic pain managements accompanied with various side effects including respiratory depression, constipation and addiction etc. Opioids can also interfere with the immune system, not only participating in the function of the immune cells, but also modulating innate and acquired immune responses. The traditional notion of opioids is immunosuppressive. Recent studies indicate that the role of opioid receptors on immune function is complicated, working through various different mechanisms. Different opioids or opioids administrations show various effects on the immune system: immunosuppressive, immunostimulatory, or dual effect. It is important to elucidate the relationship between opioids and immune function, since immune system plays critical role in various physiological and pathophysiological processes, including the inflammation, tumor growth and metastasis, drug abuse, and so on. This review article tends to have an overview of the recent work and perspectives on opioids and the immune function.

  12. Innate immune modulation in EBV infection

    PubMed Central

    2011-01-01

    Epstein-Barr Virus (EBV) belongs to the gammaherpesvirus family, members of which are oncogenic. Compared with other closely related herpesviruses, EBV has developed much more elaborate and sophisticated strategies for subverting host immune system, which may account for its high prevalence in immune competent hosts. Thus, study of EBV-specific immune dysregulation is important for understanding EBV latency and oncogenesis, and will identify potential molecular targets for immunotherapeutic interventions. Here I summarize the recent findings of individual EBV products in regulating host immune responses, with emphasis on the innate immune modulation. PMID:21429244

  13. Polysaccharide-Containing Macromolecules in a Kampo (Traditional Japanese Herbal) Medicine, Hochuekkito: Dual Active Ingredients for Modulation of Immune Functions on Intestinal Peyer's Patches and Epithelial cells

    PubMed Central

    Kiyohara, Hiroaki; Nonaka, Kazuki; Sekiya, Michiko; Matsumoto, Tsukasa; Nagai, Takayuki; Tabuchi, Yoshiaki; Yamada, Haruki

    2011-01-01

    A traditional Japanese herbal (Kampo) medicine, Hochuekkito (Bu-Zhong-Yi-Qi-Tang in Chinese, TJ-41) is a well-known Kampo formula, and has been found to enhance antigen-specific antibody response in not only local mucosal immune system in upper respiratory tract, but also systemic immune system through upper respiratory mucosal immune system. Although this immunopharmacological effect has been proposed to express by modulation of intestinal immune system including Peyer's patches and intestinal epithelial cells, active ingredients are not known. TJ-41 directly affected the production of bone marrow cell-proliferative growth factors from murine Peyer's patch immunocompetent cells in vitro. Among low molecular, intermediate size and macromolecular weight fractions prepared from TJ-41, only fraction containing macromolecular weight ingredients showed Peyer's patch-mediated bone marrow cell-proliferation enhancing activity. Anion-exchange chromatography and gel filtration gave 17 subfractions comprising polysaccharides and lignins from the macromolecular weight fraction of TJ-41, and some of the subfractions showed significant enhancing activities having different degrees. Some of the subfractions also expressed stimulating activity on G-CSF-production from colonic epithelial cells, and statistically significant positive correlation was observed among enhancing activities of the subfractions against Peyer's patch immunocompetent cells and epithelial cells. Among the fractions from TJ-41 oral administration of macromolecular weight ingredient fraction to mice succeeded to enhance antigen-specific antibody response in systemic immune system through upper respiratory mucosal immune system, but all the separated fractions failed to enhance the in vivo antibody response in upper respiratory tract. PMID:19965961

  14. Polysaccharide-Containing Macromolecules in a Kampo (Traditional Japanese Herbal) Medicine, Hochuekkito: Dual Active Ingredients for Modulation of Immune Functions on Intestinal Peyer's Patches and Epithelial cells.

    PubMed

    Kiyohara, Hiroaki; Nonaka, Kazuki; Sekiya, Michiko; Matsumoto, Tsukasa; Nagai, Takayuki; Tabuchi, Yoshiaki; Yamada, Haruki

    2011-01-01

    A traditional Japanese herbal (Kampo) medicine, Hochuekkito (Bu-Zhong-Yi-Qi-Tang in Chinese, TJ-41) is a well-known Kampo formula, and has been found to enhance antigen-specific antibody response in not only local mucosal immune system in upper respiratory tract, but also systemic immune system through upper respiratory mucosal immune system. Although this immunopharmacological effect has been proposed to express by modulation of intestinal immune system including Peyer's patches and intestinal epithelial cells, active ingredients are not known. TJ-41 directly affected the production of bone marrow cell-proliferative growth factors from murine Peyer's patch immunocompetent cells in vitro. Among low molecular, intermediate size and macromolecular weight fractions prepared from TJ-41, only fraction containing macromolecular weight ingredients showed Peyer's patch-mediated bone marrow cell-proliferation enhancing activity. Anion-exchange chromatography and gel filtration gave 17 subfractions comprising polysaccharides and lignins from the macromolecular weight fraction of TJ-41, and some of the subfractions showed significant enhancing activities having different degrees. Some of the subfractions also expressed stimulating activity on G-CSF-production from colonic epithelial cells, and statistically significant positive correlation was observed among enhancing activities of the subfractions against Peyer's patch immunocompetent cells and epithelial cells. Among the fractions from TJ-41 oral administration of macromolecular weight ingredient fraction to mice succeeded to enhance antigen-specific antibody response in systemic immune system through upper respiratory mucosal immune system, but all the separated fractions failed to enhance the in vivo antibody response in upper respiratory tract.

  15. Promoting tissue regeneration by modulating the immune system.

    PubMed

    Julier, Ziad; Park, Anthony J; Briquez, Priscilla S; Martino, Mikaël M

    2017-01-22

    The immune system plays a central role in tissue repair and regeneration. Indeed, the immune response to tissue injury is crucial in determining the speed and the outcome of the healing process, including the extent of scarring and the restoration of organ function. Therefore, controlling immune components via biomaterials and drug delivery systems is becoming an attractive approach in regenerative medicine, since therapies based on stem cells and growth factors have not yet proven to be broadly effective in the clinic. To integrate the immune system into regenerative strategies, one of the first challenges is to understand the precise functions of the different immune components during the tissue healing process. While remarkable progress has been made, the immune mechanisms involved are still elusive, and there is indication for both negative and positive roles depending on the tissue type or organ and life stage. It is well recognized that the innate immune response comprising danger signals, neutrophils and macrophages modulates tissue healing. In addition, it is becoming evident that the adaptive immune response, in particular T cell subset activities, plays a critical role. In this review, we first present an overview of the basic immune mechanisms involved in tissue repair and regeneration. Then, we highlight various approaches based on biomaterials and drug delivery systems that aim at modulating these mechanisms to limit fibrosis and promote regeneration. We propose that the next generation of regenerative therapies may evolve from typical biomaterial-, stem cell-, or growth factor-centric approaches to an immune-centric approach.

  16. Virus-like nanoparticle and DNA vaccination confers protection against respiratory syncytial virus by modulating innate and adaptive immune cells

    PubMed Central

    Ko, Eun-Ju; Kwon, Young-Man; Lee, Jong Seok; Hwang, Hye Suk; Yoo, Si-Eun; Lee, Yu-Na; Lee, Young-Tae; Kim, Min-Chul; Cho, Min Kyoung; Lee, You Ri; Quan, Fu-Shi; Song, Jae-Min; Lee, Sujin; Moore, Martin L.; Kang, Sang-Moo

    2014-01-01

    Respiratory syncytial virus (RSV) is an important human pathogen. Expression of virus structural proteins produces self-assembled virus-like nanoparticles (VLP). We investigated immune phenotypes after RSV challenge of immunized mice with VLP containing RSV F and G glycoproteins mixed with F-DNA (FdFG VLP). In contrast to formalin-inactivated RSV (FIRSV) causing vaccination-associated eosinophilia, FdFG VLP immunization induced low bronchoalveolar cellularity, higher ratios of CD11c+ versus CD11b+ phenotypic cells and CD8+ T versus CD4+ T cells secreting interferon (IFN)-γ, T helper type-1 immune responses, and no sign of eosinophilia upon RSV challenge. Furthermore, RSV neutralizing activity, lung viral clearance, and histology results suggest that FdFG VLP can be comparable to live RSV in conferring protection against RSV and in preventing RSV disease. This study provides evidence that a combination of recombinant RSV VLP and plasmid DNA may have a potential anti-RSV prophylactic vaccine inducing balanced innate and adaptive immune responses. PMID:25109662

  17. Multistrain probiotic modulation of intestinal epithelial cells' immune response to a double-stranded RNA ligand, poly(i·c).

    PubMed

    Macpherson, Chad; Audy, Julie; Mathieu, Olivier; Tompkins, Thomas A

    2014-03-01

    A commercially available product containing three probiotic bacterial strains (Lactobacillus helveticus R0052, Bifidobacterium longum subsp. infantis R0033, and Bifidobacterium bifidum R0071) was previously shown in animal trials to modulate both TH1 and TH2 immune responses. Clinical studies on this combination of bacteria have also shown positive health effects against seasonal winter diseases and rotavirus infection. The goal of this study was to use a well-established in vitro intestinal epithelial (HT-29) cell model that has been shown to constitutively express double-stranded RNA (dsRNA) sensors (Toll-like receptor 3 [TLR3], retinoic acid-inducible gene I, melanoma differentiation-associated gene 5, and dsRNA-activated protein kinase). By using the HT-29 cell model, we wanted to evaluate whether or not this combination of three bacteria had the capacity to immune modulate the host cell response to a dsRNA ligand, poly(I·C). Using a custom-designed, two-color expression microarray targeting genes of the human immune system, we investigated the response of HT-29 cells challenged with poly(I·C) both in the presence and in the absence of the three probiotic bacteria. We observed that the combination of the three bacteria had a major impact on attenuating the expression of genes connected to proinflammatory TH1 and antiviral innate immune responses compared to that obtained by the poly(I·C)-only challenge. Major pathways through which the multistrain combination may be eliciting its immune-modulatory effect include the TLR3 domain-containing adapter-inducing beta interferon (TRIF), mitogen-activated protein kinase, and NF-κB signaling pathways. Such a model may be useful for selecting potential biomarkers for the design of future clinical trials.

  18. Metabotropic glutamate receptor 5 modulates calcium oscillation and innate immune response induced by lipopolysaccharide in microglial cell.

    PubMed

    Liu, F; Zhou, R; Yan, H; Yin, H; Wu, X; Tan, Y; Li, L

    2014-12-05

    Microglia, the primary immune cells in the brain, have been implicated as the predominant cells governing inflammation-mediated neuronal damage. In response to immunological challenges such as lipopolysaccharide (LPS), microglia are activated and subsequently inflammatory process is initiated as evidenced by the release of pro-inflammatory chemokines and cytokines. Here we show that Group I metabotropic glutamate receptor 5 (mGluR5) is involved in LPS-induced microglia activation. LPS triggered a similar pattern of [Ca2+]i oscillation in N9, Toll-like receptor 4 (TLR4)-mutant EOC 20, TLR4-wild-type and TLR4-deficient primary mouse microglia, suggesting that LPS-induced [Ca2+]i oscillation is independent of TLR4. The characteristics of [Ca2+]i oscillation induced by LPS are consistent with those observed in mGluR5 activation. In addition, mGluR5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) abolished LPS-induced [Ca2+]i oscillation. Immunocytochemistry demonstrated that LPS colocalizes with mGluR5 in microglia and the direct binding of LPS and mGluR5 was further validated by antibody-based fluorescence resonance energy transfer (FRET) technology. Activation of mGluR5 using a selective agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) significantly expanded LPS-induced nuclear factor-kappa B (NF-κB) activity and CHPG alone increased NF-κB activity as well. But, mGluR5 antagonist MTEP attenuated the actions of LPS, CHPG and the additive effect of LPS and CHPG in microglia. LPS induced tumor necrosis factor-α (TNF-α) secretion in N9 microglia, but not in TLR4-mutant EOC 20 and TLR4-deficient primary mouse microglia. CHPG reduced LPS-caused TNF-α production, but MTEP increased LPS-induced TNF-α production and blocked the effect of CHPG in N9 microglia. These data demonstrate that mGluR5 and TLR4 are two critical receptors that mediate microglia activation in response to LPS, suggesting that mGluR5 may represent a novel target for modulating

  19. Gene Expression Profiling in Peripheral Blood Mononuclear Cells of Patients with Common Variable Immunodeficiency: Modulation of Adaptive Immune Response following Intravenous Immunoglobulin Therapy

    PubMed Central

    Barbieri, Alessandro; Tinazzi, Elisa; Rizzi, Monica; Beri, Ruggero; Argentino, Giuseppe; Ottria, Andrea; Lunardi, Claudio; Puccetti, Antonio

    2014-01-01

    Background Regular intravenous immunoglobulin treatment is used to replace antibody deficiency in primary immunodeficiency diseases; however the therapeutic effect seems to be related not only to antibody replacement but also to an active role in the modulation of the immune response. Common variable immunodeficiency is the most frequent primary immunodeficiency seen in clinical practice. Methods We have studied the effect of intravenous immunoglobulin replacement in patients with common variable immunodeficiency by evaluating the gene-expression profiles from Affimetrix HG-U133A. Some of the gene array results were validated by real time RT-PCR and by the measurement of circulating cytokines and chemokines by ELISA. Moreover we performed FACS analysis of blood mononuclear cells from the patients enrolled in the study. Results A series of genes involved in innate and acquired immune responses were markedly up- or down-modulated before therapy. Such genes included CD14, CD36, LEPR, IRF-5, RGS-1, CD38, TNFRSF25, IL-4, CXCR4, CCR3, IL-8. Most of these modulated genes showed an expression similar to that of normal controls after immunoglobulin replacement. Real time RT-PCR of selected genes and serum levels of IL-4, CXCR4 before and after therapy changed accordingly to gene array results. Interestingly, serum levels of IL-8 remained unchanged, as the corresponding gene, before and after treatment. FACS analysis showed a marked decrease of CD8+T cells and an increase of CD4+T cells following treatment. Moreover we observed a marked increase of CD23−CD27−IgM−IgG− B cells (centrocytes). Conclusions Our results are in accordance with previous reports and provide further support to the hypothesis that the benefits of intravenous immunoglobulin therapy are not only related to antibody replacement but also to its ability to modulate the immune response in common variable immunodeficiency. PMID:24831519

  20. Dysregulated Expression of Glycolipids in Tumor Cells: From Negative Modulator of Anti-tumor Immunity to Promising Targets for Developing Therapeutic Agents

    PubMed Central

    Daniotti, Jose Luis; Lardone, Ricardo D.; Vilcaes, Aldo A.

    2016-01-01

    Glycolipids are complex molecules consisting of a ceramide lipid moiety linked to a glycan chain of variable length and structure. Among these are found the gangliosides, which are sialylated glycolipids ubiquitously distributed on the outer layer of vertebrate plasma membranes. Changes in the expression of certain species of gangliosides have been described to occur during cell proliferation, differentiation, and ontogenesis. However, the aberrant and elevated expression of gangliosides has been also observed in different types of cancer cells, thereby promoting tumor survival. Moreover, gangliosides are actively released from the membrane of tumor cells, having a strong impact on impairing anti-tumor immunity. Beyond the undesirable effects of gangliosides in cancer cells, a substantial number of cancer immunotherapies have been developed in recent years that have used gangliosides as the main target. This has resulted in successful immune cell- or antibody-responses against glycolipids, with promising results having been obtained in clinical trials. In this review, we provide a general overview on the metabolism of glycolipids, both in normal and tumor cells, as well as examining glycolipid-mediated immune modulation and the main successes achieved in immunotherapies using gangliosides as molecular targets. PMID:26779443

  1. Interactions of immune cells and lymphatic vessels.

    PubMed

    Kataru, Raghu P; Lee, Yulia G; Koh, Gou Young

    2014-01-01

    In addition to fluid and lipid absorption, immune cell trafficking has now become recognized as one of the major functions of the lymphatic system. Recently, several critical roles of the lymphatic vessels (LVs) in modulating immune reactions during both physiological and pathological conditions have been emerging. As LVs serve as conduits for immune cells, they come to closely interact with macrophages/monocytes, dendritic cells, and T and B lymphocytes. Accumulating evidences indicate that reciprocal interactions between the LVs and immune cells exist which cause considerable influence over the process of immune cell migration, LV growth, and ultimately certain immune reactions. This chapter discusses on the interactions of macrophages/monocytes and dendritic cells with peripheral LVs and on those of sinusoidal macrophages and T and B lymphocytes with lymph node LVs.

  2. Dendritic cells modulate lung response to Pseudomonas aeruginosa in a murine model of sepsis-induced immune dysfunction.

    PubMed

    Pène, Frédéric; Zuber, Benjamin; Courtine, Emilie; Rousseau, Christophe; Ouaaz, Fatah; Toubiana, Julie; Tazi, Asmaa; Mira, Jean-Paul; Chiche, Jean-Daniel

    2008-12-15

    Host infection by pathogens triggers an innate immune response leading to a systemic inflammatory response, often followed by an immune dysfunction which can favor the emergence of secondary infections. Dendritic cells (DCs) link innate and adaptive immunity and may be centrally involved in the regulation of sepsis-induced immune dysfunction. We assessed the contribution of DCs to lung defense in a murine model of sublethal polymicrobial sepsis (cecal ligature and puncture, CLP). In this model, bone marrow-derived DCs (BMDCs) retained an immature phenotype, associated with decreased capacity of IL-12p70 release and impaired priming of T cell lymphocytes. Eight days after CLP surgery, we induced a secondary pulmonary infection through intratracheal instillation of 5 x 10(6) CFUs of Pseudomonas aeruginosa. Whereas all sham-operated mice survived, 80% of post-CLP mice died after secondary pneumonia. Post-CLP mice exhibited marked lung damage with early recruitment of neutrophils, cytokine imbalance with decreased IL-12p70 production, and increased IL-10 release, but no defective bacterial lung clearance, while systemic bacterial dissemination was almost constant. Concomitant intrapulmonary administration of exogenous BMDCs into post-CLP mice challenged with P. aeruginosa dramatically improved survival. BMDCs did not improve bacterial lung clearance, but delayed neutrophil recruitment, strongly attenuated the early peak of TNF-alpha and restored an adequate Il-12p70/IL-10 balance in post-CLP mice. Thus, adoptive transfer of BMDCs reversed sepsis-induced immune dysfunction in a relevant model of secondary P. aeruginosa pneumonia. Unexpectedly, the mechanism of action of BMDCs did not involve enhanced antibacterial activity, but occurred by dampening the pulmonary inflammatory response.

  3. Immune cell trafficking from the brain maintains CNS immune tolerance.

    PubMed

    Mohammad, Mohammad G; Tsai, Vicky W W; Ruitenberg, Marc J; Hassanpour, Masoud; Li, Hui; Hart, Prue H; Breit, Samuel N; Sawchenko, Paul E; Brown, David A

    2014-03-01

    In the CNS, no pathway dedicated to immune surveillance has been characterized for preventing the anti-CNS immune responses that develop in autoimmune neuroinflammatory disease. Here, we identified a pathway for immune cells to traffic from the brain that is associated with the rostral migratory stream (RMS), which is a forebrain source of newly generated neurons. Evaluation of fluorescently labeled leukocyte migration in mice revealed that DCs travel via the RMS from the CNS to the cervical LNs (CxLNs), where they present antigen to T cells. Pharmacologic interruption of immune cell traffic with the mononuclear cell-sequestering drug fingolimod influenced anti-CNS T cell responses in the CxLNs and modulated experimental autoimmune encephalomyelitis (EAE) severity in a mouse model of multiple sclerosis (MS). Fingolimod treatment also induced EAE in a disease-resistant transgenic mouse strain by altering DC-mediated Treg functions in CxLNs and disrupting CNS immune tolerance. These data describe an immune cell pathway that originates in the CNS and is capable of dampening anti-CNS immune responses in the periphery. Furthermore, these data provide insight into how fingolimod treatment might exacerbate CNS neuroinflammation in some cases and suggest that focal therapeutic interventions, outside the CNS have the potential to selectively modify anti-CNS immunity.

  4. Apoplastic Venom Allergen-like Proteins of Cyst Nematodes Modulate the Activation of Basal Plant Innate Immunity by Cell Surface Receptors

    PubMed Central

    Lozano-Torres, Jose L.; Wilbers, Ruud H. P.; Warmerdam, Sonja; Finkers-Tomczak, Anna; Diaz-Granados, Amalia; van Schaik, Casper C.; Helder, Johannes; Bakker, Jaap; Goverse, Aska; Schots, Arjen; Smant, Geert

    2014-01-01

    Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors. Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis. By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by migratory nematodes. We, therefore, conclude that parasitic nematodes most likely utilize

  5. The immune response and its therapeutic modulation in bronchiectasis.

    PubMed

    Daheshia, Massoud; Prahl, James D; Carmichael, Jacob J; Parrish, John S; Seda, Gilbert

    2012-01-01

    Bronchiectasis (BC) is a chronic pulmonary disease with tremendous morbidity and significant mortality. As pathogen infection has been advocated as a triggering insult in the development of BC, a central role for the immune response in this process seems obvious. Inflammatory cells are present in both the airways as well as the lung parenchyma, and multiple mediators of immune cells including proteases and cytokines or their humoral products are increased locally or in the periphery. Interestingly, a defect in the immune system or suppression of immune response during conditions such as immunodeficiency may well predispose one to the devastating effects of BC. Thus, the outcome of an active immune response as detrimental or protective in the pathogenesis of BC may be dependent on the state of the patient's immunity, the severity of infection, and the magnitude of immune response. Here we reassess the function of the innate and acquired immunity in BC, the major sites of immune response, and the nature of the bioactive mediators. Furthermore, the potential link(s) between an ongoing immune response and structural alterations accompanying the disease and the success of therapies that can modulate the nature and extent of immune response in BC are elaborated upon.

  6. Modulation of body composition and immune cell functions by conjugated linoleic acid in humans and animal models: benefits vs. risks.

    PubMed

    Kelley, D S; Erickson, K L

    2003-04-01

    We have reviewed the published literature regarding the effects of CLA on body composition and immune cell functions in humans and in animal models. Results from studies in mice, hamsters, rats, and pigs generally support the notion that CLA reduced depot fat in the normal or lean strains. However, in obese rats, it increased body fat or decreased it less than in the corresponding lean controls. These studies also indicate that t10,c12-CLA was the isomer that reduced adipose fat; however, it also increased the fat content of several other tissues and increased circulating insulin and the saturated FA content of adipose tissue and muscle. Four of the eight published human studies found small but significant reductions in body fat with CLA supplementation; however, the reductions were smaller than the prediction errors for the methods used. The other four human studies found no change in body fat with CLA supplementation. These studies also report that CLA supplementation increased the risk factors for diabetes and cardiovascular disease including increased blood glucose, insulin, insulin resistance, VLDL, C-reactive protein, lipid peroxidation, and decreased HDL. Most studies regarding the effects of CLA on immune cell functions have been conducted with a mixture of isomers, and the results have been variable. One study conducted in mice with the purified c9,t11-CLA and t10,c12-CLA isomers indicated that the two isomers have similar effects on immune cell functions. Some of the reasons for the discrepancies between the effects of CLA in published reports are discussed. Although significant benefit to humans from CLA supplementation is questionable, it may create several health risks in both humans and animals. On the basis of the published data, CLA supplementation of adult human diets to improve body composition or enhance immune functions cannot be recommended at this time.

  7. The profile of immune modulation by cannabidiol (CBD) involves deregulation of nuclear factor of activated T cells (NFAT).

    PubMed

    Kaplan, Barbara L F; Springs, Alison E B; Kaminski, Norbert E

    2008-09-15

    Cannabidiol (CBD) is a cannabinoid compound derived from Cannabis Sativa that does not possess high affinity for either the CB1 or CB2 cannabinoid receptors. Similar to other cannabinoids, we demonstrated previously that CBD suppressed interleukin-2 (IL-2) production from phorbol ester plus calcium ionophore (PMA/Io)-activated murine splenocytes. Thus, the focus of the present studies was to further characterize the effect of CBD on immune function. CBD also suppressed IL-2 and interferon-gamma (IFN-gamma) mRNA expression, proliferation, and cell surface expression of the IL-2 receptor alpha chain, CD25. While all of these observations support the fact that CBD suppresses T cell function, we now demonstrate that CBD suppressed IL-2 and IFN-gamma production in purified splenic T cells. CBD also suppressed activator protein-1 (AP-1) and nuclear factor of activated T cells (NFAT) transcriptional activity, which are critical regulators of IL-2 and IFN-gamma. Furthermore, CBD suppressed the T cell-dependent anti-sheep red blood cell immunoglobulin M antibody forming cell (anti-sRBC IgM AFC) response. Finally, using splenocytes derived from CB1(-/-)/CB2(-/-) mice, it was determined that suppression of IL-2 and IFN-gamma and suppression of the in vitro anti-sRBC IgM AFC response occurred independently of both CB1 and CB2. However, the magnitude of the immune response to sRBC was significantly depressed in CB1(-/-)/CB2(-/-) mice. Taken together, these data suggest that CBD suppresses T cell function and that CB1 and/or CB2 play a critical role in the magnitude of the in vitro anti-sRBC IgM AFC response.

  8. Oesophagostomum dentatum Extract Modulates T Cell-Dependent Immune Responses to Bystander Antigens and Prevents the Development of Allergy in Mice

    PubMed Central

    Schabussova, Irma; Ul-Haq, Onisa; Hoflehner, Elisabeth; Akgün, Johnnie; Wagner, Angelika; Loupal, Gerhard; Joachim, Anja; Ruttkowski, Bärbel; Maizels, Rick M.; Wiedermann, Ursula

    2013-01-01

    One third of the human population is currently infected by one or more species of parasitic helminths. Certain helminths establish long-term chronic infections resulting in a modulation of the host’s immune system with attenuated responsiveness to “bystander” antigens such as allergens or vaccines. In this study we investigated whether parasite-derived products suppress the development of allergic inflammation in a mouse model. We show that extract derived from adult male Oesophagostomum dentatum (eMOD) induced Th2 and regulatory responses in BALB/c mice. Stimulation of bone marrow-derived dendritic cells induced production of regulatory cytokines IL-10 and TGF-beta. In a mouse model of birch pollen allergy, co-administration of eMOD with sensitizing allergen Bet v 1 markedly reduced the production of allergen-specific antibodies in serum as well as IgE-dependent basophil degranulation. Furthermore, eMOD prevented the development of airway inflammation, as demonstrated by attenuation of bronchoalveolar lavages eosinophil influx, peribronchial inflammatory infiltrate, and mucus secretion in lungs and IL-4 and IL-5 levels in lung cell cultures. Reduced secretion of Th2-related cytokines by birch pollen-re-stimulated splenocytes and mesenteric lymph node cells was observed in eMOD-treated/sensitized and challenged mice in comparison to sensitized and challenged controls. The suppressive effects of eMOD were heat-stable. Immunization with model antigens in the presence of eMOD reduced production of antibodies to thymus-dependent but not to thymus-independent antigen, suggesting that suppression of the immune responses by eMOD was mediated by interference with antigen presenting cell or T helper cell function but did not directly suppress B cell function. In conclusion, we have shown that eMOD possesses immunomodulatory properties and that heat-stable factors in eMOD are responsible for the dramatic suppression of allergic responses in a mouse model of type I

  9. Role of Hcp, a type 6 secretion system effector, of Aeromonas hydrophila in modulating activation of host immune cells.

    PubMed

    Suarez, Giovanni; Sierra, Johanna C; Kirtley, Michelle L; Chopra, Ashok K

    2010-12-01

    Recently, we reported that the type 6 secretion system (T6SS) of Aeromonas hydrophila SSU plays an important role in bacterial virulence in a mouse model, and immunization of animals with the T6SS effector haemolysin co-regulated protein (Hcp) protected them against lethal infections with wild-type bacteria. Additionally, we showed that the mutant bacteria deleted for the vasH gene within the T6SS gene cluster did not express the hcp gene, while the vasK mutant could express and translocate Hcp, but was unable to secrete it into the extracellular milieu. Both of these A. hydrophila SSU mutants were readily phagocytosed by murine macrophages, pointing to the possible role of the secreted form of Hcp in the evasion of the host innate immunity. By using the ΔvasH mutant of A. hydrophila, our in vitro data showed that the addition of exogenous recombinant Hcp (rHcp) reduced bacterial uptake by macrophages. These results were substantiated by increased bacterial virulence when rHcp was added along with the ΔvasH mutant in a septicaemic mouse model of infection. Analysis of the cytokine profiling in the intraperitoneal lavage as well as activation of host cells after 4 h of infection with the ΔvasH mutant supplemented with rHcp indicated that this T6SS effector inhibited production of pro-inflammatory cytokines and induced immunosuppressive cytokines, such as interleukin-10 and transforming growth factor-β, which could circumvent macrophage activation and maturation. This mechanism of innate immune evasion by Hcp possibly inhibited the recruitment of cellular immune components, which allowed bacterial multiplication and dissemination in animals, thereby leading to their mortality.

  10. Immune Modulation in Primary Vaccinia virus Zoonotic Human Infections

    PubMed Central

    Gomes, Juliana Assis Silva; de Araújo, Fernanda Fortes; Trindade, Giliane de Souza; Quinan, Bárbara Resende; Drumond, Betânia Paiva; Ferreira, Jaqueline Maria Siqueira; Mota, Bruno Eduardo Fernandes; Nogueira, Maurício Lacerda; Kroon, Erna Geessien; Abrahão, Jônatas Santos; Côrrea-Oliveira, Rodrigo; da Fonseca, Flávio Guimarães

    2012-01-01

    In 2010, the WHO celebrated the 30th anniversary of the smallpox eradication. Ironically, infections caused by viruses related to smallpox are being increasingly reported worldwide, including Monkeypox, Cowpox, and Vaccinia virus (VACV). Little is known about the human immunological responses elicited during acute infections caused by orthopoxviruses. We have followed VACV zoonotic outbreaks taking place in Brazil and analyzed cellular immune responses in patients acutely infected by VACV. Results indicated that these patients show a biased immune modulation when compared to noninfected controls. Amounts of B cells are low and less activated in infected patients. Although present, T CD4+ cells are also less activated when compared to noninfected individuals, and so are monocytes/macrophages. Similar results were obtained when Balb/C mice were experimentally infected with a VACV sample isolated during the zoonotic outbreaks. Taking together, the data suggest that zoonotic VACVs modulate specific immune cell compartments during an acute infection in humans. PMID:22229039

  11. IL-10-Producing CD1dhiCD5+ Regulatory B Cells May Play a Critical Role in Modulating Immune Homeostasis in Silicosis Patients

    PubMed Central

    Chen, Ying; Li, Chao; Lu, Yiping; Zhuang, Huiying; Gu, Weijia; Liu, Bo; Liu, Fangwei; Sun, Jinkai; Yan, Bo; Weng, Dong; Chen, Jie

    2017-01-01

    Silicosis is characterized by chronic lung inflammation and fibrosis, which are extremely harmful to human health. The pathogenesis of silicosis involves uncontrolled immune processes. Evidence supports that regulatory B cells (Bregs) produce negative regulatory cytokines, such as IL-10, which can negatively regulate immune responses in inflammation and autoimmune diseases. Our previous study found that IL-10-producing B cells were involved in the development of silica-induced lung inflammation and fibrosis of mice. However, little is known about the role of Bregs in silicosis patients (SP). In this study, we found that serum concentrations of IL-10 were significantly increased in SP by using protein array screening. We further determined that the frequency of IL-10-producing CD1dhiCD5+ Bregs, not IL-10-producing non-B lymphocytes, was significantly higher in SP compared to subjects under surveillance (SS) and healthy workers (HW) by flow cytometry. We also found that regulatory T cells (Tregs) and Th2 cytokines (IL-4, IL-5, and IL-13) were significantly increased in SP. Th1 cytokines (IFN-γ, IL-2, and IL-12) and inflammatory cytokines (IL-1β, IL-6, and TNF-α) were not significantly different between SP, SS, and HW. Our study indicated that IL-10-producing CD1dhiCD5+ Bregs might maintain Tregs and regulate Th1/Th2 polarization in SP, suggesting that IL-10-producing Bregs may play a critical role in modulating immune homeostasis in SP. PMID:28243231

  12. Immune modulation following immunization with polyvalent vaccines in dogs.

    PubMed

    Strasser, Alois; May, Bettina; Teltscher, Andrea; Wistrela, Eva; Niedermüller, Hans

    2003-08-15

    A decline in T-cell-mediated immunity and transient state of immunosuppression after immunization has been reported in dogs. Nevertheless, dogs are still routinely vaccinated with polyvalent live vaccines and severe disease does not generally occur. In order to investigate these effects on the canine immune system and to elucidate possible mechanisms we determined the following immune parameters in the blood of 33 clinically sound German shepherd dogs before and after standard vaccination with a polyvalent vaccine against distemper, parvovirus, viral hepatitis, leptospirosis, kennel cough and rabies: white and differential blood cell count, the serum concentrations and/or activities of IL-1, IL-2, IFN-gamma, TNF-alpha, neopterin and IgG, natural killer (NK) cell activity, bactericidal activity and complement hemolytic activity, lymphocyte proliferation test (LPT) and nitroblue tetrazolium test (NBT). Our major findings were that significant postvaccinal decreases in T-cell mitogenic response to PHA and in neutrophil function and neopterin serum concentration were accompanied by simultaneous increase in plasma IgG and hemolytic complement activity. This suggests a transient shift in the balance between cell-mediated and humoral (T(H)1/T(H)2) immunity rather than immunosuppression. These results do not imply that dogs should not receive live vaccines, as the response to vaccines just seems to create a state of altered homeostasis when immunization elicits protection by humoral and cell-mediated immunity. However, these recognized compromises of immune function should be considered and vaccines still be applied only in healthy animals and strictly according to the rules and regulations given by the manufacturer.

  13. Reprogramming immune responses via microRNA modulation

    PubMed Central

    Cubillos-Ruiz, Juan R.; Rutkowski, Melanie R; Tchou, Julia; Conejo-Garcia, Jose R.

    2013-01-01

    It is becoming increasingly clear that there are unique sets of miRNAs that have distinct governing roles in several aspects of both innate and adaptive immune responses. In addition, new tools allow selective modulation of the expression of individual miRNAs, both in vitro and in vivo. Here, we summarize recent advances in our understanding of how miRNAs drive the activity of immune cells, and how their modulation in vivo opens new avenues for diagnostic and therapeutic interventions in multiple diseases, from immunodeficiency to cancer. PMID:25285232

  14. Compound A, a Dissociated Glucocorticoid Receptor Modulator, Inhibits T-bet (Th1) and Induces GATA-3 (Th2) Activity in Immune Cells

    PubMed Central

    Ferraz-de-Paula, Viviane; Palermo-Neto, Joao; Castro, Carla N.; Druker, Jimena; Holsboer, Florian; Perone, Marcelo J.; Gerlo, Sarah; De Bosscher, Karolien; Haegeman, Guy; Arzt, Eduardo

    2012-01-01

    Background Compound A (CpdA) is a dissociating non-steroidal glucocorticoid receptor (GR) ligand which has anti-inflammatory properties exerted by down-modulating proinflammatory gene expression. By favouring GR monomer formation, CpdA does not enhance glucocorticoid (GC) response element-driven gene expression, resulting in a reduced side effect profile as compared to GCs. Considering the importance of Th1/Th2 balance in the final outcome of immune and inflammatory responses, we analyzed how selective GR modulation differentially regulates the activity of T-bet and GATA-3, master drivers of Th1 and Th2 differentiation, respectively. Results Using Western analysis and reporter gene assays, we show in murine T cells that, similar to GCs, CpdA inhibits T-bet activity via a transrepressive mechanism. Different from GCs, CpdA induces GATA-3 activity by p38 MAPK-induction of GATA-3 phosphorylation and nuclear translocation. CpdA effects are reversed by the GR antagonist RU38486, proving the involvement of GR in these actions. ELISA assays demonstrate that modulation of T-bet and GATA-3 impacts on cytokine production shown by a decrease in IFN-γ and an increase in IL-5 production, respectively. Conclusions Taken together, through their effect favoring Th2 over Th1 responses, particular dissociated GR ligands, for which CpdA represents a paradigm, hold potential for the application in Th1-mediated immune disorders. PMID:22496903

  15. Immune-modulating therapy in acute pancreatitis: fact or fiction.

    PubMed

    Akinosoglou, Karolina; Gogos, Charalambos

    2014-11-07

    Acute pancreatitis (AP) is one of the most common diseases of the gastrointestinal tract, bearing significant morbidity and mortality worldwide. Current treatment of AP remains unspecific and supportive and is mainly targeted to aggressively prevent systemic complications and organ failure by intensive care. As acute pancreatitis shares an indistinguishable profile of inflammation with sepsis, therapeutic approaches have turned towards modulating the systemic inflammatory response. Targets, among others, have included pro- and anti-inflammatory modulators, cytokines, chemokines, immune cells, adhesive molecules and platelets. Even though, initial results in experimental models have been encouraging, clinical implementation of immune-regulating therapies in acute pancreatitis has had a slow progress. Main reasons include difficulty in clinical translation of experimental data, poor understanding of inflammatory response time-course, flaws in experimental designs, need for multimodal approaches and commercial drawbacks. Whether immune-modulation in acute pancreatitis remains a fact or just fiction remains to be seen in the future.

  16. Diverse Physiological Roles of Calcitonin Gene-Related Peptide in Migraine Pathology: Modulation of Neuronal-Glial-Immune Cells to Promote Peripheral and Central Sensitization.

    PubMed

    Durham, Paul L

    2016-08-01

    The neuropeptide calcitonin gene-related peptide (CGRP) is implicated in the underlying pathology of migraine by promoting the development of a sensitized state of primary and secondary nociceptive neurons. The ability of CGRP to initiate and maintain peripheral and central sensitization is mediated by modulation of neuronal, glial, and immune cells in the trigeminal nociceptive signaling pathway. There is accumulating evidence to support a key role of CGRP in promoting cross excitation within the trigeminal ganglion that may help to explain the high co-morbidity of migraine with rhinosinusitis and temporomandibular joint disorder. In addition, there is emerging evidence that CGRP facilitates and sustains a hyperresponsive neuronal state in migraineurs mediated by reported risk factors such as stress and anxiety. In this review, the significant role of CGRP as a modulator of the trigeminal system will be discussed to provide a better understanding of the underlying pathology associated with the migraine phenotype.

  17. Immune Checkpoint Modulators: An Emerging Antiglioma Armamentarium

    PubMed Central

    Kim, Eileen S.; Kim, Jennifer E.; Patel, Mira A.; Mangraviti, Antonella; Ruzevick, Jacob; Lim, Michael

    2016-01-01

    Immune checkpoints have come to the forefront of cancer therapies as a powerful and promising strategy to stimulate antitumor T cell activity. Results from recent preclinical and clinical studies demonstrate how checkpoint inhibition can be utilized to prevent tumor immune evasion and both local and systemic immune suppression. This review encompasses the key immune checkpoints that have been found to play a role in tumorigenesis and, more specifically, gliomagenesis. The review will provide an overview of the existing preclinical and clinical data, antitumor efficacy, and clinical applications for each checkpoint with respect to GBM, as well as a summary of combination therapies with chemotherapy and radiation. PMID:26881264

  18. Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-beta.

    PubMed

    Vetrone, Sylvia A; Montecino-Rodriguez, Encarnacion; Kudryashova, Elena; Kramerova, Irina; Hoffman, Eric P; Liu, Scot D; Miceli, M Carrie; Spencer, Melissa J

    2009-06-01

    Duchenne muscular dystrophy (DMD) is an X-linked, degenerative muscle disease that is exacerbated by secondary inflammation. Here, we characterized the immunological milieu of dystrophic muscle in mdx mice, a model of DMD, to identify potential therapeutic targets. We identified a specific subpopulation of cells expressing the Vbeta8.1/8.2 TCR that is predominant among TCR-beta+ T cells. These cells expressed high levels of osteopontin (OPN), a cytokine that promotes immune cell migration and survival. Elevated OPN levels correlated with the dystrophic process, since OPN was substantially elevated in the serum of mdx mice and muscle biopsies after disease onset. Muscle biopsies from individuals with DMD also had elevated OPN levels. To test the role of OPN in mdx muscle, mice lacking both OPN and dystrophin were generated and termed double-mutant mice (DMM mice). Reduced infiltration of NKT-like cells and neutrophils was observed in the muscle of DMM mice, supporting an immunomodulatory role for OPN in mdx muscle. Concomitantly, an increase in CD4+ and FoxP3+ Tregs was also observed in DMM muscle, which also showed reduced levels of TGF-beta, a known fibrosis mediator. These inflammatory changes correlated with increased strength and reduced diaphragm and cardiac fibrosis. These studies suggest that OPN may be a promising therapeutic target for reducing inflammation and fibrosis in individuals with DMD.

  19. Retinoid-X-receptors (α/β) in melanocytes modulate innate immune responses and differentially regulate cell survival following UV irradiation.

    PubMed

    Coleman, Daniel J; Garcia, Gloria; Hyter, Stephen; Jang, Hyo Sang; Chagani, Sharmeen; Liang, Xiaobo; Larue, Lionel; Ganguli-Indra, Gitali; Indra, Arup K

    2014-05-01

    Understanding the molecular mechanisms of ultraviolet (UV) induced melanoma formation is becoming crucial with more reported cases each year. Expression of type II nuclear receptor Retinoid-X-Receptor α (RXRα) is lost during melanoma progression in humans. Here, we observed that in mice with melanocyte-specific ablation of RXRα and RXRβ, melanocytes attract fewer IFN-γ secreting immune cells than in wild-type mice following acute UVR exposure, via altered expression of several chemoattractive and chemorepulsive chemokines/cytokines. Reduced IFN-γ in the microenvironment alters UVR-induced apoptosis, and due to this, the survival of surrounding dermal fibroblasts is significantly decreased in mice lacking RXRα/β. Interestingly, post-UVR survival of the melanocytes themselves is enhanced in the absence of RXRα/β. Loss of RXRs α/β specifically in the melanocytes results in an endogenous shift in homeostasis of pro- and anti-apoptotic genes in these cells and enhances their survival compared to the wild type melanocytes. Therefore, RXRs modulate post-UVR survival of dermal fibroblasts in a "non-cell autonomous" manner, underscoring their role in immune surveillance, while independently mediating post-UVR melanocyte survival in a "cell autonomous" manner. Our results emphasize a novel immunomodulatory role of melanocytes in controlling survival of neighboring cell types besides controlling their own, and identifies RXRs as potential targets for therapy against UV induced melanoma.

  20. Modulation of immune homeostasis by commensal bacteria.

    PubMed

    Ivanov, Ivaylo I; Littman, Dan R

    2011-02-01

    Intestinal bacteria form a resident community that has co-evolved with the mammalian host. In addition to playing important roles in digestion and harvesting energy, commensal bacteria are crucial for the proper functioning of mucosal immune defenses. Most of these functions have been attributed to the presence of large numbers of 'innocuous' resident bacteria that dilute or occupy niches for intestinal pathogens or induce innate immune responses that sequester bacteria in the lumen, thus quenching excessive activation of the mucosal immune system. However it has recently become obvious that commensal bacteria are not simply beneficial bystanders, but are important modulators of intestinal immune homeostasis and that the composition of the microbiota is a major factor in pre-determining the type and robustness of mucosal immune responses. Here we review specific examples of individual members of the microbiota that modify innate and adaptive immune responses, and we focus on potential mechanisms by which such species-specific signals are generated and transmitted to the host immune system.

  1. Systemic application of 3-methyladenine markedly inhibited atherosclerotic lesion in ApoE−/− mice by modulating autophagy, foam cell formation and immune-negative molecules

    PubMed Central

    Dai, Shen; Wang, Bo; Li, Wen; Wang, Liyang; Song, Xingguo; Guo, Chun; Li, Yulan; Liu, Fengming; Zhu, Faliang; Wang, Qun; Wang, Xiaoyan; Shi, Yongyu; Wang, Jianing; Zhao, Wei; Zhang, Lining

    2016-01-01

    A growing body of evidence demonstrates that autophagy, an evolutionarily conserved intracellular degradation process, is involved in the pathogenesis of atherosclerosis and has become a potential therapeutic target. Here we tested the effect of two inhibitors of phosphatidylinositol 3-kinase, 3-methyladenine (3-MA) and 2-(4-morpholinyl)-8-phenyl-chromone (LY294002), commonly used as inhibitors of autophagy, in atherosclerosis in apolipoprotein E−/− mice. Systemic application of 3-MA but not LY294002 markedly reduced the size of atherosclerotic plaque and increased the stability of lesions in high-fat diet-fed mice as compared with controls. Furthermore, 3-MA had multiple atheroprotective effects, including modulating macrophage autophagy and foam cell formation and altering the immune microenvironment. Long-term treatment with 3-MA promoted oxidized low-density lipoprotein (oxLDL)-induced macrophage autophagy and suppressed foam cell formation and cell viability in vitro. Furthermore, systemic application of 3-MA promoted lipid droplet breakdown and decreased apoptosis, most likely associated with autophagy. 3-MA treatment strikingly enhanced the expression of immune-negative molecules such as interleukin 10 (IL-10), transforming growth factor β and IL-35, as well as forkhead box P3 (Foxp3), the specific transcriptional factor for regulatory T cells, but did not affect the level of proinflammatory cytokines in the arterial wall. We provide strong evidence for the potential therapeutic benefit of 3-MA in inhibiting atherosclerosis development and improving plaque stability. PMID:27906187

  2. Alum Adjuvant Enhances Protection against Respiratory Syncytial Virus but Exacerbates Pulmonary Inflammation by Modulating Multiple Innate and Adaptive Immune Cells

    PubMed Central

    Kim, Ki-Hye; Lee, Young-Tae; Hwang, Hye Suk; Kwon, Young-Man; Jung, Yu-Jin; Lee, Youri; Lee, Jong Seok; Lee, Yu-Na; Park, Soojin; Kang, Sang-Moo

    2015-01-01

    Respiratory syncytial virus (RSV) is well-known for inducing vaccine-enhanced respiratory disease after vaccination of young children with formalin-inactivated RSV (FI-RSV) in alum formulation. Here, we investigated alum adjuvant effects on protection and disease after FI-RSV immunization with or without alum in comparison with live RSV reinfections. Despite viral clearance, live RSV reinfections caused weight loss and substantial pulmonary inflammation probably due to high levels of RSV specific IFN-γ+IL4-, IFN-γ-TNF-α+, IFN-γ+TNF-α- effector CD4 and CD8 T cells. Alum adjuvant significantly improved protection as evidenced by effective viral clearance compared to unadjuvanted FI-RSV. However, in contrast to unadjuvanted FI-RSV, alum-adjuvanted FI-RSV (FI-RSV-A) induced severe vaccine-enhanced RSV disease including weight loss, eosinophilia, and lung histopathology. Alum adjuvant in the FI-RSV-A was found to be mainly responsible for inducing high levels of RSV-specific IFN-γ-IL4+, IFN-γ-TNF-α+ CD4+ T cells, and proinflammatory cytokines IL-6 and IL-4 as well as B220+ plasmacytoid and CD4+ dendritic cells, and inhibiting the induction of IFN-γ+CD8 T cells. This study suggests that alum adjuvant in FI-RSV vaccines increases immunogenicity and viral clearance but also induces atypical T helper CD4+ T cells and multiple inflammatory dendritic cell subsets responsible for vaccine-enhanced severe RSV disease. PMID:26468884

  3. Modulation of Cytokine Secretion Allows CD4 T Cells Secreting IL-10 and IL-17 to Simultaneously Participate in Maintaining Tolerance and Immunity.

    PubMed

    Saito, Kanako; Pignon, Pascale; Ayyoub, Maha; Valmori, Danila

    2015-01-01

    CD4 T cells secreting IL-10 or IL-17 are frequent at mucosal sites, where their equilibrium is important for simultaneously maintaining tolerance and immunity to the resident microbiota. The mode of action of these cells, however, is as yet incompletely understood. In this study, we have combined ex vivo analysis of CD4 T cells producing IL-10 or/and IL-17 with assessment of clonal populations isolated ex vivo using a cytokine catch assay. We found that circulating CD4 T cells secreting IL-10 or/and IL-17 ex vivo include both conventional FOXP3- CD4 T cells and FOXP3+ Helios- Treg. Upon assessment of clonal populations derived from single ex vivo isolated cytokine secreting cells, we found that IL-10 or/and IL-17 secreting cells prevalently secrete one or the other cytokine depending on the type of stimulation, the time after stimulation and the presence of microbial products. Namely, IL-10 secretion by clonal cells was prevalent at early time points after TCR mediated stimulation, was independent of co-stimulation and was increased in the presence of the microbial fermentation product butyrate. In contrast, IL-17 secretion was higher at later time points after TCR mediated stimulation and in the presence of co-stimulatory signals. Taken together, these results provide insights into the mechanisms that, through modulation of cytokine secretion depending on conditions, allow IL-10 and IL-17 producing CD4 T cells to contribute to maintain tolerance to microbes locally, while retaining the ability to participate in protective immune responses at distant sites.

  4. Bifidobacterium bifidum PRL2010 Modulates the Host Innate Immune Response

    PubMed Central

    Turroni, Francesca; Taverniti, Valentina; Ruas-Madiedo, Patricia; Duranti, Sabrina; Guglielmetti, Simone; Lugli, Gabriele Andrea; Gioiosa, Laura; Palanza, Paola; Margolles, Abelardo; van Sinderen, Douwe

    2014-01-01

    Here, we describe data obtained from transcriptome profiling of human cell lines and intestinal cells of a murine model upon exposure and colonization, respectively, with Bifidobacterium bifidum PRL2010. Significant changes were detected in the transcription of genes that are known to be involved in innate immunity. Furthermore, results from enzyme-linked immunosorbent assays (ELISAs) showed that exposure to B. bifidum PRL2010 causes enhanced production of interleukin 6 (IL-6) and IL-8 cytokines, presumably through NF-κB activation. The obtained global transcription profiles strongly suggest that Bifidobacterium bifidum PRL2010 modulates the innate immune response of the host. PMID:24242237

  5. Tissue engineering tools for modulation of the immune response

    PubMed Central

    Boehler, Ryan M.; Graham, John G.; Shea, Lonnie D.

    2012-01-01

    Tissue engineering scaffolds have emerged as a powerful tool within regenerative medicine. These materials are being designed to create environments that promote regeneration through a combination of: (i) scaffold architecture, (ii) the use of scaffolds as vehicles for transplanting progenitor cells, and/or (iii) localized delivery of inductive factors or genes encoding for these inductive factors. This review describes the techniques associated with each of these components. Additionally, the immune response is increasingly recognized as a factor influencing regeneration. The immune reaction to an implant begins with an acute response to the injury and innate recognition of foreign materials, with the subsequent chronic immune response involving specific recognition of antigens (e.g., transplanted cells) by the adaptive immune response, which can eventually lead to rejection of the implant. Thus, we also describe the impact of each component on the immune response, and strategies (e.g., material design, anti-inflammatory cytokine delivery, and immune cell recruitment/transplantation) to modulate, yet not eliminate, the local immune response in order to promote regeneration, which represents another important tool for regenerative medicine. PMID:21988690

  6. Filarial infection modulates the immune response to Mycobacterium tuberculosis through expansion of CD4+ IL-4 memory T cells

    PubMed Central

    Chatterjee, Soumya; Clark, Carolyn E.; Lugli, Enrico; Roederer, Mario; Nutman, Thomas B.

