Sample records for modulating oral microbial

  1. Ecological Effect of Arginine on Oral Microbiota.

    PubMed

    Zheng, Xin; He, Jinzhi; Wang, Lin; Zhou, Shuangshuang; Peng, Xian; Huang, Shi; Zheng, Liwei; Cheng, Lei; Hao, Yuqing; Li, Jiyao; Xu, Jian; Xu, Xin; Zhou, Xuedong

    2017-08-03

    Dental caries is closely associated with the microbial dybiosis between acidogenic/aciduric pathogens and alkali-generating commensal bacteria colonized in the oral cavity. Our recent studies have shown that arginine may represent a promising anti-caries agent by modulating microbial composition in an in vitro consortium. However, the effect of arginine on the oral microbiota has yet to be comprehensively delineated in either clinical cohort or in vitro biofilm models that better represent the microbial diversity of oral cavity. Here, by employing a clinical cohort and a saliva-derived biofilm model, we demonstrated that arginine treatment could favorably modulate the oral microbiota of caries-active individuals. Specifically, treatment with arginine-containing dentifrice normalized the oral microbiota of caries-active individuals similar to that of caries-free controls in terms of microbial structure, abundance of typical species, enzymatic activities of glycolysis and alkali-generation related enzymes and their corresponding transcripts. Moreover, we found that combinatory use of arginine with fluoride could better enrich alkali-generating Streptococcus sanguinis and suppress acidogenic/aciduric Streptococcus mutans, and thus significantly retard the demineralizing capability of saliva-derived oral biofilm. Hence, we propose that fluoride and arginine have a potential synergistic effect in maintaining an eco-friendly oral microbial equilibrium in favor of better caries management.

  2. Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology.

    PubMed

    Guo, Lihong; McLean, Jeffrey S; Yang, Youngik; Eckert, Randal; Kaplan, Christopher W; Kyme, Pierre; Sheikh, Omid; Varnum, Brian; Lux, Renate; Shi, Wenyuan; He, Xuesong

    2015-06-16

    One major challenge to studying human microbiome and its associated diseases is the lack of effective tools to achieve targeted modulation of individual species and study its ecological function within multispecies communities. Here, we show that C16G2, a specifically targeted antimicrobial peptide, was able to selectively kill cariogenic pathogen Streptococcus mutans with high efficacy within a human saliva-derived in vitro oral multispecies community. Importantly, a significant shift in the overall microbial structure of the C16G2-treated community was revealed after a 24-h recovery period: several bacterial species with metabolic dependency or physical interactions with S. mutans suffered drastic reduction in their abundance, whereas S. mutans' natural competitors, including health-associated Streptococci, became dominant. This study demonstrates the use of targeted antimicrobials to modulate the microbiome structure allowing insights into the key community role of specific bacterial species and also indicates the therapeutic potential of C16G2 to achieve a healthy oral microbiome.

  3. [The origin of hydrogen peroxide in oral cavity and its role in oral microecology balance].

    PubMed

    Keke, Zhang; Xuedong, Zhou; Xin, Xu

    2017-04-01

    Hydrogen peroxide, an important antimicrobial agent in oral cavity, plays a significant role in the balance of oral microecology. At the early stage of biofilm formation, about 80% of the detected initial colonizers belong to the genus Streptococcus. These oral streptococci use different oxidase to produce hydrogen peroxide. Recent studies showed that the produced hydrogen peroxide plays a critical role in modulating oral microecology. Hydrogen peroxide modulates biofilm development attributed to its growth inhibitory nature. Hydrogen peroxide production is closely associated with extracellular DNA(eDNA) release from microbe and the development of its competent cell which are critical for biofilm development and also serves as source for horizontal gene transfer. Microbe also can reduce the damage to themselves through several detoxification mechanisms. Moreover, hydrogen peroxide is also involved in the regulation of interactions between oral microorganisms and host. Taken together, hydrogen peroxide is an imperative ecological factor that contributes to the microbial equilibrium in the oral cavity. Here we will give a brief review of both the origin and the function in the oral microecology balance of hydrogen peroxide.

  4. Oral treatment with Lactobacillus rhamnosus attenuates behavioural deficits and immune changes in chronic social stress.

    PubMed

    Bharwani, Aadil; Mian, M Firoz; Surette, Michael G; Bienenstock, John; Forsythe, Paul

    2017-01-11

    Stress-related disorders involve systemic alterations, including disruption of the intestinal microbial community. Given the putative connections between the microbiota, immunity, neural function, and behaviour, we investigated the potential for microbe-induced gut-to-brain signalling to modulate the impact of stress on host behaviour and immunoregulation. Male C57BL/6 mice treated orally over 28 days with either Lactobacillus rhamnosus (JB-1) ™ or vehicle were subjected to chronic social defeat and assessed for alterations in behaviour and immune cell phenotype. 16S rRNA sequencing and mass spectrometry were employed to analyse the faecal microbial community and metabolite profile. Treatment with JB-1 decreased stress-induced anxiety-like behaviour and prevented deficits in social interaction with conspecifics. However, JB-1 did not alter development of aggressor avoidance following social defeat. Microbial treatment attenuated stress-related activation of dendritic cells while increasing IL-10+ regulatory T cells. Furthermore, JB-1 modulated the effect of stress on faecal metabolites with neuroactive and immunomodulatory properties. Exposure to social defeat altered faecal microbial community composition and reduced species richness and diversity, none of which was prevented by JB-1. Stress-related microbiota disruptions persisted in vehicle-treated mice for 3 weeks following stressor cessation. These data demonstrate that despite the complexity of the gut microbiota, exposure to a single microbial strain can protect against certain stress-induced behaviours and systemic immune alterations without preventing dysbiosis. This work supports microbe-based interventions for stress-related disorders.

  5. Progress toward understanding the contribution of alkali generation in dental biofilms to inhibition of dental caries

    PubMed Central

    Liu, Ya-Ling; Nascimento, Marcelle; Burne, Robert A

    2012-01-01

    Alkali production by oral bacteria is believed to have a major impact on oral microbial ecology and to be inibitory to the initiation and progression of dental caries. A substantial body of evidence is beginning to accumulate that indicates the modulation of the alkalinogenic potential of dental biofilms may be a promising strategy for caries control. This brief review highlights recent progress toward understanding molecular genetic and physiologic aspects of important alkali-generating pathways in oral bacteria, and the role of alkali production in the ecology of dental biofilms in health and disease. PMID:22996271

  6. In vitro Increased Respiratory Activity of Selected Oral Bacteria May Explain Competitive and Collaborative Interactions in the Oral Microbiome

    PubMed Central

    Hernandez-Sanabria, Emma; Slomka, Vera; Herrero, Esteban R.; Kerckhof, Frederiek-Maarten; Zaidel, Lynette; Teughels, Wim; Boon, Nico

    2017-01-01

    Understanding the driving forces behind the shifts in the ecological balance of the oral microbiota will become essential for the future management and treatment of periodontitis. As the use of competitive approaches for modulating bacterial outgrowth is unexplored in the oral ecosystem, our study aimed to investigate both the associations among groups of functional compounds and the impact of individual substrates on selected members of the oral microbiome. We employed the Phenotype Microarray high-throughput technology to analyse the microbial cellular phenotypes of 15 oral bacteria. Multivariate statistical analysis was used to detect respiratory activity triggers and to assess similar metabolic activities. Carbon and nitrogen were relevant for the respiration of health-associated bacteria, explaining competitive interactions when grown in biofilms. Carbon, nitrogen, and peptides tended to decrease the respiratory activity of all pathobionts, but not significantly. None of the evaluated compounds significantly increased activity of pathobionts at both 24 and 48 h. Additionally, metabolite requirements of pathobionts were dissimilar, suggesting that collective modulation of their respiratory activity may be challenging. Flow cytometry indicated that the metabolic activity detected in the Biolog plates may not be a direct result of the number of bacterial cells. In addition, damage to the cell membrane may not influence overall respiratory activity. Our methodology confirmed previously reported competitive and collaborative interactions among bacterial groups, which could be used either as marker of health status or as targets for modulation of the oral environment. PMID:28638806

  7. Oral Probiotics Alter Healthy Feline Respiratory Microbiota.

    PubMed

    Vientós-Plotts, Aida I; Ericsson, Aaron C; Rindt, Hansjorg; Reinero, Carol R

    2017-01-01

    Probiotics have been advocated as a novel therapeutic approach to respiratory disease, but knowledge of how oral administration of probiotics influences the respiratory microbiota is needed. Using 16S rRNA amplicon sequencing of bacterial DNA our objective was to determine whether oral probiotics changed the composition of the upper and lower airway, rectal, and blood microbiota. We hypothesized that oral probiotics would modulate the respiratory microbiota in healthy cats, demonstrated by the detection and/or increased relative abundance of the probiotic bacterial species and altered composition of the microbial population in the respiratory tract. Six healthy young research cats had oropharyngeal (OP), bronchoalveolar lavage fluid (BALF), rectal, and blood samples collected at baseline and 4 weeks after receiving oral probiotics. 16S rRNA gene amplicon libraries were sequenced, and coverage, richness, and relative abundance of representative operational taxonomic units (OTUs) were determined. Hierarchical and principal component analyses (PCA) demonstrated relatedness of samples. Mean microbial richness significantly increased only in the upper and lower airways. The number of probiotic OTUs (out of 5 total) that significantly increased in relative abundance vs. baseline was 5 in OP, 3 in BAL and 2 in feces. Using hierarchical clustering, BALF and blood samples grouped together after probiotic administration, and PERMANOVA supported that these two sites underwent significant changes in microbial composition. PERMANOVA revealed that OP and rectal samples had microbial population compositions that did not significantly change. These findings were visualized via PCA, which revealed distinct microbiomes in each site; samples clustered more tightly at baseline and had more variation after probiotic administration. This is the first study describing the effect of oral probiotics on the respiratory microbiota via detection of probiotic species in the airways. Finding bacterial species present in the oral probiotics in the upper and lower airways provides pilot data suggesting that oral probiotics could serve as a tool to target dysbiosis occurring in inflammatory airway diseases such as feline asthma, a disease in which cats serve as an important comparative and translational model for humans.

  8. Oral Probiotics Alter Healthy Feline Respiratory Microbiota

    PubMed Central

    Vientós-Plotts, Aida I.; Ericsson, Aaron C.; Rindt, Hansjorg; Reinero, Carol R.

    2017-01-01

    Probiotics have been advocated as a novel therapeutic approach to respiratory disease, but knowledge of how oral administration of probiotics influences the respiratory microbiota is needed. Using 16S rRNA amplicon sequencing of bacterial DNA our objective was to determine whether oral probiotics changed the composition of the upper and lower airway, rectal, and blood microbiota. We hypothesized that oral probiotics would modulate the respiratory microbiota in healthy cats, demonstrated by the detection and/or increased relative abundance of the probiotic bacterial species and altered composition of the microbial population in the respiratory tract. Six healthy young research cats had oropharyngeal (OP), bronchoalveolar lavage fluid (BALF), rectal, and blood samples collected at baseline and 4 weeks after receiving oral probiotics. 16S rRNA gene amplicon libraries were sequenced, and coverage, richness, and relative abundance of representative operational taxonomic units (OTUs) were determined. Hierarchical and principal component analyses (PCA) demonstrated relatedness of samples. Mean microbial richness significantly increased only in the upper and lower airways. The number of probiotic OTUs (out of 5 total) that significantly increased in relative abundance vs. baseline was 5 in OP, 3 in BAL and 2 in feces. Using hierarchical clustering, BALF and blood samples grouped together after probiotic administration, and PERMANOVA supported that these two sites underwent significant changes in microbial composition. PERMANOVA revealed that OP and rectal samples had microbial population compositions that did not significantly change. These findings were visualized via PCA, which revealed distinct microbiomes in each site; samples clustered more tightly at baseline and had more variation after probiotic administration. This is the first study describing the effect of oral probiotics on the respiratory microbiota via detection of probiotic species in the airways. Finding bacterial species present in the oral probiotics in the upper and lower airways provides pilot data suggesting that oral probiotics could serve as a tool to target dysbiosis occurring in inflammatory airway diseases such as feline asthma, a disease in which cats serve as an important comparative and translational model for humans. PMID:28744273

  9. Dental plaque biofilm in oral health and disease.

    PubMed

    Seneviratne, Chaminda Jayampath; Zhang, Cheng Fei; Samaranayake, Lakshman Perera

    2011-01-01

    Dental plaque is an archetypical biofilm composed of a complex microbial community. It is the aetiological agent for major dental diseases such as dental caries and periodontal disease. The clinical picture of these dental diseases is a net result of the cross-talk between the pathogenic dental plaque biofilm and the host tissue response. In the healthy state, both plaque biofilm and adjacent tissues maintain a delicate balance, establishing a harmonious relationship between the two. However, changes occur during the disease process that transform this 'healthy' dental plaque into a 'pathogenic' biofilm. Recent advances in molecular microbiology have improved the understanding of dental plaque biofilm and produced numerous clinical benefits. Therefore, it is imperative that clinicians keep abreast with these new developments in the field of dentistry. Better understanding of the molecular mechanisms behind dental diseases will facilitate the development of novel therapeutic strategies to establish a 'healthy dental plaque biofilm' by modulating both host and microbial factors. In this review, the present authors aim to summarise the current knowledge on dental plaque as a microbial biofilm and its properties in oral health and disease.

  10. Arginine Improves pH Homeostasis via Metabolism and Microbiome Modulation.

    PubMed

    Agnello, M; Cen, L; Tran, N C; Shi, W; McLean, J S; He, X

    2017-07-01

    Dental caries can be described as a dysbiosis of the oral microbial community, in which acidogenic, aciduric, and acid-adapted bacterial species promote a pathogenic environment, leading to demineralization. Alkali generation by oral microbes, specifically via arginine catabolic pathways, is an essential factor in maintaining plaque pH homeostasis. There is evidence that the use of arginine in dentifrices helps protect against caries. The aim of the current study was to investigate the mechanistic and ecological effect of arginine treatment on the oral microbiome and its regulation of pH dynamics, using an in vitro multispecies oral biofilm model that was previously shown to be highly reflective of the in vivo oral microbiome. Pooled saliva from 6 healthy subjects was used to generate overnight biofilms, reflecting early stages of biofilm maturation. First, we investigated the uptake of arginine by the cells of the biofilm as well as the metabolites generated. We next explored the effect of arginine on pH dynamics by pretreating biofilms with 75 mM arginine, followed by the addition of sucrose (15 mM) after 0, 6, 20, or 48 h. pH was measured at each time point and biofilms were collected for 16S sequencing and targeted arginine quantification, and supernatants were prepared for metabolomic analysis. Treatment with only sucrose led to a sustained pH drop from 7 to 4.5, while biofilms treated with sucrose after 6, 20, or 48 h of preincubation with arginine exhibited a recovery to higher pH. Arginine was detected within the cells of the biofilms, indicating active uptake, and arginine catabolites citrulline, ornithine, and putrescine were detected in supernatants, indicating active metabolism. Sequencing analysis revealed a shift in the microbial community structure in arginine-treated biofilms as well as increased species diversity. Overall, we show that arginine improved pH homeostasis through a remodeling of the oral microbial community.

  11. Periodontal diseases.

    PubMed

    Kinane, Denis F; Stathopoulou, Panagiota G; Papapanou, Panos N

    2017-06-22

    Periodontal diseases comprise a wide range of inflammatory conditions that affect the supporting structures of the teeth (the gingiva, bone and periodontal ligament), which could lead to tooth loss and contribute to systemic inflammation. Chronic periodontitis predominantly affects adults, but aggressive periodontitis may occasionally occur in children. Periodontal disease initiation and propagation is through a dysbiosis of the commensal oral microbiota (dental plaque), which then interacts with the immune defences of the host, leading to inflammation and disease. This pathophysiological situation persists through bouts of activity and quiescence, until the affected tooth is extracted or the microbial biofilm is therapeutically removed and the inflammation subsides. The severity of the periodontal disease depends on environmental and host risk factors, both modifiable (for example, smoking) and non-modifiable (for example, genetic susceptibility). Prevention is achieved with daily self-performed oral hygiene and professional removal of the microbial biofilm on a quarterly or bi-annual basis. New treatment modalities that are actively explored include antimicrobial therapy, host modulation therapy, laser therapy and tissue engineering for tissue repair and regeneration.

  12. Oral administration of Saccharomyces boulardii ameliorates carbon tetrachloride-induced liver fibrosis in rats via reducing intestinal permeability and modulating gut microbial composition.

    PubMed

    Li, Ming; Zhu, Lin; Xie, Ao; Yuan, Jieli

    2015-02-01

    To investigate the effects of orally administrated Saccharomyces boulardii (S. boulardii) on the progress of carbon tetrachloride (CCl4)-induced liver fibrosis, 34 male Wistar rats were randomly divided into four experimental groups including the control group (n = 8), the cirrhotic group (n = 10), the preventive group (n = 8), and the treatment group (n = 8). Results showed that the liver expression levels of collagen, type I, alpha 1 (Col1A1), alpha smooth muscle actin (αSMA), transforming growth factor beta (TGF-β) and the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) increased significantly in cirrhotic rats compared with control and decreased by S. boulardii administration. Treatment of S. boulardii also attenuated the increased endotoxin levels and pro-inflammatory cytokines in CCl4-treated rats. And, these were associated with the changes of intestinal permeability and fecal microbial composition. Our study suggested that oral administration of S. boulardii can promote the liver function of CCl4-treated rats, and the preventive treatment of this probiotic yeast may decelerate the progress of liver fibrosis.

  13. Microbiota, cirrhosis, and the emerging oral-gut-liver axis

    PubMed Central

    Acharya, Chathur; Bajaj, Jasmohan S.

    2017-01-01

    Cirrhosis is a prevalent cause of morbidity and mortality, especially for those at an advanced decompensated stage. Cirrhosis development and progression involves several important interorgan communications, and recently, the gut microbiome has been implicated in pathophysiology of the disease. Dysbiosis, defined as a pathological change in the microbiome, has a variable effect on the compensated versus decompensated stage of cirrhosis. Adverse microbial changes, both in composition and function, can act at several levels within the gut (stool and mucosal) and have also been described in the blood and oral cavity. While dysbiosis in the oral cavity could be a source of systemic inflammation, current cirrhosis treatment modalities are targeted toward the gut-liver axis and do not address the oral microbiome. As interventions designed to modulate oral dysbiosis may delay progression of cirrhosis, a better understanding of this process is of the utmost importance. The concept of oral microbiota dysbiosis in cirrhosis is relatively new; therefore, this review will highlight the emerging role of the oral-gut-liver axis and introduce perspectives for future research. PMID:28978799

  14. High‑throughput sequencing analyses of oral microbial diversity in healthy people and patients with dental caries and periodontal disease.

    PubMed

    Chen, Tingtao; Shi, Yan; Wang, Xiaolei; Wang, Xin; Meng, Fanjing; Yang, Shaoguo; Yang, Jian; Xin, Hongbo

    2017-07-01

    Recurrence of oral diseases caused by antibiotics has brought about an urgent requirement to explore the oral microbial diversity in the human oral cavity. In the present study, the high‑throughput sequencing method was adopted to compare the microbial diversity of healthy people and oral patients and sequence analysis was performed by UPARSE software package. The Venn results indicated that a mean of 315 operational taxonomic units (OTUs) was obtained, and 73, 64, 53, 19 and 18 common OTUs belonging to Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria and Fusobacteria, respectively, were identified in healthy people. Moreover, the reduction of Firmicutes and the increase of Proteobacteria in the children group, and the increase of Firmicutes and the reduction of Proteobacteria in the youth and adult groups, indicated that the age bracket and oral disease had largely influenced the tooth development and microbial development in the oral cavity. In addition, the traditional 'pathogenic bacteria' of Firmicutes, Proteobacteria and Bacteroidetes (accounted for >95% of the total sequencing number in each group) indicated that the 'harmful' bacteria may exert beneficial effects on oral health. Therefore, the data will provide certain clues for curing some oral diseases by the strategy of adjusting the disturbed microbial compositions in oral disease to healthy level.

  15. Personalized microbial network inference via co-regularized spectral clustering.

    PubMed

    Imangaliyev, Sultan; Keijser, Bart; Crielaard, Wim; Tsivtsivadze, Evgeni

    2015-07-15

    We use Human Microbiome Project (HMP) cohort (Peterson et al., 2009) to infer personalized oral microbial networks of healthy individuals. To determine clustering of individuals with similar microbial profiles, co-regularized spectral clustering algorithm is applied to the dataset. For each cluster we discovered, we compute co-occurrence relationships among the microbial species that determine microbial network per cluster of individuals. The results of our study suggest that there are several differences in microbial interactions on personalized network level in healthy oral samples acquired from various niches. Based on the results of co-regularized spectral clustering we discover two groups of individuals with different topology of their microbial interaction network. The results of microbial network inference suggest that niche-wise interactions are different in these two groups. Our study shows that healthy individuals have different microbial clusters according to their oral microbiota. Such personalized microbial networks open a better understanding of the microbial ecology of healthy oral cavities and new possibilities for future targeted medication. The scripts written in scientific Python and in Matlab, which were used for network visualization, are provided for download on the website http://learning-machines.com/. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The effect of cigarette smoking on the oral and nasal microbiota.

    PubMed

    Yu, Guoqin; Phillips, Stephen; Gail, Mitchell H; Goedert, James J; Humphrys, Michael S; Ravel, Jacques; Ren, Yanfang; Caporaso, Neil E

    2017-01-17

    The goal of the study was to investigate whether cigarette smoking alters oral and nasal microbial diversity, composition, and structure. Twenty-three current smokers and 20 never smokers were recruited. From each subject, nine samples including supra and subgingiva plaque scrapes, saliva, swabs from five soft oral tissue sites, and one nasal swab from both the anterior nares were collected. 16S rRNA V3-V4 region was sequenced for microbial profiles. We found that alpha diversity was lower in smokers than in nonsmokers in the buccal mucosa, but in other sample sites, microbial diversity and composition were not significantly different by smoking status. Microbial profiles differed significantly among eight oral sites. This study investigates the effect of cigarette smoking on different sites of the oral cavity and shows a potential effect of cigarette smoking on the buccal mucosa microbiota. The marked heterogeneity of the oral microbial ecosystem that we found may contribute to the stability of the oral microbiota in most sites when facing environmental perturbations such as that caused by cigarette smoking.

  17. Nitrate-responsive oral microbiome modulates nitric oxide homeostasis and blood pressure in humans.

    PubMed

    Vanhatalo, Anni; Blackwell, Jamie R; L'Heureux, Joanna; Williams, David W; Smith, Ann; van der Giezen, Mark; Winyard, Paul G; Kelly, James; Jones, Andrew M

    2018-05-25

    Imbalances in the oral microbial community have been associated with reduced cardiovascular and metabolic health. A possible mechanism linking the oral microbiota to health is the nitrate (NO 3 - )-nitrite (NO 2 - )-nitric oxide (NO) pathway, which relies on oral bacteria to reduce NO 3 - to NO 2 - . NO (generated from both NO 2 - and L-arginine) regulates vascular endothelial function and therefore blood pressure (BP). By sequencing bacterial 16S rRNA genes we examined the relationships between the oral microbiome and physiological indices of NO bioavailability and possible changes in these variables following 10 days of NO 3 - (12mmol/d) and placebo supplementation in young (18-22yrs) and old (70-79yrs) normotensive humans (n=18). NO 3 - supplementation altered the salivary microbiome compared to placebo by increasing the relative abundance of Proteobacteria (+225%) and decreasing the relative abundance of Bacteroidetes (-46%; P<0.05). After NO 3 - supplementation the relative abundances of Rothia (+127%) and Neisseria (+351%) were greater, and Prevotella (-60%) and Veillonella (-65%) were lower than in the placebo condition (all P<0.05). NO 3 - supplementation increased plasma concentration of NO 2 - and reduced systemic blood pressure in old (70-79yrs), but not young (18-22yrs), participants. High abundances of Rothia and Neisseria and low abundances of Prevotella and Veillonella were correlated with greater increases in plasma [NO 2 - ] in response to NO 3 - supplementation. The current findings indicate that the oral microbiome is malleable to change with increased dietary intake of inorganic NO 3 - , and that diet-induced changes in the oral microbial community are related to indices of NO homeostasis and vascular health in vivo. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Proton Pump Inhibitor Initiation and Withdrawal affects Gut Microbiota and Readmission Risk in Cirrhosis.

    PubMed

    Bajaj, Jasmohan S; Acharya, Chathur; Fagan, Andrew; White, Melanie B; Gavis, Edith; Heuman, Douglas M; Hylemon, Phillip B; Fuchs, Michael; Puri, Puneet; Schubert, Mitchell L; Sanyal, Arun J; Sterling, Richard K; Stravitz, R Todd; Siddiqui, Mohammad S; Luketic, Velimir; Lee, Hannah; Sikaroodi, Masoumeh; Gillevet, Patrick M

    2018-06-06

    Cirrhosis is associated with gut microbial dysbiosis, high readmissions and proton pump inhibitor (PPI) overuse, which could be inter-linked. Our aim was to determine the effect of PPI use, initiation and withdrawl on gut microbiota and readmissions in cirrhosis. Four cohorts were enrolled. Readmissions study: Cirrhotic inpatients were followed throughout the hospitalization and 30/90-days post-discharge. PPI initiation, withdrawal/continuation patterns were analyzed between those with/without readmissions. Cross-sectional microbiota study: Cirrhotic outpatients and controls underwent stool microbiota analysis. Beneficial autochthonous and oral-origin taxa analysis vis-à-vis PPI use was performed. Longitudinal studies: Two cohorts of decompensated cirrhotic outpatients were enrolled. Patients on chronic unindicated PPI use were withdrawn for 14 days. Patients not on PPI were started on omeprazole for 14 days. Microbial analysis for oral-origin taxa was performed pre/post-intervention. Readmissions study: 343 inpatients (151 on admission PPI) were enrolled. 21 were withdrawn and 45 were initiated on PPI resulting in a PPI use increase of 21%. PPIs were associated with higher 30 (p = 0.002) and 90-day readmissions (p = 0.008) independent of comorbidities, medications, MELD and age. Cross-sectional microbiota: 137 cirrhotics (59 on PPI) and 45 controls (17 on PPI) were included. PPI users regardless of cirrhosis had higher oral-origin microbiota while cirrhotics on PPI had lower autochthonous taxa compared to the rest. Longitudinal studies: Fifteen decompensated cirrhotics tolerated omeprazole initiation with an increase in oral-origin microbial taxa compared to baseline. PPIs were withdrawn from an additional 15 outpatients, which resulted in a significant reduction of oral-origin taxa compared to baseline. PPIs modulate readmission risk and microbiota composition in cirrhosis, which responds to withdrawal. The systematic withdrawal and judicious use of PPIs is needed from a clinical and microbiological perspective in decompensated cirrhosis.

  19. High-affinity monoclonal IgA regulates gut microbiota and prevents colitis in mice.

    PubMed

    Okai, Shinsaku; Usui, Fumihito; Yokota, Shuhei; Hori-I, Yusaku; Hasegawa, Makoto; Nakamura, Toshinobu; Kurosawa, Manabu; Okada, Seiji; Yamamoto, Kazuya; Nishiyama, Eri; Mori, Hiroshi; Yamada, Takuji; Kurokawa, Ken; Matsumoto, Satoshi; Nanno, Masanobu; Naito, Tomoaki; Watanabe, Yohei; Kato, Tamotsu; Miyauchi, Eiji; Ohno, Hiroshi; Shinkura, Reiko

    2016-07-04

    Immunoglobulin A (IgA) is the main antibody isotype secreted into the intestinal lumen. IgA plays a critical role in the defence against pathogens and in the maintenance of intestinal homeostasis. However, how secreted IgA regulates gut microbiota is not completely understood. In this study, we isolated monoclonal IgA antibodies from the small intestine of healthy mouse. As a candidate for an efficient gut microbiota modulator, we selected a W27 IgA, which binds to multiple bacteria, but not beneficial ones such as Lactobacillus casei. W27 could suppress the cell growth of Escherichia coli but not L. casei in vitro, indicating an ability to improve the intestinal environment. Indeed W27 oral treatment could modulate gut microbiota composition and have a therapeutic effect on both lymphoproliferative disease and colitis models in mice. Thus, W27 IgA oral treatment is a potential remedy for inflammatory bowel disease, acting through restoration of host-microbial symbiosis.

  20. Towards microbiome transplant as a therapy for periodontitis: an exploratory study of periodontitis microbial signature contrasted by oral health, caries and edentulism.

    PubMed

    Pozhitkov, Alex E; Leroux, Brian G; Randolph, Timothy W; Beikler, Thomas; Flemmig, Thomas F; Noble, Peter A

    2015-10-14

    Conventional periodontal therapy aims at controlling supra- and subgingival biofilms. Although periodontal therapy was shown to improve periodontal health, it does not completely arrest the disease. Almost all subjects compliant with periodontal maintenance continue to experience progressive clinical attachment loss and a fraction of them loses teeth. An oral microbial transplant may be a new alternative for treating periodontitis (inspired by fecal transplant). First, it must be established that microbiomes of oral health and periodontitis are distinct. In that case, the health-associated microbiome could be introduced into the oral cavity of periodontitis patients. This relates to the goals of our study: (i) to assess if microbial communities of the entire oral cavity of subjects with periodontitis were different from or oral health contrasted by microbiotas of caries and edentulism patients; (ii) to test in vitro if safe concentration of sodium hypochlorite could be used for initial eradication of the original oral microbiota followed by a safe neutralization of the hypochlorite prior transplantation. Sixteen systemically healthy white adults with clinical signs of one of the following oral conditions were enrolled: periodontitis, established caries, edentulism, and oral health. Oral biofilm samples were collected from sub- and supra-gingival sites, and oral mucosae. DNA was extracted and 16S rRNA genes were amplified. Amplicons from the same patient were pooled, sequenced and quantified. Volunteer's oral plaque was treated with saline, 16 mM NaOCl and NaOCl neutralized by ascorbate buffer followed by plating on blood agar. Ordination plots of rRNA gene abundances revealed distinct groupings for the oral microbiomes of subjects with periodontitis, edentulism, or oral health. The oral microbiome in subjects with periodontitis showed the greatest diversity harboring 29 bacterial species at significantly higher abundance compared to subjects with the other assessed conditions. Healthy subjects had significantly higher abundance in 10 microbial species compared to the other conditions. NaOCl showed strong antimicrobial properties; nontoxic ascorbate was capable of neutralizing the hypochlorite. Distinct oral microbial signatures were found in subjects with periodontitis, edentulism, or oral health. This finding opens up a potential for a new therapy, whereby a health-related entire oral microbial community would be transplanted to the diseased patient.

  1. The liver-gut microbiota axis modulates hepatotoxicity of tacrine in the rat.

    PubMed

    Yip, Lian Yee; Aw, Chiu Cheong; Lee, Sze Han; Hong, Yi Shuen; Ku, Han Chen; Xu, Winston Hecheng; Chan, Jessalyn Mei Xuan; Cheong, Eleanor Jing Yi; Chng, Kern Rei; Ng, Amanda Hui Qi; Nagarajan, Niranjan; Mahendran, Ratha; Lee, Yuan Kun; Browne, Edward R; Chan, Eric Chun Yong

    2018-01-01

    The gut microbiota possesses diverse metabolic activities, but its contribution toward heterogeneous toxicological responses is poorly understood. In this study, we investigated the role of the liver-gut microbiota axis in underpinning the hepatotoxicity of tacrine. We employed an integrated strategy combining pharmacokinetics, toxicology, metabonomics, genomics, and metagenomics to elucidate and validate the mechanism of tacrine-induced hepatotoxicity in Lister hooded rats. Pharmacokinetic studies in rats demonstrated 3.3-fold higher systemic exposure to tacrine in strong responders that experienced transaminitis, revealing enhanced enterohepatic recycling of deglucuronidated tacrine in this subgroup, not attributable to variation in hepatic disposition gene expression. Metabonomic studies implicated variations in gut microbial activities that mapped onto tacrine-induced transaminitis. Metagenomics delineated greater deglucuronidation capabilities in strong responders, based on differential gut microbial composition (e.g., Lactobacillus, Bacteroides, and Enterobacteriaceae) and approximately 9% higher β-glucuronidase gene abundance compared with nonresponders. In the validation study, coadministration with oral β-glucuronidase derived from Escherichia coli and pretreatment with vancomycin and imipenem significantly modulated the susceptibility to tacrine-induced transaminitis in vivo. This study establishes pertinent gut microbial influences in modifying the hepatotoxicity of tacrine, providing insights for personalized medicine initiatives. (Hepatology 2018;67:282-295). © 2017 by the American Association for the Study of Liver Diseases.

  2. Acetaldehyde production and microbial colonization in oral squamous cell carcinoma and oral lichenoid disease.

    PubMed

    Marttila, Emilia; Uittamo, Johanna; Rusanen, Peter; Lindqvist, Christian; Salaspuro, Mikko; Rautemaa, Riina

    2013-07-01

    The main aim of this prospective study was to explore the ability of the oral microbiome to produce acetaldehyde in ethanol incubation. A total of 90 patients [30 oral squamous cell carcinoma (OSCC); 30 oral lichenoid disease (OLD); 30 healthy controls (CO)] were enrolled in the study. Microbial samples were taken from the mucosa using a filter paper method. The density of microbial colonization was calculated and the spectrum analyzed. Microbial acetaldehyde production was measured by gas chromatography. The majority (68%) of cultures produced carcinogenic levels of acetaldehyde (>100 μM) when incubated with ethanol (22 mM). The mean acetaldehyde production by microbes cultured from smoker samples was significantly higher (213 μM) than from non-smoker samples (141 μM) (P=.0326). The oral microbiota from OSCC, OLD patients and healthy individuals are able to produce carcinogenic levels of acetaldehyde. The present provisional study suggests smoking may increase the production of acetaldehyde. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Acquisition and maturation of oral microbiome throughout childhood: An update

    PubMed Central

    Sampaio-Maia, Benedita; Monteiro-Silva, Filipa

    2014-01-01

    Traditional microbiology concepts are being renewed since the development of new microbiological technologies, such as, sequencing and large-scale genome analysis. Since the entry into the new millennium, a lot of new information has emerged regarding the oral microbiome. This revision presents an overview of this renewed knowledge on oral microbial community acquisition in the newborn and on the evolution of this microbiome to adulthood. Throughout childhood, the oral microbial load increases, but the microbial diversity decreases. The initial colonizers are related to the type of delivery, personal relationships, and living environment. These first colonizers seem to condition the subsequent colonization, which will lead to more complex and stable ecosystems in adulthood. These early oral microbial communities, therefore, play a major role in the development of the adult oral microbiota and may represent a source of both pathogenic and protective microorganisms in a very early stage of human life. The implications of this knowledge on the daily clinical practice of odontopediatrics are highlighted. PMID:25097637

  4. The Inflammasome and Danger Molecule Signaling: At the Crossroads of Inflammation and Pathogen Persistence in the Oral Cavity

    PubMed Central

    Yilmaz, Özlem; Lee, Kyu Lim

    2014-01-01

    Inflammasomes are an oligomeric assembly of multiprotein complexes that activate the caspase-1-dependent maturation and the subsequent secretion of inflammatory interleukin-1β and interleukin-18 cytokines in response to a ‘danger signal’ in vertebrates. The assessment of their significance continues to grow rapidly as the complex biology of various chronic inflammatory conditions are better dissected. Increasing evidence links inflammasomes and host-derived small ‘danger molecule ATP’-signaling strongly with the modulation of the host immune response by microbial colonizers as well as potential altering of the microbiome structure and inter-microbial interactions in host. All of these factors eventually lead to the destructive chronic inflammatory disease state. In the oral cavity, a highly dynamic and multifaceted interplay takes place between the endogenous danger molecule signaling and colonizing microbes on the mucosal surfaces. This interaction may redirect the local microenvironment to favor the conversion of the resident microbiome towards pathogenicity. This review outlines the major components of the known inflammasome complexes/mechanisms and highlights their regulation, in particular, by oral microorganisms in relation to the periodontal disease pathology. Better characterizations of the cellular and molecular biology of the inflammasome will likely present important potential therapeutic targets in the treatment and prevention of periodontal disease as well as other debilitating chronic diseases. PMID:26252403

  5. Oral pathogens change proliferation properties of oral tumor cells by affecting gene expression of human defensins.

    PubMed

    Hoppe, T; Kraus, D; Novak, N; Probstmeier, R; Frentzen, M; Wenghoefer, M; Jepsen, S; Winter, J

    2016-10-01

    The impact of oral pathogens onto the generation and variability of oral tumors has only recently been investigated. To get further insights, oral cancer cells were treated with pathogens and additionally, as a result of this bacterial cellular infection, with human defensins, which are as anti-microbial peptide members of the innate immune system. After cell stimulation, proliferation behavior, expression analysis of oncogenic relevant defensin genes, and effects on EGFR signaling were investigated. The expression of oncogenic relevant anti-microbial peptides was analyzed with real-time PCR and immunohistochemistry. Cell culture experiments were performed to examine cellular impacts caused by stimulation, i.e., altered gene expression, proliferation rate, and EGF receptor-dependent signaling. Incubation of oral tumor cells with an oral pathogen (Porphyromonas gingivalis) and human α-defensins led to an increase in cell proliferation. In contrast, another oral bacterium used, Aggregatibacter actinomycetemcomitans, enhanced cell death. The bacteria and anti-microbial peptides exhibited diverse effects on the transcript levels of oncogenic relevant defensin genes and epidermal growth factor receptor signaling. These two oral pathogens exhibited opposite primary effects on the proliferation behavior of oral tumor cells. Nevertheless, both microbe species led to similar secondary impacts on the proliferation rate by modifying expression levels of oncogenic relevant α-defensin genes. In this respect, oral pathogens exerted multiplying effects on tumor cell proliferation. Additionally, human defensins were shown to differently influence epidermal growth factor receptor signaling, supporting the hypothesis that these anti-microbial peptides serve as ligands of EGFR, thus modifying the proliferation behavior of oral tumor cells.

  6. Periodontitis: from microbial immune subversion to systemic inflammation

    PubMed Central

    Hajishengallis, George

    2014-01-01

    Periodontitis is a dysbiotic inflammatory disease with an adverse impact on systemic health. Recent studies have provided insights into the emergence and persistence of dysbiotic oral microbial communities, which can mediate inflammatory pathology at local as well as distant sites. This Review discusses mechanisms of microbial immune subversion that tip the balance from homeostasis to disease in oral or extraoral sites. PMID:25534621

  7. Non-conventional therapeutics for oral infections

    PubMed Central

    Allaker, Robert P; Ian Douglas, CW

    2015-01-01

    As our knowledge of host-microbial interactions within the oral cavity increases, future treatments are likely to be more targeted. For example, efforts to target a single species or key virulence factors that they produce, while maintaining the natural balance of the resident oral microbiota that acts to modulate the host immune response would be an advantage. Targeted approaches may be directed at the black-pigmented anaerobes, Porphyromonas gingivalis and Prevotella intermedia, associated with periodontitis. Such pigments provide an opportunity for targeted phototherapy with high-intensity monochromatic light. Functional inhibition approaches, including the use of enzyme inhibitors, are also being explored to control periodontitis. More general disruption of dental plaque through the use of enzymes and detergents, alone and in combination, shows much promise. The use of probiotics and prebiotics to improve gastrointestinal health has now led to an interest in using these approaches to control oral disease. More recently the potential of antimicrobial peptides and nanotechnology, through the application of nanoparticles with biocidal, anti-adhesive and delivery capabilities, has been explored. The aim of this review is to consider the current status as regards non-conventional treatment approaches for oral infections with particular emphasis on the plaque-related diseases. PMID:25668296

  8. Autophagy and its implication in human oral diseases.

    PubMed

    Tan, Ya-Qin; Zhang, Jing; Zhou, Gang

    2017-02-01

    Macroautophagy/autophagy is a conserved lysosomal degradation process essential for cell physiology and human health. By regulating apoptosis, inflammation, pathogen clearance, immune response and other cellular processes, autophagy acts as a modulator of pathogenesis and is a potential therapeutic target in diverse diseases. With regard to oral disease, autophagy can be problematic either when it is activated or impaired, because this process is involved in diverse functions, depending on the specific disease and its level of progression. In particular, activated autophagy functions as a cytoprotective mechanism under environmental stress conditions, which regulates tumor growth and mediates resistance to anticancer treatment in established tumors. During infections and inflammation, activated autophagy selectively delivers microbial antigens to the immune systems, and is therefore connected to the elimination of intracellular pathogens. Impaired autophagy contributes to oxidative stress, genomic instability, chronic tissue damage, inflammation and tumorigenesis, and is involved in aberrant bacterial clearance and immune priming. Hence, substantial progress in the study of autophagy provides new insights into the pathogenesis of oral diseases. This review outlines the mechanisms of autophagy, and highlights the emerging roles of this process in oral cancer, periapical lesions, periodontal diseases, and oral candidiasis.

  9. Autophagy and its implication in human oral diseases

    PubMed Central

    Tan, Ya-Qin; Zhang, Jing; Zhou, Gang

    2017-01-01

    ABSTRACT Macroautophagy/autophagy is a conserved lysosomal degradation process essential for cell physiology and human health. By regulating apoptosis, inflammation, pathogen clearance, immune response and other cellular processes, autophagy acts as a modulator of pathogenesis and is a potential therapeutic target in diverse diseases. With regard to oral disease, autophagy can be problematic either when it is activated or impaired, because this process is involved in diverse functions, depending on the specific disease and its level of progression. In particular, activated autophagy functions as a cytoprotective mechanism under environmental stress conditions, which regulates tumor growth and mediates resistance to anticancer treatment in established tumors. During infections and inflammation, activated autophagy selectively delivers microbial antigens to the immune systems, and is therefore connected to the elimination of intracellular pathogens. Impaired autophagy contributes to oxidative stress, genomic instability, chronic tissue damage, inflammation and tumorigenesis, and is involved in aberrant bacterial clearance and immune priming. Hence, substantial progress in the study of autophagy provides new insights into the pathogenesis of oral diseases. This review outlines the mechanisms of autophagy, and highlights the emerging roles of this process in oral cancer, periapical lesions, periodontal diseases, and oral candidiasis. PMID:27764582

  10. Beyond microbial community composition: functional activities of the oral microbiome in health and disease

    PubMed Central

    Duran-Pinedo, Ana E.; Frias-Lopez, Jorge

    2015-01-01

    The oral microbiome plays a relevant role in the health status of the host and is a key element in a variety of oral and non-oral diseases. Despite advances in our knowledge of changes in microbial composition associated with different health conditions the functional aspects of the oral microbiome that lead to dysbiosis remain for the most part unknown. In this review, we discuss the progress made towards understanding the functional role of the oral microbiome in health and disease and how novel technologies are expanding our knowledge on this subject. PMID:25862077

  11. Comparing the Effect of Echinacea and Chlorhexidine Mouthwash on the Microbial Flora of Intubated Patients Admitted to the Intensive Care Unit.

    PubMed

    Safarabadi, Mehdi; Ghaznavi-Rad, Ehsanollah; Pakniyat, Abdolghader; Rezaie, Korosh; Jadidi, Ali

    2017-01-01

    Providing intubated patients admitted to the intensive care units with oral healthcare is one of the main tasks of nurses in order to prevent Ventilator-Associated Pneumonia (VAP). This study aimed at comparing the effects of two mouthwash solutions (echinacea and chlorhexidine) on the oral microbial flora of patients hospitalized in the intensive care units. In this clinical trial, 70 patients aged between18 and 65 years undergoing tracheal intubation through the mouth in three hospitals in Arak, were selected using simple random sampling and were randomly divided into two groups: the intervention group and the control group. The oral health checklist was used to collect the data (before and after the intervention). The samples were obtained from the orally intubated patients and were then cultured in selective media. Afterwards, the aerobic microbial growth was investigated in all culture media. The data were analyzed using SPSS software. The microbial flora in the echinacea group significantly decreased after the intervention ( p < 0.0001) and it was also the case withmicrobial flora of the patients in the chlorhexidine group ( p < 0.001). After 4 days, the oral microbial flora of the patients in the intervention group was lower than that of the patients in the control group ( p < 0.001). The results showed that the echinacea solution was more effective in decreasing the oral microbial flora of patients in the intensive care unit. Given the benefits of the components of the herb Echinacea, it can be suggested as a viable alternative to chlorhexidine.

  12. Activity-based mass spectrometric characterization of proteases and inhibitors in human saliva

    PubMed Central

    Sun, Xiuli; Salih, Erdjan; Oppenheim, Frank G.; Helmerhorst, Eva J.

    2009-01-01

    Proteases present in oral fluid effectively modulate the structure and function of some salivary proteins and have been implicated in tissue destruction in oral disease. To identify the proteases operating in the oral environment, proteins in pooled whole saliva supernatant were separated by anion-exchange chromatography and individual fractions were analyzed for proteolytic activity by zymography using salivary histatins as the enzyme substrates. Protein bands displaying proteolytic activity were particularly prominent in the 50–75 kDa region. Individual bands were excised, in-gel trypsinized and subjected to LC/ESI-MS/MS. The data obtained were searched against human, oral microbial and protease databases. A total of 13 proteases were identified all of which were of mammalian origin. Proteases detected in multiple fractions with cleavage specificities toward arginine and lysine residues, were lactotransferrin, kallikrein-1, and human airway trypsin-like protease. Unexpectedly, ten protease inhibitors were co-identified suggesting they were associated with the proteases in the same fractions. The inhibitors found most frequently were alpha-2-macroglobulin-like protein 1, alpha-1-antitrypsin, and leukocyte elastase inhibitor. Regulation of oral fluid proteolysis is highly important given that an inbalance in such activities has been correlated to a variety of pathological conditions including oral cancer. PMID:20011683

  13. Understanding Caries From the Oral Microbiome Perspective.

    PubMed

    Tanner, Anne C R; Kressirer, Christine A; Faller, Lina L

    2016-07-01

    Dental caries is a major disease of the oral cavity with profound clinical significance. Caries results from a transition of a healthy oral microbiome into an acidogenic community of decreased microbial diversity in response to excessive dietary sugar intake. Microbiological cultivation, molecular identification, gene expression and metabolomic analyses show the importance of the entire microbial community in understanding the role of the microbiome in the pathology of caries.

  14. Oral health status, salivary factors and microbial analysis in patients with active gastro-oesophageal reflux disease.

    PubMed

    Filipi, Kristina; Halackova, Zdenka; Filipi, Vladimir

    2011-08-01

    To present a complex oral health status including salivary factors, microbial analysis and periodontal and hygiene indices in patients with active gastro-oesophageal reflux disease (GORD). Return of stomach contents is quite common in cases of gastro-oesophageal reflux. Pathological acid movement from the stomach into the oesophagus and oral cavity may lead to a development of dental erosion. Long-lasting untreated GORD may damage hard dental and periodontal tissues and alter the oral microbial environment. The quality and amount of the saliva play an important role in hard and soft oral tissues changes. Fifty patients with diagnosed GORD using 24-hour pH manometry underwent dental examination; 24 patients had active GORD and had been waiting for surgical therapy. In this patient group oral health status and salivary analysis were evaluated. Indicated low salivary flow rates and buffering capacity with a low caries risk but a high risk for dental erosion progression. © 2011 FDI World Dental Federation.

  15. Polymerase chain reaction-based denaturing gradient gel electrophoresis in the evaluation of oral microbiota.

    PubMed

    Li, Y; Saxena, D; Barnes, V M; Trivedi, H M; Ge, Y; Xu, T

    2006-10-01

    Clinical evaluation of oral microbial reduction after a standard prophylactic treatment has traditionally been based on bacterial cultivation methods. However, not all microbes in saliva or dental plaque can be cultivated. Polymerase chain reaction-based denaturing gradient gel electrophoresis (PCR-DGGE) is a cultivation-independent molecular fingerprinting technique that allows the assessment of the predominant bacterial species present in the oral cavity. This study sought to evaluate the oral microbial changes that occurred after a standard prophylactic treatment with a conventional oral care product using PCR-DGGE. Twelve healthy adults participated in the study. Pooled plaque samples were collected at baseline, 24 h after prophylaxis (T1), and 4 days after toothbrushing with fluoride toothpaste (T4). The total microbial genomic DNA of the plaque was isolated. PCR was performed with a set of universal bacterial 16S rDNA primers. The PCR-amplified 16S rDNA fragments were separated by DGGE. The effects of the treatment and of dental brushing were assessed by comparing the PCR-DGGE fingerprinting profiles. The mean numbers of detected PCR amplicons were 22.3 +/- 6.1 for the baseline group, 13.0 +/- 3.1 for the T1 group, and 13.5 +/- 4.3 for the T4 group; the differences among the three groups were statistically significant (P < 0.01). The study also found a significant difference in the mean similarities of microbial profiles between the baseline and the treatment groups (P < 0.001). PCR-based DGGE has been shown to be an excellent means of rapidly and accurately assessing oral microbial changes in this clinical study.

  16. Familial Oral Microbial Imbalance and Dental Caries Occurrence in Their Children

    PubMed Central

    Bretz, Walter A.; Thomas, John G.; weyant, Robert J.

    2013-01-01

    Objective Develop a familial liability index for oral microbial status that reflects an imbalance of oral domains based on the presence of risk indicators in saliva, inter-proximal plaque, tongue, and throat. Methods Fifty-six mother-child pairs from Webster and Nicholas counties, West Virginia, USA, participated in this study. Saliva samples were assayed for mutans streptococci (MS), interproximal plaque samples for the BANA Test (BT) species, tongue swabs for BT, and throat swabs for any of the sentinel organisms (Staphylococcus aureus, Streptococcus pyogenes, and yeasts). The corresponding thresholds for a (+) risk indicator were, respectively, ≥105 CFU of MS salivary levels, one or more BT-(+) plaques (>105 CFU/mg of plaque of at least one of BT-(+) species), weak-(+) BT for a tongue swab (>104-<105), and >104 CFU/swab for any of the sentinel markers. Results The mean age of mothers and children was 41.6 and 14.6 years. Ninety-one % of both mothers and children had at least one (+) risk indicator. Overall, 76% of mother child-pairs had at least one (+) concordant oral microbial risk indicator. Accordingly, the relative risk (RR) of children having concordant results with their mothers was increased 1.36 (BT-plaque), 1.37 (BT-tongue), 0.94 (sentinel organisms) and 1.13 (MS) times. Principal component analysis revealed distinct sets of oral microbial risk indicators in mothers and children that correlated with dental caries prevalence rates in children. Conclusions Mother-child pairs shared similarities of oral microbial risk indicators that allow for the development of a liability index that can elucidate caries in the children. PMID:24600078

  17. Beneficial Properties of Probiotics.

    PubMed

    Shi, Lye Huey; Balakrishnan, Kunasundari; Thiagarajah, Kokila; Mohd Ismail, Nor Ismaliza; Yin, Ooi Shao

    2016-08-01

    Probiotics are live microorganisms that can be found in fermented foods and cultured milk, and are widely used for the preparation of infant food. They are well-known as "health friendly bacteria", which exhibit various health beneficial properties such as prevention of bowel diseases, improving the immune system, for lactose intolerance and intestinal microbial balance, exhibiting antihypercholesterolemic and antihypertensive effects, alleviation of postmenopausal disorders, and reducing traveller's diarrhoea. Recent studies have also been focused on their uses in treating skin and oral diseases. In addition to that, modulation of the gut-brain by probiotics has been suggested as a novel therapeutic solution for anxiety and depression. Thus, this review discusses on the current probiotics-based products in Malaysia, criteria for selection of probiotics, and evidences obtained from past studies on how probiotics have been used in preventing intestinal disorders via improving the immune system, acting as an antihypercholesterolemic factor, improving oral and dermal health, and performing as anti-anxiety and anti-depressive agents.

  18. Ecological therapeutic opportunities for oral diseases

    PubMed Central

    Hoare, Anilei; Marsh, Philip D.; Diaz, Patricia I.

    2017-01-01

    SUMMARY The three main oral diseases of humans, that is caries, periodontal diseases and oral candidiasis, are associated with microbiome shifts initiated by changes in the oral environment and/or decreased effectiveness of mucosal immune surveillance. In this review we discuss the role that microbial-based therapies may have in the control of these conditions. Most investigations on the use of microorganisms for management of oral disease have been conducted with probiotic strains with some positive but very discrete clinical outcomes. Other strategies such as whole oral microbiome transplantation or modification of community function by enrichment with health-promoting indigenous oral strains may offer more promise but research in this field is still in its infancy. Any microbial-based therapeutics for oral conditions, however, are likely to be only one component within a holistic preventive strategy that should also aim at modification of the environmental influences responsible for the initiation and perpetuation of microbiome shifts associated with oral dysbiosis. PMID:28840820

  19. Ecological Therapeutic Opportunities for Oral Diseases.

    PubMed

    Hoare, Anilei; Marsh, Philip D; Diaz, Patricia I

    2017-08-01

    The three main oral diseases of humans, that is, caries, periodontal diseases, and oral candidiasis, are associated with microbiome shifts initiated by changes in the oral environment and/or decreased effectiveness of mucosal immune surveillance. In this review, we discuss the role that microbial-based therapies may have in the control of these conditions. Most investigations on the use of microorganisms for management of oral disease have been conducted with probiotic strains with some positive but very discrete clinical outcomes. Other strategies such as whole oral microbiome transplantation or modification of community function by enrichment with health-promoting indigenous oral strains may offer more promise, but research in this field is still in its infancy. Any microbial-based therapeutics for oral conditions, however, are likely to be only one component within a holistic preventive strategy that should also aim at modification of the environmental influences responsible for the initiation and perpetuation of microbiome shifts associated with oral dysbiosis.