    2015-01-01

    Exaggerated CD4+T helper 2-specific cytokine producing memory T cell responses developing concomitantly with a T helper1 response might have a detrimental role in immunity to infection caused by Mycobacterium tuberculosis (Mtb). To assess the dynamics of antigen (Ag)-specific memory T cell compartments in the context of filarial infection we used multiparameter flow cytometry on PBMCs from 25 microfilaremic filarial -infected (Inf) and 14 filarial-uninfected (Uninf) subjects following stimulation with filarial (BmA) or with the Mycobacterium tuberculosis (Mtb)-specific Ag CFP10. Our data demonstrated that the Inf group not only had a marked increase in BmA-specific CD4+IL-4+ cells (Median net frequency compared to baseline (Fo)=0.09% vs. 0.01%, p=0.038) but also to CFP10 (Fo =0.16% vs. 0.007%, p=0.04) and Staphylococcal Enterotoxin B (SEB) (Fo =0.49% vs. 0.26%, p=0.04). The Inf subjects showed a BmA-specific expansion of CD4+CD45RO+IL-4+ producing central memory (TCM, CD45RO+CCR7+CD27+) (Fo =1.1% vs. 0.5%, p=0.04) as well as effector memory (TEM CD45RO+CCR7-CD27-) (Fo =1.5% vs. 0.2%, p=0.03) with a similar but non-significant response to CFP10. In addition, there was expansion of CD4+ IL-4+ CD45RA+ CCR7+CD27+ (naïve-like) in Inf individuals compared to Uninf subjects. Among Inf subjects with definitive latent tuberculosis , there were no differences in frequencies of IL-4 producing cells within any of the memory compartments compared to the Uninf group. Our data suggest that filarial infection induces antigen-specific, exaggerated IL-4 responses in distinct T cell memory compartments to Mtb-specific antigens, which are attenuated in subjects who are able to mount a delayed type hypersensitivity reaction to Mtb. PMID:25667413

  7. Modulation of Primary Immune Response by Different Vaccine Adjuvants

    PubMed Central

    Ciabattini, Annalisa; Pettini, Elena; Fiorino, Fabio; Pastore, Gabiria; Andersen, Peter; Pozzi, Gianni; Medaglini, Donata

    2016-01-01

    Adjuvants contribute to enhancing and shaping the vaccine immune response through different modes of action. Here early biomarkers of adjuvanticity after primary immunization were investigated using four different adjuvants combined with the chimeric tuberculosis vaccine antigen H56. C57BL/6 mice were immunized by the subcutaneous route with different vaccine formulations, and the modulation of primary CD4+ T cell and B cell responses was assessed within draining lymph nodes, blood, and spleen, 7 and 12 days after priming. Vaccine formulations containing the liposome system CAF01 or a squalene-based oil-in-water emulsion (o/w squalene), but not aluminum hydroxide (alum) or CpG ODN 1826, elicited a significant primary antigen-specific CD4+ T cell response compared to antigen alone, 7 days after immunization. The effector function of activated CD4+ T cells was skewed toward a Th1/Th17 response by CAF01, while a Th1/Th2 response was elicited by o/w squalene. Differentiation of B cells in short-lived plasma cells, and subsequent early H56-specific IgG secretion, was observed in mice immunized with o/w squalene or CpG adjuvants. Tested adjuvants promoted the germinal center reaction with different magnitude. These results show that the immunological activity of different adjuvants can be characterized by profiling early immunization biomarkers after primary immunization. These data and this approach could give an important contribution to the rational development of heterologous prime–boost vaccine immunization protocols. PMID:27781036

  8. How do plants achieve immunity? Defence without specialized immune cells.

    PubMed

    Spoel, Steven H; Dong, Xinnian

    2012-01-25

    Vertebrates have evolved a sophisticated adaptive immune system that relies on an almost infinite diversity of antigen receptors that are clonally expressed by specialized immune cells that roam the circulatory system. These immune cells provide vertebrates with extraordinary antigen-specific immune capacity and memory, while minimizing self-reactivity. Plants, however, lack specialized mobile immune cells. Instead, every plant cell is thought to be capable of launching an effective immune response. So how do plants achieve specific, self-tolerant immunity and establish immune memory? Recent developments point towards a multilayered plant innate immune system comprised of self-surveillance, systemic signalling and chromosomal changes that together establish effective immunity.

  9. Embelin suppresses pancreatic cancer growth by modulating tumor immune microenvironment.

    PubMed

    Marsh, Justine L; Jackman, Chris P; Tang, Su-Ni; Shankar, Sharmila; Srivastava, Rakesh K

    2014-01-01

    Since pancreatic carcinoma is largely refractory to conventional therapies, development of novel agents is required for the effective treatment of pancreatic cancer. The objective of this paper was to examine the molecular mechanisms by which embelin inhibited human pancreatic cancer growth in mice by modulating tumor immune microenvironment. Embelin inhibited PANC-1 tumor growth, angiogenesis, and metastasis which were associated with suppression of Akt and Sonic Hedgehog (Shh) pathways. Embelin inhibited the expression of Bcl-2, cyclin D1, CDK2 and CDK6, IL-6 and IL-8, and induced the expression of Bax in tumor tissues. Embelin also reversed epithelial-mesenchymal transition by up-regulating E-cadherin and inhibiting the expression of Snail, Slug and Zeb1. Embelin inhibited pancreatic cancer growth in Kras(G12D) mice by modulating tumor immune microenvironment where CTL, NKT, γδT, NK, and IFNγ (Th1 type) cells were up-regulated, and Th17, PMN-MDSC, IL-6 and IL-8 (Th2 type) immune cells were inhibited. These data suggest that embelin can inhibit pancreatic cancer growth by modulating tumor immune microenvironment and Akt and Shh pathways, and inhibiting inflammation. Embelin may offer therapeutic benefits for the treatment and/or prevention of pancreatic cancer.

  10. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats

    SciTech Connect

    Marín-Prida, Javier; Riva, Federica; Pentón-Arias, Eduardo

    2013-10-01

    Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24 h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H{sub 2}O{sub 2} and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed. - Highlights: • Phycocyanobilin (PCB) prevents H{sub 2}O{sub 2} and glutamate induced PC12 cell viability loss. • Anterior cortex and striatum are highly vulnerable to cerebral hypoperfusion (CH). • PCB modulates 190 genes associated to inflammation in acute CH. • PCB regulates 19 genes mostly related to a detrimental pro-inflammatory environment. • PCB restores redox and immune balances showing promise as potential stroke therapy.

  11. Novel Immune-Modulating Cellular Vaccine for Prostate Cancer Immunotherapy

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0423 TITLE: Novel Immune-Modulating Cellular Vaccine for Prostate Cancer Immunotherapy PRINCIPAL INVESTIGATOR: Smita...SUBTITLE 5a. CONTRACT NUMBER W81XWH-13-1-0423 Novel Immune-Modulating Cellular Vaccine for Prostate Cancer Immunotherapy 5b. GRANT NUMBER 5c...immune modulation of CTLA4 and have generated a lead cellular therapy that will safely enhance vaccine -mediated immunity. This lead cellular

  12. Neutrophils: Between Host Defence, Immune Modulation, and Tissue Injury

    PubMed Central

    Kruger, Philipp; Saffarzadeh, Mona; Weber, Alexander N. R.; Rieber, Nikolaus; Radsak, Markus; von Bernuth, Horst; Benarafa, Charaf; Roos, Dirk; Skokowa, Julia; Hartl, Dominik

    2015-01-01

    Neutrophils, the most abundant human immune cells, are rapidly recruited to sites of infection, where they fulfill their life-saving antimicrobial functions. While traditionally regarded as short-lived phagocytes, recent findings on long-term survival, neutrophil extracellular trap (NET) formation, heterogeneity and plasticity, suppressive functions, and tissue injury have expanded our understanding of their diverse role in infection and inflammation. This review summarises our current understanding of neutrophils in host-pathogen interactions and disease involvement, illustrating the versatility and plasticity of the neutrophil, moving between host defence, immune modulation, and tissue damage. PMID:25764063

  13. Sympathetic neural modulation of the immune system

    SciTech Connect

    Madden, K.S.

    1989-01-01

    One route by which the central nervous system communicates with lymphoid organs in the periphery is through the sympathetic nervous system (SNS). To study SNS regulation of immune activity in vivo, selective removal of peripheral noradrenergic nerve fibers was achieved by administration of the neurotoxic drug, 6-hydroxydopamine (6-OHDA), to adult mice. To assess SNS influence on lymphocyte proliferation in vitro, uptake of {sup 125}iododeoxyuridine ({sup 125}IUdR), a DNA precursor, was measured following 6-OHDA treatment. Sympathectomy prior to epicutaneous immunization with TNCB did not alter draining lymph nodes (LN) cell proliferation, whereas 6-OHDA treatment before footpad immunization with KLH reduced DNA synthesis in popliteal LN by 50%. In mice which were not deliberately immunized, sympathectomy stimulated {sup 125}IUdR uptake inguinal and axillary LN, spleen, and bone marrow. In vitro, these LN and spleen cells exhibited decreased proliferation responses to the T cell mitogen, concanavalin A (Con A), whereas lipopolysaccharide (LPS)-stimulated IgG secretion was enhanced. Studies examining {sup 51}Cr-labeled lymphocyte trafficking to LN suggested that altered cell migration may play a part in sympathectomy-induced changes in LN cell function.

  14. Bisphosphonate-induced differential modulation of immune cell function in gingiva and bone marrow in vivo: role in osteoclast-mediated NK cell activation.

    PubMed

    Tseng, Han-Ching; Kanayama, Keiichi; Kaur, Kawaljit; Park, So-Hyun; Park, Sil; Kozlowska, Anna; Sun, Shuting; McKenna, Charles E; Nishimura, Ichiro; Jewett, Anahid

    2015-08-21

    The aim of this study is to establish osteoclasts as key immune effectors capable of activating the function of Natural Killer (NK) cells, and expanding their numbers, and to determine in vivo and in vitro effect of bisphosphonates (BPs) during NK cell interaction with osteoclasts and on systemic and local immune function. The profiles of 27 cytokines, chemokines and growth factors released from osteoclasts were found to be different from dendritic cells and M1 macrophages but resembling to untreated monocytes and M2 macrophages. Nitrogen-containing BPs Zoledronate (ZOL) and Alendronate (ALN), but not non-nitrogen-containing BPs Etidronate (ETI), triggered increased release of pro-inflammatory mediators from osteoclasts while all three BPs decreased pit formation by osteoclasts. ZOL and ALN mediated significant release of IL-6, TNF-` and IL-1β, whereas they inhibited IL-10 secretion by osteoclasts. Treatment of osteoclasts with ZOL inhibited NK cell mediated cytotoxicity whereas it induced significant secretion of cytokines and chemokines. NK cells lysed osteoclasts much more than their precursor cells monocytes, and this correlated with the decreased expression of MHC class I expression on osteoclasts. Intravenous injection of ZOL in mice induced pro-inflammatory microenvironment in bone marrow and demonstrated significant immune activation. By contrast, tooth extraction wound of gingival tissues exhibited profound immune suppressive microenvironment associated with dysregulated wound healing to the effect of ZOL which could potentially be responsible for the pathogenesis of Osteonecrosis of the Jaw (ONJ). Finally, based on the data obtained in this paper we demonstrate that osteoclasts can be used as targets for the expansion of NK cells with superior function for immunotherapy of cancer.

  15. [Modulation of immune response by bacterial lipopolysaccharides].

    PubMed

    Aldapa-Vega, Gustavo; Pastelín-Palacios, Rodolfo; Isibasi, Armando; Moreno-Eutimio, Mario A; López-Macías, Constantino

    2016-01-01

    Lipopolysaccharide (LPS) is a molecule that is profusely found on the outer membrane of Gram-negative bacteria and is also a potent stimulator of the immune response. As the main molecule on the bacterial surface, is also the most biologically active. The immune response of the host is activated by the recognition of LPS through Toll-like receptor 4 (TLR4) and this receptor-ligand interaction is closely linked to LPS structure. Microorganisms have evolved systems to control the expression and structure of LPS, producing structural variants that are used for modulating the host immune responses during infection. Examples of this include Helicobacter pylori, Francisella tularensis, Chlamydia trachomatis and Salmonella spp. High concentrations of LPS can cause fever, increased heart rate and lead to septic shock and death. However, at relatively low concentrations some LPS are highly active immunomodulators, which can induce non-specific resistance to invading microorganisms. The elucidation of the molecular and cellular mechanisms involved in the recognition of LPS and its structural variants has been fundamental to understand inflammation and is currently a pivotal field of research to understand the innate immune response, inflammation, the complex host-pathogen relationship and has important implications for the rational development of new immunomodulators and adjuvants.

  16. The immune system and its modulation mechanism in scallop.

    PubMed

    Song, Linsheng; Wang, Lingling; Zhang, Huan; Wang, Mengqiang

    2015-09-01

    Scallops are a cosmopolitan family of bivalves, and some of them are highly prized as dominant aquaculture species. In the past decades, there have been increasing studies on the basic biology and immunology of scallops, and this review summarizes the research progresses of immune system and its modulation mechanism in scallop. As invertebrate, scallops lack adaptive immunity and they have evolved an array of sophisticated strategies to recognize and eliminate various invaders by employing a set of molecules and cells. It is evident that basic immune reactions such as immune recognition, signal transduction, and effector synthesis involved in immune response are accomplished in a variety of ways. They rely upon an extensive repertoire of phagocytosis, apoptosis and encapsulation of the circulating hemocytes for eliminating invasive pathogens, as well as the production of immune effectors that are active against a large range of pathogens or sensitive for the environmental stress. Furthermore, the molecular constitutions, metabolic pathways and immunomodulation mechanisms of the primitive catecholaminergic, cholinergic, enkephalinergic system and NO system in scallop are also discussed, which can be taken as an entrance to better understand the origin and evolution of the neuroendocrine-immune regulatory network in lower invertebrates.

  17. How photons modulate wound healing via the immune system

    NASA Astrophysics Data System (ADS)

    Dyson, Mary

    2009-02-01

    The immune system is a diverse group of cells that recognize and attack foreign substances, pathogenic organisms and cancer cells. It also produces inflammation, an essential component of the wound healing process and, following the resolution of inflammation, plays a crucial role in the control of granulation tissue formation. Granulation tissue is the precursor of scar tissue. Injured skin and mucous membranes generally heal rapidly. However, some wounds are either slow to heal or fail to heal while in others overgrowth of scar tissue occurs, resulting in the production of either hypertophic or keloid scars. The modulation of wound healing in such conditions is clinically important and may even be vital. Evidence will be presented that phototherapy can modulate wound healing, and that changes induced in the immune system, in particular the secretion of soluble protein mediators including cytokines, may be involved in this modulation. The immune system has peripheral and deep components. The former, being located mainly in the skin and mucous membranes, are readily accessible to photons, which can affect them directly. The components of the immune system are linked by lymphatic vessels and blood vessels, which include many capillaries located in the sub-epithelial connective tissues of the skin and mucous membranes. The superficial location of these capillaries provides the immune cells and molecules in transit through them with ready access to photons. When these cells and molecules, some modified by exposure to photons, reach susceptible cells such as lymphocytes in the deeper parts of the immune system and cells of injured tissues, they can modify their activity. In addition to having direct effects on peripheral cells, photons can thus also produce indirect effects on cells too distant for the photons to reach them. For example, cytokines released from peripheral macrophages in response to the direct action of photons can be transported to and affect other

  18. Low Dose Ionizing Radiation Modulates Immune Function

    SciTech Connect

    Nelson, Gregory A.

    2016-01-12

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a “Th2 polarized” immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in the

  19. Acetone in drinking water does not modulate humoral immunity in mice as measured by the antibody, plaque-forming cell assay.

    PubMed

    Woolhiser, Michael R; Houtman, Carrie E; Waechter, John M

    2006-01-01

    It has been reported that the repeated topical, nonoccluded application of acetone may modulate antibody production in mice, thus producing humoral immunosuppression. However, the evaporative loss expected following nonoccluded dermal application of acetone makes the systemic effect seem unlikely. This study was designed to investigate the immunotoxicity potential of acetone in mice following a more direct systemic route of dosing via drinking water for 28 days. CD-1 male mice consumed average daily acetone doses of 121, 621 or 1144 mg/kg/day. The antibody, plaque-forming cell (AFC) assay was performed to measure the T cell-dependent, anti-sheep red blood cell immunoglobulin M (IgM) response, and hematology and thymus weights were evaluated to provide additional insight into the potential effects to the immune system. Body weights, white blood cell (WBC), numbers, red blood cell (RBC) counts, and hemoglobin and hematocrit levels showed no treatment-related effects at any dose of acetone. Eosinophil percentages were variable but also showed no dose-related trends. Spleen and thymus weights were not statistically different from controls and there were no effects on spleen cellularity or AFC response as a result of acetone administration. The AFC responses ranged from 1088 to 1401 AFCs/10(6) splenocytes and were not statistically different from controls (1277 AFCs/10(6) cells). Mice treated with cyclophosphamide (20 mg/kg) on days 25 to 28 demonstrated a 94% reduction in AFC/10(6) cells. Thus, the direct systemic administration of acetone did not produce evidence for immunotoxicity in CD-1 mice and the no observed adverse effect level (NOAEL) in this study was determined to be 1144 mg/kg/day.

  20. Modulation of immune response in experimental Chagas disease.

    PubMed

    Basso, Beatriz

    2013-02-20

    Trypanosoma cruzi (T. cruzi), the etiological agent of Chagas disease, affects nearly 18 million people in Latin America and 90 million are at risk of infection. The parasite presents two stages of medical importance in the host, the amastigote, intracellular replicating form, and the extracellular trypomastigote, the infective form. Thus infection by T. cruzi induces a complex immune response that involves effectors and regulatory mechanisms. That is why control of the infection requires a strong humoral and cellular immune response; hence, the outcome of host-parasite interaction in the early stages of infection is extremely important. A critical event during this period of the infection is innate immune response, in which the macrophage's role is vital. Thus, after being phagocytized, the parasite is able to develop intracellularly; however, during later periods, these cells induce its elimination by means of toxic metabolites. In turn, as the infection progresses, adaptive immune response mechanisms are triggered through the TH1 and TH2 responses. Finally, T. cruzi, like other protozoa such as Leishmania and Toxoplasma, have numerous evasive mechanisms to the immune response that make it possible to spread around the host. In our Laboratory we have developed a vaccination model in mice with Trypanosoma rangeli, nonpathogenic to humans, which modulates the immune response to infection by T. cruzi, thus protecting them. Vaccinated animals showed an important innate response (modulation of NO and other metabolites, cytokines, activation of macrophages), a strong adaptive cellular response and significant increase in specific antibodies. The modulation caused early elimination of the parasites, low parasitaemia, the absence of histological lesions and high survival rates. Even though progress has been made in the knowledge of some of these mechanisms, new studies must be conducted which could target further prophylactic and therapeutic trials against T. cruzi

  1. Genome-Wide Immune Modulation of TLR3-Mediated Inflammation in Intestinal Epithelial Cells Differs between Single and Multi-Strain Probiotic Combination

    PubMed Central

    MacPherson, Chad W.; Shastri, Padmaja; Mathieu, Olivier; Tompkins, Thomas A.; Burguière, Pierre

    2017-01-01

    Genome-wide transcriptional analysis in intestinal epithelial cells (IEC) can aid in elucidating the impact of single versus multi-strain probiotic combinations on immunological and cellular mechanisms of action. In this study we used human expression microarray chips in an in vitro intestinal epithelial cell model to investigate the impact of three probiotic bacteria, Lactobacillus helveticus R0052 (Lh-R0052), Bifidobacterium longum subsp. infantis R0033 (Bl-R0033) and Bifidobacterium bifidum R0071 (Bb-R0071) individually and in combination, and of a surface-layer protein (SLP) purified from Lh-R0052, on HT-29 cells’ transcriptional profile to poly(I:C)-induced inflammation. Hierarchical heat map clustering, Set Distiller and String analyses revealed that the effects of Lh-R0052 and Bb-R0071 diverged from those of Bl-R0033 and Lh-R0052-SLP. It was evident from the global analyses with respect to the immune, cellular and homeostasis related pathways that the co-challenge with probiotic combination (PC) vastly differed in its effect from the single strains and Lh-R0052-SLP treatments. The multi-strain PC resulted in a greater reduction of modulated genes, found through functional connections between immune and cellular pathways. Cytokine and chemokine analyses based on specific outcomes from the TNF-α and NF-κB signaling pathways revealed single, multi-strain and Lh-R0052-SLP specific attenuation of the majority of proteins measured (TNF-α, IL-8, CXCL1, CXCL2 and CXCL10), indicating potentially different mechanisms. These findings indicate a synergistic effect of the bacterial combinations relative to the single strain and Lh-R0052-SLP treatments in resolving toll-like receptor 3 (TLR3)-induced inflammation in IEC and maintaining cellular homeostasis, reinforcing the rationale for using multi-strain formulations as a probiotic. PMID:28099447

  2. Methylglyoxal modulates immune responses: relevance to diabetes.

    PubMed

    Price, Claire L; Hassi, Hafid O S Al; English, Nicholas R; Blakemore, Alexandra I F; Stagg, Andrew J; Knight, Stella C

    2010-06-01

    Increased methylglyoxal (MG) concentrations and formation of advanced glycation end-products (AGEs) are major pathways of glycaemic damage in diabetes, leading to vascular and neuronal complications. Diabetes patients also suffer increased susceptibility to many common infections, the underlying causes of which remain elusive. We hypothesized that immune glycation damage may account for this increased susceptibility. We previously showed that the reaction mixture (RM) for MG glycation of peptide blocks up regulation of CD83 in myeloid cells and inhibits primary stimulation of T cells. Here, we continue to investigate immune glycation damage, assessing surface and intracellular cytokine protein expression by flow cytometry, T-cell proliferation using a carboxyfluorescein succinimidyl ester assay, and mRNA levels by RT-PCR. We show that the immunomodulatory component of this RM was MG itself, with MG alone causing equivalent block of CD83 and loss of primary stimulation. Block of CD83 expression could be reversed by MG scavenger N-acetyl cysteine. Further, MG within RM inhibited stimulated production of interleukin (IL)-10 protein from myeloid cells plus interferon (IFN)-gamma and tumour necrosis factor (TNF)-alpha from T cells. Loss of IL-10 and IFN-gamma was confirmed by RT-PCR analysis of mRNA, while TNF-alpha message was raised. Loss of TNF-alpha protein was also shown by ELISA of culture supernatants. In addition, MG reduced major histocompatibility complex (MHC) class I expression on the surface of myeloid cells and increased their propensity to apoptose. We conclude that MG is a potent suppressor of myeloid and T-cell immune function and may be a major player in diabetes-associated susceptibility to infection.

  3. Saccharomyces cerevisiae Modulates Immune Gene Expressions and Inhibits ETEC-Mediated ERK1/2 and p38 Signaling Pathways in Intestinal Epithelial Cells

    PubMed Central

    Zanello, Galliano; Berri, Mustapha; Dupont, Joëlle; Sizaret, Pierre-Yves; D'Inca, Romain

    2011-01-01

    Background Enterotoxigenic Escherichia coli (ETEC) infections result in large economic losses in the swine industry worldwide. ETEC infections cause pro-inflammatory responses in intestinal epithelial cells and subsequent diarrhea in pigs, leading to reduced growth rate and mortality. Administration of probiotics as feed additives displayed health benefits against intestinal infections. Saccharomyces cerevisiae (Sc) is non-commensal and non-pathogenic yeast used as probiotic in gastrointestinal diseases. However, the immuno-modulatory effects of Sc in differentiated porcine intestinal epithelial cells exposed to ETEC were not investigated. Methodology/Principal Findings We reported that the yeast Sc (strain CNCM I-3856) modulates transcript and protein expressions involved in inflammation, recruitment and activation of immune cells in differentiated porcine intestinal epithelial IPEC-1 cells. We demonstrated that viable Sc inhibits the ETEC-induced expression of pro-inflammatory transcripts (IL-6, IL-8, CCL20, CXCL2, CXCL10) and proteins (IL-6, IL-8). This inhibition was associated to a decrease of ERK1/2 and p38 MAPK phosphorylation, an agglutination of ETEC by Sc and an increase of the anti-inflammatory PPAR-γ nuclear receptor mRNA level. In addition, Sc up-regulates the mRNA levels of both IL-12p35 and CCL25. However, measurement of transepithelial electrical resistance displayed that Sc failed to maintain the barrier integrity in monolayer exposed to ETEC suggesting that Sc does not inhibit ETEC enterotoxin activity. Conclusions Sc (strain CNCM I-3856) displays multiple immuno-modulatory effects at the molecular level in IPEC-1 cells suggesting that Sc may influence intestinal inflammatory reaction. PMID:21483702

  4. Immune privilege of stem cells.

    PubMed

    Ichiryu, Naoki; Fairchild, Paul J

    2013-01-01

    Immune privilege provides protection to vital tissues or cells of the body when foreign antigens are introduced into these sites. The modern concept of relative immune privilege applies to a variety of tissues and anatomical structures, including the hair follicles and mucosal surfaces. Even sites of chronic inflammation and developing tumors may acquire immune privilege by recruiting immunoregulatory effector cells. Adult stem cells are no exception. For their importance and vitality, many adult stem cell populations are believed to be immune privileged. A preimplantation-stage embryo that derives from a totipotent stem cell (i.e., a fertilized oocyte) must be protected from maternal allo-rejection for successful implantation and development to occur. Embryonic stem cells, laboratory-derived cell lines of preimplantation blastocyst-origin, may, therefore, retain some of the immunological properties of the developing embryo. However, embryonic stem cells and their differentiated tissue derivatives transplanted into a recipient do not necessarily have an ability to subvert immune responses to the extent required to exploit their pluripotency for regenerative medicine. In this review, an extended definition of immune privilege is developed and the capacity of adult and embryonic stem cells to display both relative and acquired immune privilege is discussed. Furthermore, we explore how these intrinsic properties of stem cells may one day be harnessed for therapeutic gain.

  5. Immune accessory functions of human endothelial cells are modulated by overexpression of B7-H1 (PDL1).

    PubMed

    LaGier, Adriana J; Pober, Jordan S

    2006-08-01

    B7-H1 (PDL1) is a B7-related protein that inhibits T-cell responses. Human endothelial cells (EC), which can support polyclonal stimulation (by anti-CD3 or Phytohemagglutinin (PHA)) or direct alloantigen stimulation of T cells, basally express B7-H1 and increase expression in response to IFN-gamma or coculture with allogeneic T cells. Previous studies have suggested that endogenous B7-H1 on EC reduces T-cell responses. We engineered overexpression of B7-H1 in EC (B7H1-EC) to evaluate whether this manipulation could reduce T-cell responses even further. Compared with green fluorescent protein-transduced EC (GFP-EC), B7H1-EC support less anti-CD3 or PHA-induced proliferation of CD4+ memory T cells; naive CD4+ T-cell or CD8+ T-cell responses were less inhibited. The effect of transduced B7H1-EC was more apparent when the EC were fixed prior to coculture, a manipulation that reduces the strength of costimulation and prevents upregulation of the endogenous B7-H1 molecule. T-cell activation markers, including CD25, CD62L, CD152 (CTLA-4), and CD154 (CD40L), were not altered by EC overexpression of B7-H1, whereas there was a reduction in CD69. B7-H1 reduced secretion of IL-2 and IL-10 by memory T cells. B7H1-EC were less able to stimulate allogeneic proliferation of CD4+ memory T cells than control EC. These data suggest that B7-H1 overexpression may be a useful approach for reducing allogeneic CD4+ memory T-cell responses to EC.

  6. Immune modulation in response to stress and relaxation.

    PubMed

    Mahbub-E-Sobhani; Haque, N; Salma, U; Ahmed, A

    2011-03-15

    Traditional medical science has kept the mind separate from the body. Recently people realize the effect of mind on health and psychoneuroimmunology is the new evolved science that describes the interactions between psyche and soma. In this review through a typical psycho-neuro-endocrino-immune network the effects of psychological stress (acute, brief naturalistic and chronic) and relaxation on immune modulation has been shown. From this network Corticotrophin Releasing Factor (CRF), Adrenocorticotrophic Hormone (ACTH), Glucocorticoids (GC), alpha-endorphin and Met-enkephalin are found as important endocrine components and T cells, B cells, monocytes/macrophages, Natural Killer (NK) cells and their cytokines that is Tumor Necrosis Factor-alpha (TNF-alpha), Interferon Gamma (IFN-alpha) and interleukins such as IL-1, IL-2, IL-4, IL-6, IL-10, IL-12 etc. are found as important immune components. Finally, it has been shown that, acute, brief naturalistic and chronic stress have different immune modulatory activities which are harmful to one's homeostasis and relaxation can help to maintain that homeostasis.

  7. Antigen-Specific Immune Modulation Targets mTORC1 Function To Drive Chemokine Receptor-Mediated T Cell Tolerance.

    PubMed

    Chen, Weirong; Wan, Xiaoxiao; Ukah, Tobechukwu K; Miller, Mindy M; Barik, Subhasis; Cattin-Roy, Alexis N; Zaghouani, Habib

    2016-11-01

    To contain autoimmunity, pathogenic T cells must be eliminated or diverted from reaching the target organ. Recently, we defined a novel form of T cell tolerance whereby treatment with Ag downregulates expression of the chemokine receptor CXCR3 and prevents diabetogenic Th1 cells from reaching the pancreas, leading to suppression of type 1 diabetes (T1D). This report defines the signaling events underlying Ag-induced chemokine receptor-mediated tolerance. Specifically, we show that the mammalian target of rapamycin complex 1 (mTORC1) is a major target for induction of CXCR3 downregulation and crippling of Th1 cells. Indeed, Ag administration induces upregulation of programmed death-ligand 1 on dendritic cells in a T cell-dependent manner. In return, programmed death-ligand 1 interacts with the constitutively expressed programmed death-1 on the target T cells and stimulates docking of Src homology 2 domain-containing tyrosine phosphatase 2 phosphatase to the cytoplasmic tail of programmed death-1. Active Src homology 2 domain-containing tyrosine phosphatase 2 impairs the signaling function of the PI3K/protein kinase B (AKT) pathway, leading to functional defect of mTORC1, downregulation of CXCR3 expression, and suppression of T1D. Thus, mTORC1 component of the metabolic pathway serves as a target for chemokine receptor-mediated T cell tolerance and suppression of T1D.

  8. Immune cell promotion of metastasis

    PubMed Central

    Kitamura, Takanori; Qian, Bin-Zhi; Pollard, Jeffrey W.

    2015-01-01

    Metastatic disease is the major cause of death from cancer, and immunotherapy and chemotherapy have had limited success in reversing its progression. Data from mouse models suggest that the recruitment of immunosuppressive cells to tumours protects metastatic cancer cells from surveillance by killer cells, which nullifies the effects of immunotherapy and thus establishes metastasis. Furthermore, in most cases, tumour-infiltrating immune cells differentiate into cells that promote each step of the metastatic cascade and thus are novel targets for therapy. In this Review, we describe how tumour-infiltrating immune cells contribute to the metastatic cascade and we discuss potential therapeutic strategies to target these cells. PMID:25614318

  9. Essential oil of clove (Eugenia caryophyllata) augments the humoral immune response but decreases cell mediated immunity.

    PubMed

    Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K

    2011-08-01

    The present study was undertaken to explore the effect of the essential oil isolated from the buds of Eugenia caryophyllata on some immunological parameters. Humoral immunity was assessed by measuring the hemagglutination titre to sheep red blood cells and delayed type hypersensitivity was assessed by measuring foot pad thickness. Clove oil administration produced a significant increase in the primary as well as secondary humoral immune response. In addition, it also produced a significant decrease in foot pad thickness compared with the control group. Thus, these results suggest that clove oil can modulate the immune response by augmenting humoral immunity and decreasing cell mediated immunity.

  10. Adipose Tissue-Derived Mesenchymal Stromal Cells Protect Mice Infected with Trypanosoma cruzi from Cardiac Damage through Modulation of Anti-parasite Immunity

    PubMed Central

    Mesquita, Fernanda C. P.; Brasil, Guilherme V.; Rocha, Nazareth N.; Takiya, Christina M.; Lima, Ana Paula C. A.; Campos de Carvalho, Antonio C.; Goldenberg, Regina S.; Carvalho, Adriana B.

    2015-01-01

    Background Chagas disease, caused by the protozoan Trypanosoma cruzi (T.cruzi), is a complex disease endemic in Central and South America. It has been gathering interest due to increases in non-vectorial forms of transmission, especially in developed countries. The objective of this work was to investigate if adipose tissue-derived mesenchymal stromal cells (ASC) can alter the course of the disease and attenuate pathology in a mouse model of chagasic cardiomyopathy. Methodology/Principal Findings ASC were injected intraperitoneally at 3 days post-infection (dpi). Tracking by bioluminescence showed that cells remained in the abdominal cavity for up to 9 days after injection and most of them migrated to the abdominal or subcutaneous fat, an early parasite reservoir. ASC injection resulted in a significant reduction in blood parasitemia, which was followed by a decrease in cardiac tissue inflammation, parasitism and fibrosis at 30 dpi. At the same time point, analyses of cytokine release in cells isolated from the heart and exposed to T. cruzi antigens indicated an anti-inflammatory response in ASC-treated animals. In parallel, splenocytes exposed to the same antigens produced a pro-inflammatory response, which is important for the control of parasite replication, in placebo and ASC-treated groups. However, splenocytes from the ASC group released higher levels of IL-10. At 60 dpi, magnetic resonance imaging revealed that right ventricular (RV) dilation was prevented in ASC-treated mice. Conclusions/Significance In conclusion, the injection of ASC early after T. cruzi infection prevents RV remodeling through the modulation of immune responses. Lymphoid organ response to the parasite promoted the control of parasite burden, while the heart, a target organ of Chagas disease, was protected from damage due to an improved control of inflammation in ASC-treated mice. PMID:26248209

  11. Mast cell-orchestrated immunity to pathogens

    PubMed Central

    Abraham, Soman N.; St John, Ashley L.

    2015-01-01

    Although mast cells were discovered more than a century ago, their functions beyond their role in allergic responses remained elusive until recently. However, there is a growing appreciation that an important physiological function of these cells is the recognition of pathogens and modulation of appropriate immune responses. Because of their ability to instantly release several pro-inflammatory mediators from intracellular stores and their location at the host–environment interface, mast cells have been shown to be crucial for optimal immune responses during infection. Mast cells seem to exert these effects by altering the inflammatory environment after detection of a pathogen and by mobilizing various immune cells to the site of infection and to draining lymph nodes. Interestingly, the character and timing of these responses can vary depending on the type of pathogen stimulus, location of pathogen recognition and sensitization state of the responding mast cells. Recent studies using mast cell activators as effective vaccine adjuvants show the potential of harnessing these cells to confer protective immunity against microbial pathogens. PMID:20498670

  12. Gut Mesenchymal Stromal Cells in Immunity

    PubMed Central

    Messina, Valeria; Buccione, Carla; Marotta, Giulia; Ziccheddu, Giovanna; Signore, Michele; Mattia, Gianfranco; Puglisi, Rossella; Sacchetti, Benedetto; Biancone, Livia

    2017-01-01

    Mesenchymal stromal cells (MSCs), first found in bone marrow (BM), are the structural architects of all organs, participating in most biological functions. MSCs possess tissue-specific signatures that allow their discrimination according to their origin and location. Among their multiple functions, MSCs closely interact with immune cells, orchestrating their activity to maintain overall homeostasis. The phenotype of tissue MSCs residing in the bowel overlaps with myofibroblasts, lining the bottom walls of intestinal crypts (pericryptal) or interspersed within intestinal submucosa (intercryptal). In Crohn's disease, intestinal MSCs are tightly stacked in a chronic inflammatory milieu, which causes their enforced expression of Class II major histocompatibility complex (MHC). The absence of Class II MHC is a hallmark for immune-modulator and tolerogenic properties of normal MSCs and, vice versa, the expression of HLA-DR is peculiar to antigen presenting cells, that is, immune-activator cells. Interferon gamma (IFNγ) is responsible for induction of Class II MHC expression on intestinal MSCs. The reversal of myofibroblasts/MSCs from an immune-modulator to an activator phenotype in Crohn's disease results in the formation of a fibrotic tube subverting the intestinal structure. Epithelial metaplastic areas in this context can progress to dysplasia and cancer. PMID:28337224

  13. Adoptive transfer of CD4(+)Foxp3(+) regulatory T cells to C57BL/6J mice during acute infection with Toxoplasma gondii down modulates the exacerbated Th1 immune response.

    PubMed

    Olguín, Jonadab E; Fernández, Jacquelina; Salinas, Nohemí; Juárez, Imelda; Rodriguez-Sosa, Miriam; Campuzano, Jaime; Castellanos, Carlos; Saavedra, Rafael

    2015-08-01

    Infection of C57BL/6J mice with the parasite Toxoplasma gondii triggers a powerful Th1 immune response that is detrimental to the host. During acute infection, a reduction in CD4(+)Foxp3(+) regulatory T cells (Treg) has been reported. We studied the role of Treg during T. gondii infection by adoptive transfer of cells purified from transgenic Foxp3(EGFP) mice to infected wild type animals. We found a less severe weight loss, a significant delayed mortality in infected Treg-transferred mice, and reduced pathology of the small intestine that were associated with lower IFN-γ and TNF-α levels. Nevertheless, higher cyst number and parasite load in brain were observed in these mice. Treg-transferred infected mice showed reduced levels of both IFN-γ and TNF-α in sera. A reduced number of CD4(+) T cells producing IFN-γ was detected in these mice, while IL-2 producing CD4(+) T cells were restored to levels nearly similar to uninfected mice. CD25 and CD69 expression of CD4(+) T cells were also down modulated. Our data show that the low Treg cell number are insufficient to modulate the activation of CD4(+) T cells and the production of high levels of IFN-γ. Thus, a delicate balance between an optimal immune response and its modulation by Treg cells must exist.

  14. Hepatic immune regulation by stromal cells.

    PubMed

    Schildberg, Frank A; Sharpe, Arlene H; Turley, Shannon J

    2015-02-01

    A metabolic organ, the liver also has a central role in tolerance induction. Stromal cells lining the hepatic sinusoids, such as liver sinusoidal endothelial cells (LSECs) and hepatic stellate cells (HSCs), are the first liver cells to encounter gut-derived and systemic antigens, thereby shaping local and systemic tolerance. Recent studies have demonstrated that stromal cells can modulate immune responses by antigen-dependent and independent mechanisms. Stromal cells interfere with the function of other antigen-presenting cells (APCs) and induce non-responsive T cells as well as regulatory T cells and myeloid-derived suppressor cells (MDSCs). The immunosuppressive microenvironment thus created provides a means to protect the liver from tissue damage. Such tolerized surroundings, however, can be exploited by certain pathogens, promoting persistent liver infections.

  15. Detection of innate immune response modulating impurities in therapeutic proteins.

    PubMed

    Haile, Lydia Asrat; Puig, Montserrat; Kelley-Baker, Logan; Verthelyi, Daniela

    2015-01-01

    Therapeutic proteins can contain multiple impurities, some of which are variants of the product, while others are derived from the cell substrate and the manufacturing process. Such impurities, even when present at trace levels, have the potential to activate innate immune cells in peripheral blood or embedded in tissues causing expression of cytokines and chemokines, increasing antigen uptake, facilitating processing and presentation by antigen presenting cells, and fostering product immunogenicity. Currently, while products are tested for host cell protein content, assays to control innate immune response modulating impurities (IIRMIs) in products are focused mainly on endotoxin and nucleic acids, however, depending on the cell substrate and the manufacturing process, numerous other IIRMI could be present. In these studies we assess two approaches that allow for the detection of a broader subset of IIRMIs. In the first, we use commercial cell lines transfected with Toll like receptors (TLR) to detect receptor-specific agonists. This method is sensitive to trace levels of IIRMI and provides information of the type of IIRMIs present but is limited by the availability of stably transfected cell lines and requires pre-existing knowledge of the IIRMIs likely to be present in the product. Alternatively, the use of a combination of macrophage cell lines of human and mouse origin allows for the detection of a broader spectrum of impurities, but does not identify the source of the activation. Importantly, for either system the lower limit of detection (LLOD) of impurities was similar to that of PBMC and it was not modified by the therapeutic protein tested, even in settings where the product had inherent immune modulatory properties. Together these data indicate that a cell-based assay approach could be used to screen products for the presence of IIRMIs and inform immunogenicity risk assessments, particularly in the context of comparability exercises.

  16. Transparent solar cell module

    NASA Technical Reports Server (NTRS)

    Antonides, G. J.; Dillard, P. A.; Fritz, W. M.; Lott, D. P.

    1979-01-01

    Modified solar cell module uses high transmission glass and adhesives, and heat dissipation to boost power per unit area by 25% (9.84% efficiency based on cell area at 60 C and 100 mW/sq cm flux). Design is suited for automatic production and is potentially more cost effective.

  17. Immune-modulating effects of alpha-1 antitrypsin.

    PubMed

    Ehlers, Mario R

    2014-10-01

    Alpha-1 antitrypsin (AAT) is a circulating serine protease inhibitor (serpin) that inhibits neutrophil elastase in the lung, and AAT deficiency is associated with early-onset emphysema. AAT is also a liver-derived acute-phase protein that, in vitro and in vivo, reduces production of pro-inflammatory cytokines, inhibits apoptosis, blocks leukocyte degranulation and migration, and modulates local and systemic inflammatory responses. In monocytes, AAT has been shown to increase intracellular cAMP, regulate expression of CD14, and suppress NFκB nuclear translocation. These effects may be mediated by AAT's serpin activity or by other protein-binding activities. In preclinical models of autoimmunity and transplantation, AAT therapy prevents or reverses autoimmune disease and graft loss, and these effects are accompanied by tolerogenic changes in cytokine and transcriptional profiles and T cell subsets. This review highlights advances in our understanding of the immune-modulating effects of AAT and their potential therapeutic utility.

  18. Cellular immune responses towards regulatory cells.

    PubMed

    Larsen, Stine Kiær

    2016-01-01

    Tregs and for modulation of Treg and DC suppressive activity, including CD25 antibodies and chemotherapy. The research presented in this thesis offer an alternative approach to targeting suppressive cells subsets, by activating the immune system against proteins expressed by these cell types.

  19. Regulation of the adaptive immune system by innate lymphoid cells

    PubMed Central

    Hepworth, Matthew R.; Sonnenberg, Gregory F.

    2014-01-01

    Innate lymphoid cells (ILCs) are a group of lymphocytes that promote rapid cytokine-dependent innate immunity, inflammation and tissue repair. In addition, a growing body of evidence suggests ILCs can influence adaptive immune cell responses. During fetal development a subset of ILCs orchestrate the generation and maturation of secondary lymphoid tissues. Following birth, ILCs continue to modulate adaptive immune cell responses indirectly through interactions with stromal cells in lymphoid tissues and epithelial cells at barrier surfaces. In this review we summarize the current understanding of how ILCs modulate the magnitude and quality of adaptive immune cell responses, and in particular focus on recent evidence suggesting that ILCs can also directly regulate CD4+ T cells. Further, we discuss the implications that these pathways may have on human health and disease. PMID:24594491

  20. Cytomegalovirus infection modulates the phenotype and functional profile of the T-cell immune response to mycobacterial antigens in older life☆

    PubMed Central

    Terrazzini, Nadia; Bajwa, Martha; Vita, Serena; Thomas, David; Smith, Helen; Vescovini, Rosanna; Sansoni, Paolo; Kern, Florian

    2014-01-01

    Infection with Cytomegalovirus is associated with accelerated immunosenescence. Expansions of CMV-specific T cell responses have previously been demonstrated to affect the ability of T cells to respond to other infections. Most people above 60 years of age display M. tuberculosis-specific immunity because of vaccination, exposure, or both. T-cell responses can be assessed by measuring intracellular IFN-γ in vitro after tuberculin stimulation. Here we investigated tuberculin-specific CD4 T-cell responses in independently living healthy older people in the South of England using flow-cytometry. Individuals were investigated for tuberculin and CMV-specific T-cell immunity using in vitro antigen stimulation followed by intracellular staining for IFN-γ, TNF-α, IL2, as well as degranulation and CD154 upregulation. We also examined a control group of younger individuals (20–35 years of age). There was no significant difference between older and young people in regards to tuberculin responsiveness of CD4 T-cells; however, older people seemed to show more outliers. Increased responsiveness to tuberculin was significantly correlated to CMV responsiveness but not age. In older donors, the memory phenotype of tuberculin-induced T-cells was significantly skewed towards a more terminal differentiation phenotype in CMV-infected compared to uninfected individuals and the degree of skewing correlated quantitatively with the size of the CMV-specific CD4 T-cell response. This is a fundamental advance over previous reports of changes of the tuberculin-specific CD4 T-cell response with CMV serostatus. Our results show that how the immune system responds to CMV has a fundamental impact on the phenotype and function of the immune response to mycobacterial antigens in older life. PMID:24370373

  1. Modulation of cell proliferation, survival and gene expression by RAGE and TLR signaling in cells of the innate and adaptive immune response: role of p38 MAPK and NF-KB

    PubMed Central

    de MEDEIROS, Marcell Costa; FRASNELLI, Sabrina Cruz Tfaile; BASTOS, Alliny de Souza; ORRICO, Silvana Regina Perez; ROSSA JUNIOR, Carlos

    2014-01-01

    Objective The aim of this study was to evaluate a possible synergism between AGE-RAGE and TLR4 signaling and the role of p38 MAPK and NF-kB signaling pathways on the modulation of the expression of inflammatory cytokines and proliferation of cells from the innate and adaptive immune response. Material and Methods T lymphocyte (JM) and monocyte (U937) cell lines were stimulated with LPS and AGE-BSA independently and associated, both in the presence and absence of p38 MAPK and NF-kB inhibitors. Proliferation was assessed by direct counting and viability was assessed by a biochemical assay of mitochondrial function. Cytokine gene expression for RAGe, CCL3, CCR5, IL-6 and TNF-α was studied by RT-PCR and RT-qPCR. Results RAGE mRNA expression was detected in both cell lines. LPS and AGE-BSA did not influence cell proliferation and viability of either cell line up to 72 hours. LPS and LPS associated with AGE induced expression of IL-6 and TNF-α in monocytes and T cells, respectively. Conclusions There is no synergistic effect between RAGE and TLR signaling on the expression of IL-6, TNF-α , RAGE, CCR5 and CCL3 by monocytes and lymphocytes. Activation of RAGE associated or not with TLR signaling also had no effect on cell proliferation and survival of these cell types. PMID:25025559

  2. Tracking immune cells in vivo using magnetic resonance imaging.

    PubMed

    Ahrens, Eric T; Bulte, Jeff W M

    2013-10-01

    The increasing complexity of in vivo imaging technologies, coupled with the development of cell therapies, has fuelled a revolution in immune cell tracking in vivo. Powerful magnetic resonance imaging (MRI) methods are now being developed that use iron oxide- and ¹⁹F-based probes. These MRI technologies can be used for image-guided immune cell delivery and for the visualization of immune cell homing and engraftment, inflammation, cell physiology and gene expression. MRI-based cell tracking is now also being applied to evaluate therapeutics that modulate endogenous immune cell recruitment and to monitor emerging cellular immunotherapies. These recent uses show that MRI has the potential to be developed in many applications to follow the fate of immune cells in vivo.

  3. 5-AED enhances survival of irradiated mice in a G-CSF-dependent manner, stimulates innate immune cell function, reduces radiation-induced DNA damage and induces genes that modulate cell cycle progression and apoptosis

    PubMed Central

    Grace, Marcy B.; Singh, Vijay K.; Rhee, Juong G.; Jackson, William E.; Kao, Tzu-Cheg; Whitnall, Mark H.

    2012-01-01

    The steroid androst-5-ene-3ß,17ß-diol (5-androstenediol, 5-AED) elevates circulating granulocytes and platelets in animals and humans, and enhances survival during the acute radiation syndrome (ARS) in mice and non-human primates. 5-AED promotes survival of irradiated human hematopoietic progenitors in vitro through induction of Nuclear Factor-κB (NFκB)-dependent Granulocyte Colony-Stimulating Factor (G-CSF) expression, and causes elevations of circulating G-CSF and interleukin-6 (IL-6). However, the in vivo cellular and molecular effects of 5-AED are not well understood. The aim of this study was to investigate the mechanisms of action of 5-AED administered subcutaneously (s.c.) to mice 24 h before total body γ- or X-irradiation (TBI). We used neutralizing antibodies, flow cytometric functional assays of circulating innate immune cells, analysis of expression of genes related to cell cycle progression, DNA repair and apoptosis, and assessment of DNA strand breaks with halo-comet assays. Neutralization experiments indicated endogenous G-CSF but not IL-6 was involved in survival enhancement by 5-AED. In keeping with known effects of G-CSF on the innate immune system, s.c. 5-AED stimulated phagocytosis in circulating granulocytes and oxidative burst in monocytes. 5-AED induced expression of both bax and bcl-2 in irradiated animals. Cdkn1a and ddb1, but not gadd45a expression, were upregulated by 5-AED in irradiated mice. S.c. 5-AED administration caused decreased DNA strand breaks in splenocytes from irradiated mice. Our results suggest 5-AED survival enhancement is G-CSF-dependent, and that it stimulates innate immune cell function and reduces radiation-induced DNA damage via induction of genes that modulate cell cycle progression and apoptosis. PMID:22843381

  4. 5-AED enhances survival of irradiated mice in a G-CSF-dependent manner, stimulates innate immune cell function, reduces radiation-induced DNA damage and induces genes that modulate cell cycle progression and apoptosis.

    PubMed

    Grace, Marcy B; Singh, Vijay K; Rhee, Juong G; Jackson, William E; Kao, Tzu-Cheg; Whitnall, Mark H

    2012-11-01

    The steroid androst-5-ene-3ß,17ß-diol (5-androstenediol, 5-AED) elevates circulating granulocytes and platelets in animals and humans, and enhances survival during the acute radiation syndrome (ARS) in mice and non-human primates. 5-AED promotes survival of irradiated human hematopoietic progenitors in vitro through induction of Nuclear Factor-κB (NFκB)-dependent Granulocyte Colony-Stimulating Factor (G-CSF) expression, and causes elevations of circulating G-CSF and interleukin-6 (IL-6). However, the in vivo cellular and molecular effects of 5-AED are not well understood. The aim of this study was to investigate the mechanisms of action of 5-AED administered subcutaneously (s.c.) to mice 24 h before total body γ- or X-irradiation (TBI). We used neutralizing antibodies, flow cytometric functional assays of circulating innate immune cells, analysis of expression of genes related to cell cycle progression, DNA repair and apoptosis, and assessment of DNA strand breaks with halo-comet assays. Neutralization experiments indicated endogenous G-CSF but not IL-6 was involved in survival enhancement by 5-AED. In keeping with known effects of G-CSF on the innate immune system, s.c. 5-AED stimulated phagocytosis in circulating granulocytes and oxidative burst in monocytes. 5-AED induced expression of both bax and bcl-2 in irradiated animals. Cdkn1a and ddb1, but not gadd45a expression, were upregulated by 5-AED in irradiated mice. S.c. 5-AED administration caused decreased DNA strand breaks in splenocytes from irradiated mice. Our results suggest 5-AED survival enhancement is G-CSF-dependent, and that it stimulates innate immune cell function and reduces radiation-induced DNA damage via induction of genes that modulate cell cycle progression and apoptosis.

  5. Can Reproductive Hormones Modulate Host Immunity to Breast Cancer Antigens

    DTIC Science & Technology

    2005-07-01

    AD Award Number: W81XWH-04-1-0668 TITLE: Can Reproductive Hormones Modulate Host Immunity to Breast Cancer Antigens PRINCIPAL INVESTIGATOR: Richard T...AND SUBTITLE 5a. CONTRACT NUMBER Can Reproductive Hormones Modulate Host Immunity to Breast Cancer Antigens 5b. GRANT NUMBER W81XWH-04-!1-0668 5c...neu-N mice can be readily applied to clinical trial development. The goal of the present work is to test the hypothesis that reproductive hormones can

  6. Immune modulation by MANF promotes tissue repair and regenerative success in the retina.

    PubMed

    Neves, Joana; Zhu, Jie; Sousa-Victor, Pedro; Konjikusic, Mia; Riley, Rebeccah; Chew, Shereen; Qi, Yanyan; Jasper, Heinrich; Lamba, Deepak A

    2016-07-01

    Regenerative therapies are limited by unfavorable environments in aging and diseased tissues. A promising strategy to improve success is to balance inflammatory and anti-inflammatory signals and enhance endogenous tissue repair mechanisms. Here, we identified a conserved immune modulatory mechanism that governs the interaction between damaged retinal cells and immune cells to promote tissue repair. In damaged retina of flies and mice, platelet-derived growth factor (PDGF)-like signaling induced mesencephalic astrocyte-derived neurotrophic factor (MANF) in innate immune cells. MANF promoted alternative activation of innate immune cells, enhanced neuroprotection and tissue repair, and improved the success of photoreceptor replacement therapies. Thus, immune modulation is required during tissue repair and regeneration. This approach may improve the efficacy of stem-cell-based regenerative therapies.

  7. Platelet Interaction with Innate Immune Cells

    PubMed Central

    Kral, Julia Barbara; Schrottmaier, Waltraud Cornelia; Salzmann, Manuel; Assinger, Alice

    2016-01-01

    Summary Beyond their traditional role in haemostasis and thrombosis, platelets are increasingly recognised as immune modulatory cells. Activated platelets and platelet-derived microparticles can bind to leukocytes, which stimulates mutual activation and results in rapid, local release of platelet-derived cytokines. Thereby platelets modulate leukocyte effector functions and contribute to inflammatory and immune responses to injury or infection. Platelets enhance leukocyte extravasation, differentiation and cytokine release. Platelet-neutrophil interactions boost oxidative burst, neutrophil extracellular trap formation and phagocytosis and play an important role in host defence. Platelet interactions with monocytes propagate their differentiation into macrophages, modulate cytokine release and attenuate macrophage functions. Depending on the underlying pathology, platelets can enhance or diminish leukocyte cytokine production, indicating that platelet-leukocyte interactions represent a fine balanced system to restrict excessive inflammation during infection. In atherosclerosis, platelet interaction with neutrophils, monocytes and dendritic cells accelerates key steps of atherogenesis by promoting leukocyte extravasation and foam cell formation. Platelet-leukocyte interactions at sites of atherosclerotic lesions destabilise atherosclerotic plaques and promote plaque rupture. Leukocytes in turn also modulate platelet function and production, which either results in enhanced platelet destruction or increased platelet production. This review aims to summarise the key effects of platelet-leukocyte interactions in inflammation, infection and atherosclerosis. PMID:27226790

  8. The endogenous immune response modulates the course of IgA-immune complex mediated nephropathy.

    PubMed

    Chao, T-K; Rifai, A; Ka, S-M; Yang, S-M; Shui, H-A; Lin, Y-F; Sytwu, H-K; Lee, W-H; Kung, J T; Chen, A

    2006-07-01

    In animal models of IgA nephropathy, the inevitable endogenous immune response to passively administered antigens alone or in complex with specific IgA mask the exact role each might play in pathogenesis. To delineate the role the immune response might play, we have developed a passive model with exclusive IgA-immune complex-mediated nephropathy in B-cell-deficient (BCD) mice. Glomerular IgA immune deposits were induced by administration of purified IgA antiphosphorylcholine and the specific pneumococcal C-polysaccharide (PnC) antigen daily for 2 weeks into BCD and wild-type (WT) mice. In BCD mice IgA+PnC deposits induced severe glomerular injury and renal dysfunction. In contrast, WT mice developed intense glomerular IgG and IgM and C3 co-deposits of the IgA+PnC with significantly less renal injury. Cytofluorometric analysis revealed that PnC induced in BCD, but not in WT, a rapid and dramatic increase in number of activated CD3(+)/CD69(+) T-cell population. The nuclear factor-kappa B (NF-kappaB) transcription factor was activated early and progressively increased in response to glomerular IgA+PnC deposits. These results suggest that nephritogenic IgA+PnC immune deposits induce glomerular and renal dysfunction through activation of the NF-kappaB. This inflammatory pathway is modulated by the endogenous cellular and antibody response to the antigen affecting the course of IgA nephropathy progression.

  9. Modulation of Innate Immune Mechanisms to Enhance Leishmania Vaccine-Induced Immunity: Role of Coinhibitory Molecules

    PubMed Central

    Gannavaram, Sreenivas; Bhattacharya, Parna; Ismail, Nevien; Kaul, Amit; Singh, Rakesh; Nakhasi, Hira L.

    2016-01-01

    No licensed human vaccines are currently available against any parasitic disease including leishmaniasis. Several antileishmanial vaccine formulations have been tested in various animal models, including genetically modified live-attenuated parasite vaccines. Experimental infection studies have shown that Leishmania parasites utilize a broad range of strategies to undermine effector properties of host phagocytic cells, i.e., dendritic cells (DCs) and macrophages (MΦ). Furthermore, Leishmania parasites have evolved strategies to actively inhibit TH1 polarizing functions of DCs and to condition the infected MΦ toward anti-inflammatory/alternative/M2 phenotype. The altered phenotype of phagocytic cells is characterized by decreased production of antimicrobial reactive oxygen, nitrogen molecules, and pro-inflammatory cytokines, such as IFN-γ, IL-12, and TNF-α. These early events limit the activation of TH1-effector cells and set the stage for pathogenesis. Furthermore, this early control of innate immunity by the virulent parasites results in substantial alteration in the adaptive immunity characterized by reduced proliferation of CD4+ and CD8+ T cells and TH2-biased immunity that results in production of anti-inflammatory cytokines, such as TGF-β, and IL-10. More recent studies have also documented the induction of coinhibitory ligands, such as CTLA-4, PD-L1, CD200, and Tim-3, that induce exhaustion and/or non-proliferation in antigen-experienced T cells. Most of these studies focus on viral infections in chronic phase, thus limiting the direct application of these results to parasitic infections and much less to parasitic vaccines. However, these studies suggest that vaccine-induced protective immunity can be modulated using strategies that enhance the costimulation that might reduce the threshold necessary for T cell activation and conversely by strategies that reduce or block inhibitory molecules, such as PD-L1 and CD200. In this review, we will focus on the

  10. Evolution of B Cell Immunity

    PubMed Central

    Sunyer, J. Oriol

    2013-01-01

    Two types of adaptive immune strategies are known to have evolved in vertebrates: the VLR-based system, which is present in jawless organisms and is mediated by VLRA and VLRB lymphocytes, and the BCR/TCR-based system, which is present in jawed species and is provided by B and T cell receptors expressed on B and T cells, respectively. Here we summarize features of B cells and their predecessors in the different animal phyla, focusing the review on B cells from jawed vertebrates. We point out the critical role of nonclassical species and comparative immunology studies in the understanding of B cell immunity. Because nonclassical models include species relevant to veterinary medicine, basic science research performed in these animals contributes to the knowledge required for the development of more efficacious vaccines against emerging pathogens. PMID:25340015

  11. Cell-autonomous stress responses in innate immunity.

    PubMed

    Moretti, Julien; Blander, J Magarian

    2017-01-01

    The innate immune response of phagocytes to microbes has long been known to depend on the core signaling cascades downstream of pattern recognition receptors (PRRs), which lead to expression and production of inflammatory cytokines that counteract infection and induce adaptive immunity. Cell-autonomous responses have recently emerged as important mechanisms of innate immunity. Either IFN-inducible or constitutive, these processes aim to guarantee cell homeostasis but have also been shown to modulate innate immune response to microbes and production of inflammatory cytokines. Among these constitutive cell-autonomous responses, autophagy is prominent and its role in innate immunity has been well characterized. Other stress responses, such as metabolic stress, the ER stress/unfolded protein response, mitochondrial stress, or the DNA damage response, seem to also be involved in innate immunity, although the precise mechanisms by which they regulate the innate immune response are not yet defined. Of importance, these distinct constitutive cell-autonomous responses appear to be interconnected and can also be modulated by microbes and PRRs, which add further complexity to the interplay between innate immune signaling and cell-autonomous responses in the mediation of an efficient innate immune response.

  12. Long-term feeding with Euglena gracilis cells modulates immune responses, oxidative balance and metabolic condition in Diplodon chilensis (Mollusca, Bivalvia, Hyriidae) exposed to living Escherichia coli.

    PubMed

    Bianchi, Virginia A; Castro, Juan M; Rocchetta, Iara; Nahabedian, Daniel E; Conforti, Visitación; Luquet, Carlos M

    2015-02-01

    We evaluated the modulating effect of long-term feeding with lyophilized Euglena gracilis cells on immune response, oxidative balance and metabolic condition of the freshwater mussel Diplodon chilensis. Mussels, previously fed with Scenedesmus vacuolatus (SV) or E. gracilis (EG) for 90 days, were challenged with an environmentally relevant concentration of Escherichia coli in water for 5 days, under feeding or starvation conditions. EG diet increased overall phagocytic activity and tissue hemocyte accumulation (gill and mantle), and favored hemocyte viability upon E. coli challenge. Tissular hemocyte accumulation, and humoral bacteriolytic activity and protein content were similarly stimulated by EG and E. coli, with no further effect when both stimuli were combined. Both, E. coli challenge and EG diet reduced gill bacteriolytic activity with respect to nonchallenged SV mussels, while no effect was observed in challenged EG mussels. Gill and digestive gland protein contents, along with digestive gland bacteriolytic activity were higher in EG than in SV mussels. Both SV and EG mussels showed increased gill mass upon E. coli challenge, while digestive gland mass was increased by bacterial challenge only in SV mussels. Bacterial challenge produced no effect on humoral reactive oxygen species levels of both groups. Total oxyradical scavenging capacity levels was reduced in challenged SV mussels but remained unaffected in EG ones. In general, EG diet decreased glutathione S-transferase and catalase activities in gill and digestive gland, compared with SV diet; but increased enzyme activity was evident in challenged mussels of both groups. Gill and digestive gland lipid peroxidation levels were higher in EG than in SV mussels but E. coli challenge had stronger effect on SV mussels. Adductor muscle RNA:DNA ratio was higher in EG mussels than in SV ones, and increased upon E. coli challenge in mussels of both groups. E. gracilis can be suggested as a nutritional and

  13. Chronic schistosome infection leads to modulation of granuloma formation and systemic immune suppression

    PubMed Central

    Lundy, Steven K.; Lukacs, Nicholas W.

    2012-01-01

    Schistosome worms have been infecting humans for millennia, but it is only in the last half century that we have begun to understand the complexities of this inter-relationship. As our sophistication about the inner workings of every aspect of the immune system has increased, it has also become obvious that schistosome infections have broad ranging effects on nearly all of the innate and adaptive immune response mechanisms. Selective pressures on both the worms and their hosts, has no doubt led to co-evolution of protective mechanisms, particularly those that favor granuloma formation around schistosome eggs and immune suppression during chronic infection. The immune modulatory effects that chronic schistosome infection and egg deposition elicit have been intensely studied, not only because of their major implications to public health issues, but also due to the emerging evidence that schistosome infection may protect humans from severe allergies and autoimmunity. Mouse models of schistosome infection have been extremely valuable for studying immune modulation and regulation, and in the discovery of novel aspects of immunity. A progression of immune reactions occurs during granuloma formation ranging from innate inflammation, to activation of each branch of adaptive immune response, and culminating in systemic immune suppression and granuloma fibrosis. Although molecular factors from schistosome eggs have been identified as mediators of immune modulation and suppressive functions of T and B cells, much work is still needed to define the mechanisms of the immune alteration and determine whether therapies for asthma or autoimmunity could be developed from these pathways. PMID:23429492

  14. Control of local immunity by airway epithelial cells.

    PubMed

    Weitnauer, M; Mijošek, V; Dalpke, A H

    2016-03-01

    The lung is ventilated by thousand liters of air per day. Inevitably, the respiratory system comes into contact with airborne microbial compounds, most of them harmless contaminants. Airway epithelial cells are known to have innate sensor functions, thus being able to detect microbial danger. To avoid chronic inflammation, the pulmonary system has developed specific means to control local immune responses. Even though airway epithelial cells can act as proinflammatory promoters, we propose that under homeostatic conditions airway epithelial cells are important modulators of immune responses in the lung. In this review, we discuss epithelial cell regulatory functions that control reactivity of professional immune cells within the microenvironment of the airways and how these mechanisms are altered in pulmonary diseases. Regulation by epithelial cells can be divided into two mechanisms: (1) mediators regulate epithelial cells' innate sensitivity in cis and (2) factors are produced that limit reactivity of immune cells in trans.

  15. Cinobufagin Modulates Human Innate Immune Responses and Triggers Antibacterial Activity

    PubMed Central

    Xie, Shanshan; Spelmink, Laura; Codemo, Mario; Subramanian, Karthik; Pütsep, Katrin

    2016-01-01

    The traditional Chinese medicine Chan-Su is widely used for treatment of cancer and cardiovascular diseases, but also as a remedy for infections such as furunculosis, tonsillitis and acute pharyngitis. The clinical use of Chan-Su suggests that it has anti-infective effects, however, the mechanism of action is incompletely understood. In particular, the effect on the human immune system is poorly defined. Here, we describe previously unrecognized immunomodulatory activities of cinobufagin (CBG), a major bioactive component of Chan-Su. Using human monocyte-derived dendritic cells (DCs), we show that LPS-induced maturation and production of a number of cytokines was potently inhibited by CBG, which also had a pro-apoptotic effect, associated with activation of caspase-3. Interestingly, CBG triggered caspase-1 activation and significantly enhanced IL-1β production in LPS-stimulated cells. Finally, we demonstrate that CBG upregulates gene expression of the antimicrobial peptides (AMPs) hBD-2 and hBD-3 in DCs, and induces secretion of HNP1-3 and hCAP-18/LL-37 from neutrophils, potentiating neutrophil antibacterial activity. Taken together, our data indicate that CBG modulates the inflammatory phenotype of DCs in response to LPS, and triggers an antibacterial innate immune response, thus proposing possible mechanisms for the clinical effects of Chan-Su in anti-infective therapy. PMID:27529866

  16. Immune modulation by helminth parasites of ruminants: implications for vaccine development and host immune competence.

    PubMed

    McNeilly, Tom N; Nisbet, Alasdair J

    2014-01-01

    Parasitic helminths reside in immunologically-exposed extracellular locations within their hosts, yet they are capable of surviving for extended periods. To enable this survival, these parasites have developed complex and multifaceted mechanisms to subvert or suppress host immunity. This review summarises current knowledge of immune modulation by helminth parasites of ruminants and the parasite-derived molecules involved in driving this modulation. Such immunomodulatory molecules have considerable promise as vaccine targets, as neutralisation of their function is predicted to enhance anti-parasite immunity and, as such, current knowledge in this area is presented herein. Furthermore, we summarise current evidence that, as well as affecting parasite-specific immunity, immune modulation by these parasites may also affect the ability of ruminant hosts to control concurrent diseases or mount effective responses to vaccination.

  17. Regulation of intestinal immune system by dendritic cells.

    PubMed

    Ko, Hyun-Jeong; Chang, Sun-Young

    2015-02-01

    Innate immune cells survey antigenic materials beneath our body surfaces and provide a front-line response to internal and external danger signals. Dendritic cells (DCs), a subset of innate immune cells, are critical sentinels that perform multiple roles in immune responses, from acting as principal modulators to priming an adaptive immune response through antigen-specific signaling. In the gut, DCs meet exogenous, non-harmful food antigens as well as vast commensal microbes under steady-state conditions. In other instances, they must combat pathogenic microbes to prevent infections. In this review, we focus on the function of intestinal DCs in maintaining intestinal immune homeostasis. Specifically, we describe how intestinal DCs affect IgA production from B cells and influence the generation of unique subsets of T cell.

  18. TLR ligands, but not modulators of histone modifiers, can induce the complex immune response pattern of endotoxin tolerance in mammary epithelial cells.

    PubMed

    Günther, Juliane; Petzl, Wolfram; Zerbe, Holm; Schuberth, Hans-Joachim; Seyfert, Hans-Martin

    2017-02-01

    Excessive stimulation of the TLR4 axis through LPS reduces the expression of some cytokine genes in immune cells, while stimulating the expression of immune defense genes during a subsequent bacterial infection. This endotoxin tolerance (ET) is mediated via epigenetic mechanisms. Priming the udder of cows with LPS was shown to induce ET in mammary epithelial cells (MEC), thereby protecting the udder against reinfection for some time. Seeking alternatives to LPS priming we tried to elicit ET by priming MEC with either lipopeptide (Pam2CSK4) via the TLR2/6 axis or inhibitors of histone-modifying enzymes. Pre-incubation of MEC with Pam2CSK4 enhanced baseline and induced expression of bactericidal (β-defensin; SLPI) and membrane protecting factors ( SAA3, TGM3), while reducing the expression of cytokine- and chemokine-encoding genes ( TNF, IL1β) after a subsequent pathogen challenge, the latter, however, not as efficiently as after LPS priming. Pre-treating MEC with various inhibitors of histone H3 modifiers (for demethylation, acetylation or deacetylation) all failed to induce any of the protective factors and only resulted in some dampening of cytokine gene expression after the re-challenge. Hence, triggering immune functions via the TLR axis, but not through those histone modifiers, induced the beneficial phenomenon of ET in MEC.

  19. Cell-Cell Communication Via Extracellular Membrane Vesicles and Its Role in the Immune Response

    PubMed Central

    Hwang, Inkyu

    2013-01-01

    The host immune response involves a variety of cell types, including specialized immune and non-immune cells. The delicate coordination among these cells via close communication is central for the proper operation of immune system. Cell-cell communication is mediated by a complex network that includes soluble factors such as cytokines, chemokines, and metabolites exported from cells, as well as membrane-bound receptors and their ligands. Cell-cell communication is also mediated by membrane vesicles (e.g., exosomes, ectosomes), which are either shed by distant cells or exchanged by cells that are making direct contact. Intercellular communication via extracellular membrane vesicles has drawn much attention recently, as they have been shown to carry various biomolecules that modulate the activities of recipient cells. In this review, I will discuss current views on cell-cell communication via extra-cellular membrane vesicles, especially shedded membrane vesicles, and their effects on the control of the immune system. PMID:23807045

  20. Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulation

    PubMed Central

    2013-01-01

    Background We previously found that the low frequency magnetic fields (LF-MF) inhibited gastric and lung cancer cell growth. We suppose that exposure to LF-MF may modulate immune function so as to inhibit tumor. We here investigated whether LF-MF can inhibit the proliferation and metastasis of melanoma and influence immune function. Methods The effect of MF on the proliferation, cell cycle and ultrastracture of B16-F10 in vitro was detected by cell counting Kit-8 assay, flow cytometry, and transmission electron microscopy. Lung metastasis mice were prepared by injection of 2 × 105 B16-F10 melanoma cells into the tail vein in C57BL/6 mice. The mice were then exposed to an LF-MF (0.4 T, 7.5 Hz) for 43 days. Survival rate, tumor markers and the innate and adaptive immune parameters were measured. Results The growth of B16-F10 cells was inhibited after exposure to the LF-MF. The inhibition was related to induction of cell cycle arrest and decomposition of chromatins. Moreover, the LF-MF prolonged the mouse survival rate and inhibited the proliferation of B16-F10 in melanoma metastasis mice model. Furthermore, the LF-MF modulated the immune response via regulation of immune cells and cytokine production. In addition, the number of Treg cells was decreased in mice with the LF-MF exposure, while the numbers of T cells as well as dendritic cells were significantly increased. Conclusion LF-MF inhibited the growth and metastasis of melanoma cancer cells and improved immune function of tumor-bearing mice. This suggests that the inhibition may be attributed to modulation of LF-MF on immune function and LF-MF may be a potential therapy for treatment of melanoma. PMID:24314291

  1. Immune Cells in Blood Recognize Tumors

    Cancer.gov

    NCI scientists have developed a novel strategy for identifying immune cells circulating in the blood that recognize specific proteins on tumor cells, a finding they believe may have potential implications for immune-based therapies.

  2. Live-attenuated lentivirus immunization modulates innate immunity and inflammation while protecting rhesus macaques from vaginal simian immunodeficiency virus challenge.

    PubMed

    Genescà, Meritxell; Ma, Zhong-Min; Wang, Yichuan; Assaf, Basel; Qureshi, Huma; Fritts, Linda; Huang, Ying; McChesney, Michael B; Miller, Christopher J

    2012-09-01

    Immunization with attenuated lentiviruses is the only reliable method of protecting rhesus macaques (RM) from vaginal challenge with pathogenic simian immunodeficiency virus (SIV). CD8(+) lymphocyte depletion prior to SIVmac239 vaginal challenge demonstrated that a modest, Gag-specific CD8(+) T cell response induced by immunization with simian-human immunodeficiency virus 89.6 (SHIV89.6) protects RM. Although CD8(+) T cells are required for protection, there is no anamnestic expansion of SIV-specific CD8(+) T cells in any tissues except the vagina after challenge. Further, SHIV immunization increased the number of viral target cells in the vagina and cervix, suggesting that the ratio of target cells to antiviral CD8(+) T cells was not a determinant of protection. We hypothesized that persistent replication of the attenuated vaccine virus modulates inflammatory responses and limits T cell activation and expansion by inducing immunoregulatory T cell populations. We found that attenuated SHIV infection decreased the number of circulating plasmacytoid dendritic cells, suppressed T cell activation, decreased mRNA levels of proinflammatory mediators, and increased mRNA levels of immunoregulatory molecules. Three days after SIV vaginal challenge, SHIV-immunized RM had significantly more T regulatory cells in the vagina than the unimmunized RM. By day 14 postchallenge, immune activation and inflammation were characteristic of unimmunized RM but were minimal in SHIV-immunized RM. Thus, a modest vaccine-induced CD8(+) T cell response in the context of immunoregulatory suppression of T cell activation may protect against vaginal HIV transmission.

  3. Advances in immune-modulating therapies to treat atherosclerotic cardiovascular diseases.

    PubMed

    Chyu, Kuang-Yuh; Shah, Prediman K

    2014-03-01

    In addition to hypercholesterolemia, innate and adaptive immune mechanisms play a critical role in atherogenesis, thus making immune-modulation therapy a potentially attractive way of managing atherosclerotic cardiovascular disease. These immune-modulation strategies include both active and passive immunization and confer beneficial reduction in atherosclerosis. Preclinical studies have demonstrated promising results and we review current knowledge on the complex role of the immune system and the potential for immunization as an immune-modulation therapy for atherosclerosis.

  4. Targeting microRNAs as key modulators of tumor immune response.

    PubMed

    Paladini, Laura; Fabris, Linda; Bottai, Giulia; Raschioni, Carlotta; Calin, George A; Santarpia, Libero

    2016-06-27

    The role of immune response is emerging as a key factor in the complex multistep process of cancer. Tumor microenvironment contains different types of immune cells, which contribute to regulate the fine balance between anti and protumor signals. In this context, mechanisms of crosstalk between cancer and immune cells remain to be extensively elucidated. Interestingly, microRNAs (miRNAs) have been demonstrated to function as crucial regulators of immune response in both physiological and pathological conditions. Specifically, different miRNAs have been reported to have a role in controlling the development and the functions of tumor-associated immune cells. This review aims to describe the most important miRNAs acting as critical modulators of immune response in the context of different solid tumors. In particular, we discuss recent studies that have demonstrated the existence of miRNA-mediated mechanisms regulating the recruitment and the activation status of specific tumor-associated immune cells in the tumor microenvironment. Moreover, various miRNAs have been found to target key cancer-related immune pathways, which concur to mediate the secretion of immunosuppressive or immunostimulating factors by cancer or immune cells. Modalities of miRNA exchange and miRNA-based delivery strategies are also discussed. Based on these findings, the modulation of individual or multiple miRNAs has the potential to enhance or inhibit specific immune subpopulations supporting antitumor immune responses, thus contributing to negatively affect tumorigenesis. New miRNA-based strategies can be developed for more effective immunotherapeutic interventions in cancer.

  5. Pneumonia, Acute Respiratory Distress Syndrome, and Early Immune-Modulator Therapy

    PubMed Central

    Lee, Kyung-Yil

    2017-01-01

    Acute respiratory distress syndrome (ARDS) is caused by infectious insults, such as pneumonia from various pathogens or related to other noninfectious events. Clinical and histopathologic characteristics are similar across severely affected patients, suggesting that a common mode of immune reaction may be involved in the immunopathogenesis of ARDS. There may be etiologic substances that have an affinity for respiratory cells and induce lung cell injury in cases of ARDS. These substances originate not only from pathogens, but also from injured host cells. At the molecular level, these substances have various sizes and biochemical characteristics, classifying them as protein substances and non-protein substances. Immune cells and immune proteins may recognize and act on these substances, including pathogenic proteins and peptides, depending upon the size and biochemical properties of the substances (this theory is known as the protein-homeostasis-system hypothesis). The severity or chronicity of ARDS depends on the amount of etiologic substances with corresponding immune reactions, the duration of the appearance of specific immune cells, or the repertoire of specific immune cells that control the substances. Therefore, treatment with early systemic immune modulators (corticosteroids and/or intravenous immunoglobulin) as soon as possible may reduce aberrant immune responses in the potential stage of ARDS. PMID:28208675

  6. Encapsulated Cellular Implants for Recombinant Protein Delivery and Therapeutic Modulation of the Immune System

    PubMed Central

    Lathuilière, Aurélien; Mach, Nicolas; Schneider, Bernard L.

    2015-01-01

    Ex vivo gene therapy using retrievable encapsulated cellular implants is an effective strategy for the local and/or chronic delivery of therapeutic proteins. In particular, it is considered an innovative approach to modulate the activity of the immune system. Two recently proposed therapeutic schemes using genetically engineered encapsulated cells are discussed here: the chronic administration of monoclonal antibodies for passive immunization against neurodegenerative diseases and the local delivery of a cytokine as an adjuvant for anti-cancer vaccines. PMID:26006227

  7. The Dynamics of Interactions Among Immune and Glioblastoma Cells.

    PubMed

    Eder, Katalin; Kalman, Bernadette

    2015-12-01

    Glioblastoma is the most common intracranial malignancy that constitutes about 50 % of all gliomas. Despite aggressive, multimodal therapy consisting of surgery, radiation, and chemotherapy, the outcome of patients with glioblastoma remains poor with 5-year survival rates of <10 %. Resistance to conventional therapies is most likely caused by several factors. Alterations in the functions of local immune mediators may represent a critical contributor to this resistance. The tumor microenvironment contains innate and adaptive immune cells in addition to the cancer cells and their surrounding stroma. These various cells communicate with each other by means of direct cell-cell contact or by soluble factors including cytokines and chemokines, and act in autocrine and paracrine manners to modulate tumor growth. There are dynamic interactions among the local immune elements and the tumor cells, where primarily the protective immune cells attempt to overcome the malignant cells. However, by developing somatic mutations and epigenetic modifications, the glioblastoma tumor cells acquire the capability of counteracting the local immune responses, and even exploit the immune cells and products for their own growth benefits. In this review, we survey those immune mechanisms that likely contribute to glioblastoma pathogenesis and may serve as a basis for novel treatment strategies.

  8. Neural tube defects, folate, and immune modulation.

    PubMed

    Denny, Kerina J; Jeanes, Angela; Fathe, Kristin; Finnell, Richard H; Taylor, Stephen M; Woodruff, Trent M

    2013-09-01

    Periconceptional supplementation with folic acid has led to a significant worldwide reduction in the incidence of neural tube defects (NTDs). However, despite increasing awareness of the benefits of folic acid supplementation and the implementation of food fortification programs in many countries, NTDs continue to be a leading cause of perinatal morbidity and mortality worldwide. Furthermore, there exists a significant subgroup of women who appear to be resistant to the protective effects of folic acid supplementation. The following review addresses emerging clinical and experimental evidence for a role of the immune system in the etiopathogenesis of NTDs, with the aim of developing novel preventative strategies to further reduce the incidence of NTD-affected pregnancies. In particular, recent studies demonstrating novel roles and interactions between innate immune factors such as the complement cascade, neurulation, and folate metabolism are explored.

  9. Exosomes and nanotubes: Control of immune cell communication.

    PubMed

    McCoy-Simandle, Kessler; Hanna, Samer J; Cox, Dianne

    2016-02-01

    Cell-cell communication is critical to coordinate the activity and behavior of a multicellular organism. The cells of the immune system not only must communicate with similar cells, but also with many other cell types in the body. Therefore, the cells of the immune system have evolved multiple ways to communicate. Exosomes and tunneling nanotubes (TNTs) are two means of communication used by immune cells that contribute to immune functions. Exosomes are small membrane vesicles secreted by most cell types that can mediate intercellular communication and in the immune system they are proposed to play a role in antigen presentation and modulation of gene expression. TNTs are membranous structures that mediate direct cell-cell contact over several cell diameters in length (and possibly longer) and facilitate the interaction and/or the transfer of signals, material and other cellular organelles between connected cells. Recent studies have revealed additional, but sometimes conflicting, structural and functional features of both exosomes and TNTs. Despite the new and exciting information in exosome and TNT composition, origin and in vitro function, biologically significant functions are still being investigated and determined. In this review, we discuss the current field regarding exosomes and TNTs in immune cells providing evaluation and perspectives of the current literature.

  10. Modulation of HIV-1 immunity by adjuvants

    PubMed Central

    Moody, M. Anthony

    2014-01-01

    Purpose of review To summarize the role of adjuvants in eliciting desirable antibody responses against HIV-1 with particular emphasis on both historical context and recent developments. Recent findings Increased understanding of the role of pattern recognition receptors such as Toll-like receptors in recruiting and directing the immune system has increased the variety of adjuvant formulations being tested in animal models and humans. Across all vaccine platforms, adjuvant formulations have been shown to enhance desirable immune responses such as higher antibody titers and increased functional activity. Although no vaccine formulation has yet succeeded in eliciting broad neutralizing antibodies against HIV-1, the ability of adjuvants to direct the immune response to immunogens suggests they will be critically important in any successful HIV-1 vaccine. Summary The parallel development of adjuvants along with better HIV-1 immunogens will be needed for a successful AIDS vaccine. Additional comparative testing will be required to determine the optimal adjuvant and immunogen regimen that can elicit antibody responses capable of blocking HIV-1 transmission. PMID:24670321

  11. Tamibarotene modulates the local immune response in experimental periodontitis.

    PubMed

    Jin, Ying; Wang, Linyuan; Liu, Dixin; Lin, Xiaoping

    2014-12-01

    Tamibarotene (Am80), a synthetic retinoic acid receptor (RAR), is an agonist with high specificity for RARα and RARβ. Retinoid agonists have been shown to inhibit Th17 cell polarization and to enhance forkhead box P3 (Foxp3) expression during the course of inflammatory diseases. The aim of this study was to evaluate the previously unrecognized role of Am80 in regulating the immune responses of periodontitis within the oral microenvironment. The experimental model of periodontitis in mice was induced by oral infection with Porphyromonas gingivalis (P. gingivalis) W83. Our results indicated that Am80 effectively suppressed alveolar bone resorption induced by P. gingivalis W83 and decreased the number of osteoclasts. We clarified that these effects were closely associated with the reduced percentage of CD4(+) retinoid-related orphan receptor (ROR)γt(+) cells and increased the percentage of CD4(+) Foxp3(+) cells in the gingival tissues, cervical lymph nodes (CLNs), and spleen. Furthermore, in P. gingivalis-infected mice, Am80 down-regulated mRNA expression levels of interleukin-17A (IL-17A), receptor activator of nuclear factor-kappa beta ligand (RANKL), monocyte chemotactic protein-1 (MCP-1), IL-6, and IL-1β. Simultaneously, Am80 up-regulated expression levels of IL-10 and transforming growth factor-β1 (TGF-β1) in gingival tissues and the CLNs. Our results suggest that Am80 could protect against periodontal bone resorption, primarily through the modulation of immune responses in the oral microenvironment, and demonstrate the potential of Am80 as a novel clinical strategy for preventing periodontitis.

  12. Salecan protected against concanavalin A-induced acute liver injury by modulating T cell immune responses and NMR-based metabolic profiles.

    PubMed

    Sun, Qi; Xu, Xi; Yang, Xiao; Weng, Dan; Wang, Junsong; Zhang, Jianfa

    2017-02-15

    Salecan, a water-soluble extracellular β-glucan produced by Agrobacterium sp. ZX09, has been reported to exhibit a wide range of biological effects. The aims of the present study were to investigate the protective effect of salecan against Concanavalin A (ConA)-induced hepatitis, a well-established animal model of immune-mediated liver injury, and to search for possible mechanisms. C57BL/6 mice were pretreated with salecan followed by ConA injection. Salecan treatment significantly reduced ConA-induced acute liver injury, and suppressed the expression and secretion of inflammatory cytokines including interferon (IFN)-γ, interleukin (IL)-6 and IL-1β in ConA-induced liver injury model. The high expression levels of chemokines and adhesion molecules such as MIP-1α, MIP-1β, ICAM-1, MCP-1 and RANTES in the liver induced by ConA were also down-regulated after salecan treatment. Salecan inhibited the infiltration and activation of inflammatory cells, especially T cells, in the liver induced by ConA. Moreover, salecan reversed the metabolic profiles of ConA-treated mice towards the control group by partly recovering the metabolic perturbations induced by ConA. Our results suggest the preventive and therapeutic potential of salecan in immune-mediated hepatitis.

  13. Increasing Stem Cell Dose Promotes Posttransplant Immune Reconstitution.

    PubMed

    Xu, Ning; Shen, Sylvie; Dolnikov, Alla

    2017-01-16

    Umbilical cord blood (UCB) transplantation can provide a successful therapeutic option for patients that have no suitable related donor. UCB transplantation is often limited by the relatively small hematopoietic stem cell (HSC) numbers in UCB especially for adult recipients. Early neutrophil and platelet engraftment correlates with the stem cell numbers in UCB transplant. Compared to other HSC sources, immune reconstitution following UCB transplant is slower and complicated by increased frequency of opportunistic infections. The effect of HSC numbers in UCB transplant on immune reconstitution was not thoroughly examined. Using immunocompromised mice transplanted with purified UCB CD34+ stem cells, we have demonstrated that increasing the numbers of CD34+ cells in the transplant promotes hematopoietic and immune reconstitution. At early stages posttransplant, high stem cell dose generated relatively more B cells, while lower dose generated more myeloid and T cells. Thus, the size of the stem cell graft appears to modulate the differentiation potential of infused stem cells. In addition, increasing stem cell dose in the transplant improved CD8+ T cell development and delayed late memory T cell skewing in expense of naive T cells highlighting the importance of HSC dose to maintain the pool of naive T cells able to develop strong immune responses. Transplantation of ex vivo expanded CD34+ cells did not promote, but rather delayed immune reconstitution suggesting the loss of primitive lymphoid precursor cells during ex vivo expansion.

  14. Vitamin D and molecular actions on the immune system: modulation of innate and autoimmunity

    PubMed Central

    Kamen, Diane L.

    2010-01-01

    Vitamin D has received increased attention recently for its pleiotropic actions on many chronic diseases. The importance of vitamin D on the regulation of cells of the immune system has gained increased appreciation over the past decade with the discovery of the vitamin D receptor (VDR) and key vitamin D metabolizing enzymes expressed by cells of the immune system. Animal studies, early epidemiologic and clinical studies have supported a potential role for vitamin D in maintaining immune system balance. The hormonal form of vitamin D up-regulates anti-microbial peptides, namely cathelicidin, to enhance clearance of bacteria at various barrier sites and in immune cells. Vitamin D modulates the adaptive immune system by direct effects on T cell activation and on the phenotype and function of antigen-presenting cells (APCs), particularly of DCs. The purpose of this manuscript is to review the molecular and clinical evidence for vitamin D as a modulator of the innate and adaptive immune system. PMID:20119827

  15. Systemic immune modulation induced by alcoholic beverage intake in obese-diabetes (db/db) mice.

    PubMed

    Lee, Hyunah; Jang, Ik-Soon; Park, Junsoo; Kim, Seol-Hee; Baek, So-Young; Go, Sung-Ho; Lee, Seung-Hoon

    2013-03-01

    Alcohol over-consumption is generally immunosuppressive. In this study, the effects of single or repetitive alcohol administration on the systemic immunity of db/db mice were observed to clarify the possible mechanisms for the increased susceptibility of obese individuals to alcohol-related immunological health problems. Alcohol (as a form of commercially available 20% distilled-alcoholic beverage) was orally administered one-time or seven times over 2 weeks to db/db mice and normal C57BL/6J mice. Immunologic alterations were analyzed by observation of body weight and animal activity, along with proportional changes of splenocytes for natural killer cells, macrophages, and T and B lymphocytes. Modulation of plasma cytokine level and immune-related genes were also ascertained by micro-bead assay and a microarray method, respectively. The immune micro-environment of db/db mice was an inflammatory state and adaptive cellular immunity was significantly suppressed. Low-dose alcohol administration reversed the immune response, decreasing inflammatory responses and the increment of adaptive immunity mainly related to CD4(+) T cells, but not CD8(+) T cells, to normal background levels. Systemic immune modulation due to alcohol administration in the obese-diabetic mouse model may be useful in the understanding of the induction mechanism, which will aid the development of therapeutics for related secondary diseases.

  16. Preexisting antigen-specific immune responses are modulated by oral KLH feeding in humans.

    PubMed

    Hostmann, Arwed; Meyer, Tim; Maul, Jochen; Preiss, Jan; Boortz, Bertram; Thiel, Andreas; Duchmann, Rainer; Ullrich, Reiner

    2015-07-01

    Oral tolerance is the antigen-specific inhibition of a systemic immune response after oral antigen uptake and well established in animal models. We recently showed that keyhole limpet hemocyanin (KLH) feeding modulates subsequently induced systemic immune responses in humans as well. In the present study, we investigated whether oral KLH can also modulate preexisting antigen-specific systemic B- and T-cell responses. We induced delayed-type hypersensitivity (DTH) reactions as well as systemic KLH-specific B- and T-cell responses by subcutaneous KLH injections. Subsequent oral KLH administration decreased the small proportion of antigen-specific CD4(+) T cells positive for the cytokine IL-17 at the end of the feeding regimen even further. After reimmunization, there was no difference in DTH reactions and the KLH-specific B-cell responses, but KLH-fed volunteers had an increased proportion of antigen-specific CD4(+) T cells positive for IL-10 and a reduced proportion of antigen-specific CD4(+) T cells positive for the skin-homing receptor cutaneous lymphocyte antigen and IL-2 and IFN-γ. Taken together, oral KLH can modulate a preexisting systemic KLH-specific immune response. These results suggest that feeding antigen may offer therapeutic strategies for the suppression of unwanted immune reactions in humans.

  17. big bang gene modulates gut immune tolerance in Drosophila.

    PubMed

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y; Boulianne, Gabrielle L; Hoffmann, Jules A; Matt, Nicolas; Reichhart, Jean-Marc

    2013-02-19

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases.

  18. Dying autologous cells as instructors of the immune system.

    PubMed

    Munoz, L E; Herrmann, M; Berens, C

    2015-01-01

    In an organism, cell death occurs at many different sites and in many different forms. It is frequently part of normal development or serves to maintain cell homeostasis. In other cases, cell death not only occurs due to injury, disease or infection, but also as a consequence of various therapeutic interventions. However, in all of these scenarios, the immune system has to react to the dying and dead cells and decide whether to mount an immune response, to remain quiet or to initiate healing and repopulation. This is essential for the organism, testified by many diseases that are associated with malfunctioning in the cell death process, the corpse removal, or the ensuing immune responsiveness. Therefore, dying cells generally have to be considered as instructors of the immune system. How this happens and which signals and pathways contribute to modulate or shape the immune response is still elusive in many conditions. The articles presented in this Special Issue address such open questions. They highlight that the context in which cell death occurs will not only influence the cell death process itself, but also affect the surrounding cellular milieu, how the generation and presence of 'eat me' signals can have an impact on cell clearance, and that the exact nature of the residual 'debris' and how it is processed are fundamental to determining the immunological consequences. Hopefully, these articles initiate new approaches and new experiments to complete our understanding of how cell death and the immune system interact with each other.

  19. Ant Plant (Myrmecodia tuberosa) Hypocotyl Extract Modulates TCD4+ and TCD8+ Cell Profile of Doxorubicin-Induced Immune-Suppressed Sprague Dawley Rats In Vivo

    PubMed Central

    Sumardi; Hertiani, Triana; Sasmito, Ediati

    2013-01-01

    Myrmecodia tuberosa Jack (Rubiaceae) has been used as part of traditional Indonesian remedies for a wide range of therapeutic usages in West Papua. Our preliminary study revealed the significant potency of these plant extracts and fractions as an immunomodulator by an in vitro technique on Balb/c mice. This study explored the effect of M. tuberosa hypocotyl ethanol extract on the TCD4+ and TCD8+ cell profiles of doxorubicin (Dox)-induced immune-suppressed Sprague Dawley (SD) rats by an in vivo method. Dried powder of M. tuberosa hypocotyl was macerated in 95% ethanol. Following solvent evaporation in a vacuum, the ethanol extract (EE) was partitioned to yield an n-hexane fraction (FH) and residue (FNH). FNH was further partitioned to yield ethyl acetate (FEtOAc) and water fractions (FW). The extract and fractions in the concentrations 10, 20, 50, and 100 μg/mL were tested on macrophage cells by the latex bead method, while the proliferation of lymphocyte cells was evaluated by the MTT assay. The total phenolic and flavonoid contents of those fractions were evaluated. The active fraction was administrated orally on Dox-induced SD rats for 28 days by an in vivo method to observe the TCD4+ and TCD8+ cell profiles. The in vivo assay showed that the FNH could maintain the number of TCD4+ cells, but not the number of TCD8+ cells. The ED50 observed was 24.24 mg/kg BW. Steroid/terpenoid compounds were detected in this fraction along with the phenolics and flavonoids. The FNH contained 3.548 ± 0.058% GAE of total phenolics and 0.656 ± 0.026% QE of total flavonoids. M. tuberosa hypocotyl extract is a potent immunomodulatory agent and may act as co-chemotherapy in Dox use. PMID:24482773

  20. Prophylactic and therapeutic modulation of innate and adaptive immunity against mucosal infection of herpes simplex virus.

    PubMed

    Uyangaa, Erdenebileg; Patil, Ajit Mahadev; Eo, Seong Kug

    2014-08-01

    Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) are the most common cause of genital ulceration in humans worldwide. Typically, HSV-1 and 2 infections via mucosal route result in a lifelong latent infection after peripheral replication in mucosal tissues, thereby providing potential transmission to neighbor hosts in response to reactivation. To break the transmission cycle, immunoprophylactics and therapeutic strategies must be focused on prevention of infection or reduction of infectivity at mucosal sites. Currently, our understanding of the immune responses against mucosal infection of HSV remains intricate and involves a balance between innate signaling pathways and the adaptive immune responses. Numerous studies have demonstrated that HSV mucosal infection induces type I interferons (IFN) via recognition of Toll-like receptors (TLRs) and activates multiple immune cell populations, including NK cells, conventional dendritic cells (DCs), and plasmacytoid DCs. This innate immune response is required not only for the early control of viral replication at mucosal sites, but also for establishing adaptive immune responses against HSV antigens. Although the contribution of humoral immune response is controversial, CD4(+) Th1 T cells producing IFN-γ are believed to play an important role in eradicating virus from the hosts. In addition, the recent experimental successes of immunoprophylactic and therapeutic compounds that enhance resistance and/or reduce viral burden at mucosal sites have accumulated. This review focuses on attempts to modulate innate and adaptive immunity against HSV mucosal infection for the development of prophylactic and therapeutic strategies. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses. Thus, we summarized the current evidence of various immune mediators in response to mucosal HSV infection, focusing on the importance of innate immune responses.

  1. Pathogen mimicry of host protein-protein interfaces modulates immunity.

    PubMed

    Guven-Maiorov, Emine; Tsai, Chung-Jung; Nussinov, Ruth

    2016-10-01

    Signaling pathways shape and transmit the cell's reaction to its changing environment; however, pathogens can circumvent this response by manipulating host signaling. To subvert host defense, they beat it at its own game: they hijack host pathways by mimicking the binding surfaces of host-encoded proteins. For this, it is not necessary to achieve global protein homology; imitating merely the interaction surface is sufficient. Different protein folds often interact via similar protein-protein interface architectures. This similarity in binding surfaces permits the pathogenic protein to compete with a host target protein. Thus, rather than binding a host-encoded partner, the host protein hub binds the pathogenic surrogate. The outcome can be dire: rewiring or repurposing the host pathways, shifting the cell signaling landscape and consequently the immune response. They can also cause persistent infections as well as cancer by modulating key signaling pathways, such as those involving Ras. Mapping the rewired host-pathogen 'superorganism' interaction network - along with its structural details - is critical for in-depth understanding of pathogenic mechanisms and developing efficient therapeutics. Here, we overview the role of molecular mimicry in pathogen host evasion as well as types of molecular mimicry mechanisms that emerged during evolution.

  2. Modulation of Antiviral Immunity by Heme Oxygenase-1.

    PubMed

    Espinoza, Janyra A; González, Pablo A; Kalergis, Alexis M

    2017-03-01

    Heme oxygenase-1 (HO-1) is a stress-inducible, anti-inflammatory, and cytoprotective enzyme expressed in most cell types in the organism. Under several stress stimuli, HO-1 expression and activity is up-regulated to catalyze the rate-limiting enzymatic step of heme degradation into carbon monoxide, free iron, and biliverdin. Besides its effects on cell metabolism, HO-1 is also capable of modulating host innate and adaptive immune responses in response to sepsis, transplantation, and autoimmunity, and preventing oxidative damage associated with inflammation. In addition, recent studies have reported that HO-1 can exert a significant antiviral activity against a wide variety of viruses, including HIV, hepatitis C virus, hepatitis B virus, enterovirus 71, influenza virus, respiratory syncytial virus, dengue virus, and Ebola virus, among others. Herein, we address the current understanding of the functional significance of HO-1 against a variety of viruses and its potential as a therapeutic strategy to prevent and control viral infections. Furthermore, we review the most important features of the immunoregulatory functions for this enzyme.

  3. Estrogen receptors regulate innate immune cells and signaling pathways.

    PubMed

    Kovats, Susan

    2015-04-01

    Humans show strong sex differences in immunity to infection and autoimmunity, suggesting sex hormones modulate immune responses. Indeed, receptors for estrogens (ERs) regulate cells and pathways in the innate and adaptive immune system, as well as immune cell development. ERs are ligand-dependent transcription factors that mediate long-range chromatin interactions and form complexes at gene regulatory elements, thus promoting epigenetic changes and transcription. ERs also participate in membrane-initiated steroid signaling to generate rapid responses. Estradiol and ER activity show profound dose- and context-dependent effects on innate immune signaling pathways and myeloid cell development. While estradiol most often promotes the production of type I interferon, innate pathways leading to pro-inflammatory cytokine production may be enhanced or dampened by ER activity. Regulation of innate immune cells and signaling by ERs may contribute to the reported sex differences in innate immune pathways. Here we review the recent literature and highlight several molecular mechanisms by which ERs regulate the development or functional responses of innate immune cells.

  4. Mast cells as effector cells of innate immunity and regulators of adaptive immunity.

    PubMed

    Cardamone, Chiara; Parente, Roberta; Feo, Giulia De; Triggiani, Massimo

    2016-10-01

    Mast cells are widely distributed in human organs and tissues and they are particularly abundant at major body interfaces with the external environment such as the skin, the lung and the gastrointestinal tract. Moreover, mast cells are located around blood vessels and are highly represented within central and peripheral lymphoid organs. The strategic distribution of mast cells closely reflects the primary role of these cells in providing first-line defense against environmental dangers, in regulating local and systemic inflammatory reactions and in shaping innate and adaptive immune responses. Human mast cells have pleiotropic and multivalent functions that make them highly versatile cells able to rapidly adapt responses to microenvironmental changes. They express a wide variety of surface receptors including immunoglobulin receptors, pathogen-associated molecular pattern receptors and danger signal receptors. The abundance of these receptors makes mast cells unique and effective surveillance cells able to detect promptly aggression by viral, bacterial and parasitic agents. In addition, mast cells express multiple receptors for cytokines and chemokines that confer them the capacity of being recruited and activated at sites of inflammation. Once activated by immunological or nonimmunological stimuli mast cells secrete a wide spectrum of preformed (early) and de novo synthesized (late) mediators. Preformed mediators are stored within granules and are rapidly released in the extracellular environment to provide a fast vascular response that promotes inflammation and local recruitment of other innate immunity cells such as neutrophils, eosinophils, basophils and monocyte/macrophages. Later on, delayed release of multiple cytokines and chemokines from mast cells further induce modulation of cells of adaptive immunity and regulates tissue injury and, eventually, resolution of inflammation. Finally, mast cells express several costimulatory and inhibitory surface molecules

  5. Immune modulation by non-hodgkin lymphoma in a patient with two primary intestinal T-cell lymphomas and long-standing celiac disease.

    PubMed

    Mühr-Wilkenshoff, F; Friedrich, M; Foss, H-D; Hummel, M; Zeitz, M; Daum, S

    2010-01-01

    Tumors may influence immunologic reactions. Here, we report on a 72-year-old patient who suffered from celiac disease (CD) that had been diagnosed 20 years before. Under a normal diet but without any evidence of enteropathy or CD-associated antibodies, the patient developed a jejunal T-cell lymphoma. It was resected due to perforation and four courses of IMVP-16 were added. The patient started and kept a strict gluten-free diet (GFD). Two years later, he presented with weight loss and a clonally divergent refractory sprue type II with loss of antigen (CD8; T-cell receptor-beta) expression in intraepithelial lymphocytes. At this time point, he showed high titers of CD-associated antibodies, although he was on a strict GFD. This case report highlights several questions: the missing enteropathy under a gluten-containing diet supports the notion of immune suppression in malignant diseases, especially non-Hodgkin lymphoma. Secondly, the patient developed an early form of a second independent T-cell lymphoma (refractory sprue type II) under a strict GFD, then with CD-associated antibodies, which raises the question whether the clonal intraepithelial lymphocytes were stimulating antibody production. Thus, the single detection of CD-associated antibodies in patients with CD is not itself proof of noncompliance with GFD.

  6. Ginseng Diminishes Lung Disease in Mice Immunized with Formalin-Inactivated Respiratory Syncytial Virus After Challenge by Modulating Host Immune Responses

    PubMed Central

    Lee, Jong Seok; Cho, Min Kyoung; Hwang, Hye Suk; Ko, Eun-Ju; Lee, Yu-Na; Kwon, Young-Man; Kim, Min-Chul; Kim, Ki-Hye; Lee, Young-Tae; Jung, Yu-Jin

    2014-01-01

    Formalin-inactivated respiratory syncytial virus (FI-RSV) immunization is known to cause severe pulmonary inflammatory disease after subsequent RSV infection. Ginseng has been used in humans for thousands of years due to its potential health benefits. We investigated whether ginseng would have immune modulating effects on RSV infection in mice previously immunized with FI-RSV. Oral administration of mice with ginseng increased IgG2a isotype antibody responses to FI-RSV immunization, indicating T-helper type 1 (Th1) immune responses. Ginseng-treated mice that were nonimmunized or previously immunized with FI-RSV showed improved protection against RSV challenge compared with control mice without ginseng treatment. Ginseng-mediated improved clinical outcomes after live RSV infection were evidenced by diminished weight losses, decreased interleukin-4 cytokine production but increased interferon-γ production, modulation of CD3 T-cell populations toward a Th1 response, and reduced inflammatory response. Ginseng-mediated protective host immune modulation against RSV pulmonary inflammation was observed in different strains of wild-type and mutant mice. These results indicate that ginseng can modulate host immune responses to FI-RSV immunization and RSV infection, resulting in protective effects against pulmonary inflammatory disease. PMID:25051168

  7. Role of the mu opioid receptor in opioid modulation of immune function

    PubMed Central

    Ninković, Jana; Roy, Sabita

    2014-01-01

    SUMMARY Endogenous opioids are synthesized in vivo in order to modulate pain mechanisms and inflammatory pathways. Endogenous and exogenous opioids mediate analgesia in response to painful stimuli by binding to opioid receptors on neuronal cells. However, wide distribution of opioid receptors on tissues and organ systems outside the CNS, such as the cells of the immune system, indicate that opioids are capable of exerting additional effects in the periphery, such as immunomodulation. The increased prevalence of infections in opioid abusers based epidemiological studies further highlights the immunosuppressive effects of opioids. In spite of their many debilitating side effects, prescription opioids remain a gold standard for treatment of chronic pain. Therefore, given the prevalence of opioid use and abuse, opioid mediated immune suppression presents a serious concern in our society today. It is imperative to understand the mechanisms by which exogenous opioids modulate immune processes. In this review we will discuss the role of opioid receptors and their ligands in mediating immune suppressive functions. We will summarize recent studies on direct and indirect opioid modulation of the cells of the immune system as well as the role of opioids in exacerbation of certain disease states. PMID:22170499

  8. Modulation of the transcriptional response of innate immune and RNAi genes upon exposure to dsRNA and LPS in silkmoth-derived Bm5 cells overexpressing BmToll9-1 receptor.