  20. Reptiles as Reservoirs of Bacterial Infections: Real Threat or Methodological Bias?

    PubMed

    Zancolli, Giulia; Mahsberg, Dieter; Sickel, Wiebke; Keller, Alexander

    2015-10-01

    Bacterial infections secondary to snakebites and human pathogens (e.g., Salmonella) have been linked to the oral microbiota of snakes and pet reptiles. Based on culture-dependent studies, it is speculated that snakes' oral microbiota reflects the fecal flora of their ingested preys. However, cultured-based techniques have been shown to be limited as they fail to identify unculturable microorganisms which represent the vast majority of the microbial diversity. Here, we used culture-independent high-throughput sequencing to identify reptile-associated pathogens and to characterize the oral microbial community of five snakes, one gecko, and two terrapins. Few potential human pathogens were detected at extremely low frequencies. Moreover, bacterial taxa represented in the snake's oral cavity bore little resemblance to their preys' fecal microbiota. Overall, we found distinct, highly diverse microbial communities with consistent, species-specific patterns contrary to previous culture-based studies. Our study does not support the widely held assumption that reptiles' oral cavity acts as pathogen reservoir and provides important insights for future research.

  1. Therapeutic Application of Synbiotics, a Fusion of Probiotics and Prebiotics, and Biogenics as a New Concept for Oral Candida Infections: A Mini Review

    PubMed Central

    Ohshima, Tomoko; Kojima, Yukako; Seneviratne, Chaminda J.; Maeda, Nobuko

    2016-01-01

    Candida is a major human fungal pathogen causing infectious conditions predominantly in the elderly and immunocompromised hosts. Although Candida resides as a member of the oral indigenous microbiota in symbiosis, some circumstances may cause microbial imbalance leading to dysbiosis and resultant oral candidiasis. Therefore, oral microbial symbiosis that suppresses the overgrowth of Candida is important for a healthy oral ecosystem. In this regard, probiotics, prebiotics, and synbiotics can be considered a potential therapeutic and preventive strategy against oral candidiasis. Prebiotics have a direct effect on microbial growth as they stimulate the growth of beneficial bacteria and suppress the growth of pathogens. Probiotics render a local protective effect against pathogens and a systemic indirect effect on immunological amelioration. Synbiotics are fusion products of prebiotics and probiotics. This mini review discusses the potential use and associated limitations of probiotics, prebiotics, and synbiotics for the prevention and treatment of oral candidiasis. We will also introduce biogenics, a recent concept derived from the work on probiotics. Biogenics advocates the use of beneficial bioactive substances produced by probiotic bacteria, whose activities are independent from the viability of probiotic bacteria in human bodies. PMID:26834728

  2. Oral warfarin intake affects skin inflammatory cytokine responses in rats.

    PubMed

    Aleksandrov, Aleksandra Popov; Mirkov, Ivana; Zolotarevski, Lidija; Ninkov, Marina; Mileusnic, Dina; Kataranovski, Dragan; Kataranovski, Milena

    2017-09-01

    Warfarin is an anticoagulant used in prevention/prophylaxis of thromboembolism. Besides the effects on coagulation, non-hemorrhagic reactions have also been documented. Although cutaneous reactions were reported in some patients, the impact on skin immunity was not explored. In the present paper, the effect of 30-day oral warfarin intake on skin cytokine responses in rats was analyzed. Increased release of inflammatory cytokines (TNF, IL-1β and IL-10) was noted by skin explants from rats which received warfarin, but without effect on IL-6. No impact on epidermal cell cytokine secretion was seen, except a tendency of an increase of IL-6 response to stimulation with microbial product lipopolysaccharide (LPS). Topical application of contact allergen dinitrochlorobenzene (DNCB) resulted in slight (numerical solely) increase of TNF release by skin explants of warfarin-treated animals, while epidermal cells responded by increased secretion of all four cytokines examined. The data presented provide new information on the potential of oral warfarin to modulate skin innate immune activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Development and application of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    NASA Astrophysics Data System (ADS)

    Hong, E.; Park, Y.; Muirhead, R.; Jeong, J.; Pachepsky, Y. A.

    2017-12-01

    Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. Based on calibration and testing results, the APEX with the microbe module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water under various agricultural practices, evaluating monitoring protocols, and supporting the selection of management practices based on regulations that rely on fecal indicator bacteria concentrations.

  4. The Effect of Fixed Orthodontic Appliances and Fluoride Mouthwash on the Oral Microbiome of Adolescents – A Randomized Controlled Clinical Trial

    PubMed Central

    Buijs, Mark J.; Elyassi, Yassaman; van der Veen, Monique H.; Crielaard, Wim; ten Cate, Jacob M.; Zaura, Egija

    2015-01-01

    While the aesthetic effect of orthodontic treatment is clear, the knowledge on how it influences the oral microbiota and the consequential effects on oral health are limited. In this randomized controlled clinical trial we investigated the changes introduced in the oral ecosystem, during and after orthodontic treatment with fixed appliances in combination with or without a fluoride mouthwash, of 10–16.8 year old individuals (N = 91). We followed several clinical parameters in time, in combination with microbiome changes using next-generation sequencing of the bacterial 16S rRNA gene. During the course of our study, the oral microbial community displayed remarkable resilience towards the disturbances it was presented with. The effects of the fluoride mouthwash on the microbial composition were trivial. More pronounced microbial changes were related to gingival health status, orthodontic treatment and time. Periodontal pathogens (e.g. Selenomonas and Porphyromonas) were highest in abundance during the orthodontic treatment, while the health associated Streptococcus, Rothia and Haemophilus gained abundance towards the end and after the orthodontic treatment. Only minor compositional changes remained in the oral microbiome after the end of treatment. We conclude that, provided proper oral hygiene is maintained, changes in the oral microbiome composition resulting from orthodontic treatment are minimal and do not negatively affect oral health. PMID:26332408

  5. The Effect of Fixed Orthodontic Appliances and Fluoride Mouthwash on the Oral Microbiome of Adolescents - A Randomized Controlled Clinical Trial.

    PubMed

    Koopman, Jessica E; van der Kaaij, Nicoline C W; Buijs, Mark J; Elyassi, Yassaman; van der Veen, Monique H; Crielaard, Wim; Ten Cate, Jacob M; Zaura, Egija

    2015-01-01

    While the aesthetic effect of orthodontic treatment is clear, the knowledge on how it influences the oral microbiota and the consequential effects on oral health are limited. In this randomized controlled clinical trial we investigated the changes introduced in the oral ecosystem, during and after orthodontic treatment with fixed appliances in combination with or without a fluoride mouthwash, of 10-16.8 year old individuals (N = 91). We followed several clinical parameters in time, in combination with microbiome changes using next-generation sequencing of the bacterial 16S rRNA gene. During the course of our study, the oral microbial community displayed remarkable resilience towards the disturbances it was presented with. The effects of the fluoride mouthwash on the microbial composition were trivial. More pronounced microbial changes were related to gingival health status, orthodontic treatment and time. Periodontal pathogens (e.g. Selenomonas and Porphyromonas) were highest in abundance during the orthodontic treatment, while the health associated Streptococcus, Rothia and Haemophilus gained abundance towards the end and after the orthodontic treatment. Only minor compositional changes remained in the oral microbiome after the end of treatment. We conclude that, provided proper oral hygiene is maintained, changes in the oral microbiome composition resulting from orthodontic treatment are minimal and do not negatively affect oral health.

  6. l-Arginine Modifies the Exopolysaccharide Matrix and Thwarts Streptococcus mutans Outgrowth within Mixed-Species Oral Biofilms

    PubMed Central

    He, Jinzhi; Hwang, Geelsu; Liu, Yuan; Gao, Lizeng; Kilpatrick-Liverman, LaTonya; Santarpia, Peter; Zhou, Xuedong

    2016-01-01

    ABSTRACT l-Arginine, a ubiquitous amino acid in human saliva, serves as a substrate for alkali production by arginolytic bacteria. Recently, exogenous l-arginine has been shown to enhance the alkalinogenic potential of oral biofilm and destabilize its microbial community, which might help control dental caries. However, l-arginine exposure may inflict additional changes in the biofilm milieu when bacteria are growing under cariogenic conditions. Here, we investigated how exogenous l-arginine modulates biofilm development using a mixed-species model containing both cariogenic (Streptococcus mutans) and arginolytic (Streptococcus gordonii) bacteria in the presence of sucrose. We observed that 1.5% (wt/vol) l-arginine (also a clinically effective concentration) exposure suppressed the outgrowth of S. mutans, favored S. gordonii dominance, and maintained Actinomyces naeslundii growth within biofilms (versus vehicle control). In parallel, topical l-arginine treatments substantially reduced the amounts of insoluble exopolysaccharides (EPS) by >3-fold, which significantly altered the three-dimensional (3D) architecture of the biofilm. Intriguingly, l-arginine repressed S. mutans genes associated with insoluble EPS (gtfB) and bacteriocin (SMU.150) production, while spxB expression (H2O2 production) by S. gordonii increased sharply during biofilm development, which resulted in higher H2O2 levels in arginine-treated biofilms. These modifications resulted in a markedly defective EPS matrix and areas devoid of any bacterial clusters (microcolonies) on the apatitic surface, while the in situ pH values at the biofilm-apatite interface were nearly one unit higher in arginine-treated biofilms (versus the vehicle control). Our data reveal new biological properties of l-arginine that impact biofilm matrix assembly and the dynamic microbial interactions associated with pathogenic biofilm development, indicating the multiaction potency of this promising biofilm disruptor. IMPORTANCE Dental caries is one of the most prevalent and costly infectious diseases worldwide, caused by a biofilm formed on tooth surfaces. Novel strategies that compromise the ability of virulent species to assemble and maintain pathogenic biofilms could be an effective alternative to conventional antimicrobials that indiscriminately kill other oral species, including commensal bacteria. l-Arginine at 1.5% has been shown to be clinically effective in modulating cariogenic biofilms via alkali production by arginolytic bacteria. Using a mixed-species ecological model, we show new mechanisms by which l-arginine disrupts the process of biofilm matrix assembly and the dynamic microbial interactions that are associated with cariogenic biofilm development, without impacting the bacterial viability. These results may aid in the development of enhanced methods to control biofilms using l-arginine. PMID:27161116

  7. Preliminary characterization of the oral microbiota of Chinese adults with and without gingivitis

    PubMed Central

    2011-01-01

    Background Microbial communities inhabiting human mouth are associated with oral health and disease. Previous studies have indicated the general prevalence of adult gingivitis in China to be high. The aim of this study was to characterize in depth the oral microbiota of Chinese adults with or without gingivitis, by defining the microbial phylogenetic diversity and community-structure using highly paralleled pyrosequencing. Methods Six non-smoking Chinese, three with and three without gingivitis (age range 21-39 years, 4 females and 2 males) were enrolled in the present cross-sectional study. Gingival parameters of inflammation and bleeding on probing were characterized by a clinician using the Mazza Gingival Index (MGI). Plaque (sampled separately from four different oral sites) and salivary samples were obtained from each subject. Sequences and relative abundance of the bacterial 16 S rDNA PCR-amplicons were determined via pyrosequencing that produced 400 bp-long reads. The sequence data were analyzed via a computational pipeline customized for human oral microbiome analyses. Furthermore, the relative abundances of selected microbial groups were validated using quantitative PCR. Results The oral microbiomes from gingivitis and healthy subjects could be distinguished based on the distinct community structures of plaque microbiomes, but not the salivary microbiomes. Contributions of community members to community structure divergence were statistically accessed at the phylum, genus and species-like levels. Eight predominant taxa were found associated with gingivitis: TM7, Leptotrichia, Selenomonas, Streptococcus, Veillonella, Prevotella, Lautropia, and Haemophilus. Furthermore, 98 species-level OTUs were identified to be gingivitis-associated, which provided microbial features of gingivitis at a species resolution. Finally, for the two selected genera Streptococcus and Fusobacterium, Real-Time PCR based quantification of relative bacterial abundance validated the pyrosequencing-based results. Conclusions This methods study suggests that oral samples from this patient population of gingivitis can be characterized via plaque microbiome by pyrosequencing the 16 S rDNA genes. Further studies that characterize serial samples from subjects (longitudinal study design) with a larger population size may provide insight into the temporal and ecological features of oral microbial communities in clinically-defined states of gingivitis. PMID:22152152

  8. Microbial Source Module (MSM): Documenting the Science and Software for Discovery, Evaluation, and Integration

    EPA Science Inventory

    The Microbial Source Module (MSM) estimates microbial loading rates to land surfaces from non-point sources, and to streams from point sources for each subwatershed within a watershed. A subwatershed, the smallest modeling unit, represents the common basis for information consume...

  9. The Oral Microbiome Bank of China.

    PubMed

    Xian, Peng; Xuedong, Zhou; Xin, Xu; Yuqing, Li; Yan, Li; Jiyao, Li; Xiaoquan, Su; Shi, Huang; Jian, Xu; Ga, Liao

    2018-05-03

    The human microbiome project (HMP) promoted further understanding of human oral microbes. However, research on the human oral microbiota has not made as much progress as research on the gut microbiota. Currently, the causal relationship between the oral microbiota and oral diseases remains unclear, and little is known about the link between the oral microbiota and human systemic diseases. To further understand the contribution of the oral microbiota in oral diseases and systemic diseases, a Human Oral Microbiome Database (HOMD) was established in the US. The HOMD includes 619 taxa in 13 phyla, and most of the microorganisms are from American populations. Due to individual differences in the microbiome, the HOMD does not reflect the Chinese oral microbial status. Herein, we established a new oral microbiome database-the Oral Microbiome Bank of China (OMBC, http://www.sklod.org/ombc ). Currently, the OMBC includes information on 289 bacterial strains and 720 clinical samples from the Chinese population, along with lab and clinical information. The OMBC is the first curated description of a Chinese-associated microbiome; it provides tools for use in investigating the role of the oral microbiome in health and diseases, and will give the community abundant data and strain information for future oral microbial studies.

  10. Levorotatory carbohydrates and xylitol subdue Streptococcus mutans and Candida albicans adhesion and biofilm formation.

    PubMed

    Brambilla, Eugenio; Ionescu, Andrei C; Cazzaniga, Gloria; Ottobelli, Marco; Samaranayake, Lakshman P

    2016-05-01

    Dietary carbohydrates and polyols affect the microbial colonization of oral surfaces by modulating adhesion and biofilm formation. The aim of this study was to evaluate the influence of a select group of l-carbohydrates and polyols on either Streptococcus mutans or Candida albicans adhesion and biofilm formation in vitro. S. mutans or C. albicans suspensions were inoculated on polystyrene substrata in the presence of Tryptic soy broth containing 5% of the following compounds: d-glucose, d-mannose, l-glucose, l-mannose, d- and l-glucose (raceme), d- and l-mannose (raceme), l-glucose and l-mannose, sorbitol, mannitol, and xylitol. Microbial adhesion (2 h) and biofilm formation (24 h) were evaluated using MTT-test and Scanning Electron Microscopy (SEM). Xylitol and l-carbohydrates induced the lowest adhesion and biofilm formation in both the tested species, while sorbitol and mannitol did not promote C. albicans biofilm formation. Higher adhesion and biofilm formation was noted in both organisms in the presence of d-carbohydrates relative to their l-carbohydrate counterparts. These results elucidate, hitherto undescribed, interactions of the individually tested strains with l- and d-carbohydrates, and how they impact fungal and bacterial colonization. In translational terms, our data raise the possibility of using l-form of carbohydrates and xylitol for dietary control of oral plaque biofilms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Location of Microbial Ecology Evaluation Device in Apollo Command Module

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The location of the Microbial Ecology Evaluation Device (MEED) installed on the open hatch of the Apollo Command Module is illustrated in this photograph. The MEED, equipment of the Microbial Response in Space Environment experiment, will house a selection of microbial systems. The MEED will be deployed during the extravehicular activity on the transearth coast phase of the Aopllo 16 lunar landing mission. The purpose of the experiment will be to measure the effects of certain space environmental parameters on the microbial test systems.

  12. Streptococcus mitis: walking the line between commensalism and pathogenesis.

    PubMed

    Mitchell, J

    2011-04-01

    Streptococcus mitis is a viridans streptococcus and a normal commensal of the human oropharynx. However, S. mitis can escape from this niche and cause a variety of infectious complications including infective endocarditis, bacteraemia and septicaemia. It uses a variety of strategies to effectively colonize the human oropharynx. These include expression of adhesins, immunoglobulin A proteases and toxins, and modulation of the host immune system. These various colonization factors allow S. mitis to compete for space and nutrients in the face of its more pathogenic oropharyngeal microbial neighbours. However, it is likely that in vulnerable immune-compromised patients S. mitis will use the same colonization and immune modulation factors as virulence factors promoting its opportunistic pathogenesis. The recent publication of a complete genome sequence for S. mitis strain B6 will allow researchers to thoroughly investigate which genes are involved in S. mitis host colonization and pathogenesis. Moreover, it will help to give insight into where S. mitis fits in the complicated oral microbiome. This review will discuss the current knowledge of S. mitis factors involved in host colonization, their potential role in virulence and what needs to be done to fully understand how a an oral commensal successfully transitions to a virulent pathogen. © 2011 John Wiley & Sons A/S.

  13. Reduced Epithelial Na+/H+ Exchange Drives Gut Microbial Dysbiosis and Promotes Inflammatory Response in T Cell-Mediated Murine Colitis

    PubMed Central

    Midura-Kiela, Monica T.; Ramalingam, Rajalakshmy; Larmonier, Claire B.; Chase, John H.; Caporaso, J. Gregory; Besselsen, David G.; Ghishan, Fayez K.; Kiela, Pawel R.

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with functional inhibition of epithelial Na+/H+ exchange. In mice, a selective disruption of NHE3 (Slc9a3), a major apical Na+/H+ exchanger, also promotes IBD-like symptoms and gut microbial dysbiosis. We hypothesized that disruption of Na+/H+ exchange is necessary for the development of dysbiosis, which promotes an exacerbated mucosal inflammatory response. Therefore, we performed a temporal analysis of gut microbiota composition, and mucosal immune response to adoptive T cell transfer was evaluated in Rag2-/- and NHE3-/-/Rag2-/- (DKO) mice with and without broad-spectrum antibiotics. Microbiome (16S profiling), colonic histology, T cell and neutrophil infiltration, mucosal inflammatory tone, and epithelial permeability were analyzed. In adoptive T cell transfer colitis model, Slc9a3 status was the most significant determinant of gut microbial community. In DKO mice, NHE3-deficiency and dysbiosis were associated with dramatically accelerated and exacerbated disease, with rapid body weight loss, increased mucosal T cell and neutrophil influx, increased mucosal cytokine expression, increased permeability, and expansion of CD25-FoxP3+ Tregs; this enhanced susceptibility was alleviated by oral broad-spectrum antibiotics. Based on these results and our previous work, we postulate that epithelial electrolyte homeostasis is an important modulator in the progression of colitis, acting through remodeling of the gut microbial community. PMID:27050757

  14. [Modern hygiene products impact on oral microbial, pH and mineral balance].

    PubMed

    Gromova, S N; Rumiantsev, V A

    2012-01-01

    Several toothpastes are compared in the study: "Zhemchuzhnaya-complex protection" containing as abrasive substance finely dispersed dicalcium phosphate phosphathydrate, "Noviy zhemchug ftor" and "Zhemchug svezhaya myata" with calcium carbonate. "Zhemchuzhnaya-complex protection" and "Noviy zhemchug ftor" both contain sodium monophosphate as active substance. Impact of these toothpastes on oral microbial, pH and mineral balance was assessed in the study.

  15. Oral Health and the Oral Microbiome in Pancreatic Cancer: An Overview of Epidemiological Studies.

    PubMed

    Bracci, Paige M

    The aim was to provide a cohesive overview of epidemiological studies of periodontal disease, oral microbiome profiles, and pancreatic cancer risk. A PubMed search of articles published in English through July 2017 with additional review of bibliographies of identified articles. Risk estimates for periodontal disease associated with pancreatic cancer consistently ranged from 1.5 to 2, aligning with a meta-analysis summary relative risk of 1.74. Analyses of antibodies to pathogenic and/or commensal oral bacteria in prediagnostic blood provided evidence that some oral bacteria and oral microbial diversity may be related to pancreatic cancer. Overall, the data present a plausible but complex relationship among pancreatic cancer, the oral microbiome, periodontal disease, and other risk factors that might be explained by systemic effects on immune and inflammatory processes. Larger comprehensive studies that examine serially collected epidemiological/clinical data and blood, tissue, and various microbial samples are needed to definitively determine how and whether oral health-related factors contribute to pancreatic cancer risk.

  16. Differences in carbon source usage by dental plaque in children with and without early childhood caries

    PubMed Central

    Zhao, Yan; Zhong, Wen-Jie; Xun, Zhe; Zhang, Qian; Song, Ye-Qing; Liu, Yun-Song; Chen, Feng

    2017-01-01

    Early childhood caries (ECC) is a considerable pediatric and public health problem worldwide. Preceding studies have focused primarily on bacterial diversity at the taxonomic level. Although these studies have provided significant information regarding the connection between dental caries and oral microbiomes, further comprehension of this microbial community’s ecological relevance is limited. This study identified the carbon source metabolic differences in dental plaque between children with and without ECC. We compared the microbial community functional diversity in 18 caries-free subjects with 18 severe ECC patients based on sole carbon source usage using a Biolog assay. The anaerobic microbial community in the ECC patients displayed greater metabolic activity than that of the control group. Specific carbon source metabolism differed significantly between the two groups. Subjects from the two groups were well distinguished by cluster and principal component analyses based on discriminative carbon sources. Our results implied that the microbial functional diversity between the ECC patients and healthy subjects differed significantly. In addition, the Biolog assay furthered our understanding of oral microbiomes as a composite of functional abilities, thus enabling us to identify the ecologically relevant functional differences among oral microbial communities.

  17. Exploring the Association between Alzheimer's Disease, Oral Health, Microbial Endocrinology and Nutrition.

    PubMed

    Harding, Alice; Gonder, Ulrike; Robinson, Sarita J; Crean, StJohn; Singhrao, Sim K

    2017-01-01

    Longitudinal monitoring of patients suggests a causal link between chronic periodontitis and the development of Alzheimer's disease (AD). However, the explanation of how periodontitis can lead to dementia remains unclear. A working hypothesis links extrinsic inflammation as a secondary cause of AD. This hypothesis suggests a compromised oral hygiene leads to a dysbiotic oral microbiome whereby Porphyromonas gingivalis , a keystone periodontal pathogen, with its companion species, orchestrates immune subversion in the host. Brushing and chewing on teeth supported by already injured soft tissues leads to bacteremias. As a result, a persistent systemic inflammatory response develops to periodontal pathogens. The pathogens, and the host's inflammatory response, subsequently lead to the initiation and progression of multiple metabolic and inflammatory co-morbidities, including AD. Insufficient levels of essential micronutrients can lead to microbial dysbiosis through the growth of periodontal pathogens such as demonstrated for P. gingivalis under low hemin bioavailability. An individual's diet also defines the consortium of microbial communities that take up residency in the oral and gastrointestinal (GI) tract microbiomes. Their imbalance can lead to behavioral changes. For example, probiotics enriched in Lactobacillus genus of bacteria, when ingested, exert some anti-inflammatory influence through common host/bacterial neurochemicals, both locally, and through sensory signaling back to the brain. Early life dietary behaviors may cause an imbalance in the host/microbial endocrinology through a dietary intake incompatible with a healthy GI tract microbiome later in life. This imbalance in host/microbial endocrinology may have a lasting impact on mental health. This observation opens up an opportunity to explore the mechanisms, which may underlie the previously detected relationship between diet, oral/GI microbial communities, to anxiety, cognition and sleep patterns. This review suggests healthy diet based interventions that together with improved life style/behavioral changes may reduce and/or delay the incidence of AD.

  18. Exploring the Association between Alzheimer’s Disease, Oral Health, Microbial Endocrinology and Nutrition

    PubMed Central

    Harding, Alice; Gonder, Ulrike; Robinson, Sarita J.; Crean, StJohn; Singhrao, Sim K.

    2017-01-01

    Longitudinal monitoring of patients suggests a causal link between chronic periodontitis and the development of Alzheimer’s disease (AD). However, the explanation of how periodontitis can lead to dementia remains unclear. A working hypothesis links extrinsic inflammation as a secondary cause of AD. This hypothesis suggests a compromised oral hygiene leads to a dysbiotic oral microbiome whereby Porphyromonas gingivalis, a keystone periodontal pathogen, with its companion species, orchestrates immune subversion in the host. Brushing and chewing on teeth supported by already injured soft tissues leads to bacteremias. As a result, a persistent systemic inflammatory response develops to periodontal pathogens. The pathogens, and the host’s inflammatory response, subsequently lead to the initiation and progression of multiple metabolic and inflammatory co-morbidities, including AD. Insufficient levels of essential micronutrients can lead to microbial dysbiosis through the growth of periodontal pathogens such as demonstrated for P. gingivalis under low hemin bioavailability. An individual’s diet also defines the consortium of microbial communities that take up residency in the oral and gastrointestinal (GI) tract microbiomes. Their imbalance can lead to behavioral changes. For example, probiotics enriched in Lactobacillus genus of bacteria, when ingested, exert some anti-inflammatory influence through common host/bacterial neurochemicals, both locally, and through sensory signaling back to the brain. Early life dietary behaviors may cause an imbalance in the host/microbial endocrinology through a dietary intake incompatible with a healthy GI tract microbiome later in life. This imbalance in host/microbial endocrinology may have a lasting impact on mental health. This observation opens up an opportunity to explore the mechanisms, which may underlie the previously detected relationship between diet, oral/GI microbial communities, to anxiety, cognition and sleep patterns. This review suggests healthy diet based interventions that together with improved life style/behavioral changes may reduce and/or delay the incidence of AD. PMID:29249963

  19. Salivary enhancement: current status and future therapies.

    PubMed

    Atkinson, J C; Baum, B J

    2001-10-01

    Saliva provides the principal protective milieu for teeth by modulating oral microbial ecosystems and reversing the initial phases of caries development. Patients with inadequate salivary function are at increased risk for dental decay. Therefore, it is likely that therapies that increase overall fluid output of these individuals will reverse early carious lesions. The most common causes of salivary dysfunction are medication usage, Sjögren's syndrome, and damage of salivary parenchyma during therapeutic irradiation. For patients with remaining functional acinar tissue, treatment with the parasypathomimetic secretogogues pilocarpine and Cevimeline may provide relief. However, these medications do not benefit all patients. The possibilities of using gene therapy and tissue engineering to develop treatments for those with severe salivary dysfunction are discussed.

  20. The human microbiota associated with overall health.

    PubMed

    Xu, Xiaofei; Wang, Zhujun; Zhang, Xuewu

    2015-03-01

    Human body harbors diverse microbes, the main components include bacteria, eukaryotes and viruses. Emerging evidences show that the human microbiota is intrinsically linked with overall health. The development of next-generation sequencing provides an unprecedented opportunity to investigate the complex microbial communities that are associated with the human body. Many factors like host genetics and environmental factors have a major impact on the composition and dynamic changes of human microbiota. The purpose of this paper is to present an overview of the relationship between human health and human microbiota (skin, nasal, throat, oral, vaginal and gut microbiota), then to focus on the factors modulating the composition of the microbiota and the future challenges to manipulate the microbiota for personalized health.

  1. Impact of temperature and time storage on the microbial detection of oral samples by Checkerboard DNA-DNA hybridization method.

    PubMed

    do Nascimento, Cássio; dos Santos, Janine Navarro; Pedrazzi, Vinícius; Pita, Murillo Sucena; Monesi, Nadia; Ribeiro, Ricardo Faria; de Albuquerque, Rubens Ferreira

    2014-01-01

    Molecular diagnosis methods have been largely used in epidemiological or clinical studies to detect and quantify microbial species that may colonize the oral cavity in healthy or disease. The preservation of genetic material from samples remains the major challenge to ensure the feasibility of these methodologies. Long-term storage may compromise the final result. The aim of this study was to evaluate the effect of temperature and time storage on the microbial detection of oral samples by Checkerboard DNA-DNA hybridization. Saliva and supragingival biofilm were taken from 10 healthy subjects, aliquoted (n=364) and processed according to proposed protocols: immediate processing and processed after 2 or 4 weeks, and 6 or 12 months of storage at 4°C, -20°C and -80°C. Either total or individual microbial counts were recorded in lower values for samples processed after 12 months of storage, irrespective of temperatures tested. Samples stored up to 6 months at cold temperatures showed similar counts to those immediately processed. The microbial incidence was also significantly reduced in samples stored during 12 months in all temperatures. Temperature and time of oral samples storage have relevant impact in the detection and quantification of bacterial and fungal species by Checkerboard DNA-DNA hybridization method. Samples should be processed immediately after collection or up to 6 months if conserved at cold temperatures to avoid false-negative results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Beneficial Properties of Probiotics

    PubMed Central

    Shi, Lye Huey; Balakrishnan, Kunasundari; Thiagarajah, Kokila; Mohd Ismail, Nor Ismaliza; Yin, Ooi Shao

    2016-01-01

    Probiotics are live microorganisms that can be found in fermented foods and cultured milk, and are widely used for the preparation of infant food. They are well-known as “health friendly bacteria”, which exhibit various health beneficial properties such as prevention of bowel diseases, improving the immune system, for lactose intolerance and intestinal microbial balance, exhibiting antihypercholesterolemic and antihypertensive effects, alleviation of postmenopausal disorders, and reducing traveller’s diarrhoea. Recent studies have also been focused on their uses in treating skin and oral diseases. In addition to that, modulation of the gut-brain by probiotics has been suggested as a novel therapeutic solution for anxiety and depression. Thus, this review discusses on the current probiotics-based products in Malaysia, criteria for selection of probiotics, and evidences obtained from past studies on how probiotics have been used in preventing intestinal disorders via improving the immune system, acting as an antihypercholesterolemic factor, improving oral and dermal health, and performing as anti-anxiety and anti-depressive agents. PMID:27688852

  3. OC28 - Effect of mode of delivery on early oral colonization and childhood dental caries: a systematic review.

    PubMed

    Antão, Celeste; Teixeira, Cristina; Gomes, Maria José

    2016-05-09

    Theme: Multidisciplinary team working. Oral colonization starts at birth by vertical transmission. To determine whether mode of delivery influences the oral colonization of infants and contributes to the risk of childhood dental caries. A systematic review was conducted in the electronic database Web of Science for articles published from January 1995 to December 2015 by using a set of keywords. From 2,644 citations identified through electronic search, ten studies met the inclusion criteria. According to the studies mode of delivery influences oral microbial density, oral microbial profile and the timing of oral colonization by cariogenic microbiota. However, there are no consistent results concerning either the prevalence of children harboring cariogenic microbiota or the prevalence of early childhood caries by mode of delivery. Mode of delivery influences early oral colonization. However, it seems that other determinants rather than mode of delivery could be major contributors to the development of early childhood caries.

  4. Development and evaluation of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    NASA Astrophysics Data System (ADS)

    Hong, Eun-Mi; Park, Yongeun; Muirhead, Richard; Pachepsky, Yakov

    2017-04-01

    Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. The total number of removed bacteria was set to the concentrations of bacteria in soil-manure mixing layer and eroded manure amount. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. The stream network of the watershed ran through grazing lands with the daily bovine waste deposition. Based on calibration and testing results, the APEX with the microbe module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water under various agricultural practices (grazing, cropping, and manure application), evaluating monitoring protocols, and supporting the selection of management practices based on regulations that rely on fecal indicator bacteria concentrations. Future development should include modeling contributions of wildlife, manure weathering, and weather effects on manure-borne microorganism survival and release.

  5. Habitat Fragmentation can Modulate Drought Effects on the Plant-soil-microbial System in Mediterranean Holm Oak (Quercus ilex) Forests.

    PubMed

    Flores-Rentería, Dulce; Curiel Yuste, Jorge; Rincón, Ana; Brearley, Francis Q; García-Gil, Juan Carlos; Valladares, Fernando

    2015-05-01

    Ecological transformations derived from habitat fragmentation have led to increased threats to above-ground biodiversity. However, the impacts of forest fragmentation on soils and their microbial communities are not well understood. We examined the effects of contrasting fragment sizes on the structure and functioning of soil microbial communities from holm oak forest patches in two bioclimatically different regions of Spain. We used a microcosm approach to simulate the annual summer drought cycle and first autumn rainfall (rewetting), evaluating the functional response of a plant-soil-microbial system. Forest fragment size had a significant effect on physicochemical characteristics and microbial functioning of soils, although the diversity and structure of microbial communities were not affected. The response of our plant-soil-microbial systems to drought was strongly modulated by the bioclimatic conditions and the fragment size from where the soils were obtained. Decreasing fragment size modulated the effects of drought by improving local environmental conditions with higher water and nutrient availability. However, this modulation was stronger for plant-soil-microbial systems built with soils from the northern region (colder and wetter) than for those built with soils from the southern region (warmer and drier) suggesting that the responsiveness of the soil-plant-microbial system to habitat fragmentation was strongly dependent on both the physicochemical characteristics of soils and the historical adaptation of soil microbial communities to specific bioclimatic conditions. This interaction challenges our understanding of future global change scenarios in Mediterranean ecosystems involving drier conditions and increased frequency of forest fragmentation.

  6. Oral microbial community typing of caries and pigment in primary dentition.

    PubMed

    Li, Yanhui; Zou, Cheng-Gang; Fu, Yu; Li, Yanhong; Zhou, Qing; Liu, Bo; Zhang, Zhigang; Liu, Juan

    2016-08-05

    Black extrinsic discoloration in primary dentition is a common clinical and aesthetic problem that can co-occur with dental caries, the most common oral diseases in childhood. Although the role of bacteria in the formation of pigment and caries in primary dentition is important, their basic features still remain a further mystery. Using targeted sequencing of the V1-V3 hypervariable regions of bacterial 16S ribosomal RNA (rRNA) genes, we obtained a dataset consisting of 831,381 sequences from 111 saliva samples and 110 supragingival plaque samples from 40 patients with pigment (black extrinsic stain), 20 with caries (obvious decay), and 25 with both pigment and caries and from 26 healthy individuals. We applied a Dirichlet multinomial mixture (DMM)-based community typing approach to investigate oral microbial community types. Our results revealed significant structural segregation of microbial communities, as indicated by the identification of two plaque community types (A and B) and three saliva community types (C-E). We found that the independent occurrence of the two plaque community types, A and B, was potentially associated with our oral diseases of interest. For type A, three co-occurring bacterial genus pairs could separately play a potential role in the formation of pigment (Leptotrichia and Fusobacterium), caries (unclassified Gemellales and Granulicatella), and mixed caries and pigment (Streptococcus and Mogibacterium). For type B, three co-occurring bacterial genera (unclassified Clostridiaceae, Peptostreptococcus, and Clostridium) were related to mixed pigment and caries. Three dominant bacterial genera (Selenomonas, Gemella, and Streptobacillus) were linked to the presence of caries. Our study demonstrates that plaque-associated oral microbial communities could majorly contribute to the formation of pigment and caries in primary dentition and suggests potential clinical applications of monitoring oral microbiota as an indicator for disease diagnosis and prognosis.

  7. Microbial profiling of dental plaque from mechanically ventilated patients

    PubMed Central

    Twigg, Joshua A.; Lewis, Michael A. O.; Wise, Matt P.; Marchesi, Julian R.; Smith, Ann; Wilson, Melanie J.; Williams, David W.

    2016-01-01

    Micro-organisms isolated from the oral cavity may translocate to the lower airways during mechanical ventilation (MV) leading to ventilator-associated pneumonia (VAP). Changes within the dental plaque microbiome during MV have been documented previously, primarily using culture-based techniques. The aim of this study was to use community profiling by high throughput sequencing to comprehensively analyse suggested microbial changes within dental plaque during MV. Bacterial 16S rDNA gene sequences were obtained from 38 samples of dental plaque sampled from 13 mechanically ventilated patients and sequenced using the Illumina platform. Sequences were processed using Mothur, applying a 97 % gene similarity cut-off for bacterial species level identifications. A significant ‘microbial shift’ occurred in the microbial community of dental plaque during MV for nine out of 13 patients. Following extubation, or removal of the endotracheal tube that facilitates ventilation, sampling revealed a decrease in the relative abundance of potential respiratory pathogens and a compositional change towards a more predominantly (in terms of abundance) oral microbiota including Prevotella spp., and streptococci. The results highlight the need to better understand microbial shifts in the oral microbiome in the development of strategies to reduce VAP, and may have implications for the development of other forms of pneumonia such as community-acquired infection. PMID:26690690

  8. Microbial profiling of dental plaque from mechanically ventilated patients.

    PubMed

    Sands, Kirsty M; Twigg, Joshua A; Lewis, Michael A O; Wise, Matt P; Marchesi, Julian R; Smith, Ann; Wilson, Melanie J; Williams, David W

    2016-02-01

    Micro-organisms isolated from the oral cavity may translocate to the lower airways during mechanical ventilation (MV) leading to ventilator-associated pneumonia (VAP). Changes within the dental plaque microbiome during MV have been documented previously, primarily using culture-based techniques. The aim of this study was to use community profiling by high throughput sequencing to comprehensively analyse suggested microbial changes within dental plaque during MV. Bacterial 16S rDNA gene sequences were obtained from 38 samples of dental plaque sampled from 13 mechanically ventilated patients and sequenced using the Illumina platform. Sequences were processed using Mothur, applying a 97% gene similarity cut-off for bacterial species level identifications. A significant 'microbial shift' occurred in the microbial community of dental plaque during MV for nine out of 13 patients. Following extubation, or removal of the endotracheal tube that facilitates ventilation, sampling revealed a decrease in the relative abundance of potential respiratory pathogens and a compositional change towards a more predominantly (in terms of abundance) oral microbiota including Prevotella spp., and streptococci. The results highlight the need to better understand microbial shifts in the oral microbiome in the development of strategies to reduce VAP, and may have implications for the development of other forms of pneumonia such as community-acquired infection.

  9. Does the buck stop with the bugs?: an overview of microbial dysbiosis in rheumatoid arthritis.

    PubMed

    Sandhya, Pulukool; Danda, Debashish; Sharma, Disha; Scaria, Vinod

    2016-01-01

    The human body is an environmental niche which is home to diverse co-habiting microbes collectively referred as the human microbiome. Recent years have seen the in-depth characterization of the human microbiome and associations with diseases. Linking of the composition or number of the human microbiota with diseases and traits date back to the original work of Elie Metchnikoff. Recent advances in genomic technologies have opened up finer details and dynamics of this new science with higher precision. Microbe-rheumatoid arthritis connection, largely related to the gut and oral microbiomes, has showed up as a result - apart from several other earlier, well-studied candidate autoimmune diseases. Although evidence favouring roles of specific microbial species, including Porphyromonas, Prevotella and Leptotricha, has become clearer, mechanistic insights still continue to be enigmatic. Manipulating the microbes by traditional dietary modifications, probiotics, and antibiotics and by currently employed disease-modifying agents seems to modulate the disease process and its progression. In the present review, we appraise the existing information as well as the gaps in knowledge in this challenging field. We also discuss the future directions for potential clinical applications, including prevention and management of rheumatoid arthritis using microbial modifications. © 2015 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  10. Subgingival microbiome in patients with healthy and ailing dental implants

    PubMed Central

    Zheng, Hui; Xu, Lixin; Wang, Zicheng; Li, Lianshuo; Zhang, Jieni; Zhang, Qian; Chen, Ting; Lin, Jiuxiang; Chen, Feng

    2015-01-01

    Dental implants are commonly used to replace missing teeth. However, the dysbiotic polymicrobial communities of peri-implant sites are responsible for peri-implant diseases, such as peri-implant mucositis and peri-implantitis. In this study, we analyzed the microbial characteristics of oral plaque from peri-implant pockets or sulci of healthy implants (n = 10), peri-implant mucositis (n = 8) and peri-implantitis (n = 6) sites using pyrosequencing of the 16S rRNA gene. An increase in microbial diversity was observed in subgingival sites of ailing implants, compared with healthy implants. Microbial co-occurrence analysis revealed that periodontal pathogens, such as Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia, were clustered into modules in the peri-implant mucositis network. Putative pathogens associated with peri-implantitis were present at a moderate relative abundance in peri-implant mucositis, suggesting that peri-implant mucositis an important early transitional phase during the development of peri-implantitis. Furthermore, the relative abundance of Eubacterium was increased at peri-implantitis locations, and co-occurrence analysis revealed that Eubacterium minutum was correlated with Prevotella intermedia in peri-implantitis sites, which suggests the association of Eubacterium with peri-implantitis. This study indicates that periodontal pathogens may play important roles in the shifting of healthy implant status to peri-implant disease. PMID:26077225

  11. l-Arginine Modifies the Exopolysaccharide Matrix and Thwarts Streptococcus mutans Outgrowth within Mixed-Species Oral Biofilms.

    PubMed

    He, Jinzhi; Hwang, Geelsu; Liu, Yuan; Gao, Lizeng; Kilpatrick-Liverman, LaTonya; Santarpia, Peter; Zhou, Xuedong; Koo, Hyun

    2016-10-01

    l-Arginine, a ubiquitous amino acid in human saliva, serves as a substrate for alkali production by arginolytic bacteria. Recently, exogenous l-arginine has been shown to enhance the alkalinogenic potential of oral biofilm and destabilize its microbial community, which might help control dental caries. However, l-arginine exposure may inflict additional changes in the biofilm milieu when bacteria are growing under cariogenic conditions. Here, we investigated how exogenous l-arginine modulates biofilm development using a mixed-species model containing both cariogenic (Streptococcus mutans) and arginolytic (Streptococcus gordonii) bacteria in the presence of sucrose. We observed that 1.5% (wt/vol) l-arginine (also a clinically effective concentration) exposure suppressed the outgrowth of S. mutans, favored S. gordonii dominance, and maintained Actinomyces naeslundii growth within biofilms (versus vehicle control). In parallel, topical l-arginine treatments substantially reduced the amounts of insoluble exopolysaccharides (EPS) by >3-fold, which significantly altered the three-dimensional (3D) architecture of the biofilm. Intriguingly, l-arginine repressed S. mutans genes associated with insoluble EPS (gtfB) and bacteriocin (SMU.150) production, while spxB expression (H2O2 production) by S. gordonii increased sharply during biofilm development, which resulted in higher H2O2 levels in arginine-treated biofilms. These modifications resulted in a markedly defective EPS matrix and areas devoid of any bacterial clusters (microcolonies) on the apatitic surface, while the in situ pH values at the biofilm-apatite interface were nearly one unit higher in arginine-treated biofilms (versus the vehicle control). Our data reveal new biological properties of l-arginine that impact biofilm matrix assembly and the dynamic microbial interactions associated with pathogenic biofilm development, indicating the multiaction potency of this promising biofilm disruptor. Dental caries is one of the most prevalent and costly infectious diseases worldwide, caused by a biofilm formed on tooth surfaces. Novel strategies that compromise the ability of virulent species to assemble and maintain pathogenic biofilms could be an effective alternative to conventional antimicrobials that indiscriminately kill other oral species, including commensal bacteria. l-Arginine at 1.5% has been shown to be clinically effective in modulating cariogenic biofilms via alkali production by arginolytic bacteria. Using a mixed-species ecological model, we show new mechanisms by which l-arginine disrupts the process of biofilm matrix assembly and the dynamic microbial interactions that are associated with cariogenic biofilm development, without impacting the bacterial viability. These results may aid in the development of enhanced methods to control biofilms using l-arginine. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Buccal Swabbing as a Noninvasive Method To Determine Bacterial, Archaeal, and Eukaryotic Microbial Community Structures in the Rumen

    PubMed Central

    Kirk, Michelle R.; Jonker, Arjan; McCulloch, Alan

    2015-01-01

    Analysis of rumen microbial community structure based on small-subunit rRNA marker genes in metagenomic DNA samples provides important insights into the dominant taxa present in the rumen and allows assessment of community differences between individuals or in response to treatments applied to ruminants. However, natural animal-to-animal variation in rumen microbial community composition can limit the power of a study considerably, especially when only subtle differences are expected between treatment groups. Thus, trials with large numbers of animals may be necessary to overcome this variation. Because ruminants pass large amounts of rumen material to their oral cavities when they chew their cud, oral samples may contain good representations of the rumen microbiota and be useful in lieu of rumen samples to study rumen microbial communities. We compared bacterial, archaeal, and eukaryotic community structures in DNAs extracted from buccal swabs to those in DNAs from samples collected directly from the rumen by use of a stomach tube for sheep on four different diets. After bioinformatic depletion of potential oral taxa from libraries of samples collected via buccal swabs, bacterial communities showed significant clustering by diet (R = 0.37; analysis of similarity [ANOSIM]) rather than by sampling method (R = 0.07). Archaeal, ciliate protozoal, and anaerobic fungal communities also showed significant clustering by diet rather than by sampling method, even without adjustment for potentially orally associated microorganisms. These findings indicate that buccal swabs may in future allow quick and noninvasive sampling for analysis of rumen microbial communities in large numbers of ruminants. PMID:26276109

  13. Re-discovering periodontal butyric acid: New insights on an old metabolite.

    PubMed

    Cueno, Marni E; Ochiai, Kuniyasu

    2016-05-01

    The oral microbiome is composed of detrimental and beneficial microbial communities producing several microbial factors that could contribute to the development of the oral microbiome and, likewise, may lead to the development of host diseases. Metabolites, like short-chain fatty acids, are commonly produced by the oral microbiome and serve various functions. Among the periodontal short-chain fatty acids, butyric acid is mainly produced by periodontopathic bacteria and, attributable to the butyrate paradox, is postulated to exhibit a dual function depending on butyric acid concentration. A better understanding of the interconnecting networks that would influence butyric acid function in the oral cavity may shed a new light on the current existing knowledge and view regarding butyric acid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders.

    PubMed

    Hsiao, Elaine Y; McBride, Sara W; Hsien, Sophia; Sharon, Gil; Hyde, Embriette R; McCue, Tyler; Codelli, Julian A; Chow, Janet; Reisman, Sarah E; Petrosino, Joseph F; Patterson, Paul H; Mazmanian, Sarkis K

    2013-12-19

    Neurodevelopmental disorders, including autism spectrum disorder (ASD), are defined by core behavioral impairments; however, subsets of individuals display a spectrum of gastrointestinal (GI) abnormalities. We demonstrate GI barrier defects and microbiota alterations in the maternal immune activation (MIA) mouse model that is known to display features of ASD. Oral treatment of MIA offspring with the human commensal Bacteroides fragilis corrects gut permeability, alters microbial composition, and ameliorates defects in communicative, stereotypic, anxiety-like and sensorimotor behaviors. MIA offspring display an altered serum metabolomic profile, and B. fragilis modulates levels of several metabolites. Treating naive mice with a metabolite that is increased by MIA and restored by B. fragilis causes certain behavioral abnormalities, suggesting that gut bacterial effects on the host metabolome impact behavior. Taken together, these findings support a gut-microbiome-brain connection in a mouse model of ASD and identify a potential probiotic therapy for GI and particular behavioral symptoms in human neurodevelopmental disorders. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Designing an oral health module for the Bachelor of Midwifery program at an Australian University.

    PubMed

    Duff, Margaret; Dahlen, Hannah G; Burns, Elaine; Priddis, Holly; Schmied, Virginia; George, Ajesh

    2017-03-01

    Maternal oral health is important yet many pregnant women are unaware of its significance. Midwives are advised to promote oral health during pregnancy and are supported to do this in Australia through the Midwifery Initiated Oral Health training program. However, limited undergraduate education is being provided to midwifery students in this area. The objective of this paper is to describe how an innovative oral health education module for an undergraduate midwifery course in Australia was designed using a multidisciplinary approach. Midwives experienced in curriculum development and key investigators from the Midwifery Initiated Oral Health program designed the module using existing literature. Constructive alignment, blended learning and scaffolding were used in the design process. The draft module was then reviewed by midwifery academics and their feedback incorporated. The final module involves 4 h of teaching and learning and contains three components incorporated into first year course units. Each component is aligned with existing learning outcomes and incorporates blended learning approaches and tutorials/class activities as well as online quizzes and personal reflection. The module details key information (current evidence; basic anatomy/physiology; common oral conditions; and guidelines during pregnancy) that could better prepare students to promote oral health in clinical practice. This is the first time such an innovative, multidisciplinary approach has been undertaken embedding oral health in an undergraduate midwifery program in Australia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Emerging role of bacteria in oral carcinogenesis: a review with special reference to perio-pathogenic bacteria.

    PubMed

    Perera, Manosha; Al-Hebshi, Nezar Noor; Speicher, David J; Perera, Irosha; Johnson, Newell W

    2016-01-01

    Oral cancer, primarily oral squamous cell carcinoma (OSCC), continues to be a major global health problem with high incidence and low survival rates. While the major risk factors for this malignancy, mostly lifestyle related, have been identified, around 15% of oral cancer cases remain unexplained. In light of evidence implicating bacteria in the aetiology of some cancer types, several epidemiological studies have been conducted in the last decade, employing methodologies ranging from traditional culture techniques to 16S rRNA metagenomics, to assess the possible role of bacteria in OSCC. While these studies have demonstrated differences in microbial composition between cancerous and healthy tissues, they have failed to agree on specific bacteria or patterns of oral microbial dysbiosis to implicate in OSCC. On the contrary, some oral taxa, particularly Porphyromonas gingivalis and Fusobacterium nucleatum, show strong oral carcinogenic potential in vitro and in animal studies. Bacteria are thought to contribute to oral carcinogenesis via inhibition of apoptosis, activation of cell proliferation, promotion of cellular invasion, induction of chronic inflammation, and production of carcinogens. This narrative review provides a critical analysis of and an update on the association between bacteria and oral carcinogenesis and the possible mechanisms underlying it.

  17. Oral and dental infections with anaerobic bacteria: clinical features, predominant pathogens, and treatment.

    PubMed

    Tanner, A; Stillman, N

    1993-06-01

    Microbial populations colonizing the teeth are a major source of pathogens responsible for oral and dental infections, including periodontal diseases, gingivitis, pericoronitis, endodontitis, peri-implantitis, and postextraction infections. Each entity has distinct clinical and microbial features. Bacterial species associated with oral infections include Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Bacteroides forsythus, Campylobacter rectus, Eubacterium species, Fusobacterium nucleatum, Eikenella corrodens, and Peptostreptococcus micros. Treponema pallidum-related spirochetes have been associated with acute necrotizing ulcerative gingivitis. Porphyromonas endodontalis appears to be specifically related to endodontic infections. Oral infections in medically compromised patients, including those with AIDS, are associated with similar species and are usually complicated by superinfection with enteric and Candida species. Isolation of species causing oral infections requires the collection of appropriate samples and the use of strictly anaerobic techniques. Rapid selective culture, immunofluorescence, and DNA probe methods have been developed for the identification of these oral species. The varied measures required in the management of oral and dental infections may include antimicrobial therapy. Accurate microbiological diagnosis, including antibiotic susceptibility testing, is indicated for cases that do not respond to therapy.

  18. Effect of Antimicrobial Peptide KSL-W on Human Gingival Tissue and C. albicans Growth, Transition and Secreted Aspartyl Proteinase (SAPS) 2, 4, 5 and 6 Expressions

    DTIC Science & Technology

    2016-07-01

    broad range of antibacterial activity and could play a role in preventing microbial infections(Decanis et al., 2009), (Zaslof, 2002). These antimicrobial...range of antibacterial activity and could play a role in preventing microbial infections(Decanis et al., 2009),(Zaslof, 2002). These antimicrobial...KSL- W (KKVVFWVKFK)(Na et al., 2007), which possess a broad range of antibacterial activity . It killed selected strains of non-oral and oral

  19. The Application of Magnetic Bead Selection to Investigate Interactions between the Oral Microbiota and Salivary Immunoglobulins.