    PubMed

    Liu, Jisheng; Kolliopoulou, Anna; Smagghe, Guy; Swevers, Luc

    2014-07-01

    Injection or feeding of dsRNA is commonly used to induce specific gene silencing by RNAi in insects but very little research has been carried out to investigate non-specific effects on gene expression of dsRNA as pathogen-associated molecular pattern (PAMP). This study focuses on the potential role of the BmToll9-1 receptor to modulate the transcriptional response of innate immune and RNAi genes to dsRNA and lipopolysaccharide (LPS), which was used for comparison. To study this role, we took advantage of the silkmoth-derived Bm5 cell line, which does not express BmToll9-1 endogenously, and engineered a transformed cell line that permanently expresses BmToll9-1. Quantitative mRNA expression studies showed that BmToll9-1 can significantly alter the transcriptional response to dsRNA and LPS: (1) BmToll9-1 promotes the transcriptional response of Dicer2, encoding a key component of the RNAi machinery, and, to a lesser extent, that of transcription factors in the Jak-STAT and Toll pathways; and (2) BmToll9-1 represses the transcriptional induction of the IMD and Jak-STAT pathway genes, as well as the antimicrobial peptide (AMP) effector genes, by LPS. Thus, BmToll9-1 was identified as a modulator of innate immune and RNAi machinery gene expression that could be related to its preferential expression in the larval gut, the major barrier of pathogen entry. While BmToll9-1 was found to modulate RNAi-related gene expression, a reporter-based RNAi assay established no evidence for a direct interaction of BmToll9-1 with the intracellular RNAi machinery.

  9. ``Backpack'' Functionalized Living Immune Cells

    NASA Astrophysics Data System (ADS)

    Swiston, Albert; Um, Soong Ho; Irvine, Darrell; Cohen, Robert; Rubner, Michael

    2009-03-01

    We demonstrate that functional polymeric ``backpacks'' built from polyelectrolyte multilayers (PEMs) can be attached to a fraction of the surface area of living, individual lymphocytes. Backpacks containing fluorescent polymers, superparamagnetic nanoparticles, and commercially available quantum dots have been attached to B and T-cells, which may be spatially manipulated using a magnetic field. Since the backpack does not occlude the entire cellular surface from the environment, this technique allows functional synthetic payloads to be attached to a cell that is free to perform its native functions, thereby synergistically utilizing both biological and synthetic functionalities. For instance, we have shown that backpack-modified T-cells are able to migrate on surfaces for several hours following backpack attachment. Possible payloads within the PEM backpack include drugs, vaccine antigens, thermally responsive polymers, nanoparticles, and imaging agents. We will discuss how this approach has broad potential for applications in bioimaging, single-cell functionalization, immune system and tissue engineering, and cell-based therapeutics where cell-environment interactions are critical.

  10. Neuroimmune interactions: dendritic cell modulation by the sympathetic nervous system.

    PubMed

    Takenaka, Maisa C; Guereschi, Marcia G; Basso, Alexandre S

    2017-02-01

    Dendritic cells are of paramount importance bridging innate and adaptive immune responses. Depending on the context, after sensing environmental antigens, commensal microorganisms, pathogenic agents, or antigens from the diet, dendritic cells may drive either different effector adaptive immune responses or tolerance, avoiding tissue damage. Although the plasticity of the immune response and the capacity to regulate itself are considered essential to orchestrate appropriate physiological responses, it is known that the nervous system plays a relevant role controlling immune cell function. Dendritic cells present in the skin, the intestine, and lymphoid organs, besides expressing adrenergic receptors, can be reached by neurotransmitters released by sympathetic fibers innervating these tissues. These review focus on how neurotransmitters from the sympathetic nervous system can modulate dendritic cell function and how this may impact the immune response and immune-mediated disorders.

  11. Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies.

    PubMed

    Sideras, K; Braat, H; Kwekkeboom, J; van Eijck, C H; Peppelenbosch, M P; Sleijfer, S; Bruno, M

    2014-05-01

    Traditional chemotherapeutics have largely failed to date to produce significant improvements in pancreatic cancer survival. One of the reasons for the resilience of pancreatic cancer towards intensive treatment is that the cancer is capable of high jacking the immune system: during disease progression the immune system is converted from a system that attacks tumor cells into a support structure for the cancer, exerting trophic actions on the cancer cells. This turn-around of immune system action is achieved through mobilization and activation of regulatory T cells, myeloid derived suppressor cells, tumor-associated macrophages and fibroblasts, all of which suppress CD8 T cells and NK cells. This immune suppression occurs both through the expression of tolerance-inducing cell surface molecules, such as PD-L1, as well as through the production of "tolerogenic" cytokines, such as IL-10 and TGF-β. Based on the accumulating insight into the importance of the immune system for the outcome of pancreatic cancer patients multiple new immunotherapeutic approaches against pancreatic cancer are being currently tested in clinical trials. In this review we give an overview of both the immune escaping mechanisms of pancreatic cancer as well as the new immune related therapeutic strategies currently being tested in pancreatic cancer clinical trials.

  12. Immune activation: death, danger and dendritic cells.

    PubMed

    Pulendran, Bali

    2004-01-06

    Dendritic cells are critical for host immunity, and sense microbes with pathogen recognition receptors. New evidence indicates that these cells also sense uric acid crystals in dead cells, suggesting that the immune system is conscious not only of pathogens, but also of death and danger.

  13. Regulatory immune cells and functions in autoimmunity and transplantation immunology.

    PubMed

    Papp, Gabor; Boros, Peter; Nakken, Britt; Szodoray, Peter; Zeher, Margit

    2017-03-07

    In physiological circumstances, various tolerogenic mechanisms support the protection of self-structures during immune responses. However, quantitative and/or qualitative changes in regulatory immune cells and mediators can evoke auto-reactive immune responses, and upon susceptible genetic background, along with the presence of other concomitant etiological factors, autoimmune disease may develop. In transplant immunology, tolerogenic mechanisms are also critical, since the balance between of alloantigen-reactive effector cells and the regulatory immune cells will ultimately determine whether a graft is accepted or rejected. Better understanding of the immunological tolerance and the potential modulations of immune regulatory processes are crucial for developing effective therapies in autoimmune diseases as well as in organ transplantation. In this review, we focus on the novel insights regarding the impaired immune regulation and other relevant factors contributing to the development of auto-reactive and graft-reactive immune responses in autoimmune diseases and transplant rejection, respectively. We also address some promising approaches for modification of immune-regulatory processes and tolerogenic mechanisms in autoimmunity and solid organ transplantation, which may be beneficial in future therapeutic strategies.

  14. Controlled release strategies for modulating immune responses to promote tissue regeneration.

    PubMed

    Dumont, Courtney M; Park, Jonghyuck; Shea, Lonnie D

    2015-12-10

    Advances in the field of tissue engineering have enhanced the potential of regenerative medicine, yet the efficacy of these strategies remains incomplete, and is limited by the innate and adaptive immune responses. The immune response associated with injury or disease combined with that mounted to biomaterials, transplanted cells, proteins, and gene therapies vectors can contribute to the inability to fully restore tissue function. Blocking immune responses such as with anti-inflammatory or immunosuppressive agents are either ineffective, as the immune response contributes significantly to regeneration, or have significant side effects. This review describes targeted strategies to modulate the immune response in order to limit tissue damage following injury, promote an anti-inflammatory environment that leads to regeneration, and induce antigen (Ag)-specific tolerance that can target degenerative diseases that destroy tissues and promote engraftment of transplanted cells. Focusing on targeted immuno-modulation, we describe local delivery techniques to sites of inflammation as well as systemic approaches that preferentially target subsets of immune populations.

  15. Effect of dietary selenium on T cell immunity and cancer xenograft in nude mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenium is known to regulate carcinogenesis and immunity at nutritional and supranutritional levels. Because the immune system provides one of the main body defenses against cancer, we asked whether T cell immunity can modulate selenium chemoprevention. Twenty-four homozygous NU/J nude mice were fe...

  16. Immunobiotic Bifidobacteria Strains Modulate Rotavirus Immune Response in Porcine Intestinal Epitheliocytes via Pattern Recognition Receptor Signaling

    PubMed Central

    Miyazaki, Ayako; Soma, Junichi; Suda, Yoshihito; Aso, Hisashi; Nochi, Tomonori; Iwabuchi, Noriyuki; Xiao, Jin-zhong; Saito, Tadao; Villena, Julio; Kitazawa, Haruki

    2016-01-01

    In this work, we aimed to characterize the antiviral response of an originally established porcine intestinal epithelial cell line (PIE cells) by evaluating the molecular innate immune response to rotavirus (RVs). In addition, we aimed to select immunomodulatory bacteria with antiviral capabilities. PIE cells were inoculated with RVs isolated from different host species and the infective titers and the molecular innate immune response were evaluated. In addition, the protection against RVs infection and the modulation of immune response by different lactic acid bacteria (LAB) strains was studied. The RVs strains OSU (porcine) and UK (bovine) effectively infected PIE cells. Our results also showed that RVs infection in PIE cells triggered TLR3-, RIG-I- and MDA-5-mediated immune responses with activation of IRF3 and NF-κB, induction of IFN-β and up-regulation of the interferon stimulated genes MxA and RNase L. Among the LAB strains tested, Bifidobacterium infantis MCC12 and B. breve MCC1274 significantly reduced RVs titers in infected PIE cells. The beneficial effects of both bifidobacteria were associated with reduction of A20 expression, and improvements of IRF-3 activation, IFN-β production, and MxA and RNase L expressions. These results indicate the value of PIE cells for studying RVs molecular innate immune response in pigs and for the selection of beneficial bacteria with antiviral capabilities. PMID:27023883

  17. Immunobiotic Bifidobacteria Strains Modulate Rotavirus Immune Response in Porcine Intestinal Epitheliocytes via Pattern Recognition Receptor Signaling.

    PubMed

    Ishizuka, Takamasa; Kanmani, Paulraj; Kobayashi, Hisakazu; Miyazaki, Ayako; Soma, Junichi; Suda, Yoshihito; Aso, Hisashi; Nochi, Tomonori; Iwabuchi, Noriyuki; Xiao, Jin-zhong; Saito, Tadao; Villena, Julio; Kitazawa, Haruki

    2016-01-01

    In this work, we aimed to characterize the antiviral response of an originally established porcine intestinal epithelial cell line (PIE cells) by evaluating the molecular innate immune response to rotavirus (RVs). In addition, we aimed to select immunomodulatory bacteria with antiviral capabilities. PIE cells were inoculated with RVs isolated from different host species and the infective titers and the molecular innate immune response were evaluated. In addition, the protection against RVs infection and the modulation of immune response by different lactic acid bacteria (LAB) strains was studied. The RVs strains OSU (porcine) and UK (bovine) effectively infected PIE cells. Our results also showed that RVs infection in PIE cells triggered TLR3-, RIG-I- and MDA-5-mediated immune responses with activation of IRF3 and NF-κB, induction of IFN-β and up-regulation of the interferon stimulated genes MxA and RNase L. Among the LAB strains tested, Bifidobacterium infantis MCC12 and B. breve MCC1274 significantly reduced RVs titers in infected PIE cells. The beneficial effects of both bifidobacteria were associated with reduction of A20 expression, and improvements of IRF-3 activation, IFN-β production, and MxA and RNase L expressions. These results indicate the value of PIE cells for studying RVs molecular innate immune response in pigs and for the selection of beneficial bacteria with antiviral capabilities.

  18. Solar cell module lamination process

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Aceves, Randy C.

    2002-01-01

    A solar cell module lamination process using fluoropolymers to provide protection from adverse environmental conditions and thus enable more extended use of solar cells, particularly in space applications. A laminate of fluoropolymer material provides a hermetically sealed solar cell module structure that is flexible and very durable. The laminate is virtually chemically inert, highly transmissive in the visible spectrum, dimensionally stable at temperatures up to about 200.degree. C. highly abrasion resistant, and exhibits very little ultra-violet degradation.

  19. Immune cell interplay in colorectal cancer prognosis.

    PubMed

    Norton, Samuel E; Ward-Hartstonge, Kirsten A; Taylor, Edward S; Kemp, Roslyn A

    2015-10-15

    The immune response to colorectal cancer has proven to be a reliable measure of patient outcome in several studies. However, the complexity of the immune response in this disease is not well understood, particularly the interactions between tumour-associated cells and cells of the innate and adaptive immune system. This review will discuss the relationship between cancer associated fibroblasts and macrophages, as well as between macrophages and T cells, and demonstrate how each population may support or prevent tumour growth in a different immune environment.

  20. Spongionella Secondary Metabolites, Promising Modulators of Immune Response through CD147 Receptor Modulation

    PubMed Central

    Sánchez, Jon Andoni; Alfonso, Amparo; Rodriguez, Ines; Alonso, Eva; Cifuentes, José Manuel; Bermudez, Roberto; Rateb, Mostafa E.; Jaspars, Marcel; Houssen, Wael E.; Ebel, Rainer; Tabudravu, Jioji; Botana, Luís M.

    2016-01-01

    The modulation of the immune system can have multiple applications such as cancer treatment, and a wide type of processes involving inflammation where the potent chemotactic agent cyclophilin A (Cyp A) is implicated. The Porifera phylum, in which Spongionella is encompassed, is the main producer of marine bioactive compounds. Four secondary metabolites obtained from Spongionella (Gracilin H, A, L, and Tetrahydroaplysulphurin-1) were described to hit Cyp A and to block the release of inflammation mediators. Based on these results, some role of Spongionella compounds on other steps of the signaling pathway mediated by this chemotactic agent can be hypothesized. In the present paper, we studied the effect of these four compounds on the surface membrane CD147 receptor expression, on the extracellular levels of Cyp A and on the ability to migrate of concanavalin (Con A)-activated T lymphocytes. Similar to a well-known immunosuppressive agent cyclosporine A (CsA), Gracilin H, A, L, and tetrahydroaplysulphurin-1 were able to reduce the CD147 membrane expression and to block the release of Cyp A to the medium. Besides, by using Cyp A as chemotactic agent, T cell migration was inhibited when cells were previously incubated with Gracilin A and Gracilin L. These positive results lead us to test the in vivo effect of Gracilin H and L in a mouse ear delayed hypersensitive reaction. Thus, both compounds efficiently reduce the ear swelling as well as the inflammatory cell infiltration. These results provide more evidences for their potential therapeutic application in immune-related diseases of Spongionella compounds. PMID:27822214

  1. Cellular immune activation in children with acute dengue virus infections is modulated by apoptosis.

    PubMed

    Myint, Khin S; Endy, Timothy P; Mongkolsirichaikul, Duangrat; Manomuth, Choompun; Kalayanarooj, Siripen; Vaughn, David W; Nisalak, Ananda; Green, Sharone; Rothman, Alan L; Ennis, Francis A; Libraty, Daniel H

    2006-09-01

    Apoptosis is an important modulator of cellular immune responses during systemic viral infections. Peripheral-blood mononuclear cell (PBMC) apoptosis and plasma soluble levels of CD95, a mediator of apoptosis, were determined in sequential samples from children participating in a prospective study of dengue virus (DV) infections. During the period of defervescence, levels of PBMC apoptosis were higher in children developing dengue hemorrhagic fever (DHF), the most severe form of illness, than in those with dengue fever (DF) and other, nondengue, febrile illnesses. CD8(+) T lymphocytes made up approximately half of the peak circulating apoptotic PBMCs in DHF and DF. Maximum plasma levels of soluble CD95 were also higher in children with DHF than in those with DF. The level of PBMC apoptosis correlated with dengue disease severity. Apoptosis appears to be involved in modulation of the innate and adaptive immune responses to DV infection and is likely involved in the evolution of immune responses in other viral hemorrhagic fevers.

  2. Innate Immune Defenses in Human Tuberculosis: An Overview of the Interactions between Mycobacterium tuberculosis and Innate Immune Cells

    PubMed Central

    Sia, Jonathan Kevin; Georgieva, Maria; Rengarajan, Jyothi

    2015-01-01

    Tuberculosis (TB) remains a serious global public health problem that results in up to 2 million deaths each year. TB is caused by the human pathogen, Mycobacterium tuberculosis (Mtb), which infects primarily innate immune cells patrolling the lung. Innate immune cells serve as barometers of the immune response against Mtb infection by determining the inflammatory milieu in the lungs and promoting the generation of adaptive immune responses. However, innate immune cells are also potential niches for bacterial replication and are readily manipulated by Mtb. Our understanding of the early interactions between Mtb and innate immune cells is limited, especially in the context of human infection. This review will focus on Mtb interactions with human macrophages, dendritic cells, neutrophils, and NK cells and detail evidence that Mtb modulation of these cells negatively impacts Mtb-specific immune responses. Furthermore, this review will emphasize important innate immune pathways uncovered through human immunogenetic studies. Insights into the human innate immune response to Mtb infection are necessary for providing a rational basis for the augmentation of immune responses against Mtb infection, especially with respect to the generation of effective anti-TB immunotherapeutics and vaccines. PMID:26258152

  3. Innate Immune Defenses in Human Tuberculosis: An Overview of the Interactions between Mycobacterium tuberculosis and Innate Immune Cells.

    PubMed

    Sia, Jonathan Kevin; Georgieva, Maria; Rengarajan, Jyothi

    2015-01-01

    Tuberculosis (TB) remains a serious global public health problem that results in up to 2 million deaths each year. TB is caused by the human pathogen, Mycobacterium tuberculosis (Mtb), which infects primarily innate immune cells patrolling the lung. Innate immune cells serve as barometers of the immune response against Mtb infection by determining the inflammatory milieu in the lungs and promoting the generation of adaptive immune responses. However, innate immune cells are also potential niches for bacterial replication and are readily manipulated by Mtb. Our understanding of the early interactions between Mtb and innate immune cells is limited, especially in the context of human infection. This review will focus on Mtb interactions with human macrophages, dendritic cells, neutrophils, and NK cells and detail evidence that Mtb modulation of these cells negatively impacts Mtb-specific immune responses. Furthermore, this review will emphasize important innate immune pathways uncovered through human immunogenetic studies. Insights into the human innate immune response to Mtb infection are necessary for providing a rational basis for the augmentation of immune responses against Mtb infection, especially with respect to the generation of effective anti-TB immunotherapeutics and vaccines.

  4. Enteral nutrition and immune modulation of acute pancreatitis.

    PubMed

    Hegazi, Refaat A; DeWitt, Tiffany

    2014-11-21

    Enteral nutrition has been strongly recommended by major scientific societies for the nutritional management of patients with acute pancreatitis. Providing severe acute pancreatitis patients with enteral nutrition within the first 24-48 h of hospital admission can help improve outcomes compared to parenteral nutrition and no feeding. New research is focusing in on when and what to feed to best improve outcomes for acute pancreatitis patients. Early enteral nutrition have the potential to modulate the immune responses. Despite this consistent evidence of early enteral nutrition in patients with acute pancreatitis, clinical practice continues to vary due to individual clinician preference. Achieving the immune modulating effects of enteral nutrition heavily depend on proper placement of the feeding tube and managing any tube feeding associated complications. The current article reviews the immune modulating effects of enteral nutrition and pro- and prebiotics and suggests some practical tools that help improve the patient adherence and tolerance to the tube feeding. Proper selection of the type of the tube, close monitoring of the tube for its placement, patency and securing its proper placement and routine checking the gastric residual volume could all help improve the outcome. Using peptide-based and high medium chain triglycerides feeding formulas help improving feeding tolerance.

  5. A Critical Role for CLSP2 in the Modulation of Antifungal Immune Response in Mosquitoes.

    PubMed

    Wang, Yan-Hong; Hu, Yang; Xing, Long-Sheng; Jiang, Hong; Hu, Song-Nian; Raikhel, Alexander S; Zou, Zhen

    2015-06-01

    Entomopathogenic fungi represent a promising class of bio-insecticides for mosquito control. Thus, detailed knowledge of the molecular mechanisms governing anti-fungal immune response in mosquitoes is essential. In this study, we show that CLSP2 is a modulator of immune responses during anti-fungal infection in the mosquito Aedes aegypti. With a fungal infection, the expression of the CLSP2 gene is elevated. CLSP2 is cleaved upon challenge with Beauveria bassiana conidia, and the liberated CLSP2 CTL-type domain binds to fungal cell components and B. bassiana conidia. Furthermore, CLPS2 RNA interference silencing significantly increases the resistance to the fungal challenge. RNA-sequencing transcriptome analysis showed that the majority of immune genes were highly upregulated in the CLSP2-depleted mosquitoes infected with the fungus. The up-regulated immune gene cohorts belong to melanization and Toll pathways, but not to the IMD or JAK-STAT. A thioester-containing protein (TEP22), a member of α2-macroglobulin family, has been implicated in the CLSP2-modulated mosquito antifungal defense. Our study has contributed to a greater understanding of immune-modulating mechanisms in mosquitoes.

  6. Advanced Fuel-Cell Modules

    NASA Technical Reports Server (NTRS)

    Bell, William F., III; Martin, Ronald E.; Struning, Albin J.; Whitehill, Robert

    1989-01-01

    Modules designed for long life, light weight, reliability, and low cost. Stack of alkaline fuel cells based on modules, consisting of three fuel cells and cooler. Each cell includes following components: ribbed carbon fine-pore anode electrolyte-reservoir plate; platinum-on-carbon catalyst anode; potassium titanate matrix bonded with butyl rubber; gold-plated nickel-foil electrode substrates; and silver plated, gold-flashed molded polyphenylene sulfide cell holder. Each cell has active area of 1ft to the 2nd power (0.09 m to the 2nd power). Materials and configurations of parts chosen to extend life expectancy, reduce weight and manufacturing cost, and increase reliability.

  7. miR-34 Modulates Innate Immunity and Ecdysone Signaling in Drosophila

    PubMed Central

    Xiong, Xiao-Peng; Chang, Kung-Yen; Ren, Xingjie; Ni, Jian-Quan; Rana, Tariq M.; Zhou, Rui

    2016-01-01

    microRNAs are endogenous small regulatory RNAs that modulate myriad biological processes by repressing target gene expression in a sequence-specific manner. Here we show that the conserved miRNA miR-34 regulates innate immunity and ecdysone signaling in Drosophila. miR-34 over-expression activates antibacterial innate immunity signaling both in cultured cells and in vivo, and flies over-expressing miR-34 display improved survival and pathogen clearance upon Gram-negative bacterial infection; whereas miR-34 knockout animals are defective in antibacterial defense. In particular, miR-34 achieves its immune-stimulatory function, at least in part, by repressing the two novel target genes Dlg1 and Eip75B. In addition, our study reveals a mutual repression between miR-34 expression and ecdysone signaling, and identifies miR-34 as a node in the intricate interplay between ecdysone signaling and innate immunity. Lastly, we identify cis-regulatory genomic elements and trans-acting transcription factors required for optimal ecdysone-mediated repression of miR-34. Taken together, our study enriches the repertoire of immune-modulating miRNAs in animals, and provides new insights into the interplay between steroid hormone signaling and innate immunity. PMID:27893816

  8. miR-34 Modulates Innate Immunity and Ecdysone Signaling in Drosophila.

    PubMed

    Xiong, Xiao-Peng; Kurthkoti, Krishna; Chang, Kung-Yen; Li, Jian-Liang; Ren, Xingjie; Ni, Jian-Quan; Rana, Tariq M; Zhou, Rui

    2016-11-01

    microRNAs are endogenous small regulatory RNAs that modulate myriad biological processes by repressing target gene expression in a sequence-specific manner. Here we show that the conserved miRNA miR-34 regulates innate immunity and ecdysone signaling in Drosophila. miR-34 over-expression activates antibacterial innate immunity signaling both in cultured cells and in vivo, and flies over-expressing miR-34 display improved survival and pathogen clearance upon Gram-negative bacterial infection; whereas miR-34 knockout animals are defective in antibacterial defense. In particular, miR-34 achieves its immune-stimulatory function, at least in part, by repressing the two novel target genes Dlg1 and Eip75B. In addition, our study reveals a mutual repression between miR-34 expression and ecdysone signaling, and identifies miR-34 as a node in the intricate interplay between ecdysone signaling and innate immunity. Lastly, we identify cis-regulatory genomic elements and trans-acting transcription factors required for optimal ecdysone-mediated repression of miR-34. Taken together, our study enriches the repertoire of immune-modulating miRNAs in animals, and provides new insights into the interplay between steroid hormone signaling and innate immunity.

  9. Polarized immune responses modulated by layered double hydroxides nanoparticle conjugated with CpG.

    PubMed

    Yan, Shiyu; Rolfe, Barbara E; Zhang, Bing; Mohammed, Yousuf H; Gu, Wenyi; Xu, Zhi P

    2014-11-01

    Modulation of the immune response is an important step in the induction of protective humoral and cellular immunity against pathogens. In this study, we investigated the possibility of using a nanomaterial conjugated with the toll-like receptor (TLR) ligand CpG to modulate the immune response towards the preferred polarity. MgAl-layered double hydroxide (LDH) nanomaterial has a very similar chemical composition to Alum, an FDA approved adjuvant for human vaccination. We used a model antigen, ovalbumin (OVA) to demonstrate that MgAl-LDH had comparable adjuvant activity to Alum, but much weaker inflammation. Conjugation of TLR9 ligand CpG to LDH nanoparticles significantly enhanced the antibody response and promoted a switch from Th2 toward Th1 response, demonstrated by a change in the IgG2a:IgG1 ratio. Moreover, immunization of mice with CpG-OVA-conjugated LDH before challenge with OVA-expressing B16/F10 tumor cells retarded tumor growth. Together, these data indicate that LDH nanomaterial can be used as an immune adjuvant to promote Th1 or Th2 dominant immune responses suitable for vaccination purposes.

  10. T cell metabolic fitness in antitumor immunity.

    PubMed

    Siska, Peter J; Rathmell, Jeffrey C

    2015-04-01

    T cell metabolism has a central role in supporting and shaping immune responses and may have a key role in antitumor immunity. T cell metabolism is normally held under tight regulation in an immune response of glycolysis to promote effector T cell expansion and function. However, tumors may deplete nutrients, generate toxic products, or stimulate conserved negative feedback mechanisms, such as through Programmed Cell Death 1 (PD-1), to impair effector T cell nutrient uptake and metabolic fitness. In addition, regulatory T cells are favored in low glucose conditions and may inhibit antitumor immune responses. Here, we review how the tumor microenvironment modifies metabolic and functional pathways in T cells and how these changes may uncover new targets and challenges for cancer immunotherapy and treatment.

  11. Modulation of the peripheral immune system after low-dose radon spa therapy: Detailed longitudinal immune monitoring of patients within the RAD-ON01 study.

    PubMed

    Rühle, Paul F; Wunderlich, Roland; Deloch, Lisa; Fournier, Claudia; Maier, Andreas; Klein, Gerhart; Fietkau, Rainer; Gaipl, Udo S; Frey, Benjamin

    2017-03-01

    The pain-relieving effects of low-dose radon therapies on patients suffering from chronic painful inflammatory diseases have been described for centuries. Even though it has been suggested that low doses of radiation may attenuate chronic inflammation, the underlying mechanisms remain elusive. Thus, the RAD-ON01 study was initiated to examine the effects of radon spa therapy and its low doses of alpha radiation on the human immune system. In addition to an evaluation of pain parameters, blood was drawn from 100 patients suffering from chronic painful degenerative musculoskeletal diseases before as well as 6, 12, 18, and 30 weeks after the start of therapy. We verified significant long-term pain reduction for the majority of patients which was accompanied by modulations of the peripheral immune cells. Detailed immune monitoring was performed using a multicolor flow cytometry-based whole blood assay. After therapy, the major immune cells were only marginally affected. Nevertheless, a small but long-lasting increase in T cells and monocytes was observed. Moreover, neutrophils, eosinophils and, in particular, dendritic cells were temporarily modulated after therapy. Regarding the immune cell subsets, cytotoxic T and NK cells, in particular, were altered. However, the most prominent effects were identified in a strong reduction of the activation marker CD69 on T, B, and NK cells. Simultaneously, the percentage of HLA-DR(+) T cells was elevated after therapy. The RAD-ON01 study showed for the first time a modulation of the peripheral immune cells following standard radon spa therapy. These modulations are in line with attenuation of inflammation.

  12. Endogenous μ-opioid peptides modulate immune response towards malignant melanoma.

    PubMed

    Boehncke, Sandra; Hardt, Katja; Schadendorf, Dirk; Henschler, Reinhard; Boehncke, Wolf-Henning; Duthey, Beatrice

    2011-01-01

    Opioids exert major effects not only in the central nervous system but also in immune responses. We investigated the effects of μ-opioid peptides, secreted by tumor cells, on anti-tumor immune responses. For this purpose, tumor growth was studied in wild-type and μ-opioid receptor-deficient (MOR-/-) mice injected with B16 melanoma cells. The ability of these cells to produce opioids was studied by Western blots in vitro. Finally, biopsy material from human melanomas was investigated by immunohistochemistry for ß endorphin expression. Injection of B16 melanoma cells, producing endogenous ß endorphin, in the flank of MOR-/- mice revealed a profound reduction in tumor growth, paralleled by a significantly higher infiltration of immune cells into the tumors, when compared to tumor growth after injection of B16 melanoma cells into wild-type mice. Opioids present in B16 cell supernatant significantly reduced the proliferation of normal but not MOR-/- leucocytes. Immunohistochemical analyses of biopsies from human melanoma tissues showed a positive correlation between expression of ß endorphin and tumor progression. Our data provide evidence that μ-opioid peptides may play a major role in cancer progression by modulating immune response. This finding may have implications for the future optimization of immunointerventions for cancer.

  13. Modulation of immune responses in stress by Yoga

    PubMed Central

    Arora, Sarika; Bhattacharjee, Jayashree

    2008-01-01

    Stress is a constant factor in today's fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS) and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress. PMID:21829284

  14. Modulation of the in vitro immune response by lead, nickel and zinc

    SciTech Connect

    Warner, G.L.

    1986-01-01

    The ability of Pb, Ni and Zn to modulate the in vitro murine immune response was examined. 100 ..mu..M Pb and Ni were shown to enhance the in vitro PFC response to SRBC while 100 ..mu..M Zn had inhibitory effects. Each of the cations stimulated splenocyte proliferation as determined by (/sup 3/H) thymidine incorporation, autoradiography and flow cytometric cell cycle analysis (acridine orange staining). Media selection was an important factor in the ability of these cations to modulate the immune response. Cation induced lymphoproliferation occurred late in culture (day 5 or later), was dependent on cell density (cells/ml) and required the presence of both T cells and la/sup +/ cells. Treatment of splenocytes with anti-Thyl. 2, anti-Lytl or anti-L3T4 completely abrogated the ability of these metals to induce proliferation, indicating that helper T cells (Lytl/sup +/ + 2/sup -/, L3T4/sup +/) are required at the initiation of culture. Pb, Ni or Zn preferentially enhanced the recovery of Thy/sup +/ cells as determined by flow cytometry of 7 day cation stimulated splenocytes. Zn preferentially enhanced the entry of T suppressor cells (Lyt2/sup +/) into the cell cycle. Pb, Ni and Zn induced the production/secretion of IL2, the expression of IL2 receptor (IL2R), and monoclonal anti-IL2, anti-IL2R and anti(gamma)IFN inhibited the induction of lymphoproliferation. These results are consistent with the hypothesis that Pb, Ni, and Zn modulate the immune response by activating T cells specific for altered self la or by altering immunoregulation associated with the autologous MLR.

  15. Bidirectional Crosstalk between Lymphatic Endothelial Cell and T Cell and Its Implications in Tumor Immunity

    PubMed Central

    Yeo, Kim Pin; Angeli, Veronique

    2017-01-01

    Lymphatic vessels have been traditionally considered as passive transporters of fluid and lipids. However, it is apparent from recent literature that the function of lymphatic vessels is not only restricted to fluid balance homeostasis but also extends to regulation of immune cell trafficking, antigen presentation, tolerance, and immunity, all which may impact the progression of inflammatory responses and diseases such as cancer. The lymphatic system and the immune system are intimately connected, and there is emergent evidence for a crosstalk between T cell and lymphatic endothelial cell (LEC). This review describes how LECs in lymph nodes can affect multiple functional properties of T cells and the impact of these LEC-driven effects on adaptive immunity and, conversely, how T cells can modulate LEC growth. The significance of such crosstalk between T cells and LECs in cancer will also be discussed. PMID:28220121

  16. Microbial modulation of host immunity with the small molecule phosphorylcholine.

    PubMed

    Clark, Sarah E; Weiser, Jeffrey N

    2013-02-01

    All microorganisms dependent on persistence in a host for survival rely on either hiding from or modulating host responses to infection. The small molecule phosphorylcholine, or choline phosphate (ChoP), is used for both of these purposes by a wide array of bacterial and parasitic microbes. While the mechanisms underlying ChoP acquisition and expression are diverse, a unifying theme is the use of ChoP to reduce the immune response to infection, creating an advantage for ChoP-expressing microorganisms. In this minireview, we discuss several benefits of ChoP expression during infection as well as how the immune system fights back against ChoP-expressing pathogens.

  17. Materials that harness and modulate the immune system

    PubMed Central

    Lewis, Jamal S.; Roy, Krishnendu; Keselowsky, Benjamin G.

    2016-01-01

    Recently, biomaterial scientists have married materials engineering and immunobiology to conceptualize new immunomodulatory materials. This special class of biomaterials can modulate and harness the innate properties of immune functionality for enhanced therapeutic efficacy. Generally, two fundamental strategies are followed in the design of immunomodulatory biomaterials: (1) immuno-evasive (immuno-mimetic, immuno-suppressing, or immuno-inert) biomaterials and (2) immuno-activating or immuno-enhancing biomaterials. This article highlights the development and application of a number of immunomodulatory materials, categorized by these two general approaches. PMID:26997752

  18. T cell immunity using transgenic B lymphocytes

    NASA Astrophysics Data System (ADS)

    Gerloni, Mara; Rizzi, Marta; Castiglioni, Paola; Zanetti, Maurizio

    2004-03-01

    Adaptive immunity exists in all vertebrates and plays a defense role against microbial pathogens and tumors. T cell responses begin when precursor T cells recognize antigen on specialized antigen-presenting cells and differentiate into effector cells. Currently, dendritic cells are considered the only cells capable of stimulating T lymphocytes. Here, we show that mature naïve B lymphocytes can be genetically programmed by using nonviral DNA and turned into powerful antigen-presenting cells with a dual capacity of synthesis and presentation of antigen to T cells in vivo. A single i.v. injection of transgenic lymphocytes activates T cell responses reproducibly and specifically even at very low cell doses (102). We also demonstrate that T cell priming can occur in the absence of dendritic cells and results in immunological memory with protective effector functions. These findings disclose aspects in the regulation of adaptive immunity and indicate possibilities for vaccination against viruses and cancer in humans.

  19. B Cell Immunity in Solid Organ Transplantation

    PubMed Central

    Karahan, Gonca E.; Claas, Frans H. J.; Heidt, Sebastiaan

    2017-01-01

    The contribution of B cells to alloimmune responses is gradually being understood in more detail. We now know that B cells can perpetuate alloimmune responses in multiple ways: (i) differentiation into antibody-producing plasma cells; (ii) sustaining long-term humoral immune memory; (iii) serving as antigen-presenting cells; (iv) organizing the formation of tertiary lymphoid organs; and (v) secreting pro- as well as anti-inflammatory cytokines. The cross-talk between B cells and T cells in the course of immune responses forms the basis of these diverse functions. In the setting of organ transplantation, focus has gradually shifted from T cells to B cells, with an increased notion that B cells are more than mere precursors of antibody-producing plasma cells. In this review, we discuss the various roles of B cells in the generation of alloimmune responses beyond antibody production, as well as possibilities to specifically interfere with B cell activation. PMID:28119695

  20. Modulation of macrophage activation and programming in immunity.

    PubMed

    Liu, Guangwei; Yang, Hui

    2013-03-01

    Macrophages are central mediators of the immune, contributing both to the initiation and the resolution of inflammation. The concept of macrophage activation and program has stimulated interest in its definition, and functional significance in homeostasis and diseases. It has been known that macrophages could be differently activated and programmed into different functional subtypes in response to different types of antigen stumuli or different kinds of cytokines present in the microenvironment and could thus profoundly influence immune responses, but little is known about the state and exact regulatory mechanism of macrophage activation and program from cell or molecular signaling level in immunity. In this review, we summarize the recent finding regarding the regulatory mechanism of macrophage activation and program toward M1 and M2, especially on M2 macrophages.

  1. Innate immune system cells in atherosclerosis.

    PubMed

    Chávez-Sánchez, Luis; Espinosa-Luna, Jose E; Chávez-Rueda, Karina; Legorreta-Haquet, María V; Montoya-Díaz, Eduardo; Blanco-Favela, Francisco

    2014-01-01

    Atherosclerosis is a chronic inflammatory disease of the arterial wall characterized by innate and adaptive immune system involvement. A key component of atherosclerotic plaque inflammation is the persistence of different innate immune cell types including mast cells, neutrophils, natural killer cells, monocytes, macrophages and dendritic cells. Several endogenous signals such as oxidized low-density lipoproteins, and exogenous signals such as lipopolysaccharides, trigger the activation of these cells. In particular, these signals orchestrate the early and late inflammatory responses through the secretion of pro-inflammatory cytokines and contribute to plaque evolution through the formation of foam cells, among other events. In this review we discuss how innate immune system cells affect atherosclerosis pathogenesis.

  2. 5-AED Enhances Survival of Irradiated Mice in a G-CSF-Dependent Manner, Stimulates Innate Immune Cell Function, Reduces Radiation-induced DNA Damage and Induces Genes that Modulate Cell Cycle Progression and Apoptosis

    DTIC Science & Technology

    2012-01-01

    pre-irradiation) radio- protectants and (post-irradiation) therapeutics, as recognized by civilian and military government agencies [2– 4 ]. 5-AED is...2012 4 . TITLE AND SUBTITLE 5-AED Enhances Survival of Irradiated Mice in a G-CSF-Dependent Manner, Stimulates Innate Immune Cell Function, Reduces...control after 4 days, but not 8 days. The time course of plasma 5-AED after buccal de- livery (60 mg/kg) was similar, but levels were significantly lower

  3. The use of immune modulating drugs for the treatment of multiple sclerosis

    PubMed Central

    Al-Khamis, Fahd A.

    2016-01-01

    This review discusses the mechanisms of action of 4 immune modulating drugs currently used in the treatment of multiple sclerosis (MS), including Alemtuzumab, a humanized monoclonal antibody that functions by targeting CD52, an antigen primarily expressed on T and B lymphocytes and monocytes/macrophages, resulting in their depletion and subsequent repopulation; Dimethyl fumarate that switches cytokine production toward a T helper 2 profile and enhances cytosolic levels of nuclear factor erythroid 2–related factor 2, which has immune regulatory and cytoprotective effects on oligodendrocytes, neurons, and glial cells; Fingolimod functions by blocking the release of activated lymphocytes from lymph nodes by targeting sphingosin-1-phosphate receptors; Natalizumab a humanized monoclonal antibody binds a4b1-integrin resulting in reduced migration of immune cells from blood across the blood-brain barrier into the CNS. This review presents the most up to date information on mechanisms of action, safety, and efficacy of these immune modulators and provides future perspectives for the treatment of MS. PMID:26818160

  4. The use of immune modulating drugs for the treatment of multiple sclerosis.

    PubMed

    Al-Khamis, Fahd A

    2016-01-01

    This review discusses the mechanisms of action of 4 immune modulating drugs currently used in the treatment of multiple sclerosis (MS), including Alemtuzumab, a humanized monoclonal antibody that functions by targeting CD52, an antigen primarily expressed on T and B lymphocytes and monocytes/macrophages, resulting in their depletion and subsequent repopulation; Dimethyl fumarate that switches cytokine production toward a T helper 2 profile and enhances cytosolic levels of nuclear factor erythroid 2-related factor 2, which has immune regulatory and cytoprotective effects on oligodendrocytes, neurons, and glial cells; Fingolimod functions by blocking the release of activated lymphocytes from lymph nodes by targeting sphingosin-1-phosphate receptors; Natalizumab a humanized monoclonal antibody binds α4β1-integrin resulting in reduced migration of immune cells from blood across the blood-brain barrier into the CNS. This review presents the most up to date information on mechanisms of action, safety, and efficacy of these immune modulators and provides future perspectives for the treatment of MS.

  5. β-Lactoglobulin Influences Human Immunity and Promotes Cell Proliferation

    PubMed Central

    Tai, Chun San; Chen, Yi Yun

    2016-01-01

    β-Lactoglobulin (LG) is suspected to enhance or modulate human immune responses. Moreover, LG is also hypothesized to increase human cell proliferation. However, these potential functions of LG have not been directly or thoroughly addressed. In this study, we demonstrated that LG is a potent stimulator of cell proliferation using a hybridoma cell (a splenocyte fused with a myeloma cell) model. LG's ability to promote cell proliferation was lost when the protein is denatured. To further investigate the influence of LG's conformation on cell proliferation, we chemically modified LG by either carboxymethylation (CM) or acetylation and observed significantly reduced cell proliferation when the protein structure was altered. Furthermore, we proved that LG enhances cell proliferation via receptor-mediated membrane IgM receptor. These data indicated that nondenatured LG is the major component in milk that modulates cell proliferation. Collectively, our study showed that LG plays a key role in enhancing immune responses by promoting cell proliferation through IgM receptor. PMID:27957499

  6. Adaptive immune cells temper initial innate responses

    PubMed Central

    Kim, Kwang Dong; Zhao, Jie; Auh, Sogyong; Yang, Xuanming; Du, Peishuang; Tang, Hong; Fu, Yang-Xin

    2008-01-01

    Toll-like receptors (TLRs) recognize conserved microbial structures called pathogen-associated molecular patterns. Signaling from TLRs leads to upregulation of co-stimulatory molecules for better priming of T cells and secretion of inflammatory cytokines by innate immune cells1–4. Lymphocytedeficient hosts often die of acute infection, presumably owing to their lack of an adaptive immune response to effectively clear pathogens. However, we show here that an unleashed innate immune response due to the absence of residential T cells can also be a direct cause of death. Viral infection or administration of poly(I:C), a ligand for TLR3, led to cytokine storm in T-cell- or lymphocyte-deficient mice in a fashion dependent on NK cells and tumor necrosis factor. We have further shown, through the depletion of CD4+ and CD8+ cells in wild-type mice and the transfer of T lymphocytes into Rag-1–deficient mice, respectively, that T cells are both necessary and sufficient to temper the early innate response. In addition to the effects of natural regulatory T cells, close contact of resting CD4+CD25−Foxp3− or CD8+ T cells with innate cells could also suppress the cytokine surge by various innate cells in an antigen-independent fashion. Therefore, adaptive immune cells have an unexpected role in tempering initial innate responses. PMID:17891146

  7. Adaptive immune cells temper initial innate responses.

    PubMed

    Kim, Kwang Dong; Zhao, Jie; Auh, Sogyong; Yang, Xuanming; Du, Peishuang; Tang, Hong; Fu, Yang-Xin

    2007-10-01

    Toll-like receptors (TLRs) recognize conserved microbial structures called pathogen-associated molecular patterns. Signaling from TLRs leads to upregulation of co-stimulatory molecules for better priming of T cells and secretion of inflammatory cytokines by innate immune cells. Lymphocyte-deficient hosts often die of acute infection, presumably owing to their lack of an adaptive immune response to effectively clear pathogens. However, we show here that an unleashed innate immune response due to the absence of residential T cells can also be a direct cause of death. Viral infection or administration of poly(I:C), a ligand for TLR3, led to cytokine storm in T-cell- or lymphocyte-deficient mice in a fashion dependent on NK cells and tumor necrosis factor. We have further shown, through the depletion of CD4+ and CD8+ cells in wild-type mice and the transfer of T lymphocytes into Rag-1-deficient mice, respectively, that T cells are both necessary and sufficient to temper the early innate response. In addition to the effects of natural regulatory T cells, close contact of resting CD4+CD25-Foxp3- or CD8+ T cells with innate cells could also suppress the cytokine surge by various innate cells in an antigen-independent fashion. Therefore, adaptive immune cells have an unexpected role in tempering initial innate responses.

  8. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota.

    PubMed

    Peterson, C T; Sharma, V; Elmén, L; Peterson, S N

    2015-03-01

    The distal gut harbours ∼10(13) bacteria, representing the most densely populated ecosystem known. The functional diversity expressed by these communities is enormous and relatively unexplored. The past decade of research has unveiled the profound influence that the resident microbial populations bestow to host immunity and metabolism. The evolution of these communities from birth generates a highly adapted and highly personalized microbiota that is stable in healthy individuals. Immune homeostasis is achieved and maintained due in part to the extensive interplay between the gut microbiota and host mucosal immune system. Imbalances of gut microbiota may lead to a number of pathologies such as obesity, type I and type II diabetes, inflammatory bowel disease (IBD), colorectal cancer (CRC) and inflammaging/immunosenscence in the elderly. In-depth understanding of the underlying mechanisms that control homeostasis and dysbiosis of the gut microbiota represents an important step in our ability to reliably modulate the gut microbiota with positive clinical outcomes. The potential of microbiome-based therapeutics to treat epidemic human disease is of great interest. New therapeutic paradigms, including second-generation personalized probiotics, prebiotics, narrow spectrum antibiotic treatment and faecal microbiome transplantation, may provide safer and natural alternatives to traditional clinical interventions for chronic diseases. This review discusses host-microbiota homeostasis, consequences of its perturbation and the associated challenges in therapeutic developments that lie ahead.

  9. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota

    PubMed Central

    Peterson, C T; Sharma, V; Elmén, L; Peterson, S N

    2015-01-01

    The distal gut harbours ∼1013 bacteria, representing the most densely populated ecosystem known. The functional diversity expressed by these communities is enormous and relatively unexplored. The past decade of research has unveiled the profound influence that the resident microbial populations bestow to host immunity and metabolism. The evolution of these communities from birth generates a highly adapted and highly personalized microbiota that is stable in healthy individuals. Immune homeostasis is achieved and maintained due in part to the extensive interplay between the gut microbiota and host mucosal immune system. Imbalances of gut microbiota may lead to a number of pathologies such as obesity, type I and type II diabetes, inflammatory bowel disease (IBD), colorectal cancer (CRC) and inflammaging/immunosenscence in the elderly. In-depth understanding of the underlying mechanisms that control homeostasis and dysbiosis of the gut microbiota represents an important step in our ability to reliably modulate the gut microbiota with positive clinical outcomes. The potential of microbiome-based therapeutics to treat epidemic human disease is of great interest. New therapeutic paradigms, including second-generation personalized probiotics, prebiotics, narrow spectrum antibiotic treatment and faecal microbiome transplantation, may provide safer and natural alternatives to traditional clinical interventions for chronic diseases. This review discusses host–microbiota homeostasis, consequences of its perturbation and the associated challenges in therapeutic developments that lie ahead. PMID:25345825

  10. Transfer of extracellular vesicles during immune cell-cell interactions

    PubMed Central

    Gutiérrez-Vázquez, Cristina; Villarroya-Beltri, Carolina; Mittelbrunn, María; Sánchez-Madrid, Francisco

    2013-01-01

    SUMMARY The transfer of molecules between cells during cognate immune cell interactions has been reported, and recently a novel mechanism of transfer of proteins and genetic material such as small RNA between T cells and APCs has been described, involving exchange of extracellular vesicles (EVs) during the formation of the immunological synapse (IS). EVs – a term that encompasses exosomes and microvesicles – have been implicated in cell-cell communication during immune responses associated with tumors, pathogens, allergies and autoimmune diseases. This review focuses on EV transfer as a mechanism for the exchange of molecules during immune cell-cell interactions. PMID:23278745

  11. Sphingosine-1 Phosphate: A New Modulator of Immune Plasticity in the Tumor Microenvironment

    PubMed Central

    Rodriguez, Yamila I.; Campos, Ludmila E.; Castro, Melina G.; Aladhami, Ahmed; Oskeritzian, Carole A.; Alvarez, Sergio E.

    2016-01-01

    In the last 15 years, increasing evidences demonstrate a strong link between sphingosine-1-phosphate (S1P) and both normal physiology and progression of different diseases, including cancer and inflammation. Indeed, numerous studies show that tissue levels of this sphingolipid metabolite are augmented in many cancers, affecting survival, proliferation, angiogenesis, and metastatic spread. Recent insights into the possible role of S1P as a therapeutic target has attracted enormous attention and opened new opportunities in this evolving field. In this review, we will focus on the role of S1P in cancer, with particular emphasis in new developments that highlight the many functions of this sphingolipid in the tumor microenvironment. We will discuss how S1P modulates phenotypic plasticity of macrophages and mast cells, tumor-induced immune evasion, differentiation and survival of immune cells in the tumor milieu, interaction between cancer and stromal cells, and hypoxic response. PMID:27800303

  12. Isolation of Immune Cells for Adoptive Transfer.

    PubMed

    Barhoumi, Tlili; Paradis, Pierre; Mann, Koren K; Schiffrin, Ernesto L

    2017-01-01

    Adoptive transfer of T lymphocytes is a useful technique to characterize the role of the immune system in hypertension and vascular disease. Here we describe as an example the isolation of splenic T regulatory cells from donor mice processed to obtain a single cell suspension, followed by negative and positive selection to obtain CD4(+) T cells and CD4(+)CD25(+) Treg cells, respectively. Treg cells can be subsequently transferred to recipient animals.

  13. FTY720 induces apoptosis in B16F10-NEX2 murine melanoma cells, limits metastatic development in vivo, and modulates the immune system

    PubMed Central

    Pereira, Felipe V.; Arruda, Denise C.; Figueiredo, Carlos R.; Massaoka, Mariana H.; Matsuo, Alisson L.; Bueno, Valquiria; Rodrigues, Elaine G.

    2013-01-01

    OBJECTIVE: Available chemotherapy presents poor control over the development of metastatic melanoma. FTY720 is a compound already approved by the Food and Drug Administration for the treatment of patients with multiple sclerosis. It has also been observed that FTY720 inhibits tumor growth in vivo (experimental models) and in vitro (animal and human tumor cells). The aim of this study was to evaluate the effects of FTY720 on a metastatic melanoma model and in tumor cell lines. METHODS: We analyzed FTY720 efficacy in vivo in a syngeneic murine metastatic melanoma model, in which we injected tumor cells intravenously into C57BL/6 mice and then treated the mice orally with the compound for 7 days. We also treated mice and human tumor cell lines with FTY720 in vitro, and cell viability and death pathways were analyzed. RESULTS: FTY720 treatment limited metastatic melanoma growth in vivo and promoted a dose-dependent decrease in the viability of murine and human tumor cells in vitro. Melanoma cells treated with FTY720 exhibited characteristics of programmed cell death, reactive oxygen species generation, and increased β-catenin expression. In addition, FTY720 treatment resulted in an immunomodulatory effect in vivo by decreasing the percentage of Foxp3+ cells, without interfering with CD8+ T cells or lymphocyte-producing interferon-gamma. CONCLUSION: Further studies are needed using FTY720 as a monotherapy or in combined therapy, as different types of cancer cells would require a variety of signaling pathways to be extinguished. PMID:23917669

  14. Innate immune interactions within the central nervous system modulate pathogenesis of viral infections

    PubMed Central

    Nair, Sharmila; Diamond, Michael S.

    2015-01-01

    The innate immune system mediates protection against neurotropic viruses that replicate in the central nervous system (CNS). Virus infection within specific cells of the CNS triggers activation of several families of pattern recognition receptors including Toll-like receptors, retinoic acid-inducible gene 1 like receptors, nucleotide-binding oligomerization domain-like receptors, and cytosolic DNA sensors. In this review, we highlight recent advances in our understanding of how cell-intrinsic host defenses within the CNS modulate infection of different DNA and RNA viruses. PMID:26163762

  15. Graphene Oxides Decorated with Carnosine as an Adjuvant To Modulate Innate Immune and Improve Adaptive Immunity in Vivo.

    PubMed

    Meng, Chunchun; Zhi, Xiao; Li, Chao; Li, Chuanfeng; Chen, Zongyan; Qiu, Xusheng; Ding, Chan; Ma, Lijun; Lu, Hongmin; Chen, Di; Liu, Guangqing; Cui, Daxiang

    2016-02-23

    Current studies have revealed the immune effects of graphene oxide (GO) and have utilized them as vaccine carriers and adjuvants. However, GO easily induces strong oxidative stress and inflammatory reaction at the site of injection. It is very necessary to develop an alternative adjuvant based on graphene oxide derivatives for improving immune responses and decreasing side effects. Carnosine (Car) is an outstanding and safe antioxidant. Herein, the feasibility and efficiency of ultrasmall graphene oxide decorated with carnosine as an alternative immune adjuvant were explored. OVA@GO-Car was prepared by simply mixing ovalbumin (OVA, a model antigen) with ultrasmall GO covalently modified with carnosine (GO-Car). We investigated the immunological properties of the GO-Car adjuvant in model mice. Results show that OVA@GO-Car can promote robust and durable OVA-specific antibody response, increase lymphocyte proliferation efficiency, and enhance CD4(+) T and CD8(+) T cell activation. The presence of Car in GO also probably contributes to enhancing the antigen-specific adaptive immune response through modulating the expression of some cytokines, including IL-6, CXCL1, CCL2, and CSF3. In addition, the safety of GO-Car as an adjuvant was evaluated comprehensively. No symptoms such as allergic response, inflammatory redness swelling, raised surface temperatures, physiological anomalies of blood, and remarkable weight changes were observed. Besides, after modification with carnosine, histological damages caused by GO-Car in lung, muscle, kidney, and spleen became weaken significantly. This study sufficiently suggest that GO-Car as a safe adjuvant can effectively enhance humoral and innate immune responses against antigens in vivo.

  16. Strategies to modulate the immune system in breast cancer: checkpoint inhibitors and beyond

    PubMed Central

    Migali, Cristina; Milano, Monica; Trapani, Dario; Criscitiello, Carmen; Esposito, Angela; Locatelli, Marzia; Minchella, Ida; Curigliano, Giuseppe

    2016-01-01

    Is breast cancer (BC) immunogenic? Many data suggest that it is. Many observations demonstrated the prognostic role of tumor-infiltrating lymphocytes (TILs) in triple negative (TN) and human epidermal growth factor receptor 2 (HER-2)-positive BC. TNBCs are poorly differentiated tumors with high genetic instability and very high heterogeneity. This heterogeneity enhances the ‘danger signals’ and select clone variants that could be more antigenic or, in other words, that could more strongly stimulate a host immune antitumor response. The response to chemotherapy is at least partly dependent on an immunological reaction against those tumor cells that are dying during the chemotherapy. One of the mechanisms whereby chemotherapy can stimulate the immune system to recognize and destroy malignant cells is commonly known as immunogenic cell death (ICD). ICD elicits an adaptive immune response. Which are the clinical implications of all ‘immunome’ data produced in the last years? First, validate prognostic or predictive role of TILs. Second, validate immune genomic signatures that may be predictive and prognostic in patients with TN disease. Third, incorporate an ‘immunoscore’ into traditional classification of BC, thus providing an essential prognostic and potentially predictive tool in the pathology report. Fourth, implement clinical trials for BC in the metastatic setting with drugs that target immune-cell–intrinsic checkpoints. Blockade of one of these checkpoints, cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) or the programmed cell death 1 (PD-1) receptor may provide proof of concepts for the activity of an immune-modulation approach in the treatment of a BC. PMID:27583028

  17. β7 Integrin controls mast cell recruitment, whereas αE integrin modulates the number and function of CD8+ T cells in immune complex-mediated tissue injury.

    PubMed

    Yamada, Daisuke; Kadono, Takafumi; Masui, Yuri; Yanaba, Koichi; Sato, Shinichi

    2014-05-01

    Immune complex (IC) deposition causes significant tissue injury associated with various autoimmune diseases such as vasculitis. In the cascade of inflammation, cell-to-cell and cell-to-matrix adhesion via adhesion molecules are essential. To assess the role of αE and β7 integrin in IC-mediated tissue injury, peritoneal and cutaneous reverse-passive Arthus reaction was examined in mice lacking αE integrin (αE(-/-)) or β7 integrin (β7(-/-)). Both αE(-/-) and β7(-/-) mice exhibited significantly attenuated neutrophil infiltration in the peritoneal and cutaneous Arthus reaction. β7 integrin deficiency, not αE integrin deficiency, significantly reduced the number of mast cells in the peritoneal cavity, which was consistent with the result that mast cells expressed only α4β7 integrin, not αEβ7 integrin. αE(-/-) mice instead revealed the reduction of CD8(+) T cells in the peritoneal cavity, and nearly half of them in wild-type mice expressed αE integrin. These αE(+)CD8(+) T cells produced more proinflammatory cytokines than αE(-)CD8(+) T cells, and adoptive transfer of αE(+)CD8(+) T cell into αE(-/-) recipients restored cutaneous and peritoneal Arthus reaction. These results suggest that in the peritoneal and cutaneous reverse-passive Arthus reaction, α4β7 integrin is involved in the migration of mast cells for initial IC recognition. αEβ7 integrin, in contrast, contributes by recruiting αE(+)CD8(+) T cells, which produce more proinflammatory cytokines than αE(-)CD8(+) T cells and amplify IC-mediated inflammation.

  18. Bone-immune cell crosstalk: bone diseases.

    PubMed

    Mori, Giorgio; D'Amelio, Patrizia; Faccio, Roberta; Brunetti, Giacomina

    2015-01-01

    Bone diseases are associated with great morbidity; thus, the understanding of the mechanisms leading to their development represents a great challenge to improve bone health. Recent reports suggest that a large number of molecules produced by immune cells affect bone cell activity. However, the mechanisms are incompletely understood. This review aims to shed new lights into the mechanisms of bone diseases involving immune cells. In particular, we focused our attention on the major pathogenic mechanism underlying periodontal disease, psoriatic arthritis, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis, metastatic solid tumors, and multiple myeloma.

  19. Conditioned mesenchymal stem cells attenuate progression of chronic kidney disease through inhibition of epithelial-to-mesenchymal transition and immune modulation.

    PubMed

    Chang, Jei-Wen; Tsai, Hsin-Lin; Chen, Chang-Wei; Yang, Hui-Wen; Yang, An-Hang; Yang, Ling-Yu; Wang, Paulus S; Ng, Yee-Yung; Lin, Teng-Lung; Lee, Oscar K

    2012-12-01

    Mesenchymal stem cells (MSCs) have been shown to improve the outcome of acute renal injury models; but whether MSCs can delay renal failure in chronic kidney disease (CKD) remains unclear. In the present study, the were cultured in media containing various concentrations of basic fibroblast growth factor, epidermal growth factor and ascorbic acid 2-phosphate to investigate whether hepatocyte growth factor (HGF) secretion could be increased by the stimulation of these growth factors. Then, TGF-β1-treated renal interstitial fibroblast (NRK-49F), renal proximal tubular cells (NRK-52E) and podocytes were co-cultured with conditioned MSCs in the absence or presence of ascorbic acid 2-phosphate to quantify the protective effects of conditioned MSCs on renal cells. Moreover, male Sprague-Dawley rats were treated with 1 × 10(6) conditioned MSCs immediately after 5/6 nephrectomy and every other week through the tail vein for 14 weeks. It was found that basic fibroblast growth factor, epidermal growth factor and ascorbic acid 2-phosphate promoted HGF secretion in MSCs. Besides, conditioned MSCs were found to be protective against TGF-β1 induced epithelial-to-mesenchymal transition of NRK-52E and activation of NRK-49F cells. Furthermore, conditioned MSCs protected podocytes from TGF-β1-induced loss of synaptopodin, fibronectin induction, cell death and apoptosis. Rats transplanted with conditioned human MSCs had a significantly increase in creatinine clearance rate, decrease in glomerulosclerosis, interstitial fibrosis and increase in CD4(+)CD25(+)Foxp3(+) regulatory T cells counts in splenocytes. Together, our studies indicated that conditioned MSCs preserve renal function by their anti-fibrotic and anti-inflammatory effects. Transplantation of conditioned MSCs may be useful in treating CKD.

  20. Dendritic cells and immunity against cancer

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Fay, Joseph; Banchereau, Jacques

    2010-01-01

    SUMMARY T cells can reject established tumors when adoptively transferred into patients, thereby demonstrating the power of the immune system for cancer therapy. However, it has proven difficult to maintain adoptively transferred T cells in the long term. Vaccines have the potential to induce tumor-specific effector and memory T cells. However, clinical efficacy of current vaccines is limited, possibly because tumors skew the immune system by means of myeloid-derived suppressor cells, inflammatory type 2 T cells and regulatory T cells (Tregs), all of which prevent the generation of effector cells. To improve the clinical efficacy of cancer vaccines in patients with metastatic disease, we need to design novel and improved strategies that can boost adaptive immunity to cancer, help overcome Tregs and allow the breakdown of the immunosuppressive tumor microenvironment. This can be achieved by exploiting the fast increasing knowledge about the dendritic cell (DC) system, including the existence of distinct DC subsets which respond differentially to distinct activation signals, (functional plasticity), both contributing to the generation of unique adaptive immune responses. We foresee that these novel cancer vaccines will be used as monotherapy in patients with resected disease, and in combination with drugs targeting regulatory/suppressor pathways in patients with metastatic disease. PMID:21158979

  1. Repeatedly administered antidepressant drugs modulate humoral and cellular immune response in mice through action on macrophages

    PubMed Central

    Kozlowski, Michael; Bryniarski, Pawel; Strobel, Spencer; Bryk, Agata; Myszka, Michal; Tyszka, Anna; Kuszmiersz, Piotr; Nowakowski, Jaroslaw; Filipczak-Bryniarska, Iwona

    2016-01-01

    Depression is associated with an altered immune response, which could be normalized by antidepressant drugs. However, little is known about the influence of antidepressants on the peripheral immune response and function of macrophages in individuals not suffering from depression. Our studies were aimed at determining the influence of antidepressant drugs on the humoral and cellular immune response in mice. Mice were treated intraperitoneally with imipramine, fluoxetine, venlafaxine, or moclobemide and contact immunized with trinitrophenyl hapten followed by elicitation and measurement of contact sensitivity by ear swelling response. Peritoneal macrophages from drug-treated mice were either pulsed with sheep erythrocytes or conjugated with trinitrophenyl and transferred into naive recipients to induce humoral or contact sensitivity response, respectively. Secretion of reactive oxygen intermediates, nitric oxide, and cytokines by macrophages from drug-treated mice was assessed, respectively, in chemiluminometry, Griess-based colorimetry and enzyme-linked immunosorbent assay, and the expression of macrophage surface markers was analyzed cytometrically. Treatment of mice with fluoxetine, venlafaxine, and moclobemide results in suppression of humoral and cell-mediated immunity with a reduction of the release of macrophage proinflammatory mediators and the expression of antigen-presentation markers. In contrast, treatment with imipramine enhanced the humoral immune response and macrophage secretory activity but slightly suppressed active contact sensitivity. Our studies demonstrated that systemically delivered antidepressant drugs modulate the peripheral humoral and cell-mediated immune responses, mostly through their action on macrophages. Imipramine was rather proinflammatory, whereas other tested drugs expressed immunosuppressive potential. Current observations may be applied to new therapeutic strategies dedicated to various disorders associated with excessive

  2. CD147: a novel modulator of inflammatory and immune disorders.

    PubMed

    Zhu, X; Song, Z; Zhang, S; Nanda, A; Li, G

    2014-01-01

    CD147, a transmembrane glycoprotein, is expressed on all leukocytes, platelets, and endothelial cells. It has been implicated in a variety of physiological and pathological activities through interacting with multiple partners, including cyclophilins, monocarboxylate transporters, Caveolin-1, and integrins. While CD147 is best known as a potent inducer of extracellular matrix metalloproteinases (hence also called EMMPRIN), it can also function as a key mediator of inflammatory and immune responses. Increased expression of CD147 has been implicated in the pathogenesis of a number of diseases, such as asthma-mediated lung inflammation, rheumatoid arthritis, multiple sclerosis, myocardial infarction and ischemic stroke. Therapeutic targeting of CD147 has yielded encouraging effects in a number of experimental models of human diseases, suggesting CD147 as an attractive target for treatment of inflammation-related diseases. Here we review the current understanding of CD147 expression and functions in inflammatory and immune responses and potential implications for treatment of inflammatory disorders.

  3. Antitumor Immunity and Cancer Stem Cells

    PubMed Central

    Schatton, Tobias; Frank, Markus H.

    2010-01-01

    Self-renewing cancer stem cells (CSC) capable of spawning more differentiated tumor cell progeny are required for tumorigenesis and neoplastic progression of leukemias and several solid cancers. The mechanisms by which CSC cause tumor initiation and growth are currently unknown. Recent findings that suggest a negative correlation between degrees of host immunocompetence and rates of cancer development raise the possibility that only a restricted minority of malignant cells, namely CSC, may possess the phenotypic and functional characteristics to evade host antitumor immunity. In human malignant melanoma, a highly immunogenic cancer, we recently identified malignant melanoma initiating cells (MMIC), a novel type of CSC, based on selective expression of the chemoresistance mediator ABCB5. Here we present evidence of a relative immune privilege of ABCB5+ MMIC, suggesting refractoriness to current immunotherapeutic treatment strategies. We discuss our findings in the context of established immunomodulatory functions of physiologic stem cells and in relation to mechanisms responsible for the downregulation of immune responses against tumors. We propose that the MMIC subset might be responsible for melanoma immune evasion and that immunomodulation might represent one mechanism by which CSC advance tumorigenic growth and resistance to immunotherapy. Accordingly, the possibility of an MMIC-driven tumor escape from immune-mediated rejection has important implications for current melanoma immunotherapy. PMID:19796244

  4. Programmed Cell Death of Dendritic Cells in Immune Regulation

    PubMed Central

    Chen, Min; Wang, Jin

    2010-01-01

    Summary Programmed cell death is essential for the maintenance of lymphocyte homeostasis and immune tolerance. Dendritic cells (DCs), the most efficient antigen presenting cells, represent a small cell population in the immune system. However, DCs play major roles in the regulation of both innate and adaptive immune responses. Programmed cell death in DCs is essential for regulating DC homeostasis and consequently, the scope of immune responses. Interestingly, different DC subsets show varied turnover rates in vivo. The conventional DCs are relatively short-lived in most lymphoid organs, while plasmacytoid DCs are long-lived cells. Mitochondrion-dependent programmed cell death plays an important role in regulating spontaneous DC turnover. Antigen-specific T cells are also capable of killing DCs, thereby providing a mechanism for negative feedback regulation of immune responses. It has been shown that a surplus of DCs due to defects in programmed cell death leads to overactivation of lymphocytes and the onset of autoimmunity. Studying programmed cell death in DCs will shed light on the roles for DC turnover in the regulation of the duration and magnitude of immune responses in vivo, and in the maintenance of immune tolerance. PMID:20636805

  5. Immune modulation by cadmium and lead in the acute reporter antigen-popliteal lymph node assay.

    PubMed

    Carey, John B; Allshire, Ashley; van Pelt, Frank N

    2006-05-01

    Immune modulation by heavy metals may cause serious adverse health effects in humans, although the mechanisms involved are not well understood. Both cadmium and lead are important environmental and occupational toxins. Therefore, in the current study, the costimulatory/adjuvant effects and the T-cell-activating potential of these metals (i.e., CdCl2 and PbCl2), are examined. These immune-modulating properties are critical in the development of conditions such as allergy, hypersensitivity, and autoimmunity. Using the direct popliteal lymph node assay (PLNA) and reporter antigen-popliteal lymph node assay (RA-PLNA) both metals were examined individually for immunotoxicity. Mercury (i.e., HgCl2) was included for comparative purposes as its effects in the RA-PLNA are well documented. Seven days following a single footpad injection containing metal and/or RA (trinitrophenyl-ovalbumin [TNP-OVA] or TNP-Ficoll), BALB/c mice were sacrificed and the popliteal lymph nodes (PLNs) removed. PLN cellularity, TNP-specific antibody-secreting cells (ASCs), and lymphocyte subsets were assessed. All three metals strongly stimulated T- and B-cell proliferation and ASC production following coinjection with the RA TNP-OVA. In each case, ASC production was skewed towards the IgG1 isotype. In addition, all three metals induced IgG production to TNP-Ficoll (although relatively weakly in the case of Cd). These results show that each of these metals can provide adjuvant signals to promote lymphocyte proliferation and enhance adaptive immune responses to unrelated antigens. Skewing of immune responses towards T helper type 2 responses suggests that each of these metals can enhance allergic and hypersensitivity reactions to environmental antigens. Furthermore, the induction of IgG responses to TNP-Ficoll, a T-cell-independent antigen, indicates that each of these metals can activate neoantigen-specific T cells. T-cell activation by metals can lead to metal hypersensitivity and has been

  6. BT cationic peptides: small peptides that modulate innate immune responses of chicken heterophils and monocytes.

    PubMed

    Kogut, Michael H; Genovese, Kenneth J; He, Haiqi; Swaggerty, Christina L; Jiang, Yi Wei

    2012-01-15

    Neonatal poultry exhibit a transient susceptibility to infectious diseases during the first week of life that stems from inefficient host defense mechanisms. Yet, the initial host immune response to pathogens is a critical determinant of disease resistance and susceptibility. With this context in mind, novel ways to stimulate or modulate the hosts' natural immune response is emerging as an important area of interest for food animal producers including the poultry industry. Specifically, we have been investigating new modulation strategies tailored around the selective stimulation of the host's immune system, and particularly rapid acting innate immunity, as an alternative to direct targeting of microbial pathogens. One such approach that we have been investigating is the use of a group of cationic peptides produced by a Gram-positive soil bacterium, Brevibacillus texasporus (BT peptides). We have previously shown that, provided as a feed additive, BT peptides significantly induced a concentration-dependent protection against cecal colonization and extraintestinal colonization by Salmonella enterica serovar Enteritidis (SE). This protection is not the result of direct antibacterial activity of the BT peptides on the SE since the concentrations used were below the minimum inhibitory concentration for SE. We also found that BT are not absorbed in the intestine, but still induce a significant up-regulation in the functional efficiency of peripheral blood heterophils and monocytes. The mechanisms of this immune modulation are unknown. Here, using in vitro models for measuring: (1) leukocyte oxidative burst, (2) changes in leukocyte cytokine and chemokines gene expression profiles, and (3) phosphorylation of the mitogen activated protein kinases (MAPKs) in leukocytes, we evaluated the role of BT peptides as priming mediators for heterophil and monocyte responses at the level of cell function, gene transcription/expression, and cell phosphorylation following stimulation

  7. Ebola VP40 in Exosomes Can Cause Immune Cell Dysfunction

    PubMed Central

    Pleet, Michelle L.; Mathiesen, Allison; DeMarino, Catherine; Akpamagbo, Yao A.; Barclay, Robert A.; Schwab, Angela; Iordanskiy, Sergey; Sampey, Gavin C.; Lepene, Benjamin; Nekhai, Sergei; Aman, M. J.; Kashanchi, Fatah

    2016-01-01

    deregulation and eventual destruction of the T-cell and myeloid arms of the immune system (bystander lymphocyte apoptosis), allowing the virus to replicate to high titers in the immunocompromised host. Moreover, our results suggest that the use of drugs such as Oxytetracycline to modulate the levels of exosomes exiting EBOV-infected cells may be able to prevent the devastation of the adaptive immune system and allow for an improved rate of survival. PMID:27872619

  8. β-Galactomannan and Saccharomyces cerevisiae var. boulardii modulate the immune response against Salmonella enterica serovar Typhimurium in porcine intestinal epithelial and dendritic cells.

    PubMed

    Badia, Roger; Brufau, M Teresa; Guerrero-Zamora, Ana Maria; Lizardo, Rosil; Dobrescu, Irina; Martin-Venegas, Raquel; Ferrer, Ruth; Salmon, Henri; Martínez, Paz; Brufau, Joaquim

    2012-03-01

    Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that causes inflammation, necrosis, and diarrhea in pigs, as well as being an important source of food-borne diseases in humans. Probiotics and prebiotics are promising alternatives to antibiotics to control and prevent intestinal infections. The present work investigated a recently developed β-galactomannan (βGM) prebiotic compared to the proven probiotic Saccharomyces cerevisiae var. boulardii on porcine ileum intestinal epithelial cells (IECs) of the IPI-2I line and monocyte-derived dendritic cells (DCs) cocultured in vitro with Salmonella. We observed that both S. cerevisiae var. boulardii and βGM inhibited the association of Salmonella with IECs in vitro. Our data indicated that βGM has a higher ability than S. cerevisiae var. boulardii to inhibit Salmonella-induced proinflammatory mRNA (cytokines tumor necrosis factor alpha [TNF-α], interleukin-1α [IL-1α], IL-6, and granulocyte-macrophage colony-stimulating factor [GM-CSF] and chemokines CCL2, CCL20, and CXCL8) and at protein levels (IL-6 and CXCL8). Additionally, βGM and S. cerevisiae var. boulardii induced some effects on DCs that were not observed on IECs: βGM and S. cerevisiae var. boulardii showed slight upregulation of mRNA for TNF-α, GM-CSF, and CCR7 receptor on porcine monocyte-derived dendritic cells (DCs). Indeed, the addition of βGM or S. cerevisiae var. boulardii on DCs cocultured with Salmonella showed higher gene expression (mRNA) for TNF-α, GM-CSF, and CXCL8 compared to that of the control with Salmonella. In conclusion, the addition of βGM inhibits Salmonella-induced proinflammatory profiles in IECs but may promote DC activation, although associated molecular mechanisms remain to be elucidated.

  9. Communication of bone cells with hematopoiesis, immunity and energy metabolism

    PubMed Central

    Asada, Noboru; Sato, Mari; Katayama, Yoshio

    2015-01-01

    The bone contains the bone marrow. The functional communication between bone cells and hematopoiesis has been extensively studied in the past decade or so. Osteolineage cells and their modulators, such as the sympathetic nervous system, macrophages and osteoclasts, form a complex unit to maintain the homeostasis of hematopoiesis, called the ‘microenvironment'. Recently, bone-embedded osteocytes, the sensors of gravity and mechanical stress, have joined the microenvironment, and they are demonstrated to contribute to whole body homeostasis through the control of immunity and energy metabolism. The inter-organ communication orchestrated by the bone is summarized in this article. PMID:26512322

  10. Measurement of myeloid cell immune suppressive activity.

    PubMed

    Dolcetti, Luigi; Peranzoni, Elisa; Bronte, Vincenzo

    2010-11-01

    This unit presents simple methods to assess the immunosuppressive properties of immunoregulatory cells of myeloid origin, such as myeloid-derived suppressor cells (MDSCs), both in vitro and in vivo. These methods are general and could be adapted to test the impact of different suppressive populations on T cell activation, proliferation, and cytotoxic activity; moreover they could be useful to assess the influence exerted on immune suppressive pathways by genetic modifications, chemical inhibitors, and drugs.

  11. Innate lymphoid cells in inflammation and immunity.

    PubMed

    McKenzie, Andrew N J; Spits, Hergen; Eberl, Gerard

    2014-09-18

    Innate lymphoid cells (ILCs) were first described as playing important roles in the development of lymphoid tissues and more recently in the initiation of inflammation at barrier surfaces in response to infection or tissue damage. It has now become apparent that ILCs play more complex roles throughout the duration of immune responses, participating in the transition from innate to adaptive immunity and contributing to chronic inflammation. The proximity of ILCs to epithelial surfaces and their constitutive strategic positioning in other tissues throughout the body ensures that, in spite of their rarity, ILCs are able to regulate immune homeostasis effectively. Dysregulation of ILC function might result in chronic pathologies such as allergies, autoimmunity, and inflammation. A new role for ILCs in the maintenance of metabolic homeostasis has started to emerge, underlining their importance in fundamental physiological processes beyond infection and immunity.

  12. Modulation of Immunity and Inflammation by the Mineralocorticoid Receptor and Aldosterone

    PubMed Central

    Muñoz-Durango, N.; Vecchiola, A.; Gonzalez-Gomez, L. M.; Simon, F.; Riedel, C. A.; Fardella, C. E.; Kalergis, A. M.

    2015-01-01

    The mineralocorticoid receptor (MR) is a ligand dependent transcription factor. MR has been traditionally associated with the control of water and electrolyte homeostasis in order to keep blood pressure through aldosterone activation. However, there is growing evidence indicating that MR expression is not restricted to vascular and renal tissues, as it can be also expressed by cells of the immune system, where it responds to stimulation or antagonism, controlling immune cell function. On the other hand, aldosterone also has been associated with proinflammatory immune effects, such as the release of proinflammatory cytokines, generating oxidative stress and inducing fibrosis. The inflammatory participation of MR and aldosterone in the cardiovascular disease suggests an association with alterations in the immune system. Hypertensive patients show higher levels of proinflammatory mediators that can be modulated by MR antagonism. Although these proinflammatory properties have been observed in other autoimmune and chronic inflammatory diseases, the cellular and molecular mechanisms that mediate these effects remain unknown. Here we review and discuss the scientific work aimed at determining the immunological role of MR and aldosterone in humans, as well as animal models. PMID:26448944

  13. Modulation of Immunity and Inflammation by the Mineralocorticoid Receptor and Aldosterone.

    PubMed

    Muñoz-Durango, N; Vecchiola, A; Gonzalez-Gomez, L M; Simon, F; Riedel, C A; Fardella, C E; Kalergis, A M

    2015-01-01

    The mineralocorticoid receptor (MR) is a ligand dependent transcription factor. MR has been traditionally associated with the control of water and electrolyte homeostasis in order to keep blood pressure through aldosterone activation. However, there is growing evidence indicating that MR expression is not restricted to vascular and renal tissues, as it can be also expressed by cells of the immune system, where it responds to stimulation or antagonism, controlling immune cell function. On the other hand, aldosterone also has been associated with proinflammatory immune effects, such as the release of proinflammatory cytokines, generating oxidative stress and inducing fibrosis. The inflammatory participation of MR and aldosterone in the cardiovascular disease suggests an association with alterations in the immune system. Hypertensive patients show higher levels of proinflammatory mediators that can be modulated by MR antagonism. Although these proinflammatory properties have been observed in other autoimmune and chronic inflammatory diseases, the cellular and molecular mechanisms that mediate these effects remain unknown. Here we review and discuss the scientific work aimed at determining the immunological role of MR and aldosterone in humans, as well as animal models.

  14. The immune microenvironment in Hodgkin lymphoma: T cells, B cells, and immune checkpoints

    PubMed Central

    Vardhana, Santosha; Younes, Anas

    2016-01-01

    Classical Hodgkin lymphoma is curable in the majority of cases with chemotherapy and/or radiation. However, 15–20% of patients ultimately relapse and succumb to their disease. Pathologically, classical Hodgkin lymphoma is characterized by rare tumor-initiating Reed-Sternberg cells surrounded by a dense immune microenvironment. However, the role of the immune microenvironment, particularly T and B cells, in either promoting or restricting Classical Hodgkin lymphoma growth remains undefined. Recent dramatic clinical responses seen using monoclonal antibodies against PD-1, a cell surface receptor whose primary function is to restrict T cell activation, have reignited questions regarding the function of the adaptive immune system in classical Hodgkin lymphoma. This review summarizes what is known regarding T cells, B cells, and immune checkpoints in classical Hodgkin lymphoma. PMID:27365459

  15. Effects of herbal medicinal formulas on suppressing viral replication and modulating immune responses.

    PubMed

    Liao, Hui-Fen; Lu, Min-Chi; Chang, Hon-Chou; Wei, Cheng-Chung; Kao, Chih-Hsiung; Chen, Zong-Huei; Huang, Chin-Chin; Li, Ching

    2010-01-01

    The Chinese medicinal herbs Radix Isatidis and Viola yedoensis Makino have been suggested to possess antiviral activity. This study tests whether these and other Chinese and Western herbal medicinal formulas can modulate the immune functions involving virus-suppression in BALB/c mouse. We first confirmed the extract from Viola yedoensis Makino, but not from Radix Isatidis, the traditional Chinese medicine (TCM) formula Chui-Uren-Chien (CUC), or a Western homeopathic medicinal drink Método Canova, could inhibit the replications of herpes simplex virus-1 and enterovirus 71 in the human neuroblastoma SK-N-SH cell line. Subsequently, the same herbal extracts and drink underwent toxicity and immunomodulatory tests on mice of 5-7 weeks old. After 8 weeks of feeding different herbal medicinal formulas, no hepatic or renal toxicity was noted in any tested animal; whereas among the immune function evaluations, only the mice treated with CUC extract were found to be associated with significant increases (p < 0.05) in both the level of plasma IgG and the percentage of monocyte in blood mononuclear cells as well as the activation of macrophage Raw264.7 cells for nitric oxide production, suggesting its role in modulating the non-specific immune response. Analyses using protein arrays showed CUC was the most potent herbal medicinal formula eliciting fluctuations in plasma cytokine and chemokine concentrations. Taking all experimental data together, we conclude Chui-Uren-Chien possesses immunomodulatory capability in mouse, but none of the herbal medicinal formulas tested here are involved in strengthening antiviral immunity.

  16. Modulation of Innate and Adaptive Immune Responses by Tofacitinib (CP-690,550)

    PubMed Central

    Ghoreschi, Kamran; Jesson, Michael I.; Li, Xiong; Lee, Jamie L.; Ghosh, Sarbani; Alsup, Jason W.; Warner, James D.; Tanaka, Masao; Steward-Tharp, Scott M.; Gadina, Massimo; Thomas, Craig; Minnerly, John C.; Storer, Chad E.; LaBranche, Timothy P.; Radi, Zaher A.; Dowty, Martin E.; Head, Richard D.; Meyer, Debra M.; Kishore, Nandini; O'Shea, John J.

    2011-01-01

    Inhibitors of the JAK family of non-receptor tyrosine kinases have demonstrated clinical efficacy in rheumatoid arthritis and other inflammatory disorders; however, the precise mechanisms by which JAK inhibition improves inflammatory immune responses remain unclear. Here we examined the mode of action of tofacitinib (CP-690,550) on JAK/STAT signaling pathways involved in adaptive and innate immune responses. To determine the extent of inhibition of specific JAK/STAT-dependent pathways, we analyzed cytokine stimulation of mouse and human T cells in vitro. We also investigated the consequences of CP-690,550 treatment on Th cell differentiation of naïve murine CD4+ T cells. CP-690,550 inhibited IL-4-dependent Th2 cell differentiation, and interestingly also interfered with Th17 cell differentiation. Expression of IL-23 receptor and of the Th17 cytokines IL-17A, IL-17F and IL-22 were blocked when naïve Th cells were stimulated with IL-6 and IL-23. In contrast, IL-17A-production was enhanced when Th17 cells were differentiated in the presence of TGF-β. Moreover, CP-690,550 also prevented activation of STAT1, induction of T-bet and subsequent generation of Th1 cells. In a model of established arthritis, CP-690,550 rapidly improved disease by inhibiting production of inflammatory mediators and suppressing STAT1-dependent genes in joint tissue. Furthermore, efficacy in this disease model correlated with inhibition of both JAK1 and JAK3 signaling pathways. CP-690,550 also modulated innate responses to LPS in vivo through a mechanism likely involving inhibition of STAT1 signaling. Thus, CP-690,550 may improve autoimmune diseases and prevent transplant rejection by suppressing the differentiation of pathogenic Th1 and Th17 cells, as well as innate immune cell signaling. PMID:21383241

  17. Worming Their Way into the Picture: Microbiota Help Helminths Modulate Host Immunity.

    PubMed

    Reynolds, Lisa A; Finlay, B Brett

    2015-11-17

    Parasitic helminths are potent regulators of host immunity, including inhibition of allergic inflammation. In this issue of Immunity, Zaiss et al. (2015) reveal that microbiota compositional shifts during helminth infection contribute to the multifaceted ways that helminths modulate host immunity.

  18. Selective estrogen receptor modulators differentially alter the immune response of gilthead seabream juveniles.

    PubMed

    Rodenas, M C; Cabas, I; García-Alcázar, A; Meseguer, J; Mulero, V; García-Ayala, A

    2016-05-01

    17α-ethynylestradiol (EE2), a synthetic estrogen used in oral contraceptives and hormone replacement therapy, tamoxifen (Tmx), a selective estrogen-receptor modulator used in hormone replacement therapy, and G1, a G protein-coupled estrogen receptor (GPER) selective agonist, differentially increased the hepatic vitellogenin (vtg) gene expression and altered the immune response in adult gilthead seabream (Sparus aurata L.) males. However, no information exists on the effects of these compounds on the immune response of juveniles. This study aims, for the first time, to investigate the effects of the dietary intake of EE2, Tmx or G1 on the immune response of gilthead seabream juveniles and the capacity of the immune system of the specimens to recover its functionality after ceasing exposures (recovery period). The specimens were immunized with hemocyanin in the presence of aluminium adjuvant 1 (group A) or 120 (group B) days after the treatments ceased (dpt). The results indicate that EE2 and Tmx, but not G1, differentially promoted a transient alteration in hepatic vtg gene expression. Although all three compounds did not affect the production of reactive oxygen intermediates, they inhibited the induction of interleukin-1β (il1b) gene expression after priming. Interestingly, although Tmx increased the percentage of IgM-positive cells in both head kidney and spleen during the recovery period, the antibody response of vaccinated fish varied depending on the compound used and when the immunization was administered. Taken together, our results suggest that these compounds differentially alter the capacity of fish to respond to infection during ontogeny and, more interestingly, that the adaptive immune response remained altered to an extent that depends on the compound.

  19. Immune cell phenotype and function in sepsis

    PubMed Central

    Rimmelé, Thomas; Payen, Didier; Cantaluppi, Vincenzo; Marshall, John; Gomez, Hernando; Gomez, Alonso; Murray, Patrick; Kellum, John A.

    2015-01-01

    Cells of the innate and adaptive immune systems play a critical role in the host response to sepsis. Moreover, their accessibility for sampling and their capacity to respond dynamically to an acute threat increases the possibility that leukocytes might serve as a measure of a systemic state of altered responsiveness in sepsis. The working group of the 14th Acute Dialysis Quality Initiative (ADQI) conference sought to obtain consensus on the characteristic functional and phenotypic changes in cells of the innate and adaptive immune system in the setting of sepsis. Techniques for the study of circulating leukocytes were also reviewed and the impact on cellular phenotypes and leukocyte function of non extracorporeal treatments and extracorporeal blood purification therapies proposed for sepsis was analyzed. A large number of alterations in the expression of distinct neutrophil and monocyte surface markers have been reported in septic patients. The most consistent alteration seen in septic neutrophils is their activation of a survival program that resists apoptotic death. Reduced expression of HLA-DR is a characteristic finding on septic monocytes but monocyte antimicrobial function does not appear to be significantly altered in sepsis. Regarding adaptive immunity, sepsis-induced apoptosis leads to lymphopenia in patients with septic shock and it involves all types of T cells (CD4, CD8 and Natural Killer) except T regulatory cells, thus favoring immunosuppression. Finally, numerous promising therapies targeting the host immune response to sepsis are under investigation. These potential treatments can have an effect on the number of immune cells, the proportion of cell subtypes and the cell function. PMID:26529661

  20. Interleukin-5 facilitates lung metastasis by modulating the immune microenvironment.

    PubMed

    Zaynagetdinov, Rinat; Sherrill, Taylor P; Gleaves, Linda A; McLoed, Allyson G; Saxon, Jamie A; Habermann, Arun C; Connelly, Linda; Dulek, Daniel; Peebles, R Stokes; Fingleton, Barbara; Yull, Fiona E; Stathopoulos, Georgios T; Blackwell, Timothy S

    2015-04-15

    Although the lung is the most common metastatic site for cancer cells, biologic mechanisms regulating lung metastasis are not fully understood. Using heterotopic and intravenous injection models of lung metastasis in mice, we found that IL5, a cytokine involved in allergic and infectious diseases, facilitates metastatic colonization through recruitment of sentinel eosinophils and regulation of other inflammatory/immune cells in the microenvironment of the distal lung. Genetic IL5 deficiency offered marked protection of the lungs from metastasis of different types of tumor cells, including lung cancer, melanoma, and colon cancer. IL5 neutralization protected subjects from metastasis, whereas IL5 reconstitution or adoptive transfer of eosinophils into IL5-deficient mice exerted prometastatic effects. However, IL5 deficiency did not affect the growth of the primary tumor or the size of metastatic lesions. Mechanistic investigations revealed that eosinophils produce CCL22, which recruits regulatory T cells to the lungs. During early stages of metastasis, Treg created a protumorigenic microenvironment, potentially by suppressing IFNγ-producing natural killer cells and M1-polarized macrophages. Together, our results establish a network of allergic inflammatory circuitry that can be co-opted by metastatic cancer cells to facilitate lung colonization, suggesting interventions to target this pathway may offer therapeutic benefits to prevent or treat lung metastasis.

  1. Interleukin-5 Facilitates Lung Metastasis by Modulating the Immune Microenvironment

    PubMed Central

    Gleaves, Linda A.; McLoed, Allyson G.; Saxon, Jamie A.; Habermann, Arun C.; Connelly, Linda; Dulek, Daniel; Peebles, R. Stokes; Fingleton, Barbara; Yull, Fiona E.; Stathopoulos, Georgios T.; Blackwell, Timothy S.

    2015-01-01

    Although the lung is the most common metastatic site for cancer cells, biological mechanisms regulating lung metastasis are not fully understood. Using heterotopic and intravenous injection models of lung metastasis in mice, we found that IL-5, a cytokine involved in allergic and infectious diseases, facilitates metastatic colonization through recruitment of sentinel eosinophils and regulation of other inflammatory/immune cells in the microenvironment of the distal lung. Genetic IL-5 deficiency offered marked protection of the lungs from metastasis of different types of tumor cells, including lung cancer, melanoma and colon cancer. IL-5 neutralization protected subjects from metastasis, whereas IL-5 reconstitution or adoptive transfer of eosinophils into IL-5 deficient mice exerted pro-metastatic effects. However, IL-5 deficiency did not affect the growth of the primary tumor or the size of metastatic lesions. Mechanistic investigations revealed that eosinophils produce CCL22, which recruits regulatory T cells (Treg) to the lungs. During early stages of metastasis Treg created a pro-tumorigenic microenvironment, potentially by suppressing IFNγ-producing natural killer cells and M1-polarized macrophages. Together, our results establish a network of allergic inflammatory circuitry that can be co-opted by metastatic cancer cells to facilitate lung colonization, suggesting interventions to target this pathway may offer therapeutic benefits to prevent or treat lung metastasis. PMID:25691457

  2. Dendritic cells: sentinels of immunity and tolerance.

    PubMed

    Kubach, Jan; Becker, Christian; Schmitt, Edgar; Steinbrink, Kerstin; Huter, Eva; Tuettenberg, Andrea; Jonuleit, Helmut

    2005-04-01

    The induction of effective antigen-specific T-cell immunity to pathogens without the initiation of autoimmunity has evolved as a sophisticated and highly balanced immunoregulatory mechanism. This mechanism assures the generation of antigen-specific effector cells as well as the induction and maintenance of antigen-specific tolerance to self-structures of the body. As professional antigen-presenting cells of the immune system, dendritic cells (DC) are ideally positioned throughout the entire body and equipped with a unique capability to transport antigens from the periphery to lymphoid tissues. There is growing evidence that DC, besides their well-known immunostimulatory properties, also induce and regulate T-cell tolerance in the periphery. This regulatory function of DC is strictly dependent on their different stages of maturation and activation. Additionally, immunosuppressive agents and cytokines further influence the functions of maturing DC. The regulatory properties of DC include induction of T-cell anergy, apoptosis, and the generation of T-cells with regulatory capacities. This brief review summarizes the current knowledge about the immunoregulatory role of DC as guardians for the induction of T-cell immunity and tolerance.

  3. The Human Natural Killer Cell Immune Synapse

    NASA Astrophysics Data System (ADS)

    Davis, Daniel M.; Chiu, Isaac; Fassett, Marlys; Cohen, George B.; Mandelboim, Ofer; Strominger, Jack L.

    1999-12-01

    Inhibitory killer Ig-like receptors (KIR) at the surface of natural killer (NK) cells induced clustering of HLA-C at the contacting surface of target cells. In this manner, inhibitory immune synapses were formed as human NK cells surveyed target cells. At target/NK cell synapses, HLA-C/KIR distributed into rings around central patches of intercellular adhesion molecule-1/lymphocyte function-associated antigen-1, the opposite orientation to mature murine T cell-activating synapses. This organization of protein was stable for at least 20 min. Cells could support multiple synapses simultaneously, and clusters of HLA-C moved as NK cells crawled over target cells. Clustering required a divalent metal cation, explaining how metal chelators inhibit KIR function. Surprisingly, however, formation of inhibitory synapses was unaffected by ATP depletion and the cytoskeletal inhibitors, colchicine and cytochalsins B and D. Clearly, supramolecular organization within plasma membranes is critical for NK cell immunosurveillance.

  4. Phospholipase C-β in immune cells.

    PubMed

    Kawakami, Toshiaki; Xiao, Wenbin

    2013-09-01

    Great progress has recently been made in structural and functional research of phospholipase C (PLC)-β. We now understand how PLC-β isoforms (β1-β4) are activated by GTP-bound Gαq downstream of G protein-coupled receptors. Numerous studies indicate that PLC-βs participate in the differentiation and activation of immune cells that control both the innate and adaptive immune systems. The PLC-β3 isoform also interplays with tyrosine kinase-based signaling pathways, to inhibit Stat5 activation by recruiting the protein-tyrosine phosphatase SHP-1, with which PLC-β3 and Stat5 form a multi-molecular signaling platform, named SPS complex. The SPS complex has important regulatory roles in tumorigenesis and immune cell activation.

  5. Dynamic changes in immune cell profile in head and neck squamous cell carcinoma: Immunomodulatory effects of chemotherapy.

    PubMed

    Takahashi, Hideyuki; Sakakura, Koichi; Mito, Ikko; Ida, Shota; Chikamatsu, Kazuaki

    2016-08-01

    Tumor cells have evolved sophisticated means of escape from the host immune system. To date, several important immunological phenomena have been revealed in peripheral blood as well as within tumors. In the present study, we first investigated the proportion and activation status of peripheral immune regulatory cells and CD8(+) T-cell subsets in patients with head and neck squamous cell carcinoma (HNSCC) using a multicolor flow cytometer, and then evaluated how therapy with docetaxel, cisplatin, and 5-fluorouracil modulated the immune cell profile in peripheral blood. The proportion of naïve T cells was lower and that of effector memory T cells (TEM ) was higher in HNSCC patients than in healthy donors. Moreover, the proportions of activated TEM cells and effector T cells (TEFF ) were dramatically increased in patients with advanced stage disease. The proportion of regulatory T cells and CD14(+) HLA-DR(-) myeloid-derived suppressor cells was elevated in HNSCC patients. Of note, after therapy, in addition to the transient reduction in immune regulatory cells, decreases in central memory T cells and increases in TEFF cells were observed among CD8(+) T-cell subsets, suggesting differentiation from central memory T cells into TEFF cells. Our results suggested that, despite the immunosuppressive status in HNSCC patients, tumor-specific immune responses mediated by CD8(+) T cells might be induced and maintained. Moreover, chemotherapy can trigger not only a transient reduction in immune regulatory cells but also further activation of CD8(+) T cells.

  6. Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator.

    PubMed

    Das, Priyanka; Lahiri, Amit; Lahiri, Ayan; Chakravortty, Dipshikha

    2010-06-17

    Arginine is a crucial amino acid that serves to modulate the cellular immune response during infection. Arginine is also a common substrate for both inducible nitric oxide synthase (iNOS) and arginase. The generation of nitric oxide from arginine is responsible for efficient immune response and cytotoxicity of host cells to kill the invading pathogens. On the other hand, the conversion of arginine to ornithine and urea via the arginase pathway can support the growth of bacterial and parasitic pathogens. The competition between iNOS and arginase for arginine can thus contribute to the outcome of several parasitic and bacterial infections. There are two isoforms of vertebrate arginase, both of which catalyze the conversion of arginine to ornithine and urea, but they differ with regard to tissue distribution and subcellular localization. In the case of infection with Mycobacterium, Leishmania, Trypanosoma, Helicobacter, Schistosoma, and Salmonella spp., arginase isoforms have been shown to modulate the pathology of infection by various means. Despite the existence of a considerable body of evidence about mammalian arginine metabolism and its role in immunology, the critical choice to divert the host arginine pool by pathogenic organisms as a survival strategy is still a mystery in infection biology.

  7. Cell-mediated immunity to soluble and particulate inhaled antigens

    PubMed Central

    Hill, J. O.; Burrell, R.

    1979-01-01

    In order to determine the influence of an antigen's physical properties on the development of cell-mediated immunity (CMI) in the lung following aerosol immunization, human serum albumin (HSA) was prepared in either a soluble or a particulate form, the latter being coupled to respirable, carboxylated latex beads. Antigen was administered via an aerosol to groups of guinea-pigs, twice weekly for up to 4 weeks. Additional groups of animals served as unexposed and unconjugated latex controls. Lymphoid cells for CMI assays were isolated from the lung by bronchopulmonary lavage and from blood for use in mitogen- and antigen-induced lymphocyte transformation assays, as well as indirect macrophage migration inhibition tests. Particulate HSA-exposed animals yielded the highest numbers of free lung cells containing predominantly macrophages, with up to 33% lymphocytes. These were followed by the latex control, soluble HSA and unexposed control groups, respectively. Only the animals exposed to particulate HSA had evidence of antigen reactivation in the lung cell populations as measured by lymphocyte stimulation assays. In contrast, a response to polyclonal mitogens was found only in animals exposed to antigen in a soluble form. Data from macrophage depletion experiments suggest that the antigenicity of inhaled antigens may be due to the types and numbers of cells responding to the stimulus, and the subsequent role the alveolar macrophage may play in the modulation of cellular immunity. PMID:393444

  8. A potent multivalent vaccine for modulation of immune system in atherosclerosis: an in silico approach

    PubMed Central

    2016-01-01

    Purpose Atherosclerosis is classically defined as an immune-mediated disease characterized by accumulation of low-density lipoprotein cholesterol over intima in medium sized and large arteries. Recent studies have demonstrated that both innate and adaptive immune responses are involved in atherosclerosis. In addition, experimental and human models have recognized many autoantigens in pathophysiology of this disease. Oxidized low-density lipoproteins, β2 glycoprotein I (β-2-GPI), and heat shock protein 60 (HSP60) are the best studied of them which can represent promising approach to design worthwhile vaccines for modulation of atherosclerosis. Materials and Methods In silico approaches are the best tools for design and evaluation of the vaccines before initiating the experimental study. In this study, we identified immunogenic epitopes of HSP60, ApoB-100, and β-2-GPI as major antigens to construct a chimeric protein through bioinformatics tools. Additionally, we have evaluated physico-chemical properties, structures, stability, MHC binding properties, humoral and cellular immune responses, and allergenicity of this chimeric protein by means of bioinformatics tools and servers. Results Validation results indicated that 89.1% residues locate in favorite or additional allowed region of Ramachandran plot. Also, based on Ramachandran plot analysis this protein could be classified as a stable fusion protein. In addition, the epitopes in the chimeric protein had strong potential to induce both the B-cell and T-cell mediated immune responses. Conclusion Our results supported that this chimeric vaccine could be effectively utilized as a multivalent vaccine for prevention and modulation of atherosclerosis. PMID:26866024

  9. [Natural killer cells and the innate immune system in infectious pathology].

    PubMed

    Sepúlveda, C; Puente, J

    2000-12-01

    Natural killer (NK) cells form a unique third group of lymphocytes that differs from T and B cells in surface phenotype, target cell recognition and function. NK cells have two relevant functions, related to the innate immune response against pathogens microorganisms. One is cytotoxicity, mediated by the recognition and lysis of target cells such as virus and bacteria infected-cells. The second NK cell function is to produce cytokines, mainly IFN-gamma, that can modulate innate and specific immune responses. Cytotoxicity and cytokine secretion contribute to host resistance against microorganisms and both functions are significantly altered in infectious diseases.

  10. Radiation-Induce Immune Modulation in Prostate Cancer

    DTIC Science & Technology

    2005-01-01

    Pei Liao,* Chun-Chieh Wang,*Il Lisa H. Butterfield,* James S. Economou,t Antoni Ribas ,t Wilson S. Meng,4 Keisuke S. Iwamoto,* and William H. McBride2...prostate cancer model. Int. J. Radiat. Oncol. Biol. Phys.. 59:579- 583, 2004. Liao, Y-P., C-C. Wang, L.H. Butterfield, J.S. Economou, A. Ribas , W.S. Meng...A. Ribas and W.H. McBride: Radiation modulates tumor antigen presentation by dendritic cells. In: Abstracts of Papers for the 95 "h Annual Meeting of

  11. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies.

    PubMed

    Ozao-Choy, Junko; Ma, Ge; Kao, Johnny; Wang, George X; Meseck, Marcia; Sung, Max; Schwartz, Myron; Divino, Celia M; Pan, Ping-Ying; Chen, Shu-Hsia

    2009-03-15

    In tumor-bearing hosts, myeloid-derived suppressor cells (MDSC) and T regulatory cells (Treg) play important roles in immune suppression, the reversal of which is vitally important for the success of immune therapy. We have shown that ckit ligand is required for MDSC accumulation and Treg development. We hypothesized that sunitinib malate, a receptor tyrosine kinase inhibitor, could reverse MDSC-mediated immune suppression and modulate the tumor microenvironment, thereby improving the efficacy of immune-based therapies. Treatment with sunitinib decreased the number of MDSC and Treg in advanced tumor-bearing animals. Furthermore, it not only reduced the suppressive function of MDSCs but also prevented tumor-specific T-cell anergy and Treg development. Interestingly, sunitinib treatment resulted in reduced expression of interleukin (IL)-10, transforming growth factor-beta, and Foxp3 but enhanced expression of Th1 cytokine IFN-gamma and increased CTL responses in isolated tumor-infiltrating leukocytes. A significantly higher percentage and infiltration of CD8 and CD4 cells was detected in tumors of sunitinib-treated mice when compared with control-treated mice. More importantly, the expression of negative costimulatory molecules CTLA4 and PD-1 in both CD4 and CD8 T cells, and PDL-1 expression on MDSC and plasmacytoid dendritic cells, was also significantly decreased by sunitinib treatment. Finally, sunitinib in combination with our immune therapy protocol (IL-12 and 4-1BB activation) significantly improves the long-term survival rate of large tumor-bearing mice. These data suggest that sunitinib can be used to reverse immune suppression and as a potentially useful adjunct for enhancing the efficacy of immune-based cancer therapy for advanced malignancies.