    PubMed

    Madhwani, Tejal; McBain, Andrew J

    2016-01-01

    The effect of humoral immunity on the composition of the oral microbiota is less intensively investigated than hygiene and diet, in part due to a lack of simple and robust systems for investigating interactions between salivary immunoglobulins and oral bacteria. Here we report the application of an ex situ method to investigate the specificity of salivary immunoglobulins for salivary bacteria. Saliva collected from six volunteers was separated into immunoglobulin and microbial fractions, and the microbial fractions were then directly exposed to salivary immunoglobulins of "self" and "non-self" origin. Antibody-selected bacteria were separated from their congeners using a magnetic bead system, selective for IgA or IgG isotypes. The positively selected fractions were then characterized using gel-based eubacterial-specific DNA profiling. The eubacterial profiles of positively selected fractions diverged significantly from profiles of whole salivary consortia based on volunteer (P≤ 0.001%) and immunoglobulin origin (P≤ 0.001%), but not immunoglobulin isotype (P = 0.2). DNA profiles of separated microbial fractions were significantly (p≤ 0.05) less diverse than whole salivary consortia and included oral and environmental bacteria. Consortia selected using self immunoglobulins were generally less diverse than those selected with immunoglobulins of non-self origin. Magnetic bead separation facilitated the testing of interactions between salivary antibodies and oral bacteria, showing that these interactions are specific and may reflect differences in recognition by self and non-self immunoglobulins. Further development of this system could improve understanding of the relationship between the oral microbiota and the host immune system and of mechanisms underlying the compositional stability of the oral microbiota.

  20. Buccal swabbing as a noninvasive method to determine bacterial, archaeal, and eukaryotic microbial community structures in the rumen.

    PubMed

    Kittelmann, Sandra; Kirk, Michelle R; Jonker, Arjan; McCulloch, Alan; Janssen, Peter H

    2015-11-01

    Analysis of rumen microbial community structure based on small-subunit rRNA marker genes in metagenomic DNA samples provides important insights into the dominant taxa present in the rumen and allows assessment of community differences between individuals or in response to treatments applied to ruminants. However, natural animal-to-animal variation in rumen microbial community composition can limit the power of a study considerably, especially when only subtle differences are expected between treatment groups. Thus, trials with large numbers of animals may be necessary to overcome this variation. Because ruminants pass large amounts of rumen material to their oral cavities when they chew their cud, oral samples may contain good representations of the rumen microbiota and be useful in lieu of rumen samples to study rumen microbial communities. We compared bacterial, archaeal, and eukaryotic community structures in DNAs extracted from buccal swabs to those in DNAs from samples collected directly from the rumen by use of a stomach tube for sheep on four different diets. After bioinformatic depletion of potential oral taxa from libraries of samples collected via buccal swabs, bacterial communities showed significant clustering by diet (R = 0.37; analysis of similarity [ANOSIM]) rather than by sampling method (R = 0.07). Archaeal, ciliate protozoal, and anaerobic fungal communities also showed significant clustering by diet rather than by sampling method, even without adjustment for potentially orally associated microorganisms. These findings indicate that buccal swabs may in future allow quick and noninvasive sampling for analysis of rumen microbial communities in large numbers of ruminants. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Distinct Ecological Niche of Anal, Oral, and Cervical Mucosal Microbiomes in Adolescent Women.

    PubMed

    Smith, Benjamin C; Zolnik, Christine P; Usyk, Mykhaylo; Chen, Zigui; Kaiser, Katherine; Nucci-Sack, Anne; Peake, Ken; Diaz, Angela; Viswanathan, Shankar; Strickler, Howard D; Schlecht, Nicolas F; Burk, Robert D

    2016-09-01

    Human body sites represent ecological niches for microorganisms, each providing variations in microbial exposure, nutrient availability, microbial competition, and host immunological responses. In this study, we investigated the oral, anal, and cervical microbiomes from the same 20 sexually active adolescent females, using culture-independent, next-generation sequencing. DNA from each sample was amplified for the bacterial 16S rRNA gene and sequenced on an Illumina platform using paired-end reads. Across the three anatomical niches, we found significant differences in bacterial community composition and diversity. Overall anal samples were dominated with Prevotella and Bacteriodes , oral samples with Streptococcus and Prevotella , and cervical samples with Lactobacillus . The microbiomes of a few cervical samples clustered with anal samples in weighted principal coordinate analyses, due in part to a higher proportion of Prevotella in those samples. Additionally, cervical samples had the lowest alpha diversity. Our results demonstrate the occurrence of distinct microbial communities across body sites within the same individual.

  2. Integrated metagenomic analysis of the rumen microbiome of cattle reveals key biological mechanisms associated with methane traits.

    PubMed

    Wang, Haiying; Zheng, Huiru; Browne, Fiona; Roehe, Rainer; Dewhurst, Richard J; Engel, Felix; Hemmje, Matthias; Lu, Xiangwu; Walsh, Paul

    2017-07-15

    Methane is one of the major contributors to global warming. The rumen microbiota is directly involved in methane production in cattle. The link between variation in rumen microbial communities and host genetics has important applications and implications in bioscience. Having the potential to reveal the full extent of microbial gene diversity and complex microbial interactions, integrated metagenomics and network analysis holds great promise in this endeavour. This study investigates the rumen microbial community in cattle through the integration of metagenomic and network-based approaches. Based on the relative abundance of 1570 microbial genes identified in a metagenomics analysis, the co-abundance network was constructed and functional modules of microbial genes were identified. One of the main contributions is to develop a random matrix theory-based approach to automatically determining the correlation threshold used to construct the co-abundance network. The resulting network, consisting of 549 microbial genes and 3349 connections, exhibits a clear modular structure with certain trait-specific genes highly over-represented in modules. More specifically, all the 20 genes previously identified to be associated with methane emissions are found in a module (hypergeometric test, p<10 -11 ). One third of genes are involved in methane metabolism pathways. The further examination of abundance profiles across 8 samples of genes highlights that the revealed pattern of metagenomics abundance has a strong association with methane emissions. Furthermore, the module is significantly enriched with microbial genes encoding enzymes that are directly involved in methanogenesis (hypergeometric test, p<10 -9 ). Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Emerging role of bacteria in oral carcinogenesis: a review with special reference to perio-pathogenic bacteria

    PubMed Central

    Perera, Manosha; Al-hebshi, Nezar Noor; Speicher, David J.; Perera, Irosha; Johnson, Newell W.

    2016-01-01

    Oral cancer, primarily oral squamous cell carcinoma (OSCC), continues to be a major global health problem with high incidence and low survival rates. While the major risk factors for this malignancy, mostly lifestyle related, have been identified, around 15% of oral cancer cases remain unexplained. In light of evidence implicating bacteria in the aetiology of some cancer types, several epidemiological studies have been conducted in the last decade, employing methodologies ranging from traditional culture techniques to 16S rRNA metagenomics, to assess the possible role of bacteria in OSCC. While these studies have demonstrated differences in microbial composition between cancerous and healthy tissues, they have failed to agree on specific bacteria or patterns of oral microbial dysbiosis to implicate in OSCC. On the contrary, some oral taxa, particularly Porphyromonas gingivalis and Fusobacterium nucleatum, show strong oral carcinogenic potential in vitro and in animal studies. Bacteria are thought to contribute to oral carcinogenesis via inhibition of apoptosis, activation of cell proliferation, promotion of cellular invasion, induction of chronic inflammation, and production of carcinogens. This narrative review provides a critical analysis of and an update on the association between bacteria and oral carcinogenesis and the possible mechanisms underlying it. PMID:27677454

  4. Effect of vegetation type on treatment performance and bioelectric production of constructed wetland modules combined with microbial fuel cell (CW-MFC) treating synthetic wastewater.

    PubMed

    Saz, Çağdaş; Türe, Cengiz; Türker, Onur Can; Yakar, Anıl

    2018-03-01

    An operation of microcosm-constructed wetland modules combined with microbial fuel cell device (CW-MFC) was assessed for wastewater treatment and bioelectric generation. One of the crucial aims of the present experiment is also to determine effect of vegetation on wastewater treatment process and bioelectric production in wetland matrix with microbial fuel cell. Accordingly, CW-MFC modules with vegetation had higher treatment efficiency compared to unplanted wetland module, and average COD, NH 4 + , and TP removal efficiency in vegetated wetland modules were ranged from 85 to 88%, 95 to 97%, and 95 to 97%, respectively. However, the highest NO 3 - removal (63%) was achieved by unplanted control module during the experiment period. The maximum average output voltage, power density, and Coulombic efficiency were obtained in wetland module vegetated with Typha angustifolia for 1.01 ± 0.14 V, 7.47 ± 13.7 mWatt/m 2 , and 8.28 ± 10.4%, respectively. The results suggest that the presence of Typha angustifolia vegetation in the CW-MFC matrix provides the benefits for treatment efficiency and bioelectric production; thus, it increases microbial activities which are responsible for biodegradation of organic compounds and catalyzed to electron flow from anode to cathode. Consequently, we suggest that engineers can use vegetated wetland matrix with Typha angustifolia in CW-MFC module in order to maximize treatment efficiency and bioelectric production.

  5. Host Immune Selection of Rumen Bacteria through Salivary Secretory IgA

    PubMed Central

    Fouhse, Janelle M.; Smiegielski, Luke; Tuplin, Melanie; Guan, Le Luo; Willing, Benjamin P.

    2017-01-01

    The rumen microbiome is integral to efficient production in cattle and shows strong host specificity, yet little is known about what host factors shape rumen microbial composition. Secretory immunoglobulin A (SIgA) is produced in large amounts in the saliva, can coat both commensal and pathogenic microbes within the gut, and presents a plausible mechanism of host specificity. However, the role salivary SIgA plays in commensal bacteria selection in ruminants remains elusive. The main objectives of this study were to develop an immuno-affinity benchtop method to isolate SIgA-tagged microbiota and to determine if salivary SIgA preferentially binds selected bacteria. We hypothesized that SIgA-tagged bacteria would differ from total bacteria, thus supporting a potential host-derived mechanism in commensal bacterial selection. Whole rumen (n = 9) and oral secretion samples (n = 10) were incubated with magnetic beads conjugated with anti-secretory IgA antibodies to enrich SIgA-tagged microbiota. Microbial DNA from the oral secretion, whole rumen, SIgA-tagged oral secretion, and SIgA-tagged rumen was isolated for amplicon sequencing of V1–V3 region of 16S rDNA genes. Whole rumen and oral secretion had distinctive (P < 0.05) bacterial compositions indicated by the non-parametric multidimensional scaling plot using Euclidean distance metrics. The SIgA-tagged microbiota from rumen and oral secretion had similar abundance of Bacteroidetes, Actinobacteria, Fibrobacter, candidate phyla TM7, and Tenericutes and are clustered tightly. Composition of SIgA-tagged oral secretion microbiota was more similar to whole rumen microbiota than whole oral secretion due to enrichment of rumen bacteria (Lachnospiraceae) and depletion of oral taxa (Streptococcus, Rothia, Neisseriaceae, and Lactobacillales). In conclusion, SIgA-tagged oral secretion microbiota had an increased resemblance to whole rumen microbiota, suggesting salivary SIgA-coating may be one host-derived mechanism impacting commensal colonization. Further studies, to explore the variations in antibody affinity between different animals as a driver of microbial composition are warranted. PMID:28553275

  6. Use of Probiotics and Oral Health.

    PubMed

    Allaker, Robert P; Stephen, Abish S

    2017-01-01

    The purpose of this study is to critically assess recent studies concerning the use of probiotics to control periodontal diseases, dental caries and halitosis (oral malodour). Clinical studies have shown that probiotics when allied to conventional periodontal treatment can ameliorate microbial dysbiosis and produce significant improvement in clinical indicators of disease. However, this effect is often not maintained by the host after the end of probiotic use. Current probiotics also show limited effects in treating caries and halitosis. Novel approaches based up on replacement therapy and using highly abundant health-associated oral species, including nitrate-reducing bacteria, have been proposed to improve persistence of probiotic strains and maintain oral health benefits. Probiotics have potential in the management of multifactorial diseases such as the periodontal diseases and caries, by more effectively addressing the host-microbial interface to restore homeostasis that may not be achieved with conventional treatments.

  7. A molecular survey of S. mutans and P. gingivalis oral microbial burden in human saliva using Relative Endpoint Polymerase Chain Reaction (RE-PCR) within the population of a Nevada dental school revealed disparities among minorities

    PubMed Central

    2012-01-01

    Background The University of Nevada, Las Vegas School of Dental Medicine recently opened an orthodontic treatment clinic to address the needs of the racially and ethnically diverse population of Southern Nevada, primarily focusing on the treatment and care of low-income and minority patients. Although orthodontic treatment and therapy has been shown to induce changes in the oral cavity, much of this evidence was collected from traditional White, teenage orthodontic clinic populations. The primary goal of this study was to describe the microbial burden of the cariogenic and periodontal pathogens, Streptococcus mutans and Porphyromonas gingivalis within the UNLV-SDM patient population. Methods Representative saliva samples were collected from healthy adult patients for DNA isolation. Relative endpoint polymerase chain reaction (RE-PCR) was performed to ascertain the presence and relative microbial burden of these oral pathogens. Results Nearly one quarter (13/56) or 23.3% of these patients had elevated levels of S. mutans, while (10/56) and 17.8% of these samples were found to have elevated levels of P. gingivalis, - with (90%) of P. gingivalis-positive samples from minority patients (X2 = 17.921, d.f. = 1; p < 0.0001). Conclusions These findings of elevated P. gingivalis levels, primarily among minority patients, may suggest underlying oral health practices contributing to adverse oral health conditions within this population. Oral health knowledge and practices among minority patients may be strongly influenced by other factors, including education and socioeconomic status, suggesting additional research may be needed to accurately determine the most appropriate standards for care and oral health education within this patient population. PMID:22925755

  8. The Application of Magnetic Bead Selection to Investigate Interactions between the Oral Microbiota and Salivary Immunoglobulins

    PubMed Central

    Madhwani, Tejal

    2016-01-01

    The effect of humoral immunity on the composition of the oral microbiota is less intensively investigated than hygiene and diet, in part due to a lack of simple and robust systems for investigating interactions between salivary immunoglobulins and oral bacteria. Here we report the application of an ex situ method to investigate the specificity of salivary immunoglobulins for salivary bacteria. Saliva collected from six volunteers was separated into immunoglobulin and microbial fractions, and the microbial fractions were then directly exposed to salivary immunoglobulins of “self” and “non-self” origin. Antibody-selected bacteria were separated from their congeners using a magnetic bead system, selective for IgA or IgG isotypes. The positively selected fractions were then characterized using gel-based eubacterial-specific DNA profiling. The eubacterial profiles of positively selected fractions diverged significantly from profiles of whole salivary consortia based on volunteer (P≤ 0.001%) and immunoglobulin origin (P≤ 0.001%), but not immunoglobulin isotype (P = 0.2). DNA profiles of separated microbial fractions were significantly (p≤ 0.05) less diverse than whole salivary consortia and included oral and environmental bacteria. Consortia selected using self immunoglobulins were generally less diverse than those selected with immunoglobulins of non-self origin. Magnetic bead separation facilitated the testing of interactions between salivary antibodies and oral bacteria, showing that these interactions are specific and may reflect differences in recognition by self and non-self immunoglobulins. Further development of this system could improve understanding of the relationship between the oral microbiota and the host immune system and of mechanisms underlying the compositional stability of the oral microbiota. PMID:27483159

  9. Effect of an oxygenating agent on oral bacteria in vitro and on dental plaque composition in healthy young adults.

    PubMed

    Fernandez y Mostajo, Mercedes; van der Reijden, Wil A; Buijs, Mark J; Beertsen, Wouter; Van der Weijden, Fridus; Crielaard, Wim; Zaura, Egija

    2014-01-01

    Oral bacteria live in symbiosis with the host. Therefore, when mouthwashes are indicated, selective inhibition of taxa contributing to disease is preferred instead of broad-spectrum antimicrobials. The potential selectivity of an oxygenating mouthwash, Ardox-X® (AX), has not been assessed. The aim of this study was to determine the antimicrobial potential of AX and the effects of a twice-daily oral rinse on dental plaque composition. In vitro, 16 oral bacterial strains were tested using agar diffusion susceptibility, minimum inhibitory and minimum bactericidal concentration tests. A pilot clinical study was performed with 25 healthy volunteers. Clinical assessments and microbiological sampling of supragingival plaque were performed at 1 month before the experiment (Pre-exp), at the start of the experiment (Baseline) and after the one-week experimental period (Post-exp). During the experiment individuals used AX mouthwash twice daily in absence of other oral hygiene measures. The microbiological composition of plaque was assessed by 16S rRNA gene amplicon sequencing. AX showed high inter-species variation in microbial growth inhibition. The tested Prevotella strains and Fusobacterium nucleatum showed the highest sensitivity, while streptococci and Lactobacillus acidophilus were most resistant to AX. Plaque scores at Pre-exp and Baseline visits did not differ significantly (p = 0.193), nor did the microbial composition of plaque. During a period of 7-days non-brushing but twice daily rinsing plaque scores increased from 2.21 (0.31) at Baseline to 2.43 (0.39) Post-exp. A significant microbial shift in composition was observed: genus Streptococcus and Veillonella increased while Corynebacterium, Haemophilus, Leptotrichia, Cardiobacterium and Capnocytophaga decreased (p ≤ 0.001). AX has the potential for selective inhibition of oral bacteria. The shift in oral microbiome after 1 week of rinsing deserves further research.

  10. Evidence of variable bacterial colonization on coloured elastomeric ligatures during orthodontic treatment: An intermodular comparative study.

    PubMed

    Sharma, Ravish; Sharma, Kavita; Sawhney, Rajesh

    2018-03-01

    Besides, other factors, the choice of materials used as orthodontic ligatures could be one of the many tools to counter the effects of microbial adhesion, that culminates into dental ailments. Therefore, we assessed bacterial adhesion on elastomeric ligatures with special reference to coloured elastomeric rings during orthodontic treatment. A split mouth study, involving 240 samples of different elastomeric ligatures from forty orthodontic patients possessing good oral hygiene was carried out. The archwire was ligated to the brackets on both arches with elastomeric rings (superslick, clear transparent , blue and pink) at predetermined quadrants. After six weeks, ligatures from second premolars were removed and processed for bacterial enumeration using standard techniques. Bacterial counts were also determined for stimulated saliva samples taken at 0 and 6 weeks. A statistically significant difference in bacterial counts was obtained amongst different elastomeric modules used. Maximum bacterial counts were found on conventional pigmented elastomeric modules, followed by Superslick module and clear module. More number of bacteria associated with the conventional pink as compared to the conventional blue pigmented modules, however it was not statistically significant. The three bacterial genera Streptococcus Staphylococcus and Aerobic Lactobacilli adhered to elastomeric modules in following predominant pattern i.e. Conventional pink>Conventional Blue>Superslick>Clear. The studies evidenced colour and material dependent bacterial colonization on orthodontic modules and could be an indicator of bacterial biofilm forming potential based on surface chemistries and a clinically efficacious tool to redesign conventional and modified elastomeric rings as orthodontic ligation accessories. Key words: Bacterial colonization, biofilm, coloured elastomers, orthodontic ligatures.

  11. Bacterial Diversity and Community Structure of Supragingival Plaques in Adults with Dental Health or Caries Revealed by 16S Pyrosequencing

    PubMed Central

    Xiao, Cuicui; Ran, Shujun; Huang, Zhengwei; Liang, Jingping

    2016-01-01

    Dental caries has a polymicrobial etiology within the complex oral microbial ecosystem. However, the overall diversity and structure of supragingival plaque microbiota in adult dental health and caries are not well understood. Here, 160 supragingival plaque samples from patients with dental health and different severities of dental caries were collected for bacterial genomic DNA extraction, pyrosequencing by amplification of the 16S rDNA V1–V3 hypervariable regions, and bioinformatic analysis. High-quality sequences (2,261,700) clustered into 10,365 operational taxonomic units (OTUs; 97% identity), representing 453 independent species belonging to 122 genera, 66 families, 34 orders, 21 classes, and 12 phyla. All groups shared 7522 OTUs, indicating the presence of a core plaque microbiome. α diversity analysis showed that the microbial diversity in healthy plaques exceeded that of dental caries, with the diversity decreasing gradually with the severity of caries. The dominant phyla of plaque microbiota included Bacteroidetes, Actinobacteria, Proteobacteria, Firmicutes, Fusobacteria, and TM7. The dominant genera included Capnocytophaga, Prevotella, Actinomyces, Corynebacterium, Neisseria, Streptococcus, Rothia, and Leptotrichia. β diversity analysis showed that the plaque microbial community structure was similar in all groups. Using LEfSe analysis, 25 differentially abundant taxa were identified as potential biomarkers. Key genera (27) that potentially contributed to the differential distributions of plaque microbiota between groups were identified by PLS-DA analysis. Finally, co-occurrence network analysis and function predictions were performed. Treatment strategies directed toward modulating microbial interactions and their functional output should be further developed. PMID:27499752

  12. Oral Health in a Sample of Pregnant Women from Northern Appalachia (2011–2015)

    PubMed Central

    Neiswanger, Katherine; McNeil, Daniel W.; Foxman, Betsy; Govil, Manika; Cooper, Margaret E.; Weyant, Robert J.; Shaffer, John R.; Crout, Richard J.; Simhan, Hyagriv N.; Beach, Scott R.; Chapman, Stella; Zovko, Jayme G.; Brown, Linda J.; Strotmeyer, Stephen J.; Maurer, Jennifer L.; Marazita, Mary L.

    2015-01-01

    Background. Chronic poor oral health has a high prevalence in Appalachia, a large region in the eastern USA. The Center for Oral Health Research in Appalachia (COHRA) has been enrolling pregnant women and their babies since 2011 in the COHRA2 study of genetic, microbial, and environmental factors involved in oral health in Northern Appalachia. Methods. The COHRA2 protocol is presented in detail, including inclusion criteria (healthy, adult, pregnant, US Caucasian, English speaking, and nonimmunocompromised women), recruiting (two sites: Pittsburgh, Pennsylvania, and West Virginia, USA), assessments (demographic, medical, dental, psychosocial/behavioral, and oral microbial samples and DNA), timelines (longitudinal from pregnancy to young childhood), quality control, and retention rates. Results. Preliminary oral health and demographic data are presented in 727 pregnant women, half from the greater Pittsburgh region and half from West Virginia. Despite similar tooth brushing and flossing habits, COHRA2 women in West Virginia have significantly worse oral health than the Pittsburgh sample. Women from Pittsburgh are older and more educated and have less unemployment than the West Virginia sample. Conclusions. We observed different prevalence of oral health and demographic variables between pregnant women from West Virginia (primarily rural) and Pittsburgh (primarily urban). These observations suggest site-specific differences within Northern Appalachia that warrant future studies. PMID:26089906

  13. Biofilm on the tracheoesophageal voice prosthesis: considerations for oral decontamination.

    PubMed

    Somogyi-Ganss, Eszter; Chambers, Mark S; Lewin, Jan S; Tarrand, Jeffrey J; Hutcheson, Katherine A

    2017-01-01

    The tracheoesophageal puncture (TEP) restores verbal communication after total laryngectomy using a one-way valved voice prosthesis (VP). Microbial colonization can shorten VP device life. Our aims were to investigate patterns of prosthetic and oral colonization, and record changes in VP device life after targeted decontamination. We conducted a retrospective review of TEP clinic patients who underwent microbial analysis of the VP between 01/2003 and 07/2013. Two subgroups were analyzed: (1) patients with microbial analysis of the VP and the mouth were analyzed to identify patterns of common contamination, and (2) patients who were prescribed targeted oral decontamination on the basis of the microbial analysis of the VP were analyzed to evaluate effects on device life. Among 42 patients, 3 patients had only fungal, 5 only bacterial, and 33 had polyspecies fungal and bacterial colonization. In the TEP-oral microflora subgroup (n = 15), 7 had common microorganisms in the mouth and on the VP. Among the decontamination subgroup (n = 23), 6 patients received broad spectrum rinse, 16 antifungal agents and 13 antibiotics, or a combination thereof. After targeted decontamination, the median device life of prostheses improved from 7.89 to 10.82 weeks (p = 0.260). The majority of patients with a suboptimal VP device life in this pilot had polyspecies bacterial and fungal colonization. VPs rarely had fungal contamination alone (3 %), and non-albicans fungal species were more common than expected. For these reasons, we are exploring the use of targeted decontamination regimens that were associated with 1.4-fold improvement in VP duration.

  14. Human Immune Function and Microbial Pathogenesis in Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Pierson, Duane J.; Ott, M.

    2006-01-01

    This oral presentation was requested by Conference conveners. The requested subject is microbial risk assessment considering changes in the human immune system during flight and microbial diversity of environmental samples aboard the International Space Station (ISS). The presentation will begin with an introduction discussing the goals and limitations of microbial risk assessment during flight. The main portion of the presentation will include changes in the immune system that have been published, historical data from microbial analyses, and initial modeling of the environmental flora aboard ISS. The presentation will conclude with future goals and techniques to enhance our ability to perform microbial risk assessment on long duration missions.

  15. Oral Microbiome Metabolism: From "Who Are They?" to "What Are They Doing?".

    PubMed

    Takahashi, N

    2015-12-01

    Recent advances in molecular biology have facilitated analyses of the oral microbiome ("Who are they?"); however, its functions (e.g., metabolic activities) are poorly understood ("What are they doing?"). This review aims to summarize our current understanding of the metabolism of the oral microbiome. Saccharolytic bacteria-including Streptococcus, Actinomyces, and Lactobacillus species-degrade carbohydrates into organic acids via the Embden-Meyerhof-Parnas pathway and several of its branch pathways, resulting in dental caries, while alkalization and acid neutralization via the arginine deiminase system, urease, and so on, counteract acidification. Proteolytic/amino acid-degrading bacteria, including Prevotella and Porphyromonas species, break down proteins and peptides into amino acids and degrade them further via specific pathways to produce short-chain fatty acids, ammonia, sulfur compounds, and indole/skatole, which act as virulent and modifying factors in periodontitis and oral malodor. Furthermore, it is suggested that ethanol-derived acetaldehyde can cause oral cancer, while nitrate-derived nitrite can aid caries prevention and systemic health. Microbial metabolic activity is influenced by the oral environment; however, it can also modify the oral environment, enhance the pathogenicity of bacteria, and induce microbial selection to create more pathogenic microbiome. Taking a metabolomic approach to analyzing the oral microbiome is crucial to improving our understanding of the functions of the oral microbiome. © International & American Associations for Dental Research 2015.

  16. Oral health and care in the intensive care unit: state of the science.

    PubMed

    Munro, Cindy L; Grap, Mary Jo

    2004-01-01

    Oral health is influenced by oral microbial flora, which are concentrated in dental plaque. Dental plaque provides a microhabitat for organisms and an opportunity for adherence of the organisms to either the tooth surface or other microorganisms. In critically ill patients, potential pathogens can be cultured from the oral cavity. These microorganisms in the mouth can translocate and colonize the lung, resulting in ventilator-associated pneumonia. The importance of oral care in the intensive care unit has been noted in the literature, but little research is available on mechanical or pharmacological approaches to reducing oral microbial flora via oral care in critically ill adults. Most research in oral care has been directed toward patients' comfort; the microbiological and physiological effects of tooth brushing in the intensive care unit have not been reported. Although 2 studies indicated reductions in rates of ventilator-associated pneumonia in cardiac surgery patients who received chlorhexidine before intubation and postoperatively, the effects of chlorhexidine in reducing ventilator-associated pneumonia in other populations of critically ill patients or its effect when treatment with the agent initiated after intubation have not been reported. In addition, no evaluation of the effectiveness of pharmacological and mechanical interventions relative to each other or in combination has been published. Additional studies are needed to develop and test best practices for oral care in critically ill patients.

  17. Effect of Fixed Orthodontic Treatment on Salivary Flow, pH and Microbial Count.

    PubMed

    Arab, Sepideh; Nouhzadeh Malekshah, Sepideh; Abouei Mehrizi, Ehsan; Ebrahimi Khanghah, Anita; Naseh, Roya; Imani, Mohammad Moslem

    2016-01-01

    The present study was designed to evaluate the changes in saliva properties and oral microbial flora in patients undergoing fixed orthodontic treatment. Two important saliva properties namely the salivary flow rate and pH as well as oral microbial flora were assessed in 30 orthodontic patients before starting fixed orthodontic treatment and after six, 12 and 18 weeks of treatment. Selective media, Sabouraud dextrose agar, Mitis salivarius agar and Rogosa agar were used for isolation of Candida albicans, Streptococcus mutans and Lactobacillus acidophilus, respectively. Statistical analysis was performed using Friedman and Dunn's tests. P< 0.05 was considered statistically significant. After six, 12 and 18 weeks of commencing fixed orthodontic treatment, the total colony counts of Candida albicans, Streptococcus mutans and Lactobacillus acidophilus showed a significant increase. The saliva pH decreased during the orthodontic treatment (P< 0.05) while the salivary flow did not change significantly. Fixed orthodontic treatment causes major changes in the saliva properties. The changes in oral microflora and saliva properties show the importance of caries preventive measures during orthodontic treatment.

  18. Cohabiting family members share microbiota with one another and with their dogs.

    PubMed

    Song, Se Jin; Lauber, Christian; Costello, Elizabeth K; Lozupone, Catherine A; Humphrey, Gregory; Berg-Lyons, Donna; Caporaso, J Gregory; Knights, Dan; Clemente, Jose C; Nakielny, Sara; Gordon, Jeffrey I; Fierer, Noah; Knight, Rob

    2013-04-16

    Human-associated microbial communities vary across individuals: possible contributing factors include (genetic) relatedness, diet, and age. However, our surroundings, including individuals with whom we interact, also likely shape our microbial communities. To quantify this microbial exchange, we surveyed fecal, oral, and skin microbiota from 60 families (spousal units with children, dogs, both, or neither). Household members, particularly couples, shared more of their microbiota than individuals from different households, with stronger effects of co-habitation on skin than oral or fecal microbiota. Dog ownership significantly increased the shared skin microbiota in cohabiting adults, and dog-owning adults shared more 'skin' microbiota with their own dogs than with other dogs. Although the degree to which these shared microbes have a true niche on the human body, vs transient detection after direct contact, is unknown, these results suggest that direct and frequent contact with our cohabitants may significantly shape the composition of our microbial communities. DOI:http://dx.doi.org/10.7554/eLife.00458.001.

  19. Cohabiting family members share microbiota with one another and with their dogs

    PubMed Central

    Song, Se Jin; Lauber, Christian; Costello, Elizabeth K; Lozupone, Catherine A; Humphrey, Gregory; Berg-Lyons, Donna; Caporaso, J Gregory; Knights, Dan; Clemente, Jose C; Nakielny, Sara; Gordon, Jeffrey I; Fierer, Noah; Knight, Rob

    2013-01-01

    Human-associated microbial communities vary across individuals: possible contributing factors include (genetic) relatedness, diet, and age. However, our surroundings, including individuals with whom we interact, also likely shape our microbial communities. To quantify this microbial exchange, we surveyed fecal, oral, and skin microbiota from 60 families (spousal units with children, dogs, both, or neither). Household members, particularly couples, shared more of their microbiota than individuals from different households, with stronger effects of co-habitation on skin than oral or fecal microbiota. Dog ownership significantly increased the shared skin microbiota in cohabiting adults, and dog-owning adults shared more ‘skin’ microbiota with their own dogs than with other dogs. Although the degree to which these shared microbes have a true niche on the human body, vs transient detection after direct contact, is unknown, these results suggest that direct and frequent contact with our cohabitants may significantly shape the composition of our microbial communities. DOI: http://dx.doi.org/10.7554/eLife.00458.001 PMID:23599893

  20. [New approaches to oral cavity opportunistic microbiota study].

    PubMed

    Tets, G V; Vikina, D S; Vecherkovskaia, M F; Domorad, A A; Kharlamova, V V; Tets, V V

    2013-01-01

    Identification of some bacteria of the oral microbiota in humans including opportunistic pathogens capable of causing infections of various locations is a challenging problem for dentistry. Lack of knowledge on oral microbiota is the result of the absence of appropriate culture technique for isolation of pure cultures of those bacteria. The paper presents the study on mixed oral microbial biofilms with isolation and identification of insufficiently explored or still unknown aerobic opportunistic bacteria.

  1. Towards understanding oral health.

    PubMed

    Zaura, Egija; ten Cate, Jacob M

    2015-01-01

    During the last century, dental research has focused on unraveling the mechanisms behind various oral pathologies, while oral health was typically described as the mere absence of oral diseases. The term 'oral microbial homeostasis' is used to describe the capacity of the oral ecosystem to maintain microbial community stability in health. However, the oral ecosystem itself is not stable: throughout life an individual undergoes multiple physiological changes while progressing through infancy, childhood, adolescence, adulthood and old age. Recent discussions on the definition of general health have led to the proposal that health is the ability of the individual to adapt to physiological changes, a condition known as allostasis. In this paper the allostasis principle is applied to the oral ecosystem. The multidimensionality of the host factors contributing to allostasis in the oral cavity is illustrated with an example on changes occurring in puberty. The complex phenomenon of oral health and the processes that prevent the ecosystem from collapsing during allostatic changes in the entire body are far from being understood. As yet individual components (e.g. hard tissues, microbiome, saliva, host response) have been investigated, while only by consolidating these and assessing their multidimensional interactions should we be able to obtain a comprehensive understanding of the ecosystem, which in turn could serve to develop rational schemes to maintain health. Adapting such a 'system approach' comes with major practical challenges for the entire research field and will require vast resources and large-scale multidisciplinary collaborations. 2015 S. Karger AG, Basel

  2. Genetic profiling of the oral microbiota associated with severe early-childhood caries.

    PubMed

    Li, Y; Ge, Y; Saxena, D; Caufield, P W

    2007-01-01

    The determination of the composition of the microbial community in the oral cavity is usually based on cultivation methods; however, nearly half of the bacteria in the saliva and the dental plaque are not cultivable. In this study, we evaluated the difference in oral microbial diversity between children with severe early-childhood caries (S-ECC) and caries-free (CF) controls by means of a cultivation-independent approach called denaturing gradient gel electrophoresis (DGGE). Pooled dental plaque samples were collected from 20 children aged 2 to 8 years. Total microbial genomic DNA was isolated from those subjects, and a portion of the 16S rRNA gene locus was PCR amplified by using universal primers. We observed that the mean species richness of the bacterial population was greater in the CF children (n = 12) (42 +/- 3.7) than in the S-ECC children (n = 8) (35 +/- 4.3); the difference was statistically significant (P = 0.005). The overall diversity of plaque samples as measured by the Shannon index was 3.5 for the S-ECC group and 3.7 for the CF group (P = 0.004). Differences in DGGE profiles were distinguished on the basis of a cluster analysis. Sequence analysis of excised DGGE bands consisted of 2.7 phylotypes, on average. After adjusting for the number of observed bands, we estimated that the S-ECC group exhibited 94.5 total phylotypes and that the CF group exhibited 113.4. These results suggest that the microbial diversity and complexity of the microbial biota in dental plaque are significantly less in S-ECC children than in CF children.

  3. The microbiome of the oral mucosa in irritable bowel syndrome

    PubMed Central

    Fourie, Nicolaas H.; Wang, Dan; Abey, Sarah K.; Sherwin, LeeAnne B.; Joseph, Paule V.; Rahim-Williams, Bridgett; Ferguson, Eric G.; Henderson, Wendy A.

    2016-01-01

    abstract Irritable bowel syndrome (IBS) is a poorly understood disorder characterized by persistent symptoms, including visceral pain. Studies have demonstrated oral microbiome differences in inflammatory bowel diseases suggesting the potential of the oral microbiome in the study of non-oral conditions. In this exploratory study we examine whether differences exist in the oral microbiome of IBS participants and healthy controls, and whether the oral microbiome relates to symptom severity. The oral buccal mucosal microbiome of 38 participants was characterized using PhyloChip microarrays. The severity of visceral pain was assessed by orally administering a gastrointestinal test solution. Participants self-reported their induced visceral pain. Pain severity was highest in IBS participants (P = 0.0002), particularly IBS-overweight participants (P = 0.02), and was robustly correlated to the abundance of 60 OTUs, 4 genera, 5 families and 4 orders of bacteria (r2 > 0.4, P < 0.001). IBS-overweight participants showed decreased richness in the phylum Bacteroidetes (P = 0.007) and the genus Bacillus (P = 0.008). Analysis of β-diversity found significant separation of the IBS-overweight group (P < 0.05). Our oral microbial results are concordant with described fecal and colonic microbiome-IBS and -weight associations. Having IBS and being overweight, rather than IBS-subtypes, was the most important factor in describing the severity of visceral pain and variation in the microbiome. Pain severity was strongly correlated to the abundance of many taxa, suggesting the potential of the oral microbiome in diagnosis and patient phenotyping. The oral microbiome has potential as a source of microbial information in IBS. PMID:26963804

  4. Candida albicans Inhibits Pseudomonas aeruginosa Virulence through Suppression of Pyochelin and Pyoverdine Biosynthesis

    PubMed Central

    Lopez-Medina, Eduardo; Fan, Di; Coughlin, Laura A.; Ho, Evi X.; Lamont, Iain L.; Reimmann, Cornelia; Hooper, Lora V.; Koh, Andrew Y.

    2015-01-01

    Bacterial-fungal interactions have important physiologic and medical ramifications, but the mechanisms of these interactions are poorly understood. The gut is host to trillions of microorganisms, and bacterial-fungal interactions are likely to be important. Using a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, we show that the fungus Candida albicans inhibits the virulence of the bacterium Pseudomonas aeruginosa by inhibiting P. aeruginosa pyochelin and pyoverdine gene expression, which plays a critical role in iron acquisition and virulence. Accordingly, deletion of both P. aeruginosa pyochelin and pyoverdine genes attenuates P. aeruginosa virulence. Heat-killed C. albicans has no effect on P. aeruginosa, whereas C. albicans secreted proteins directly suppress P. aeruginosa pyoverdine and pyochelin expression and inhibit P. aeruginosa virulence in mice. Interestingly, suppression or deletion of pyochelin and pyoverdine genes has no effect on P. aeruginosa’s ability to colonize the GI tract but does decrease P. aeruginosa’s cytotoxic effect on cultured colonocytes. Finally, oral iron supplementation restores P. aeruginosa virulence in P. aeruginosa and C. albicans colonized mice. Together, our findings provide insight into how a bacterial-fungal interaction can modulate bacterial virulence in the intestine. Previously described bacterial-fungal antagonistic interactions have focused on growth inhibition or colonization inhibition/modulation, yet here we describe a novel observation of fungal-inhibition of bacterial effectors critical for virulence but not important for colonization. These findings validate the use of a mammalian model system to explore the complexities of polymicrobial, polykingdom infections in order to identify new therapeutic targets for preventing microbial disease. PMID:26313907

  5. A Western diet ecological module identified from the 'humanized' mouse microbiota predicts diet in adults and formula feeding in children.

    PubMed

    Siddharth, Jay; Holway, Nicholas; Parkinson, Scott J

    2013-01-01

    The interplay between diet and the microbiota has been implicated in the growing frequency of chronic diseases associated with the Western lifestyle. However, the complexity and variability of microbial ecology in humans and preclinical models has hampered identification of the molecular mechanisms underlying the association of the microbiota in this context. We sought to address two key questions. Can the microbial ecology of preclinical models predict human populations? And can we identify underlying principles that surpass the plasticity of microbial ecology in humans? To do this, we focused our study on diet; perhaps the most influential factor determining the composition of the gut microbiota. Beginning with a study in 'humanized' mice we identified an interactive module of 9 genera allied with Western diet intake. This module was applied to a controlled dietary study in humans. The abundance of the Western ecological module correctly predicted the dietary intake of 19/21 top and 21/21 of the bottom quartile samples inclusive of all 5 Western and 'low-fat' diet subjects, respectively. In 98 volunteers the abundance of the Western module correlated appropriately with dietary intake of saturated fatty acids, fat-soluble vitamins and fiber. Furthermore, it correlated with the geographical location and dietary habits of healthy adults from the Western, developing and third world. The module was also coupled to dietary intake in children (and piglets) correlating with formula (vs breast) feeding and associated with a precipitous development of the ecological module in young children. Our study provides a conceptual platform to translate microbial ecology from preclinical models to humans and identifies an ecological network module underlying the association of the gut microbiota with Western dietary habits.

  6. A Western Diet Ecological Module Identified from the ‘Humanized’ Mouse Microbiota Predicts Diet in Adults and Formula Feeding in Children

    PubMed Central

    Siddharth, Jay; Holway, Nicholas; Parkinson, Scott J.

    2013-01-01

    The interplay between diet and the microbiota has been implicated in the growing frequency of chronic diseases associated with the Western lifestyle. However, the complexity and variability of microbial ecology in humans and preclinical models has hampered identification of the molecular mechanisms underlying the association of the microbiota in this context. We sought to address two key questions. Can the microbial ecology of preclinical models predict human populations? And can we identify underlying principles that surpass the plasticity of microbial ecology in humans? To do this, we focused our study on diet; perhaps the most influential factor determining the composition of the gut microbiota. Beginning with a study in ‘humanized’ mice we identified an interactive module of 9 genera allied with Western diet intake. This module was applied to a controlled dietary study in humans. The abundance of the Western ecological module correctly predicted the dietary intake of 19/21 top and 21/21 of the bottom quartile samples inclusive of all 5 Western and ‘low-fat’ diet subjects, respectively. In 98 volunteers the abundance of the Western module correlated appropriately with dietary intake of saturated fatty acids, fat-soluble vitamins and fiber. Furthermore, it correlated with the geographical location and dietary habits of healthy adults from the Western, developing and third world. The module was also coupled to dietary intake in children (and piglets) correlating with formula (vs breast) feeding and associated with a precipitous development of the ecological module in young children. Our study provides a conceptual platform to translate microbial ecology from preclinical models to humans and identifies an ecological network module underlying the association of the gut microbiota with Western dietary habits. PMID:24391809

  7. A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome.

    PubMed

    Warinner, Christina; Speller, Camilla; Collins, Matthew J

    2015-01-19

    The field of palaeomicrobiology is dramatically expanding thanks to recent advances in high-throughput biomolecular sequencing, which allows unprecedented access to the evolutionary history and ecology of human-associated and environmental microbes. Recently, human dental calculus has been shown to be an abundant, nearly ubiquitous, and long-term reservoir of the ancient oral microbiome, preserving not only microbial and host biomolecules but also dietary and environmental debris. Modern investigations of native human microbiota have demonstrated that the human microbiome plays a central role in health and chronic disease, raising questions about changes in microbial ecology, diversity and function through time. This paper explores the current state of ancient oral microbiome research and discusses successful applications, methodological challenges and future possibilities in elucidating the intimate evolutionary relationship between humans and their microbes.

  8. Review article: the gut microbiome in inflammatory bowel disease-avenues for microbial management.

    PubMed

    McIlroy, J; Ianiro, G; Mukhopadhya, I; Hansen, R; Hold, G L

    2018-01-01

    The concept of an altered collective gut microbiota rather than identification of a single culprit is possibly the most significant development in inflammatory bowel disease research. We have entered the "omics" era, which now allows us to undertake large-scale/high-throughput microbiota analysis which may well define how we approach diagnosis and treatment of inflammatory bowel disease (IBD) in the future, with a strong steer towards personalised therapeutics. To assess current epidemiological, experimental and clinical evidence of the current status of knowledge relating to the gut microbiome, and its role in IBD, with emphasis on reviewing the evidence relating to microbial therapeutics and future microbiome modulating therapeutics. A Medline search including items 'intestinal microbiota/microbiome', 'inflammatory bowel disease', 'ulcerative colitis', 'Crohn's disease', 'faecal microbial transplantation', 'dietary manipulation' was performed. Disease remission and relapse are associated with microbial changes in both mucosal and luminal samples. In particular, a loss of species richness in Crohn's disease has been widely observed. Existing therapeutic approaches broadly fall into 3 categories, namely: accession, reduction or indirect modulation of the microbiome. In terms of microbial therapeutics, faecal microbial transplantation appears to hold the most promise; however, differences in study design/methodology mean it is currently challenging to elegantly translate results into clinical practice. Existing approaches to modulate the gut microbiome are relatively unrefined. Looking forward, the future of microbiome-modulating therapeutics looks bright with several novel strategies/technologies on the horizon. Taken collectively, it is clear that ignoring the microbiome in IBD is not an option. © 2017 John Wiley & Sons Ltd.

  9. Comparative effect of a stannous fluoride toothpaste and a sodium fluoride toothpaste on a multispecies biofilm.

    PubMed

    Cheng, Xingqun; Liu, Jinman; Li, Jiyao; Zhou, Xuedong; Wang, Lijiang; Liu, Jiquan; Xu, Xin

    2017-02-01

    This paper aimed to compare the mode of action of a stannous fluoride-containing toothpaste with a conventional sodium fluoride-containing toothpaste on anti-biofilm properties. A three-species biofilm model that consists of Streptococcus mutans, Streptococcus sanguinis and Porphyromonas gingivalis was established to compare the anti-biofilm properties of a stannous fluoride-containing toothpaste (CPH), a conventional sodium fluoride-containing toothpaste (CCP) and a negative control (PBS). The 48h biofilms were subjected to two-minute episodes of treatment with test agents twice a day for 5 consecutive days. Crystal violet staining and XTT assays were used to evaluate the biomass and viability of the treated biofilm. Live/dead staining and bacteria/extracellular polysaccharides (EPS) double-staining were used to visualize the biofilm structure and to quantify microbial/extracellular components of the treated biofilms. Species-specific fluorescent in situ hybridization and quantitative polymerase chain reaction (qPCR) were used to analyze microbial composition of the biofilms after treatment. The biomass and viability of the biofilms were significantly reduced after CPH toothpaste treatment. The inhibitory effect was further confirmed by the live/dead staining. The EPS amounts of the three-species biofilm were significantly reduced by CCP and CPH treatments, and CPH toothpaste demonstrated significant inhibition on EPS production. More importantly, CPH toothpaste significantly suppressed S. mutans and P. gingvalis, and enriched S. sanguinis in the three-species biofilm. In all experiments CPH had a significantly greater effect than CCP (p<0.05) and CCP had a greater effect than PBS (p<0.05). Stannous fluoride-containing toothpaste not only showed better inhibitory effect against oral microbial biofilm, but was also able to modulate microbial composition within multi-species biofilm compared with conventional sodium fluoride-containing toothpaste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. 'Drugs from bugs': bacterial effector proteins as promising biological (immune-) therapeutics.

    PubMed

    Rüter, Christian; Hardwidge, Philip R

    2014-02-01

    Immune system malfunctions cause many of the most severe human diseases. The immune system has evolved primarily to control bacterial, viral, fungal, and parasitic infections. In turn, over millions of years of coevolution, microbial pathogens have evolved various mechanisms to control and modulate the host immune system for their own benefit and survival. For example, many bacterial pathogens use virulence proteins to modulate and exploit target cell mechanisms. Our understanding of these bacterial strategies opens novel possibilities to exploit 'microbial knowledge' to control excessive immune reactions. Gaining access to strategies of microbial pathogens could lead to potentially huge benefits for the therapy of inflammatory diseases. Most work on bacterial pathogen effector proteins has the long-term aim of neutralizing the infectious capabilities of the pathogen. However, attenuated pathogens and microbial products have been used for over a century with overwhelming success in the form of vaccines to induce specific immune responses that protect against the respective infectious diseases. In this review, we focus on bacterial effector and virulence proteins capable of modulating and suppressing distinct signaling pathways with potentially desirable immune-modulating effects for treating unrelated inflammatory diseases. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. A microbial biogeochemistry network for soil carbon and nitrogen cycling and methane flux: model structure and application to Asia

    NASA Astrophysics Data System (ADS)

    Xu, X.; Song, C.; Wang, Y.; Ricciuto, D. M.; Lipson, D.; Shi, X.; Zona, D.; Song, X.; Yuan, F.; Oechel, W. C.; Thornton, P. E.

    2017-12-01

    A microbial model is introduced for simulating microbial mechanisms controlling soil carbon and nitrogen biogeochemical cycling and methane fluxes. The model is built within the CN (carbon-nitrogen) framework of Community Land Model 4.5, named as CLM-Microbe to emphasize its explicit representation of microbial mechanisms to biogeochemistry. Based on the CLM4.5, three new pools were added: bacteria, fungi, and dissolved organic matter. It has 11 pools and 34 transitional processes, compared with 8 pools and 9 transitional flow in the CLM4.5. The dissolve organic carbon was linked with a new microbial functional group based methane module to explicitly simulate methane production, oxidation, transport and their microbial controls. Comparing with CLM4.5-CN, the CLM-Microbe model has a number of new features, (1) microbial control on carbon and nitrogen flows between soil carbon/nitrogen pools; (2) an implicit representation of microbial community structure as bacteria and fungi; (3) a microbial functional-group based methane module. The model sensitivity analysis suggests the importance of microbial carbon allocation parameters on soil biogeochemistry and microbial controls on methane dynamics. Preliminary simulations validate the model's capability for simulating carbon and nitrogen dynamics and methane at a number of sites across the globe. The regional application to Asia has verified the model in simulating microbial mechanisms in controlling methane dynamics at multiple scales.

  12. Metagenomic and metatranscriptomic analysis of saliva reveals disease-associated microbiota in patients with periodontitis and dental caries.

    PubMed

    Belstrøm, Daniel; Constancias, Florentin; Liu, Yang; Yang, Liang; Drautz-Moses, Daniela I; Schuster, Stephan C; Kohli, Gurjeet Singh; Jakobsen, Tim Holm; Holmstrup, Palle; Givskov, Michael

    2017-01-01

    The taxonomic composition of the salivary microbiota has been reported to differentiate between oral health and disease. However, information on bacterial activity and gene expression of the salivary microbiota is limited. The purpose of this study was to perform metagenomic and metatranscriptomic characterization of the salivary microbiota and test the hypothesis that salivary microbial presence and activity could be an indicator of the oral health status. Stimulated saliva samples were collected from 30 individuals (periodontitis: n  = 10, dental caries: n  = 10, oral health: n  = 10). Salivary microbiota was characterized using metagenomics and metatranscriptomics in order to compare community composition and the gene expression between the three groups. Streptococcus was the predominant bacterial genus constituting approx. 25 and 50% of all DNA and RNA reads, respectively. A significant disease-associated higher relative abundance of traditional periodontal pathogens such as Porphyromonas gingivalis and Filifactor alocis and salivary microbial activity of F . alocis was associated with periodontitis. Significantly higher relative abundance of caries-associated bacteria such as Streptococcus mutans and Lactobacillus fermentum was identified in saliva from patients with dental caries. Multiple genes involved in carbohydrate metabolism were significantly more expressed in healthy controls compared to periodontitis patients. Using metagenomics and metatranscriptomics we show that relative abundance of specific oral bacterial species and bacterial gene expression in saliva associates with periodontitis and dental caries. Further longitudinal studies are warranted to evaluate if screening of salivary microbial activity of specific oral bacterial species and metabolic gene expression can identify periodontitis and dental caries at preclinical stages.

  13. Effect of an oxygenating agent on oral bacteria in vitro and on dental plaque composition in healthy young adults

    PubMed Central

    Fernandez y Mostajo, Mercedes; van der Reijden, Wil A.; Buijs, Mark J.; Beertsen, Wouter; van der Weijden, Fridus; Crielaard, Wim; Zaura, Egija

    2014-01-01

    Oral bacteria live in symbiosis with the host. Therefore, when mouthwashes are indicated, selective inhibition of taxa contributing to disease is preferred instead of broad-spectrum antimicrobials. The potential selectivity of an oxygenating mouthwash, Ardox-X® (AX), has not been assessed. The aim of this study was to determine the antimicrobial potential of AX and the effects of a twice-daily oral rinse on dental plaque composition. Material and methods: In vitro, 16 oral bacterial strains were tested using agar diffusion susceptibility, minimum inhibitory and minimum bactericidal concentration tests. A pilot clinical study was performed with 25 healthy volunteers. Clinical assessments and microbiological sampling of supragingival plaque were performed at 1 month before the experiment (Pre-exp), at the start of the experiment (Baseline) and after the one-week experimental period (Post-exp). During the experiment individuals used AX mouthwash twice daily in absence of other oral hygiene measures. The microbiological composition of plaque was assessed by 16S rRNA gene amplicon sequencing. Results: AX showed high inter-species variation in microbial growth inhibition. The tested Prevotella strains and Fusobacterium nucleatum showed the highest sensitivity, while streptococci and Lactobacillus acidophilus were most resistant to AX. Plaque scores at Pre-exp and Baseline visits did not differ significantly (p = 0.193), nor did the microbial composition of plaque. During a period of 7-days non-brushing but twice daily rinsing plaque scores increased from 2.21 (0.31) at Baseline to 2.43 (0.39) Post-exp. A significant microbial shift in composition was observed: genus Streptococcus and Veillonella increased while Corynebacterium, Haemophilus, Leptotrichia, Cardiobacterium and Capnocytophaga decreased (p ≤ 0.001). Conclusion: AX has the potential for selective inhibition of oral bacteria. The shift in oral microbiome after 1 week of rinsing deserves further research. PMID:25101249

  14. Gene expression profiling provides insights into the immune mechanism of Plutella xylostella midgut to microbial infection.