  12. Destruction of solid tumors by immune cells

    NASA Astrophysics Data System (ADS)

    López, Álvaro G.; Seoane, Jesús M.; Sanjuán, Miguel A. F.

    2017-03-01

    The fractional cell kill is a mathematical expression describing the rate at which a certain population of cells is reduced to a fraction of itself. In order to investigate the fractional cell kill that governs the rate at which a solid tumor is lysed by a cell population of cytotoxic CD8+ T cells (CTLs), we present several in silico simulations and mathematical analyses. When the CTLs eradicate efficiently the tumor cells, the models predict a correlation between the morphology of the tumors and the rate at which they are lysed. However, when the effectiveness of the immune cells is decreased, the mathematical function fails to reproduce the process of lysis. This limit is thoroughly discussed and a new fractional cell kill is proposed.

  13. Photochemistry-based immune modulation in the treatment of cutaneous leishmaniasis

    NASA Astrophysics Data System (ADS)

    Akilov, Oleg E.; Kosaka, Sachiko; Hasan, Tayyaba

    2009-06-01

    The destruction of infectious pathogens by photodynamic therapy (PDT) is an emerging modality. We demonstrated the efficacy of PDT for the management of cutaneous leishmaniasis in our previous studies. However, much remains to be done for the improvement of PDT regimens. The modulation of the immune response by photochemistry is an exciting but under-explored area of PDT research. The goal of this study is to understand the mechanisms of the augmentation of the host immune response after PDT of cutaneous leishmaniasis (CL). We found that PDT with phenoxiazine analogues was capable for induction of Th1 immune response due to stimulation of IL- 12 production by dendritic cells. Single PDT treatment facilitated fast healing of the CL lesions due to effective parasite eradication and augmentation of the immune system. Comparative study with different photosensitizers (PS) (porphyrins, pehnoxiazines) demonstrated different immunomodulating properties of PDT depending on chemical class of PS. Knowing the particular profiles and immunomodulating properties of the pertinent PSs allows us to select the optimal PS with regards to both the photodestructive and immunostimulating potential.

  14. Immune modulation for prevention of type 1 diabetes mellitus.

    PubMed

    Raz, Itamar; Eldor, Roy; Naparstek, Yaakov

    2005-03-01

    Prevention of type 1 diabetes mellitus requires early intervention in the autoimmune process directed against beta cells of the pancreatic islets of Langerhans. This autoimmune inflammatory process is thought to be caused by the effect of Th1 cells and their secreted cytokines (e.g. interferon) and to be suppressed by Th2-secreted anti-inflammatory cytokines (e.g. IL-4, IL-10). Various methods aimed specifically at halting or modulating this response have been attempted. An alternative method is the re-induction of tolerance towards the putative self antigen that causes the disease. Proposed antigens such as insulin, glutamic acid decarboxilase (GAD) and the heat shock protein 60 (Hsp60)-derived peptide 277 have been used successfully in murine diabetes models and in initial clinical trials in early diabetes patients. Here, we review the results of these trials.

  15. Modulation of the immune response by infection with Cryptosporidium spp. in children with allergic diseases.

    PubMed

    Guangorena-Gómez, J O; Maravilla-Domínguez, A; García-Arenas, G; Cervantes-Flores, M; Meza-Velázquez, R; Rivera-Guillén, M; Acosta-Saavedra, L C; Goytia-Acevedo, R C

    2016-08-01

    It has been demonstrated that the allergic response can be ameliorated by the administration of pathogen derivatives that activate Toll-like receptors and induce a Th1-type immune response (IR). Cryptosporidium is a parasite that promotes an IR via Toll-like receptors and elicits the production of Th1-type cytokines, which limit cryptosporidiosis. The aim of this study was to investigate allergy-related immune markers in children naturally infected with Cryptosporidium. In a cross-sectional study, 49 children with or without clinical diagnosis of allergies, oocysts of Cryptosporidium spp. in the faeces were screened microscopically. We microscopically screened for leucocytes, examined T and B cells for allergy-related activation markers using flow cytometry and evaluated serum for total IgE using chemiluminescence. Children with allergies and Cryptosporidium in the faeces had significantly lower levels of total IgE, B cells, CD19(+) CD23(+) and CD19(+) CD124(+) cells as well as a greater percentage of interferon-gamma (IFN-γ(+) ) and IL-4(+) CD4(+) cells than children with allergies without Cryptosporidium. This is the first description of the modulation of the IR in children with allergic diseases in the setting of natural Cryptosporidium infection. Our findings suggest the involvement of CD4(+) cells producing IL-4 and IFN-γ in the IR to Cryptosporidium in naturally infected children.

  16. HIV-1 Tat modulates T-bet expression and induces Th1 type of immune response

    SciTech Connect

    Kulkarni, Asavari; Ravi, Dyavar S.; Singh, Kamini; Rampalli, Shravanti; Parekh, Vrajesh; Mitra, Debashis; Chattopadhyay, Samit . E-mail: samit@nccs.res.in

    2005-04-08

    The HIV-1 transactivator Tat performs various viral and cellular functions. Primarily, it induces processive transcription from the HIV-1 LTR promoter. However, Tat secreted from infected cells is known to activate uninfected lymphocytes through receptors. To further delineate the specific target genes, extracellular Tat was expressed on the cell membrane of stimulator cells and co-cultured with human PBMCs. Along with induced CD4{sup +} T cell proliferation and IFN-{gamma} secretion, there was strong upregulation of T-bet expression which is majorly implicated in generating T{sub H}1 type of immune response. To further delineate the effect of extracellular Tat on HIV replication, both p24 analysis and in vivo GFP expression were performed. There was a significant inhibition of HIV-1 replication in human CEM-GFP cell line and hPBMCs. Thus, for the first time we report that apart from its transactivation activity, extracellular Tat acts as a costimulatory molecule that affects viral replication by modulating host immune response through induction of T-bet expression and IFN-{gamma} secretion.

  17. The effect of the immune system on ovarian function and features of ovarian germline stem cells.

    PubMed

    Ye, Haifeng; Li, Xiaoyan; Zheng, Tuochen; Liang, Xia; Li, Jia; Huang, Jian; Pan, Zezheng; Zheng, Yuehui

    2016-01-01

    In addition to its role in maintaining organism homeostasis, the immune system also plays a crucial role in the modulation of ovarian function, as it regulates ovarian development, follicular maturation, ovulation and the formation of the corpus luteum. Ovarian germline stem cells are pluripotent stem cells derived from the ovarian cortex that can differentiate into ovarian germ cells and primary granulosa cells. Recent work has demonstrated that the proliferation and differentiation of ovarian germline stem cells is regulated in part by immune cells and their secreted factors. This paper reviews the role of the immune system in the regulation of ovarian function, the relationship between immune components and ovarian germline stem cells and current research efforts in this field.

  18. In vivo multiphoton imaging of immune cell dynamics.

    PubMed

    Okada, Takaharu; Takahashi, Sonoko; Ishida, Azusa; Ishigame, Harumichi

    2016-11-01

    Multiphoton imaging has been utilized to analyze in vivo immune cell dynamics over the last 15 years. Particularly, it has deepened the understanding of how immune responses are organized by immune cell migration and interactions. In this review, we first describe the following technical advances in recent imaging studies that contributed to the new findings on the regulation of immune responses and inflammation. Improved multicolor imaging of immune cell behavior has revealed that their interactions are spatiotemporally coordinated to achieve efficient and long-term immunity. The use of photoactivatable and photoconvertible fluorescent proteins has increased duration and volume of cell tracking, even enabling the analysis of inter-organ migration of immune cells. In addition, visualization of immune cell activation using biosensors for intracellular calcium concentration and signaling molecule activities has started to give further mechanistic insights. Then, we also introduce recent imaging analyses of interactions between immune cells and non-immune cells including endothelial, fibroblastic, epithelial, and nerve cells. It is argued that future imaging studies that apply updated technical advances to analyze interactions between immune cells and non-immune cells will be important for thorough physiological understanding of the immune system.

  19. Modulation of immune function by a modified bovine whey protein concentrate.

    PubMed

    Cross, M L; Gill, H S

    1999-08-01

    The commercial preparation of dairy foodstuffs generates large volumes of by-products, many of which have as yet undocumented effects on mammalian immune function. In the present report, a modified whey protein concentrate (mWPC), derived as a by-product from the commercial manufacture of cheese, was tested for its ability to modulate murine immune function in vitro. The mWPC suppressed T and B lymphocyte proliferative responses to mitogens in a dose-dependent fashion. The mWPC also suppressed alloantigen-induced lymphocyte proliferation during a mixed leucocyte reaction, but showed no suppressive effect against IL-2-sustained proliferation of mitogen-activated T cell blasts. Other indices of lymphocyte activation, such as cytokine secretion and the formation of activated (CD25+) T cell blasts, were suppressed by the mWPC, suggesting that the mode of suppression may be to inhibit the lymphocyte activation process. Enzymatic digestion by pepsin and pancreatin, under physiologically realistic conditions in vitro, ablated the immunomodulatory function of the mWPC. These results are discussed in relation to the potential development of complex-mixture dairy products into health-modulating products.

  20. Impact of inhibitor of apoptosis proteins on immune modulation and inflammation.

    PubMed

    Sharma, Sachin; Kaufmann, Thomas; Biswas, Subhrajit

    2016-11-08

    The routes leading to programmed cell death are as tightly regulated as those of cellular growth and proliferation, and a finely synchronized balance between the life and death of cells ensures proper organ size and function. Inhibitors of apoptosis (IAPs) proteins were initially characterized by their ability to directly bind and inhibit apoptotic caspases. However, recent studies have clarified that IAPs are much more functionally versatile, modulating a vast range of signaling pathways that have an impact on antimicrobial responses, tumorigenesis, metastasis and cellular migration. A significant contribution of IAPs in tumorigenesis is their inherent function as E3 ubiquitin ligases to modulate cellular signaling downstream of death receptors or certain pattern recognition receptors. In this review, we focus on modulation of the innate and adaptive immune systems, macrophage plasticity and inflammatory responses by IAP family members. We also explore the rationale to target IAPs pharmacologically for the treatment of a number of inflammatory diseases and cancer.Immunology and Cell Biology advance online publication, 8 November 2016; doi:10.1038/icb.2016.101.

  1. Modulation of neuroinflammation: Role and therapeutic potential of TRPV1 in the neuro-immune axis.

    PubMed

    Kong, Wei-Lin; Peng, Yuan-Yuan; Peng, Bi-Wen

    2017-03-22

    Transient receptor potential vanilloid type 1 channel (TRPV1), as a ligand-gated non-selective cation channel, has recently been demonstrated to have wide expression in the neuro-immune axis, where its multiple functions occur through regulation of both neuronal and non-neuronal activities. Growing evidence has suggested that TRPV1 is functionally expressed in glial cells, especially in the microglia and astrocytes. Glial cells perform immunological functions in response to pathophysiological challenges through pro-inflammatory or anti-inflammatory cytokines and chemokines in which TRPV1 is involved. Sustaining inflammation might mediate a positive feedback loop of neuroinflammation and exacerbate neurological disorders. Accumulating evidence has suggested that TRPV1 is closely related to immune responses and might be recognized as a molecular switch in the neuroinflammation of a majority of seizures and neurodegenerative diseases. In this review, we evidenced that inflammation modulates the expression and activity of TRPV1 in the central nervous system (CNS) and TRPV1 exerts reciprocal actions over neuroinflammatory processes. Together, the literature supports the hypothesis that TRPV1 may represent potential therapeutic targets in the neuro-immune axis.

  2. Secretome identification of immune cell factors mediating metastatic cell homing

    PubMed Central

    Aguado, Brian A.; Wu, Jia J.; Azarin, Samira M.; Nanavati, Dhaval; Rao, Shreyas S.; Bushnell, Grace G.; Medicherla, Chaitanya B.; Shea, Lonnie D.

    2015-01-01

    Metastatic cell homing is a complex process mediated in part by diffusible factors secreted from immune cells found at a pre-metastatic niche. We report on connecting secretomics and TRanscriptional Activity CEll aRray (TRACER) data to identify functional paracrine interactions between immune cells and metastatic cells as novel mediators of homing. Metastatic breast cancer mouse models were used to generate a diseased splenocyte conditioned media (D-SCM) containing immune cell secreted factors. MDA-MB-231 metastatic cell activity including cell invasion, migration, transendothelial migration, and proliferation were increased in D-SCM relative to control media. Our D-SCM secretome analysis yielded 144 secreted factor candidates that contribute to increased metastatic cell activity. The functional mediators of homing were identified using MetaCore software to determine interactions between the immune cell secretome and the TRACER-identified active transcription factors within metastatic cells. Among the 5 candidate homing factors identified, haptoglobin was selected and validated in vitro and in vivo as a key mediator of homing. Our studies demonstrate a novel systems biology approach to identify functional signaling factors associated with a cellular phenotype, which provides an enabling tool that complements large-scale protein identification provided by proteomics. PMID:26634905

  3. Enhancement of Immune Effector Functions by Modulating IgG’s Intrinsic Affinity for Target Antigen

    PubMed Central

    Mazor, Yariv; Yang, Chunning; Borrok, M. Jack; Ayriss, Joanne; Aherne, Karen; Wu, Herren; Dall’Acqua, William F.

    2016-01-01

    Antibody-mediated immune effector functions play an essential role in the anti-tumor efficacy of many therapeutic mAbs. While much of the effort to improve effector potency has focused on augmenting the interaction between the antibody-Fc and activating Fc-receptors expressed on immune cells, the role of antibody binding interactions with the target antigen remains poorly understood. We show that antibody intrinsic affinity to the target antigen clearly influences the extent and efficiency of Fc-mediated effector mechanisms, and report the pivotal role of antibody binding valence on the ability to regulate effector functions. More particularly, we used an array of affinity modulated variants of three different mAbs, anti-CD4, anti-EGFR and anti-HER2 against a panel of target cell lines expressing disparate levels of the target antigen. We found that at saturating antibody concentrations, IgG variants with moderate intrinsic affinities, similar to those generated by the natural humoral immune response, promoted superior effector functions compared to higher affinity antibodies. We hypothesize that at saturating concentrations, effector function correlates most directly with the amount of Fc bound to the cell surface. Thus, high affinity antibodies exhibiting slow off-rates are more likely to interact bivalently with the target cell, occupying two antigen sites with a single Fc. In contrast, antibodies with faster off-rates are likely to dissociate each binding arm more rapidly, resulting in a higher likelihood of monovalent binding. Monovalent binding may in turn increase target cell opsonization and lead to improved recruitment of effector cells. This unpredicted relationship between target affinity and effector function potency suggests a careful examination of antibody design and engineering for the development of next-generation immunotherapeutics. PMID:27322177

  4. Snail modulates cell metabolism in MDCK cells

    SciTech Connect

    Haraguchi, Misako; Indo, Hiroko P.; Iwasaki, Yasumasa; Iwashita, Yoichiro; Fukushige, Tomoko; Majima, Hideyuki J.; Izumo, Kimiko; Horiuchi, Masahisa; Kanekura, Takuro; Furukawa, Tatsuhiko; Ozawa, Masayuki

    2013-03-22

    Highlights: ► MDCK/snail cells were more sensitive to glucose deprivation than MDCK/neo cells. ► MDCK/snail cells had decreased oxidative phosphorylation, O{sub 2} consumption and ATP content. ► TCA cycle enzyme activity, but not expression, was lower in MDCK/snail cells. ► MDCK/snail cells showed reduced PDH activity and increased PDK1 expression. ► MDCK/snail cells showed reduced expression of GLS2 and ACLY. -- Abstract: Snail, a repressor of E-cadherin gene transcription, induces epithelial-to-mesenchymal transition and is involved in tumor progression. Snail also mediates resistance to cell death induced by serum depletion. By contrast, we observed that snail-expressing MDCK (MDCK/snail) cells undergo cell death at a higher rate than control (MDCK/neo) cells in low-glucose medium. Therefore, we investigated whether snail expression influences cell metabolism in MDCK cells. Although gylcolysis was not affected in MDCK/snail cells, they did exhibit reduced pyruvate dehydrogenase (PDH) activity, which controls pyruvate entry into the tricarboxylic acid (TCA) cycle. Indeed, the activity of multiple enzymes involved in the TCA cycle was decreased in MDCK/snail cells, including that of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDH2), succinate dehydrogenase (SDH), and electron transport Complex II and Complex IV. Consequently, lower ATP content, lower oxygen consumption and increased survival under hypoxic conditions was also observed in MDCK/snail cells compared to MDCK/neo cells. In addition, the expression and promoter activity of pyruvate dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits the activity of PDH, was increased in MDCK/snail cells, while expression levels of glutaminase 2 (GLS2) and ATP-citrate lyase (ACLY), which are involved in glutaminolysis and fatty acid synthesis, were decreased in MDCK/snail cells. These results suggest that snail modulates cell metabolism by altering the expression and activity of

  5. Cell shunt resistance and photovoltaic module performance

    SciTech Connect

    McMahon, T.J.; Basso, T.S.; Rummel, S.R.

    1996-09-01

    Shunt resistance of cells in photovoltaic modules can affect module power output and could indicate flawed manufacturing processes and reliability problems. The authors describe a two-terminal diagnostic method to directly measure the shunt resistance of individual cells in a series-connected module non-intrusively, without deencapsulation. Peak power efficiency vs. light intensity was measured on a 12-cell, series-connected, single crystalline module having relatively high cell shunt resistances. The module was remeasured with 0.5-, 1-, and 2-ohm resistors attached across each cell to simulate shunt resistances of several emerging technologies. Peak power efficiencies decreased dramatically at lower light levels. Using the PSpice circuit simulator, they verified that cell shunt and series resistances can indeed be responsible for the observed peak power efficiency vs. intensity behavior. They discuss the effect of basic cell diode parameters, i.e., shunt resistance, series resistance, and recombination losses, on PV module performance as a function of light intensity.

  6. Genetic control of immune cell types in fungal disease.

    PubMed

    Mayfield, Jacob A; Fontana, Mary F; Rine, Jasper

    2010-12-21

    Millions of people harbor latent infections of the fungus Histoplasma capsulatum. Such persistent infections represent a stalemate between mechanisms of virulence and the immune response. The differing responses of inbred mouse strains to the same pathogen reflect variation in the genes that control the outcome of infection. Here we show that a 250-fold difference in H. capsulatum susceptibility between inbred mouse strains is attributable to the genotype at the MHC H2 locus. Gene expression analysis of strains varying only at the H2 locus identified genotype-specific and genotype-independent expression signatures, including infection-induced genes such as the fungal pattern recognition receptor Clec7a. Surprisingly, B-cell-specific gene expression was negatively correlated with fungal burden, whereas neutrophil-specific genes were correlated with superior disease outcome. Indeed, disease outcome improved when B cells were eliminated and neutrophils were more active, a previously unknown aspect of the host response. These data refine the understanding of genetic influences on histoplasmosis, reveal how shifts in the composition of immune cell populations compel different disease outcomes, and uncover how innate immunity modulation alters histoplasmosis.

  7. West African Sorghum bicolor Leaf Sheaths Have Anti-Inflammatory and Immune-Modulating Properties In Vitro

    PubMed Central

    Benson, Kathleen F.; Beaman, Joni L.; Ou, Boxin; Okubena, Ademola; Okubena, Olajuwon

    2013-01-01

    Abstract The impact of chronic inflammatory conditions on immune function is substantial, and the simultaneous application of anti-inflammatory and immune modulating modalities has potential for reducing inflammation-induced immune suppression. Sorghum-based foods, teas, beers, and extracts are used in traditional medicine, placing an importance on obtaining an increased understanding of the biological effects of sorghum. This study examined selected anti-inflammatory and immune-modulating properties in vitro of Jobelyn™, containing the polyphenol-rich leaf sheaths from a West African variant of Sorghum bicolor (SBLS). Freshly isolated primary human polymorphonuclear (PMN) and mononuclear cell subsets were used to test selected cellular functions in the absence versus presence of aqueous and ethanol extracts of SBLS. Both aqueous and nonaqueous compounds contributed to reduced reactive oxygen species formation by inflammatory PMN cells, and reduced the migration of these cells in response to the inflammatory chemoattractant leukotriene B4. Distinct effects were seen on lymphocyte and monocyte subsets in cultures of peripheral blood mononuclear cells. The aqueous extract of SBLS triggered robust upregulation of the CD69 activation marker on CD3− CD56+ natural killer (NK) cells, whereas the ethanol extract of SBLS triggered similar upregulation of CD69 on CD3+ CD56+ NKT cells, CD3+ T lymphocytes, and monocytes. This was accompanied by many-fold increases in the chemokines RANTES/CCL5, Mip-1α/CCL3, and MIP-1β/CCL4. Both aqueous and nonaqueous compounds contribute to anti-inflammatory effects, combined with multiple effects on immune cell activation status. These observations may help suggest mechanisms of action that contribute to the traditional use of sorghum-based products, beverages, and extracts for immune support. PMID:23289787

  8. Solar Cell Modules with Parallel Oriented Interconnections

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Twenty-four solar modules, half of which were 48 cells in an all-series electrical configuration and half of a six parallel cells by eight series cells were provided. Upon delivery of environmentally tested modules, low power outputs were discovered. These low power modules were determined to have cracked cells which were thought to cause the low output power. The cracks tended to be linear or circular which were caused by different stressing mechanisms. These stressing mechanisms were fully explored. Efforts were undertaken to determine the causes of cell fracture. This resulted in module design and process modifications. The design and process changes were subsequently implemented in production.

  9. Epigenetic Control of B Cell Development and B-Cell-Related Immune Disorders.

    PubMed

    Bao, Yan; Cao, Xuetao

    2016-06-01

    B lymphocytes are generally recognized as the essential component of humoral immunity and also a regulator of innate immunity. The development of B cells is precisely regulated by a variety of factors via different mechanisms, including cytokine/cytokine receptors, signal transduction molecules, and transcription factors. Recent findings suggest that epigenetic factors, such as DNA methylation, histone modification, and non-coding RNA, play critical roles in establishing B cell lineage-specific gene expression profiles to define and sustain B cell identity and function. Epigenetic modifications are also sensitive to external stimuli and might bridge genetic and environmental factors in the pathogenesis or control of B-cell-related immune disorders, such as autoimmune diseases, lymphoma, and leukemia. Better understanding of the epigenetic mechanisms for regulating B cell development and involving B cell abnormal differentiation and function will shed light on the design of new therapeutic approaches to B-cell-related diseases, and potential candidates of epigenetic modulators may be identified to target epigenetic pathways to prevent or treat B cell disorders. We summarize the relevance of epigenetic marks and landscapes in the stages of B cell development, discuss the interaction of the transcriptional networks and epigenetic changes, and review the involvement of epigenetic risk in the pathogenesis of B-cell-related diseases. Understanding how specific epigenetic alterations contribute to the development of B-cell-related autoimmunity and malignancies is instrumental to control B cell disorders.

  10. Immune Surveillance of Unhealthy Cells by Natural Killer cells

    PubMed Central

    Iannello, Alexandre; Raulet, David H.

    2014-01-01

    Pathogenic and oncogenic insults result in the induction of intrinsic defense mechanisms such as cell death pathways and senescence, and extrinsic pathways that mobilize immune responses to destroy unhealthy cells. Both protective mechanisms presumably evolved to limit the damage these insults could inflict on the host. After viral infection or malignant transformation, unhealthy cells can be directly sensed by natural killer (NK) and some T cells via the activating receptor NKG2D. All NK cells and subsets of T cells express NKG2D. The NKG2D/ligand system represents a major recognition mechanism for detection and elimination of unhealthy cells. Here we discuss different pathways, including stress pathways, that are responsible for cell surface display of ligands for NKG2D, which are self-proteins that are minimally expressed by normal cells. We also discuss new results indicating that efficient elimination of tumor cells that display NKG2D ligands depends on the recruitment of NK cells and other immune cells to the tumor, which can be regulated by distinct mechanisms, including the p53-dependent production of chemokines by senescent tumors. The cooperative effect of pathways that induce the display NKG2D ligands and distinct pathways that mobilize immune cells provides a higher degree of specificity to the NK cell response. PMID:24135717

  11. Modulation of the innate immune-related genes expression in H9N2 avian influenza virus-infected chicken macrophage-like cells (HD11) in response to Escherichia coli LPS stimulation.

    PubMed

    Qi, Xuefeng; Liu, Caihong; Li, Ruiqiao; Zhang, Huizhu; Xu, Xingang; Wang, Jingyu

    2016-11-17

    Macrophages play important roles in mediating virus-induced innate immune responses and are thought to be involved in the pathogenesis of bacterial superinfections. The innate immune response initiated by both low pathogenicity AIV and bacterial superinfection in their avian host is not fully understood. We therefore determine the transcripts of innate immune-related genes following avian H9N2 AIV virus infection and E. coli LPS co-stimulation of avian macrophage-like cell line HD11 cells. More pronounced expression of pro-inflammatory cytokines (IL-6 and IL-1β) as well as the inflammatory chemokines (CXCLi1 and CXCLi2) was observed in virus infected plus LPS treated HD11 cells compared to H9N2 virus solely infected control. For two superinfection groups, the levels of genes examined in a prior H9N2 virus infection before secondary LPS treatment group were significantly higher as compared with simultaneous virus infection plus LPS stimulation group. Interestingly, similar high levels of IL-6 gene were observed between LPS sole stimulation group and two superinfection groups. Moreover, IL-10 and TGF-β3 mRNA levels in both superinfection groups were moderately upregulated compared to sole LPS stimulation group or virus alone infection group. Although TLR4 and MDA5 levels in virus alone infection group were significantly lower compared to that in both superinfection groups, TLR4 upregulation respond more rapid to virus sole infection compared to LPS plus virus superinfection. Collectively, innate immune-related genes respond more pronounced in LPS stimulation plus H9N2 virus infection HD11 cells compared to sole virus infection or LPS alone stimulation control cells.

  12. Single-cell transcriptome analysis of fish immune cells provides insight into the evolution of vertebrate immune cell types

    PubMed Central

    Ferreira, Lauren; Macaulay, Iain C.; Stubbington, Michael J.T.

    2017-01-01

    The immune system of vertebrate species consists of many different cell types that have distinct functional roles and are subject to different evolutionary pressures. Here, we first analyzed conservation of genes specific for all major immune cell types in human and mouse. Our results revealed higher gene turnover and faster evolution of trans-membrane proteins in NK cells compared with other immune cell types, and especially T cells, but similar conservation of nuclear and cytoplasmic protein coding genes. To validate these findings in a distant vertebrate species, we used single-cell RNA sequencing of lck:GFP cells in zebrafish and obtained the first transcriptome of specific immune cell types in a nonmammalian species. Unsupervised clustering and single-cell TCR locus reconstruction identified three cell populations, T cells, a novel type of NK-like cells, and a smaller population of myeloid-like cells. Differential expression analysis uncovered new immune-cell–specific genes, including novel immunoglobulin-like receptors, and neofunctionalization of recently duplicated paralogs. Evolutionary analyses confirmed the higher gene turnover of trans-membrane proteins in NK cells compared with T cells in fish species, suggesting that this is a general property of immune cell types across all vertebrates. PMID:28087841

  13. Adrenal-Derived Hormones Differentially Modulate Intestinal Immunity in Experimental Colitis

    PubMed Central

    de Souza, Patrícia Reis; Basso, Paulo José; Nardini, Viviani; Silva, Angelica; Banquieri, Fernanda

    2016-01-01

    The adrenal glands are able to modulate immune responses through neuroimmunoendocrine interactions and cortisol secretion that could suppress exacerbated inflammation such as in inflammatory bowel disease (IBD). Therefore, here we evaluated the role of these glands in experimental colitis induced by 3% dextran sulfate sodium (DSS) in C57BL/6 mice subjected to adrenalectomy, with or without glucocorticoid (GC) replacement. Mice succumbed to colitis without adrenals with a higher clinical score and augmented systemic levels of IL-6 and lower LPS. Furthermore, adrenalectomy negatively modulated systemic regulatory markers. The absence of adrenals resulted in augmented tolerogenic lamina propria dendritic cells but no compensatory local production of corticosterone and decreased mucosal inflammation associated with increased IFN-γ and FasL in the intestine. To clarify the importance of GC in this scenario, GC replacement in adrenalectomized mice restored different markers to the same degree of that observed in DSS group. Finally, this is the first time that adrenal-derived hormones, especially GC, were associated with the differential local modulation of the gut infiltrate, also pointing to a relationship between adrenalectomy and the modulation of systemic regulatory markers. These findings may elucidate some neuroimmunoendocrine mechanisms that dictate colitis outcome. PMID:27403034

  14. Drosophila Dicer-2 has an RNA interference–independent function that modulates Toll immune signaling

    PubMed Central

    Wang, Zhaowei; Wu, Di; Liu, Yongxiang; Xia, Xiaoling; Gong, Wanyun; Qiu, Yang; Yang, Jie; Zheng, Ya; Li, Jingjing; Wang, Yu-Feng; Xiang, Ye; Hu, Yuanyang; Zhou, Xi

    2015-01-01

    Dicer-2 is the central player for small interfering RNA biogenesis in the Drosophila RNA interference (RNAi) pathway. Intriguingly, we found that Dicer-2 has an unconventional RNAi-independent function that positively modulates Toll immune signaling, which defends against Gram-positive bacteria, fungi, and some viruses, in both cells and adult flies. The loss of Dicer-2 expression makes fruit flies more susceptible to fungal infection. We further revealed that Dicer-2 posttranscriptionally modulates Toll signaling because Dicer-2 is required for the proper expression of Toll protein but not for Toll protein stability or Toll mRNA transcription. Moreover, Dicer-2 directly binds to the 3′ untranslated region (3′UTR) of Toll mRNA via its PAZ (Piwi/Argonaute/Zwille) domain and is required for protein translation mediated by Toll 3′UTR. The loss of Toll 3′UTR binding activity makes Dicer-2 incapable of promoting Toll signaling. These data indicate that the interaction between Dicer-2 and Toll mRNA plays a pivotal role in Toll immune signaling. In addition, we found that Dicer-2 is also required for the Toll signaling induced by two different RNA viruses in Drosophila cells. Consequently, our findings uncover a novel RNAi-independent function of Dicer-2 in the posttranscriptional regulation of Toll protein expression and signaling, indicate an unexpected intersection of the RNAi pathway and the Toll pathway, and provide new insights into Toll immune signaling, Drosophila Dicer-2, and probably Dicer and Dicer-related proteins in other organisms. PMID:26601278

  15. Transparent superstrate terrestrial solar cell module

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The design, development, fabrication, and testing of the transparent solar cell module were examined. Cell performance and material process characteristics were determined by extensive tests and design modifications were made prior to preproduction fabrication. These tests included three cell submodules and two full size engineering modules. Along with hardware and test activity, engineering documentation was prepared and submitted.

  16. Liposomes as immune adjuvants: T cell dependence.

    PubMed

    Beatty, J D; Beatty, B G; Paraskevas, F; Froese, E

    1984-08-01

    The T cell dependence of the immune adjuvant action of liposomes containing the soluble antigens bovine serum albumin (BSA) and chicken immunoglobulin (CIgG) was studied with use of a quantitative enzyme-linked immunosorbent assay to measure serum antibody levels. Normal BALB/c mice, adult thymectomized mice, and congenitally athymic (nu+/nu+) mice were intravenously inoculated with liposomes containing BSA (Lip-BSA). The high levels of serum anti-BSA antibody that were seen in the normal group were decreased in the adult thymectomized group and were almost completely abrogated in the nu+/nu+ group. Reconstitution of nu+/nu+ mice with normal thymocytes and cortisone-resistant thymocytes led to a partial restoration of the anti-BSA antibody production after Lip-BSA immunization. Examination of the class of immunoglobulin produced in normal mice, immunized with Lip-BSA, showed an early low IgM response and a sustained higher IgG response that was primarily due to the IgG1 subclass. Trypsin removal of BSA exposed on the liposome surface decreased the resulting serum anti-BSA antibody level by 30% to 50%. Animals could be primed equally with a very low dose (0.2 micrograms) of Lip-BSA or with peritoneal macrophages that had phagocytosed the same dose of Lip-BSA. The adjuvant effect of liposomes containing CIgG on the number and type of specific anti-CIgG antibody-producing cells in the spleen was an early increase in IgM-producing cells followed by a substantially higher increase in IgG-producing cells. These observations suggest that liposome encapsulation of a soluble T-dependent antigen stimulates the helper T cell, not the suppressor T cell population, and that this stimulation involves uptake by macrophages.

  17. Autoimmune disease-associated variants of extracellular endoplasmic reticulum aminopeptidase 1 induce altered innate immune responses by human immune cells

    PubMed Central

    Aldhamen, Yasser A.; Pepelyayeva, Yuliya; Rastall, David P.W.; Seregin, Sergey S.; Zervoudi, Efthalia; Koumantou, Despoina; Aylsworth, Charles F.; Quiroga, Dionisia; Godbehere, Sarah; Georgiadis, Dimitris; Stratikos, Efstratios; Amalfitano, Andrea

    2015-01-01

    ERAP1 gene polymorphisms have been linked to several autoimmune diseases; however, the molecular mechanisms underlying these associations are not well understood. Recently, we have demonstrated that ERAP1 regulates key aspects of the innate immune response. Moreover, previous studies show ERAP1 to be ER-localized and secreted during inflammation. Herein, we investigate the possible roles that ERAP1 polymorphic variants may have in modulating innate immune responses of human PBMCs using two experimental methods: extracellular exposure of hPBMCs to ERAP1 variants and adenovirus-based ERAP1 expression. We found that exposure of hPBMCs to ERAP1 variant proteins as well as ERAP1 overexpression by Ad vectors increased inflammatory cytokine and chemokine production, and enhanced immune cell activation. Investigating the molecular mechanisms behind these responses revealed that ERAP1 is able to activate innate immunity via multiple pathways, including the NLRP3 inflammasome. Importantly, these responses varied if autoimmune-disease-associated variants of ERAP1 were examined in the assay systems. Unexpectedly, blocking ERAP1 cellular internalization augmented IL-1β production. To our knowledge, this is the first report identifying ERAP1 as being involved in modulating innate responses of human immune cells, a finding that may explain why ERAP1 has been genetically associated with several autoimmune diseases. PMID:25591727

  18. The Fungal Quorum-Sensing Molecule Farnesol Activates Innate Immune Cells but Suppresses Cellular Adaptive Immunity

    PubMed Central

    Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin

    2015-01-01

    ABSTRACT Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. PMID:25784697

  19. Lactobacilli and bifidobacteria promote immune homeostasis by modulating innate immune responses to human rotavirus in neonatal gnotobiotic pigs.

    PubMed

    Vlasova, Anastasia N; Chattha, Kuldeep S; Kandasamy, Sukumar; Liu, Zhe; Esseili, Malak; Shao, Lulu; Rajashekara, Gireesh; Saif, Linda J

    2013-01-01

    The effects of co-colonization with Lactobacillus rhamnosus GG (LGG) and Bifidobacterium lactis Bb12 (Bb12) on 3-dose vaccination with attenuated HRV and challenge with virulent human rotavirus (VirHRV) were assessed in 4 groups of gnotobiotic (Gn) pigs: Pro+Vac (probiotic-colonized/vaccinated), Vac (vaccinated), Pro (probiotic-colonized, non-vaccinated) and Control (non-colonized, non-vaccinated). Subsets of pigs were euthanized pre- [post-challenge day (PCD) 0] and post (PCD7)-VirHRV challenge to assess diarrhea, fecal HRV shedding and dendritic cell/innate immune responses. Post-challenge, Pro+Vac and Vac groups were completely protected from diarrhea; protection rates against HRV shedding were 100% and 83%, respectively. Diarrhea and HRV shedding were reduced in Pro compared to Control pigs following VirHRV challenge. Diarrhea scores and virus shedding were significantly higher in Controls, compared to all other groups, coincident with significantly higher serum interferon-alpha levels post-challenge. LGG+Bb12 colonization ±vaccine promoted immunomaturation as reflected by increased frequencies of CD4, SWC3a, CD11R1, MHCII expressing mononuclear cells (MNCs) and conventional dendritic cells in intestinal tissues and blood post-challenge. Colonization decreased frequencies of toll-like receptors (TLR) 2 and TLR4 expressing MNCs from vaccinated pigs (Pro+Vac) pre-challenge and increased frequencies of TLR3 expressing MNCs from Pro pigs post-challenge, suggesting that probiotics likely exert anti-inflammatory (TLR2 and 4 down-regulation) and antiviral (TLR3 up-regulation by HRV dsRNA) actions via TLR signaling. Probiotic colonization alone (Pro) increased frequencies of intestinal and systemic apoptotic MNCs pre-challenge, thereby regulating immune hyperreactivity and tolerance. However, these frequencies were decreased in intestinal and systemic tissues post-challenge, moderating HRV-induced apoptosis. Additionally, post-challenge, Pro+Vac and Pro groups had

  20. Lactobacilli and Bifidobacteria Promote Immune Homeostasis by Modulating Innate Immune Responses to Human Rotavirus in Neonatal Gnotobiotic Pigs

    PubMed Central

    Vlasova, Anastasia N.; Chattha, Kuldeep S.; Kandasamy, Sukumar; Liu, Zhe; Esseili, Malak; Shao, Lulu; Rajashekara, Gireesh; Saif, Linda J.

    2013-01-01

    The effects of co-colonization with Lactobacillus rhamnosus GG (LGG) and Bifidobacterium lactis Bb12 (Bb12) on 3-dose vaccination with attenuated HRV and challenge with virulent human rotavirus (VirHRV) were assessed in 4 groups of gnotobiotic (Gn) pigs: Pro+Vac (probiotic-colonized/vaccinated), Vac (vaccinated), Pro (probiotic-colonized, non-vaccinated) and Control (non-colonized, non-vaccinated). Subsets of pigs were euthanized pre- [post-challenge day (PCD) 0] and post (PCD7)-VirHRV challenge to assess diarrhea, fecal HRV shedding and dendritic cell/innate immune responses. Post-challenge, Pro+Vac and Vac groups were completely protected from diarrhea; protection rates against HRV shedding were 100% and 83%, respectively. Diarrhea and HRV shedding were reduced in Pro compared to Control pigs following VirHRV challenge. Diarrhea scores and virus shedding were significantly higher in Controls, compared to all other groups, coincident with significantly higher serum interferon-alpha levels post-challenge. LGG+Bb12 colonization ±vaccine promoted immunomaturation as reflected by increased frequencies of CD4, SWC3a, CD11R1, MHCII expressing mononuclear cells (MNCs) and conventional dendritic cells in intestinal tissues and blood post-challenge. Colonization decreased frequencies of toll-like receptors (TLR) 2 and TLR4 expressing MNCs from vaccinated pigs (Pro+Vac) pre-challenge and increased frequencies of TLR3 expressing MNCs from Pro pigs post-challenge, suggesting that probiotics likely exert anti-inflammatory (TLR2 and 4 down-regulation) and antiviral (TLR3 up-regulation by HRV dsRNA) actions via TLR signaling. Probiotic colonization alone (Pro) increased frequencies of intestinal and systemic apoptotic MNCs pre-challenge, thereby regulating immune hyperreactivity and tolerance. However, these frequencies were decreased in intestinal and systemic tissues post-challenge, moderating HRV-induced apoptosis. Additionally, post-challenge, Pro+Vac and Pro groups had

  1. Intestinal immune cells in Strongyloides stercoralis infection.

    PubMed Central

    Trajman, A; MacDonald, T T; Elia, C C

    1997-01-01

    BACKGROUND: Strongyloides stercoralis can cause a wide spectrum of disease in man, ranging from a chronic asymptomatic infection to a hyperinfective, often fatal syndrome. In rodents, spontaneous expulsion of Strongyloides spp occurs after experimental infection. Mast cells, goblet cells, and eosinophils have been identified as possible effectors of this expulsion. AIMS: To investigate intestinal histopathology and mucosal immunity in immunocompetent patients with chronic S stercoralis infection. METHODS: Jejunal biopsies were performed in 19 immunocompetent patients with a positive stool examination for S stercoralis and few or no symptoms, and in seven healthy controls. Specimens were processed for histopathological analysis and stained by the immunoperoxidase technique, using the following monoclonal antibodies: CD2, CD3, CD4, CD8, anti-T cell receptor (TcR) gamma/delta, RFD1 and RFD7 (two different macrophage markers), Ki67+ (proliferating) cells, antihuman leucocyte antigen (HLA)-DR, and anticollagen IV. In addition, CD25+ cells, mast cells, IgE expressing cells, calprotectin containing cells, and neutrophil elastase positive cells were stained by the alkaline phosphatase method. RESULTS: Jejunal morphology and the numbers of different T cell subsets, mast cells, IgE expressing cells, eosinophils, and goblet cells were unaffected by S stercoralis infection. Conversely, the numbers of mature macrophages and dividing enterocytes in the crypts were reduced significantly. Crypt enterocytes did not express HLA-DR in both groups. The expression of HLA-DR by villus enterocytes was also comparable in patients and controls. There were no activated (CD25+) cells in the mucosa of either patients or controls. CONCLUSIONS: Compared with seven healthy uninfected volunteers, a group of 19 Brazilians with clinically mild strongyloides infection showed no abnormality of mucosal structure and no increase in non-specific inflammatory cells. Likewise, there was no increase in

  2. The Crosstalk between Myeloid Derived Suppressor Cells and Immune Cells: To Establish Immune Tolerance in Transplantation

    PubMed Central

    Wang, Shuo; Yang, Cheng

    2016-01-01

    Myeloid derived suppressor cells (MDSCs) are a heterogeneous population of myeloid precursor and progenitor cells and endowed with a robust immunosuppressive activity in multiple pathophysiological conditions. Recent studies have uncovered the crosstalk between MDSCs and immune cells (i.e., natural killer cells, dendritic cells, macrophages, natural killer T cells, and regulatory T cells) and its role in the establishment and maintenance of immune tolerant microenvironment in transplantation. Considering their strong immunosuppressive capability, MDSCs could become a prospective clinical regimen during transplantation tolerance induction, resulting in long-term graft survival with decreased or without immunosuppressive drugs. The review summarized recent research advances in this field and looked ahead at the research directions in the future. PMID:27868073

  3. Genetic control of immune cell types in fungal disease

    PubMed Central

    Mayfield, Jacob A.; Fontana, Mary F.; Rine, Jasper

    2010-01-01

    Millions of people harbor latent infections of the fungus Histoplasma capsulatum. Such persistent infections represent a stalemate between mechanisms of virulence and the immune response. The differing responses of inbred mouse strains to the same pathogen reflect variation in the genes that control the outcome of infection. Here we show that a 250-fold difference in H. capsulatum susceptibility between inbred mouse strains is attributable to the genotype at the MHC H2 locus. Gene expression analysis of strains varying only at the H2 locus identified genotype-specific and genotype-independent expression signatures, including infection-induced genes such as the fungal pattern recognition receptor Clec7a. Surprisingly, B-cell–specific gene expression was negatively correlated with fungal burden, whereas neutrophil-specific genes were correlated with superior disease outcome. Indeed, disease outcome improved when B cells were eliminated and neutrophils were more active, a previously unknown aspect of the host response. These data refine the understanding of genetic influences on histoplasmosis, reveal how shifts in the composition of immune cell populations compel different disease outcomes, and uncover how innate immunity modulation alters histoplasmosis. PMID:21135228

  4. Adjuvant System AS03 containing α-tocopherol modulates innate immune response and leads to improved adaptive immunity.

    PubMed

    Morel, Sandra; Didierlaurent, Arnaud; Bourguignon, Patricia; Delhaye, Sophie; Baras, Benoît; Jacob, Valérie; Planty, Camille; Elouahabi, Abdelatif; Harvengt, Pol; Carlsen, Harald; Kielland, Anders; Chomez, Patrick; Garçon, Nathalie; Van Mechelen, Marcelle

    2011-03-16

    AS03 is an Adjuvant System (AS) containing α-tocopherol and squalene in an oil-in-water (o/w) emulsion. AS03 has been considered for the development of pandemic and seasonal influenza vaccines. Key features of AS03's mode of action were investigated in vivo in mice and ex vivo in human cells. AS03's adjuvant activity was superior to that of aluminium hydroxide and required the spatio-temporal co-localisation of AS03 with the antigen. This requirement coincided with AS03 triggering a transient production of cytokines at the injection site and in the draining lymph nodes (dLNs). The nature of the cytokines produced was consistent with the enhanced recruitment of granulocytes and of antigen-loaded monocytes in the dLNs. The presence of α-tocopherol in AS03 was required for AS03 to achieve the highest antibody response. The presence of α-tocopherol also modulated the expression of some cytokines, including CCL2, CCL3, IL-6, CSF3 and CXCL1; increased the antigen loading in monocytes; and increased the recruitment of granulocytes in the dLNs. Hence, AS03's promotion of monocytes as the principal antigen-presenting cells, and its effects on granulocytes and cytokines, may all contribute to enhancing the antigen-specific adaptive immune response.

  5. Lactobacillus paracasei modulates the immune system of Galleria mellonella and protects against Candida albicans infection.

    PubMed

    Rossoni, Rodnei Dennis; Fuchs, Beth Burgwyn; de Barros, Patrícia Pimentel; Velloso, Marisol Dos Santos; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos; Mylonakis, Eleftherios

    2017-01-01

    Probiotics have been described as a potential strategy to control opportunistic infections due to their ability to stimulate the immune system. Using the non-vertebrate model host Galleria mellonella, we evaluated whether clinical isolates of Lactobacillus spp. are able to provide protection against Candida albicans infection. Among different strains of Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus fermentum, we verified that L. paracasei 28.4 strain had the greatest ability to prolong the survival of larvae infected with a lethal dose of C. albicans. We found that the injection of 107 cells/larvae of L. paracasei into G. mellonella larvae infected by C. albicans increased the survival of these insects compared to the control group (P = 0.0001). After that, we investigated the immune mechanisms involved in the protection against C. albicans infection, evaluating the number of hemocytes and the gene expression of antifungal peptides. We found that L. paracasei increased the hemocyte quantity (2.38 x 106 cells/mL) in relation to the control group (1.29 x 106 cells/mL), indicating that this strain is capable of raising the number of circulating hemocytes into the G. mellonella hemolymph. Further, we found that L. paracasei 28.4 upregulated genes that encode the antifungal peptides galiomicin and gallerymicin. In relation to the control group, L. paracasei 28.4 increased gene expression of galiomicin by 6.67-fold and 17.29-fold for gallerymicin. Finally, we verified that the prophylactic provision of probiotic led to a significant reduction of the number of fungal cells in G. mellonella hemolymph. In conclusion, L. paracasei 28.4 can modulate the immune system of G. mellonella and protect against candidiasis.

  6. Lactobacillus paracasei modulates the immune system of Galleria mellonella and protects against Candida albicans infection

    PubMed Central

    Rossoni, Rodnei Dennis; Fuchs, Beth Burgwyn; de Barros, Patrícia Pimentel; Velloso, Marisol dos Santos; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos; Mylonakis, Eleftherios

    2017-01-01

    Probiotics have been described as a potential strategy to control opportunistic infections due to their ability to stimulate the immune system. Using the non-vertebrate model host Galleria mellonella, we evaluated whether clinical isolates of Lactobacillus spp. are able to provide protection against Candida albicans infection. Among different strains of Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus fermentum, we verified that L. paracasei 28.4 strain had the greatest ability to prolong the survival of larvae infected with a lethal dose of C. albicans. We found that the injection of 107 cells/larvae of L. paracasei into G. mellonella larvae infected by C. albicans increased the survival of these insects compared to the control group (P = 0.0001). After that, we investigated the immune mechanisms involved in the protection against C. albicans infection, evaluating the number of hemocytes and the gene expression of antifungal peptides. We found that L. paracasei increased the hemocyte quantity (2.38 x 106 cells/mL) in relation to the control group (1.29 x 106 cells/mL), indicating that this strain is capable of raising the number of circulating hemocytes into the G. mellonella hemolymph. Further, we found that L. paracasei 28.4 upregulated genes that encode the antifungal peptides galiomicin and gallerymicin. In relation to the control group, L. paracasei 28.4 increased gene expression of galiomicin by 6.67-fold and 17.29-fold for gallerymicin. Finally, we verified that the prophylactic provision of probiotic led to a significant reduction of the number of fungal cells in G. mellonella hemolymph. In conclusion, L. paracasei 28.4 can modulate the immune system of G. mellonella and protect against candidiasis. PMID:28267809

  7. Immune response modulation by curcumin in a latex allergy model

    PubMed Central

    Kurup, Viswanath P; Barrios, Christy S; Raju, Raghavan; Johnson, Bryon D; Levy, Michael B; Fink, Jordan N

    2007-01-01

    Background There has been a worldwide increase in allergy and asthma over the last few decades, particularly in industrially developed nations. This resulted in a renewed interest to understand the pathogenesis of allergy in recent years. The progress made in the pathogenesis of allergic disease has led to the exploration of novel alternative therapies, which include herbal medicines as well. Curcumin, present in turmeric, a frequently used spice in Asia has been shown to have anti-allergic and inflammatory potential. Methods We used a murine model of latex allergy to investigate the role of curcumin as an immunomodulator. BALB/c mice were exposed to latex allergens and developed latex allergy with a Th2 type of immune response. These animals were treated with curcumin and the immunological and inflammatory responses were evaluated. Results Animals exposed to latex showed enhanced serum IgE, latex specific IgG1, IL-4, IL-5, IL-13, eosinophils and inflammation in the lungs. Intragastric treatment of latex-sensitized mice with curcumin demonstrated a diminished Th2 response with a concurrent reduction in lung inflammation. Eosinophilia in curcumin-treated mice was markedly reduced, co-stimulatory molecule expression (CD80, CD86, and OX40L) on antigen-presenting cells was decreased, and expression of MMP-9, OAT, and TSLP genes was also attenuated. Conclusion These results suggest that curcumin has potential therapeutic value for controlling allergic responses resulting from exposure to allergens. PMID:17254346

  8. The GHKL ATPase MORC1 Modulates Species-Specific Plant Immunity in Solanaceae.

    PubMed

    Manosalva, Patricia; Manohar, Murli; Kogel, Karl-Heinz; Kang, Hong-Gu; Klessig, Daniel F

    2015-08-01

    The microrchidia (MORC) proteins, a subset of the GHKL ATPase superfamily, were recently described as components involved in transcriptional gene silencing and plant immunity in Arabidopsis. To assess the role of MORC1 during resistance to Phytophthora infestans in solanaceous species, we altered the expression of the corresponding MORC1 homologs in potato, tomato, and Nicotiana benthamiana. Basal resistance to P. infestans was compromised in StMORC1-silenced potato and enhanced in overexpressing lines, indicating that StMORC1 positively affects immunity. By contrast, silencing SlMORC1 expression in tomato or NbMORC1 expression in N. benthamiana enhanced basal resistance to this oomycete pathogen. In addition, silencing SlMORC1 further enhanced resistance conferred by two resistance genes in tomato. Transient expression of StMORC1 in N. benthamiana accelerated cell death induced by infestin1 (INF1), whereas SlMORC1 or NbMORC1 suppressed it. Domain-swapping and mutational analyses indicated that the C-terminal region dictates the species-specific effects of the solanaceous MORC1 proteins on INF1-induced cell death. This C-terminal region also was required for homodimerization and phosphorylation of recombinant StMORC1 and SlMORC1, and its transient expression induced spontaneous cell death in N. benthamiana. Thus, this C-terminal region likely plays important roles in both determining and modulating the biological activity of MORC1 proteins.