    PubMed

    Lin, Junhan; Xia, Xiaofeng; Yu, Xiao-Qiang; Shen, Jinhong; Li, Yong; Lin, Hailan; Tang, Shanshan; Vasseur, Liette; You, Minsheng

    2018-03-20

    Insect gut immunity plays a key role in defense against microorganism infection. The knowledge of insect gut immunity has been obtained mostly from Drosophila melanogaster. Little is known about gut immunity in the diamondback moth, Plutella xylostella (L.), a pest destroying cruciferous crops worldwide. In this study, expressions of the immune-related genes in the midgut of P. xylostella orally infected with Staphylococcus aureus, Escherichia coli and Pichia pastoris were profiled by RNA-seq and qRT-PCR approaches. The results revealed that the Toll, IMD, JNK and JAK-STAT pathways and possibly the prophenoloxidase activation system in P. xylostella could be activated by oral infections, and moricins, gloverins and lysozyme2 might act as important effectors against microorganisms. Subsequent knock-down of IMD showed that this gene was involved in regulating the expression of down-stream genes in the IMD pathway. Our work indicates that the Toll, IMD, JNK and JAK-STAT pathways may synergistically modulate immune responses in the P. xylostella midgut, implying a complex and diverse immune system in the midgut of insects. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Linkages among geophysical facies, microbial composition, biogeochemical rates, and seasonal hydrology in the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Stegen, J.

    2016-12-01

    The hyporheic zone is a critical ecosystem transition that links terrestrial, aquatic, and subsurface domains. To understand connections among physical, microbial, and biogeochemical components of the hyporheic zone, we obtained freeze cores along the Columbia River in the Hanford 300 Area and performed geologic, molecular, and microbial assays. Mud and sand content were found to be the primary drivers of microbial community attributes (in particular, of nitrite and carbon oxidizers). Microbial community analysis revealed an abundance of nitrifying Archaea (Thaumarchaea) and an absence of nitrifiying Bacteria. Network analysis revealed significant negative correlations between sand content and some statistical modules of microbial taxa, perhaps indicating the importance of pore water residence time on community composition. A similar set of microbial modules was positively correlated with total organic carbon. One such module that also positively correlated with aerobic metabolic rates was dominated by Thaumarchaea and Nitrospira, suggesting that ammonia oxidation was the dominant aerobic process. We also examined temporal changes in hyporheic microbial structure and activity through repeated sampling of attached and pore water microbes across a spatial gradient. We found that microbial communities remained distinct in river, hyporheic, and inland zones across seasonal variation in hydrologic mixing conditions. One reason was temperature-driven increases in microbial species richness in the hyporheic zone. We show that the relative importance of ecological selection and dispersal varied across environments and across geographic zones. Our results also indicated that while selection imposed short-term constraints on microbial community structure, hyporheic sediment communities did not respond to short-term hydrologic variation. Importantly, we demonstrated that the influence of selective pressures varied with phylogenetic affiliation, which may have been responsible for seasonal increases in Thaumarchaea and aerobic activity. Our results elucidate spatiotemporal shifts in composition and activity of hyporheic microbes across sedimentary and seasonal gradients in pore water environments that correlate with the contribution of Thaumarchaea to aerobic processes.

  16. Community analysis of dental plaque and endotracheal tube biofilms from mechanically ventilated patients.

    PubMed

    Marino, Poala J; Wise, Matt P; Smith, Ann; Marchesi, Julian R; Riggio, Marcello P; Lewis, Michael A O; Williams, David W

    2017-06-01

    Mechanically ventilated patients are at risk for developing ventilator-associated pneumonia, and it has been reported that dental plaque provides a reservoir of respiratory pathogens that may aspirate to the lungs and endotracheal tube (ETT) biofilms. For the first time, metataxonomics was used to simultaneously characterize the microbiome of dental plaque, ETTs, and non-directed bronchial lavages (NBLs) in mechanically ventilated patients to determine similarities in respective microbial communities and therefore likely associations. Bacterial 16S rRNA gene sequences from 34 samples of dental plaque, NBLs, and ETTs from 12 adult mechanically ventilated patients were analyzed. No significant differences in the microbial communities of these samples were evident. Detected bacteria were primarily oral species (e.g., Fusobacterium nucleatum, Streptococcus salivarius, Prevotella melaninogenica) with respiratory pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcuspneumoniae, and Haemophilus influenzae) also in high abundance. The high similarity between the microbiomes of dental plaque, NBLs, and ETTs suggests that the oral cavity is indeed an important site involved in microbial aspiration to the lower airway and ETT. As such, maintenance of good oral hygiene is likely to be highly important in limiting aspiration of bacteria in this vulnerable patient group. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Quantitative Microbial Risk Assessment Tutorial: Installation of Software for Watershed Modeling in Support of QMRA

    EPA Science Inventory

    This tutorial provides instructions for accessing, retrieving, and downloading the following software to install on a host computer in support of Quantitative Microbial Risk Assessment (QMRA) modeling:• SDMProjectBuilder (which includes the Microbial Source Module as part...

  18. Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters.

    PubMed

    de Menezes, Alexandre B; Prendergast-Miller, Miranda T; Richardson, Alan E; Toscas, Peter; Farrell, Mark; Macdonald, Lynne M; Baker, Geoff; Wark, Tim; Thrall, Peter H

    2015-08-01

    Network and multivariate statistical analyses were performed to determine interactions between bacterial and fungal community terminal restriction length polymorphisms as well as soil properties in paired woodland and pasture sites. Canonical correspondence analysis (CCA) revealed that shifts in woodland community composition correlated with soil dissolved organic carbon, while changes in pasture community composition correlated with moisture, nitrogen and phosphorus. Weighted correlation network analysis detected two distinct microbial modules per land use. Bacterial and fungal ribotypes did not group separately, rather all modules comprised of both bacterial and fungal ribotypes. Woodland modules had a similar fungal : bacterial ribotype ratio, while in the pasture, one module was fungal dominated. There was no correspondence between pasture and woodland modules in their ribotype composition. The modules had different relationships to soil variables, and these contrasts were not detected without the use of network analysis. This study demonstrated that fungi and bacteria, components of the soil microbial communities usually treated as separate functional groups as in a CCA approach, were co-correlated and formed distinct associations in these adjacent habitats. Understanding these distinct modular associations may shed more light on their niche space in the soil environment, and allow a more realistic description of soil microbial ecology and function. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Dynamics of oral microbial community profiling during severe early childhood caries development monitored by PCR-DGGE.

    PubMed

    Tao, Ye; Zhou, Yan; Ouyang, Yong; Lin, HuanCai

    2013-09-01

    To monitor the longitudinal changes in oral microbial diversity of children with severe early childhood caries (S-ECC) compared to caries free (CF) controls. Dental plaque samples of 12 children in each group at 8, 14, 20, 26 and 32 months of age were analysed. Total microbial genomic DNA was isolated from each sample, and PCR-denaturing gradient gel electrophoresis (DGGE) analyses were carried out. The number of bands was significantly higher in the CF group (18.17±4.91 bands) than in the S-ECC group (14.54±5.56 bands) at 32 months of age (P<0.05). A total of 21 genera were identified in all subjects, and there were no significant differences between the two groups at genus level. DGGE profiles showed that most of the clusters were constructed from one individual over time in the both groups. The onset of S-ECC is accompanied by a decrease in microbial diversity. The overall composition of the microbiota is highly similar within an individual over time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate

    PubMed Central

    De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale; Gilbert, Jack A.; Ercolini, Danilo

    2016-01-01

    Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipid catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. The results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality. PMID:26911915

  1. A Review of Evidence for a Therapeutic Application of Traditional Japanese Kampo Medicine for Oral Diseases/Disorders.

    PubMed

    Veilleux, Marie-Pier; Moriyama, Satomi; Yoshioka, Masami; Hinode, Daisuke; Grenier, Daniel

    2018-04-18

    Kampo medicines prescribed by specialized medical practitioners and Japanese physicians have gradually reemerged in Japan as alternatives to Western medications. Kampo formulations are composed of several plant extracts and, as such, the broad variety of phytochemicals they contain likely act synergistically to provide their beneficial effects. Kampo medicines have traditionally been prescribed for a number of health conditions, including chronic hepatitis, bronchial asthma, anemia, etc. The aim of this article is to review the beneficial effects of Kampos with respect to oral health. Pertinent papers published between 1970 and 2017 were retrieved by searching in PubMed, ScienceDirect, Web of Science, and Scopus using key words followed by evaluation of the relevant articles. In vitro studies have identified a number of properties that give credence to the potential of Kampos for treating or preventing oral diseases/disorders. Given their anti-microbial and anti-inflammatory properties, they may be promising agents for controlling periodontal diseases, oral mucositis, xerostomia, and drug-induced gingival overgrowth. Since some oral diseases have a complex etiology that involves microbial pathogens and the host immune response, agents with dual functionality such as Kampo phytochemicals may offer a therapeutic advantage.

  2. The needs of denture-brushing in geriatrics: clinical aspects and perspectives.

    PubMed

    Berteretche, Marie-Violaine; Mastari, Fatima; Nicolas, Emmanuel; Hüe, Olivier

    2012-06-01

    Oral and denture hygiene are often defective in particular with dependent persons such as geriatric subjects. The reasons are the lack of hygiene education of the subjects or those caring for them. Consequently, oral hygiene is often neglected, resulting in poor oral health and an increase in the presence of local or general infections. This paper is a report of brushing effectiveness on microbial biofilm deposits on dentures of subjects participating in a specific oral hygiene programme. Thirty-nine dentures of 30 subjects were assessed for 2 weeks following an educational brushing programme. Microbial biofilm was recovered using fluoresceine and then scanned and quantified by 'Mesurim' software three times: before study, after 1 and 2 weeks. The repeated measurement procedures showed a decrease in the percentage of biofilm present (F = 15, p < 0.001) whatever the type of denture (partial or complete) and for all biomaterials. Regular denture-brushing can improve local hygiene. Consequently, decreasing the biofilm surface can reduce the prevalence of oral pathogens, thereby contributing to the general prevention of the risks of infections such as pneumotisis. © 2011 The Gerodontology Society and John Wiley & Sons A/S.

  3. Variations in the Oral Anaerobic Microbial Flora in Relation to Pregnancy

    PubMed Central

    Basavaraju, Anuradha; Durga S., Vijaya; Vanitha, B.

    2012-01-01

    Introduction Pregnancy gingivitis is a major oral infection. Periodontium acts as a reservoir of inflammatory mediators and sub gingival biofilms of bacteria. Aim: To evaluate the anaerobic oral microbial flora in pregnant women before delivery and after delivery by comparing them with control group. Material and Methods: The study group included fifteen cases of pregnant women before and after delivery and healthy non-pregnant women of same age as control group. Sub gingival plaque samples were collected with the help of dentists. The samples were inoculated immediately into Thioglycollate broth (MV010), transported to the laboratory, inoculated on to selective media for anaerobes (Hi-media laboratories) incubated anaerobically (Gas pack). Results: Prevotella, Tanerella forsythia, Porphyromonas gingivalis and Fusobacterium nucleatum, Veillonella, Peptostreptococcus were isolated. Discussion: The anaerobic bacteria in pregnant women were Prevotella, Tanerella forsythia and Porphyromonas gingivalis. Viellonella and Peptostreptococcus were seen in control group and after delivery. Research suggests that periodontal pathogens may travel the blood stream from the oral cavity to the placenta. Conclusion: Pregnancy has significant effect on periodontal tissue. There is a significant alteration of bacterial flora during and after pregnancy. Oral health has to become a part of antenatal care /check up. PMID:23285437

  4. PCB126 modulates fecal microbial fermentation of the dietary fiber inulin

    USDA-ARS?s Scientific Manuscript database

    Exposure to environmental pollutants can alter gut microbial populations. Short-chain fatty acids (SCFAs), produced from gut microbial fermentation of dietary fibers such as inulin, exert numerous effects on host energy metabolism. SCFAs are also linked to health promoting effects, including a red...

  5. Oral Microbial Ecology and the Role of Salivary Immunoglobulin A

    PubMed Central

    Marcotte, Harold; Lavoie, Marc C.

    1998-01-01

    In the oral cavity, indigenous bacteria are often associated with two major oral diseases, caries and periodontal diseases. These diseases seem to appear following an inbalance in the oral resident microbiota, leading to the emergence of potentially pathogenic bacteria. To define the process involved in caries and periodontal diseases, it is necessary to understand the ecology of the oral cavity and to identify the factors responsible for the transition of the oral microbiota from a commensal to a pathogenic relationship with the host. The regulatory forces influencing the oral ecosystem can be divided into three major categories: host related, microbe related, and external factors. Among host factors, secretory immunoglobulin A (SIgA) constitutes the main specific immune defense mechanism in saliva and may play an important role in the homeostasis of the oral microbiota. Naturally occurring SIgA antibodies that are reactive against a variety of indigenous bacteria are detectable in saliva. These antibodies may control the oral microbiota by reducing the adherence of bacteria to the oral mucosa and teeth. It is thought that protection against bacterial etiologic agents of caries and periodontal diseases could be conferred by the induction of SIgA antibodies via the stimulation of the mucosal immune system. However, elucidation of the role of the SIgA immune system in controlling the oral indigenous microbiota is a prerequisite for the development of effective vaccines against these diseases. The role of SIgA antibodies in the acquisition and the regulation of the indigenous microbiota is still controversial. Our review discusses the importance of SIgA among the multiple factors that control the oral microbiota. It describes the oral ecosystems, the principal factors that may control the oral microbiota, a basic knowledge of the secretory immune system, the biological functions of SIgA, and, finally, experiments related to the role of SIgA in oral microbial ecology. PMID:9529888

  6. A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome

    PubMed Central

    Warinner, Christina; Speller, Camilla; Collins, Matthew J.

    2015-01-01

    The field of palaeomicrobiology is dramatically expanding thanks to recent advances in high-throughput biomolecular sequencing, which allows unprecedented access to the evolutionary history and ecology of human-associated and environmental microbes. Recently, human dental calculus has been shown to be an abundant, nearly ubiquitous, and long-term reservoir of the ancient oral microbiome, preserving not only microbial and host biomolecules but also dietary and environmental debris. Modern investigations of native human microbiota have demonstrated that the human microbiome plays a central role in health and chronic disease, raising questions about changes in microbial ecology, diversity and function through time. This paper explores the current state of ancient oral microbiome research and discusses successful applications, methodological challenges and future possibilities in elucidating the intimate evolutionary relationship between humans and their microbes. PMID:25487328

  7. Effect of Coffea canephora aqueous extract on microbial counts in ex vivo oral biofilms: a case study.

    PubMed

    Antonio, Andréa Gonçalves; Iorio, Natália Lopes Pontes; Farah, Adriana; Netto dos Santos, Kátia Regina; Maia, Lucianne Cople

    2012-05-01

    In the present study, the ex vivo antimicrobial effect of brewed coffee was tested on oral biofilms. For this, unsweetened and sweetened (10 % sucrose) brewed light-roasted Coffea canephora at 20 % was used in biofilms formed by non-stimulated saliva from three volunteers. After 30 min contact with unsweetened and sweetened brews, the average microorganism count in the biofilms reduced by 15.2 % and 12.4 %, respectively, with no statistical difference among them. We also observed a drop of microorganisms in the biofilms after treatment with sucrose solution at 5 % compared to control (saline) and to sucrose at 1 % and 3 %. In conclusion, Coffea canephora extract reduces the microbial count in oral biofilm, and our data suggest that sucrose concentration in coffee brew can influence its antimicrobial property against the referred biofilm. Georg Thieme Verlag KG Stuttgart · New York.

  8. Metagenomic sequencing reveals microbiota and its functional potential associated with periodontal disease

    PubMed Central

    Wang, Jinfeng; Qi, Ji; Zhao, Hui; He, Shu; Zhang, Yifei; Wei, Shicheng; Zhao, Fangqing

    2013-01-01

    Although attempts have been made to reveal the relationships between bacteria and human health, little is known about the species and function of the microbial community associated with oral diseases. In this study, we report the sequencing of 16 metagenomic samples collected from dental swabs and plaques representing four periodontal states. Insights into the microbial community structure and the metabolic variation associated with periodontal health and disease were obtained. We observed a strong correlation between community structure and disease status, and described a core disease-associated community. A number of functional genes and metabolic pathways including bacterial chemotaxis and glycan biosynthesis were over-represented in the microbiomes of periodontal disease. A significant amount of novel species and genes were identified in the metagenomic assemblies. Our study enriches the understanding of the oral microbiome and sheds light on the contribution of microorganisms to the formation and succession of dental plaques and oral diseases. PMID:23673380

  9. A microbial functional group-based module for simulating methane production and consumption: Application to an incubated permafrost soil

    DOE PAGES

    Xu, Xiaofeng; Elias, Dwayne A.; Graham, David E.; ...

    2015-07-23

    In this study, accurately estimating methane (CH 4) flux is critically important for investigating and predicting the biogeochemistry-climate feedback. Better simulating CH 4 flux requires explicit representations of microbial processes on CH 4 dynamics because all processes for CH 4 production and consumption are actually carried out by microbes. A microbial functional group based module was developed and tested against an incubation experiment. The module considers four key mechanisms for CH 4 production and consumption: methanogenesis from acetate or single-carbon compounds and CH 4 oxidation using molecular oxygen or other inorganic electron acceptors. These four processes were carried out bymore » four microbial functional groups: acetoclastic methanogens, hydrogenotrophic methanogens, aerobic methanotrophs, and anaerobic methanotrophs. This module was then linked with the decomposition subroutine of the Community Land Model, and was further used to simulate dynamics of carbon dioxide (CO 2) and CH 4 concentrations from an incubation experiment with permafrost soils. The results show that the model could capture the dynamics of CO 2 and CH 4 concentrations in microcosms with top soils, mineral layer soils and permafrost soils under natural and saturated moisture conditions and a temperature gradient of -2°C, 3°C, and 5°C. Sensitivity analysis confirmed the importance of acetic acid's direct contribution as substrate and indirect effects through pH feedback on CO 2 and CH 4 production and consumption. This study suggests that representing the microbial mechanisms is critical for modeling CH 4 production and consumption; it is urgent to incorporate microbial mechanisms into Earth system models for better predicting the behavior of the climate system.« less

  10. The Fungal Biome of the Oral Cavity.

    PubMed

    Chandra, Jyotsna; Retuerto, Mauricio; Mukherjee, Pranab K; Ghannoum, Mahmoud

    2016-01-01

    Organisms residing in the oral cavity (oral microbiota) contribute to health and disease, and influence diseases like gingivitis, periodontitis, and oral candidiasis (the most common oral complication of HIV-infection). These organisms are also associated with cancer and other systemic diseases including upper respiratory infections. There is limited knowledge regarding how oral microbes interact together and influence the host immune system. Characterizing the oral microbial community (oral microbiota) in health and disease represents a critical step in gaining insight into various members of this community. While most of the studies characterizing oral microbiota have focused on bacterial community, there are few encouraging studies characterizing the oral mycobiome (the fungal component of the oral microbiota). Our group recently characterized the oral mycobiome in health and disease focusing on HIV. In this chapter we will describe the methods used by our group for characterization of the oral mycobiome.

  11. The impact of an oral hygiene education module on patient practices and nursing documentation.

    PubMed

    Coke, Lola; Otten, Karine; Staffileno, Beth; Minarich, Laura; Nowiszewski, Candice

    2015-02-01

    Oral hygiene is inconsistent among patients with cancer and is a national patient care issue. To promote comfort and nutritional status, oral hygiene for patients with cancer is important. The purpose of this study was to develop an evidence-based oral hygiene educational module (EM) for nursing and patient care technician (PCT) staff to promote consistent oral hygiene patient education; evaluate patient understanding of oral hygiene practices post-EM; and determine staff documentation frequency of oral hygiene care. Pre- and post-EM data were collected using a developed oral hygiene assessment tool; nursing documentation data were collected by chart review. Post-EM data were collected eight weeks post-EM. Data were analyzed using frequencies and the Mann-Whitney U test. Twenty-two patient documentation pairs were collected. Compared to pre-EM, admission teaching, patient education, and patient oral hygiene practices improved post-EM. Post-EM oral hygiene documentation and PCT teaching increased.

  12. Oral microbial and respiratory status of persons with mental retardation/intellectual and developmental disability: an observational cohort study.

    PubMed

    Binkley, Catherine J; Haugh, Gilbert S; Kitchens, Dinah H; Wallace, Debra L; Sessler, Daniel I

    2009-11-01

    The objective of this study was to determine the prevalence of select microorganisms in oral biofilms and to investigate relationships between oral and respiratory status in persons with mental retardation/intellectual and developmental disabilities (IDD). We conducted a 6-month-long observational cohort study with 63 persons with IDD. Oral examinations, oral sampling, and medical record reviews were performed at baseline and then monthly. Polymerase chain reaction (PCR) was used to analyze all baseline oral samples for the presence of Streptococcus pneumoniae, Methicillin-resistant Staphylococcus aureus (MRSA), Prevotella melaninogenica, and Candida albicans. PCR analyses were also performed on participants' samples collected in the month before being diagnosed with a respiratory infection. All subjects had P. melaninogenica detected by PCR in their oral samples. Fifty-five percent (35 of 63) of participants had S. pneumoniae, MRSA, and C. albicans in their oral samples at baseline. No dental decay was detected clinically, oral hygiene was fair, and dysphagia was common. During the 6 months of the study, there were 22 respiratory infections (35% of participants)-12 pneumonias, 7 sinusitis, 1 bronchitis, and 1 upper respiratory tract infection. Participants with microorganisms in their baseline samples were significantly more likely to develop any respiratory infection and those who had poor oral status were significantly more likely to develop pneumonia. Almost 60% of participants who developed respiratory infections had the same microorganism detected in the sample collected in the month before infection as had been detected in their baseline sample. Potentially pathogenic microorganisms in the oral cavity and poor oral status significantly increased the risk of developing respiratory infections, including pneumonia, in persons with IDD. The results suggest that colonization with these microorganisms may persist despite routine tooth brushing. Meticulous comprehensive oral hygiene of the oral cavity may be needed to reduce oropharyngeal microbial load.

  13. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System

    PubMed Central

    Ho, Adrian; Angel, Roey; Veraart, Annelies J.; Daebeler, Anne; Jia, Zhongjun; Kim, Sang Yoon; Kerckhof, Frederiek-Maarten; Boon, Nico; Bodelier, Paul L. E.

    2016-01-01

    Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes. PMID:27602021

  14. Linkages between oral commensal bacteria and atherosclerotic plaques in coronary artery disease patients.

    PubMed

    Chhibber-Goel, Jyoti; Singhal, Varsha; Bhowmik, Debaleena; Vivek, Rahul; Parakh, Neeraj; Bhargava, Balram; Sharma, Amit

    2016-01-01

    Coronary artery disease is an inflammatory disorder characterized by narrowing of coronary arteries due to atherosclerotic plaque formation. To date, the accumulated epidemiological evidence supports an association between oral bacterial diseases and coronary artery disease, but has failed to prove a causal link between the two. Due to the recent surge in microbial identification and analyses techniques, a number of bacteria have been independently found in atherosclerotic plaque samples from coronary artery disease patients. In this study, we present meta-analysis from published studies that have independently investigated the presence of bacteria within atherosclerotic plaque samples in coronary artery disease patients. Data were collated from 63 studies covering 1791 patients spread over a decade. Our analysis confirms the presence of 23 oral commensal bacteria, either individually or in co-existence, within atherosclerotic plaques in patients undergoing carotid endarterectomy, catheter-based atherectomy, or similar procedures. Of these 23 bacteria, 5 ( Campylobacter rectus , Porphyromonas gingivalis , Porphyromonas endodontalis , Prevotella intermedia , Prevotella nigrescens ) are unique to coronary plaques, while the other 18 are additionally present in non-cardiac organs, and associate with over 30 non-cardiac disorders. We have cataloged the wide spectrum of proteins secreted by above atherosclerotic plaque-associated bacteria, and discuss their possible roles during microbial migration via the bloodstream. We also highlight the prevalence of specific poly-microbial communities within atherosclerotic plaques. This work provides a resource whose immediate implication is the necessity to systematically catalog landscapes of atherosclerotic plaque-associated oral commensal bacteria in human patient populations.

  15. The oral cavity microbiota: between health, oral disease, and cancers of the aerodigestive tract.

    PubMed

    Le Bars, Pierre; Matamoros, Sébastien; Montassier, Emmanuel; Le Vacon, Françoise; Potel, Gilles; Soueidan, Assem; Jordana, Fabienne; de La Cochetière, Marie-France

    2017-06-01

    Many studies show that the human microbiome plays a critical role in the chronic pathologies of obesity, inflammatory bowel diseases, and diabetes. More recently, the interaction between cancer and the microbiome has been highlighted. Most studies have focused on the gut microbiota because it represents the most extensive bacterial community, and the body of evidence correlating it with gut syndromes is increasing. However, in the strict sense, the gastrointestinal (GI) tract begins in the oral cavity, and special attention should be paid to the specific flora of this cavity. This study reviewed the current knowledge about the various microbial ecosystems of the upper part of the GI tract and discussed their potential link to carcinogenesis. The overall composition of the microbial communities, as well as the presence or absence of "key species", in relation to carcinogenesis is addressed. Alterations in the oral microbiota can potentially be used to predict the risk of cancer. Molecular advances and the further monitoring of the microbiota will increase our understanding of the role of the microbiota in carcinogenesis and open new perspectives for future therapeutic and prophylactic modalities.

  16. Heterogeneity of interactions of microbial communities in regions of Taihu Lake with different nutrient loadings: A network analysis.

    PubMed

    Cao, Xinyi; Zhao, Dayong; Xu, Huimin; Huang, Rui; Zeng, Jin; Yu, Zhongbo

    2018-06-11

    To investigate the differences in the interactions of microbial communities in two regions in Taihu Lake with different nutrient loadings [Meiliang Bay (MLB) and Xukou Bay (XKB)], water samples were collected and both intra- and inter-kingdom microbial community interactions were examined with network analysis. It is demonstrated that all of the bacterioplankton, microeukaryotes and inter-kingdom communities networks in Taihu Lake were non-random. For the networks of bacterioplankton and inter-kingdom community in XKB, higher clustering coefficient and average degree but lower average path length indexes were observed, indicating the nodes in XKB were more clustered and closely connected with plenty edges than those of MLB. The bacterioplankton and inter-kingdom networks were considerably larger and more complex with more module hubs and connectors in XKB compared with those of MLB, whereas the microeukaryotes networks were comparable and had no module hubs or connectors in the two lake zones. The phyla of Acidobacteria, Cyanobacteria and Planctomycetes maintained greater cooperation with other phyla in XKB, rather than competition. The relationships between microbial communities and environmental factors in MLB were weaker. Compared with the microbial community networks of XKB, less modules in networks of MLB were significantly correlated with total phosphorous and total nitrogen.

  17. Non-digestible oligosaccharides directly regulate host kinome to modulate host inflammatory responses without alterations in the gut microbiota.

    PubMed

    Wu, Richard Y; Määttänen, Pekka; Napper, Scott; Scruten, Erin; Li, Bo; Koike, Yuhki; Johnson-Henry, Kathene C; Pierro, Agostino; Rossi, Laura; Botts, Steven R; Surette, Michael G; Sherman, Philip M

    2017-10-10

    Prebiotics are non-digestible food ingredients that enhance the growth of certain microbes within the gut microbiota. Prebiotic consumption generates immune-modulatory effects that are traditionally thought to reflect microbial interactions within the gut. However, recent evidence suggests they may also impart direct microbe-independent effects on the host, though the mechanisms of which are currently unclear. Kinome arrays were used to profile the host intestinal signaling responses to prebiotic exposures in the absence of microbes. Identified pathways were functionally validated in Caco-2Bbe1 intestinal cell line and in vivo model of murine endotoxemia. We found that prebiotics directly regulate host mucosal signaling to alter response to bacterial infection. Intestinal epithelial cells (IECs) exposed to prebiotics are hyporesponsive to pathogen-induced mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) activations, and have a kinome profile distinct from non-treated cells pertaining to multiple innate immune signaling pathways. Consistent with this finding, mice orally gavaged with prebiotics showed dampened inflammatory response to lipopolysaccharide (LPS) without alterations in the gut microbiota. These findings provide molecular mechanisms of direct host-prebiotic interactions to support prebiotics as potent modulators of host inflammation.

  18. In Vitro Effect of Porphyromonas gingivalis Methionine Gamma Lyase on Biofilm Composition and Oral Inflammatory Response.

    PubMed

    Stephen, Abish S; Millhouse, Emma; Sherry, Leighann; Aduse-Opoku, Joseph; Culshaw, Shauna; Ramage, Gordon; Bradshaw, David J; Burnett, Gary R; Allaker, Robert P

    2016-01-01

    Methanethiol (methyl mercaptan) is an important contributor to oral malodour and periodontal tissue destruction. Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum are key oral microbial species that produce methanethiol via methionine gamma lyase (mgl) activity. The aim of this study was to compare an mgl knockout strain of P. gingivalis with its wild type using a 10-species biofilm co-culture model with oral keratinocytes and its effect on biofilm composition and inflammatory cytokine production. A P. gingivalis mgl knockout strain was constructed using insertion mutagenesis from wild type W50 with gas chromatographic head space analysis confirming lack of methanethiol production. 10-species biofilms consisting of Streptococcus mitis, Streptococcus oralis, Streptococcus intermedius, Fusobacterium nucleatum ssp polymorphum, Fusobacterium nucleatum ssp vincentii, Veillonella dispar, Actinomyces naeslundii, Prevotella intermedia and Aggregatibacter actinomycetemcomitans with either the wild type or mutant P. gingivalis were grown on Thermanox cover slips and used to stimulate oral keratinocytes (OKF6-TERT2), under anaerobic conditions for 4 and 24 hours. Biofilms were analysed by quantitative PCR with SYBR Green for changes in microbial ecology. Keratinocyte culture supernatants were analysed using a multiplex bead immunoassay for cytokines. Significant population differences were observed between mutant and wild type biofilms; V. dispar proportions increased (p<0.001), whilst A. naeslundii (p<0.01) and Streptococcus spp. (p<0.05) decreased in mutant biofilms. Keratinocytes produced less IL-8, IL-6 and IL-1α when stimulated with the mutant biofilms compared to wild type. Lack of mgl in P. gingivalis has been shown to affect microbial ecology in vitro, giving rise to a markedly different biofilm composition, with a more pro-inflammatory cytokine response from the keratinocytes observed. A possible role for methanethiol in biofilm formation and cytokine response with subsequent effects on oral malodor and periodontitis is suggested.

  19. Salivary Gluten Degradation and Oral Microbial Profiles in Healthy Individuals and Celiac Disease Patients.

    PubMed

    Tian, Na; Faller, Lina; Leffler, Daniel A; Kelly, Ciaran P; Hansen, Joshua; Bosch, Jos A; Wei, Guoxian; Paster, Bruce J; Schuppan, Detlef; Helmerhorst, Eva J

    2017-03-15

    Celiac disease (CD) is a chronic immune-mediated enteropathy induced by dietary gluten in genetically predisposed individuals. Saliva harbors the second highest bacterial load of the gastrointestinal (GI) tract after the colon. We hypothesized that enzymes produced by oral bacteria may be involved in gluten processing in the intestine and susceptibility to celiac disease. The aim of this study was to investigate salivary enzymatic activities and oral microbial profiles in healthy subjects versus patients with classical and refractory CD. Stimulated whole saliva was collected from patients with CD in remission ( n = 21) and refractory CD (RCD; n = 8) and was compared to healthy controls (HC; n = 20) and subjects with functional GI complaints ( n = 12). Salivary gluten-degrading activities were monitored with the tripeptide substrate Z-Tyr-Pro-Gln-pNA and the α-gliadin-derived immunogenic 33-mer peptide. The oral microbiome was profiled by 16S rRNA-based MiSeq analysis. Salivary glutenase activities were higher in CD patients compared to controls, both before and after normalization for protein concentration or bacterial load. The oral microbiomes of CD and RCD patients showed significant differences from that of healthy subjects, e.g., higher salivary levels of lactobacilli ( P < 0.05), which may partly explain the observed higher gluten-degrading activities. While the pathophysiological link between the oral and gut microbiomes in CD needs further exploration, the presented data suggest that oral microbe-derived enzyme activities are elevated in subjects with CD, which may impact gluten processing and the presentation of immunogenic gluten epitopes to the immune system in the small intestine. IMPORTANCE Ingested gluten proteins are the triggers of intestinal inflammation in celiac disease (CD). Certain immunogenic gluten domains are resistant to intestinal proteases but can be hydrolyzed by oral microbial enzymes. Very little is known about the endogenous proteolytic processing of gluten proteins in the oral cavity. Given that this occurs prior to gluten reaching the small intestine, such enzymes are likely to contribute to the composition of the gluten digest that ultimately reaches the small intestine and causes CD. We demonstrated that endogenous salivary protease activities are incomplete, likely liberating peptides from larger gluten proteins. The potentially responsible microbes were identified. The study included refractory CD patients, who have been studied less with regard to CD pathogenesis. Copyright © 2017 American Society for Microbiology.

  20. Quantitative Microbial Risk Assessment Tutorial: HSPF Setup, Application, and Calibration of Flows and Microbial Fate and Transport on an Example Watershed

    EPA Science Inventory

    A Quantitative Microbial Risk Assessment (QMRA) infrastructure that automates the manual process of characterizing transport of pathogens and microorganisms, from the source of release to a point of exposure, has been developed by loosely configuring a set of modules and process-...

  1. Development and evaluation of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    USDA-ARS?s Scientific Manuscript database

    Microbial contamination of waters in agricultural watershed is the critical public health issue. The watershed-scale model has been proven to be one of the candidate tools for predicting microbial water quality and evaluating management practices. The Agricultural Policy/Environmental eXtender (APEX...

  2. Metagenomic sequencing reveals altered metabolic pathways in the oral microbiota of sailors during a long sea voyage

    PubMed Central

    Zheng, Weiwei; Zhang, Ze; Liu, Cuihua; Qiao, Yuanyuan; Zhou, Dianrong; Qu, Jia; An, Huaijie; Xiong, Ming; Zhu, Zhiming; Zhao, Xiaohang

    2015-01-01

    Seafaring is a difficult occupation, and sailors face higher health risks than individuals on land. Commensal microbiota participates in the host immune system and metabolism, reflecting the host's health condition. However, the interaction mechanisms between the microbiota and the host's health condition remain unclear. This study reports the influence of long sea voyages on human health by utilising a metagenomic analysis of variation in the microbiota of the buccal mucosa. Paired samples collected before and after a sea-voyage were analysed. After more than 120 days of ocean sailing, the oral microbial diversity of sailors was reduced by approximately 5 fold, and the levels of several pathogens (e.g., Streptococcus pneumonia) increased. Moreover, 69.46% of the identified microbial sequences were unclassified microbiota. Notably, several metabolic pathways were dramatically decreased, including folate biosynthesis, carbohydrate, lipid and amino acid pathways. Clinical examination of the hosts confirmed the identified metabolic changes, as demonstrated by decreased serum levels of haemoglobin and folic acid, a decreased neutrophil-to-lymphocyte ratio, and increased levels of triglycerides, cholesterol and homocysteine, which are consistent with the observed microbial variation. Our study suggests that oral mucosal bacteria may reflect host health conditions and could provide approaches for improving the health of sailors. PMID:26154405

  3. A Simplified Extemporaneously Prepared Potassium Chloride Oral Solution.

    PubMed

    Tannous, Elias; Tal, Yana; Amarny, Kamal

    2016-01-01

    Although commercial preparations of oral potassium supplements are usually available, there are times when our Medical Center is faced with situations in which the oral solution of potassium chloride is not available. This solution is necessary for our pediatric outpatients who cannot swallow tablets and need an oral solution. Moreover, there are no studies available which describe an extemporaneously prepared potassium chloride oral solution on which we can rely for assigning a beyond-use date. The aim of this study was to formulate an extemporaneous pediatric oral solution of potassium chloride and to determine the physical and chemical stability of this preparation. We prepared 1 mMoL/mL by withdrawing 25 mL of potassium chloride 14.9%. Ora-Sweet SF was added to 50 mL in a metered flask. The solution was kept refrigerated (2°C to 8°C). Samples were withdrawn to measure potassium concentration, pH, and microbial overgrowth. The test was performed by our biochemical laboratory. The oral solution of potassium chloride 1 mMoL/mL stored at 2°C to 8°C maintained at least 91% of the initial concentration for 28 days. There were no notable changes in pH, and the solution remained physically stable with no visual microbial growth. The oral solution of potassium chloride 1 mMoL/mL prepared in Ora-Sweet and stored at 2°C to 8°C in amber glass bottles is expected to remain stable for 28 days. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  4. Drug Resistance and Gene Transfer Mechanisms in Respiratory/Oral Bacteria.

    PubMed

    Jiang, S; Zeng, J; Zhou, X; Li, Y

    2018-06-01

    Growing evidence suggests the existence of new antibiotic resistance mechanisms. Recent studies have revealed that quorum-quenching enzymes, such as MacQ, are involved in both antibiotic resistance and cell-cell communication. Furthermore, some small bacterial regulatory RNAs, classified into RNA attenuators and small RNAs, modulate the expression of resistance genes. For example, small RNA sprX, can shape bacterial resistance to glycopeptide antibiotics via specific downregulation of protein SpoVG. Moreover, some bacterial lipocalins capture antibiotics in the extracellular space, contributing to severe multidrug resistance. But this defense mechanism may be influenced by Agr-regulated toxins and liposoluble vitamins. Outer membrane porin proteins and efflux pumps can influence intracellular concentrations of antibiotics. Alterations in target enzymes or antibiotics prevent binding to targets, which act to confer high levels of resistance in respiratory/oral bacteria. As described recently, horizontal gene transfer, including conjugation, transduction and transformation, is common in respiratory/oral microflora. Many conjugative transposons and plasmids discovered to date encode antibiotic resistance proteins and can be transferred from donor bacteria to transient recipient bacteria. New classes of mobile genetic elements are also being identified. For example, nucleic acids that circulate in the bloodstream (circulating nucleic acids) can integrate into the host cell genome by up-regulation of DNA damage and repair pathways. With multidrug resistant bacteria on the rise, new drugs have been developed to combate bacterial antibiotic resistance, such as innate defense regulators, reactive oxygen species and microbial volatile compounds. This review summaries various aspects and mechanisms of antibiotic resistance in the respiratory/oral microbiota. A better understanding of these mechanisms will facilitate minimization of the emergence of antibiotic resistance.

  5. Modulation of neonatal microbial recognition: TLR-mediated innate immune responses are specifically and differentially modulated by human milk.

    PubMed

    LeBouder, Emmanuel; Rey-Nores, Julia E; Raby, Anne-Catherine; Affolter, Michael; Vidal, Karine; Thornton, Catherine A; Labéta, Mario O

    2006-03-15

    The mechanisms controlling innate microbial recognition in the neonatal gut are still to be fully understood. We have sought specific regulatory mechanisms operating in human breast milk relating to TLR-mediated microbial recognition. In this study, we report a specific and differential modulatory effect of early samples (days 1-5) of breast milk on ligand-induced cell stimulation via TLRs. Although a negative modulation was exerted on TLR2 and TLR3-mediated responses, those via TLR4 and TLR5 were enhanced. This effect was observed in human adult and fetal intestinal epithelial cell lines, monocytes, dendritic cells, and PBMC as well as neonatal blood. In the latter case, milk compensated for the low capacity of neonatal plasma to support responses to LPS. Cell stimulation via the IL-1R or TNFR was not modulated by milk. This, together with the differential effect on TLR activation, suggested that the primary effect of milk is exerted upstream of signaling proximal to TLR ligand recognition. The analysis of TLR4-mediated gene expression, used as a model system, showed that milk modulated TLR-related genes differently, including those coding for signal intermediates and regulators. A proteinaceous milk component of > or =80 kDa was found to be responsible for the effect on TLR4. Notably, infant milk formulations did not reproduce the modulatory activity of breast milk. Together, these findings reveal an unrecognized function of human milk, namely, its capacity to influence neonatal microbial recognition by modulating TLR-mediated responses specifically and differentially. This in turn suggests the existence of novel mechanisms regulating TLR activation.

  6. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale

    Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipidmore » catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. Finally, the results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality.« less

  7. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate

    DOE PAGES

    De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale; ...

    2016-02-25

    Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipidmore » catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. Finally, the results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality.« less

  8. Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid.

    PubMed

    O'Shea, Eileen F; Cotter, Paul D; Stanton, Catherine; Ross, R Paul; Hill, Colin

    2012-01-16

    The mechanisms by which intestinal bacteria achieve their associated health benefits can be complex and multifaceted. In this respect, the diverse microbial composition of the human gastrointestinal tract (GIT) provides an almost unlimited potential source of bioactive substances (pharmabiotics) which can directly or indirectly affect human health. Bacteriocins and fatty acids are just two examples of pharmabiotic substances which may contribute to probiotic functionality within the mammalian GIT. Bacteriocin production is believed to confer producing strains with a competitive advantage within complex microbial environments as a consequence of their associated antimicrobial activity. This has the potential to enable the establishment and prevalence of producing strains as well as directly inhibiting pathogens within the GIT. Consequently, these antimicrobial peptides and the associated intestinal producing strains may be exploited to beneficially influence microbial populations. Intestinal bacteria are also known to produce a diverse array of health-promoting fatty acids. Indeed, certain strains of intestinal bifidobacteria have been shown to produce conjugated linoleic acid (CLA), a fatty acid which has been associated with a variety of systemic health-promoting effects. Recently, the ability to modulate the fatty acid composition of the liver and adipose tissue of the host upon oral administration of CLA-producing bifidobacteria and lactobacilli was demonstrated in a murine model. Importantly, this implies a potential therapeutic role for probiotics in the treatment of certain metabolic and immunoinflammatory disorders. Such examples serve to highlight the potential contribution of pharmabiotic production to probiotic functionality in relation to human health maintenance. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. The effect of polyvinylpyrrolidone-sodium hyaluronate gel (Gelclair) on oral microbial colonization and pain control compared with other rinsing solutions in patients with oral mucositis after allogeneic stem cells transplantation

    PubMed Central

    Vokurka, Samuel; Skardova, Jana; Hruskova, Renata; Kabatova-Maxova, Klara; Svoboda, Tomas; Bystricka, Eva; Steinerova, Katerina; Koza, Vladimir

    2011-01-01

    Summary Background Gelclair is an oral lubricating gel used in the management of oral mucositis (OM). We evaluated its efficacy, tolerance and impact on oral cavity microbial colonization in patients with OM after allogeneic hematopoietic stem cells transplantation. Material/Method Gelclair was administered in a group of 22 patients with active OM. A control group of 15 patients used other rinsing solutions (chlorhexidine, benzydamine, salvia). Tests with oral cavity swabs for microbiology analysis were performed once a week. Results The characteristics of OM in both groups were comparable, and rinsing solutions had satisfactory tolerability. There was no difference in the median improvement of oral intake and OM-related pain relief, which was assessed mostly as “slight effect”. In the Gelclair group, the effect duration was longer (median 3 [0–5] vs. 1 [0–3] hours, p=0.001). There was significant increase of Enterococcus faecalis and Candida sp. colonization of the oral cavity over the course of the hospitalization and significantly reduced incidence of such colonization in patients with OM in the Gelclair group: 1/22 (5%) vs. 6/15 (40%), p=0.01. In vitro tests showed inhibited growth of Enterococcus faecalis and Candida sp. colonies within the area of the Gelclair application. Conclusions Gelclair may be individually helpful in the management of OM and pain in patients after allogeneic stem cells transplantation. Its use did not lead to worsened oral bacterial and yeast colonization and probably even helped to protect mucosa from Enterococcus and Candida sp. Further studies based on larger cohorts are needed. PMID:21959611

  10. Antimicrobial activity of jasmine oil against oral microorganisms

    NASA Astrophysics Data System (ADS)

    Thaweboon, S.; Thaweboon, B.; Kaypetch, R.

    2018-02-01

    Jasmine sambac is a species of jasmine indigenous to the tropical and warm temperature regions in particular West and Southeast Asia. Essential oil extracted from the flowers of J. sambac has been shown to have anti-oxidant activity. However, very little information regarding antimicrobial activity especially oral microorganisms exists. Objective: To investigate antimicrobial effect of essential oil extracted from flowers of J. sambac against various oral microorganisms. Materials and Methods: Oral microbial strains used in the study were Streptococcus mutans KPSK2, Staphylococcus aureus ATCC 5638, Lactobacillus casei ATCC 6363, Klebsiella pneumoniae (clinical isolate), Escherichia coli ATCC 25922, Candida albicans ATCC 10231, Candida krusei ATCC 6258, Candida parapsilosis ATCC 22019, Candida tropicalis (clinical isolate), Candida glabrata ATCC 90030, Candida pseudotropicalis (clinical isolate) and Candida stellatoidia (clinical isolate). The potential of microbial growth inhibition of the oil was firstly screened by Kirby-Bauer disk diffusion method and then the minimum inhibitory concentration (MIC) was determined by agar dilution method. Results: Jasmine oil showed antimicrobial activities against S. mutans, L. casei, E. coli and all strains of Candida species with the zones of inhibition ranging from 9 to 26 mm and MIC values of 0.19-1.56 %v/v. Conclusion: Results from the present study are scientific evidence to demonstrate that jasmine oil could be employed as a natural antimicrobial agent against oral microorganisms.

  11. Intraindividual variation in core microbiota in peri-implantitis and periodontitis

    PubMed Central

    Maruyama, Noriko; Maruyama, Fumito; Takeuchi, Yasuo; Aikawa, Chihiro; Izumi, Yuichi; Nakagawa, Ichiro

    2014-01-01

    The oral microbiota change dramatically with each part of the oral cavity, even within the same mouth. Nevertheless, the microbiota associated with peri-implantitis and periodontitis have been considered the same. To improve our knowledge of the different communities of complex oral microbiota, we compared the microbial features between peri-implantitis and periodontitis in 20 patients with both diseases. Although the clinical symptoms of peri-implantitis were similar to those of periodontitis, the core microbiota of the diseases differed. Correlation analysis revealed the specific microbial co-occurrence patterns and found some of the species were associated with the clinical parameters in a disease-specific manner. The proportion of Prevotella nigrescens was significantly higher in peri-implantitis than in periodontitis, while the proportions of Peptostreptococcaceae sp. and Desulfomicrobium orale were significantly higher in periodontitis than in peri-implantitis. The severity of the peri-implantitis was also species-associated, including with an uncultured Treponema sp. that correlated to 4 clinical parameters. These results indicate that peri-implantitis and periodontitis are both polymicrobial infections with different causative pathogens. Our study provides a framework for the ecologically different bacterial communities between peri-implantitis and periodontitis, and it will be useful for further studies to understand the complex microbiota and pathogenic mechanisms of oral polymicrobial diseases. PMID:25308100

  12. Combinatorial Effects of Arginine and Fluoride on Oral Bacteria

    PubMed Central

    Zheng, X.; Cheng, X.; Wang, L.; Qiu, W.; Wang, S.; Zhou, Y.; Li, M.; Li, Y.; Cheng, L.; Li, J.; Zhou, X.

    2015-01-01

    Dental caries is closely associated with the microbial disequilibrium between acidogenic/aciduric pathogens and alkali-generating commensal residents within the dental plaque. Fluoride is a widely used anticaries agent, which promotes tooth hard-tissue remineralization and suppresses bacterial activities. Recent clinical trials have shown that oral hygiene products containing both fluoride and arginine possess a greater anticaries effect compared with those containing fluoride alone, indicating synergy between fluoride and arginine in caries management. Here, we hypothesize that arginine may augment the ecological benefit of fluoride by enriching alkali-generating bacteria in the plaque biofilm and thus synergizes with fluoride in controlling dental caries. Specifically, we assessed the combinatory effects of NaF/arginine on planktonic and biofilm cultures of Streptococcus mutans, Streptococcus sanguinis, and Porphyromonas gingivalis with checkerboard microdilution assays. The optimal NaF/arginine combinations were selected, and their combinatory effects on microbial composition were further examined in single-, dual-, and 3-species biofilm using bacterial species–specific fluorescence in situ hybridization and quantitative polymerase chain reaction. We found that arginine synergized with fluoride in suppressing acidogenic S. mutans in both planktonic and biofilm cultures. In addition, the NaF/arginine combination synergistically reduced S. mutans but enriched S. sanguinis within the multispecies biofilms. More importantly, the optimal combination of NaF/arginine maintained a “streptococcal pressure” against the potential growth of oral anaerobe P. gingivalis within the alkalized biofilm. Taken together, we conclude that the combinatory application of fluoride and arginine has a potential synergistic effect in maintaining a healthy oral microbial equilibrium and thus represents a promising ecological approach to caries management. PMID:25477312

  13. The nasal microbiota of dairy farmers is more complex than oral microbiota, reflects occupational exposure, and provides competition for staphylococci

    PubMed Central

    Sandberg, Scott; Reyes, Iris; Fritsche, Thomas R.

    2017-01-01

    Allergic and autoimmune diseases had been attributed to lack of exposure to biodiversity, an important factor in regulating immune homeostasis in a healthy host. We posit that the microbiome of healthy dairy farmers (DF) will be richer than non-farmers (NF) living in urban settings due to exposure to a greater biodiversity in the dairy environment. However, no studies have investigated the relationships between microbiota of dairy farmers (DF) compared with urban non-farmers (NF). We compared the nasal and oral microbiota of dairy farmers (N_DF, O_DF, respectively) with nasal and oral microbiota of NF in the same geographical area. The N_DF showed high microbial diversity with hundreds of unique genera that reflected environmental/occupational exposures. The nasal and oral microbiomes clustered separately from each other using Principal Coordinate Analysis, and with DF harboring two-fold and 1.5-fold greater exclusive genera in their nose and mouth respectively, than did non-farmers. Additionally, the N_DF group had a lower burden of Staphylococcus spp. suggesting a correlation between higher microbial diversity and competition for colonization by staphylococci. The N_DF samples were negative for the mecA gene, a marker of methicillin-resistance in staphylococci. The lower burden of staphylococci was found to be independent of the abundance of Corynebacterium spp. Exposure to greater biodiversity could enhance microbial competition, thereby reducing colonization with opportunistic pathogens. Future studies will analyze whether exposure to livestock microbiomes offers protection from acute and chronic diseases. PMID:28850578

  14. The nasal microbiota of dairy farmers is more complex than oral microbiota, reflects occupational exposure, and provides competition for staphylococci.

    PubMed

    Shukla, Sanjay K; Ye, Zhan; Sandberg, Scott; Reyes, Iris; Fritsche, Thomas R; Keifer, Matthew

    2017-01-01

    Allergic and autoimmune diseases had been attributed to lack of exposure to biodiversity, an important factor in regulating immune homeostasis in a healthy host. We posit that the microbiome of healthy dairy farmers (DF) will be richer than non-farmers (NF) living in urban settings due to exposure to a greater biodiversity in the dairy environment. However, no studies have investigated the relationships between microbiota of dairy farmers (DF) compared with urban non-farmers (NF). We compared the nasal and oral microbiota of dairy farmers (N_DF, O_DF, respectively) with nasal and oral microbiota of NF in the same geographical area. The N_DF showed high microbial diversity with hundreds of unique genera that reflected environmental/occupational exposures. The nasal and oral microbiomes clustered separately from each other using Principal Coordinate Analysis, and with DF harboring two-fold and 1.5-fold greater exclusive genera in their nose and mouth respectively, than did non-farmers. Additionally, the N_DF group had a lower burden of Staphylococcus spp. suggesting a correlation between higher microbial diversity and competition for colonization by staphylococci. The N_DF samples were negative for the mecA gene, a marker of methicillin-resistance in staphylococci. The lower burden of staphylococci was found to be independent of the abundance of Corynebacterium spp. Exposure to greater biodiversity could enhance microbial competition, thereby reducing colonization with opportunistic pathogens. Future studies will analyze whether exposure to livestock microbiomes offers protection from acute and chronic diseases.

  15. The Oral Microbiota in Health and Disease: An Overview of Molecular Findings.

    PubMed

    Siqueira, José F; Rôças, Isabela N

    2017-01-01

    Culture-independent nucleic acid technologies have been extensively applied to the analysis of oral bacterial communities associated with healthy and diseased conditions. These methods have confirmed and substantially expanded the findings from culture studies to reveal the oral microbial inhabitants and candidate pathogens associated with the major oral diseases. Over 1000 bacterial distinct species-level taxa have been identified in the oral cavity and studies using next-generation DNA sequencing approaches indicate that the breadth of bacterial diversity may be even much larger. Nucleic acid technologies have also been helpful in profiling bacterial communities and identifying disease-related patterns. This chapter provides an overview of the diversity and taxonomy of oral bacteria associated with health and disease.

  16. Microbiota regulate the ability of lung dendritic cells to induce IgA class-switch recombination and generate protective gastrointestinal immune responses

    PubMed Central

    Ruane, Darren; Chorny, Alejo; Lee, Haekyung; Faith, Jeremiah; Pandey, Gaurav; Shan, Meimei; Simchoni, Noa; Rahman, Adeeb; Garg, Aakash; Weinstein, Erica G.; Oropallo, Michael; Gaylord, Michelle; Ungaro, Ryan; Cunningham-Rundles, Charlotte; Alexandropoulos, Konstantina; Mucida, Daniel; Merad, Miriam; Cerutti, Andrea

    2016-01-01

    Protective immunoglobulin A (IgA) responses to oral antigens are usually orchestrated by gut dendritic cells (DCs). Here, we show that lung CD103+ and CD24+CD11b+ DCs induced IgA class-switch recombination (CSR) by activating B cells through T cell–dependent or –independent pathways. Compared with lung DCs (LDC), lung CD64+ macrophages had decreased expression of B cell activation genes and induced significantly less IgA production. Microbial stimuli, acting through Toll-like receptors, induced transforming growth factor-β (TGF-β) production by LDCs and exerted a profound influence on LDC-mediated IgA CSR. After intranasal immunization with inactive cholera toxin (CT), LDCs stimulated retinoic acid–dependent up-regulation of α4β7 and CCR9 gut-homing receptors on local IgA-expressing B cells. Migration of these B cells to the gut resulted in IgA-mediated protection against an oral challenge with active CT. However, in germ-free mice, the levels of LDC-induced, CT–specific IgA in the gut are significantly reduced. Herein, we demonstrate an unexpected role of the microbiota in modulating the protective efficacy of intranasal vaccination through their effect on the IgA class-switching function of LDCs. PMID:26712806

  17. Dental implants modified with drug releasing titania nanotubes: therapeutic potential and developmental challenges.

    PubMed

    Gulati, Karan; Ivanovski, Sašo

    2017-08-01

    The transmucosal nature of dental implants presents a unique therapeutic challenge, requiring not only rapid establishment and subsequent maintenance of osseointegration, but also the formation of resilient soft tissue integration. Key challenges in achieving long-term success are sub-optimal bone integration in compromised bone conditions and impaired trans-mucosal tissue integration in the presence of a persistent oral microbial biofilm. These challenges can be targeted by employing a drug-releasing implant modification such as TiO 2 nanotubes (TNTs), engineered on titanium surfaces via electrochemical anodization. Areas covered: This review focuses on applications of TNT-based dental implants towards achieving optimal therapeutic efficacy. Firstly, the functions of TNT implants will be explored in terms of their influence on osseointegration, soft tissue integration and immunomodulation. Secondly, the developmental challenges associated with such implants are reviewed including sterilization, stability and toxicity. Expert opinion: The potential of TNTs is yet to be fully explored in the context of the complex oral environment, including appropriate modulation of alveolar bone healing, immune-inflammatory processes, and soft tissue responses. Besides long-term in vivo assessment under masticatory loading conditions, investigating drug-release profiles in vivo and addressing various technical challenges are required to bridge the gap between research and clinical dentistry.

  18. Oral Health Measurement in Nursing Research: State of the Science

    PubMed Central

    Munro, Cindy L.; Grap, Mary Jo; Jablonski, Rita; Boyle, Anne

    2008-01-01

    Oral health can impact general health and systemic disease. Changes in dental plaque, oral microbial flora, and local oral immunity may be important in the development or exacerbation of disease in critically ill patients, trauma patients, adults with chronic obstructive pulmonary disease, and frail elderly. Inasmuch as oral health potentially can be influenced by nursing interventions, nursing research in this area can contribute greatly to improved patient outcomes in these diverse populations. The authors’ research teams have conducted several federally funded projects focused on oral health and have developed synergy in research methods. A unifying theme for these research projects is the measurement of oral health. Standardized measures of components of oral health are available and applicable across populations, and their uses and relationship to nursing research and patient outcomes will be discussed. PMID:16766627

  19. The TF-miRNA Coregulation Network in Oral Lichen Planus

    PubMed Central

    Zuo, Yu-Ling; Gong, Di-Ping; Li, Bi-Ze; Zhao, Juan; Zhou, Ling-Yue; Shao, Fang-Yang; Jin, Zhao; He, Yuan

    2015-01-01

    Oral lichen planus (OLP) is a chronic inflammatory disease that affects oral mucosa, some of which may finally develop into oral squamous cell carcinoma. Therefore, pinpointing the molecular mechanisms underlying the pathogenesis of OLP is important to develop efficient treatments for OLP. Recently, the accumulation of the large amount of omics data, especially transcriptome data, provides opportunities to investigate OLPs from a systematic perspective. In this paper, assuming that the OLP associated genes have functional relationships, we present a new approach to identify OLP related gene modules from gene regulatory networks. In particular, we find that the gene modules regulated by both transcription factors (TFs) and microRNAs (miRNAs) play important roles in the pathogenesis of OLP and many genes in the modules have been reported to be related to OLP in the literature. PMID:26064947

  20. Long-Term Oil Contamination Alters the Molecular Ecological Networks of Soil Microbial Functional Genes

    PubMed Central

    Liang, Yuting; Zhao, Huihui; Deng, Ye; Zhou, Jizhong; Li, Guanghe; Sun, Bo

    2016-01-01

    With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001). Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors) were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential “keystone” genes, defined as either “hubs” or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions. PMID:26870020

  1. Microbial Source Module (MSM): Documenting the Science ...

    EPA Pesticide Factsheets

    The Microbial Source Module (MSM) estimates microbial loading rates to land surfaces from non-point sources, and to streams from point sources for each subwatershed within a watershed. A subwatershed, the smallest modeling unit, represents the common basis for information consumed and produced by the MSM which is based on the HSPF (Bicknell et al., 1997) Bacterial Indicator Tool (EPA, 2013b, 2013c). Non-point sources include numbers, locations, and shedding rates of domestic agricultural animals (dairy and beef cows, swine, poultry, etc.) and wildlife (deer, duck, raccoon, etc.). Monthly maximum microbial storage and accumulation rates on the land surface, adjusted for die-off, are computed over an entire season for four land-use types (cropland, pasture, forest, and urbanized/mixed-use) for each subwatershed. Monthly point source microbial loadings to instream locations (i.e., stream segments that drain individual sub-watersheds) are combined and determined for septic systems, direct instream shedding by cattle, and POTWs/WWTPs (Publicly Owned Treatment Works/Wastewater Treatment Plants). The MSM functions within a larger modeling system that characterizes human-health risk resulting from ingestion of water contaminated with pathogens. The loading estimates produced by the MSM are input to the HSPF model that simulates flow and microbial fate/transport within a watershed. Microbial counts within recreational waters are then input to the MRA-IT model (Soller et

  2. Noma Affected Children from Niger Have Distinct Oral Microbial Communities Based on High-Throughput Sequencing of 16S rRNA Gene Fragments

    PubMed Central

    Whiteson, Katrine L.; Lazarevic, Vladimir; Tangomo-Bento, Manuela; Girard, Myriam; Maughan, Heather; Pittet, Didier; Francois, Patrice; Schrenzel, Jacques

    2014-01-01

    We aim to understand the microbial ecology of noma (cancrum oris), a devastating ancient illness which causes severe facial disfigurement in>140,000 malnourished children every year. The cause of noma is still elusive. A chaotic mix of microbial infection, oral hygiene and weakened immune system likely contribute to the development of oral lesions. These lesions are a plausible entry point for unidentified microorganisms that trigger gangrenous facial infections. To catalog bacteria present in noma lesions and identify candidate noma-triggering organisms, we performed a cross-sectional sequencing study of 16S rRNA gene amplicons from sixty samples of gingival fluid from twelve healthy children, twelve children suffering from noma (lesion and healthy sites), and twelve children suffering from Acute Necrotizing Gingivitis (ANG) (lesion and healthy sites). Relative to healthy individuals, samples taken from lesions in diseased mouths were enriched with Spirochaetes and depleted for Proteobacteria. Samples taken from healthy sites of diseased mouths had proportions of Spirochaetes and Proteobacteria that were similar to healthy control individuals. Samples from noma mouths did not have a higher abundance of Fusobacterium, casting doubt on its role as a causative agent of noma. Microbial communities sampled from noma and ANG lesions were dominated by the same Prevotella intermedia OTU, which was much less abundant in healthy sites sampled from the same mouths. Multivariate analysis confirmed that bacterial communities in healthy and lesion sites were significantly different. Several OTUs in the Orders Erysipelotrichales, Clostridiales, Bacteroidales, and Spirochaetales were identified as indicators of noma, suggesting that one or more microbes within these Orders is associated with the development of noma lesions. Future studies should include longitudinal sampling of viral and microbial components of this community, before and early in noma lesion development. PMID:25474262

  3. Microbial colonization of basaltic glasses in hydrothermal organic-rich sediments at Guaymas Basin

    PubMed Central

    Callac, Nolwenn; Rommevaux-Jestin, Céline; Rouxel, Olivier; Lesongeur, Françoise; Liorzou, Céline; Bollinger, Claire; Ferrant, Antony; Godfroy, Anne

    2013-01-01

    Oceanic basalts host diverse microbial communities with various metabolisms involved in C, N, S, and Fe biogeochemical cycles which may contribute to mineral and glass alteration processes at, and below the seafloor. In order to study the microbial colonization on basaltic glasses and their potential biotic/abiotic weathering products, two colonization modules called AISICS (“Autonomous in situ Instrumented Colonization System”) were deployed in hydrothermal deep-sea sediments at the Guaymas Basin for 8 days and 22 days. Each AISICS module contained 18 colonizers (including sterile controls) filled with basaltic glasses of contrasting composition. Chemical analyses of ambient fluids sampled through the colonizers showed a greater contribution of hydrothermal fluids (maximum temperature 57.6°C) for the module deployed during the longer time period. For each colonizer, the phylogenetic diversity and metabolic function of bacterial and archaeal communities were explored using a molecular approach by cloning and sequencing. Results showed large microbial diversity in all colonizers. The bacterial distribution was primarily linked to the deployment duration, as well as the depth for the short deployment time module. Some 16s rRNA sequences formed a new cluster of Epsilonproteobacteria. Within the Archaea the retrieved diversity could not be linked to either duration, depth or substrata. However, mcrA gene sequences belonging to the ANME-1 mcrA-guaymas cluster were found sometimes associated with their putative sulfate-reducers syntrophs depending on the colonizers. Although no specific glass alteration texture was identified, nano-crystals of barite and pyrite were observed in close association with organic matter, suggesting a possible biological mediation. This study gives new insights into the colonization steps of volcanic rock substrates and the capability of microbial communities to exploit new environmental conditions. PMID:23986754

  4. Respiratory pathogen colonization of dental plaque, the lower airways, and endotracheal tube biofilms during mechanical ventilation.

    PubMed

    Sands, Kirsty M; Wilson, Melanie J; Lewis, Michael A O; Wise, Matt P; Palmer, Nicki; Hayes, Anthony J; Barnes, Rosemary A; Williams, David W

    2017-02-01

    In mechanically ventilated patients, the endotracheal tube is an essential interface between the patient and ventilator, but inadvertently, it also facilitates the development of ventilator-associated pneumonia (VAP) by subverting pulmonary host defenses. A number of investigations suggest that bacteria colonizing the oral cavity may be important in the etiology of VAP. The present study evaluated microbial changes that occurred in dental plaque and lower airways of 107 critically ill mechanically ventilated patients. Dental plaque and lower airways fluid was collected during the course of mechanical ventilation, with additional samples of dental plaque obtained during the entirety of patients' hospital stay. A "microbial shift" occurred in dental plaque, with colonization by potential VAP pathogens, namely, Staphylococcus aureus and Pseudomonas aeruginosa in 35 patients. Post-extubation analyses revealed that 70% and 55% of patients whose dental plaque included S aureus and P aeruginosa, respectively, reverted back to having a predominantly normal oral microbiota. Respiratory pathogens were also isolated from the lower airways and within the endotracheal tube biofilms. To the best of our knowledge, this is the largest study to date exploring oral microbial changes during both mechanical ventilation and after recovery from critical illness. Based on these findings, it was apparent that during mechanical ventilation, dental plaque represents a source of potential VAP pathogens. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Arabinoxylo-Oligosaccharides and Inulin Impact Inter-Individual Variation on Microbial Metabolism and Composition, Which Immunomodulates Human Cells.

    PubMed

    Van den Abbeele, Pieter; Taminiau, Bernard; Pinheiro, Iris; Duysburgh, Cindy; Jacobs, Heidi; Pijls, Loek; Marzorati, Massimo

    2018-02-07

    Fecal batch fermentations coupled to cocultures of epithelial cells and macrophages were used to compare how arabinoxylo-oligosaccharides (AXOS) and inulin modulate gut microbial activity and composition of three different human donors and subsequently the epithelial permeability and immune response. Both inulin and AXOS decreased the pH during incubation (-1.5 pH units), leading to increased productions of acetate, propionate, and butyrate. Differences in terms of metabolites production could be linked to specific microbial alterations at genus level upon inulin/AXOS supplementation (i.e., Bifidobacterium, Bacteroides, Prevotella and unclassified Erysipelotrichaceae), as shown by 16S-targeted Illumina sequencing. Both products stimulated gut barrier and immune function with increases in TEER, NF-KB, IL-10, and IL-6. Ingredients with different structures selectively modulate the microbiota of a specific donor leading to differential changes at metabolic level. The extent of this effect is donor specific and is linked to a final specific modulation of the host's immune system.

  6. Computer-guided design of optimal microbial consortia for immune system modulation

    PubMed Central

    Szabady, Rose L; Bhattarai, Shakti K; Olle, Bernat; Norman, Jason M; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Gerber, Georg K; Sander, Chris; Honda, Kenya

    2018-01-01

    Manipulation of the gut microbiota holds great promise for the treatment of diseases. However, a major challenge is the identification of therapeutically potent microbial consortia that colonize the host effectively while maximizing immunologic outcome. Here, we propose a novel workflow to select optimal immune-inducing consortia from microbiome compositicon and immune effectors measurements. Using published and newly generated microbial and regulatory T-cell (Treg) data from germ-free mice, we estimate the contributions of twelve Clostridia strains with known immune-modulating effect to Treg induction. Combining this with a longitudinal data-constrained ecological model, we predict the ability of every attainable and ecologically stable subconsortium in promoting Treg activation and rank them by the Treg Induction Score (TrIS). Experimental validation of selected consortia indicates a strong and statistically significant correlation between predicted TrIS and measured Treg. We argue that computational indexes, such as the TrIS, are valuable tools for the systematic selection of immune-modulating bacteriotherapeutics. PMID:29664397

  7. Computer-guided design of optimal microbial consortia for immune system modulation.

    PubMed

    Stein, Richard R; Tanoue, Takeshi; Szabady, Rose L; Bhattarai, Shakti K; Olle, Bernat; Norman, Jason M; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Gerber, Georg K; Sander, Chris; Honda, Kenya; Bucci, Vanni

    2018-04-17

    Manipulation of the gut microbiota holds great promise for the treatment of diseases. However, a major challenge is the identification of therapeutically potent microbial consortia that colonize the host effectively while maximizing immunologic outcome. Here, we propose a novel workflow to select optimal immune-inducing consortia from microbiome compositicon and immune effectors measurements. Using published and newly generated microbial and regulatory T-cell (T reg ) data from germ-free mice, we estimate the contributions of twelve Clostridia strains with known immune-modulating effect to T reg induction. Combining this with a longitudinal data-constrained ecological model, we predict the ability of every attainable and ecologically stable subconsortium in promoting T reg activation and rank them by the T reg Induction Score (TrIS). Experimental validation of selected consortia indicates a strong and statistically significant correlation between predicted TrIS and measured T reg . We argue that computational indexes, such as the TrIS, are valuable tools for the systematic selection of immune-modulating bacteriotherapeutics. © 2018, Stein et al.

  8. Effect of Probiotics/Prebiotics on Cattle Health and Productivity.

    PubMed

    Uyeno, Yutaka; Shigemori, Suguru; Shimosato, Takeshi

    2015-01-01

    Probiotics/prebiotics have the ability to modulate the balance and activities of the gastrointestinal (GI) microbiota, and are, thus, considered beneficial to the host animal and have been used as functional foods. Numerous factors, such as dietary and management constraints, have been shown to markedly affect the structure and activities of gut microbial communities in livestock animals. Previous studies reported the potential of probiotics and prebiotics in animal nutrition; however, their efficacies often vary and are inconsistent, possibly, in part, because the dynamics of the GI community have not been taken into consideration. Under stressed conditions, direct-fed microbials may be used to reduce the risk or severity of scours caused by disruption of the normal intestinal environment. The observable benefits of prebiotics may also be minimal in generally healthy calves, in which the microbial community is relatively stable. However, probiotic yeast strains have been administered with the aim of improving rumen fermentation efficiency by modulating microbial fermentation pathways. This review mainly focused on the benefits of probiotics/prebiotics on the GI microbial ecosystem in ruminants, which is deeply involved in nutrition and health for the animal.

  9. Effect of Probiotics/Prebiotics on Cattle Health and Productivity

    PubMed Central

    Uyeno, Yutaka; Shigemori, Suguru; Shimosato, Takeshi

    2015-01-01

    Probiotics/prebiotics have the ability to modulate the balance and activities of the gastrointestinal (GI) microbiota, and are, thus, considered beneficial to the host animal and have been used as functional foods. Numerous factors, such as dietary and management constraints, have been shown to markedly affect the structure and activities of gut microbial communities in livestock animals. Previous studies reported the potential of probiotics and prebiotics in animal nutrition; however, their efficacies often vary and are inconsistent, possibly, in part, because the dynamics of the GI community have not been taken into consideration. Under stressed conditions, direct-fed microbials may be used to reduce the risk or severity of scours caused by disruption of the normal intestinal environment. The observable benefits of prebiotics may also be minimal in generally healthy calves, in which the microbial community is relatively stable. However, probiotic yeast strains have been administered with the aim of improving rumen fermentation efficiency by modulating microbial fermentation pathways. This review mainly focused on the benefits of probiotics/prebiotics on the GI microbial ecosystem in ruminants, which is deeply involved in nutrition and health for the animal. PMID:26004794

  10. The effect of inoculum source and fluid shear force on the development of in vitro oral multispecies biofilms.

    PubMed

    Fernández, C E; Aspiras, M B; Dodds, M W; González-Cabezas, C; Rickard, A H

    2017-03-01

    Saliva has been previously used as an inoculum for in vitro oral biofilm studies. However, the microbial community profile of saliva is markedly different from hard- and soft-tissue-associated oral biofilms. Here, we investigated the changes in the biofilm architecture and microbial diversity of in vitro oral biofilms developed from saliva, tongue or plaque-derived inocula under different salivary shear forces. Four inoculum types (saliva, bacteria harvested from the tongue, toothbrush and curette-harvested plaque) were collected and pooled. Biofilms (n ≥ 15) were grown for 20 h in cell-free human saliva flowing at three different shear forces. Stained biofilms were imaged using a confocal laser scanning microscope. Biomass, thickness and roughness were determined by image analysis and bacterial community composition analysed using Ion Torrent. All developed biofilms showed a significant reduction in observed diversity compared with their respective original inoculum. Shear force altered biofilm architecture of saliva and curette-collected plaque and community composition of saliva, tongue and curette-harvested plaque. Different intraoral inocula served as precursors of in vitro oral polymicrobial biofilms which can be influenced by shear. Inoculum selection and shear force are key factors to consider when developing multispecies biofilms within in vitro models. © 2016 The Society for Applied Microbiology.

  11. Comparison of oral microbial profiles between children with severe early childhood caries and caries-free children using the human oral microbe identification microarray.

    PubMed

    Ma, Chen; Chen, Feng; Zhang, Yifei; Sun, Xiangyu; Tong, Peiyuan; Si, Yan; Zheng, Shuguo

    2015-01-01

    Early childhood caries (ECC) has become a prevalent public health problem among Chinese preschool children. The bacterial microflora is considered to be an important factor in the formation and progress of dental caries. However, high-throughput and large-scale studies of the primary dentition are lacking. The present study aimed to compare oral microbial profiles between children with severe ECC (SECC) and caries-free children. Both saliva and supragingival plaque samples were obtained from children with SECC (n = 20) and caries-free children (n = 20) aged 3 to 4 years. The samples were assayed using the Human Oral Microbe Identification Microarray (HOMIM). A total of 379 bacterial species were detected in both the saliva and supragingival plaque samples from all children. Thirteen (including Streptococcus) and two (Streptococcus and Actinomyces) bacterial species in supragingival plaque and saliva, respectively, showed significant differences in prevalence between the two groups. Of these, the frequency of Streptococcus mutans detection was significantly higher in both saliva (p = 0.026) and plaque (p = 0.006) samples from the SECC group than in those from the caries-free group. The findings of our study revealed differences in the oral microbiota between the SECC and caries-free groups Several genera, including Streptococcus, Porphyromonas, and Actinomyces, are strongly associated with SECC and can be potential biomarkers of dental caries in the primary dentition.

  12. Can Better Management of Periodontal Disease Delay the Onset and Progression of Alzheimer's Disease?

    PubMed

    Harding, Alice; Robinson, Sarita; Crean, StJohn; Singhrao, Sim K

    2017-01-01

    A risk factor relationship exists between periodontal disease and Alzheimer's disease (AD) via tooth loss, and improved memory following dental intervention. This links the microbial contribution from indigenous oral periodontal pathogens to the manifestation of chronic conditions, such as AD. Here, we use Porphyromonas gingivalis infection to illustrate its effect on mental health. P. gingivalis infection, in its primary sub-gingival niche, can cause polymicrobial synergy and dysbiosis. Dysbiosis describes the residency of select commensals from the oral cavity following co-aggregation around the dominant keystone pathogen, such as P. gingivalis, to gain greater virulence. The initial process involves P. gingivalis disturbing neutrophil mediated innate immune responses in the healthy gingivae and then downregulating adaptive immune cell differentiation and development to invade, and subsequently, establish new dysbiotic bacterial communities. Immune responses affect the host in general and functionally via dietary adjustments caused by tooth loss. Studies from animals orally infected with P. gingivalis confirm this bacterium can transmigrate to distant organ sites (the brain) and contribute toward peripheral and intracerebral inflammation, and compromise vascular and microvascular integrity. In another study, P. gingivalis infection caused sleep pattern disturbances by altering glial cell light/dark molecular clock activity, and this, in turn, can affect the clearance of danger associated molecular patterns, such as amyloid-β, via the glymphatic system. Since P. gingivalis can transmigrate to the brain and modulate organ-specific inflammatory innate and adaptive immune responses, this paper explores whether better management of indigenous periodontal bacteria could delay/prevent the onset and/or progression of dementia.

  13. Combinatorial effects of arginine and fluoride on oral bacteria.

    PubMed

    Zheng, X; Cheng, X; Wang, L; Qiu, W; Wang, S; Zhou, Y; Li, M; Li, Y; Cheng, L; Li, J; Zhou, X; Xu, X

    2015-02-01

    Dental caries is closely associated with the microbial disequilibrium between acidogenic/aciduric pathogens and alkali-generating commensal residents within the dental plaque. Fluoride is a widely used anticaries agent, which promotes tooth hard-tissue remineralization and suppresses bacterial activities. Recent clinical trials have shown that oral hygiene products containing both fluoride and arginine possess a greater anticaries effect compared with those containing fluoride alone, indicating synergy between fluoride and arginine in caries management. Here, we hypothesize that arginine may augment the ecological benefit of fluoride by enriching alkali-generating bacteria in the plaque biofilm and thus synergizes with fluoride in controlling dental caries. Specifically, we assessed the combinatory effects of NaF/arginine on planktonic and biofilm cultures of Streptococcus mutans, Streptococcus sanguinis, and Porphyromonas gingivalis with checkerboard microdilution assays. The optimal NaF/arginine combinations were selected, and their combinatory effects on microbial composition were further examined in single-, dual-, and 3-species biofilm using bacterial species-specific fluorescence in situ hybridization and quantitative polymerase chain reaction. We found that arginine synergized with fluoride in suppressing acidogenic S. mutans in both planktonic and biofilm cultures. In addition, the NaF/arginine combination synergistically reduced S. mutans but enriched S. sanguinis within the multispecies biofilms. More importantly, the optimal combination of NaF/arginine maintained a "streptococcal pressure" against the potential growth of oral anaerobe P. gingivalis within the alkalized biofilm. Taken together, we conclude that the combinatory application of fluoride and arginine has a potential synergistic effect in maintaining a healthy oral microbial equilibrium and thus represents a promising ecological approach to caries management. © International & American Associations for Dental Research 2014.

  14. The microbiome associated with equine periodontitis and oral health.

    PubMed

    Kennedy, Rebekah; Lappin, David Francis; Dixon, Padraic Martin; Buijs, Mark Johannes; Zaura, Egija; Crielaard, Wim; O'Donnell, Lindsay; Bennett, David; Brandt, Bernd Willem; Riggio, Marcello Pasquale

    2016-04-14

    Equine periodontal disease is a common and painful condition and its severe form, periodontitis, can lead to tooth loss. Its aetiopathogenesis remains poorly understood despite recent increased awareness of this disorder amongst the veterinary profession. Bacteria have been found to be causative agents of the disease in other species, but current understanding of their role in equine periodontitis is extremely limited. The aim of this study was to use high-throughput sequencing to identify the microbiome associated with equine periodontitis and oral health. Subgingival plaque samples from 24 horses with periodontitis and gingival swabs from 24 orally healthy horses were collected. DNA was extracted from samples, the V3-V4 region of the bacterial 16S rRNA gene amplified by PCR and amplicons sequenced using Illumina MiSeq. Data processing was conducted using USEARCH and QIIME. Diversity analyses were performed with PAST v3.02. Linear discriminant analysis effect size (LEfSe) was used to determine differences between the groups. In total, 1308 OTUs were identified and classified into 356 genera or higher taxa. Microbial profiles at health differed significantly from periodontitis, both in their composition (p < 0.0001, F = 12.24; PERMANOVA) and in microbial diversity (p < 0.001; Mann-Whitney test). Samples from healthy horses were less diverse (1.78, SD 0.74; Shannon diversity index) and were dominated by the genera Gemella and Actinobacillus, while the periodontitis group samples showed higher diversity (3.16, SD 0.98) and were dominated by the genera Prevotella and Veillonella. It is concluded that the microbiomes associated with equine oral health and periodontitis are distinct, with the latter displaying greater microbial diversity.

  15. Microbiota diversity and gene expression dynamics in human oral biofilms

    PubMed Central

    2014-01-01

    Background Micro-organisms inhabiting teeth surfaces grow on biofilms where a specific and complex succession of bacteria has been described by co-aggregation tests and DNA-based studies. Although the composition of oral biofilms is well established, the active portion of the bacterial community and the patterns of gene expression in vivo have not been studied. Results Using RNA-sequencing technologies, we present the first metatranscriptomic study of human dental plaque, performed by two different approaches: (1) A short-reads, high-coverage approach by Illumina sequencing to characterize the gene activity repertoire of the microbial community during biofilm development; (2) A long-reads, lower-coverage approach by pyrosequencing to determine the taxonomic identity of the active microbiome before and after a meal ingestion. The high-coverage approach allowed us to analyze over 398 million reads, revealing that microbial communities are individual-specific and no bacterial species was detected as key player at any time during biofilm formation. We could identify some gene expression patterns characteristic for early and mature oral biofilms. The transcriptomic profile of several adhesion genes was confirmed through qPCR by measuring expression of fimbriae-associated genes. In addition to the specific set of gene functions overexpressed in early and mature oral biofilms, as detected through the short-reads dataset, the long-reads approach detected specific changes when comparing the metatranscriptome of the same individual before and after a meal, which can narrow down the list of organisms responsible for acid production and therefore potentially involved in dental caries. Conclusions The bacteria changing activity during biofilm formation and after meal ingestion were person-specific. Interestingly, some individuals showed extreme homeostasis with virtually no changes in the active bacterial population after food ingestion, suggesting the presence of a microbial community which could be associated to dental health. PMID:24767457

  16. Microbiota diversity and gene expression dynamics in human oral biofilms.

    PubMed

    Benítez-Páez, Alfonso; Belda-Ferre, Pedro; Simón-Soro, Aurea; Mira, Alex

    2014-04-27

    Micro-organisms inhabiting teeth surfaces grow on biofilms where a specific and complex succession of bacteria has been described by co-aggregation tests and DNA-based studies. Although the composition of oral biofilms is well established, the active portion of the bacterial community and the patterns of gene expression in vivo have not been studied. Using RNA-sequencing technologies, we present the first metatranscriptomic study of human dental plaque, performed by two different approaches: (1) A short-reads, high-coverage approach by Illumina sequencing to characterize the gene activity repertoire of the microbial community during biofilm development; (2) A long-reads, lower-coverage approach by pyrosequencing to determine the taxonomic identity of the active microbiome before and after a meal ingestion. The high-coverage approach allowed us to analyze over 398 million reads, revealing that microbial communities are individual-specific and no bacterial species was detected as key player at any time during biofilm formation. We could identify some gene expression patterns characteristic for early and mature oral biofilms. The transcriptomic profile of several adhesion genes was confirmed through qPCR by measuring expression of fimbriae-associated genes. In addition to the specific set of gene functions overexpressed in early and mature oral biofilms, as detected through the short-reads dataset, the long-reads approach detected specific changes when comparing the metatranscriptome of the same individual before and after a meal, which can narrow down the list of organisms responsible for acid production and therefore potentially involved in dental caries. The bacteria changing activity during biofilm formation and after meal ingestion were person-specific. Interestingly, some individuals showed extreme homeostasis with virtually no changes in the active bacterial population after food ingestion, suggesting the presence of a microbial community which could be associated to dental health.

  17. The EORTC QLQ-OH17: a supplementary module to the EORTC QLQ-C30 for assessment of oral health and quality of life in cancer patients.

    PubMed

    Hjermstad, Marianne Jensen; Bergenmar, Mia; Fisher, Sheila E; Montel, Sébastien; Nicolatou-Galitis, Ourania; Raber-Durlacher, Judith; Singer, Susanne; Verdonck-de Leeuw, Irma; Weis, Joachim; Yarom, Noam; Herlofson, Bente B

    2012-09-01

    Assessment of oral and dental problems is seldom routine in clinical oncology, despite the potential negative impact of these problems on nutritional status, social function and quality of life (QoL). The aim was to develop a supplementary module to the European Organisation for Research and Treatment of Cancer Core Questionnaire (EORTC QLQ-C30) focusing on oral health and related QoL issues in all cancer diagnoses. The module development followed the EORTC guidelines. Phases 1&2 were conducted in France, Germany, Greece, Netherlands, Norway and United Kingdom, while seven countries representing seven languages were included in Phase 3. Eighty-five QoL-items were identified from systematic literature searches. Semi-structured interviews with health-care professionals experienced in oncology and oral/dental care (n=18) and patients (n=133) resulted in a provisional module with 41 items. In phase 3 this was further tested in 178 European patients representing different phases of disease and treatment. Results from the interviews, clinical experiences and statistical analyses resulted in the EORTC QLQ-OH17. The module consists of 17 items conceptualised into four multi-item scales (pain/discomfort, xerostomia, eating, information) and three single items related to use of dentures and future worries. This study provides a useful tool intended for use in conjunction with the EORTC QLQ-C30 for assessment of oral and dental problems. The increased awareness may lead to proper interventions, thereby preventing more serious problems and negative impact on QoL. The reliability and validity, the cross-cultural applicability and the psychometric properties of the module will be tested in a larger international study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Microbial interactions in building of communities

    PubMed Central

    Wright, Christopher J.; Burns, Logan H.; Jack, Alison A.; Back, Catherine R.; Dutton, Lindsay C.; Nobbs, Angela H.; Lamont, Richard J.; Jenkinson, Howard F.

    2012-01-01

    SUMMARY Establishment of a community is considered to be essential for microbial growth and survival in the human oral cavity. Biofilm communities have increased resilience to physical forces, antimicrobial agents, and nutritional variations. Specific cell-to-cell adherence processes, mediated by adhesin-receptor pairings on respective microbial surfaces, are able to direct community development. These interactions co-localize species in mutually beneficial relationships, such as streptococci, veillonellae, Porphyromonas gingivalis and Candida albicans. In transition from the planktonic mode of growth to a biofilm community, microorganisms undergo major transcriptional and proteomic changes. These occur in response to sensing of diffusible signals, such as autoinducer molecules, and to contact with host tissues or other microbial cells. Underpinning many of these processes are intracellular phosphorylation events that regulate a large number of microbial interactions relevant to community formation and development. PMID:23253299

  19. Alleviation of Multiple Asthmatic Pathologic Features with Orally Available and Subtype Selective GABAA Receptor Modulators.

    PubMed

    Forkuo, Gloria S; Nieman, Amanda N; Yuan, Nina Y; Kodali, Revathi; Yu, Olivia B; Zahn, Nicolas M; Jahan, Rajwana; Li, Guanguan; Stephen, Michael Rajesh; Guthrie, Margaret L; Poe, Michael M; Hartzler, Benjamin D; Harris, Ted W; Yocum, Gene T; Emala, Charles W; Steeber, Douglas A; Stafford, Douglas C; Cook, James M; Arnold, Leggy A

    2017-06-05

    We describe pharmacokinetic and pharmacodynamic properties of two novel oral drug candidates for asthma. Phenolic α 4 β 3 γ 2 GABA A R selective compound 1 and acidic α 5 β 3 γ 2 selective GABA A R positive allosteric modulator compound 2 relaxed airway smooth muscle ex vivo and attenuated airway hyperresponsiveness (AHR) in a murine model of asthma. Importantly, compound 2 relaxed acetylcholine contracted human tracheal airway smooth muscle strips. Oral treatment of compounds 1 and 2 decreased eosinophils in bronchoalveolar lavage fluid in ovalbumin sensitized and challenged mice, thus exhibiting anti-inflammatory properties. Additionally, compound 1 reduced the number of lung CD4 + T lymphocytes and directly modulated their transmembrane currents by acting on GABA A Rs. Excellent pharmacokinetic properties were observed, including long plasma half-life (up to 15 h), oral availability, and extremely low brain distribution. In conclusion, we report the selective targeting of GABA A Rs expressed outside the brain and demonstrate reduction of AHR and airway inflammation with two novel orally available GABA A R ligands.

  20. Antibiotic Treatment Affects Intestinal Permeability and Gut Microbial Composition in Wistar Rats Dependent on Antibiotic Class

    PubMed Central

    Tulstrup, Monica Vera-Lise; Christensen, Ellen Gerd; Carvalho, Vera; Linninge, Caroline; Ahrné, Siv; Højberg, Ole; Licht, Tine Rask; Bahl, Martin Iain

    2015-01-01

    Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, as it disrupts the intricate balance between specific bacterial groups within this ecosystem, potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (housed in pairs with 6 cages per group) were dosed by oral gavage with either amoxicillin (AMX), cefotaxime (CTX), vancomycin (VAN), metronidazole (MTZ), or water (CON) daily for 10–11 days. Bacterial composition, alpha diversity and caecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity and an increase in the relative abundance of Proteobacteria was observed for all three antibiotics. Additionally, the relative abundance of Bifidobacteriaceae was increased in the CTX group and both Lactobacillaceae and Verrucomicrobiaceae were increased in the VAN group compared to the CON group. No changes in microbiota composition or function were observed following MTZ treatment. Intestinal permeability to 4 kDa FITC-dextran decreased after CTX and VAN treatment and increased following MTZ treatment. Plasma haptoglobin levels were increased by both AMX and CTX but no changes in expression of host tight junction genes were found in any treatment group. A strong correlation between the level of caecal succinate, the relative abundance of Clostridiaceae 1 family in the caecum, and the level of acute phase protein haptoglobin in blood plasma was observed. In conclusion, antibiotic-induced changes in microbiota may be linked to alterations in intestinal permeability, although the specific interactions remain to be elucidated as changes in permeability did not always result from major changes in microbiota and vice versa. PMID:26691591

  1. Antibiotic Treatment Affects Intestinal Permeability and Gut Microbial Composition in Wistar Rats Dependent on Antibiotic Class.

    PubMed

    Tulstrup, Monica Vera-Lise; Christensen, Ellen Gerd; Carvalho, Vera; Linninge, Caroline; Ahrné, Siv; Højberg, Ole; Licht, Tine Rask; Bahl, Martin Iain

    2015-01-01

    Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, as it disrupts the intricate balance between specific bacterial groups within this ecosystem, potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (housed in pairs with 6 cages per group) were dosed by oral gavage with either amoxicillin (AMX), cefotaxime (CTX), vancomycin (VAN), metronidazole (MTZ), or water (CON) daily for 10-11 days. Bacterial composition, alpha diversity and caecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity and an increase in the relative abundance of Proteobacteria was observed for all three antibiotics. Additionally, the relative abundance of Bifidobacteriaceae was increased in the CTX group and both Lactobacillaceae and Verrucomicrobiaceae were increased in the VAN group compared to the CON group. No changes in microbiota composition or function were observed following MTZ treatment. Intestinal permeability to 4 kDa FITC-dextran decreased after CTX and VAN treatment and increased following MTZ treatment. Plasma haptoglobin levels were increased by both AMX and CTX but no changes in expression of host tight junction genes were found in any treatment group. A strong correlation between the level of caecal succinate, the relative abundance of Clostridiaceae 1 family in the caecum, and the level of acute phase protein haptoglobin in blood plasma was observed. In conclusion, antibiotic-induced changes in microbiota may be linked to alterations in intestinal permeability, although the specific interactions remain to be elucidated as changes in permeability did not always result from major changes in microbiota and vice versa.

  2. Demonstrating microbial co-occurrence pattern analyses within and between ecosystems

    PubMed Central

    Williams, Ryan J.; Howe, Adina; Hofmockel, Kirsten S.

    2014-01-01

    Co-occurrence patterns are used in ecology to explore interactions between organisms and environmental effects on coexistence within biological communities. Analysis of co-occurrence patterns among microbial communities has ranged from simple pairwise comparisons between all community members to direct hypothesis testing between focal species. However, co-occurrence patterns are rarely studied across multiple ecosystems or multiple scales of biological organization within the same study. Here we outline an approach to produce co-occurrence analyses that are focused at three different scales: co-occurrence patterns between ecosystems at the community scale, modules of co-occurring microorganisms within communities, and co-occurring pairs within modules that are nested within microbial communities. To demonstrate our co-occurrence analysis approach, we gathered publicly available 16S rRNA amplicon datasets to compare and contrast microbial co-occurrence at different taxonomic levels across different ecosystems. We found differences in community composition and co-occurrence that reflect environmental filtering at the community scale and consistent pairwise occurrences that may be used to infer ecological traits about poorly understood microbial taxa. However, we also found that conclusions derived from applying network statistics to microbial relationships can vary depending on the taxonomic level chosen and criteria used to build co-occurrence networks. We present our statistical analysis and code for public use in analysis of co-occurrence patterns across microbial communities. PMID:25101065

  3. Microbial minorities modulate methane consumption through niche partitioning

    PubMed Central

    Bodelier, Paul LE; Meima-Franke, Marion; Hordijk, Cornelis A; Steenbergh, Anne K; Hefting, Mariet M; Bodrossy, Levente; von Bergen, Martin; Seifert, Jana

    2013-01-01

    Microbes catalyze all major geochemical cycles on earth. However, the role of microbial traits and community composition in biogeochemical cycles is still poorly understood mainly due to the inability to assess the community members that are actually performing biogeochemical conversions in complex environmental samples. Here we applied a polyphasic approach to assess the role of microbial community composition in modulating methane emission from a riparian floodplain. We show that the dynamics and intensity of methane consumption in riparian wetlands coincide with relative abundance and activity of specific subgroups of methane-oxidizing bacteria (MOB), which can be considered as a minor component of the microbial community in this ecosystem. Microarray-based community composition analyses demonstrated linear relationships of MOB diversity parameters and in vitro methane consumption. Incubations using intact cores in combination with stable isotope labeling of lipids and proteins corroborated the correlative evidence from in vitro incubations demonstrating γ-proteobacterial MOB subgroups to be responsible for methane oxidation. The results obtained within the riparian flooding gradient collectively demonstrate that niche partitioning of MOB within a community comprised of a very limited amount of active species modulates methane consumption and emission from this wetland. The implications of the results obtained for biodiversity–ecosystem functioning are discussed with special reference to the role of spatial and temporal heterogeneity and functional redundancy. PMID:23788331

  4. Microbial minorities modulate methane consumption through niche partitioning.

    PubMed

    Bodelier, Paul L E; Meima-Franke, Marion; Hordijk, Cornelis A; Steenbergh, Anne K; Hefting, Mariet M; Bodrossy, Levente; von Bergen, Martin; Seifert, Jana

    2013-11-01

    Microbes catalyze all major geochemical cycles on earth. However, the role of microbial traits and community composition in biogeochemical cycles is still poorly understood mainly due to the inability to assess the community members that are actually performing biogeochemical conversions in complex environmental samples. Here we applied a polyphasic approach to assess the role of microbial community composition in modulating methane emission from a riparian floodplain. We show that the dynamics and intensity of methane consumption in riparian wetlands coincide with relative abundance and activity of specific subgroups of methane-oxidizing bacteria (MOB), which can be considered as a minor component of the microbial community in this ecosystem. Microarray-based community composition analyses demonstrated linear relationships of MOB diversity parameters and in vitro methane consumption. Incubations using intact cores in combination with stable isotope labeling of lipids and proteins corroborated the correlative evidence from in vitro incubations demonstrating γ-proteobacterial MOB subgroups to be responsible for methane oxidation. The results obtained within the riparian flooding gradient collectively demonstrate that niche partitioning of MOB within a community comprised of a very limited amount of active species modulates methane consumption and emission from this wetland. The implications of the results obtained for biodiversity-ecosystem functioning are discussed with special reference to the role of spatial and temporal heterogeneity and functional redundancy.

  5. Colors of the Yellowstone thermal pools for teaching optics

    NASA Astrophysics Data System (ADS)

    Shaw, J. A.; Nugent, P. W.; Vollmer, M.

    2015-10-01

    Nature provides many beautiful optical phenomena that can be used to teach optical principles. Here we describe an interdisciplinary education project based on a simple computer model of the colors observed in the famous thermal pools of Yellowstone National Park in the northwestern United States. The primary wavelength-dependent parameters that determine the widely varying pool colors are the reflectance of the rocks or the microbial mats growing on the rocks beneath the water (the microbial mat color depends on water temperature) and optical absorption and scattering in the water. This paper introduces a teaching module based on a one-dimensional computer model that starts with measured reflectance spectra of the microbial mats and modifies the spectra with depth-dependent absorption and scattering in the water. This module is designed to be incorporated into a graduate course on remote sensing systems, in a section covering the propagation of light through air and water, although it could be adapted to a general university optics course. The module presents the basic 1-D radiative transfer equation relevant to this problem, and allows them to build their own simple model. Students can then simulate the colors that would be observed for different variations of the microbial mat reflectance spectrum, skylight spectrum, and water depth.

  6. Lactobacillus gasseri K7 modulates the blood cell transcriptome of conventional mice infected with Escherichia coli O157:H7.

    PubMed

    Sagaya, F M; Hacin, B; Tompa, G; Ihan, A; Špela, Š; Černe, M; Hurrell, R F; Matijašić, B B; Rogelj, I; Vergères, G

    2014-05-01

    As the immune cells underlying the intestinal barrier sense luminal microbial signals, blood cell transcriptomics may identify subclinical changes triggered by gut bacteria that may otherwise not be detected. We have therefore investigated how Lactobacillus gasseri K7 and enterohemorrhagic Escherichia coli O157:H7 modulate the blood cell transcriptome of mice possessing an intact microbiota. We have analysed the transcriptome of five groups of C57BL/6J mice: (i) control, (ii) inoculated with a single dose of E. coli, (iii) inoculated during 2 weeks with Lact. gasseri, (iv) co-inoculated with E. coli and Lact. gasseri, (v) inoculated with Lact. gasseri prior to E. coli infection. The transcriptome could distinguish between the five treatment groups. Gene characteristics of bacterial infection, in particular inflammation, were upregulated in the mice inoculated with E. coli. Lact. gasseri had only mild effects on the transcriptome but modified the gene expression induced by E. coli. The transcriptome differentiates mice inoculated orally with E. coli, Lact. gasseri and combinations of these two strains. These results suggest that the blood cell transcriptome can be used as a source of biomarkers to monitor the impact of probiotics in subclinical models of infectious disease. © 2014 The Society for Applied Microbiology.

  7. Gut microbiota of liver transplantation recipients.

    PubMed

    Sun, Li-Ying; Yang, Yun-Sheng; Qu, Wei; Zhu, Zhi-Jun; Wei, Lin; Ye, Zhi-Sheng; Zhang, Jian-Rui; Sun, Xiao-Ye; Zeng, Zhi-Gui

    2017-06-19

    The characteristics of intestinal microbial communities may be affected by changes in the pathophysiology of patients with end-stage liver disease. Here, we focused on the characteristics of intestinal fecal microbial communities in post-liver transplantation (LT) patients in comparison with those in the same individuals pre-LT and in healthy individuals. The fecal microbial communities were analyzed via MiSeq-PE250 sequencing of the V4 region of 16S ribosomal RNA and were then compared between groups. We found that the gut microbiota of patients with severe liver disease who were awaiting LT was significantly different from that of healthy controls, as represented by the first principal component (p = 0.0066). Additionally, the second principal component represented a significant difference in the gut microbiota of patients between pre-LT and post-LT surgery (p = 0.03125). After LT, there was a significant decrease in the abundance of certain microbial species, such as Actinobacillus, Escherichia, and Shigella, and a significant increase in the abundance of other microbial species, such as Micromonosporaceae, Desulfobacterales, the Sarcina genus of Eubacteriaceae, and Akkermansia. Based on KEGG profiles, 15 functional modules were enriched and 21 functional modules were less represented in the post-LT samples compared with the pre-LT samples. Our study demonstrates that fecal microbial communities were significantly altered by LT.

  8. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept).

    PubMed

    Taverniti, Valentina; Guglielmetti, Simone

    2011-08-01

    The probiotic approach represents a potentially effective and mild alternative strategy for the prevention and treatment of either inflammatory or allergic diseases. Several studies have shown that different bacterial strains can exert their probiotic abilities by influencing the host's immune system, thereby modulating immune responses. However, the emerging concern regarding safety problems arising from the extensive use of live microbial cells is enhancing the interest in non-viable microorganisms or microbial cell extracts, as they could eliminate shelf-life problems and reduce the risks of microbial translocation and infection. The purpose of this review is to provide an overview of the scientific literature concerning studies in which dead microbial cells or crude microbial cell fractions have been used as health-promoting agents. Particular attention will be given to the modulation of host immune responses. Possible mechanisms determining the effect on the immune system will also be discussed. Finally, in the light of the FAO/WHO definition of probiotics, indicating that the word 'probiotic' should be restricted to products that contain live microorganisms, and considering the scientific evidence indicating that inactivated microbes can positively affect human health, we propose the new term 'paraprobiotic' to indicate the use of inactivated microbial cells or cell fractions to confer a health benefit to the consumer.

  9. OralCard: a bioinformatic tool for the study of oral proteome.

    PubMed

    Arrais, Joel P; Rosa, Nuno; Melo, José; Coelho, Edgar D; Amaral, Diana; Correia, Maria José; Barros, Marlene; Oliveira, José Luís

    2013-07-01

    The molecular complexity of the human oral cavity can only be clarified through identification of components that participate within it. However current proteomic techniques produce high volumes of information that are dispersed over several online databases. Collecting all of this data and using an integrative approach capable of identifying unknown associations is still an unsolved problem. This is the main motivation for this work. We present the online bioinformatic tool OralCard, which comprises results from 55 manually curated articles reflecting the oral molecular ecosystem (OralPhysiOme). It comprises experimental information available from the oral proteome both of human (OralOme) and microbial origin (MicroOralOme) structured in protein, disease and organism. This tool is a key resource for researchers to understand the molecular foundations implicated in biology and disease mechanisms of the oral cavity. The usefulness of this tool is illustrated with the analysis of the oral proteome associated with diabetes melitus type 2. OralCard is available at http://bioinformatics.ua.pt/oralcard. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Profiling of Oral Microbiota in Early Childhood Caries Using Single-Molecule Real-Time Sequencing

    PubMed Central

    Wang, Yuan; Zhang, Jie; Chen, Xi; Jiang, Wen; Wang, Sa; Xu, Lei; Tu, Yan; Zheng, Pei; Wang, Ying; Lin, Xiaolong; Chen, Hui

    2017-01-01

    Background: Alterations of oral microbiota are the main cause of the progression of caries. The goal of this study was to characterize the oral microbiota in childhood caries based on single-molecule real-time sequencing. Methods: A total of 21 preschoolers, aged 3–5 years old with severe early childhood caries, and 20 age-matched, caries-free children as controls were recruited. Saliva samples were collected, followed by DNA extraction, Pacbio sequencing, and phylogenetic analyses of the oral microbial communities. Results: Eight hundred and seventy six species derived from 13 known bacterial phyla and 110 genera were detected from 41 children using Pacbio sequencing. At the species level, 38 species, including Veillonella spp., Streptococcus spp., Prevotella spp., and Lactobacillus spp., showed higher abundance in the caries group compared to the caries-free group (p < 0.05). The core microbiota at the genus and species levels was more stable in the caries-free micro-ecological niche. At follow-up, oral examinations 6 months after sample collection, development of new dental caries was observed in 5 children (the transitional group) among the 21 caries free children. Compared with the caries-free children, in the transitional and caries groups, 6 species, which were more abundant in the caries-free group, exhibited a relatively low abundance in both the caries group and the transitional group (p < 0.05). We conclude that Abiotrophia spp., Neisseria spp., and Veillonella spp., might be associated with healthy oral microbial ecosystem. Prevotella spp., Lactobacillus spp., Dialister spp., and Filifactor spp. may be related to the pathogenesis and progression of dental caries. PMID:29187843

  11. Profiling of Oral Microbiota in Early Childhood Caries Using Single-Molecule Real-Time Sequencing.

    PubMed

    Wang, Yuan; Zhang, Jie; Chen, Xi; Jiang, Wen; Wang, Sa; Xu, Lei; Tu, Yan; Zheng, Pei; Wang, Ying; Lin, Xiaolong; Chen, Hui

    2017-01-01

    Background: Alterations of oral microbiota are the main cause of the progression of caries. The goal of this study was to characterize the oral microbiota in childhood caries based on single-molecule real-time sequencing. Methods: A total of 21 preschoolers, aged 3-5 years old with severe early childhood caries, and 20 age-matched, caries-free children as controls were recruited. Saliva samples were collected, followed by DNA extraction, Pacbio sequencing, and phylogenetic analyses of the oral microbial communities. Results: Eight hundred and seventy six species derived from 13 known bacterial phyla and 110 genera were detected from 41 children using Pacbio sequencing. At the species level, 38 species, including Veillonella spp., Streptococcus spp., Prevotella spp., and Lactobacillus spp., showed higher abundance in the caries group compared to the caries-free group ( p < 0.05). The core microbiota at the genus and species levels was more stable in the caries-free micro-ecological niche. At follow-up, oral examinations 6 months after sample collection, development of new dental caries was observed in 5 children (the transitional group) among the 21 caries free children. Compared with the caries-free children, in the transitional and caries groups, 6 species, which were more abundant in the caries-free group, exhibited a relatively low abundance in both the caries group and the transitional group ( p < 0.05). We conclude that Abiotrophia spp., Neisseria spp., and Veillonella spp., might be associated with healthy oral microbial ecosystem. Prevotella spp., Lactobacillus spp., Dialister spp., and Filifactor spp. may be related to the pathogenesis and progression of dental caries.

  12. Houttuynia cordata modulates oral innate immune mediators: potential role of herbal plant on oral health.

    PubMed

    Satthakarn, S; Chung, W O; Promsong, A; Nittayananta, W

    2015-05-01

    Epithelial cells play an active role in oral innate immunity by producing various immune mediators. Houttuynia cordata Thunb (H. cordata), a herbal plant found in Asia, possesses many activities. However, its impacts on oral innate immunity have never been reported. The aim of this study was to determine the effects of H. cordata extract on the expression of innate immune mediators produced by oral epithelial cells. Primary gingival epithelial cells (GECs) were treated with various concentrations of the extract for 18 h. The gene expression of hBD2, SLPI, cytokines, and chemokines was measured using quantitative real-time RT-PCR. The secreted proteins in the culture supernatants were detected by ELISA or Luminex assay. Cytotoxicity of the extract was assessed using CellTiter-Blue Assay. H. cordata significantly induced the expression of hBD2, SLPI, IL-8, and CCL20 in a dose-dependent manner without cytotoxicity. The secreted hBD2 and SLPI proteins were modulated, and the levels of IL-2, IL-6, IL-8, and IFN-γ were significantly induced by the extract. Our data indicated that H. cordata can modulate oral innate immune mediators. These findings may lead to the development of new topical agents from H. cordata for the prevention and treatment of immune-mediated oral diseases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Association of Colonization with Streptococcus mutans Genotypes from Mothers and Early Childhood Caries

    PubMed Central

    Childers, Noel K.; Momeni, Stephanie S.; Whiddon, Jennifer; Cheon, Kyounga; Cutter, Gary R.; Wiener, Howard W.; Ghazal, Tariq S.; Ruby, John D.; Moser, Stephen A.