  9. Interactions between mesenchymal stem cells and the immune system.

    PubMed

    Li, Na; Hua, Jinlian

    2017-02-18

    In addition to being multi-potent, mesenchymal stem cells (MSCs) possess immunomodulatory functions that have been investigated as potential treatments in various immune disorders. MSCs can robustly interact with cells of the innate and adaptive immune systems, either through direct cell-cell contact or through their secretome. In this review, we discuss current findings regarding the interplay between MSCs and different immune cell subsets. We also draw attention to the mechanisms involved.

  10. Role of Dendritic Cells in Immune Dysfunction

    NASA Technical Reports Server (NTRS)

    Savary, Cherylyn A.

    1998-01-01

    The specific aims of the project were: (1) Application of the NASA bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC). (2) Compare the frequency and function of DC in normal donors and immunocompromised cancer patients. (3) Analyze the effectiveness of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in a murine model of experimental fungal disease. Our investigations have provided new insight into DC immunobiology and have led to the development of methodology to evaluate DC in blood of normal donors and patients. Information gained from these studies has broadened our understanding of possible mechanisms involved in the immune dysfunction of space travelers and earth-bound cancer patients, and could contribute to the design of novel therapies to restore/preserve immunity in these individuals. Several new avenues of investigation were also revealed. The results of studies completed during Round 2 are summarized.

  11. Liver natural killer cells: subsets and roles in liver immunity

    PubMed Central

    Peng, Hui; Wisse, Eddie; Tian, Zhigang

    2016-01-01

    The liver represents a frontline immune organ that is constantly exposed to a variety of gut-derived antigens as a result of its unique location and blood supply. With a predominant role in innate immunity, the liver is enriched with various innate immune cells, among which natural killer (NK) cells play important roles in host defense and in maintaining immune balance. Hepatic NK cells were first described as ‘pit cells' in the rat liver in the 1970s. Recent studies of NK cells in mouse and human livers have shown that two distinct NK cell subsets, liver-resident NK cells and conventional NK (cNK) cells, are present in this organ. Here, we review liver NK cell subsets in different species, revisiting rat hepatic pit cells and highlighting recent progress related to resident NK cells in mouse and human livers, and also discuss the dual roles of NK cells in liver immunity. PMID:26639736

  12. [The Role of Regulatory T-cells in Antitumor Immune Response].

    PubMed

    Klabusay, M

    2015-01-01

    Regulatory T-lymphocytes (Treg) are essential for regulation of immune homeostasis and prevention of autoimmune disease development. Regulatory T-cells prevent the onset of autoimmune diseases; they keep immune homeostasis and modulate immune response during infection. Their activity is precisely controlled. Regulatory T-cells belong to one group of immune cells, which can support tumor survival and growth. They realize their function through inhibition of effector T-cells and by regulation of tumor microenvironment through production of various soluble factors. Many publications have proven that the amount of Treg cells is elevated in both solid tumors and in hematologic malignancies. Nevertheless, little is known about mechanisms, which allow increase and maintenance of elevated Treg cells in cancer patients. In this review, we will focus, among others, on the description of function and phenotype of Treg cells, their modulation of humoral immune response and interaction with cancer stem cells. Current development of modern tumor immunotherapy allows new possibilities of influencing Treg cells function.

  13. Aberrant T cell immunity triggered by human Respiratory Syncytial Virus and human Metapneumovirus infection.

    PubMed

    González, Andrea E; Lay, Margarita K; Jara, Evelyn L; Espinoza, Janyra A; Gómez, Roberto S; Soto, Jorge; Rivera, Claudia A; Abarca, Katia; Bueno, Susan M; Riedel, Claudia A; Kalergis, Alexis M

    2016-12-02

    Human Respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) are the two major etiological viral agents of lower respiratory tract diseases, affecting mainly infants, young children and the elderly. Although the infection of both viruses trigger an antiviral immune response that mediate viral clearance and disease resolution in immunocompetent individuals, the promotion of long-term immunity appears to be deficient and reinfection are common throughout life. A possible explanation for this phenomenon is that hRSV and hMPV, can induce aberrant T cell responses, which leads to exacerbated lung inflammation and poor T and B cell memory immunity. The modulation of immune response exerted by both viruses include different strategies such as, impairment of immunological synapse mediated by viral proteins or soluble factors, and the induction of pro-inflammatory cytokines by epithelial cells, among others. All these viral strategies contribute to the alteration of the adaptive immunity in order to increase the susceptibility to reinfections. In this review, we discuss current research related to the mechanisms underlying the impairment of T and B cell immune responses induced by hRSV and hMPV infection. In addition, we described the role each virulence factor involved in immune modulation caused by these viruses.

  14. PV Cell and Module Calibrations at NREL

    SciTech Connect

    Emery, Keith

    2012-10-22

    NREL has equipment to measure any conceivable cell or module technology. The lack of standards for low concentration modules complicates matters. Spectrally adjustable simulators are critical for more than three junctions. NREL's 10-channel fiber optic simulator has shown that the light can be set for each junction within 1% of what it would be under the reference spectrum for up to a five-junction cell. Uncertainty in module simulators dominated by spatial nonuniformity for calibration labs. Manufacturers can mitigate this error by using matched reference modules instead of cells.

  15. scFv from Antibody That Mimics gp43 Modulates the Cellular and Humoral Immune Responses during Experimental Paracoccidioidomycosis

    PubMed Central

    Jannuzzi, Grasielle Pereira; Tavares, Aldo Henrique F. P.; Kaihami, Gilberto Hideo; de Almeida, José Roberto Fogaça; de Almeida, Sandro Rogério; Ferreira, Karen Spadari

    2015-01-01

    Paracoccidioidomycosis (PCM), caused by Paracoccidioides species is a prevalent systemic and progressive mycosis that occurs in Latin America. It is caused by Paracoccidioides species. Immunization with dendritic cells transfected with a plasmid encoding the scFv (pMAC/PS-scFv) that mimics the main antigen of P. brasiliensis (gp43) confers protection in experimental PCM. DCs link innate and adaptive immunity by recognizing invading pathogens and selecting the type of effector T cell to mediate the immune response. Here, we showed that DC-pMAC/PS-scFv induces the activation of CD4+ and CD8+ T cells. Moreover, our results demonstrated that BALB/c mice infected with P. brasiliensis and treated with DC-pMAC/PS-scFv showed the induction of specific IgG production against gp43 and IFN-γ, IL-12 and IL-4 cytokines. Analysis of regional lymph nodes revealed increases in the expression of clec7a, myd88, tlr2, gata3 and tbx21, which are involved in the immune response. Taken together, our results indicate that the scFv modulates the humoral and cellular immune responses and presents epitopes to CD4+ and CD8+ T cells. PMID:26091522

  16. Cytochrome P450s in human immune cells regulate IL-22 and c-Kit via an AHR feedback loop

    PubMed Central

    Effner, Renate; Hiller, Julia; Eyerich, Stefanie; Traidl-Hoffmann, Claudia; Brockow, Knut; Triggiani, Massimo; Behrendt, Heidrun; Schmidt-Weber, Carsten B.; Buters, Jeroen T. M.

    2017-01-01

    The mechanisms how environmental compounds influence the human immune system are unknown. The environmentally sensitive transcription factor aryl hydrocarbon receptor (AHR) has immune-modulating functions and responds to small molecules. Cytochrome P4501 enzymes (CYP1) act downstream of the AHR and metabolize small molecules. However, it is currently unknown whether CYP1 activity is relevant for immune modulation. We studied the interdependence of CYP1 and AHR in human primary immune cells using pharmacological methods. CYP1 inhibition increased the expression levels of the stem cell factor receptor (c-Kit) and interleukin (IL)-22 but decreased IL-17. Single cell analyses showed that CYP1 inhibition especially promoted CD4+ helper T (Th) cells that co-express c-Kit and IL-22 simultaneously. The addition of an AHR antagonist reversed all these effects. In addition to T cells, we screened other human immune cells for CYP and found cell-specific fingerprints, suggesting that similar mechanisms are present in multiple immune cells. We describe a feedback loop yet unknown in human immune cells where CYP1 inhibition resulted in an altered AHR-dependent immune response. This mechanism relates CYP1-dependent metabolism of environmental small molecules to human immunity. PMID:28276465

  17. Modulation of Human Immune Response by Fungal Biocontrol Agents

    PubMed Central

    Konstantinovas, Cibele; de Oliveira Mendes, Tiago A.; Vannier-Santos, Marcos A.; Lima-Santos, Jane

    2017-01-01

    Although the vast majority of biological control agents is generally regarded as safe for humans and environment, the increased exposure of agriculture workers, and consumer population to fungal substances may affect the immune system. Those compounds may be associated with both intense stimulation, resulting in IgE-mediated allergy and immune downmodulation induced by molecules such as cyclosporin A and mycotoxins. This review discusses the potential effects of biocontrol fungal components on human immune responses, possibly associated to infectious, inflammatory diseases, and defective defenses. PMID:28217107

  18. Modulation of Human Immune Response by Fungal Biocontrol Agents.

    PubMed

    Konstantinovas, Cibele; de Oliveira Mendes, Tiago A; Vannier-Santos, Marcos A; Lima-Santos, Jane

    2017-01-01

    Although the vast majority of biological control agents is generally regarded as safe for humans and environment, the increased exposure of agriculture workers, and consumer population to fungal substances may affect the immune system. Those compounds may be associated with both intense stimulation, resulting in IgE-mediated allergy and immune downmodulation induced by molecules such as cyclosporin A and mycotoxins. This review discusses the potential effects of biocontrol fungal components on human immune responses, possibly associated to infectious, inflammatory diseases, and defective defenses.

  19. Module level solutions to solar cell polarization

    DOEpatents

    Xavier, Grace , Li; Bo, [San Jose, CA

    2012-05-29

    A solar cell module includes interconnected solar cells, a transparent cover over the front sides of the solar cells, and a backsheet on the backsides of the solar cells. The solar cell module includes an electrical insulator between the transparent cover and the front sides of the solar cells. An encapsulant protectively packages the solar cells. To prevent polarization, the insulator has resistance suitable to prevent charge from leaking from the front sides of the solar cells to other portions of the solar cell module by way of the transparent cover. The insulator may be attached (e.g., by coating) directly on an underside of the transparent cover or be a separate layer formed between layers of the encapsulant. The solar cells may be back junction solar cells.

  20. Process of making solar cell module

    DOEpatents

    Packer, M.; Coyle, P.J.

    1981-03-09

    A process is presented for the manufacture of solar cell modules. A solution comprising a highly plasticized polyvinyl butyral is applied to a solar cell array. The coated array is dried and sandwiched between at last two sheets of polyvinyl butyral and at least two sheets of a rigid transparent member. The sandwich is laminated by the application of heat and pressure to cause fusion and bonding of the solar cell array with the rigid transparent members to produce a solar cell module.

  1. Dendritic cell-derived IL-15 controls the induction of CD8 T cell immune responses.

    PubMed

    Rückert, René; Brandt, Katja; Bulanova, Elena; Mirghomizadeh, Farhad; Paus, Ralf; Bulfone-Paus, Silvia

    2003-12-01

    The development and the differentiation of CD8(+) T cells are dependent on IL-15. Here, we have studied the source and mechanism of how IL-15 modulates CD8(+) T cell-mediated Th1 immune responses by employing two delayed-type hypersensitivity (DTH) models. IL-15-deficient (IL-15(-/-)) mice or mice treated with soluble IL-15Ralpha as an IL-15 antagonist showed significantly reduced CD8(+) T cell-dependent DTH responses, while activation of CD4(+) T cell and B cell functions remained unaffected. Injection of antigen-labeled dendritic cells (DC) from IL-15(+/+), IL-15(-/-) or IL-15Ralpha(-/-) mice revealed that DC-derived IL-15 is an absolute requirement for the initiation of DTH response. The re-establishment of the interaction of IL-15 with the IL-15Ralpha by incubating IL-15(-/-) DC with IL-15 completely restored the capacity to prime T cells for DTH induction in vivo. Moreover, IL-15 also enhanced secretion of pro-inflammatory cytokines by DC and triggered in vitro CD8(+) T cell proliferation and IL-2 release. Taken together, the data suggest that an autocrine IL-15/IL-15Ralpha signaling loop in DC is essential for inducing CD8(+)-dependent Th1 immune responses in mice. Therefore, targeted manipulation of this loop promises to be an effective, novel strategy for therapeutic modulation of clinically relevant DTH reactions.

  2. VHL-dependent alterations in the secretome of renal cell carcinoma: Association with immune cell response?

    PubMed Central

    Stehle, Franziska; Leisz, Sandra; Schulz, Kristin; Schwurack, Nicolle; Weber, Nico; Massa, Chiara; Kalich, Jana; Fahldieck, Corinna; Seliger, Barbara

    2015-01-01

    Secreted proteins could modulate the interaction between tumor, stroma and immune cells within the tumor microenvironment thereby mounting an immunosuppressive tumor microenvironment. In order to determine the secretome-mediated, von Hippel Lindau (VHL)-regulated cross-talk between tumor cells and T lymphocytes peripheral blood mononuclear cells (PBMC) from healthy donors were either cultured in conditioned media obtained from normoxic and hypoxic human VHL-deficient renal cell carcinoma (RCC) cell line (786-0VHL−) and its wild type (wt) VHL-transfected counterpart (786-0VHL+) or directly co-cultured with both cell lines. An increased T cell proliferation was detected in the presence of 786-0VHL+-conditioned medium. By applying a quantitative proteomic-based approach using differential gel electrophoresis followed by mass spectrometry fourteen proteins were identified to be differentially expressed within the secretome of 786-0VHL− cells when compared to that of 786-0VHL+ cells. All proteins identified were involved in multiple tumor-associated biological functions including immune responses. Functional studies on manganese superoxide dismutase 2 (MnSOD2) demonstrated that it was a regulator of T cell activation-induced oxidative signaling and cell death. Direct effects of soluble MnSOD2 on the growth properties and interleukin 2 (IL-2) secretion of T cells could be demonstrated underlining the critical role of extracellular MnSOD2 levels for T cell proliferation and activation. PMID:26486078

  3. VHL-dependent alterations in the secretome of renal cell carcinoma: Association with immune cell response?

    PubMed

    Stehle, Franziska; Leisz, Sandra; Schulz, Kristin; Schwurack, Nicolle; Weber, Nico; Massa, Chiara; Kalich, Jana; Fahldieck, Corinna; Seliger, Barbara

    2015-12-22

    Secreted proteins could modulate the interaction between tumor, stroma and immune cells within the tumor microenvironment thereby mounting an immunosuppressive tumor microenvironment. In order to determine the secretome-mediated, von Hippel Lindau (VHL)-regulated cross-talk between tumor cells and T lymphocytes peripheral blood mononuclear cells (PBMC) from healthy donors were either cultured in conditioned media obtained from normoxic and hypoxic human VHL-deficient renal cell carcinoma (RCC) cell line (786-0VHL-) and its wild type (wt) VHL-transfected counterpart (786-0VHL+) or directly co-cultured with both cell lines. An increased T cell proliferation was detected in the presence of 786-0VHL+-conditioned medium. By applying a quantitative proteomic-based approach using differential gel electrophoresis followed by mass spectrometry fourteen proteins were identified to be differentially expressed within the secretome of 786-0VHL- cells when compared to that of 786-0VHL+ cells. All proteins identified were involved in multiple tumor-associated biological functions including immune responses. Functional studies on manganese superoxide dismutase 2 (MnSOD2) demonstrated that it was a regulator of T cell activation-induced oxidative signaling and cell death. Direct effects of soluble MnSOD2 on the growth properties and interleukin 2 (IL-2) secretion of T cells could be demonstrated underlining the critical role of extracellular MnSOD2 levels for T cell proliferation and activation.

  4. Cytoskeleton mediated spreading dynamics of immune cells

    NASA Astrophysics Data System (ADS)

    Hui, King-Lam; Wayt, Jessica; Grooman, Brian; Upadhyaya, Arpita

    2009-03-01

    We have studied the spreading of Jurkat T-cells on anti-CD3 antibody-coated substrates as a model of immune synapse formation. Cell adhesion area versus time was measured via interference reflection contrast microscopy. We found that the spread area exhibited a sigmoidal growth as a function of time in contrast to the previously proposed universal power-law growth for spreading cells. We used high-resolution total internal reflection fluorescence microscopy of these cells transfected with GFP-actin to study cytoskeletal dynamics during the spreading process. Actin filaments spontaneously organized into a variety of structures including traveling waves, target patterns, and mobile clusters emanating from an organizing center. We quantify these dynamic structures and relate them to the spreading rates. We propose that the spreading kinetics are determined by active rearrangements of the cytoskeleton initiated by signaling events upon antibody binding by T-cell receptors. Membrane deformations induced by such wavelike organization of the cytoskeleton may be a general phenomenon that underlies cell movement and cell-substrate interactions.

  5. Neuronal influence behind the central nervous system regulation of the immune cells.

    PubMed

    Chavarría, Anahí; Cárdenas, Graciela

    2013-09-02

    Central nervous system (CNS) has a highly specialized microenvironment, and despite being initially considered an immune privileged site, this immune status is far from absolute because it varies with age and brain topography. The brain monitors immune responses by several means that act in parallel; one pathway involves afferent nerves (vagal nerve) and the other resident cells (neurons and glia). These cell populations exert a strong role in the regulation of the immune system, favoring an immune-modulatory environment in the CNS. Neurons control glial cell and infiltrated T-cells by contact-dependent and -independent mechanisms. Contact-dependent mechanisms are provided by several membrane immune modulating molecules such as Sema-7A, CD95L, CD22, CD200, CD47, NCAM, ICAM-5, and cadherins; which can inhibit the expression of microglial inflammatory cytokines, induce apoptosis or inactivate infiltrated T-cells. On the other hand, soluble neuronal factors like Sema-3A, cytokines, neurotrophins, neuropeptides, and neurotransmitters attenuate microglial and/or T-cell activation. In this review, we focused on all known mechanism driven only by neurons in order to control the local immune cells.

  6. Rational modulation of the innate immune system for neuroprotection in ischemic stroke

    PubMed Central

    Amantea, Diana; Micieli, Giuseppe; Tassorelli, Cristina; Cuartero, María I.; Ballesteros, Iván; Certo, Michelangelo; Moro, María A.; Lizasoain, Ignacio; Bagetta, Giacinto

    2015-01-01

    The innate immune system plays a dualistic role in the evolution of ischemic brain damage and has also been implicated in ischemic tolerance produced by different conditioning stimuli. Early after ischemia, perivascular astrocytes release cytokines and activate metalloproteases (MMPs) that contribute to blood–brain barrier (BBB) disruption and vasogenic oedema; whereas at later stages, they provide extracellular glutamate uptake, BBB regeneration and neurotrophic factors release. Similarly, early activation of microglia contributes to ischemic brain injury via the production of inflammatory cytokines, including tumor necrosis factor (TNF) and interleukin (IL)-1, reactive oxygen and nitrogen species and proteases. Nevertheless, microglia also contributes to the resolution of inflammation, by releasing IL-10 and tumor growth factor (TGF)-β, and to the late reparative processes by phagocytic activity and growth factors production. Indeed, after ischemia, microglia/macrophages differentiate toward several phenotypes: the M1 pro-inflammatory phenotype is classically activated via toll-like receptors or interferon-γ, whereas M2 phenotypes are alternatively activated by regulatory mediators, such as ILs 4, 10, 13, or TGF-β. Thus, immune cells exert a dualistic role on the evolution of ischemic brain damage, since the classic phenotypes promote injury, whereas alternatively activated M2 macrophages or N2 neutrophils prompt tissue remodeling and repair. Moreover, a subdued activation of the immune system has been involved in ischemic tolerance, since different preconditioning stimuli act via modulation of inflammatory mediators, including toll-like receptors and cytokine signaling pathways. This further underscores that the immuno-modulatory approach for the treatment of ischemic stroke should be aimed at blocking the detrimental effects, while promoting the beneficial responses of the immune reaction. PMID:25972779

  7. Epithelial cells, the "switchboard" of respiratory immune defense responses: effects of air pollutants.

    PubMed

    Müller, Loretta; Jaspers, Ilona

    2012-07-31

    "Epimmunome", a term introduced recently by Swamy and colleagues, describes all molecules and pathways used by epithelial cells (ECs) to instruct immune cells. Today, we know that ECs are among the first sites within the human body to be exposed to pathogens (such as influenza viruses) and that the release of chemokine and cytokines by ECs is influenced by inhaled agents. The role of the ECs as a switchboard to initiate and regulate immune responses is altered through air pollutant exposure, such as ozone, tobacco smoke and diesel exhaust emissions. The details of the interplay between ECs and immune cells are not yet fully understood and need to be investigated further. Co-culture models, cell specific genetically-modified mice and the analysis of human biopsies provide great tools to gain knowledge about potential mechanisms. Increasing our understanding about the role of ECs in respiratory immunity may yield novel therapeutic targets to modulate downstream diseases.

  8. Immune Modulation to Improve Tissue Engineering Outcomes for Cartilage Repair in the Osteoarthritic Joint

    PubMed Central

    Fahy, Niamh; Farrell, Eric; Ritter, Thomas; Ryan, Aideen E.

    2015-01-01

    Osteoarthritis (OA), the most common form of arthritis, is a disabling degenerative joint disease affecting synovial joints and is associated with cartilage destruction, inflammation of the synovial membrane, and subchondral bone remodeling. Inflammation of the synovial membrane may arise secondary to degenerative processes in articular cartilage (AC), or may be a primary occurrence in OA pathogenesis. However, synovial inflammation plays a key role in the pathogenesis and disease progression of OA through the production of pro-inflammatory mediators, and is associated with cartilage destruction and pain. The triggers that initiate activation of the immune response in OA are unknown, but crosstalk between osteoarthritic chondrocytes, cartilage degradation products, and the synovium may act to perpetuate this response. Increasing evidence has emerged highlighting an important role for pro-inflammatory mediators and infiltrating inflammatory cell populations in the progression of the disease. Tissue engineering strategies hold great potential for the repair of damaged AC in an osteoarthritic joint. However, an in-depth understanding of how OA-associated inflammation impacts chondrocyte and progenitor cell behavior is required to achieve efficient cartilage regeneration in a catabolic osteoarthritic environment. In this review, we will discuss the role of inflammation in OA, and investigate novel immune modulation strategies that may prevent disease progression and facilitate successful cartilage regeneration for the treatment of OA. PMID:24950588

  9. Levels of immune cells in transcendental meditation practitioners

    PubMed Central

    Infante, Jose R; Peran, Fernando; Rayo, Juan I; Serrano, Justo; Domínguez, Maria L; Garcia, Lucia; Duran, Carmen; Roldan, Ana

    2014-01-01

    Context: Relationships between mind and body have gradually become accepted. Yogic practices cause modulation of the immune system. Transcendental meditation (TM) is a specific form of mantra meditation. We reported previously different plasma levels of catecholamines and pituitary hormones in TM practitioners comparing with a control group, and patterns of the daytime secretion of these hormones different from those normally described. Aims: The aim of the following study is to evaluate the immune system in these meditation practitioners, by determining leukocytes and lymphocytes subsets. Methods: TM group consisted of 19 subjects who regularly practice either TM or the more advanced Sidhi-TM technique. A control group consisted of 16 healthy subjects who had not previously used any relaxation technique. Total leukocytes, granulocytes, lymphocytes and monocytes were counted by an automated quantitative hematology analyzer, whereas lymphocytes subsets were determined by flow cytometry. Samples were taken from each subject at 0900 h after an overnight fast. Results: The results indicated that the TM group had higher values than the control group in CD3+CD4−CD8+ lymphocytes (P < 0.05), B lymphocytes (P < 0.01) and natural killer cells (P < 0.01), whereas CD3+CD4+CD8− lymphocytes showed low levels in meditation practitioners (P < 0.001). No significant differences were observed in total leukocytes, granulocytes, monocytes, total lymphocytes or CD3+ lymphocytes comparing both groups. Conclusions: The technique of meditation studied seems to have a significant effect on immune cells, manifesting in the different circulating levels of lymphocyte subsets analyzed. The significant effect of TM on the neuroendocrine axis and its relationship with the immune system may partly explain our results. PMID:25035626

  10. PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signaling.

    PubMed

    Lhocine, Nouara; Ribeiro, Paulo S; Buchon, Nicolas; Wepf, Alexander; Wilson, Rebecca; Tenev, Tencho; Lemaitre, Bruno; Gstaiger, Matthias; Meier, Pascal; Leulier, François

    2008-08-14

    Metazoans tolerate commensal-gut microbiota by suppressing immune activation while maintaining the ability to launch rapid and balanced immune reactions to pathogenic bacteria. Little is known about the mechanisms underlying the establishment of this threshold. We report that a recently identified Drosophila immune regulator, which we call PGRP-LC-interacting inhibitor of Imd signaling (PIMS), is required to suppress the Imd innate immune signaling pathway in response to commensal bacteria. pims expression is Imd (immune deficiency) dependent, and its basal expression relies on the presence of commensal flora. In the absence of PIMS, resident bacteria trigger constitutive expression of antimicrobial peptide genes (AMPs). Moreover, pims mutants hyperactivate AMPs upon infection with Gram-negative bacteria. PIMS interacts with the peptidoglycan recognition protein (PGRP-LC), causing its depletion from the plasma membrane and shutdown of Imd signaling. Therefore, PIMS is required to establish immune tolerance to commensal bacteria and to maintain a balanced Imd response following exposure to bacterial infections.

  11. Immune reconstitution and strategies for rebuilding the immune system after haploidentical stem cell transplantation.

    PubMed

    Oevermann, Lena; Lang, Peter; Feuchtinger, Tobias; Schumm, Michael; Teltschik, Heiko-Manuel; Schlegel, Patrick; Handgretinger, Rupert

    2012-08-01

    Haploidentical hematopoietic stem cell transplantation is a curative alternative option for patients without an otherwise suitable stem cell donor. In order to prevent graft-versus-host disease (GvHD), different in vitro and in vivo T cell-depletion strategies have been developed. A delayed immune reconstitution is common to all these strategies, and an impaired immune function after haploidentical transplantation with subsequent infections is a major cause of deaths in these patients. In addition to in vitro and in vivo T cell-depletion methods, posttransplant strategies to rapidly rebuild the immune system have been introduced in order to improve the outcome. Advances in in vitro and in vivo T cell-depletion methods, and adoptive transfer of immune cells of the innate and specific immune system, will contribute to reduce the risk of GvHD, lethal infections, and the risk of relapse of the underlying malignant disease.

  12. Design and fabrication of solar cell modules

    NASA Technical Reports Server (NTRS)

    Shaughnessy, T. P.

    1978-01-01

    A program conducted for design, fabrication and evaluation of twelve silicon solar cell modules is described. The purpose of the program was to develop a module design consistent with the requirements and objectives of JPL specification and to also incorporate elements of new technologies under development to meet LSSA Project goals. Module development emphasized preparation of a technically and economically competitive design based upon utilization of ion implanted solar cells and a glass encapsulation system. The modules fabricated, tested and delivered were of nominal 2 X 2 foot dimensions and 20 watt minimum rating. Basic design, design rationale, performance and results of environmental testing are described.

  13. Center punched solar cell module development effort

    NASA Technical Reports Server (NTRS)

    Ross, R. E.; Mortensen, W. E.

    1978-01-01

    The results are given of an advanced module development program with the objective of providing a low cost solar cell mechanical interconnect design. The design approach, which avoids soldering or welding operations, lends itself to automated assembly techniques thus supporting the Low-Cost Silicon Solar Array Project goals. The first group of six modules contained aluminum contact cells and the second group of six modules contained silver-titanium-palladium contact cells. Extensive component and environmental testing at the module level showed that reliable cell mechanical interconnection can be achieved when utilizing the proper electrical contact materials and pressures. A discussion is given of the module design, manufacturing procedure, test program, significant problem areas and solutions, and conclusions and recommendations as formulated and conducted by XEOS.

  14. Uropathogenic Escherichia coli modulates innate immunity to suppress Th1-mediated inflammatory responses during infectious epididymitis.

    PubMed

    Lang, Tali; Hudemann, Christoph; Tchatalbachev, Svetlin; Stammler, Angelika; Michel, Vera; Aslani, Ferial; Bhushan, Sudhanshu; Chakraborty, Trinad; Renz, Harald; Meinhardt, Andreas

    2014-03-01

    Infectious epididymitis in men, a frequent entity in urological outpatient settings, is commonly caused by bacteria originating from the anal region ascending the genitourinary tract. One of the most prevalent pathogens associated with epididymitis is Escherichia coli. In our previous study, we showed that semen quality is compromised in men following epididymitis associated with specific E. coli pathovars. Thus, our aim was to investigate possible differences in immune responses elicited during epididymitis following infection with the uropathogenic E. coli (UPEC) strain CFT073 and the nonpathogenic enteric E. coli (NPEC) strain 470. Employing an in vivo experimental epididymitis model, C57BL/6 mice were infected with UPEC CFT073, NPEC 470, or phosphate-buffered saline (PBS) as a sham control for up to 7 days. After infection with NPEC 470, the expression of proinflammatory cytokines interleukin-1 (IL-1), IL-6, and tumor necrosis factor alpha in the epididymis was significantly increased. Conversely, UPEC CFT073-challenged mice displayed inflammatory gene expression at levels comparable to sham PBS-treated animals. Moreover, by day 7 only NPEC-infected animals showed activation of adaptive immunity evident by a substantial influx of CD3+ and F4/80+ cells in the epididymal interstitium. This correlated with enhanced production of Th1-associated cytokines IL-2 and gamma interferon (IFN-γ). Furthermore, splenocytes isolated from UPEC-infected mice exhibited diminished T-cell responses with significantly reduced secretion of IL-2 and IFN-γ in contrast to NPEC-infected animals. Overall, these findings provide new insights into understanding pathogen-specific modulation of host immunity during acute phases of epididymitis, which may influence severity of disease and clinical outcomes.

  15. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature

    PubMed Central

    Naik, Shruti; Bouladoux, Nicolas; Linehan, Jonathan L.; Han, Seong-Ji; Harrison, Oliver J.; Wilhelm, Christoph; Conlan, Sean; Himmelfarb, Sarah; Byrd, Allyson L.; Deming, Clayton; Quinones, Mariam; Brenchley, Jason M.; Kong, Heidi H.; Tussiwand, Roxanne; Murphy, Kenneth M.; Merad, Miriam; Segre, Julia A; Belkaid, Yasmine

    2015-01-01

    The skin represents the primary interface between the host and the environment. This organ is also home to trillions of microorganisms that play an important role in tissue homeostasis and local immunity1–4. Skin microbial communities are highly diverse and can be remodelled over time or in response to environmental challenges5–7. How, in the context of this complexity, individual commensal microorganisms may differentially modulate skin immunity and the consequences of these responses for tissue physiology remains unclear. Here we show that defined commensals dominantly affect skin immunity and identify the cellular mediators involved in this specification. In particular, colonization with Staphylococcus epidermidis induces IL-17A+ CD8+ T cells that home to the epidermis, enhance innate barrier immunity and limit pathogen invasion. Commensal-specific T-cell responses result from the coordinated action of skin-resident dendritic cell subsets and are not associated with inflammation, revealing that tissue-resident cells are poised to sense and respond to alterations in microbial communities. This interaction may represent an evolutionary means by which the skin immune system uses fluctuating commensal signals to calibrate barrier immunity and provide heterologous protection against invasive pathogens. These findings reveal that the skin immune landscape is a highly dynamic environment that can be rapidly and specifically remodelled by encounters with defined commensals, findings that have profound implications for our understanding of tissue-specific immunity and pathologies. PMID:25539086

  16. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature.

    PubMed

    Naik, Shruti; Bouladoux, Nicolas; Linehan, Jonathan L; Han, Seong-Ji; Harrison, Oliver J; Wilhelm, Christoph; Conlan, Sean; Himmelfarb, Sarah; Byrd, Allyson L; Deming, Clayton; Quinones, Mariam; Brenchley, Jason M; Kong, Heidi H; Tussiwand, Roxanne; Murphy, Kenneth M; Merad, Miriam; Segre, Julia A; Belkaid, Yasmine

    2015-04-02

    The skin represents the primary interface between the host and the environment. This organ is also home to trillions of microorganisms that play an important role in tissue homeostasis and local immunity. Skin microbial communities are highly diverse and can be remodelled over time or in response to environmental challenges. How, in the context of this complexity, individual commensal microorganisms may differentially modulate skin immunity and the consequences of these responses for tissue physiology remains unclear. Here we show that defined commensals dominantly affect skin immunity and identify the cellular mediators involved in this specification. In particular, colonization with Staphylococcus epidermidis induces IL-17A(+) CD8(+) T cells that home to the epidermis, enhance innate barrier immunity and limit pathogen invasion. Commensal-specific T-cell responses result from the coordinated action of skin-resident dendritic cell subsets and are not associated with inflammation, revealing that tissue-resident cells are poised to sense and respond to alterations in microbial communities. This interaction may represent an evolutionary means by which the skin immune system uses fluctuating commensal signals to calibrate barrier immunity and provide heterologous protection against invasive pathogens. These findings reveal that the skin immune landscape is a highly dynamic environment that can be rapidly and specifically remodelled by encounters with defined commensals, findings that have profound implications for our understanding of tissue-specific immunity and pathologies.

  17. Modulation of host adaptive immunity by hRSV proteins

    PubMed Central

    Espinoza, Janyra A; Bohmwald, Karen; Céspedes, Pablo F; Riedel, Claudia A; Bueno, Susan M; Kalergis, Alexis M

    2014-01-01

    Globally, the human respiratory syncytial virus (hRSV) is the major cause of lower respiratory tract infections (LRTIs) in infants and children younger than 2 years old. Furthermore, the number of hospitalizations due to LRTIs has shown a sustained increase every year due to the lack of effective vaccines against hRSV. Thus, this virus remains as a major public health and economic burden worldwide. The lung pathology developed in hRSV-infected humans is characterized by an exacerbated inflammatory and Th2 immune response. In order to rationally design new vaccines and therapies against this virus, several studies have focused in elucidating the interactions between hRSV virulence factors and the host immune system. Here, we discuss the main features of hRSV biology, the processes involved in virus recognition by the immune system and the most relevant mechanisms used by this pathogen to avoid the antiviral host response. PMID:25513775

  18. Participation of Leukotrienes in the Immune Modulation of Oral Tolerance

    PubMed Central

    de Oliveira, Sandra R. P.; Nomizo, Auro; Frantz, Fabiani G.; Faccioli, Lúcia H.; de Matos, Ana Paula Keller; Carrilho, Emanuel; Afonso, Ana; de Freitas Anibal, Fernanda

    2017-01-01

    Oral tolerance (OT) is characterized as a peripheral immune tolerance form, in which, mature lymphocytes in lymphoid tissues associated with mucosa, become non-functional or hypo responsive due to prior oral administration of antigen. OT is an important immunological phenomenon due to its therapeutic potential in inflammatory processes and others diseases. Here we evaluated leukotriene role in the induction of OT, as well as, the production of cytokines IL-5 and IFN-γ in leukotriene deficient animals (knock-out). Our results suggested that even in the presence of OT and leukotrienes absence, cytokine IFN-γ remains being secreted, which gives us an indication of immune system specificity and also that IFN-γ participates in various immune processes. PMID:28270799

  19. Isoform-specific targeting of ROCK proteins in immune cells

    PubMed Central

    Zanin-Zhorov, Alexandra; Flynn, Ryan; Waksal, Samuel D.; Blazar, Bruce R.

    2016-01-01

    ABSTRACT Rho-associated kinase 1 (ROCK1) and ROCK2 are activated by Rho GTPase and control cytoskeleton rearrangement through modulating the phosphorylation of their down-stream effector molecules. Although these 2 isoforms share more than 90% homology within their kinase domain the question of whether ROCK proteins function identically in different cell types is not clear. By using both pharmacological inhibition and genetic knockdown approaches recent studies suggest that the ROCK2 isoform plays an exclusive role in controlling of T-cell plasticity and macrophage polarization. Specifically, selective ROCK2 inhibition shifts the balance between pro-inflammatory and regulatory T-cell subsets via concurrent regulation of STAT3 and STAT5 phosphorylation, respectively. Furthermore, the administration of an orally available selective ROCK2 inhibitor effectively ameliorates clinical manifestations in experimental models of autoimmunity and chronic graft-vs.-host disease (cGVHD). Because ROCK2 inhibition results in the suppression of M2-type macrophages while favoring polarization of M1-type macrophages, ROCK2 inhibition can correct the macrophage imbalance seen during age-related macular degeneration (AMD). In summary, the exclusive role of ROCK2 in immune system modulation argues for the development and testing of isoform-specific ROCK2 inhibitors for the treatment of inflammatory disorders. PMID:27254302

  20. [Understanding of immune system by visualization of spatiotemporal regulation of immune cells in the entire body].

    PubMed

    Tomura, Michio

    2013-01-01

    Immune system is high-dimensional integrated system distributed in the whole body. Many kinds of, total 10(11) of immune cells are regulated by receiving appropriate signals in appropriate places. We have been attempting to understand immune system by revealing spatiotemporal regulation of immune cells at the whole body level by "Visualization of immune response in vivo". Photoconvertible protein, "Kaede"-Tg mice allowed us to monitor cell-replacement and cell-movement in the whole body by marking cells with color of Kaede from green to red with exposure to violet light. It is applicable to small cell number populations in both lymphoid organs and also peripheral tissues under both normal and pathophysiological conditions. By using this system, we have demonstrated novel findings that "Naive CD4(+) T cell recirculation is an active process that they recirculate through lymphoid organs to seek limited niche for interacting with endogenous antigens and upregulate their function." and "Activated regulatory T cells emigrating from cutaneous immune response is responsible for termination of immune reponse." I will introduce these new tools of us and would like to discuss what is needed to understand immune system in the entire body.

  1. γδ T Cells Shape Pre-Immune Peripheral B Cell Populations

    PubMed Central

    Huang, Yafei; Getahun, Andrew; Heiser, Ryan A.; Detanico, Thiago O.; Aviszus, Katja; Kirchenbaum, Greg A.; Casper, Tamara L.; Huang, Chunjian; Aydintug, M. Kemal; Carding, Simon R.; Ikuta, Koichi; Huang, Hua; Wysocki, Lawrence J.; Cambier, John C.; O’Brien, Rebecca L.; Born, Willi K.

    2015-01-01

    We previously reported that selective ablation of certain γδ T cell subsets rather than removal of all γδ T cells, strongly affects serum antibody levels in non-immunized mice. This type of manipulation also changed T cells including residual γδ T cells, revealing some interdependence of γδ T cell populations. For example, in mice lacking Vγ4+ and Vγ6+ γδ T cells (B6.TCR-Vγ4−/−/6−/−), we observed expanded Vγ1+ cells, which changed in composition and activation and produced more IL-4 upon stimulation in vitro, increased IL-4 production by αβ T cells as well as spontaneous germinal center formation in the spleen, elevated serum Ig and autoantibodies. We therefore examined B cell populations in this and other γδ-deficient mouse strains. Whereas immature bone marrow B cells remained largely unchanged, peripheral B cells underwent several changes. Specifically, transitional and mature B cells in the spleen of B6.TCR-Vγ4−/−/6−/− mice and other peripheral B cell populations were diminished, most of all splenic marginal zone (MZ) B cells. However, relative frequencies and absolute numbers of antibody-producing cells, and serum levels of antibodies, IL-4 and BAFF, were increased. Cell transfers confirmed that these changes are directly dependent on the altered γδ T cells in this strain, and their enhanced potential of producing IL-4. Further evidence suggests the possibility of direct interactions between γδ T cells and B cells in the splenic MZ. Together, these data demonstrate the capability of γδ T cells of modulating size and productivity of pre-immune peripheral B cell populations. PMID:26582947

  2. The Evolving Roles of Memory Immune Cells in Transplantation.

    PubMed

    Chen, Wenhao; Ghobrial, Rafik M; Li, Xian C

    2015-10-01

    Memory cells are the products of immune responses but also exert significant impact on subsequent immunity and immune tolerance, thus placing them in a unique position in transplant research. Memory cells are heterogeneous, including not only memory T cells but also memory B cells and innate memory cells. Memory cells are a critical component of protective immunity against invading pathogens, especially in immunosuppressed patients, but they also mediate graft loss and tolerance resistance. Recent studies suggest that some memory cells unexpectedly act as regulatory cells, promoting rather than hindering transplant survival. This functional diversity makes therapeutic targeting of memory cells a challenging task in transplantation. In this article, we highlight recent advances in our understanding of memory cells, focusing on diversity of memory cells and mechanisms involved in their induction and functions. We also provide a broad overview on the challenges and opportunities in targeting memory cells in the induction of transplant tolerance.

  3. Immune cells tracing using quantum dots

    NASA Astrophysics Data System (ADS)

    Hoshino, Akiyoshi; Fujioka, Kouki; Kawamura, Yuki I.; Toyama-Sorimachi, Noriko; Yasuhara, Masato; Dohi, Taeko; Yamamoto, Kenji

    2006-02-01

    Fluorescent nanoparticles, such as nanocrystal quantum dots (QDs), have potential to be applied to molecular biology and bioimaging, since some nanocrystals emit higher and longer lasting fluorescence than conventional organic probes do. Here we report an example of labeling immune cells by QDs. We collected splenic CD4 + T-lymphocyte and peritoneal macrophages from mice. Then cells were labeled with QDs. QDs are incorporated into the T-lymphocyte and macrophages immediately after addition and located in the cytoplasm via endocytosis pathway. The fluorescence of QDs held in the endosomes was easily detected for more than a week. In addition, T-lymphocytes labeled with QDs were stable and cell proliferation or cytokine production including IL-2 and IFN-γ was not affected. When QD-labeled T-lymphocytes were adoptively transferred intravenously to mice, they remained in the peripheral blood and spleen up to a week. Using QD-labeled peritoneal macrophages, we studied cell traffic during inflammation on viscera in peritoneum cavity. QD-labeled macrophages were transplanted into the peritoneum of the mouse, and colitis was induced by intracolonic injection of a hapten, trinitrobenzensulfonic acid. With the aid of stong signals of QDs, we found that macrophage accumuled on the inflammation site of the colon. These results suggested that fluorescent probes of QDs might be useful as bioimaging tools for tracing target cells in vivo.

  4. The Role of Environmental Factors in Modulating Immune Responses in Early Life

    PubMed Central

    MacGillivray, Duncan M.; Kollmann, Tobias R.

    2014-01-01

    The concept of immunological memory stipulates that past exposures shape present immune function. These exposures include not only specific antigens impacting adaptive immune memory but also conserved pathogen or danger associated molecular patterns that mold innate immune responses for prolonged periods of time. It should thus not come as a surprise that there is a vast range of external or environmental factors that impact immunity. The importance of environmental factors modulating immunity is most readily recognized in early life, a period of rapidly changing environments. We here summarize available data on the role of environment shaping immune development and from it derive an overarching hypothesis relating the underlying molecular mechanisms and evolutionary principles involved. PMID:25309535

  5. Serotonergic chemosensory neurons modify the C. elegans immune response by regulating G-protein signaling in epithelial cells.

    PubMed

    Anderson, Alexandra; Laurenson-Schafer, Henry; Partridge, Frederick A; Hodgkin, Jonathan; McMullan, Rachel

    2013-01-01

    The nervous and immune systems influence each other, allowing animals to rapidly protect themselves from changes in their internal and external environment. However, the complex nature of these systems in mammals makes it difficult to determine how neuronal signaling influences the immune response. Here we show that serotonin, synthesized in Caenorhabditis elegans chemosensory neurons, modulates the immune response. Serotonin released from these cells acts, directly or indirectly, to regulate G-protein signaling in epithelial cells. Signaling in these cells is required for the immune response to infection by the natural pathogen Microbacterium nematophilum. Here we show that serotonin signaling suppresses the innate immune response and limits the rate of pathogen clearance. We show that C. elegans uses classical neurotransmitters to alter the immune response. Serotonin released from sensory neurons may function to modify the immune system in response to changes in the animal's external environment such as the availability, or quality, of food.

  6. Time of appearance and distribution of cells capable of secondary immune response following primary immunization

    PubMed Central

    Vischer, T. L.; Stastny, P.

    1967-01-01

    Immunological memory was studied by measurement of tritiated thymidine incorporation in tissue culture. After primary immunization with keyhole limpet haemocyanin (KLH) secondary responsiveness could be detected as early as the 2nd day after immunization with Freund's adjuvant into the footpads and on the 4th day after injection of KLH intravenously. In each case immunological memory developed first in the area of the injection, that is, the popliteal lymph nodes after footpad immunization and the spleen after intravenous injection. The secondary response could also be detected in the lymphoid cells of the blood. Cell suspensions enriched in small lymphocytes showed a similar reactivity. Cells from the thymus, however, did not develop immunological memory. Rabbits immunized with BSA showed a relatively weaker response which was clearly detectable only when Freund's adjuvant was used for immunization. The results suggest that a response essentially of a secondary type may play an important role in what is usually considered the primary immune response. PMID:6027423

  7. Immune regulation of epithelial cell function: Implications for GI pathologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mammalian immune system is a complex and dynamic network that recognizes, responds, and adapts to numerous foreign and self molecules. CD4+ T cells orchestrate adaptive immune responses, and upon stimulation by antigen, naive CD4+ T cells proliferate and differentiate into various T cell subsets...

  8. Single-cell technologies to study the immune system.

    PubMed

    Proserpio, Valentina; Mahata, Bidesh

    2016-02-01

    The immune system is composed of a variety of cells that act in a coordinated fashion to protect the organism against a multitude of different pathogens. The great variability of existing pathogens corresponds to a similar high heterogeneity of the immune cells. The study of individual immune cells, the fundamental unit of immunity, has recently transformed from a qualitative microscopic imaging to a nearly complete quantitative transcriptomic analysis. This shift has been driven by the rapid development of multiple single-cell technologies. These new advances are expected to boost the detection of less frequent cell types and transient or intermediate cell states. They will highlight the individuality of each single cell and greatly expand the resolution of current available classifications and differentiation trajectories. In this review we discuss the recent advancement and application of single-cell technologies, their limitations and future applications to study the immune system.

  9. Radiation-Induced Immune Modulation in Prostate Cancer

    DTIC Science & Technology

    2007-01-01

    postulate that radiation-induced TNFR I probably acts as a “ brake ” on immunity. Because of the high risk of the proposed experiment and high...the rest of body shielded. Tumor diameters were measured in three mutually orthogonal dimensions at 2–3 day intervals with a vernier caliper and the

  10. Radiation-Induced Immune Modulation in Prostate Cancer

    DTIC Science & Technology

    2008-01-01

    probably act as a “ brake ” on immunity in this system (Fig. 2 and Fig. 2 in 2006 annual report). These experiments are being repeated as we now have...starting treatment, and every Kachikwu 10 three to four days thereafter, using vernier calipers . Tumor volumes were calculated using the formula

  11. Hematopoietic Stem and Immune Cells in Chronic HIV Infection

    PubMed Central

    Zhang, Jielin; Crumpacker, Clyde

    2015-01-01

    Hematopoietic stem cell (HSC) belongs to multipotent adult somatic stem cells. A single HSC can reconstitute the entire blood system via self-renewal, differentiation into all lineages of blood cells, and replenishment of cells lost due to attrition or disease in a person's lifetime. Although all blood and immune cells derive from HSC, immune cells, specifically immune memory cells, have the properties of HSC on self-renewal and differentiation into lineage effector cells responding to the invading pathogens. Moreover, the interplay between immune memory cell and viral pathogen determines the course of a viral infection. Here, we state our point of view on the role of blood stem and progenitor cell in chronic HIV infection, with a focus on memory CD4 T-cell in the context of HIV/AIDS eradication and cure. PMID:26300920

  12. Immune Modulating Capability of Two Exopolysaccharide-Producing Bifidobacterium Strains in a Wistar Rat Model

    PubMed Central

    López, Patricia; Moran, Javier; Cabello, Estefanía; Suárez, Ana; González, Celestino; de los Reyes-Gavilán, Clara G.

    2014-01-01

    Fermented dairy products are the usual carriers for the delivery of probiotics to humans, Bifidobacterium and Lactobacillus being the most frequently used bacteria. In this work, the strains Bifidobacterium animalis subsp. lactis IPLA R1 and Bifidobacterium longum IPLA E44 were tested for their capability to modulate immune response and the insulin-dependent glucose homeostasis using male Wistar rats fed with a standard diet. Three intervention groups were fed daily for 24 days with 10% skimmed milk, or with 109 cfu of the corresponding strain suspended in the same vehicle. A significant increase of the suppressor-regulatory TGF-β cytokine occurred with both strains in comparison with a control (no intervention) group of rats; the highest levels were reached in rats fed IPLA R1. This strain presented an immune protective profile, as it was able to reduce the production of the proinflammatory IL-6. Moreover, phosphorylated Akt kinase decreased in gastroctemius muscle of rats fed the strain IPLA R1, without affecting the glucose, insulin, and HOMA index in blood, or levels of Glut-4 located in the membrane of muscle and adipose tissue cells. Therefore, the strain B. animalis subsp. lactis IPLA R1 is a probiotic candidate to be tested in mild grade inflammation animal models. PMID:24971309

  13. Immune modulating capability of two exopolysaccharide-producing Bifidobacterium strains in a Wistar rat model.

    PubMed

    Salazar, Nuria; López, Patricia; Garrido, Pablo; Moran, Javier; Cabello, Estefanía; Gueimonde, Miguel; Suárez, Ana; González, Celestino; de los Reyes-Gavilán, Clara G; Ruas-Madiedo, Patricia

    2014-01-01

    Fermented dairy products are the usual carriers for the delivery of probiotics to humans, Bifidobacterium and Lactobacillus being the most frequently used bacteria. In this work, the strains Bifidobacterium animalis subsp. lactis IPLA R1 and Bifidobacterium longum IPLA E44 were tested for their capability to modulate immune response and the insulin-dependent glucose homeostasis using male Wistar rats fed with a standard diet. Three intervention groups were fed daily for 24 days with 10% skimmed milk, or with 10(9) cfu of the corresponding strain suspended in the same vehicle. A significant increase of the suppressor-regulatory TGF- β cytokine occurred with both strains in comparison with a control (no intervention) group of rats; the highest levels were reached in rats fed IPLA R1. This strain presented an immune protective profile, as it was able to reduce the production of the proinflammatory IL-6. Moreover, phosphorylated Akt kinase decreased in gastroctemius muscle of rats fed the strain IPLA R1, without affecting the glucose, insulin, and HOMA index in blood, or levels of Glut-4 located in the membrane of muscle and adipose tissue cells. Therefore, the strain B. animalis subsp. lactis IPLA R1 is a probiotic candidate to be tested in mild grade inflammation animal models.

  14. Pseudomonas aeruginosa Airway Infection Recruits and Modulates Neutrophilic Myeloid-Derived Suppressor Cells

    PubMed Central

    Öz, Hasan H.; Zhou, Benyuan; Voss, Pina; Carevic, Melanie; Schroth, Carolin; Frey, Nina; Rieber, Nikolaus; Hector, Andreas; Hartl, Dominik

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes infections mainly in patients with cystic fibrosis (CF) lung disease. Despite innate and adaptive immune responses upon infection, P. aeruginosa is capable of efficiently escaping host defenses, but the underlying immune mechanisms remain poorly understood. Myeloid-derived suppressor cells (MDSCs) are innate immune cells that are functionally characterized by their potential to suppress T- and natural killer (NK)-cell responses. Here we demonstrate, using an airway in vivo infection model, that P. aeruginosa recruits and activates neutrophilic MDSCs, which functionally suppress T-cell responses. We further show that the CF gene defect (CF transmembrane conductance regulator, CFTR) modulates the functionality, but not the recruitment or generation of neutrophilic MDSCs. Collectively, we define a mechanism by which P. aeruginosa airway infection undermines host immunity by modulating neutrophilic MDSCs in vivo. PMID:27965936

  15. Cell adhesion in zebrafish embryos is modulated by March 8.

    PubMed

    Kim, Mi Ha; Rebbert, Martha L; Ro, Hyunju; Won, Minho; Dawid, Igor B

    2014-01-01

    March 8 is a member of a family of transmembrane E3 ubiquitin ligases that have been studied mostly for their role in the immune system. We find that March 8 is expressed in the zebrafish egg and early embryo, suggesting a role in development. Both knock-down and overexpression of March 8 leads to abnormal development. The phenotype of zebrafish embryos and Xenopus animal explants overexpressing March 8 implicates impairment of cell adhesion as a cause of the effect. In zebrafish embryos and in cultured cells, overexpression of March 8 leads to a reduction in the surface levels of E-cadherin, a major cell-cell adhesion molecule. Experiments in cell culture further show that E-cadherin can be ubiquitinated by March 8. On the basis of these observations we suggest that March 8 functions in the embryo to modulate the strength of cell adhesion by regulating the localization of E-cadherin.