    2016-01-01

    Purpose This study evaluated Streptococcus mutans (Sm) genotypes (GT) between mother and child (M-C) in a high caries risk cohort to explore the association with early childhood caries (ECC). Methods Sixty-nine infants (~1 year-old) had periodic oral examination (dmfs) and collection of microbial samples from dental plaque, saliva and oral other surfaces. Their mothers had an examination and plaque collected. Sm isolates were genotyped using repetitive extragenic palindromic-PCR (rep-PCR). Statistical analyses were conducted for associations of Sm in M-C dyads with caries outcomes. Results Twenty-seven Sm genotypes (GT) from 3,414 isolates were identified. M-C were categorized as GT Match (N=40) or no-Match (N=29). When modeling the severity of ECC at 36-months (~4 years old), the estimated dmfs in the Match group was 2.61 times that in the no-Match group (P=.014). Conclusions Colonization of children with Sm GT that matched with mothers was shown to be highly associated with ECC. Although the data suggest vertical transmission of Sm in 40 of 69 children that shared GT with their mother, it is possible that other individuals transmitted the Sm. Nonetheless, these findings support the importance of the mother's oral microbial status as a contributing influence to their children's oral health. PMID:28390463

  14. The scientific exploration of saliva in the post-proteomic era: from database back to basic function

    PubMed Central

    Ruhl, Stefan

    2012-01-01

    The proteome of human saliva can be considered as being essentially completed. Diagnostic markers for a number of diseases have been identified among salivary proteins and peptides, taking advantage of saliva as an easy-to-obtain biological fluid. Yet, the majority of disease markers identified so far are serum components and not intrinsic proteins produced by the salivary glands. Furthermore, despite the fact that saliva is essential for protecting the oral integuments and dentition, little progress has been made in finding risk predictors in the salivary proteome for dental caries or periodontal disease. Since salivary proteins, and in particular the attached glycans, play an important role in interactions with the microbial world, the salivary glycoproteome and other post-translational modifications of salivary proteins need to be studied. Risk markers for microbial diseases, including dental caries, are likely to be discovered among the highly glycosylated major protein species in saliva. This review will attempt to raise new ideas and also point to under-researched areas that may hold promise for future applicability in oral diagnostics and prediction of oral disease. PMID:22292826

  15. Design and stability study of a paediatric oral solution of methotrexate 2 mg/ml.

    PubMed

    Vrignaud, Sandy; Briot, Thomas; Launay, Aurélie; Kempf, Marie; Lagarce, Frédéric

    2015-06-20

    Oral paediatric forms development by pharmaceutical industry is still insufficient. The present study was performed to propose an adapted and pleasant formulation of liquid oral formulation of MTX. The solution is composed of injectable methotrexate, water, Ora Sweet(®) and sodium bicarbonate. After 120 days storage, pH remained stable at about 8 in all formulations, insuring no risk of MTX precipitation. MTX content in solution formulation, determined by high performance liquid chromatography measurements, remained in the specifications of >90% of the initial concentration when stored at 4 and 25°C. Forced degradation of MTX by heat and acidic conditions allowed formation and detection of degradation products by the analytical method. Microbial study of the preparation shows that the solution remains in the specifications during all the storage, or after one sample each week during one month, eventually indicating the microbial properties are not affected by patient use. To conclude, we here propose a new MTX liquid formulation stable for at least 120 days. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Oral Administration of Live Exopolysaccharide-Producing Pediococcus parvulus, but Not Purified Exopolysaccharide, Suppressed Enterobacteriaceae without Affecting Bacterial Diversity in Ceca of Mice

    PubMed Central

    Xu, Jie; Öste, Rickard; Holst, Olle; Molin, Göran

    2013-01-01

    Growing evidence indicates that the gut microbiota could have an important role in the development of diet- and lifestyle-induced diseases. It has been shown that modulation of the gut microbiota by means of probiotics and prebiotics could improve host health. An oat-based product fermented by the exopolysaccharide (EPS)-producing organism Pediococcus parvulus 2.6 has been reported to have a bifidogenic effect. To find out whether the effect could be attributed to the EPS or the bacterium, mice were fed a diet supplemented with 2% purified EPS or 108 CFU/g of live P. parvulus 2.6 for 6 weeks. Both supplementations altered the gut microbiota composition but in different directions. Purified EPS not only significantly lowered the microbial diversity (P < 0.001) but decreased the bifidobacterial population (P = 0.01). In contrast, the live EPS-producing bacterium P. parvulus 2.6 antagonized Enterobacteriaceae without disturbing the homeostasis of the cecal microbiota. PMID:23770909

  17. Development and evaluation of the bacterial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model.

    PubMed

    Hong, Eun-Mi; Park, Yongeun; Muirhead, Richard; Jeong, Jaehak; Pachepsky, Yakov A

    2018-02-15

    The Agricultural Policy/Environmental eXtender (APEX) is a watershed-scale water quality model that includes detailed representation of agricultural management. The objective of this work was to develop a process-based model for simulating the fate and transport of manure-borne bacteria on land and in streams with the APEX model. The bacteria model utilizes manure erosion rates to estimate the amount of edge-of-field bacteria export. Bacteria survival in manure is simulated as a two-stage process separately for each manure application event. In-stream microbial fate and transport processes include bacteria release from streambeds due to sediment resuspension during high flow events, active release from the streambed sediment during low flow periods, bacteria settling with sediment, and survival. Default parameter values were selected from published databases and evaluated based on field observations. The APEX model with the newly developed microbial fate and transport module was applied to simulate fate and transport of the fecal indicator bacterium Escherichia coli in the Toenepi watershed, New Zealand that was monitored for seven years. The stream network of the watershed ran through grazing lands with daily bovine waste deposition. Results show that the APEX with the bacteria module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water as affected by various agricultural practices, evaluating monitoring protocols, and supporting the selection of management practices based on regulations that rely on fecal indicator bacteria concentrations. Published by Elsevier B.V.

  18. A practical guide to the oral microbiome and its relation to health and disease

    PubMed Central

    Krishnan, K; Chen, T; Paster, BJ

    2016-01-01

    The oral microbiome is incredibly complex with the average adult harboring about 50 to 100 billion bacteria in the oral cavity, which represent about 200 predominant bacterial species. Collectively, there are approximately 700 predominant taxa of which less than 1/3 still have not yet been grown in vitro. Compared to other body sites, the oral microbiome is unique and readily accessible. There is extensive literature available describing the oral microbiome and discussing the roles that bacteria may play in oral health and disease. However, the purpose of this review is not to rehash these detailed studies but rather to educate the reader with understanding the essence of the oral microbiome, namely that there are abundant bacteria in numbers and types, that there are molecular methods to rapidly determine bacterial associations, that there is site-specificity for colonization of the host, that there are specific associations with oral health and disease, that oral bacteria may serve as biomarkers for non-oral diseases, and that oral microbial profiles may have potential use to assess disease risk. PMID:27219464

  19. The microbiology of the peri-implant sulcus following successful implantation of oral prosthetic treatments.

    PubMed

    Asadzadeh, Nafiseh; Naderynasab, Mahbobeh; Fard, Fojhan Ghorbanian; Rohi, Ali; Haghi, Hamidreza Rajati

    2012-01-01

    Oral implants are widely used in partially and fully edentulous patients; however, the integration of an implant can be endangered by factors such as intraoral bacteria or inflammatory reactions. The purpose of this study was to evaluate the microbial flora present in the sulcus around dental implants and to assess the relationship between gingival health and microbial flora present. Twenty patients who had received oral implants with no complications were followed for a period of 9 months. Assessment of probing depth, the presence of bleeding on probing and microbial sampling from the peri-implant sulcus were performed at three different time points- 4 weeks after surgery, 1 month and 6 months after loading. The samples were taken by paper points and transferred to the microbiology lab in thioglyocolate cultures. In order to do a colony count and isolate the aerobic capnophilic and anerobic bacteria the samples were cultured and incubated on laboratory media. The colonies were also identified using various diagnostic tests. Alterations in the presence of various bacterial species over time and gum health were tested using analysis of variance (ANOVA) with Tukey's test post hoc. The average pocket depth for each patient ranged from 1.37 ± 0.39 mm to 2.55 ± 0.72 mm. The bacteria isolated from the cultured samples included aerobic, facultative anerobic, obligate anerobic and capnophilic bacteria. The anerobic conditions created in the peri-implant sulcus might with time enhance the number of anerobic bacteria present following dental implant loading.

  20. Probiotics as oral health biotherapeutics.

    PubMed

    Saha, Shyamali; Tomaro-Duchesneau, Catherine; Tabrizian, Maryam; Prakash, Satya

    2012-09-01

    Oral health is affected by its resident microorganisms. Three prominent oral disorders are dental caries, gingivitis and periodontitis, with the oral microbiota playing a key role in the initiation/progression of all three. Understanding the microbiota and the diseases they may cause is critical to the development of new therapeutics. This review is focused on probiotics for the prevention and/or treatment of oral diseases. This review describes the oral ecosystem and its correlation with oral health/disease. The pathogenesis and current prevention/treatment strategies of periodontal diseases (PD) and dental caries (DC) are depicted. An introduction of probiotics is followed by an analysis of their role in PD and DC, and their potential role(s) in oral health. Finally, a discussion ensues on the future research directions and limitations of probiotics for oral health. An effective oral probiotic formulation should contribute to the prevention/treatment of microbial diseases of the oral cavity. Understanding the oral microbiota's role in oral disease is important for the development of a therapeutic to prevent/treat dental diseases. However, investigations into clinical efficacy, delivery/dose optimization, mechanism(s) of action and other related parameters are yet to be fully explored. Keeping this in mind, investigations into oral probiotic therapies are proving promising.

  1. The Importance of TLR2 and Macrophages in Modulating a Humoral Response after Encountering Streptococcus pneumoniae

    DTIC Science & Technology

    2008-03-26

    Response after Encountering Streptococcus Pneumoniae" Brian Schae:5 ,Ph.D. Department of Microbi ogy & Immunology Committee Chairperson Masters...presenting cells (APCs), such as macrophages (M ) and dendritic cells (DC) recognize microbial surface components via cell surface receptors (i.e...stimulating factor (GM-CSF). TH1 cells are able to secrete IFN- , which is important in activating M to produce mediators important for microbial

  2. Oral contraceptives and neuroactive steroids.

    PubMed

    Rapkin, Andrea J; Biggio, Giovanni; Concas, Alessandra

    2006-08-01

    A deregulation in the peripheral and brain concentrations of neuroactive steroids has been found in certain pathological conditions characterized by emotional or affective disturbances, including major depression and anxiety disorders. In this article we summarize data pertaining to the modulatory effects of oral contraceptive treatment on neuroactive steroids in women and rats. Given that the neuroactive steroids concentrations are reduced by oral contraceptives, together with the evidence that a subset of women taking oral contraceptives experience negative mood symptoms, we propose the use of this pharmacological treatment as a putative model to study the role of neuroactive steroids in the etiopathology of mood disorders. Moreover, since neuroactive steroids are potent modulators of GABA(A) receptor function and plasticity, the treatment with oral contraceptives might also represent a useful experimental model to further investigate the physiological role of these steroids in the modulation of GABAergic transmission.

  3. Saliva and dental plaque.

    PubMed

    Rudney, J D

    2000-12-01

    Dental plaque is being redefined as oral biofilm. Diverse overlapping microbial consortia are present on all oral tissues. Biofilms are structured, displaying features like channels and projections. Constituent species switch back and forth between sessile and planktonic phases. Saliva is the medium for planktonic suspension. Several major functions can be defined for saliva in relation to oral biofilm. It serves as a medium for transporting planktonic bacteria within and between mouths. Bacteria in transit may be vulnerable to negative selection. Salivary agglutinins may prevent reattachment to surfaces. Killing by antimicrobial proteins may lead to attachment of dead cells. Salivary proteins form conditioning films on all oral surfaces. This contributes to positive selection for microbial adherence. Saliva carries chemical messengers which allow live adherent cells to sense a critical density of conspecifics. Growth begins, and thick biofilms may become resistant to antimicrobial substances. Salivary macromolecules may be catabolized, but salivary flow also may clear dietary substrates. Salivary proteins act in ways that benefit both host and microbe. All have multiple functions, and many do the same job. They form heterotypic complexes, which may exist in large micelle-like structures. These issues make it useful to compare subjects whose saliva functions differently. We have developed a simultaneous assay for aggregation, killing, live adherence, and dead adherence of oral species. Screening of 149 subjects has defined high killing/low adherence, low killing/high adherence, high killing/high adherence, and low killing/low adherence groups. These will be evaluated for differences in their flora.

  4. Stability of sotalol hydrochloride in extemporaneously prepared oral suspension formulations.

    PubMed

    Sidhom, Madiha B; Rivera, Nadya; Almoazen, Hassan; Taft, David R; Kirschenbaum, Harold L

    2005-01-01

    The physical, chemical, and microbial stabilities of extemporaneously compounded oral liquid formulations of sotalol hydrochloride were studied. Sotalol hydrochloride oral liquid suspensions (5mg/mL) were prepared from commercially available tablets (Betapace) in a 1:1 mixture of Ora-Plus: Ora-Sweet, a 1:1 mixture of Ora-Plus:Ora-Sweet SF, and a 1:2.4 mixture of simple syrup:methylcellulose vehicle. Six batches of each formulation were prepared; three were stored at refrigerated temperature (2 deg to 8 deg C) and three at room temperature (20 deg to 25 deg C). Samples were collected from each batch weekly for 6 weeks, and again at 12 weeks. Samples were analyzed by means of a high-performance liquid chromatographic method, and the concentrations obtained were compared to the theoretical time zero value. Samples were examined for pH, odor, color, and consistency changes. The suspensions also were evaluated for their microbial stability. Sotalol hydrochloride oral liquid suspensions (5mg/mL) were chemically stable for 12 weeks regardless of storage conditions (room temperature or refrigerated). Bacterial growth was not supported by any of the formulations. Suspensions stored at refrigerated temperature retained better physical quality (e.g., odor, color, and consistency) than suspensions stored at room temperature. Overall, this study demonstrates that oral formulations of sotalol hydrochloride can be readily prepared with commercially available vehicles. The method of preparation is relatively simple, the materials are relatively inexpensive, and the products have a shelf-life of at least 12 weeks.

  5. Dental plaque as a biofilm: the significance of pH in health and caries.

    PubMed

    Marsh, Philip D

    2009-03-01

    Dental plaque is an example of a biofilm; its presence is natural and it supports the host in its defense against invading microbes. In health, the microbial composition of dental plaque is diverse and remains relatively stable over time (microbial homeostasis). The predominant microorganisms prefer host molecules (eg, salivary mucins) and a neutral pH for growth. Under certain circumstances, this microbial homeostasis can break down and diseases such as caries can occur. In dental caries, there is a shift toward increased proportions of acid-producing and acid-tolerating species, such as mutans streptococci and Lactobacilli, although other species with relevant traits can participate in demineralization. Strategies to control caries include effective oral hygiene practices to reduce biofilm development, and adoption of a low-sugar diet to restrict periods of acidic challenge to teeth. These conventional approaches also should be augmented by interference with the factors that enable the cariogenic bacteria to outcompete the organisms associated with health. Evidence suggests that regular conditions of low pH in plaque select for mutans streptococci and Lactobacilli. Therefore, the suppression of sugar catabolism and acid production by the use of metabolic inhibitors in oral care products, the consumption of nonfermentable sweeteners in snacks, the stimulation of saliva flow, and/or other strategies that maintain supragingival plaque at a pH around neutrality will assist in the maintenance of microbial homeostasis in plaque.

  6. The Microbiome-Gut-Behavior Axis: Crosstalk Between the Gut Microbiome and Oligodendrocytes Modulates Behavioral Responses.

    PubMed

    Ntranos, Achilles; Casaccia, Patrizia

    2018-01-01

    Environmental and dietary stimuli have always been implicated in brain development and behavioral responses. The gut, being the major portal of communication with the external environment, has recently been brought to the forefront of this interaction with the establishment of a gut-brain axis in health and disease. Moreover, recent breakthroughs in germ-free and antibiotic-treated mice have demonstrated the significant impact of the microbiome in modulating behavioral responses in mice and have established a more specific microbiome-gut-behavior axis. One of the mechanisms by which this axis affects social behavior is by regulating myelination at the prefrontal cortex, an important site for complex cognitive behavior planning and decision-making. The prefrontal cortex exhibits late myelination of its axonal projections that could extend into the third decade of life in humans, which make it susceptible to external influences, such as microbial metabolites. Changes in the gut microbiome were shown to alter the composition of the microbial metabolome affecting highly permeable bioactive compounds, such as p-cresol, which could impair oligodendrocyte differentiation. Dysregulated myelination in the prefrontal cortex is then able to affect behavioral responses in mice, shifting them towards social isolation. The reduced social interactions could then limit microbial exchange, which could otherwise pose a threat to the survival of the existing microbial community in the host and, thus, provide an evolutionary advantage to the specific microbial community. In this review, we will analyze the microbiome-gut-behavior axis, describe the interactions between the gut microbiome and oligodendrocytes and highlight their role in the modulation of social behavior.

  7. An Open-Ended Investigative Microbial Ecology Laboratory for Introductory Biology

    ERIC Educational Resources Information Center

    Jones-Held, Susan; Paoletti, Robert; Glick, David; Held, Michael E.

    2010-01-01

    In this article we describe a multi-week investigative laboratory in microbial ecology/diversity and nitrogen cycling that we have used in our introductory biology course. This module encourages active student involvement in experimental design, using the scientific literature and quantitative analysis of large data sets. Students analyze soil…

  8. Managing the complexity of a dynamic biofilm.

    PubMed

    Thomas, John G; Nakaishi, Lindsay A

    2006-11-01

    This article provides an overview of the history of oral microbiology, a discussion of dental plaque as both a microbial community and a biofilm, and a review of the measures available to control the oral microflora. The authors reviewed the literature related to oral microbiology and associated infectious diseases. They also examined articles that detailed the structure and physiology of biofilms, including dental plaque biofilms. Biofilms cannot be eliminated. The pathogenic nature of the dental plaque biofilm can be diminished in the oral cavity by reducing the bioburden and effectively maintaining a normal oral flora via oral hygiene procedures that include daily toothbrushing, flossing and rinsing with an antimicrobial mouthrinse. An oral hygiene regimen that includes rinsing with an antimicrobial mouthrinse is a practical approach to the prevention and management of periodontal diseases. This strategy may have wider benefits when the link between periodontal disease and certain systemic diseases is considered. An effective oral hygiene regimen can help control dental plaque biofilm and associated periodontal diseases.

  9. Can Intensity-Modulated Radiotherapy Preserve Oral Health-Related Quality of Life of Nasopharyngeal Carcinoma Patients?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pow, Edmond H.N., E-mail: ehnpow@hku.hk; Kwong, Dora L.W.; Sham, Jonathan S.T.

    Purpose: To investigate the changes in salivary function and oral health-related quality of life for patients with nasopharyngeal carcinoma treated by intensity-modulated radiotherapy (IMRT). Methods and Materials: A total of 57 patients with early-stage nasopharyngeal carcinoma received IMRT. The parotid and whole saliva flow was measured, and the Medical Outcomes Study 36-item short form, European Organization for Research and Treatment of Cancer Quality of Life questionnaire-C30, European Organization for Research and Treatment of Cancer Quality of Life questionnaire 35-item head-and-neck module, and Oral Health Impact Profile questionnaires were completed at baseline and 2, 6, 12, 18, and 24 months aftermore » IMRT. Results: Parotid saliva flow recovered fully after 1 year and maintained. Whole saliva flow recovered partially to 40% of baseline. A general trend of deterioration in most quality of life scales was observed after IMRT, followed by gradual recovery. Persistent oral-related symptoms were found 2 years after treatment. Conclusion: IMRT for early-stage nasopharyngeal carcinoma could only partially preserve the whole salivary function and oral health-related quality of life.« less

  10. The 'sialo-microbial-dental complex' in oral health and disease.

    PubMed

    Kaidonis, John; Townsend, Grant

    2016-01-01

    Biofilms are naturally found in all wet environments including the oral structures of nearly all species. Human oral biofilms have existed since our earliest ancestors and have evolved symbiotically with the dentition over many millennia within a Palaeolithic, hunter-gatherer setting. Irrespective of the plant-animal ratio, it can be argued that the Palaeolithic diet was essentially acidic, and acted as a selective force for much of the evolution of the stomatognathic system. The relationship between saliva, biofilm and teeth, the 'sialo-microbial-dental complex', provides oral health benefits and offers a different perspective to the old dental paradigm that only associated oral biofilms (plaque) with disease (caries). This new paradigm emphasises that oral biofilms are essential for the 'mineral maintenance' of teeth. Oral biofilms provide physical protection from dietary acid and together with bacterial metabolic acids cause the resting pH of the biofilm to fall below neutral. This is then followed by the re-establishment of a neutral environment by chemical interactions mediated by the saliva within the biofilm. Such pH fluctuations are often responsible for the cyclic demineralisation, then remineralisation of teeth, a process necessary for tooth maturation. However, since the advent of farming and especially since the industrial revolution, the increase in consumption of carbohydrates, refined sugars and acidic drinks has changed the ecology of biofilms. Biofilm biodiversity is significantly reduced together with a proliferation of acidogenic and aciduric organisms, tipping the balance of the 'demin-remin' cycle towards net mineral loss and hence caries. In addition, the consumption of acidic drinks in today's societies has removed the protective nature of the biofilm, leading to erosion. Erosion and caries are 'modern-day' diseases and reflect an imbalance within the oral biofilm resulting in the demineralisation of teeth. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  11. ZigBee-based wireless intra-oral control system for quadriplegic patients.

    PubMed

    Peng, Qiyu; Budinger, Thomas F

    2007-01-01

    A human-to-computer system that includes a wireless intra-oral module, a wireless coordinator and distributed wireless controllers, is presented. The state-of-the-art ZigBee protocol is employed to achieve reliable, low-power and cost-efficient wireless communication between the tongue, computer and controllers. By manipulating five buttons on the wireless intra-oral module using the tongue, the subject can control cursors, computer menus, wheelchair, lights, TV, phone and robotic devices. The system is designed to improve the life quality of patients with stroke and patients with spinal cord injury.

  12. Critical Concerns for Oral Communication Education in the United States and the United Kingdom

    ERIC Educational Resources Information Center

    Emanuel, Richard

    2011-01-01

    An examination of oral communication education in the United States (U.S.) and United Kingdom (U.K.) identified four critical concerns: (1) Today's college students are not getting adequate oral communication education; (2) Oral communication education is being relegated to a "module" in another discipline-specific course; (3) When an…

  13. Current perspectives of nanoparticles in medical and dental biomaterials

    PubMed Central

    Mohamed Hamouda, Ibrahim

    2012-01-01

    Nanotechnology is gaining tremendous impetus due to its capability of modulating metals into their nanosize, which drastically changes the chemical, physical and optical properties of metals. Nanoparticles have been introduced as materials with good potential to be extensively used in biological and medical applications. Nanoparticles are clusters of atoms in the size range of 1-100 nm. Inorganic nanoparticles and their nano-composites are applied as good antibacterial agents. Due to the outbreak of infectious diseases caused by different pathogenic bacteria and the development of antibiotic resistance, pharmaceutical companies and researchers are searching for new antibacterial agents. The metallic nanoparticles are the most promising as they show good antibacterial properties due to their large surface area to volume ratios, which draw growing interest from researchers due to increasing microbial resistance against metal ions, antibiotics and the development of resistant strains. Metallic nanoparticles can be used as effective growth inhibitors in various microorganisms and thereby are applicable to diverse medical devices. Nanotechnology discloses the use of elemental nanoparticles as active antibacterial ingredient for dental materials. In dentistry, both restorative materials and oral bacteria are believed to be responsible for restoration failure. Secondary caries is found to be the main reason to restoration failure. Secondary caries is primarily caused by invasion of plaque bacteria (acid-producing bacteria) such as Streptococcus mutans and lactobacilli in the presence of fermentable carbohydrates. To make long-lasting restorations, antibacterial materials should be made. The potential of nanoparticles to control the formation of biofilms within the oral cavity is also coming under increasing scrutiny. Possible uses of nanoparticles as topically applied agents within dental materials and the application of nanoparticles in the control of oral infections are also reviewed. PMID:23554743

  14. Photodynamic inactivation of Paracoccidioides brasiliensis helps the outcome of oral paracoccidiodomycosis.

    PubMed

    Dos Santos, Letícia F M; Melo, Nathália B; de Carli, Marina L; Mendes, Ana Carolina S C; Bani, Giulia Maria A C; Verinaud, Liana M; Burger, Eva; de Oliveira I Moraes, Gabriel; Pereira, Alessandro A C; Brigagão, Maísa R L; Hanemann, João Adolfo C; Sperandio, Felipe F

    2017-05-01

    The antifungal drug therapy often employed to treat paracoccidiodomycosis (PCM), an important neglected fungal systemic infection, leads to offensive adverse effects, besides being very long-lasting. In addition, PCM compromises the oral health of patients by leading to oral lesions that are very painful and disabling. In that way, photodynamic therapy (PDT) arises as a new promising adjuvant treatment for inactivating Paracoccidioides brasiliensis (Pb), the responsible fungus for PCM, and also for helping the patients to deal with such debilitating oral lesions. PDT has been linked to an improved microbial killing, also presenting the advantage of not inducing immediate microbial resistance such as drugs. For the present study, we investigated the generation of reactive oxygen species (ROS) by using the fluorescent probes hydroxyphenyl fluorescein (HPF) and aminophenyl fluorescein (APF) after toluidine blue (TBO-37.5 mg/L)-mediated PDT (660 nm, 40 mW, and 0.04 cm 2 spot area) and the action of TBO-PDT upon Pb cultures grown for 7 or 15 days in semisolid Fava Netto's culture medium; we also targeted oral PCM manifestations by reporting the first clinical cases (three patients) to receive topic PDT for such purpose. We were able to show a significant generation of hydroxyl radicals and hypochlorite after TBO-PDT with doses around 90 J/cm 2 ; such ROS generation was particularly useful to attack and inactivate Pb colonies at 7 and 15 days. All three patients reported herein related an immediate relief when it came to pain, mouth opening, and also the ability to chew and swallow. As extracted from our clinical results, which are in fact based on in vitro outcomes, TBO-PDT is a very safe, inexpensive, and promising therapy for the oral manifestations of PCM.

  15. Evaluation of Buccal Cell Samples for Studies of Oral Microbiota.

    PubMed

    Yu, Guoqin; Phillips, Steve; Gail, Mitchell H; Goedert, James J; Humphrys, Michael; Ravel, Jacques; Ren, Yanfang; Caporaso, Neil E

    2017-02-01

    The human microbiota is postulated to affect cancer risk, but collecting microbiota specimens with prospective follow-up for diseases will take time. Buccal cell samples have been obtained from mouthwash for the study of human genomic DNA in many cohort studies. Here, we evaluate the feasibility of using buccal cell samples to examine associations of human microbiota and disease risk. We obtained buccal cells from mouthwash in 41 healthy participants using a protocol that is widely employed to obtain buccal cells for the study of human DNA. We compared oral microbiota from buccal cells with that from eight other oral sample types collected by following the protocols of the Human Microbiome Project. Microbiota profiles were determined by sequencing 16S rRNA gene V3-V4 region. Compared with each of the eight other oral samples, the buccal cell samples had significantly more observed species (P < 0.002) and higher alpha diversity (Shannon index, P < 0.02). The microbial communities were more similar (smaller beta diversity) among buccal cells samples than in the other samples (P < 0.001 for 12 of 16 weighted and unweighted UniFrac distance comparisons). Buccal cell microbial profiles closely resembled saliva but were distinct from dental plaque and tongue dorsum. Stored buccal cell samples in prospective cohort studies are a promising resource to study associations of oral microbiota with disease. The feasibility of using existing buccal cell collections in large prospective cohorts allows investigations of the role of oral microbiota in chronic disease etiology in large population studies possible today. Cancer Epidemiol Biomarkers Prev; 26(2); 249-53. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Immune modulation by Bacillus subtilus-based direct-fed microbials in commercial broiler chickens

    USDA-ARS?s Scientific Manuscript database

    Direct-fed microbials (DFMs), also known as probiotics, have been successfully used to improve the balance of gut microbiota. Spores of Bacillus subtilis, have been used as DFMs for food animals and humans and our previous studies showed that dietary supplementation of broiler chickens with a B. su...

  17. Transcriptome profiles of chicken intestinal intraepithelial lymphocytes altered by the intake of a multi-strain direct-fed microbials

    USDA-ARS?s Scientific Manuscript database

    The current study was conducted to investigate the effects of the direct-fed microbials (DFM) including three Bacillus subtilis strains on the modulation of transcriptional profile in chicken intestinal intraepithelial lymphocytes (IEL). The multiple-strain DFM product modified 453 probes from 1,98...

  18. Immune modulation by Baccillus subtilis-based direct-fed microbials in commercial broiler chickens

    USDA-ARS?s Scientific Manuscript database

    Direct-fed microbials (DFMs), also known as probiotics have been successfully used to improve the balance of gut microflora. Spores of Bacillus subtilis (B. subtilis), have been used as DFMs for food animals and humans, and our previous studies showed that dietary supplementation of newly hatched br...

  19. Modulation of Active Gut Microbiota by Lactobacillus rhamnosus GG in a Diet Induced Obesity Murine Model.

    PubMed

    Ji, Yosep; Park, Soyoung; Park, Haryung; Hwang, Eunchong; Shin, Hyeunkil; Pot, Bruno; Holzapfel, Wilhelm H

    2018-01-01

    Gut microbiota play a key role in the development of metabolic disorders. Defining and correlating structural shifts in gut microbial assemblages with conditions related to metabolic syndrome have, however, been proven difficult. Results from 16S genomic DNA and 16S ribosomal RNA analyses of fecal samples may differ widely, leading to controversial information on the whole microbial community and metabolically active microbiota. Using a C57BL/6J murine model, we compared data from 16S genomic DNA and ribosomal RNA of the fecal microbiota. The study included three groups of experimental animals comprising two groups with high fat diet induced obesity (DIO) while a third group (control) received a low fat diet. One of the DIO groups was treated with the probiotic Lactobacillus rhamnosus GG (LGG). Compared to the data obtained by DNA analysis, a significantly higher abundance of OTUs was accounted for by RNA analysis. Moreover, rRNA based analysis showed a modulation of the active gut microbial population in the DIO group receiving LGG, thus reflecting a change in the induced obesity status of the host. As one of the most widely studied probiotics the functionality of LGG has been linked to the alleviation of metabolic syndrome, and, in some cases, to an impact on the microbiome. Yet, it appears that no study has reported thus far on modulation of the active microbiota by LGG treatment. It is postulated that the resulting impact on calorie consumption affects weight gain concomitantly with modulation of the functional structure of the gut microbial population. Using the 16S rRNA based approach therefore decisively increased the precision of gut microbiota metagenome analysis.

  20. Understanding and Modulating Mammalian-Microbial Communication for Improved Human Health

    PubMed Central

    Mani, Sridhar; Boelsterli, Urs A.; Redinbo, Matthew R.

    2013-01-01

    The fact that the bacteria in the human gastrointestinal (GI) tract play a symbiotic role was noted as early as 1885, well before we began to manage microbial infections using antibiotics. However, even with the first antimicrobial compounds used in humans, the sulfa drugs, microbes were recognized to be critically involved in the biotransformation of these therapeutics. Thus, the roles played by the microbiota in physiology and in the management of human health have long been appreciated. Detailed examinations of GI symbiotic bacteria that started in the early 2000s and the first phases of the Human Microbiome Project that were completed in 2012 have ushered in an exciting period of granularity with respect to the ecology, genetics, and chemistry of the mammalian-microbial axes of communication. Here we review aspects of the biochemical pathways at play between commensal GI bacteria and several mammalian systems, including both local-epithelia and nonlocal responses including inflammation, immunology, metabolism, and neurobiology. Finally, we discuss how the microbial biotransformation of therapeutic compounds, such as anticancer or nonsteroidal anti-inflammatory drugs, can be modulated to reduce toxicity and potentially improve therapeutic efficacy. PMID:24160697

  1. Microbial signatures of oral dysbiosis, periodontitis and edentulism revealed by Gene Meter methodology.

    PubMed

    Hunter, M Colby; Pozhitkov, Alex E; Noble, Peter A

    2016-12-01

    Conceptual models suggest that certain microorganisms (e.g., the "red" complex) are indicative of a specific disease state (e.g., periodontitis); however, recent studies have questioned the validity of these models. Here, the abundances of 500+ microbial species were determined in 16 patients with clinical signs of one of the following oral conditions: periodontitis, established caries, edentulism, and oral health. Our goal was to determine if the abundances of certain microorganisms reflect dysbiosis or a specific clinical condition that could be used as a 'signature' for dental research. Microbial abundances were determined by the analysis of 138,718 calibrated probes using Gene Meter methodology. Each 16S rRNA gene was targeted by an average of 194 unique probes (n=25nt). The calibration involved diluting pooled gene target samples, hybridizing each dilution to a DNA microarray, and fitting the probe intensities to adsorption models. The fit of the model to the experimental data was used to assess individual and aggregate probe behavior; good fits (R 2 >0.90) were retained for back-calculating microbial abundances from patient samples. The abundance of a gene was determined from the median of all calibrated individual probes or from the calibrated abundance of all aggregated probes. With the exception of genes with low abundances (<2 arbitrary units), the abundances determined by the different calibrations were highly correlated (r~1.0). Seventeen genera were classified as 'signatures of dysbiosis' because they had significantly higher abundances in patients with periodontitis and edentulism when contrasted with health. Similarly, 13 genera were classified as 'signatures of periodontitis', and 14 genera were classified as 'signatures of edentulism'. The signatures could be used, individually or in combination, to assess the clinical status of a patient (e.g., evaluating treatments such as antibiotic therapies). Comparisons of the same patient samples revealed high false negatives (45%) for next-generation-sequencing results and low false positives (7%) for Gene Meter results. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Oral Microbiota Distinguishes Acute Lymphoblastic Leukemia Pediatric Hosts from Healthy Populations

    PubMed Central

    Zhou, Xuedong; You, Meng; Du, Qin; Yang, Xue; He, Jingzhi; Zou, Jing; Cheng, Lei; Li, Mingyun; Li, Yuqing; Zhu, Yiping; Li, Jiyao; Shi, Wenyuan; Xu, Xin

    2014-01-01

    In leukemia, oral manifestations indicate aberrations in oral microbiota. Microbiota structure is determined by both host and environmental factors. In human hosts, how health status shapes the composition of oral microbiota is largely unknown. Taking advantage of advances in high-throughput sequencing, we compared the composition of supragingival plaque microbiota of acute lymphoblastic leukemia (ALL) pediatric patients with healthy controls. The oral microbiota of leukemia patients had lower richness and less diversity compared to healthy controls. Microbial samples clustered into two major groups, one of ALL patients and another of healthy children, with different structure and composition. Abundance changes of certain taxa including the Phylum Firmicutes, the Class Bacilli, the Order Lactobacillales, the Family Aerococcaceae and Carnobacteriaceae, as well as the Genus Abiotrophia and Granulicatella were associated with leukemia status. ALL patients demonstrated a structural imbalance of the oral microbiota, characterized by reduced diversity and abundance alterations, possibly involved in systemic infections, indicating the importance of immune status in shaping the structure of oral microbiota. PMID:25025462

  3. Association Between Early Childhood Caries and Colonization with Streptococcus mutans Genotypes From Mothers.

    PubMed

    Childers, Noel K; Momeni, Stephanie S; Whiddon, Jennifer; Cheon, Kyounga; Cutter, Gary R; Wiener, Howard W; Ghazal, Tariq S; Ruby, John D; Moser, Stephen A

    2017-03-15

    The purpose of this study was to evaluate Streptococcus mutans genotypes (GT) between mother and child (M-C) in a high caries risk cohort to explore the association with early childhood caries (ECC). Sixty-nine infants (each approximately one year old) had periodic oral examinations (dmfs) and microbial samples collected from dental plaque, saliva, and other oral surfaces. Their mothers had an examination and plaque collected. S mutans isolates were genotyped using repetitive extragenic palindromic-PCR (rep-PCR). Statistical analyses were conducted for associations of S mutans in M-C dyads with caries outcomes. Twenty-seven S mutans genotypes (GT) from 3,414 isolates were identified. M-C were categorized as GT match (n equals 40) or no-match (n equals 29). When modeling the severity of ECC at 36 months (approximately four years old), the estimated dmfs in the match group was 2.61 times that of the no-match group (P=.014). Colonization of children with Streptococcus mutans genotypes that matched with mothers was shown to be highly associated with early childhood caries. Although the data suggest vertical transmission of S mutans in 40 of 69 children that shared GT with their mother, it is possible that other individuals transmitted the S mutans. Nonetheless, these findings support the importance of the mother's oral microbial status as a contributing influence to their children's oral health.

  4. Modulation of stimulus-induced 20-Hz activity for the tongue and hard palate during tongue movement in humans.

    PubMed

    Maezawa, Hitoshi; Onishi, Kaori; Yagyu, Kazuyori; Shiraishi, Hideaki; Hirai, Yoshiyuki; Funahashi, Makoto

    2016-01-01

    Modulation of 20-Hz activity in the primary sensorimotor cortex (SM1) may be important for oral functions. Here, we show that 20-Hz event-related desynchronization/synchronization (20-Hz ERD/ERS) is modulated by sensory input and motor output in the oral region. Magnetic 20-Hz activity was recorded following right-sided tongue stimulation during rest (Rest) and self-paced repetitive tongue movement (Move). To exclude proprioception effects, 20-Hz activity induced by right-sided hard palate stimulation was also recorded. The 20-Hz activity in the two conditions was compared via temporal spectral evolution analyses. 20-Hz ERD/ERS was detected over bilateral temporoparietal areas in the Rest condition for both regions. Moreover, 20-Hz ERS was significantly suppressed in the Move condition for both regions. Detection of 20-Hz ERD/ERS during the Rest condition for both regions suggests that the SM1 functional state may be modulated by oral stimulation, with or without proprioceptive effects. Moreover, the suppression of 20-Hz ERS for the hard palate during the Move condition suggests that the stimulation-induced functional state of SM1 may have been modulated by the movement, even though the movement and stimulation areas were different. Sensorimotor function of the general oral region may be finely coordinated through 20-Hz cortical oscillation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Gut Microbiota and Salivary Diagnostics: The Mouth Is Salivating to Tell Us Something.

    PubMed

    Kodukula, Krishna; Faller, Douglas V; Harpp, David N; Kanara, Iphigenia; Pernokas, Julie; Pernokas, Mark; Powers, Whitney R; Soukos, Nikolaos S; Steliou, Kosta; Moos, Walter H

    2017-01-01

    The microbiome of the human body represents a symbiosis of microbial networks spanning multiple organ systems. Bacteria predominantly represent the diversity of human microbiota, but not to be forgotten are fungi, viruses, and protists. Mounting evidence points to the fact that the "microbial signature" is host-specific and relatively stable over time. As our understanding of the human microbiome and its relationship to the health of the host increases, it is becoming clear that many and perhaps most chronic conditions have a microbial involvement. The oral and gastrointestinal tract microbiome constitutes the bulk of the overall human microbial load, and thus presents unique opportunities for advancing human health prognosis, diagnosis, and therapy development. This review is an attempt to catalog a broad diversity of recent evidence and focus it toward opportunities for prevention and treatment of debilitating illnesses.

  6. A practical guide to the oral microbiome and its relation to health and disease.

    PubMed

    Krishnan, K; Chen, T; Paster, B J

    2017-04-01

    The oral microbiome is incredibly complex with the average adult harboring about 50-100 billion bacteria in the oral cavity, which represent about 200 predominant bacterial species. Collectively, there are approximately 700 predominant taxa of which less than one-third still have not yet been grown in vitro. Compared to other body sites, the oral microbiome is unique and readily accessible. There is extensive literature available describing the oral microbiome and discussing the roles that bacteria may play in oral health and disease. However, the purpose of this review is not to rehash these detailed studies but rather to educate the reader with understanding the essence of the oral microbiome, namely that there are abundant bacteria in numbers and types, that there are molecular methods to rapidly determine bacterial associations, that there is site specificity for colonization of the host, that there are specific associations with oral health and disease, that oral bacteria may serve as biomarkers for non-oral diseases, and that oral microbial profiles may have potential use to assess disease risk. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Changes in the Structure of the Microbial Community Associated with Nannochloropsis salina following Treatments with Antibiotics and Bioactive Compounds

    PubMed Central

    Geng, Haifeng; Tran-Gyamfi, Mary B.; Lane, Todd W.; Sale, Kenneth L.; Yu, Eizadora T.

    2016-01-01

    Open microalgae cultures host a myriad of bacteria, creating a complex system of interacting species that influence algal growth and health. Many algal microbiota studies have been conducted to determine the relative importance of bacterial taxa to algal culture health and physiological states, but these studies have not characterized the interspecies relationships in the microbial communities. We subjected Nanochroloropsis salina cultures to multiple chemical treatments (antibiotics and quorum sensing compounds) and obtained dense time-series data on changes to the microbial community using 16S gene amplicon metagenomic sequencing (21,029,577 reads for 23 samples) to measure microbial taxa-taxa abundance correlations. Short-term treatment with antibiotics resulted in substantially larger shifts in the microbiota structure compared to changes observed following treatment with signaling compounds and glucose. We also calculated operational taxonomic unit (OTU) associations and generated OTU correlation networks to provide an overview of possible bacterial OTU interactions. This analysis identified five major cohesive modules of microbiota with similar co-abundance profiles across different chemical treatments. The Eigengenes of OTU modules were examined for correlation with different external treatment factors. This correlation-based analysis revealed that culture age (time) and treatment types have primary effects on forming network modules and shaping the community structure. Additional network analysis detected Alteromonadeles and Alphaproteobacteria as having the highest centrality, suggesting these species are “keystone” OTUs in the microbial community. Furthermore, we illustrated that the chemical tropodithietic acid, which is secreted by several species in the Alphaproteobacteria taxon, is able to drastically change the structure of the microbiota within 3 h. Taken together, these results provide valuable insights into the structure of the microbiota associated with N. salina cultures and how these structures change in response to chemical perturbations. PMID:27507966

  8. Remote Sensing between Liver and Intestine: Importance of Microbial Metabolites

    PubMed Central

    Fu, Zidong Donna; Cui, Julia Yue

    2017-01-01

    Recent technological advancements including metagenomics sequencing and metabolomics have allowed the discovery of critical functions of gut microbiota in obesity, malnutrition, neurological disorders, asthma, and xenobiotic metabolism. Classification of the human gut microbiome into distinct “enterotypes” has been proposed to serve as a new paradigm for understanding the interplay between microbial variation and human disease phenotypes, as many organs are affected by gut microbiota modifications during the pathogenesis of diseases. Gut microbiota remotely interacts with liver and other metabolic organs of the host through various microbial metabolites that are absorbed into the systemic circulation. Purpose of review The present review summarizes recent literature regarding the importance of gut microbiota in modulating the physiological and pathological responses of various host organs, and describes the functions of the known microbial metabolites that are involved in this remote sensing process, with a primary focus on the gut microbiota-liver axis. Recent findings Under physiological conditions, gut microbiota modulates the hepatic transcriptome, proteome, and metabolome, most notably down-regulating cytochrome P450 3a mediated xenobiotic metabolism. Gut microbiome also modulates the rhythmicity in liver gene expression, likely through microbial metabolites, such as butyrate and propionate that serve as epigenetic modifiers. Additionally, the production of host hormones such as primary bile acids and glucagon like peptide 1 is altered by gut microbiota to modify intermediary metabolism of the host. Summary Dysregulation of gut microbiota is implicated in various liver diseases such as alcoholic liver disease, non-alcoholic steatohepatitis, liver cirrhosis, cholangitis, and liver cancer. Gut microbiota modifiers such as probiotics and prebiotics are increasingly recognized as novel therapeutic modalities for liver and other types of human diseases. PMID:28983453

  9. Urease and Dental Plaque Microbial Profiles in Children.

    PubMed

    Morou-Bermudez, Evangelia; Rodriguez, Selena; Bello, Angel S; Dominguez-Bello, Maria G

    2015-01-01

    Urease enzymes produced by oral bacteria generate ammonia, which can have a significant impact on the oral ecology and, consequently, on oral health. To evaluate the relationship of urease with dental plaque microbial profiles in children as it relates to dental caries, and to identify the main contributors to this activity. 82 supragingival plaque samples were collected from 44 children at baseline and one year later, as part of a longitudinal study on urease and caries in children. DNA was extracted; the V3-V5 region of the 16S rRNA gene was amplified and sequenced using 454 pyrosequencing. Urease activity was measured using a spectrophotometric assay. Data were analyzed with Qiime. Plaque urease activity was significantly associated with the composition of the microbial communities of the dental plaque (Baseline P = 0.027, One Year P = 0.012). The bacterial taxa whose proportion in dental plaque exhibited significant variation by plaque urease levels in both visits were the family Pasteurellaceae (Baseline P<0.001; One Year P = 0.0148), especially Haemophilus parainfluenzae. No association was observed between these bacteria and dental caries. Bacteria in the genus Leptotrichia were negatively associated with urease and positively associated with dental caries (Bonferroni P<0.001). Alkali production by urease enzymes primarily from species in the family Pasteurellaceae can be an important ecological determinant in children's dental plaque. Further studies are needed to establish the role of urease-associated bacteria in the acid/base homeostasis of the dental plaque, and in the development and prediction of dental caries in children.

  10. Urease and Dental Plaque Microbial Profiles in Children

    PubMed Central

    Morou-Bermudez, Evangelia; Rodriguez, Selena; Bello, Angel S.; Dominguez-Bello, Maria G.

    2015-01-01

    Objective Urease enzymes produced by oral bacteria generate ammonia, which can have a significant impact on the oral ecology and, consequently, on oral health. To evaluate the relationship of urease with dental plaque microbial profiles in children as it relates to dental caries, and to identify the main contributors to this activity. Methods 82 supragingival plaque samples were collected from 44 children at baseline and one year later, as part of a longitudinal study on urease and caries in children. DNA was extracted; the V3–V5 region of the 16S rRNA gene was amplified and sequenced using 454 pyrosequencing. Urease activity was measured using a spectrophotometric assay. Data were analyzed with Qiime. Results Plaque urease activity was significantly associated with the composition of the microbial communities of the dental plaque (Baseline P = 0.027, One Year P = 0.012). The bacterial taxa whose proportion in dental plaque exhibited significant variation by plaque urease levels in both visits were the family Pasteurellaceae (Baseline P<0.001; One Year P = 0.0148), especially Haemophilus parainfluenzae. No association was observed between these bacteria and dental caries. Bacteria in the genus Leptotrichia were negatively associated with urease and positively associated with dental caries (Bonferroni P<0.001). Conclusions Alkali production by urease enzymes primarily from species in the family Pasteurellaceae can be an important ecological determinant in children’s dental plaque. Further studies are needed to establish the role of urease-associated bacteria in the acid/base homeostasis of the dental plaque, and in the development and prediction of dental caries in children. PMID:26418220

  11. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women.

    PubMed

    Dewulf, Evelyne M; Cani, Patrice D; Claus, Sandrine P; Fuentes, Susana; Puylaert, Philippe G B; Neyrinck, Audrey M; Bindels, Laure B; de Vos, Willem M; Gibson, Glenn R; Thissen, Jean-Paul; Delzenne, Nathalie M

    2013-08-01

    To highlight the contribution of the gut microbiota to the modulation of host metabolism by dietary inulin-type fructans (ITF prebiotics) in obese women. A double blind, placebo controlled, intervention study was performed with 30 obese women treated with ITF prebiotics (inulin/oligofructose 50/50 mix; n=15) or placebo (maltodextrin; n=15) for 3 months (16 g/day). Blood, faeces and urine sampling, oral glucose tolerance test, homeostasis model assessment and impedancemetry were performed before and after treatment. The gut microbial composition in faeces was analysed by phylogenetic microarray and qPCR analysis of 16S rDNA. Plasma and urine metabolic profiles were analysed by 1H-NMR spectroscopy. Treatment with ITF prebiotics, but not the placebo, led to an increase in Bifidobacterium and Faecalibacterium prausnitzii; both bacteria negatively correlated with serum lipopolysaccharide levels. ITF prebiotics also decreased Bacteroides intestinalis, Bacteroides vulgatus and Propionibacterium, an effect associated with a slight decrease in fat mass and with plasma lactate and phosphatidylcholine levels. No clear treatment clustering could be detected for gut microbial analysis or plasma and urine metabolomic profile analyses. However, ITF prebiotics led to subtle changes in the gut microbiota that may importantly impact on several key metabolites implicated in obesity and/or diabetes. ITF prebiotics selectively changed the gut microbiota composition in obese women, leading to modest changes in host metabolism, as suggested by the correlation between some bacterial species and metabolic endotoxaemia or metabolomic signatures.

  12. L'enseignement modulaire et le laboratoire de langues: conception et experimentation d'un nouveau cours de francais oral au Centre d'anglais et de francais, Universite McGill (Modular Instruction and the Language Laboratory: Conception and Experimentation with a New Course in Oral French at the English and French Center, McGill University).

    ERIC Educational Resources Information Center

    Legoux, Marie-Noelle

    1980-01-01

    A modular-type course in French was developed at the "Centre d'anglais et de francais" at McGill University (Montreal) to meet the needs of incoming students who were lacking skills in listening and oral expression. The course is composed of eight modules a semester, each module corresponding to 15 to 20 hours work on the student's part. The…

  13. Effects of probiotic fermented milk on biofilms, oral microbiota, and enamel.

    PubMed

    Lodi, Carolina Simonetti; Oliveira, Lidiane Viana; Brighenti, Fernanda Lourenção; Delbem, Alberto Carlos Botazzo; Martinhon, Cleide Cristina Rodrigues

    2015-01-01

    The aim of this study was to evaluate in vitro and in vivo the effects of 2 brands of probiotic fermented milk on biofilms, oral microbiota, and enamel. For the in situ experiment, ten volunteers wore palatine devices containing four blocks of bovine dental enamel over 3 phases, during which 20% sucrose solution, Yakult® (Treatment A), and Batavito® (Treatment B) were dropped on the enamel blocks. Salivary microbial counts were obtained and biofilm samples were analyzed after each phase. For the in vivo experiment, the same ten volunteers drunk Yakult® (Treatment C) and Batavito® (Treatment D) in two phases. Saliva samples were collected for microbial analysis after each phase. The in situ study showed that in comparison with Treatment A, Treatment B resulted in fewer total cultivable anaerobes and facultative microorganisms in biofilms, higher final microhardness, lower percentage change in surface hardness, and smaller integrated subsurface enamel hardness. In the in vivo study, Treatment D resulted in a reduction in the counts of all microorganisms. The results suggested that the probiotic fermented milk Batavito®, but not Yakult®, reduced the amount of oral microorganisms and mineral loss in bovine enamel.

  14. Plant and Fungal Food Components with Potential Activity on the Development of Microbial Oral Diseases

    PubMed Central

    Daglia, Maria; Papetti, Adele; Mascherpa, Dora; Grisoli, Pietro; Giusto, Giovanni; Lingström, Peter; Pratten, Jonathan; Signoretto, Caterina; Spratt, David A.; Wilson, Michael; Zaura, Egija; Gazzani, Gabriella

    2011-01-01

    This paper reports the content in macronutrients, free sugars, polyphenols, and inorganic ions, known to exert any positive or negative action on microbial oral disease such as caries and gingivitis, of seven food/beverages (red chicory, mushroom, raspberry, green and black tea, cranberry juice, dark beer). Tea leaves resulted the richest material in all the detected ions, anyway tea beverages resulted the richest just in fluoride. The highest content in zinc was in chicory, raspberry and mushroom. Raspberry is the richest food in strontium and boron, beer in selenium, raspberry and mushroom in copper. Beer, cranberry juice and, especially green and black tea are very rich in polyphenols, confirming these beverages as important sources of such healthy substances. The fractionation, carried out on the basis of the molecular mass (MM), of the water soluble components occurring in raspberry, chicory, and mushroom extracts (which in microbiological assays revealed the highest potential action against oral pathogens), showed that both the high and low MM fractions are active, with the low MM fractions displaying the highest potential action for all the fractionated extracts. Our findings show that more compounds that can play a different active role occur in these foods. PMID:22013381

  15. Oral microbiome in HIV-associated periodontitis.

    PubMed

    Noguera-Julian, Marc; Guillén, Yolanda; Peterson, Jessica; Reznik, David; Harris, Erica V; Joseph, Sandeep J; Rivera, Javier; Kannanganat, Sunil; Amara, Rama; Nguyen, Minh Ly; Mutembo, Simon; Paredes, Roger; Read, Timothy D; Marconi, Vincent C

    2017-03-01

    HIV-associated periodontal diseases (PD) could serve as a source of chronic inflammation. Here, we sought to characterize the oral microbial signatures of HIV+ and HIV- individuals at different levels of PD severity.This cross-sectional study included both HIV+ and HIV- patients with varying degrees of PD. Two tooth, 2 cheek, and 1 saliva samples were obtained for microbiome analysis. Mothur/SILVADB were used to classify sequences. R/Bioconductor (Vegan, PhyloSeq, and DESeq2) was employed to assess overall microbiome structure differences and differential abundance of bacterial genera between groups. Polychromatic flow cytometry was used to assess immune activation in CD4 and CD8 cell populations.Around 250 cheek, tooth, and saliva samples from 50 participants (40 HIV+ and 10 HIV-) were included. Severity of PD was classified clinically as None/Mild (N), Moderate (M), and Severe (S) with 18 (36%), 16 (32%), and 16 (32%) participants in each category, respectively. Globally, ordination analysis demonstrated clustering by anatomic site (R2 = 0.25, P < 0.001). HIV status and PD severity showed a statistically significant impact on microbiome composition but only accounted for a combined 2% of variation. HIV+ samples were enriched in genera Abiotrophia, Neisseria, Kingella, and unclassified Neisseriaceae and depleted in Leptotrichia and Selenomonas. The Neisseria genus was consistently enriched in HIV+ participants regardless of sampling site and PD level. Immune markers were altered in HIV+ participants but did not show association with the oral microbiome.HIV-associated changes in oral microbiome result in subtle microbial signatures along different stages of PD that are common in independent oral anatomic sites.

  16. Oral microbiome in HIV-associated periodontitis

    PubMed Central

    Noguera-Julian, Marc; Guillén, Yolanda; Peterson, Jessica; Reznik, David; Harris, Erica V.; Joseph, Sandeep J.; Rivera, Javier; Kannanganat, Sunil; Amara, Rama; Nguyen, Minh Ly; Mutembo, Simon; Paredes, Roger; Read, Timothy D.; Marconi, Vincent C.

    2017-01-01

    Abstract HIV-associated periodontal diseases (PD) could serve as a source of chronic inflammation. Here, we sought to characterize the oral microbial signatures of HIV+ and HIV– individuals at different levels of PD severity. This cross-sectional study included both HIV+ and HIV– patients with varying degrees of PD. Two tooth, 2 cheek, and 1 saliva samples were obtained for microbiome analysis. Mothur/SILVADB were used to classify sequences. R/Bioconductor (Vegan, PhyloSeq, and DESeq2) was employed to assess overall microbiome structure differences and differential abundance of bacterial genera between groups. Polychromatic flow cytometry was used to assess immune activation in CD4 and CD8 cell populations. Around 250 cheek, tooth, and saliva samples from 50 participants (40 HIV+ and 10 HIV–) were included. Severity of PD was classified clinically as None/Mild (N), Moderate (M), and Severe (S) with 18 (36%), 16 (32%), and 16 (32%) participants in each category, respectively. Globally, ordination analysis demonstrated clustering by anatomic site (R2 = 0.25, P < 0.001). HIV status and PD severity showed a statistically significant impact on microbiome composition but only accounted for a combined 2% of variation. HIV+ samples were enriched in genera Abiotrophia, Neisseria, Kingella, and unclassified Neisseriaceae and depleted in Leptotrichia and Selenomonas. The Neisseria genus was consistently enriched in HIV+ participants regardless of sampling site and PD level. Immune markers were altered in HIV+ participants but did not show association with the oral microbiome. HIV-associated changes in oral microbiome result in subtle microbial signatures along different stages of PD that are common in independent oral anatomic sites. PMID:28328799

  17. Oral Microbial Profile Discriminates Breastfed from Formula-Fed Infants

    PubMed Central

    Holgerson, Pernilla Lif; Vestman, Nelly Romani; Claesson, Rolf; Öhman, Carina; Domellöf, Magnus; Tanner, Anne CR; Hernell, Olle; Johansson, Ingegerd

    2012-01-01

    Objectives Little is known about the impact of diet on the oral microbiota of infants although diet is known to affect the gut microbiota. The aims of the present study were to compare the oral microbiota in breastfed and formula-fed infants, and investigate growth inhibition of streptococci by infant-isolated lactobacilli. Subjects and Methods 207 mothers consented to participation of their three-month old infants. 146 (70.5%) infants were exclusively and 38 (18.4%) partially breastfed, and 23 (11.1%) were exclusively formula-fed. Saliva from all infants was cultured for Lactobacillus species, with isolate identifications from 21 infants. Lactobacillus isolates were tested for their ability to supress Streptococcus mutans and Streptococcus sanguinis. Oral swabs from 73 infants were analysed by the Human Oral Microbe Identification Microarray (HOMIM) and by q-PCR for Lactobacilius gasseri. Results Lactobacilli were cultured from 27.8% of exclusively and partially breastfed infants, but not from formula-fed infants. The prevalence of 14 HOMIM detected taxa, and total salivary lactobacilli counts differed by feeding method. Multivariate modelling of HOMIM detected bacteria and possible confounders clustered samples from breastfed infants separately from formula-fed infants. The microbiota of breastfed infants differed based on vaginal or C-section delivery. Isolates of Lactobacillus plantarum, L. gasseri and Lactobacillus vaginalis inhibited growth of the cariogenic S. mutans and the commensal S. sanguinis: L. plantarum > L. gasseri > L. vaginalis. Conclusion The microbiota of the mouth differs between breastfed and formula-fed three-month-old infants. Possible mechanisms for microbial differences observed include species suppression by lactobacilli indigenous to breast milk. PMID:22955450

  18. Integrating a Nurse-Midwife-Led Oral Health Intervention Into CenteringPregnancy Prenatal Care: Results of a Pilot Study.

    PubMed

    Adams, Sally H; Gregorich, Steven E; Rising, Sharon S; Hutchison, Margaret; Chung, Lisa H

    2017-07-01

    National and professional organizations recommend oral health promotion in prenatal care to improve women's oral health. However, few prenatal programs include education about oral health promotion. The objective of this study was to determine if women receiving a brief, low-cost, and sustainable educational intervention entitled CenteringPregnancy Oral Health Promotion had clinically improved oral health compared to women receiving standard CenteringPregnancy care. Women attending CenteringPregnancy, a group prenatal care model, at 4 health centers in the San Francisco Bay Area, participated in this nonrandomized controlled pilot study in 2010 to 2011. The intervention arm received the CenteringPregnancy Oral Health Promotion intervention consisting of two 15-minute skills-based educational modules addressing maternal and infant oral health, each module presented in a separate CenteringPregnancy prenatal care session. The present analysis focused on the maternal module that included facilitated discussions and skills-building activities including proper tooth brushing. The control arm received standard CenteringPregnancy prenatal care. Dental examinations and questionnaires were administered prior to and approximately 9 weeks postintervention. Primary outcomes included the Plaque Index, percent bleeding on probing, and percent of gingival pocket depths 4 mm or greater. Secondary outcomes were self-reported oral health knowledge, attitudes (importance and self-efficacy), and behaviors (tooth brushing and flossing). Regression models tested whether pre to post changes in outcomes differed between the intervention versus the control arms. One hundred and one women participated in the study; 49 were in the intervention arm, and 52 were in the control arm. The control and intervention arms did not vary significantly at baseline. Significant pre to post differences were noted between the arms with significant improvements in the intervention arm for the Plaque Index, bleeding on probing, and pocket depths 4 mm or greater. Providing brief oral health education and skills-building activities within prenatal care may be effective in improving women's oral health during pregnancy. These findings provide support for developing a full-scale randomized clinical trial of the CenteringPregnancy Oral Health Promotion intervention. © 2017 by the American College of Nurse-Midwives.

  19. Mouthguards: does the indigenous microbiome play a role in maintaining oral health?

    PubMed

    Kumar, Purnima S; Mason, Matthew R

    2015-01-01

    The existence of symbiotic relationships between bacteria and their hosts in various ecosystems have long been known to science. The human body also hosts vast numbers of bacteria in several habitats. Emerging evidence from the gastro-intestinal tract, genito-urinary tract and respiratory indicates that there are several health benefits to hosting a complex and diverse microbial community. Bacteria colonize the oral cavity within a few minutes after birth and form stable communities. Our knowledge of the oral microbiome has expanded exponentially with development of novel exploratory methods that allow us to examine diversity, structure, function, and topography without the need to cultivate the individual components of the biofilm. The purpose of this perspective, therefore, is to examine the strength of current evidence supporting a role for the oral microbiome in maintaining oral health. While several lines of evidence are emerging to suggest that indigenous oral microbiota may have a role in immune education and preventing pathogen expansion, much more work is needed to definitively establish whether oral bacteria do indeed contribute to sustaining oral health, and if so, the mechanisms underlying this role.

  20. The oral microbiome - an update for oral healthcare professionals.

    PubMed

    Kilian, M; Chapple, I L C; Hannig, M; Marsh, P D; Meuric, V; Pedersen, A M L; Tonetti, M S; Wade, W G; Zaura, E

    2016-11-18

    For millions of years, our resident microbes have coevolved and coexisted with us in a mostly harmonious symbiotic relationship. We are not distinct entities from our microbiome, but together we form a 'superorganism' or holobiont, with the microbiome playing a significant role in our physiology and health. The mouth houses the second most diverse microbial community in the body, harbouring over 700 species of bacteria that colonise the hard surfaces of teeth and the soft tissues of the oral mucosa. Through recent advances in technology, we have started to unravel the complexities of the oral microbiome and gained new insights into its role during both health and disease. Perturbations of the oral microbiome through modern-day lifestyles can have detrimental consequences for our general and oral health. In dysbiosis, the finely-tuned equilibrium of the oral ecosystem is disrupted, allowing disease-promoting bacteria to manifest and cause conditions such as caries, gingivitis and periodontitis. For practitioners and patients alike, promoting a balanced microbiome is therefore important to effectively maintain or restore oral health. This article aims to give an update on our current knowledge of the oral microbiome in health and disease and to discuss implications for modern-day oral healthcare.

  1. The numerous microbial species in oral biofilms: how could antibacterial therapy be effective?

    PubMed

    ten Cate, J M; Zaura, E

    2012-09-01

    Hundreds of bacterial species inhabit the oral cavity. Many of these have never been cultivated and can be assessed only with DNA-based techniques. This new understanding has changed the paradigm of the etiology of oral disease from that associated with 'traditional pathogens' as being primarily responsible for all diseases. Increasingly, associations between oral bacteria and systemic diseases are being reported. The emergence of antibiotic resistance is alarming and calls for in-depth studies of biofilms, bacterial physiology, and a body-wide approach to infectious diseases. We propose that the borderline between commensal bacteria and pathogens is no longer discrete. In a field of science where so many of the established paradigms are being undermined, a thorough analysis of threats and opportunities is required. This article addresses some of the questions that can be raised and serves to identify research opportunities and needs to leverage the prevention of oral diseases through novel antimicrobial strategies.

  2. Oral Assessment in Mathematics: Implementation and Outcomes

    ERIC Educational Resources Information Center

    Iannone, P.; Simpson, A.

    2012-01-01

    In this article, we report the planning and implementation of an oral assessment component in a first-year pure mathematics module of a degree course in mathematics. Our aim was to examine potential barriers to using oral assessments, explore the advantages and disadvantages compared to existing common assessment methods and document the outcomes…

  3. Position of the American Dietetic Association: Oral health and nutrition.

    PubMed

    Touger-Decker, Riva; Mobley, Connie C

    2003-05-01

    It is the position of the American Dietetic Association (ADA) that nutrition is an integral component of oral health. The ADA supports the integration of oral health with nutrition services, education, and research. Collaboration between dietetics and dental professionals is recommended for oral health promotion and disease prevention and intervention. Scientific and epidemiological data suggest a lifelong synergy between nutrition and the integrity of the oral cavity in health and disease. Oral health is an integral part of systemic and nutritional health. Two primary oral infectious diseases are directly influenced by diet and nutrition. Dental caries or tooth decay is modulated by numerous factors, including diet composition and frequency. Periodontal or gum disease is associated with malnutrition. Chronic diseases such as diabetes and cardiovascular disease that are modulated by diet and nutrition intervention have oral sequelae. As we advance in our discoveries of the links between oral and nutrition health, practitioners of both disciplines must learn to provide screening, baseline education, and referral to each other as part of comprehensive client/patient care. The future of dietetics practice requires dietetics professionals to provide medical nutrition therapy (MNT) that incorporates a person's total health needs, including oral health. Inclusion of both didactic and clinical practice concepts that illustrate the role of nutrition in oral health is essential in both dental and dietetic education programs. Collaborative endeavors between dietetics and dentistry in research, education, and delineation of health provider practice roles are needed to ensure comprehensive health care to persons with oral infectious disease and/or oral manifestations of systemic diseases.

  4. Gut Microbiota and Salivary Diagnostics: The Mouth Is Salivating to Tell Us Something

    PubMed Central

    Kodukula, Krishna; Faller, Douglas V.; Harpp, David N.; Kanara, Iphigenia; Pernokas, Julie; Pernokas, Mark; Powers, Whitney R.; Soukos, Nikolaos S.; Steliou, Kosta; Moos, Walter H.

    2017-01-01

    Abstract The microbiome of the human body represents a symbiosis of microbial networks spanning multiple organ systems. Bacteria predominantly represent the diversity of human microbiota, but not to be forgotten are fungi, viruses, and protists. Mounting evidence points to the fact that the “microbial signature” is host-specific and relatively stable over time. As our understanding of the human microbiome and its relationship to the health of the host increases, it is becoming clear that many and perhaps most chronic conditions have a microbial involvement. The oral and gastrointestinal tract microbiome constitutes the bulk of the overall human microbial load, and thus presents unique opportunities for advancing human health prognosis, diagnosis, and therapy development. This review is an attempt to catalog a broad diversity of recent evidence and focus it toward opportunities for prevention and treatment of debilitating illnesses. PMID:29098118

  5. Amygdala reactivity to negative stimuli is influenced by oral contraceptive use.

    PubMed

    Petersen, Nicole; Cahill, Larry

    2015-09-01

    The amygdala is a highly interconnected region of the brain that is critically important to emotional processing and affective networks. Previous studies have shown that the response of the amygdala to emotionally arousing stimuli can be modulated by sex hormones. Because oral contraceptive pills dramatically lower circulating sex hormone levels with potent analogs of those hormones, we performed a functional magnetic resonance imaging experiment to measure amygdala reactivity in response to emotional stimuli in women using oral contraceptives, and compared their amygdala reactivity with that of naturally cycling women. Here, we show that women who use oral contraceptive pills have significantly decreased bilateral amygdala reactivity in response to negatively valenced, emotionally arousing stimuli compared with naturally cycling women. We suggest that by modulating amygdala reactivity, oral contraceptive pills may influence behaviors that have previously been shown to be amygdala dependent-in particular, emotional memory. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Oral Gene Application Using Chitosan-DNA Nanoparticles Induces Transferable Tolerance

    PubMed Central

    Ensminger, Stephan M.; Spriewald, Bernd M.

    2012-01-01

    Oral tolerance is a promising approach to induce unresponsiveness to various antigens. The development of tolerogenic vaccines could be exploited in modulating the immune response in autoimmune disease and allograft rejection. In this study, we investigated a nonviral gene transfer strategy for inducing oral tolerance via antigen-encoding chitosan-DNA nanoparticles (NP). Oral application of ovalbumin (OVA)-encoding chitosan-DNA NP (OVA-NP) suppressed the OVA-specific delayed-type hypersensitivity (DTH) response and anti-OVA antibody formation, as well as spleen cell proliferation following OVA stimulation. Cytokine expression patterns following OVA stimulation in vitro showed a shift from a Th1 toward a Th2/Th3 response. The OVA-NP-induced tolerance was transferable from donor to naïve recipient mice via adoptive spleen cell transfer and was mediated by CD4+CD25+ T cells. These findings indicate that nonviral oral gene transfer can induce regulatory T cells for antigen-specific immune modulation. PMID:22933401

  7. Innate Immunity and Saliva in Candida albicans–mediated Oral Diseases

    PubMed Central

    Salvatori, O.; Puri, S.; Tati, S.; Edgerton, M.

    2016-01-01

    The oral cavity is a unique niche where Candida albicans infections occur in immunocompetent as well as immunosuppressed individuals. Here we critically review the significance of human innate immune response in preventing oral candidiasis. One important line of defense against oropharyngeal candidiasis is the oral microbiota that prevents infection by competing for space and nutrients as well as by secreting antagonistic molecules and triggering local inflammatory responses. C. albicans is able to induce mucosal defenses through activation of immune cells and production of cytokines. Also, saliva contains various proteins that affect C. albicans growth positively by promoting mucosal adherence and negatively through immune exclusion and direct fungicidal activity. We further discuss the role of saliva in unifying host innate immune defenses against C. albicans as a communicating medium and how C. albicans overgrowth in the oral cavity may be a result of aberrations ranging from microbial dysbiosis and salivary dysfunction to epithelial damage. Last we underscore select oral diseases in which C. albicans is a contributory microorganism in immune-competent individuals. PMID:26747422

  8. Oral tolerance in neonates: from basics to potential prevention of allergic disease.

    PubMed

    Verhasselt, V

    2010-07-01

    Oral tolerance refers to the observation that prior feeding of an antigen induces local and systemic immune tolerance to that antigen. Physiologically, this process is probably of central importance for preventing inflammatory responses to the numerous dietary and microbial antigens present in the gut. Defective oral tolerance can lead to gut inflammatory disease, food allergies, and celiac disease. In the last two cases, the diseases develop early in life, stressing the necessity of understanding how oral tolerance is set up in neonates. This article reviews the parameters that have been outlined in adult animal models as necessary for tolerance induction and assesses whether these factors operate in neonates. In addition, we highlight the factors that are specific for this period of life and discuss how they could have an impact on oral tolerance. We pay particular attention to maternal influence on early oral tolerance induction through breast-feeding and outline the major parameters that could be modified to optimize tolerance induction in early life and possibly prevent allergic diseases.

  9. Oral Bacterial and Fungal Microbiome Impacts Colorectal Carcinogenesis.

    PubMed

    Klimesova, Klara; Jiraskova Zakostelska, Zuzana; Tlaskalova-Hogenova, Helena

    2018-01-01

    Host's physiology is significantly influenced by microbiota colonizing the epithelial surfaces. Complex microbial communities contribute to proper mucosal barrier function, immune response, and prevention of pathogen invasion and have many other crucial functions. The oral cavity and large intestine are distant parts of the digestive tract, both heavily colonized by commensal microbiota. Nevertheless, they feature different proportions of major bacterial and fungal phyla, mostly due to distinct epithelial layers organization and different oxygen levels. A few obligate anaerobic strains inhabiting the oral cavity are involved in the pathogenesis of oral diseases. Interestingly, these microbiota components are also enriched in gut inflammatory and tumor tissue. An altered microbiota composition - dysbiosis - and formation of polymicrobial biofilms seem to play important roles in the development of oral diseases and colorectal cancer. In this review, we describe the differences in composition of commensal microbiota in the oral cavity and large intestine and the mechanisms by which microbiota affect the inflammatory and carcinogenic response of the host.

  10. Antimicrobial and Attractant Roles for Chemerin in the Oral Cavity during Inflammatory Gum Disease.

    PubMed

    Godlewska, Urszula; Brzoza, Piotr; Sroka, Aneta; Majewski, Pawel; Jentsch, Holger; Eckert, Martin; Eick, Sigrun; Potempa, Jan; Zabel, Brian A; Cichy, Joanna

    2017-01-01

    Periodontal inflammation is one of the most common chronic inflammatory conditions in humans. Despite recent advances in identifying and characterizing oral microbiota dysbiosis in the pathogenesis of gum disease, just how host factors maintain a healthy homeostatic oral microbial community or prevent the development of a pathogenic oral microbiota remains poorly understood. An important determinant of microbiota fate is local antimicrobial proteins. Here, we report that chemoattractant protein chemerin, which we recently identified as a potent endogenous antimicrobial agent in body barriers such as the skin, is present in the oral cavity under homeostatic and inflammatory conditions. Chemerin and a chemerin-derived antimicrobial peptide are bactericidal against select bacteria strategically positioned in dental biofilm. Gingival crevicular samples from patients with gingivitis but not periodontitis contain abundant bioactive chemerin capable of inducing CMKLR1-dependent leukocyte migration. Gingipains secreted by the periodontopathogen P. gingivalis inactivate chemerin. Together, these data suggest that as an antimicrobial agent and leukocyte chemoattractant, chemerin likely contributes to antimicrobial immune defense in the oral cavity.

  11. The Oral Microbiota.

    PubMed

    Arweiler, Nicole B; Netuschil, Lutz

    2016-01-01

    The oral microbiota represents an important part of the human microbiota, and includes several hundred to several thousand diverse species. It is a normal part of the oral cavity and has an important function to protect against colonization of extrinsic bacteria which could affect systemic health. On the other hand, the most common oral diseases caries, gingivitis and periodontitis are based on microorganisms. While (medical) research focused on the planktonic phase of bacteria over the last 100 years, it is nowadays generally known, that oral microorganisms are organised as biofilms. On any non-shedding surfaces of the oral cavity dental plaque starts to form, which meets all criteria for a microbial biofilm and is subject to the so-called succession. When the sensitive ecosystem turns out of balance - either by overload or weak immune system - it becomes a challenge for local or systemic health. Therefore, the most common strategy and the golden standard for the prevention of caries, gingivitis and periodontitis is the mechanical removal of this biofilms from teeth, restorations or dental prosthesis by regular toothbrushing.

  12. High Diversity of the Saliva Microbiome in Batwa Pygmies

    PubMed Central

    Schroeder, Roland; Creasey, Jean L.; Li, Mingkun; Stoneking, Mark

    2011-01-01

    We describe the saliva microbiome diversity in Batwa Pygmies, a former hunter-gatherer group from Uganda, using next-generation sequencing of partial 16S rRNA sequences. Microbial community diversity in the Batwa is significantly higher than in agricultural groups from Sierra Leone and the Democratic Republic of Congo. We found 40 microbial genera in the Batwa, which have previously not been described in the human oral cavity. The distinctive composition of the salvia microbiome of the Batwa may have been influenced by their recent different lifestyle and diet. PMID:21858083

  13. Oral TNFα Modulation Alters Neutrophil Infiltration, Improves Cognition and Diminishes Tau and Amyloid Pathology in the 3xTgAD Mouse Model

    PubMed Central

    Gabbita, S. Prasad; Johnson, Ming F.; Kobritz, Naomi; Eslami, Pirooz; Poteshkina, Aleksandra; Varadarajan, Sridhar; Turman, John; Zemlan, Frank; Harris-White, Marni E.

    2015-01-01

    Cytokines such as TNFα can polarize microglia/macrophages into different neuroinflammatory types. Skewing of the phenotype towards a cytotoxic state is thought to impair phagocytosis and has been described in Alzheimer’s Disease (AD). Neuroinflammation can be perpetuated by a cycle of increasing cytokine production and maintenance of a polarized activation state that contributes to AD progression. In this study, 3xTgAD mice, age 6 months, were treated orally with 3 doses of the TNFα modulating compound isoindolin-1,3 dithione (IDT) for 10 months. We demonstrate that IDT is a TNFα modulating compound both in vitro and in vivo. Following long-term IDT administration, mice were assessed for learning & memory and tissue and serum were collected for analysis. Results demonstrate that IDT is safe for long-term treatment and significantly improves learning and memory in the 3xTgAD mouse model. IDT significantly reduced paired helical filament tau and fibrillar amyloid accumulation. Flow cytometry of brain cell populations revealed that IDT increased the infiltrating neutrophil population while reducing TNFα expression in this population. IDT is a safe and effective TNFα and innate immune system modulator. Thus small molecule, orally bioavailable modulators are promising therapeutics for Alzheimer’s disease. PMID:26436670

  14. Expedition Six Flight Engineer Pettit uses a chemical/microbial analysis bag to collect water sample

    NASA Image and Video Library

    2002-12-18

    ISS006-E-08628 (18 December 2002) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, is pictured in the Zvezda Service Module on the International Space Station (ISS) during the scheduled Week 3 potable water sampling and on-orbit chemical/microbial analysis of the SM environment control and life support system.

  15. Expedition Six Flight Engineer Pettit uses a chemical/microbial analysis bag to collect water sample

    NASA Image and Video Library

    2002-12-18

    ISS006-E-08616 (18 December 2002) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, is pictured in the Zvezda Service Module on the International Space Station (ISS) during the scheduled Week 3 potable water sampling and on-orbit chemical/microbial analysis of the SM environment control and life support system.

  16. The influence of gut microbiota on drug metabolism and toxicity

    PubMed Central

    Li, Houkai; He, Jiaojiao; Jia, Wei

    2017-01-01

    Introduction Gut microbiota plays critical roles in drug metabolism. The individual variation of gut microbiota contributes to the interindividual differences towards drug therapy including drug-induced toxicity and efficacy. Accordingly, the investigation and elucidation of gut microbial impacts on drug metabolism and toxicity will not only facilitate the way of personalized medicine, but also improve the rational drug design. Areas covered This review provide an overview on the microbiota-host cometabolism on drug metabolism and summarize 30 clinical drugs which are co-metabolized by host and gut microbiota. Moreover, this review is specifically focused on elucidating the gut microbial modulation on some clinical drugs, in which the gut microbial influences on drug metabolism, drug-induced toxicity and efficacy are intensively discussed. Expert opinion The gut microbial contribution to drug metabolism and toxicity is increasingly recognized, but remains largely unexplored due to the extremely complex relationship between gut microbiota and host. The mechanistic elucidation of gut microbiota in drug metabolism is critical before any practical progress in drug design or personalized medicine could be made by modulating human gut microbiota, which is predominantly relied on the technical innovations such as metagenomics and metabolomics, as well as the integration of multi-disciplinary knowledge. PMID:26569070

  17. Evaluating the Impact of DNA Extraction Method on the Representation of Human Oral Bacterial and Fungal Communities

    PubMed Central

    Biswas, Kristi; Taylor, Michael W.; Gear, Kim

    2017-01-01

    The application of high-throughput, next-generation sequencing technologies has greatly improved our understanding of the human oral microbiome. While deciphering this diverse microbial community using such approaches is more accurate than traditional culture-based methods, experimental bias introduced during critical steps such as DNA extraction may compromise the results obtained. Here, we systematically evaluate four commonly used microbial DNA extraction methods (MoBio PowerSoil® DNA Isolation Kit, QIAamp® DNA Mini Kit, Zymo Bacterial/Fungal DNA Mini PrepTM, phenol:chloroform-based DNA isolation) based on the following criteria: DNA quality and yield, and microbial community structure based on Illumina amplicon sequencing of the V3–V4 region of the 16S rRNA gene of bacteria and the internal transcribed spacer (ITS) 1 region of fungi. Our results indicate that DNA quality and yield varied significantly with DNA extraction method. Representation of bacterial genera in plaque and saliva samples did not significantly differ across DNA extraction methods and DNA extraction method showed no effect on the recovery of fungal genera from plaque. By contrast, fungal diversity from saliva was affected by DNA extraction method, suggesting that not all protocols are suitable to study the salivary mycobiome. PMID:28099455

  18. Changes in the oral ecosystem induced by the use of 8% arginine toothpaste.

    PubMed

    Koopman, Jessica E; Hoogenkamp, Michel A; Buijs, Mark J; Brandt, Bernd W; Keijser, Bart J F; Crielaard, Wim; Ten Cate, Jacob M; Zaura, Egija

    2017-01-01

    Bacterial metabolism of arginine in the oral cavity has a pH-raising and thus, potential anti-caries effect. However, the influence of arginine on the oral microbial ecosystem remains largely unresolved. In this pilot study, nine healthy individuals used toothpaste containing 8% arginine for eight weeks. Saliva was collected to determine arginolytic potential and sucrose metabolic activity at the Baseline, Week 4, Week 8 and after a two weeks Wash-out period. To follow the effects on microbial ecology, 16S rDNA sequencing on saliva and plaque samples at Baseline and Week 8 and metagenome sequencing on selected saliva samples of the same time-points was performed. During the study period, the arginolytic potential of saliva increased, while the sucrose metabolism in saliva decreased. These effects were reversed during the Wash-out period. Although a few operational taxonomic units (OTUs) in plaque changed in abundance during the study period, there was no real shift in the plaque microbiome. In the saliva microbiome there was a significant compositional shift, specifically the genus Veillonella had increased significantly in abundance at Week 8. Indeed, the presence of arginine in toothpaste affects the arginolytic capacity of saliva and reduces its sucrose metabolic activity. Additionally, it leads to a shift in the salivary microbiome composition towards a healthy ecology from a caries point of view. Therefore, arginine can be regarded as a genuine oral prebiotic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Two autonomous structural modules in the fimbrial shaft adhesin FimA mediate Actinomyces interactions with streptococci and host cells during oral biofilm development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Arunima; Devarajan, Bharanidharan; Reardon, Melissa E.

    2011-09-06

    By combining X-ray crystallography and modelling, we describe here the atomic structure of distinct adhesive moieties of FimA, the shaft fimbrillin of Actinomyces type 2 fimbriae, which uniquely mediates the receptor-dependent intercellular interactions between Actinomyces and oral streptococci as well as host cells during the development of oral biofilms. The FimA adhesin is built with three IgG-like domains, each of which harbours an intramolecular isopeptide bond, previously described in several Gram-positive pilins. Genetic and biochemical studies demonstrate that although these isopeptide bonds are dispensable for fimbrial assembly, cell-cell interactions and biofilm formation, they contribute significantly to the proteolytic stability ofmore » FimA. Remarkably, FimA harbours two autonomous adhesive modules, which structurally resemble the Staphylococcus aureus Cna B domain. Each isolated module can bind the plasma glycoprotein asialofetuin as well as the polysaccharide receptors present on the surface of oral streptococci and epithelial cells. Thus, FimA should serve as an excellent paradigm for the development of therapeutic strategies and elucidating the precise molecular mechanisms underlying the interactions between cellular receptors and Gram-positive fimbriae.« less

  20. Two Autonomous Structural Modules in the Fimbrial Shaft Adhesin FimA Mediate Actinomyces Interactions with Streptococci and Host Cells during Oral Biofilm Development

    PubMed Central

    Mishra, Arunima; Devarajan, Bharanidharan; Reardon, Melissa E.; Dwivedi, Prabhat; Krishnan, Vengadesan; Cisar, John O.; Das, Asis; Narayana, Sthanam V. L; Ton-That, Hung

    2011-01-01

    By combining X-ray crystallography and modeling, we describe here the atomic structure of distinct adhesive moieties of FimA, the shaft fimbrillin of Actinomyces type 2 fimbriae, which uniquely mediates the receptor-dependent intercellular interactions between Actinomyces and oral streptococci as well as host cells during the development of oral biofilms. The FimA adhesin is built with three IgG-like domains, each of which harbors an intramolecular isopeptide bond, previously described in several Gram-positive pilins. Genetic and biochemical studies demonstrate that although these isopeptide bonds are dispensable for fimbrial assembly, cell-cell interactions and biofilm formation, they contribute significantly to the proteolytic stability of FimA. Remarkably, FimA harbors two autonomous adhesive modules, which structurally resemble the Staphylococcus aureus Cna B domain. Each isolated module can bind the plasma glycoprotein asialofetuin as well as the polysaccharide receptors present on the surface of oral streptococci and epithelial cells. Thus, FimA should serve as an excellent paradigm for the development of therapeutic strategies and elucidating the precise molecular mechanisms underlying the interactions between cellular receptors and Gram-positive fimbriae. PMID:21696465

  1. Investigation of Acrylic Resin Disinfection Using Chemicals and Ultrasound.

    PubMed

    Muscat, Ylainia; Farrugia, Cher; Camilleri, Liberato; Arias-Moliz, Maria Teresa; Valdramidis, Vasilis; Camilleri, Josette

    2018-06-01

    Dental prosthetic and orthodontic appliances are transported from the clinic to the laboratory for additions and repairs. These appliances, containing microbes from the oral flora, are a high risk for cross-contamination. The aim of this study was to evaluate the effect of chemical and ultrasound disinfection against two in vitro biofilms and an in vivo formed biofilm grown on unprepared and polished polymethyl methacrylate (PMMA) surfaces. Rough and polished self-curing PMMA surfaces were infected with strains of both Candida albicans and Streptococcus oralis. After incubation, the samples were treated with different disinfection methods, including ultrasound treatment for both 15 and 30 seconds, and immersion in glutaraldehyde and alcohol-based chemical disinfectants (MD520 and Minuten, respectively). The disinfecting efficacy was assessed by colony forming units (CFU) analysis and by scanning electron microscopy (SEM). Furthermore the adequacy of bacterial elimination of application of 30-second ultrasound and MD520 was assessed on PMMA retrieved from ten volunteers by CFU analyses. ANOVA with p = 0.05 followed by the Tukey post hoc test and the Student t-test was used to analyze the data. The ultrasound treatment for 30 seconds, MD520, and Minuten were the most effective disinfectant methods as they reduced the microbial counts compared to the control (p < 0.05) as shown in the in vitro analyses. S. oralis adhered more to rough acrylic resin surfaces (p < 0.05). Ultrasound treatment was the most effective way to reduce microbial counts on PMMA exposed to oral flora (p = 0.043). Ultrasound treatment for 30 seconds was effective against C. albicans, S. oralis, and the oral flora as shown by testing microbial growth on agar plates and SEM. © 2016 by the American College of Prosthodontists.

  2. Anti-microbial Efficacy of Soursop Leaf Extract (Annona muricata) on Oral Pathogens: An In-vitro Study

    PubMed Central

    Rajesh, Gururagavendra; Shenoy, Ramya; Rao, Ashwini

    2016-01-01

    Introduction Annona muricata also called as Soursop is a, flowering evergreen tree native to Mexico, Cuba, Central America and parts of India. The miracle tree as it is widely known as a natural cancer killer that is 10,000 times stronger than chemotherapy. Based on these miraculous claims, the leaves of these plants were used as an extract at varying concentrations as an antibacterial agent against oral pathogens. Aim The aim of the study was to assess antimicrobial efficacy of Soursop leaf extarct (Annona muricata) on Streptococcus mutans, Streptococcus mitis, Porphyromonas gingivalis, Prevotella intermedia and Candida albicans using disc diffusion method. Materials and Methods Extracts of Annona muricata leaves of concentrations of 1%, 5%, 10%, 15% and 20% were prepared. The anti-microbial efficacy was evaluated using disc diffusion method against Streptococcus mutans, Streptococcus mitis, Porphyromonas gingivalis, Prevotella intermedia and Candida albicans on agar plates. Results All concentrations of extracts were effective on the microbiota except for the P. Intermedia. The Soursop extract was highly effective on Candida species, with all concentrations exhibiting bactericidal and fungicidal property. The extracts at different concentration were effective when compared to the gold standard controls and the effect was statistically significant (p<0.05). Data obtained was analysed using one way analysis of variance (ANOVA) and Tukey’s post-hoc test. Conclusion The Soursop extracts were efficient for all test organisms expect P. intermedia. The present study demonstrated the in-vitro efficacy of Soursop was highest against S. mutans followed by C. albicans and least on P. intermedia. Hence, this study proves to an extent that the Soursop extract when used against oral microbiota has sufficient anti-microbial and fungicidal property. PMID:28050493

  3. What if Best Practice Is Too Expensive? Feedback on Oral Presentations and Efficient Use of Resources

    ERIC Educational Resources Information Center

    Leger, Lawrence A.; Glass, Karligash; Katsiampa, Paraskevi; Liu, Shibo; Sirichand, Kavita

    2017-01-01

    We evaluate feedback methods for oral presentations used in training non-quantitative research skills (literature review and various associated tasks). Training is provided through a credit-bearing module taught to MSc students of banking, economics and finance in the UK. Monitoring oral presentations and providing "best practice"…

  4. Immune-Mediated Mechanisms of Action of Probiotics and Synbiotics in Treating Pediatric Intestinal Diseases

    PubMed Central

    Gil-Campos, Mercedes

    2018-01-01

    The pediatric population is continually at risk of developing infectious and inflammatory diseases. The treatment for infections, particularly gastrointestinal conditions, focuses on oral or intravenous rehydration, nutritional support and, in certain case, antibiotics. Over the past decade, the probiotics and synbiotics administration for the prevention and treatment of different acute and chronic infectious diseases has dramatically increased. Probiotic microorganisms are primarily used as treatments because they can stimulate changes in the intestinal microbial ecosystem and improve the immunological status of the host. The beneficial impact of probiotics is mediated by different mechanisms. These mechanisms include the probiotics’ capacity to increase the intestinal barrier function, to prevent bacterial transferation and to modulate inflammation through immune receptor cascade signaling, as well as their ability to regulate the expression of selected host intestinal genes. Nevertheless, with respect to pediatric intestinal diseases, information pertaining to these key mechanisms of action is scarce, particularly for immune-mediated mechanisms of action. In the present work, we review the biochemical and molecular mechanisms of action of probiotics and synbiotics that affect the immune system. PMID:29303974

  5. Treatment modalities and evaluation models for periodontitis

    PubMed Central

    Tariq, Mohammad; Iqbal, Zeenat; Ali, Javed; Baboota, Sanjula; Talegaonkar, Sushama; Ahmad, Zulfiqar; Sahni, Jasjeet K

    2012-01-01

    Periodontitis is the most common localized dental inflammatory disease related with several pathological conditions like inflammation of gums (gingivitis), degeneration of periodontal ligament, dental cementum and alveolar bone loss. In this perspective, the various preventive and treatment modalities, including oral hygiene, gingival irrigations, mechanical instrumentation, full mouth disinfection, host modulation and antimicrobial therapy, which are used either as adjunctive treatments or as stand-alone therapies in the non-surgical management of periodontal infections, have been discussed. Intra-pocket, sustained release systems have emerged as a novel paradigm for the future research. In this article, special consideration is given to different locally delivered anti-microbial and anti inflammatory medications which are either commercially available or are currently under consideration for Food and Drug Administration (FDA) approval. The various in vitro dissolution models and microbiological strain investigated to impersonate the infected and inflamed periodontal cavity and to predict the in vivo performance of treatment modalities have also been thrashed out. Animal models that have been employed to explore the pathology at the different stages of periodontitis and to evaluate its treatment modalities are enlightened in this proposed review. PMID:23373002

  6. Lactobacillus johnsonii Supplementation Attenuates Respiratory Viral Infection via Metabolic Reprogramming and Immune Cell Modulation

    PubMed Central

    Fonseca, Wendy; Lucey, Kaitlyn; Jang, Sihyug; Fujimura, Kei E.; Rasky, Andrew; Ting, Hung-An; Petersen, Julia; Johnson, Christine C.; Boushey, Homer A.; Zoratti, Edward; Ownby, Dennis R.; Levine, Albert M.; Bobbit, Kevin R.

    2017-01-01

    Summary Regulation of respiratory mucosal immunity by microbial-derived metabolites has been a proposed mechanism that may provide airway protection. Here we examine the effect of oral Lactobacillus johnsonii-supplementation on metabolic and immune response dynamics during respiratory syncytial virus (RSV) infection. L. johnsonii-supplementation reduced airway Th2 cytokines, dendritic cell function, increased T-regulatory cells, and was associated with a reprogrammed circulating metabolic environment, including docosahexanoic acid (DHA) enrichment. RSV-infected bone-marrow derived dendritic cells (BMDC) from L. johnsonii-supplemented mice had altered cytokine secretion, reduced expression of co-stimulatory molecules, and modified CD4+ T cell cytokines. This was replicated upon co-incubation of wild-type BMDCs with either plasma from L. johnsonii-supplemented mice, or DHA. Finally, airway transfer of BMDCs from L. johnsonii-supplemented mice, or with wild-type derived BMDCs pre-treated with plasma from L. johnsonii-supplemented mice, reduced airway pathologic responses to infection in recipient animals. Thus, L. johnsonii-supplementation mediates airway mucosal protection via immunomodulatory metabolites and altered immune function. PMID:28295020

  7. Lactobacillus johnsonii supplementation attenuates respiratory viral infection via metabolic reprogramming and immune cell modulation.

    PubMed

    Fonseca, W; Lucey, K; Jang, S; Fujimura, K E; Rasky, A; Ting, H-A; Petersen, J; Johnson, C C; Boushey, H A; Zoratti, E; Ownby, D R; Levine, A M; Bobbit, K R; Lynch, S V; Lukacs, N W

    2017-11-01

    Regulation of respiratory mucosal immunity by microbial-derived metabolites has been a proposed mechanism that may provide airway protection. Here we examine the effect of oral Lactobacillus johnsonii supplementation on metabolic and immune response dynamics during respiratory syncytial virus (RSV) infection. L. johnsonii supplementation reduced airway T helper type 2 cytokines and dendritic cell (DC) function, increased regulatory T cells, and was associated with a reprogrammed circulating metabolic environment, including docosahexanoic acid (DHA) enrichment. RSV-infected bone marrow-derived DCs (BMDCs) from L. johnsonii-supplemented mice had altered cytokine secretion, reduced expression of co-stimulatory molecules, and modified CD4+ T-cell cytokines. This was replicated upon co-incubation of wild-type BMDCs with either plasma from L. johnsonii-supplemented mice or DHA. Finally, airway transfer of BMDCs from L. johnsonii-supplemented mice or with wild-type derived BMDCs pretreated with plasma from L. johnsonii-supplemented mice reduced airway pathological responses to infection in recipient animals. Thus L. johnsonii supplementation mediates airway mucosal protection via immunomodulatory metabolites and altered immune function.

  8. Oral microbial profile discriminates breast-fed from formula-fed infants.

    PubMed

    Holgerson, Pernilla L; Vestman, Nelly R; Claesson, Rolf; Ohman, Carina; Domellöf, Magnus; Tanner, Anne C R; Hernell, Olle; Johansson, Ingegerd

    2013-02-01

    Little is known about the effect of diet on the oral microbiota of infants, although diet is known to affect the gut microbiota. The aims of the present study were to compare the oral microbiota in breast-fed and formula-fed infants, and investigate growth inhibition of streptococci by infant-isolated lactobacilli. A total of 207 mothers consented to participation of their 3-month-old infants. A total of 146 (70.5%) infants were exclusively and 38 (18.4%) partially breast-fed, and 23 (11.1%) were exclusively formula-fed. Saliva from all of their infants was cultured for Lactobacillus species, with isolate identifications from 21 infants. Lactobacillus isolates were tested for their ability to suppress Streptococcus mutans and S sanguinis. Oral swabs from 73 infants were analysed by the Human Oral Microbe Identification Microarray (HOMIM) and by quantitative polymerase chain reaction for Lactobacillus gasseri. Lactobacilli were cultured from 27.8% of exclusively and partially breast-fed infants, but not from formula-fed infants. The prevalence of 14 HOMIM-detected taxa, and total salivary lactobacilli counts differed by feeding method. Multivariate modelling of HOMIM-detected bacteria and possible confounders clustered samples from breast-fed infants separately from formula-fed infants. The microbiota of breast-fed infants differed based on vaginal or C-section delivery. Isolates of L plantarum, L gasseri, and L vaginalis inhibited growth of the cariogenic S mutans and the commensal S sanguinis: L plantarum >L gasseri >L vaginalis. The microbiota of the mouth differs between 3-month-old breast-fed and formula-fed infants. Possible mechanisms for microbial differences observed include species suppression by lactobacilli indigenous to breast milk.

  9. Stability and resilience of oral microcosms toward acidification and Candida outgrowth by arginine supplementation.

    PubMed

    Koopman, Jessica E; Röling, Wilfred F M; Buijs, Mark J; Sissons, Christopher H; ten Cate, Jacob M; Keijser, Bart J F; Crielaard, Wim; Zaura, Egija

    2015-02-01

    Dysbiosis induced by low pH in the oral ecosystem can lead to caries, a prevalent bacterial disease in humans. The amino acid arginine is one of the pH-elevating agents in the oral cavity. To obtain insights into the effect of arginine on oral microbial ecology, a multi-plaque "artificial mouth" (MAM) biofilm model was inoculated with saliva from a healthy volunteer and microcosms were grown for 4 weeks with 1.6 % (w/v) arginine supplement (Arginine) or without (Control), samples were taken at several time-points. A cariogenic environment was mimicked by sucrose pulsing. The bacterial composition was determined by 16S rRNA gene amplicon sequencing, the presence and amount of Candida and arginine deiminase system genes arcA and sagP by qPCR. Additionally, ammonium and short-chain fatty acid concentrations were determined. The Arginine microcosms were dominated by Streptococcus, Veillonella, and Neisseria and remained stable in time, while the composition of the Control microcosms diverged significantly in time, partially due to the presence of Megasphaera. The percentage of Candida increased 100-fold in the Control microcosms compared to the Arginine microcosms. The pH-raising effect of arginine was confirmed by the pH and ammonium results. The abundances of sagP and arcA were highest in the Arginine microcosms, while the concentration of butyrate was higher in the Control microcosms. We demonstrate that supplementation with arginine serves a health-promoting function; it enhances microcosm resilience toward acidification and suppresses outgrowth of the opportunistic pathogen Candida. Arginine facilitates stability of oral microbial communities and prevents them from becoming cariogenic.

  10. The Same Microbiota and a Potentially Discriminant Metabolome in the Saliva of Omnivore, Ovo-Lacto-Vegetarian and Vegan Individuals

    PubMed Central

    De Filippis, Francesca; Vannini, Lucia; La Storia, Antonietta; Laghi, Luca; Piombino, Paola; Stellato, Giuseppina; Serrazanetti, Diana I.; Gozzi, Giorgia; Turroni, Silvia; Ferrocino, Ilario; Lazzi, Camilla; Di Cagno, Raffaella; Gobbetti, Marco; Ercolini, Danilo

    2014-01-01

    The salivary microbiota has been linked to both oral and non-oral diseases. Scant knowledge is available on the effect of environmental factors such as long-term dietary choices on the salivary microbiota and metabolome. This study analyzed the microbial diversity and metabolomic profiles of the saliva of 161 healthy individuals who followed an omnivore or ovo-lacto-vegetarian or vegan diet. A large core microbiota was identified, including 12 bacterial genera, found in >98% of the individuals. The subjects could be stratified into three “salivary types” that differed on the basis of the relative abundance of the core genera Prevotella, Streptococcus/Gemella and Fusobacterium/Neisseria. Statistical analysis indicated no effect of dietary habit on the salivary microbiota. Phylogenetic beta-diversity analysis consistently showed no differences between omnivore, ovo-lacto-vegetarian and vegan individuals. Metabolomic profiling of saliva using 1H-NMR and GC-MS/SPME identified diet-related biomarkers that enabled a significant discrimination between the 3 groups of individuals on the basis of their diet. Formate, urea, uridine and 5-methyl-3-hexanone could discriminate samples from omnivores, whereas 1-propanol, hexanoic acid and proline were characteristic of non-omnivore diets. Although the salivary metabolome can be discriminating for diet, the microbiota has a remarkable inter-individual stability and did not vary with dietary habits. Microbial homeostasis might be perturbed with sub-standard oral hygiene or other environmental factors, but there is no current indication that a choice of an omnivore, ovo-lacto-vegetarian or vegan diet can lead to a specific composition of the oral microbiota with consequences on the oral homeostasis. PMID:25372853

  11. The same microbiota and a potentially discriminant metabolome in the saliva of omnivore, ovo-lacto-vegetarian and Vegan individuals.

    PubMed

    De Filippis, Francesca; Vannini, Lucia; La Storia, Antonietta; Laghi, Luca; Piombino, Paola; Stellato, Giuseppina; Serrazanetti, Diana I; Gozzi, Giorgia; Turroni, Silvia; Ferrocino, Ilario; Lazzi, Camilla; Di Cagno, Raffaella; Gobbetti, Marco; Ercolini, Danilo

    2014-01-01

    The salivary microbiota has been linked to both oral and non-oral diseases. Scant knowledge is available on the effect of environmental factors such as long-term dietary choices on the salivary microbiota and metabolome. This study analyzed the microbial diversity and metabolomic profiles of the saliva of 161 healthy individuals who followed an omnivore or ovo-lacto-vegetarian or vegan diet. A large core microbiota was identified, including 12 bacterial genera, found in >98% of the individuals. The subjects could be stratified into three "salivary types" that differed on the basis of the relative abundance of the core genera Prevotella, Streptococcus/Gemella and Fusobacterium/Neisseria. Statistical analysis indicated no effect of dietary habit on the salivary microbiota. Phylogenetic beta-diversity analysis consistently showed no differences between omnivore, ovo-lacto-vegetarian and vegan individuals. Metabolomic profiling of saliva using (1)H-NMR and GC-MS/SPME identified diet-related biomarkers that enabled a significant discrimination between the 3 groups of individuals on the basis of their diet. Formate, urea, uridine and 5-methyl-3-hexanone could discriminate samples from omnivores, whereas 1-propanol, hexanoic acid and proline were characteristic of non-omnivore diets. Although the salivary metabolome can be discriminating for diet, the microbiota has a remarkable inter-individual stability and did not vary with dietary habits. Microbial homeostasis might be perturbed with sub-standard oral hygiene or other environmental factors, but there is no current indication that a choice of an omnivore, ovo-lacto-vegetarian or vegan diet can lead to a specific composition of the oral microbiota with consequences on the oral homeostasis.

  12. Responses to Microbial Challenges by SLAMF Receptors

    PubMed Central

    van Driel, Boaz Job; Liao, Gongxian; Engel, Pablo; Terhorst, Cox

    2016-01-01

    The SLAMF family (SLAMF) of cell surface glycoproteins is comprised of nine glycoproteins and while SLAMF1, 3, 5, 6, 7, 8, and 9 are self-ligand receptors, SLAMF2 and SLAMF4 interact with each other. Their interactions induce signal transduction networks in trans, thereby shaping immune cell–cell communications. Collectively, these receptors modulate a wide range of functions, such as myeloid cell and lymphocyte development, and T and B cell responses to microbes and parasites. In addition, several SLAMF receptors serve as microbial sensors, which either positively or negatively modulate the function of macrophages, dendritic cells, neutrophils, and NK cells in response to microbial challenges. The SLAMF receptor–microbe interactions contribute both to intracellular microbicidal activity as well as to migration of phagocytes to the site of inflammation. In this review, we describe the current knowledge on how the SLAMF receptors and their specific adapters SLAM-associated protein and EAT-2 regulate innate and adaptive immune responses to microbes. PMID:26834746

  13. Metagenomic Insights of Microbial Feedbacks to Elevated CO2 (Invited)

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Tu, Q.; Wu, L.; He, Z.; Deng, Y.; Van Nostrand, J. D.

    2013-12-01

    Understanding the responses of biological communities to elevated CO2 (eCO2) is a central issue in ecology and global change biology, but its impacts on the diversity, composition, structure, function, interactions and dynamics of soil microbial communities remain elusive. In this study, we first examined microbial responses to eCO2 among six FACE sites/ecosystems using a comprehensive functional gene microarray (GeoChip), and then focused on details of metagenome sequencing analysis in one particular site. GeoChip is a comprehensive functional gene array for examining the relationships between microbial community structure and ecosystem functioning and is a very powerful technology for biogeochemical, ecological and environmental studies. The current version of GeoChip (GeoChip 5.0) contains approximately 162,000 probes from 378,000 genes involved in C, N, S and P cycling, organic contaminant degradation, metal resistance, antibiotic resistance, stress responses, metal homeostasis, virulence, pigment production, bacterial phage-mediated lysis, soil beneficial microorganisms, and specific probes for viruses, protists, and fungi. Our experimental results revealed that both ecosystem and CO2 significantly (p < 0.05) affected the functional composition, structure and metabolic potential of soil microbial communities with the ecosystem having much greater influence (~47%) than CO2 (~1.3%) or CO2 and ecosystem (~4.1%). On one hand, microbial responses to eCO2 shared some common patterns among different ecosystems, such as increased abundances for key functional genes involved in nitrogen fixation, carbon fixation and degradation, and denitrification. On the other hand, more ecosystem-specific microbial responses were identified in each individual ecosystem. Such changes in the soil microbial community structure were closely correlated with geographic distance, soil NO3-N, NH4-N and C/N ratio. Further metagenome sequencing analysis of soil microbial communities in one particular site showed eCO2 altered the overall structure of soil microbial communities with ambient CO2 samples retaining a higher functional gene diversity than eCO2 samples. Also the taxonomic diversity of functional genes decreased at eCO2. Random matrix theory (RMT)-based network analysis showed that the identified networks under ambient and elevated CO2 were substantially different in terms of overall network topology, network composition, node overlap, module preservation, module-based higher order organization (meta-modules), topological roles of individual nodes, and network hubs, indicating that elevated CO2 dramatically altered the network interactions among different phylogenetic and functional groups/populations. In addition, the changes in network structure were significantly correlated with soil carbon and nitrogen content, indicating the potential importance of network interactions in ecosystem functioning. Taken together, this study indicates that eCO2 may decrease the overall functional and taxonomic diversity of soil microbial communities, but such effects appeared to be ecosystem-specific, which makes it more challenging for predicting global or regional terrestrial ecosystems responses to eCO2.