  16. The intestinal immunoendocrine axis: novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease

    PubMed Central

    Worthington, John J

    2015-01-01

    The intestinal epithelium represents one of our most important interfaces with the external environment. It must remain tightly balanced to allow nutrient absorption, but maintain barrier function and immune homoeostasis, a failure of which results in chronic infection or debilitating inflammatory bowel disease (IBD). The intestinal epithelium mainly consists of absorptive enterocytes and secretory goblet and Paneth cells and has recently come to light as being an essential modulator of immunity as opposed to a simple passive barrier. Each epithelial sub-type can produce specific immune modulating factors, driving innate immunity to pathogens as well as preventing autoimmunity. The enteroendocrine cells comprise just 1% of this epithelium, but collectively form the bodies’ largest endocrine system. The mechanisms of enteroendocrine cell peptide secretion during feeding, metabolism and nutrient absorption are well studied; but their potential interactions with the enriched numbers of surrounding immune cells remain largely unexplored. This review focuses on alterations in enteroendocrine cell number and peptide secretion during inflammation and disease, highlighting the few in depth studies which have attempted to dissect the immune driven mechanisms that drive these phenomena. Moreover, the emerging potential of enteroendocrine cells acting as innate sensors of intestinal perturbation and secreting peptides to directly orchestrate immune cell function will be proposed. In summary, the data generated from these studies have begun to unravel a complex cross-talk between immune and enteroendocrine cells, highlighting the emerging immunoendocrine axis as a potential target for therapeutic strategies for infections and inflammatory disorders of the intestine. PMID:26551720

  17. The intestinal immunoendocrine axis: novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease.

    PubMed

    Worthington, John J

    2015-08-01

    The intestinal epithelium represents one of our most important interfaces with the external environment. It must remain tightly balanced to allow nutrient absorption, but maintain barrier function and immune homoeostasis, a failure of which results in chronic infection or debilitating inflammatory bowel disease (IBD). The intestinal epithelium mainly consists of absorptive enterocytes and secretory goblet and Paneth cells and has recently come to light as being an essential modulator of immunity as opposed to a simple passive barrier. Each epithelial sub-type can produce specific immune modulating factors, driving innate immunity to pathogens as well as preventing autoimmunity. The enteroendocrine cells comprise just 1% of this epithelium, but collectively form the bodies' largest endocrine system. The mechanisms of enteroendocrine cell peptide secretion during feeding, metabolism and nutrient absorption are well studied; but their potential interactions with the enriched numbers of surrounding immune cells remain largely unexplored. This review focuses on alterations in enteroendocrine cell number and peptide secretion during inflammation and disease, highlighting the few in depth studies which have attempted to dissect the immune driven mechanisms that drive these phenomena. Moreover, the emerging potential of enteroendocrine cells acting as innate sensors of intestinal perturbation and secreting peptides to directly orchestrate immune cell function will be proposed. In summary, the data generated from these studies have begun to unravel a complex cross-talk between immune and enteroendocrine cells, highlighting the emerging immunoendocrine axis as a potential target for therapeutic strategies for infections and inflammatory disorders of the intestine.

  18. The Distinctive Sensitivity to Microgravity of Immune Cell Subpopulations

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Luo, Haiying; Liu, Jing; Wang, Peng; Dong, Dandan; Shang, Peng; Zhao, Yong

    2015-11-01

    Immune dysfunction in astronauts is well documented after spaceflights. Microgravity is one of the key factors directly suppressing the function of immune system. However, it is unclear which subpopulations of immune cells including innate and adaptive immune cells are more sensitive to microgravity We herein investigated the direct effects of modeled microgravity (MMg) on different immune cells in vitro. Mouse splenocytes, thymocytes and bone marrow cells were exposed to MMg for 16 hrs. The survival and the phenotypes of different subsets of immune cells including CD4+T cells, CD8+T cells, CD4+Foxp3+ regulatory T cells (Treg), B cells, monocytes/macrophages, dendritic cells (DCs), natural killer cells (NK) were determined by flow cytometry. After splenocytes were cultured under MMg for 16h, the cell frequency and total numbers of monocytes, macrophages and CD4+Foxp3+T cells were significantly decreased more than 70 %. MMg significantly decreased the cell numbers of CD8+ T cells, B cells and neutrophils in splenocytes. The cell numbers of CD4+T cells and NK cells were unchanged significantly when splenocytes were cultured under MMg compared with controls. However, MMg significantly increased the ratio of mature neutrophils to immature neutrophils in bone marrow and the cell number of DCs in splenocytes. Based on the cell survival ability, monocytes, macrophages and CD4+Foxp3+Treg cells are most sensitive to microgravity; CD4+T cells and NK cells are resistant to microgravity; CD8+T cells and neutrophils are impacted by short term microgravity exposure. Microgravity promoted the maturation of neutrophils and development of DCs in vitro. The present studies offered new insights on the direct effects of MMg on the survival and homeostasis of immune cell subsets.

  19. Aquaporin 5 regulates cigarette smoke induced emphysema by modulating barrier and immune properties of the epithelium.

    PubMed

    Aggarwal, Neil R; Chau, Eric; Garibaldi, Brian T; Mock, Jason R; Sussan, Thomas; Rao, Keshav; Rao, Kaavya; Menon, Anil G; D'Alessio, Franco R; Damarla, Mahendra; Biswal, Shyam; King, Landon S; Sidhaye, Venkataramana K

    2013-10-01

    Chronic obstructive pulmonary disease (COPD) causes significant morbidity and mortality. Cigarette smoke, the most common risk factor for COPD, induces airway and alveolar epithelial barrier permeability and initiates an innate immune response. Changes in abundance of aquaporin 5 (AQP5), a water channel, can affect epithelial permeability and immune response after cigarette smoke exposure. To determine how AQP5-derived epithelial barrier modulation affects epithelial immune response to cigarette smoke and development of emphysema, WT and AQP5(-/-) mice were exposed to cigarette smoke (CS). We measured alveolar cell counts and differentials, and assessed histology, mean-linear intercept (MLI), and surface-to-volume ratio (S/V) to determine severity of emphysema. We quantified epithelial-derived signaling proteins for neutrophil trafficking, and manipulated AQP5 levels in an alveolar epithelial cell line to determine specific effects on neutrophil transmigration after CS exposure. We assessed paracellular permeability and epithelial turnover in response to CS. In contrast to WT mice, AQP5(-/-) mice exposed to 6 months of CS did not demonstrate a significant increase in MLI or a significant decrease in S/V compared with air-exposed mice, conferring protection against emphysema. After sub-acute (4 weeks) and chronic (6 mo) CS exposure, AQP5(-/-) mice had fewer alveolar neutrophil but similar lung neutrophil numbers as WT mice. The presence of AQP5 in A549 cells, an alveolar epithelial cell line, was associated with increase neutrophil migration after CS exposure. Compared with CS-exposed WT mice, neutrophil ligand (CD11b) and epithelial receptor (ICAM-1) expression were reduced in CS-exposed AQP5(-/-) mice, as was secreted LPS-induced chemokine (LIX), an epithelial-derived neutrophil chemoattractant. CS-exposed AQP5(-/-) mice demonstrated decreased type I pneumocytes and increased type II pneumocytes compared with CS-exposed WT mice suggestive of enhanced epithelial

  20. Suppressor of cytokine signaling 2 modulates the immune response profile and development of experimental cerebral malaria.

    PubMed

    Brant, Fatima; Miranda, Aline S; Esper, Lisia; Gualdrón-López, Melisa; Cisalpino, Daniel; de Souza, Danielle da Gloria; Rachid, Milene Alvarenga; Tanowitz, Herbert B; Teixeira, Mauro Martins; Teixeira, Antônio Lucio; Machado, Fabiana Simão

    2016-05-01

    Plasmodium falciparum infection results in severe malaria in humans, affecting various organs, including the liver, spleen and brain, and resulting in high morbidity and mortality. The Plasmodium berghei ANKA (PbA) infection in mice closely recapitulates many aspects of human cerebral malaria (CM); thus, this model has been used to investigate the pathogenesis of CM. Suppressor of cytokine signaling 2 (SOCS2), an intracellular protein induced by cytokines and hormones, modulates the immune response, neural development, neurogenesis and neurotrophic pathways. However, the role of SOCS2 during CM remains unknown. SOCS2 knockout (SOCS2(-/-)) mice infected with PbA show an initial resistance to infection with reduced parasitemia and production of TNF, TGF-β, IL-12 and IL-17 in the brain. Interestingly, in the late phase of infection, SOCS2(-/-) mice display increased parasitemia and reduced Treg cell infiltration, associated with enhanced levels of Th1 and Th17 cells and related cytokines IL-17, IL-6, and TGF-β in the brain. A significant reduction in protective neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF), was also observed. Moreover, the molecular alterations in the brain of infected SOCS2(-/-) mice were associated with anxiety-related behaviors and cognition impairment. Mechanistically, these results revealed enhanced nitric oxide (NO) production in PbA-infected SOCS2(-/-) mice, and the inhibition of NO synthesis through l-NAME led to a marked decrease in survival, the disruption of parasitemia control and more pronounced anxiety-like behavior. Treatment with l-NAME also shifted the levels of Th1, Th7 and Treg cells in the brains of infected SOCS2(-/-) mice to the background levels observed in infected WT, with remarkable exception of increased CD8(+)IFN(+) T cells and inflammatory monocytes. These results indicate that SOCS2 plays a dual role during PbA infection, being detrimental

  1. Effect on the immune system of mice exposed chronically to 50 Hz amplitude-modulated 2.45 GHz microwaves

    SciTech Connect

    Elekes, E.; Thuroczy, G.; Szabo, L.D.

    1996-12-01

    The effect of continuous (CW; 2.45 GHz carrier frequency) or amplitude-modulated (AM; 50 Hz square wave) microwave radiation on the immune response was tested. CW exposures (6 days, 3 h/day) induced elevations of the number of antibody-producing cells in the spleen of male Balb/c mice (+37%). AM microwave exposure induced elevation of the spleen index (+15%) and antibody-producing cell number (+55%) in the spleen of male mice. No changes were observed in female mice. It is concluded that both types of exposure conditions induced moderate elevation of antibody production only in male mice.

  2. Cell shunt resistance and photovoltaic module performance

    SciTech Connect

    McMahon, T.J.; Basso, T.S.; Rummel, S.R.

    1996-05-01

    Shunt resistance of cells in photovoltaic modules can affect module power output and could indicate flawed manufacturing processes and reliability problems. The authors describe a two-terminal diagnostic method to directly measure the shunt resistance of individual cells in a series-connected module non-intrusively, without deencapsulation. Peak power efficiency vs. light intensity was measured on a 12-cell, series-connected, single crystalline module having relatively high cell shunt resistances. The module was remeasured with 0.5-, 1-, and 2-ohm resistors attached across each cell to simulate shunt resistances of several emerging technologies. Peak power efficiencies decreased dramatically at lower light levels. Using the PSpice circuit simulator, the authors verified that cell shunt and series resistances can indeed be responsible for the observed peak power efficiency vs. intensity behavior. The authors discuss the effect of basic cell diode parameters, i.e., shunt resistance, series resistance, and recombination losses, on PV module performance as a function of light intensity.

  3. Modulation of Immune Response by Organophosphorus Pesticides: Fishes as a Potential Model in Immunotoxicology

    PubMed Central

    Díaz-Resendiz, K. J. G.; Toledo-Ibarra, G. A.; Girón-Pérez, M. I.

    2015-01-01

    Immune response is modulated by different substances that are present in the environment. Nevertheless, some of these may cause an immunotoxic effect. In this paper, the effect of organophosphorus pesticides (frequent substances spilled in aquatic ecosystems) on the immune system of fishes and in immunotoxicology is reviewed. Furthermore, some cellular and molecular mechanisms that might be involved in immunoregulation mechanisms of organophosphorus pesticides are discussed. PMID:25973431

  4. Modulation of immune response by organophosphorus pesticides: fishes as a potential model in immunotoxicology.

    PubMed

    Díaz-Resendiz, K J G; Toledo-Ibarra, G A; Girón-Pérez, M I

    2015-01-01

    Immune response is modulated by different substances that are present in the environment. Nevertheless, some of these may cause an immunotoxic effect. In this paper, the effect of organophosphorus pesticides (frequent substances spilled in aquatic ecosystems) on the immune system of fishes and in immunotoxicology is reviewed. Furthermore, some cellular and molecular mechanisms that might be involved in immunoregulation mechanisms of organophosphorus pesticides are discussed.

  5. Modulation of host immunity and reproduction by horizontally acquired Wolbachia.

    PubMed

    Pigeault, Romain; Braquart-Varnier, Christine; Marcadé, Isabelle; Mappa, Gaëtan; Mottin, Elmina; Sicard, Mathieu

    2014-11-01

    The Wolbachia are symbiotic bacteria vertically transmitted from one host generation to another. However, a growing amount of data shows that horizontal transfers of Wolbachia also frequently occur within and between host species. The consequences of the arrival of new symbionts on host physiology can be studied by their experimental introduction in asymbiotic hosts. After experimental transfers of the eight major isopod Wolbachia strains in the isopod Porcellio dilatatus only two of them (wCon and wDil) were found to (1) have no pathogenic effect on the host and (2) be able to pass vertically to the host offspring. In the present work, we studied the influence of these two strains, able to complete an horizontal transfer, on immunity and reproduction of P. dilatatus at two stages of the transfer: (1) in recipient hosts that encounter the symbionts: to test the influence of symbiont when acquired during host life and (2) in vertically infected offspring: to test the influence of a symbiotic interaction occurring all lifelong. The impact of Wolbachia varied depending on the stage: there were clearer effects in vertically infected individuals than in those that acquired the symbionts during their lives. Moreover, the two Wolbachia strains showed contrasted effects: the strain wCon tended to reduce the reproductive investment but to maintain or increase immune parameters whilst wDil had positive effects on reproductive investment but decreased the investment in some immune parameters. These results suggest that horizontally acquisition of Wolbachia can influence the balance between host immune and reproductive traits.

  6. Innate immune cell response upon Candida albicans infection.

    PubMed

    Qin, Yulin; Zhang, Lulu; Xu, Zheng; Zhang, Jinyu; Jiang, Yuan-Ying; Cao, Yongbing; Yan, Tianhua

    2016-07-03

    Candida albicans is a polymorphic fungus which is the predominant cause of superficial and deep tissue fungal infections. This microorganism has developed efficient strategies to invade the host and evade host defense systems. However, the host immune system will be prepared for defense against the microbe by recognition of receptors, activation of signal transduction pathways and cooperation of immune cells. As a consequence, C. albicans could either be eliminated by immune cells rapidly or disseminate hematogenously, leading to life-threatening systemic infections. The interplay between Candida albicans and the host is complex, requiring recognition of the invaded pathogens, activation of intricate pathways and collaboration of various immune cells. In this review, we will focus on the effects of innate immunity that emphasize the first line protection of host defense against invaded C. albicans including the basis of receptor-mediated recognition and the mechanisms of cell-mediated immunity.

  7. Homing of immune cells: role in homeostasis and intestinal inflammation.

    PubMed

    Hart, Ailsa L; Ng, Siew C; Mann, Elizabeth; Al-Hassi, Hafid Omar; Bernardo, David; Knight, Stella C

    2010-11-01

    Rather like a satellite navigation system directing a vehicle to a particular destination defined by post-code, immune cells have homing molecules or "immune post-codes" enabling them to be recruited to specific organs, such as the intestine or skin. An efficient system would be designed such that the site of entry of an antigen influences the homing of effector T cells back to the appropriate organ. For example, to mount an immune response against an intestinal pathogen, T cells with a propensity to home to the gut to clear the infection would be induced. In health, there is such a sophisticated and finely tuned system in operation, enabling an appropriate balance of immune activity in different anatomical compartments. In disease states such as inflammatory bowel disease (IBD), which is characterized by intestinal inflammation and often an inflammatory process involving other organs such as skin, joints, liver, and eye, there is accumulating evidence that there is malfunction of this immune cell trafficking system. The clinical importance of dysregulated immune cell trafficking in IBD is reflected in recently proven efficacious therapies that target trafficking pathways such as natalizumab, an α4 integrin antibody, and Traficet-EN, a chemokine receptor-9 (CCR9) antagonist. Here we review the mechanisms involved in the homing of immune cells to different tissues, in particular the intestine, and focus on alterations in immune cell homing pathways in IBD. Unraveling the mechanisms underlying the immune post-code system would assist in achieving the goal of tissue-specific immunotherapy.

  8. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1982-01-01

    The phosphoric acid fuel cell module (stack) development which culminated in an 80 cell air-cooled stack with separated gas cooling and treed cooling plates is described. The performance of the 80 cell stack was approx. 100 mV per cell higher than that attained during phase 1. The components and materials performed stably for over 8000 hours in a 5 cell stack. The conceptual design of a fuel conditioning system is described.

  9. Environmental testing of block 3 solar cell modules. Part 1: Qualification testing of standard production modules

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.

    1979-01-01

    Qualification tests of solar cell modules are described. These modules continue to show improvement over earlier type modules tested. Cell cracking and delamination are less prevalent, and interconnect problems and electrical degradation from environmental testing are now rare.

  10. Tissue-specific activities of an immune signaling module regulate physiological responses to pathogenic and nutritional bacteria in C. elegans.

    PubMed

    Shivers, Robert P; Kooistra, Tristan; Chu, Stephanie W; Pagano, Daniel J; Kim, Dennis H

    2009-10-22

    Microbes represent both an essential source of nutrition and a potential source of lethal infection to the nematode Caenorhabditis elegans. Immunity in C. elegans requires a signaling module comprised of orthologs of the mammalian Toll-interleukin-1 receptor (TIR) domain protein SARM, the mitogen-activated protein kinase kinase kinase (MAPKKK) ASK1, and MAPKK MKK3, which activates p38 MAPK. We determined that the SARM-ASK1-MKK3 module has dual tissue-specific roles in the C. elegans response to pathogens--in the cell-autonomous regulation of innate immunity and the neuroendocrine regulation of serotonin-dependent aversive behavior. SARM-ASK1-MKK3 signaling in the sensory nervous system also regulates egg-laying behavior that is dependent on bacteria provided as a nutrient source. Our data demonstrate that these physiological responses to bacteria share a common mechanism of signaling through the SARM-ASK1-MKK3 module and suggest the co-option of ancestral immune signaling pathways in the evolution of physiological responses to microbial pathogens and nutrients.

  11. Programmed cell death in the plant immune system.

    PubMed

    Coll, N S; Epple, P; Dangl, J L

    2011-08-01

    Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms.

  12. Tricking the balance: NK cells in anti-cancer immunity.

    PubMed

    Pahl, Jens; Cerwenka, Adelheid

    2017-01-01

    Natural Killer (NK) cells are classically considered innate immune effector cells involved in the first line of defense against infected and malignant cells. More recently, NK cells have emerged to acquire properties of adaptive immunity in response to certain viral infections such as expansion of specific NK cell subsets and long-lasting virus-specific responses to secondary challenges. NK cells distinguish healthy cells from abnormal cells by measuring the net input of activating and inhibitory signals perceived from target cells through NK cell surface receptors. Acquisition of activating ligands in combination with reduced expression of MHC class I molecules on virus-infected and cancer cells activates NK cell cytotoxicity and release of immunostimulatory cytokines like IFN-γ. In the cancer microenvironment however, NK cells become functionally impaired by inhibitory factors produced by immunosuppressive immune cells and cancer cells. Here we review recent progress on the role of NK cells in cancer immunity. We describe regulatory factors of the tumor microenvironment on NK cell function which determine cancer cell destruction or escape from immune recognition. Finally, recent strategies that focus on exploiting NK cell anti-cancer responses for immunotherapeutic approaches are outlined.

  13. Post-hematopoietic stem cell transplantion immune-mediated cytopenias.

    PubMed

    Tsirigotis, Panagiotis D; Resnick, Igor B; Or, Reuven; Elad, Sharon; Zilberman, Irina; Yoffe, Luba; Levovic, Alexander; Miron, Svetlana; Gesundheit, Benjamin; Slavin, Shimon; Shapira, Michael-Yechiel

    2009-01-01

    Immune-mediated cytopenias after allogeneic stem cell transplantation can be categorized as either alloimmune when host or donor immunity reacts against donor or host elements, respectively, or autoimmune when donor immunity reacts against donor hematopoietic tissue, owing to poorly understood mechanisms that result in severe impairment of central and peripheral tolerance. Immune cytopenias are manifested as monolineage or more rarely as bilineage cytopenias, and are usually mediated through humoral immune mechanisms. On the contrary, immune-mediated pancytopenia is a rare event with only few cases reported in the literature. The exact pathogenesis of immune pancytopenia is not well known although it is possible that cellular immunity may play a significant role. The importance of these syndromes lies in the fact that they can cause severe morbidity and mortality. Differential diagnosis from other causes of post-transplant pancytopenia is of extreme value because these disorders can respond to various treatment modalities.

  14. Immune Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Ogonek, Justyna; Kralj Juric, Mateja; Ghimire, Sakhila; Varanasi, Pavankumar Reddy; Holler, Ernst; Greinix, Hildegard; Weissinger, Eva

    2016-01-01

    The timely reconstitution and regain of function of a donor-derived immune system is of utmost importance for the recovery and long-term survival of patients after allogeneic hematopoietic stem cell transplantation (HSCT). Of note, new developments such as umbilical cord blood or haploidentical grafts were associated with prolonged immunodeficiency due to delayed immune reconstitution, raising the need for better understanding and enhancing the process of immune reconstitution and finding strategies to further optimize these transplant procedures. Immune reconstitution post-HSCT occurs in several phases, innate immunity being the first to regain function. The slow T cell reconstitution is regarded as primarily responsible for deleterious infections with latent viruses or fungi, occurrence of graft-versus-host disease, and relapse. Here we aim to summarize the major steps of the adaptive immune reconstitution and will discuss the importance of immune balance in patients after HSCT. PMID:27909435

  15. Radiation-Induced Immune Modulation in Prostate Cancer

    DTIC Science & Technology

    2006-01-01

    Research Society, Denver, CO, 2004. Dörthe Schaue, Yu-Pei Liao, Begonya Comin-Anduix, Antoni Ribas , Annelies Debucquoy, Karin Haustermans, and William H...Submitted, 2006. Schaue, D., Y. Liao, B. Comin-Anduix, A. Ribas , D.C. Altieri, A. Debucquoy, K. Haustermans and W.H. McBride: The Effect of Radiation...Comin-Anduix, A. Ribas , D.C. Altieri, A. Debucquoy, K. Haustermans and W.H. McBride: The Effect of Radiation Therapy on Tumor-Specific Immune Responses

  16. Endogenous opioid peptides in regulation of innate immunity cell functions.

    PubMed

    Gein, S V; Baeva, T A

    2011-03-01

    Endogenous opioid peptides comprise a group of bioregulatory factors involved in regulation of functional activity of various physiological systems of an organism. One of most important functions of endogenous opioids is their involvement in the interaction between cells of the nervous and immune systems. Summary data on the effects of opioid peptides on regulation of functions of innate immunity cells are presented.

  17. Dendritic Cells: A Double-Edged Sword in Immune Responses during Chagas Disease

    PubMed Central

    Gil-Jaramillo, Natalia; Motta, Flávia N.; Favali, Cecília B. F.; Bastos, Izabela M. D.; Santana, Jaime M.

    2016-01-01

    Dendritic cells (DCs) are the most important member of the antigen presenting cells group due to their ability to recognize antigen at the infection site and their high specialized antigen internalization capacity. These cells have central role in connecting the innate and adaptive immune responses against Trypanosoma cruzi, the causative agent of Chagas disease. These first line defense cells modulate host immune response depending on type, maturation level, cytokine milieu and DC receptor involved in the interactions with T. cruzi, influencing the development of the disease clinic forms. Here, we present a review of DCs–T. cruzi interactions both in human and murine models, pointing out the parasite ability to manipulate DCs activity for the purpose of evading innate immune response and assuring its own survival and persistence. PMID:27471496

  18. Immune modulation by ER stress and inflammation in the tumor microenvironment.

    PubMed

    Rodvold, Jeffrey J; Mahadevan, Navin R; Zanetti, Maurizio

    2016-09-28

    It is now increasingly evident that the immune system represents a barrier to tumor emergence, growth, and recurrence. Although this idea was originally proposed almost 50 years ago as the "immune surveillance hypothesis", it is commonly recognized that, with few rare exceptions, tumor cells always prevail. Thus, one of the central unsolved paradoxes of tumor immunology is how a tumor escapes immune control, which is reflected in the lack of effective autochthonous or vaccine-induced anti-tumor T cell responses. In this review, we discuss the role of the endoplasmic reticulum (ER) stress response/unfolded protein response (UPR) in the immunomodulation of myeloid cells and T cells. Specifically, we will discuss how the tumor cell UPR polarizes myeloid cells in a cell-extrinsic manner, and how in turn, thus polarized myeloid cells negatively affect T cell activation and clonal expansion.

  19. 5-AED Enhances Survival of Irradiated Mice in a G-CSF-Dependent Manner, Stimulates Innate Immune Cell Function, Reduces Radiation-Induced DNA Damage and Induces Genes that Modulate Cell Cycle Progression and Apoptosis

    DTIC Science & Technology

    2012-07-22

    cytokines [15, 24]. However, this speculation was based on correla- tions, rather than a direct test of the hypothesis by blocking hematopoietic... tested the effects of 5-AED on irradiated human hematopoietic progenitor (CD34+) cells [26]. We found that 5-AED protected CD34+ cells from radi- ation...animals, this required a direct test in vivo. We compared the effects of blocking G-CSF to blocking IL-6, since IL-6 is induced by 5-AED [24, 26], but was

  20. The Role of B Cells and Humoral Immunity in Mycobacterium tuberculosis Infection

    PubMed Central

    Kozakiewicz, Lee; Phuah, Jiayao; Flynn, JoAnne

    2014-01-01

    Tuberculosis (TB) remains a serious threat to public health, causing 2 million deaths annually world-wide. The control of TB has been hindered by the requirement of long duration of treatment involving multiple chemotherapeutic agents, the increased susceptibility to Mycobacterium tuberculosis infection in the HIV-infected population, and the development of multi-drug resistant and extensively resistant strains of tubercle bacilli. An efficacious and cost-efficient way to control TB is the development of effective anti-TB vaccines. This measure requires thorough understanding of the immune response to M. tuberculosis. While the role of cell-mediated immunity in the development of protective immune response to the tubercle bacillus has been well established, the role of B cells in this process is not clearly understood. Emerging evidence suggests that B cells and humoral immunity can modulate the immune response to various intracellular pathogens, including M. tuberculosis. These lymphocytes form conspicuous aggregates in the lungs of tuberculous humans, non-human primates, and mice, which display features of germinal center B cells. In murine TB, it has been shown that B cells can regulate the level of granulomatous reaction, cytokine production, and the T cell response. This chapter discusses the potential mechanisms by which specific functions of B cells and humoral immunity can shape the immune response to intracellular pathogens in general, and to M. tuberculosis in particular. Knowledge of the B cell-mediated immune response to M. tuberculosis may lead to the design of novel strategies, including the development of effective vaccines, to better control TB. PMID:23468112

  1. Metabolic pathways in immune cell activation and quiescence.

    PubMed

    Pearce, Erika L; Pearce, Edward J

    2013-04-18

    Studies of immune system metabolism ("immunometabolism") segregate along two paths. The first investigates the effects of immune cells on organs that regulate whole-body metabolism, such as adipose tissue and liver. The second explores the role of metabolic pathways within immune cells and how this regulates immune response outcome. Distinct metabolic pathways diverge and converge at many levels, and, therefore, cells face choices as to how to achieve their metabolic goals. There is interest in fully understanding how and why immune cells commit to particular metabolic fates and in elucidating the immunologic consequences of reaching a metabolic endpoint by one pathway versus another. This is particularly intriguing, given that metabolic commitment is influenced not only by substrate availability but also by signaling pathways elicited by metabolites. Thus, metabolic choices in cells enforce fate and function, and this area will be the subject of this review.

  2. Innate and adaptive immune cells in the tumor microenvironment

    PubMed Central

    Gajewski, Thomas F; Schreiber, Hans; Fu, Yang-Xin

    2014-01-01

    Most tumor cells express antigens that can mediate recognition by host CD8+ T cells. Cancers that are detected clinically must have evaded antitumor immune responses to grow progressively. Recent work has suggested two broad categories of tumor escape based on cellular and molecular characteristics of the tumor microenvironment. One major subset shows a T cell–inflamed phenotype consisting of infiltrating T cells, a broad chemokine profile and a type I interferon signature indicative of innate immune activation. These tumors appear to resist immune attack through the dominant inhibitory effects of immune system–suppressive pathways. The other major phenotype lacks this T cell–inflamed phenotype and appears to resist immune attack through immune system exclusion or ignorance. These two major phenotypes of tumor microenvironment may require distinct immunotherapeutic interventions for maximal therapeutic effect. PMID:24048123

  3. Verticillium dahliae manipulates plant immunity by glycoside hydrolase 12 proteins in conjuction with carbohydrate-binding module 1.

    PubMed

    Gui, Yue-Jing; Chen, Jie-Yin; Zhang, Dan-Dan; Li, Nan-Yang; Li, Ting-Gang; Zhang, Wen-Qi; Wang, Xin-Yan; Short, Dylan P G; Li, Lei; Guo, Wei; Kong, Zhi-Qiang; Bao, Yu-Ming; Subbarao, Krishna V; Dai, Xiao-Feng

    2017-02-15

    Glycoside hydrolase 12 (GH12) proteins act as virulence factors and pathogen-associated molecular patterns (PAMPs) in oomycetes. However, the pathogenic mechanisms of fungal GH12 proteins have not been characterized. In this study, we demonstrated that two of the six GH12 proteins produced by the fungus Verticillium dahliae Vd991, VdEG1 and VdEG3 acted as PAMPs to trigger cell death and PAMP-triggered immunity (PTI) independent of their enzymatic activity in Nicotiana benthamiana. A 63-amino-acid peptide of VdEG3 was sufficient for cell death-inducing activity, but this was not the case for the corresponding peptide of VdEG1. Further study indicated that VdEG1 and VdEG3 trigger PTI in different ways: BAK1 is required for VdEG1- and VdEG3-triggered immunity, while SOBIR1 is specifically required for VdEG1-triggered immunity in N. benthamiana. Unlike oomycetes, which employ RXLR effectors to suppress host immunity, a carbohydrate-binding module family 1 (CBM1) protein domain suppressed GH12 protein-induced cell death. Furthermore, during infection of N. benthamiana and cotton, VdEG1 and VdEG3 acted as PAMPs and virulence factors, respectively indicative of host-dependent molecular functions. These results suggest that VdEG1 and VdEG3 associate differently with BAK1 and SOBIR1 receptor-like kinases to trigger immunity in N. benthamiana, and together with CBM1-containing proteins manipulate plant immunity. This article is protected by copyright. All rights reserved.

  4. Immune Modulation through 4-1BB Enhances SIV Vaccine Protection in Non-Human Primates against SIVmac251 Challenge

    PubMed Central

    Morrow, Matthew P.; Jure-Kunkel, Maria N.; Weiner, David B.

    2011-01-01

    Costimulatory molecules play a central role in the development of cellular immunity. Understanding how costimulatory pathways can be directed to positively influence the immune response may be critical for the generation of an effective HIV vaccine. Here, we evaluated the ability of intravenous administration of a blocking monoclonal antibody (mAb) directed against the negative costimulatory molecule CTLA-4, and an agonist mAb directed against the positive costimulatory molecule 4-1BB, either alone or in combination, to augment intramuscular SIV DNA immunizations. We then tested the ability these of these responses to impact a high-dose SIVmac251 challenge. Following immunization, the groups infused with the anti-4-1BB mAb exhibited enhanced IFN-γ responses compared to the DNA vaccine only group. Interestingly, although CTLA-4 blockade alone did not enhance IFN-γ responses it did increase the proliferative capacity of the CD4+ and CD8+ T cells. The combination of both mAbs enhanced the magnitude of the polyfunctional CD8+ T cell response. Following challenge, the group that received both mAbs exhibited a significant, ∼2.0 log, decrease in plasma viral load compared to the naïve group the included complete suppression of viral load in some animals. Furthermore, the use of the CTLA-4 blocking antibody resulted in significantly higher viral loads during chronic infection compared to animals that received the 4-1BB mAb, likely due to the higher CD4+ T cell proliferative responses which were driven by this adjuvant following immunization. These novel studies show that these adjuvants induce differential modulation of immune responses, which have dramatically different consequences for control of SIV replication, suggesting important implications for HIV vaccine development. PMID:21935390

  5. Interaction of natural killer cells with neutrophils exerts a significant antitumor immunity in hematopoietic stem cell transplantation recipients.

    PubMed

    Ueda, Ryosuke; Narumi, Kenta; Hashimoto, Hisayoshi; Miyakawa, Reina; Okusaka, Takuji; Aoki, Kazunori

    2016-01-01

    Autologous hematopoietic stem cell transplantation (HSCT) can induce a strong antitumor immunity by homeostatic proliferation (HP) of T cells and suppression of regulatory T cells following preconditioning-induced lymphopenia. However, the role of innate immunity including natural killer (NK) cells is still not understood. Here, first, we examined whether NK cells exert an antitumor effect after syngeneic HSCT in a murine colon cancer model. Flow cytometry showed that NK cells as well as T cells rapidly proliferated after HSCT, and the frequency of mature NK cells was increased in tumor during HP. Furthermore, NK cells undergoing HP were highly activated, which contributed to substantial tumor suppression. Then, we found that a large number of neutrophils accumulated in tumor early after syngeneic HSCT. It was recently reported that neutrophil-derived mediators modulate NK cell effector functions, and so we examined whether the neutrophils infiltrated in tumor are associated with NK cell-mediated antitumor effect. The depletion of neutrophils significantly impaired an activation of NK cells in tumor and increased the fraction of proliferative NK cells accompanied by a decrease in NK cell survival. The results suggested that neutrophils in tumor prevent NK cells from activation-induced cell death during HP, thus leading to a significant antitumor effect by NK cells. This study revealed a novel aspect of antitumor immunity induced by HSCT and may contribute to the development of an effective therapeutic strategy for cancer using HSCT.

  6. German cockroach frass proteases modulate the innate immune response via activation of protease-activated receptor-2.

    PubMed

    Day, Scottie B; Zhou, Ping; Ledford, John R; Page, Kristen

    2010-01-01

    Allergen exposure can induce an early innate immune response; however, the mechanism by which this occurs has not been addressed. In this report, we demonstrate a role for the active serine proteases in German cockroach (GC) feces (frass) and protease-activated receptor (PAR)-2 in modulating the innate immune response. A single exposure of GC frass induced inflammatory cytokine production and cellular infiltration in the airways of mice. In comparison, exposure to protease-depleted GC frass resulted in diminution of inflammatory cytokine production and airway neutrophilia, but had no effect on macrophage infiltration. Selective activation of PAR-2 confirmed that PAR-2 was sufficient to induce airway inflammation. Exposure of GC frass to PAR-2-deficient mice led to decreased immune responses to GC frass compared to wild-type mice. Using the macrophage as an early marker of the innate immune response, we found that GC frass induced significant release of tumor necrosis factor-alpha from primary alveolar macrophages. This effect was dependent on the intrinsic proteases in GC frass. We confirmed GC frass-induced cytokine expression was mediated by activation of NF-kappaB and ERK in a macrophage cell line. Collectively, these data suggest a central role for GC frass protease-PAR-2 activation in regulating the innate immune response through the activation of alveolar macrophages. Understanding the potential role of protease-PAR-2 activation as a danger signal or adjuvant could yield attractive therapeutic targets.

  7. Multifunctional ferromagnetic disks for modulating cell function

    PubMed Central

    Vitol, Elina A.; Novosad, Valentyn; Rozhkova, Elena A.

    2013-01-01

    In this work, we focus on the methods for controlling cell function with ferromagnetic disk-shaped particles. We will first review the history of magnetically assisted modulation of cell behavior and applications of magnetic particles for studying physical properties of a cell. Then, we consider the biological applications of the microdisks such as the method for induction of cancer cell apoptosis, controlled drug release, hyperthermia and MRI imaging. PMID:23766544

  8. The immunology of pregnancy: regulatory T cells control maternal immune tolerance toward the fetus.

    PubMed

    La Rocca, Claudia; Carbone, Fortunata; Longobardi, Salvatore; Matarese, Giuseppe

    2014-11-01

    Establishment and maintenance of pregnancy represents a challenge for the maternal immune system since it has to defend against pathogens and tolerate paternal alloantigens expressed in fetal tissues. Regulatory T (Treg) cells, a subset of suppressor CD4(+) T cells, play a dominant role in the maintenance of immunological self-tolerance by preventing immune and autoimmune responses against self-antigens. Although localized mechanisms contribute to fetal evasion from immune attack, in the last few years it has been observed that Treg cells are essential in promoting fetal survival avoiding the recognition of paternal semi-allogeneic tissues by maternal immune system. Several functional studies have shown that unexplained infertility, miscarriage and pre-clampsia are often associated with deficit in Treg cell number and function while normal pregnancy selectively stimulates the accumulation of maternal forkhead-box-P3(+) (FoxP3(+)) CD4(+) Treg cells with fetal specificity. Some papers have been reported that the number of Treg cells persists at elevated levels long after delivery developing an immune regulatory memory against father's antigens, moreover these memory Treg cells rapidly proliferate during subsequent pregnancies, however, on the other hand, there are several evidence suggesting a clear decline of Treg cells number after delivery. Different factors such as cytokines, adipokines, pregnancy hormones and seminal fluid have immunoregulatory activity and influence the success of pregnancy by increasing Treg cell number and activity. The development of strategies capable of modulating immune responses toward fetal antigens through Treg cell manipulation, could have an impact on the induction of tolerance against fetal antigens during immune-mediated recurrent abortion.

  9. Strategies to Modulate Immune Responses: A New Frontier for Gene Therapy

    PubMed Central

    Arruda, Valder R; Favaro, Patricia; Finn, Jonathan D

    2009-01-01

    The success of gene therapy strategies to cure disease relies on the control of unwanted immune responses to transgene products, genetically modified cells and/or to the vector. Effective treatment of an established immune response is much harder to achieve than prevention of a response before it has had a chance to develop. However, preventive strategies are not always effective in avoiding immune responses, thus the use of drugs to induce immunosuppression (IS) is required. The growing discovery of novel drugs provides a conceptual shift from using generalized, moderately intensive immunosuppressive regimens towards a refined approach to attain the optimal balance of naive cells, effector cells, memory cells, and regulatory cells, harnessing the natural tolerance mechanisms of the body. We review several strategies based on transient IS coupled with gene therapy for sustained immune tolerance induction to the therapeutic transgene. PMID:19584819

  10. Interleukin-27 expression modifies prostate cancer cell crosstalk with bone and immune cells in vitro.

    PubMed

    Zolochevska, Olga; Diaz-Quiñones, Adriana O; Ellis, Jayne; Figueiredo, Marxa L

    2013-05-01

    Prostate cancer is frequently associated with bone metastases, where the crosstalk between tumor cells and key cells of the bone microenvironment (osteoblasts, osteoclasts, immune cells) amplifies tumor growth. We have explored the potential of a novel cytokine, interleukin-27 (IL-27), for inhibiting this malignant crosstalk, and have examined the effect of autocrine IL-27 on prostate cancer cell gene expression, as well as the effect of paracrine IL-27 on gene expression in bone and T cells. In prostate tumor cells, IL-27 upregulated genes related to its signaling pathway while downregulating malignancy-related receptors and cytokine genes involved in gp130 signaling, as well as several protease genes. In both undifferentiated and differentiated osteoblasts, IL-27 modulated upregulation of genes related to its own signaling pathway as well as pro-osteogenic genes. In osteoclasts, IL-27 downregulated several genes typically involved in malignancy and also downregulated osteoclastogenesis-related genes. Furthermore, an osteogenesis-focused real-time PCR array revealed a more extensive profile of pro-osteogenic gene changes in both osteoblasts and osteoclasts. In T-lymphocyte cells, IL-27 upregulated several activation-related genes and also genes related to the IL-27 signaling pathway and downregulated several genes that could modulate osteoclastogenesis. Overall, our results suggest that IL-27 may be able to modify interactions between prostate tumor and bone microenvironment cells and thus could be used as a multifunctional therapeutic for restoring bone homeostasis while treating metastatic prostate tumors.

  11. Antimalarial Drugs as Immune Modulators: New Mechanisms for Old Drugs.

    PubMed

    An, Jie; Minie, Mark; Sasaki, Tomikazu; Woodward, Joshua J; Elkon, Keith B

    2017-01-14

    The best known of the naturally occurring antimalarial compounds are quinine, extracted from cinchona bark, and artemisinin (qinghao), extracted from Artemisia annua in China. These and other derivatives are now chemically synthesized and remain the mainstay of therapy to treat malaria. The beneficial effects of several of the antimalarial drugs (AMDs) on clinical features of autoimmune disorders were discovered by chance during World War II. In this review, we discuss the chemistry of AMDs and their mechanisms of action, emphasizing how they may impact multiple pathways of innate immunity. These pathways include Toll-like receptors and the recently described cGAS-STING pathway. Finally, we discuss the current and future impact of AMDs on systemic lupus erythematosus, rheumatoid arthritis, and devastating monogenic disorders (interferonopathies) characterized by expression of type I interferon in the brain.

  12. Peptide assemblies: from cell scaffolds to immune adjuvants

    NASA Astrophysics Data System (ADS)

    Collier, Joel

    2011-03-01

    This talk will discuss two interrelated aspects of peptide self-assemblies in biological applications: their use as matrices for regenerative medicine, and their use as chemically defined adjuvants for directing immune responses against engineered antigens. In the first half of the presentation, the design of peptide self-assemblies as analogues for the extracellular matrix will be described, with a focus on self-assemblies displaying multiple different cell-binding peptides. We conducted multi-factorial investigations of peptide co-assemblies containing several different ligand-bearing peptides using statistical ``design of experiments'' (DoE). Using the DoE techniques of factorial experimentation and response surface modeling, we systematically explored how precise combinations of ligand-bearing peptides modulated endothelial cell growth, in the process finding interactions between ligands not previously appreciated. By investigating immune responses against the materials intended for tissue engineering applications, we discovered that the basic self-assembling peptides were minimally immunogenic or non-immunogenic, even when delivered in strong adjuvants. -But when they were appended to an appropriately restricted epitope peptide, these materials raised strong and persistent antibody responses. These responses were dependent on covalent conjugation between the epitope and self-assembling domains of the peptides, were mediated by T cells, and could be directed towards both peptide epitopes and conjugated protein antigens. In addition to their demonstrated utility as scaffolds for regenerative medicine, peptide self-assemblies may also be useful as chemically defined adjuvants for vaccines and immunotherapies. This work was funded by NIH/NIDCR (1 R21 DE017703-03), NIH/NIBIB (1 R01 EB009701-01), and NSF (CHE-0802286).

  13. Lactobacillus plantarum DK119 as a probiotic confers protection against influenza virus by modulating innate immunity.

    PubMed

    Park, Min-Kyung; Ngo, Vu; Kwon, Young-Man; Lee, Young-Tae; Yoo, Sieun; Cho, Young-Hee; Hong, Sung-Moon; Hwang, Hye Suk; Ko, Eun-Ju; Jung, Yu-Jin; Moon, Dae-Won; Jeong, Eun-Ji; Kim, Min-Chul; Lee, Yu-Na; Jang, Ji-Hun; Oh, Joon-Suk; Kim, Cheol-Hyun; Kang, Sang-Moo

    2013-01-01

    Lactobacillus plantarum DK119 (DK119) isolated from the fermented Korean cabbage food was used as a probiotic to determine its antiviral effects on influenza virus. DK119 intranasal or oral administration conferred 100% protection against subsequent lethal infection with influenza A viruses, prevented significant weight loss, and lowered lung viral loads in a mouse model. The antiviral protective efficacy was observed in a dose and route dependent manner of DK119 administration. Mice that were treated with DK119 showed high levels of cytokines IL-12 and IFN-γ in bronchoalveolar lavage fluids, and a low degree of inflammation upon infection with influenza virus. Depletion of alveolar macrophage cells in lungs and bronchoalveolar lavages completely abrogated the DK119-mediated protection. Modulating host innate immunity of dendritic and macrophage cells, and cytokine production pattern appeared to be possible mechanisms by which DK119 exhibited antiviral effects on influenza virus infection. These results indicate that DK119 can be developed as a beneficial antiviral probiotic microorganism.

  14. Enhancement of Microbiota in Healthy Macaques Results in Beneficial Modulation of Mucosal and Systemic Immune Function1

    PubMed Central

    Manuzak, Jennifer A.; Hensley-McBain, Tiffany; Zevin, Alexander S.; Miller, Charlene; Cubas, Rafael; Agricola, Brian; Gile, Jill; Richert-Spuhler, Laura; Patilea, Gabriela; Estes, Jacob D.; Langevin, Stanley; Reeves, R. Keith; Haddad, Elias K.; Klatt, Nichole R.

    2016-01-01

    Given the critical role of mucosal surfaces in susceptibility to infection, it is imperative that effective mucosal responses are induced when developing efficacious vaccines and prevention strategies for infection. Modulating the microbiota in the gastrointestinal (GI) tract through the use of probiotics (PBio) is a safe and well-tolerated approach to enhance mucosal and overall health. We assessed the longitudinal impact of daily treatment with the VSL#3 probiotic on cellular and humoral immunity and inflammation in healthy macaques. PBio therapy resulted in significantly increased frequencies of B cells expressing IgA in the colon and lymph node (LN), likely due to significantly increased LN T follicular helper cell (Tfh) frequencies and LN follicles. Increased frequencies of IL-23+ antigen presenting cells (APCs) in the colon were found post-PBio treatment, which correlated with LN Tfh. Finally, VSL#3 significantly down-modulated the response of TLR2, TLR3, TLR4 and TLR9-expressing HEK293 cells to stimulation with Pam3CSK4, Poly(I:C), LPS and ODN2006, respectively. These data provide a mechanism for the beneficial impact of PBio on mucosal health and implicates the use of PBio therapy in the context of vaccination or preventative approaches to enhance protection from mucosal infection by improving immune defenses at the mucosal portal of entry. PMID:26826246

  15. Innate Immune Pattern Recognition: A Cell Biological Perspective

    PubMed Central

    Brubaker, Sky W.; Bonham, Kevin S.; Zanoni, Ivan

    2016-01-01

    Receptors of the innate immune system detect conserved determinants of microbial and viral origin. Activation of these receptors initiates signaling events that culminate in an effective immune response. Recently, the view that innate immune signaling events rely on and operate within a complex cellular infrastructure has become an important framework for understanding the regulation of innate immunity. Compartmentalization within this infrastructure provides the cell with the ability to assign spatial information to microbial detection and regulate immune responses. Several cell biological processes play a role in the regulation of innate signaling responses; at the same time, innate signaling can engage cellular processes as a form of defense or to promote immunological memory. In this review, we highlight these aspects of cell biology in pattern-recognition receptor signaling by focusing on signals that originate from the cell surface, from endosomal compartments, and from within the cytosol. PMID:25581309

  16. Modulation of acute immune complex-mediated tissue injury by the presence of polyionic substances.

    PubMed Central

    Warren, J. S.; Ward, P. A.; Johnson, K. J.; Ginsburg, I.

    1987-01-01

    Considerable attention has been focused on the role of electrostatic charge in the pathogenesis of immune complex-mediated tissue injury. The authors have examined the ability of cationic (histone, polyhistidine, polyarginine) and anionic (polyanetholsulfonate) polyelectrolytes to modulate acute immune complex-mediated tissue injury. Tissue injury elicited in rats by the reversed dermal Arthus reaction was increased 26-43% by addition of polyelectrolytes to antibody prior to its intradermal injection. Kinetic studies using 111In-labeled neutrophils indicated that the enhanced tissue injury was not the result of increased influx of neutrophils. Infusion of polyethylene glycol-conjugated superoxide dismutase prior to induction of the Arthus reaction resulted in 40-68% suppression of tissue injury. Concomitant in vitro functional studies (enzyme secretion, O-2 and H2O2 generation, and chemiluminescence) of rat neutrophils demonstrated that addition of polyelectrolytes to preformed immune complexes (IgG-bovine serum albumin) resulted in marked increases in O-2, H2O2, and chemiluminescence, but no increases in enzyme secretion, compared with neutrophils stimulated with immune complexes alone. The cationic polyelectrolytes did not alter the capacity of preformed immune complexes to activate complement in vitro. These studies suggest that both cationic and anionic polyelectrolytes can increase the pathogenic potential of immune complexes and that this modulation is, at least in part, mediated by enhanced generation of toxic oxygen-derived metabolites by neutrophils. PMID:3037912

  17. β2→1-Fructans Modulate the Immune System In Vivo in a Microbiota-Dependent and -Independent Fashion

    PubMed Central

    Fransen, Floris; Sahasrabudhe, Neha M.; Elderman, Marlies; Bosveld, Margaret; El Aidy, Sahar; Hugenholtz, Floor; Borghuis, Theo; Kousemaker, Ben; Winkel, Simon; van der Gaast-de Jongh, Christa; de Jonge, Marien I.; Boekschoten, Mark V.; Smidt, Hauke; Schols, Henk A.; de Vos, Paul

    2017-01-01

    It has been shown in vitro that only specific dietary fibers contribute to immunity, but studies in vivo are not conclusive. Here, we investigated degree of polymerization (DP) dependent effects of β2→1-fructans on immunity via microbiota-dependent and -independent effects. To this end, conventional or germ-free mice received short- or long-chain β2→1-fructan for 5 days. Immune cell populations in the spleen, mesenteric lymph nodes (MLNs), and Peyer’s patches (PPs) were analyzed with flow cytometry, genome-wide gene expression in the ileum was measured with microarray, and gut microbiota composition was analyzed with 16S rRNA sequencing of fecal samples. We found that β2→1-fructans modulated immunity by both microbiota and microbiota-independent effects. Moreover, effects were dependent on the chain-length of the β2→1-fructans type polymer. Both short- and long-chain β2→1-fructans enhanced T-helper 1 cells in PPs, whereas only short-chain β2→1-fructans increased regulatory T cells and CD11b−CD103− dendritic cells (DCs) in the MLN. A common feature after short- and long-chain β2→1-fructan treatment was enhanced 2-alpha-l-fucosyltransferase 2 expression and other IL-22-dependent genes in the ileum of conventional mice. These effects were not associated with shifts in gut microbiota composition, or altered production of short-chain fatty acids. Both short- and long-chain β2→1-fructans also induced immune effects in germ-free animals, demonstrating direct effect independent from the gut microbiota. Also, these effects were dependent on the chain-length of the β2→1-fructans. Short-chain β2→1-fructan induced lower CD80 expression by CD11b−CD103− DCs in PPs, whereas long-chain β2→1-fructan specifically modulated B cell responses in germ-free mice. In conclusion, support of immunity is determined by the chemical structure of β2→1-fructans and is partially microbiota independent. PM