  14. Host–Microbial Interactions in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Willis-Owen, Saffron A. G.; Cox, Michael J.; James, Phillip; Cowman, Steven; Loebinger, Michael; Blanchard, Andrew; Edwards, Lindsay M.; Stock, Carmel; Daccord, Cécile; Renzoni, Elisabetta A.; Wells, Athol U.; Moffatt, Miriam F.; Cookson, William O. C.; Maher, Toby M.

    2017-01-01

    Rationale: Changes in the respiratory microbiome are associated with disease progression in idiopathic pulmonary fibrosis (IPF). The role of the host response to the respiratory microbiome remains unknown. Objectives: To explore the host–microbial interactions in IPF. Methods: Sixty patients diagnosed with IPF were prospectively enrolled together with 20 matched control subjects. Subjects underwent bronchoalveolar lavage (BAL), and peripheral whole blood was collected into PAXgene tubes for all subjects at baseline. For subjects with IPF, additional samples were taken at 1, 3, and 6 months and (if alive) 1 year. Gene expression profiles were generated using Affymetrix Human Gene 1.1 ST arrays. Measurements and Main Results: By network analysis of gene expression data, we identified two gene modules that strongly associated with a diagnosis of IPF, BAL bacterial burden (determined by 16S quantitative polymerase chain reaction), and specific microbial operational taxonomic units, as well as with lavage and peripheral blood neutrophilia. Genes within these modules that are involved in the host defense response include NLRC4, PGLYRP1, MMP9, and DEFA4. The modules also contain two genes encoding specific antimicrobial peptides (SLPI and CAMP). Many of these particular transcripts were associated with survival and showed longitudinal overexpression in subjects experiencing disease progression, further strengthening the relationship of the transcripts with disease. Conclusions: Integrated analysis of the host transcriptome and microbial signatures demonstrated an apparent host response to the presence of an altered or more abundant microbiome. These responses remained elevated in longitudinal follow-up, suggesting that the bacterial communities of the lower airways may act as persistent stimuli for repetitive alveolar injury in IPF. PMID:28085486

  15. Resistance to tetracycline and β-lactams and distribution of resistance markers in enteric microorganisms and pseudomonads isolated from the oral cavity

    PubMed Central

    RAMOS, Marcelle Marie Buso; GAETTI-JARDIM, Ellen Cristina; GAETTI-JARDIM, Elerson

    2009-01-01

    ABSTRACT This study evaluated the occurrence of enteric bacteria and pseudomonads resistant to tetracycline and β-lactams in the oral cavity of patients exhibiting gingivitis (n=89), periodontitis (n=79), periodontally healthy (n=50) and wearing complete dentures (n=41). Microbial identification and presence of resistance markers associated with the production of β-lactamases and tetracycline resistance were performed by using biochemical tests and PCR. Susceptibility tests were carried out in 201 isolates of enteric cocci and rods. Resistance to ampicillin, amoxicillin/clavulanic acid, imipenem, meropenem and tetracycline was detected in 57.4%, 34.6%, 2.4%, 1.9% and 36.5% of the isolates, respectively. β-lactamase production was observed in 41.2% of tested microorganisms, while the most commonly found β-lactamase genetic determinant was gene blaTEM. Tetracycline resistance was disseminated and a wide scope of tet genes were detected in all studied microbial genus. PMID:21499650

  16. Effect of dental cements on peri-implant microbial community: comparison of the microbial communities inhabiting the peri-implant tissue when using different luting cements.

    PubMed

    Korsch, Michael; Marten, Silke-Mareike; Dötsch, Andreas; Jáuregui, Ruy; Pieper, Dietmar H; Obst, Ursula

    2016-12-01

    Cementing dental restorations on implants poses the risk of undetected excess cement. Such cement remnants may favor the development of inflammation in the peri-implant tissue. The effect of excess cement on the bacterial community is not yet known. The aim of this study was to analyze the effect of two different dental cements on the composition of the microbial peri-implant community. In a cohort of 38 patients, samples of the peri-implant tissue were taken with paper points from one implant per patient. In 15 patients, the suprastructure had been cemented with a zinc oxide-eugenol cement (Temp Bond, TB) and in 23 patients with a methacrylate cement (Premier Implant Cement, PIC). The excess cement found as well as suppuration was documented. Subgingival samples of all patients were analyzed for taxonomic composition by means of 16S amplicon sequencing. None of the TB-cemented implants had excess cement or suppuration. In 14 (61%) of the PIC, excess cement was found. Suppuration was detected in 33% of the PIC implants without excess cement and in 100% of the PIC implants with excess cement. The taxonomic analysis of the microbial samples revealed an accumulation of oral pathogens in the PIC patients independent of the presence of excess cement. Significantly fewer oral pathogens occurred in patients with TB compared to patients with PIC. Compared with TB, PIC favors the development of suppuration and the growth of periodontal pathogens. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Can soil microbial diversity influence plant metabolites and life history traits of a rhizophagous insect? A demonstration in oilseed rape.

    PubMed

    Lachaise, Tom; Ourry, Morgane; Lebreton, Lionel; Guillerm-Erckelboudt, Anne-Yvonne; Linglin, Juliette; Paty, Chrystelle; Chaminade, Valérie; Marnet, Nathalie; Aubert, Julie; Poinsot, Denis; Cortesero, Anne-Marie; Mougel, Christophe

    2017-12-01

    Interactions between plants and phytophagous insects play an important part in shaping the biochemical composition of plants. Reciprocally plant metabolites can influence major life history traits in these insects and largely contribute to their fitness. Plant rhizospheric microorganisms are an important biotic factor modulating plant metabolites and adaptation to stress. While plant-insects or plant-microorganisms interactions and their consequences on the plant metabolite signature are well-documented, the impact of soil microbial communities on plant defenses against phytophagous insects remains poorly known. In this study, we used oilseed rape (Brassica napus) and the cabbage root fly (Delia radicum) as biological models to tackle this question. Even though D. radicum is a belowground herbivore as a larva, its adult life history traits depend on aboveground signals. We therefore tested whether soil microbial diversity influenced emergence rate and fitness but also fly oviposition behavior, and tried to link possible effects to modifications in leaf and root metabolites. Through a removal-recolonization experiment, 3 soil microbial modalities ("high," "medium," "low") were established and assessed through amplicon sequencing of 16S and 18S ribosomal RNA genes. The "medium" modality in the rhizosphere significantly improved insect development traits. Plant-microorganism interactions were marginally associated to modulations of root metabolites profiles, which could partly explain these results. We highlighted the potential role of plant-microbial interaction in plant defenses against Delia radicum. Rhizospheric microbial communities must be taken into account when analyzing plant defenses against herbivores, being either below or aboveground. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  18. Bovine mastitis may be associated with the deprivation of gut Lactobacillus.

    PubMed

    Ma, C; Zhao, J; Xi, X; Ding, J; Wang, H; Zhang, H; Kwok, L Y

    2016-02-01

    Bovine mastitis is an economical important microbial disease in dairy industry. Some recent human clinical trials have shown that oral probiotics supplementation could effectively control clinical mastitis, suggesting that the mechanism of mastitis protection might be achieved via the host gut microbiota. We aimed to test our hypothesis that bovine mastitis was related to changes in both the mammary and gut microbial profiles. By quantitative PCR, the milk and faecal microbial profiles of cows with low (<3×10 5 cells/ml) and high (>1×10 6 cells/ml) somatic cell count (SCC) were compared. Firstly, we observed drastic differences in both the milk and faecal microbial compositions at genus and Lactobacillus-species levels between the two groups. Secondly, the pattern of faecal microbial community changes of mastitis cows was similar to that of the milk, characterised by a general increase in the mastitis pathogens (Enterococcus, Streptococcus and Staphylococcus) and deprivation of Lactobacillus and its members (L. salivarius, L. sakei, L. ruminis, L. delbrueckii, L. buchneri, and L. acidophilus). Thirdly, only the faecal lactobacilli, but not bifidobacteria correlated with the milk microbial communities and SCC. Our data together hint to a close association between bovine mastitis, the host gut and milk microbiota.

  19. Soft, chewable gelatin-based pharmaceutical oral formulations: a technical approach.

    PubMed

    Dille, Morten J; Hattrem, Magnus N; Draget, Kurt I

    2018-06-01

    Hard tablets and capsules for oral drug delivery cause problems for people experiencing dysphagia. This work describes the formulation and properties of a gelatin based, self-preserved, and soft chewable tablet as an alternative and novel drug delivery format. Gelatin (8.8-10% in 24.7-29% water) constituted the matrix of the soft, semi-solid tablets. Three different pharmaceuticals (Ibuprofen 10%, Acetaminophen 15%, and Meloxicam 1.5%) were tested in this formulation. Microbial stability was controlled by lowering the water activity with a mixture of sorbitol and xylitol (45.6-55%). Rheological properties were tested applying small strain oscillation measurements. Taste masking of ibuprofen soft-chew tablets was achieved by keeping the ibuprofen insoluble at pH 4.5 and keeping the processing temperature below the crystalline-to-amorphous transition temperature. Soft-chew formulations showed good stability for all three pharmaceuticals (up to 24 months), and the ibuprofen containing formulation exhibited comparable dissolution to a standard oral tablet as well as good microbial stability. The rheological properties of the ibuprofen/gelatin formulation had the fingerprint of a true gelatin gel, albeit higher moduli, and melting temperature. The results suggest that easy-to-swallow and well taste-masked soft chewable tablet formulations with extended shelf life are within reach for several active pharmaceutical ingredients (APIs).

  20. Identification of oral bacteria on titanium implant surfaces by 16S rDNA sequencing.

    PubMed

    de Melo, Fabiana; do Nascimento, Cássio; Souza, Diogo Onofre; de Albuquerque, Rubens F

    2017-06-01

    To characterize the profile of microbial communities colonizing titanium implants with different surface treatments after exposure to the oral environment at the genus or higher taxonomic level. Sixteen titanium disks, machined or sandblasted large-grit and acid-etched (SLA), were mounted on removable intraoral splints worn by four patients. After 24 h of intraoral exposure, biofilm samples were collected from disks and supra/subgingival teeth areas. The 16S rDNA genes from each sample were amplified, sequenced with the Miseq Illumina instrument and analyzed. A total of 29 genera and seven more inclusive taxa, representing the phyla Firmicutes, Proteobacteria, Fusobacteria, Bacteroidetes, Actinobacteria and candidate division TM7 were identified in both titanium surfaces and teeth. No differences were found in relation to the operational taxonomic units (OTUs) and microbial diversity, assessed by Chao 1 and Shannon indices, when comparing SLA and machined titanium surfaces. Machined and SLA surfaces are colonized by similar numbers of prokaryotic OTUs after 24 h of exposure to the oral environment. Higher complexity of the titanium surface topography in the initial phase of biofilm maturation does not seem to significantly influence the colonizing microbiota. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Metatranscriptomic analysis of lignocellulolytic microbial communities involved in high-solids decomposition of rice straw

    DOE PAGES

    Simmons, Christopher W.; Reddy, Amitha P.; D’haeseleer, Patrik; ...

    2014-12-31

    New lignocellulolytic enzymes are needed that maintain optimal activity under the harsh conditions present during industrial enzymatic deconstruction of biomass, including high temperatures, the absence of free water, and the presence of inhibitors from the biomass. Enriching lignocellulolytic microbial communities under these conditions provides a source of microorganisms that may yield robust lignocellulolytic enzymes tolerant to the extreme conditions needed to improve the throughput and efficiency of biomass enzymatic deconstruction. Identification of promising enzymes from these systems is challenging due to complex substrate-enzyme interactions and requirements to assay for activity. In this study, metatranscriptomes from compost-derived microbial communities enriched onmore » rice straw under thermophilic and mesophilic conditions were sequenced and analyzed to identify lignocellulolytic enzymes overexpressed under thermophilic conditions. To determine differential gene expression across mesophilic and thermophilic treatments, a method was developed which pooled gene expression by functional category, as indicated by Pfam annotations, since microbial communities performing similar tasks are likely to have overlapping functions even if they share no specific genes. Differential expression analysis identified enzymes from glycoside hydrolase family 48, carbohydrate binding module family 2, and carbohydrate binding module family 33 domains as significantly overexpressed in the thermophilic community. Overexpression of these protein families in the thermophilic community resulted from expression of a small number of genes not currently represented in any protein database. Genes in overexpressed protein families were predominantly expressed by a single Actinobacteria genus, Micromonospora. In conclusion, coupling measurements of deconstructive activity with comparative analyses to identify overexpressed enzymes in lignocellulolytic communities provides a targeted approach for discovery of candidate enzymes for more efficient biomass deconstruction. Furthermore, glycoside hydrolase family 48 cellulases and carbohydrate binding module family 33 polysaccharide monooxygenases with carbohydrate binding module family 2 domains may improve saccharification of lignocellulosic biomass under high-temperature and low moisture conditions relevant to industrial biofuel production.« less

  2. Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome

    PubMed Central

    Abubucker, Sahar; Segata, Nicola; Goll, Johannes; Schubert, Alyxandria M.; Izard, Jacques; Cantarel, Brandi L.; Rodriguez-Mueller, Beltran; Zucker, Jeremy; Thiagarajan, Mathangi; Henrissat, Bernard; White, Owen; Kelley, Scott T.; Methé, Barbara; Schloss, Patrick D.; Gevers, Dirk; Mitreva, Makedonka; Huttenhower, Curtis

    2012-01-01

    Microbial communities carry out the majority of the biochemical activity on the planet, and they play integral roles in processes including metabolism and immune homeostasis in the human microbiome. Shotgun sequencing of such communities' metagenomes provides information complementary to organismal abundances from taxonomic markers, but the resulting data typically comprise short reads from hundreds of different organisms and are at best challenging to assemble comparably to single-organism genomes. Here, we describe an alternative approach to infer the functional and metabolic potential of a microbial community metagenome. We determined the gene families and pathways present or absent within a community, as well as their relative abundances, directly from short sequence reads. We validated this methodology using a collection of synthetic metagenomes, recovering the presence and abundance both of large pathways and of small functional modules with high accuracy. We subsequently applied this method, HUMAnN, to the microbial communities of 649 metagenomes drawn from seven primary body sites on 102 individuals as part of the Human Microbiome Project (HMP). This provided a means to compare functional diversity and organismal ecology in the human microbiome, and we determined a core of 24 ubiquitously present modules. Core pathways were often implemented by different enzyme families within different body sites, and 168 functional modules and 196 metabolic pathways varied in metagenomic abundance specifically to one or more niches within the microbiome. These included glycosaminoglycan degradation in the gut, as well as phosphate and amino acid transport linked to host phenotype (vaginal pH) in the posterior fornix. An implementation of our methodology is available at http://huttenhower.sph.harvard.edu/humann. This provides a means to accurately and efficiently characterize microbial metabolic pathways and functional modules directly from high-throughput sequencing reads, enabling the determination of community roles in the HMP cohort and in future metagenomic studies. PMID:22719234

  3. Metatranscriptomic analysis of lignocellulolytic microbial communities involved in high-solids decomposition of rice straw

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Christopher W.; Reddy, Amitha P.; D’haeseleer, Patrik

    New lignocellulolytic enzymes are needed that maintain optimal activity under the harsh conditions present during industrial enzymatic deconstruction of biomass, including high temperatures, the absence of free water, and the presence of inhibitors from the biomass. Enriching lignocellulolytic microbial communities under these conditions provides a source of microorganisms that may yield robust lignocellulolytic enzymes tolerant to the extreme conditions needed to improve the throughput and efficiency of biomass enzymatic deconstruction. Identification of promising enzymes from these systems is challenging due to complex substrate-enzyme interactions and requirements to assay for activity. In this study, metatranscriptomes from compost-derived microbial communities enriched onmore » rice straw under thermophilic and mesophilic conditions were sequenced and analyzed to identify lignocellulolytic enzymes overexpressed under thermophilic conditions. To determine differential gene expression across mesophilic and thermophilic treatments, a method was developed which pooled gene expression by functional category, as indicated by Pfam annotations, since microbial communities performing similar tasks are likely to have overlapping functions even if they share no specific genes. Differential expression analysis identified enzymes from glycoside hydrolase family 48, carbohydrate binding module family 2, and carbohydrate binding module family 33 domains as significantly overexpressed in the thermophilic community. Overexpression of these protein families in the thermophilic community resulted from expression of a small number of genes not currently represented in any protein database. Genes in overexpressed protein families were predominantly expressed by a single Actinobacteria genus, Micromonospora. In conclusion, coupling measurements of deconstructive activity with comparative analyses to identify overexpressed enzymes in lignocellulolytic communities provides a targeted approach for discovery of candidate enzymes for more efficient biomass deconstruction. Furthermore, glycoside hydrolase family 48 cellulases and carbohydrate binding module family 33 polysaccharide monooxygenases with carbohydrate binding module family 2 domains may improve saccharification of lignocellulosic biomass under high-temperature and low moisture conditions relevant to industrial biofuel production.« less

  4. Programming the quorum sensing-based AND gate in Shewanella oneidensis for logic gated-microbial fuel cells.

    PubMed

    Hu, Yidan; Yang, Yun; Katz, Evgeny; Song, Hao

    2015-03-11

    An AND logic gate based on a synthetic quorum-sensing (QS) module was constructed in a Shewanella oneidensis MR-1 mtrA knockout mutant. The presence of two input signals activated the expression of a periplasmic decaheme cytochrome MtrA to regenerate the extracellular electron transfer conduit, enabling the construction of AND-gated microbial fuel cells.

  5. Effects of 25-hydroxyvitamin D3 on cathelicidin production and antibacterial function of human oral keratinocytes.

    PubMed

    Wang, Qi; Zhang, Wu; Li, Hao; Aprecio, Raydolf; Wu, Wan; Lin, Yiqiao; Li, Yiming

    2013-01-01

    Vitamin D and its metabolites have been recognized as key determinants in innate immune modulation. In this study, we investigated the regulation of antibacterial functions of oral keratinocyte cells by 25-hydroxyvitamin D3 (25VD3). OKF6/TERT2 cells, an immortalized human oral keratinocyte cell line, were transfected with or without 24-hydroxylase small interfering RNA (siRNA) and incubated with different amounts of 25VD3. These epithelial cells expressed high levels of inactivating 24-hydroxylase (CYP24A1) and relatively low levels of activating 1α-hydroxylase (CYP27B1) in the presence of 25VD3. 25VD3 influenced the expression of vitamin D-driven genes and cathelicidin in a dose-related manner. SiRNA specific to 24-hydroxylase augmented the cathelicidin production and subseqently influenced the antibacterial activity on multispecies of oral pathogens. These observations suggest that 25VD3 is capable of stimulating cathelicidin production and modulating antibacterial function upon CYP24A1 knochdown in oral epithelial cells, and indicate novel mechanisms that 25VD3 may enhance antibacterial ability in oral keratinocytes. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Changes in the Structure of the Microbial Community Associated with Nannochloropsis salina following Treatments with Antibiotics and Bioactive Compounds

    DOE PAGES

    Geng, Haifeng; Tran-Gyamfi, Mary B.; Lane, Todd W.; ...

    2016-07-26

    Open microalgae cultures host a myriad of bacteria, creating a complex system of interacting species that influence algal growth and health. Many algal microbiota studies have been conducted to determine the relative importance of bacterial taxa to algal culture health and physiological states, but these studies have not characterized the interspecies relationships in the microbial communities. Here we subjected Nanochroloropsis salina cultures to multiple chemical treatments (antibiotics and quorum sensing compounds) and obtained dense time-series data on changes to the microbial community using 16S gene amplicon metagenomic sequencing (21,029,577 reads for 23 samples) to measure microbial taxa-taxa abundance correlations. Short-termmore » treatment with antibiotics resulted in substantially larger shifts in the microbiota structure compared to changes observed following treatment with signaling compounds and glucose. We also calculated operational taxonomic unit (OTU) associations and generated OTU correlation networks to provide an overview of possible bacterial OTU interactions. This analysis identified five major cohesive modules of microbiota with similar co-abundance profiles across different chemical treatments. The Eigengenes of OTU modules were examined for correlation with different external treatment factors. This correlation-based analysis revealed that culture age (time) and treatment types have primary effects on forming network modules and shaping the community structure. Additional network analysis detected Alteromonadeles and Alphaproteobacteria as having the highest centrality, suggesting these species are “keystone” OTUs in the microbial community. Furthermore, we illustrated that the chemical tropodithietic acid, which is secreted by several species in the Alphaproteobacteria taxon, is able to drastically change the structure of the microbiota within 3 h. Lastly, taken together, these results provide valuable insights into the structure of the microbiota associated with N. salina cultures and how these structures change in response to chemical perturbations.« less

  7. Changes in the Structure of the Microbial Community Associated with Nannochloropsis salina following Treatments with Antibiotics and Bioactive Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Haifeng; Tran-Gyamfi, Mary B.; Lane, Todd W.

    Open microalgae cultures host a myriad of bacteria, creating a complex system of interacting species that influence algal growth and health. Many algal microbiota studies have been conducted to determine the relative importance of bacterial taxa to algal culture health and physiological states, but these studies have not characterized the interspecies relationships in the microbial communities. Here we subjected Nanochroloropsis salina cultures to multiple chemical treatments (antibiotics and quorum sensing compounds) and obtained dense time-series data on changes to the microbial community using 16S gene amplicon metagenomic sequencing (21,029,577 reads for 23 samples) to measure microbial taxa-taxa abundance correlations. Short-termmore » treatment with antibiotics resulted in substantially larger shifts in the microbiota structure compared to changes observed following treatment with signaling compounds and glucose. We also calculated operational taxonomic unit (OTU) associations and generated OTU correlation networks to provide an overview of possible bacterial OTU interactions. This analysis identified five major cohesive modules of microbiota with similar co-abundance profiles across different chemical treatments. The Eigengenes of OTU modules were examined for correlation with different external treatment factors. This correlation-based analysis revealed that culture age (time) and treatment types have primary effects on forming network modules and shaping the community structure. Additional network analysis detected Alteromonadeles and Alphaproteobacteria as having the highest centrality, suggesting these species are “keystone” OTUs in the microbial community. Furthermore, we illustrated that the chemical tropodithietic acid, which is secreted by several species in the Alphaproteobacteria taxon, is able to drastically change the structure of the microbiota within 3 h. Lastly, taken together, these results provide valuable insights into the structure of the microbiota associated with N. salina cultures and how these structures change in response to chemical perturbations.« less

  8. Pharmacokinetic modulation of oral etoposide by ketoconazole in patients with advanced cancer.

    PubMed

    Yong, Wei Peng; Desai, Apurva A; Innocenti, Federico; Ramirez, Jacqueline; Shepard, Dale; Kobayashi, Ken; House, Larry; Fleming, Gini F; Vogelzang, Nicholas J; Schilsky, Richard L; Ratain, Mark J

    2007-11-01

    Etoposide is a widely used cytotoxic drug that is commercially available in both intravenous and oral formulations. High interpatient pharmacokinetic variability has been associated with oral etoposide administration. Various strategies used in the past to reduce such variability have not been successful. Hence, this study was designed to evaluate if pharmacokinetic modulation of oral etoposide with ketoconazole could lead to a favorable alteration of etoposide pharmacokinetics, and to assess the feasibility and safety of this approach. Thirty-two patients were treated with ketoconazole 200 mg daily with an escalating dose of oral etoposide starting at a dose of 50 mg every other day. Pharmacokinetic samples were obtained during the first treatment cycle after the administration of an oral etoposide and ketoconazole dose. Additional baseline pharmacokinetic studies of etoposide alone were performed 4 days prior to the first treatment cycle. Dose limiting toxicities were neutropenia and fatigue. Ketoconazole increased the area under the plasma concentration-time curve (AUC) of oral etoposide by a median of 20% (p < 0.005). Ketoconazole did not reduce the interpatient variability in etoposide pharmacokinetics. Pretreatment bilirubin levels correlated with etoposide clearance (Spearman's r = -0.48, p = 0.008). The maximum tolerated dose was etoposide administered at 50 mg daily and ketoconazole 200 mg qd for 3 of 5 weeks. Ketoconazole reduces the apparent clearance of oral etoposide, does not alter its toxicity profile and does not reduce interpatient pharmacokinetic variability. Other methods to reduce the pharmacokinetic variability of oral etoposide are needed.

  9. Poorly known microbial taxa dominate the microbiome of permafrost thaw ponds.

    PubMed

    Wurzbacher, Christian; Nilsson, R Henrik; Rautio, Milla; Peura, Sari

    2017-08-01

    In the transition zone of the shifting permafrost border, thaw ponds emerge as hotspots of microbial activity, processing the ancient carbon freed from the permafrost. We analyzed the microbial succession across a gradient of recently emerged to older ponds using three molecular markers: one universal, one bacterial and one fungal. Age was a major modulator of the microbial community of the thaw ponds. Surprisingly, typical freshwater taxa comprised only a small fraction of the community. Instead, thaw ponds of all age classes were dominated by enigmatic bacterial and fungal phyla. Our results on permafrost thaw ponds lead to a revised perception of the thaw pond ecosystem and their microbes, with potential implications for carbon and nutrient cycling in this increasingly important class of freshwaters.

  10. Microbial contamination of used dental handpieces.

    PubMed

    Smith, Gordon; Smith, Andrew

    2014-09-01

    Microbial contamination of used, unprocessed internal components of dental handpieces (HPs) was assessed. HPs were dismantled aseptically, immersed in phosphate-buffered saline, ultrasonicated, and cultured. A median of 200 CFU per turbine (n = 40), 400 CFU per spray channel (n = 40), and 1000 CFU per item of surgical gear (n = 20) was detected. Isolates included oral streptococci, Pseudomonas spp, and Staphylococcus aureus. Recovery of S aureus confirms the need for appropriate HP cleaning and sterilization after each patient to prevent cross-infection. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  11. Biome engineering-2020.

    PubMed

    Brüssow, Harald

    2016-09-01

    The gut microbiome research is going from a descriptive into an intervention phase. To optimize beneficial microbe-host interaction, we need to understand how to steer the system by modulating the nutrient input with which the system is literally fed (e.g. diets, fibres, prebiotics, human milk oligosaccharides), and we must learn how to modulate the composition of the gut microbiota by adding beneficial microbes (e.g. probiotics, faecal transplants) and by eliminating disturbing microbial members using, for example, bacteriophages in this highly complex ecosystem. The current status of the field is reviewed together with an outlook what might be expected until 2020, highlighting obstacles to progress and possible solutions to these problems. © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  12. Insights into the human oral microbiome.

    PubMed

    Verma, Digvijay; Garg, Pankaj Kumar; Dubey, Ashok Kumar

    2018-05-01

    Human oral cavity harbors the second most abundant microbiota after the gastrointestinal tract. The expanded Human Oral Microbiome Database (eHOMD) that was last updated on November 22, 2017, contains the information of approximately 772 prokaryotic species, where 70% is cultivable, and 30% belong to the uncultivable class of microorganisms along with whole genome sequences of 482 taxa. Out of 70% culturable species, 57% have already been assigned to their names. The 16S rDNA profiling of the healthy oral cavity categorized the inhabitant bacteria into six broad phyla, viz. Firmicutes, Actinobacteria, Proteobacteria, Fusobacteria, Bacteroidetes and Spirochaetes constituting 96% of total oral bacteria. These hidden oral micro-inhabitants exhibit a direct influence on human health, from host's metabolism to immune responses. Altered oral microflora has been observed in several diseases such as diabetes, bacteremia, endocarditis, cancer, autoimmune disease and preterm births. Therefore, it becomes crucial to understand the oral microbial diversity and how it fluctuates under diseased/perturbed conditions. Advances in metagenomics and next-generation sequencing techniques generate rapid sequences and provide extensive information of inhabitant microorganisms of a niche. Thus, the retrieved information can be utilized for developing microbiome-based biomarkers for their use in early diagnosis of oral and associated diseases. Besides, several apex companies have shown keen interest in oral microbiome for its diagnostic and therapeutic potential indicating a vast market opportunity. This review gives an insight of various associated aspects of the human oral microbiome.

  13. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions.

    PubMed

    Adler, Christina J; Dobney, Keith; Weyrich, Laura S; Kaidonis, John; Walker, Alan W; Haak, Wolfgang; Bradshaw, Corey J A; Townsend, Grant; Sołtysiak, Arkadiusz; Alt, Kurt W; Parkhill, Julian; Cooper, Alan

    2013-04-01

    The importance of commensal microbes for human health is increasingly recognized, yet the impacts of evolutionary changes in human diet and culture on commensal microbiota remain almost unknown. Two of the greatest dietary shifts in human evolution involved the adoption of carbohydrate-rich Neolithic (farming) diets (beginning ∼10,000 years before the present) and the more recent advent of industrially processed flour and sugar (in ∼1850). Here, we show that calcified dental plaque (dental calculus) on ancient teeth preserves a detailed genetic record throughout this period. Data from 34 early European skeletons indicate that the transition from hunter-gatherer to farming shifted the oral microbial community to a disease-associated configuration. The composition of oral microbiota remained unexpectedly constant between Neolithic and medieval times, after which (the now ubiquitous) cariogenic bacteria became dominant, apparently during the Industrial Revolution. Modern oral microbiotic ecosystems are markedly less diverse than historic populations, which might be contributing to chronic oral (and other) disease in postindustrial lifestyles.

  14. Expression of antimicrobial peptide genes in Bombyx mori gut modulated by oral bacterial infection and development.

    PubMed

    Wu, Shan; Zhang, Xiaofeng; He, Yongqiang; Shuai, Jiangbing; Chen, Xiaomei; Ling, Erjun

    2010-11-01

    Although Bombyx mori systematic immunity is extensively studied, little is known about the silkworm's intestine-specific responses to bacterial infection. Antimicrobial peptides (AMPs) gene expression analysis of B. mori intestinal tissue to oral infection with the Gram-positive (Staphylococcus aureus) and -negative (Escherichia coli) bacteria revealed that there is specificity in the interaction between host immune responses and parasite types. Neither Att1 nor Leb could be stimulated by S. aureus and E. coli. However, CecA1, Glo1, Glo2, Glo3, Glo4 and Lys, could only be trigged by S. aureus. On the contrary, E. coli stimulation caused the decrease in the expression of CecA1, Glo3 and Glo4 in some time points. Interestingly, there is regional specificity in the silkworm local gut immunity. During the immune response, the increase in Def, Hem and LLP3 was only detected in the foregut and midgut. For CecB1, CecD, LLP2 and Mor, after orally administered with E. coli, the up-regulation was only limited in the midgut and hindgut. CecE was the only AMP that positively responses to the both bacteria in all the testing situations. With development, the expression levels of the AMPs were also changed dramatically. That is, at spinning and prepupa stages, a large increase in the expression of CecA1, CecB1, CecD, CecE, Glo1, Glo2, Glo3, Glo4, Leb, Def, Hem, Mor and Lys was detected in the gut. Unexpectedly, in addition to the IMD pathway genes, the Toll and JAK/STAT pathway genes in the silkworm gut can also be activated by microbial oral infection. But in the developmental course, corresponding to the increase in expression of AMPs at spinning and prepupa stages, only the Toll pathway genes in the gut exhibit the similar increasing trend. Our results imply that the immune responses in the silkworm gut are synergistically regulated by the Toll, JAK/STAT and IMD pathways. However, as the time for approaching pupation, the Toll pathway may play a role in the AMPs expression. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Oral pharmacokinetics of baicalin, wogonoside, oroxylin A 7-O-β-d-glucuronide and their aglycones from an aqueous extract of Scutellariae Radix in the rat.

    PubMed

    Cai, Yu; Li, Sai; Li, Ting; Zhou, Ruina; Wai, Alfred Tai-Seng; Yan, Ru

    2016-07-15

    Scutellariae Radix (SR) has been extensively prescribed in folk medicines due to its notable beneficial activities. The flavonoid glucuronides baicalin (BG), wogonoside (WG), oroxylin A 7-O-β-d-glucuronide (OG) and their aglycones baicalein, wogonin and oroxylin A, are the main components of the herb. So far, majority of previous studies failed to report the pharmacokinetics and none offered an explanation for the systemic exposures of these six flavonoids when the herbal extract was orally administered. In this study, when a SR extract was orally dosed to rats (800mg/kg, equivalent to BG 324.80, WG 124.00, OG 43.04, baicalein 25.36, wogonin 24.40, and oroxylin A 5.79mg/kg), all six flavonoids were detectable throughout the experimental period (48h) using an LC-MS/MS method with the Cmax and AUC0-48h of the glucuronides 10-130 times that of respective aglycones. As the lowest among the three glucuronides in the herb, OG was the most abundant in vivo, while the systemic exposure of wogonin was the highest amongst the three aglycones. The dose-normalized AUC0-48h descended in orders of OG/oroxylin A, WG/wogonin and BG/baicalein. Two di-conjugates of baicalein (BG glucuronide and BG glucoside), two BG isomers (minor BM1 and major BM2), and one WG isomer (wogonin 5-O-glucuronide) were detected in rat plasma. Semi-quantitation of the isomers with peak area data revealed that the AUPs (area under peak area ratio-time curves) of BG isomers were ∼3 times that of BG, yet the AUP of wogonin 5-O-glucuronide was only one seventh of WG. BM2, tentatively assigned as baicalein 6-O-glucuronide, was formed from both microbial isomerization of BG and hepatic glucuronidation of baicalein. Wogonin 5-O-glucuronide was only formed in hepatic glucuronidation of wogonin. Demethylated wogonin was observed in gut bacteria, offering an optional origin of BM1 apart from baicalein glucuronidation. Microbial isomerization of BG and extensive hepatic glucuronidation of baicalein to form BM2as well as a poorer intestinal permeability of baicalein (Papp×10(-6)cm/s) should account for the lower systemic exposures of BG and baicalein. Faster microbial hydrolysis of WG, high intestinal permeability (Papp×10(-5)cm/s) and less hepatic glucuronidation of wogonin explain the relatively high systemic exposure of wogonin. Sole microbial deglycosylation of OG, high intestinal permeability (Papp×10(-5)cm/s) and extensive hepatic glucuronidation of oroxylin A supported the highest systemic exposure of OG. Taken together, the oral kinetics of six flavonoid glucuronides and aglycones in the SR extract were simultaneously obtained. Microbial conversion, intestinal epithelial permeability and hepatic glucuronidation are determinant factors for their systemic exposures. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A near-infrared light responsive c-di-GMP module-based AND logic gate in Shewanella oneidensis.

    PubMed

    Hu, Yidan; Wu, Yichao; Mukherjee, Manisha; Cao, Bin

    2017-01-31

    A novel, biofilm-based AND logic gate was constructed in Shewanella oneidensis through a near-infrared (NIR) light responsive c-di-GMP module. The logic gate was demonstrated in microbial fuel cells with isopropyl β-d-thiogalactoside (IPTG) and NIR light as the inputs and electrical signals as the output.

  17. Environmental Technology Verification Report; Removal of Microbial Contaminants in Drinking Water Dow Chemical Company - Water Solutions SFD-2880 Ultrafiltration Module

    EPA Science Inventory

    The Dow SFD-2880 UF module was tested for removal of microorganisms using live Cryptosporidium parvum oocysts, endospores of the bacteria Bacillus alrophaeus, and the MS2 coliphage virus according to the product-specific challenge testing requirements of the EPA Long-Term 2 Enhan...

  18. Antimicrobial and Attractant Roles for Chemerin in the Oral Cavity during Inflammatory Gum Disease

    PubMed Central

    Godlewska, Urszula; Brzoza, Piotr; Sroka, Aneta; Majewski, Pawel; Jentsch, Holger; Eckert, Martin; Eick, Sigrun; Potempa, Jan; Zabel, Brian A.; Cichy, Joanna

    2017-01-01

    Periodontal inflammation is one of the most common chronic inflammatory conditions in humans. Despite recent advances in identifying and characterizing oral microbiota dysbiosis in the pathogenesis of gum disease, just how host factors maintain a healthy homeostatic oral microbial community or prevent the development of a pathogenic oral microbiota remains poorly understood. An important determinant of microbiota fate is local antimicrobial proteins. Here, we report that chemoattractant protein chemerin, which we recently identified as a potent endogenous antimicrobial agent in body barriers such as the skin, is present in the oral cavity under homeostatic and inflammatory conditions. Chemerin and a chemerin-derived antimicrobial peptide are bactericidal against select bacteria strategically positioned in dental biofilm. Gingival crevicular samples from patients with gingivitis but not periodontitis contain abundant bioactive chemerin capable of inducing CMKLR1-dependent leukocyte migration. Gingipains secreted by the periodontopathogen P. gingivalis inactivate chemerin. Together, these data suggest that as an antimicrobial agent and leukocyte chemoattractant, chemerin likely contributes to antimicrobial immune defense in the oral cavity. PMID:28424689

  19. Microbial Metabolism. Part 11. Metabolites of Flutamide

    USDA-ARS?s Scientific Manuscript database

    Flutamide, a nonsteroidal antiandrogen is a commonly used drug to treat advanced prostate cancer,2) which is one of the leading causes of death in men in the United States.3) It is absorbed rapidly from the gastrointestinal track of humans and rats after oral administration and undergoes extensive m...

  20. Oral microbiota species in acute apical endodontic abscesses.

    PubMed

    George, Noelle; Flamiatos, Erin; Kawasaki, Kellie; Kim, Namgu; Carriere, Charles; Phan, Brian; Joseph, Raphael; Strauss, Shay; Kohli, Richie; Choi, Dongseok; Baumgartner, J Craig; Sedgley, Christine; Maier, Tom; Machida, Curtis A

    2016-01-01

    Acute apical abscesses are serious endodontic diseases resulting from pulpal infection with opportunistic oral microorganisms. The objective of this study was to identify and compare the oral microbiota in patients (N=18) exhibiting acute apical abscesses, originating from the demographic region in Portland, Oregon. The study hypothesis is that abscesses obtained from this demographic region may contain unique microorganisms not identified in specimens from other regions. Endodontic abscesses were sampled from patients at the Oregon Health & Science University (OHSU) School of Dentistry. DNA from abscess specimens was subjected to polymerase chain reaction amplification using 16S rRNA gene-specific primers and Cy3-dCTP labeling. Labeled DNA was then applied to microbial microarrays (280 species) generated by the Human Oral Microbial Identification Microarray Laboratory (Forsyth Institute, Cambridge, MA). The most prevalent microorganisms, found across multiple abscess specimens, include Fusobacterium nucleatum, Parvimonas micra, Megasphaera species clone CS025, Prevotella multisaccharivorax, Atopobium rimae, and Porphyromonas endodontalis. The most abundant microorganisms, found in highest numbers within individual abscesses, include F. nucleatum, P. micra, Streptococcus Cluster III, Solobacterium moorei, Streptococcus constellatus, and Porphyromonas endodontalis. Strong bacterial associations were identified between Prevotella multisaccharivorax, Acidaminococcaceae species clone DM071, Megasphaera species clone CS025, Actinomyces species clone EP053, and Streptococcus cristatus (all with Spearman coefficients >0.9). Cultivable and uncultivable bacterial species have been identified in endodontic abscesses obtained from the Portland, Oregon demographic region, and taxa identifications correlated well with other published studies, with the exception of Treponema and Streptococcus cristae, which were not commonly identified in endodontic abscesses between the demographic region in Portland, Oregon and other regions.

  1. Khat (Catha edulis) alters the phenotype and anti-microbial activity of peripheral blood mononuclear cells.

    PubMed

    Murdoch, Craig; Aziz, Hesham Abdul; Fang, Hsin-Yu; Jezan, Hussun; Musaid, Raga; Muthana, Munitta

    2011-12-08

    The habit of khat chewing has been associated with increased risk of systemic and oral disease. Although research has been conducted on the affects of khat on oral epithelial cells, little is known about its influence on immune cells. This study examined the biological effects of khat on the phenotype and function of peripheral blood mononuclear cells (PBMCs). Khat-stimulated PBMCs were examined for signs of cytotoxicity, apoptosis and changes in cell surface receptor and cytokine expression. Khat-induced regulation of transcription factors and stress-related factors were examined, as was PBMC phagocytic activity against oral bacteria. Khat was cytotoxic to PBMC in a dose- and time-dependent manner and cell death was mediated by apoptosis. Khat-treated PBMC showed increased expression of co-stimulatory molecules (CD80, CD86 and MHC II) and pattern recognition receptors (TLR-2, TLR-4 and TREM-1) but secretion of inflammatory cytokines (TNFα, IL-6, CCL5, CXCL8) was inhibited. In contrast, khat induced an increase in the anti-inflammatory cytokine IL-10 as well as IL-2, IFN-γ, FasL and HSP70. These khat-induced alterations were accompanied by increased expression of transcription factors p38 MAPK and HIF-1α, whilst expression of NFκB p65 was inhibited. Although the ability of PBMC to phagocytose dextran and oral bacteria was inhibited, production of reactive oxygen species was increased. These data suggest that khat may severely influence the effectiveness of immune surveillance and anti-microbial capacity of PBMCs. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Mycobacterium smegmatis infection of a prosthetic total knee arthroplasty.

    PubMed

    Saffo, Zaid; Ognjan, Anthony

    2016-01-01

    The most common organisms causing prosthetic knee joint infections are staphylococci. However, arthroplasty infections with atypical microbial pathogens, such as Mycobacteria can occur. Due to the rarity of mycobacterial prosthetic joint infections, diagnosis, treatment, and management of these atypical infections represent a clinical challenge. A 71-year old female post-operative day 40 after a left total knee arthroplasty was hospitalized secondary to left knee pain and suspected arthroplasty infection. She had failed outpatient oral antimicrobial treatment for superficial stitch abscess; and outpatient IV/Oral antimicrobials for a clinical postoperative septic bursitis. Ultimately, resection arthroplasty with operative tissue acid fast bacterial cultures demonstrated growth of the Mycobacterium smegmatis group. Post-operatively, she completed a combination course of oral doxycycline and levofloxacin and successfully completed a replacement arthroplasty with clinical and microbial resolution of the infection. To our knowledge, literature review demonstrates three case of knee arthroplasty infection caused by the Mycobacterium smegmatis group. Correspondingly, optimal surgical procedures and antimicrobial management including antimicrobial selection, treatment duration are not well defined. Presently, the best treatment options consists of two step surgical management including prosthesis hardware removal followed by extended antimicrobial therapy, followed by consideration for re-implantation arthroplasty. Our case illustrates importance of considering atypical mycobacterial infections in post-operative arthroplasty infections not responding to traditional surgical manipulations and antimicrobials. For an arthroplasty infection involving the atypical Mycobacterium smegmatis group, two step arthroplasty revision, including arthroplasty resection, with a combination of oral doxycycline and levofloxacin can lead to successful infection resolution, allowing for a successful replacement arthroplasty.

  3. Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils

    USGS Publications Warehouse

    Waldrop, M.P.; Firestone, M.K.

    2006-01-01

    Soil microbial communities are closely associated with aboveground plant communities, with multiple potential drivers of this relationship. Plants can affect available soil carbon, temperature, and water content, which each have the potential to affect microbial community composition and function. These same variables change seasonally, and thus plant control on microbial community composition may be modulated or overshadowed by annual climatic patterns. We examined microbial community composition, C cycling processes, and environmental data in California annual grassland soils from beneath oak canopies and in open grassland areas to distinguish factors controlling microbial community composition and function seasonally and in association with the two plant overstory communities. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid (PLFA) analysis, microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups using isotope labeling of PLFA biomarkers (13C-PLFA) . Distinct microbial communities were associated with oak canopy soils and open grassland soils and microbial communities displayed seasonal patterns from year to year. The effects of plant species and seasonal climate on microbial community composition were similar in magnitude. In this Mediterranean ecosystem, plant control of microbial community composition was primarily due to effects on soil water content, whereas the changes in microbial community composition seasonally appeared to be due, in large part, to soil temperature. Available soil carbon was not a significant control on microbial community composition. Microbial community composition (PLFA) and 13C-PLFA ordination values were strongly related to intra-annual variability in soil enzyme activities and soil respiration, but microbial biomass was not. In this Mediterranean climate, soil microclimate appeared to be the master variable controlling microbial community composition and function. ?? 2006 Springer Science+Business Media, Inc.

  4. Earth's Earliest Ecosystems in the Classroom: The Use of Microbial Mats to Teach General Principles in Microbial Ecology, and Scientific Inquiry

    NASA Technical Reports Server (NTRS)

    Beboutl, Brad M.; Bucaria, Robin

    2004-01-01

    Microbial mats are living examples of the most ancient biological communities on earth, and may also be useful models for the search for life elsewhere. They are centrally important to Astrobiology. In this lecture, we will present an introduction to microbial mats, as well as an introduction to our web-based educational module on the subject of microbial ecology, featuring living mats maintained in a mini "Web Lab" complete with remotely-operable instrumentation. We have partnered with a number of outreach specialists in order to produce an informative and educational web-based presentation, aspects of which will be exported to museum exhibits reaching a wide audience. On our web site, we will conduct regularly scheduled experimental manipulations, linking the experiments to our research activities, and demonstrating fundamental principles of scientific research.

  5. Rumen microbial abundance and fermentation profile during severe subacute ruminal acidosis and its modulation by plant derived alkaloids in vitro.

    PubMed

    Mickdam, Elsayed; Khiaosa-Ard, Ratchaneewan; Metzler-Zebeli, Barbara U; Klevenhusen, Fenja; Chizzola, Remigius; Zebeli, Qendrim

    2016-06-01

    Rumen microbiota have important metabolic functions for the host animal. This study aimed at characterizing changes in rumen microbial abundances and fermentation profiles using a severe subacute ruminal acidosis (SARA) in vitro model, and to evaluate a potential modulatory role of plant derived alkaloids (PDA), containing quaternary benzophenanthridine and protopine alkaloids, of which sanguinarine and chelerythrine were the major bioactive compounds. Induction of severe SARA strongly affected the rumen microbial composition and fermentation variables without suppressing the abundance of total bacteria. Protozoa and fungi were more sensitive to the low ruminal pH condition than bacteria. Induction of severe SARA clearly depressed degradation of fiber (P < 0.001), which came along with a decreased relative abundance of fibrolytic Ruminococcus albus and Fibrobacter succinogenes (P < 0.001). Under severe SARA conditions, the genus Prevotella, Lactobacillus group, Megasphaera elsdenii, and Entodinium spp. (P < 0.001) were more abundant, whereas Ruminobacter amylophilus was less abundant. SARA largely suppressed methane formation (-70%, P < 0.001), although total methanogenic 16S rRNA gene abundance was not affected. According to principal component analysis, Methanobrevibacter spp. correlated to methane concentration. Addition of PDA modulated ruminal fermentation under normal conditions such as enhanced (P < 0.05) concentration of total SCFA, propionate and valerate, and increased (P < 0.05) degradation of crude protein compared with the unsupplemented control diet. Our results indicate strong shifts in the microbial community during severe SARA compared to normal conditions. Supplementation of PDA positively modulates ruminal fermentation under normal ruminal pH conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Human neutrophils and oral microbiota: a constant tug-of-war between a harmonious and a discordant coexistence

    PubMed Central

    Uriarte, Silvia M.; Edmisson, Jacob S.; Jimenez-Flores, Emeri

    2017-01-01

    Summary Neutrophils are a major component of the innate host response, and the outcome of the interaction between the oral microbiota and neutrophils is a key determinant of oral health status. The composition of the oral microbiome is very complex and different in health and disease. Neutrophils are constantly recruited to the oral cavity, and their protective role is highlighted in cases where their number or functional responses are impeded, resulting in different forms of periodontal disease. Periodontitis, one of the more severe and irreversible forms of periodontal disease, is a microbial-induced chronic inflammatory disease that affects the gingival tissues supporting the tooth. This chronic inflammatory disease is the result of a shift of the oral bacterial symbiotic community to a dysbiotic more complex community. Chronic inflammatory infectious diseases such as periodontitis can occur because the pathogens are able to evade or disable the innate immune system. In this review, we discuss how human neutrophils interact with both the symbiotic and the dysbiotic oral community; an understanding of which is essential to increase our knowledge of the periodontal disease process. PMID:27558341

  7. Synthetic biology for microbial heavy metal biosensors.

    PubMed

    Kim, Hyun Ju; Jeong, Haeyoung; Lee, Sang Jun

    2018-02-01

    Using recombinant DNA technology, various whole-cell biosensors have been developed for detection of environmental pollutants, including heavy metal ions. Whole-cell biosensors have several advantages: easy and inexpensive cultivation, multiple assays, and no requirement of any special techniques for analysis. In the era of synthetic biology, cutting-edge DNA sequencing and gene synthesis technologies have accelerated the development of cell-based biosensors. Here, we summarize current technological advances in whole-cell heavy metal biosensors, including the synthetic biological components (bioparts), sensing and reporter modules, genetic circuits, and chassis cells. We discuss several opportunities for improvement of synthetic cell-based biosensors. First, new functional modules must be discovered in genome databases, and this knowledge must be used to upgrade specific bioparts through molecular engineering. Second, modules must be assembled into functional biosystems in chassis cells. Third, heterogeneity of individual cells in the microbial population must be eliminated. In the perspectives, the development of whole-cell biosensors is also discussed in the aspects of cultivation methods and synthetic cells.

  8. Selected phenolic compounds in cultivated plants: ecologic functions, health implications, and modulation by pesticides.

    PubMed Central

    Daniel, O; Meier, M S; Schlatter, J; Frischknecht, P

    1999-01-01

    Phenolic compounds are widely distributed in the plant kingdom. Plant tissues may contain up to several grams per kilogram. External stimuli such as microbial infections, ultraviolet radiation, and chemical stressors induce their synthesis. The phenolic compounds resveratrol, flavonoids, and furanocoumarins have many ecologic functions and affect human health. Ecologic functions include defense against microbial pathogens and herbivorous animals. Phenolic compounds may have both beneficial and toxic effects on human health. Effects on low-density lipoproteins and aggregation of platelets are beneficial because they reduce the risk of coronary heart disease. Mutagenic, cancerogenic, and phototoxic effects are risk factors of human health. The synthesis of phenolic compounds in plants can be modulated by the application of herbicides and, to a lesser extent, insecticides and fungicides. The effects on ecosystem functioning and human health are complex and cannot be predicted with great certainty. The consequences of the combined natural and pesticide-induced modulating effects for ecologic functions and human health should be further evaluated. PMID:10229712

  9. Photodynamic inactivation of Staphylococcus aureus and Escherichia coli biofilms by malachite green and phenothiazine dyes: an in vitro study.

    PubMed

    Vilela, Simone Furgeri Godinho; Junqueira, Juliana Campos; Barbosa, Junia Oliveira; Majewski, Marta; Munin, Egberto; Jorge, Antonio Olavo Cardoso

    2012-06-01

    The organization of biofilms in the oral cavity gives them added resistance to antimicrobial agents. The action of phenothiazinic photosensitizers on oral biofilms has already been reported. However, the action of the malachite green photosensitizer upon biofilm-organized microorganisms has not been described. The objective of the present work was to compare the action of malachite green with the phenothiazinic photosensitizers (methylene blue and toluidine blue) on Staphylococcus aureus and Escherichia coli biofilms. The biofilms were grown on sample pieces of acrylic resin and subjected to photodynamic therapy using a 660-nm diode laser and photosensitizer concentrations ranging from 37.5 to 3000 μM. After photodynamic therapy, cells from the biofilms were dispersed in a homogenizer and cultured in Brain Heart Infusion broth for quantification of colony-forming units per experimental protocol. For each tested microorganism, two control groups were maintained: one exposed to the laser radiation without the photosensitizer (L+PS-) and other treated with the photosensitizer without exposure to the red laser light (L-PS+). The results were subjected to descriptive statistical analysis. The best results for S. aureus and E. coli biofilms were obtained with photosensitizer concentrations of approximately 300 μM methylene blue, with microbial reductions of 0.8-1.0 log(10); 150 μM toluidine blue, with microbial reductions of 0.9-1.0 log(10); and 3000 μM malachite green, with microbial reductions of 1.6-4.0 log(10). Greater microbial reduction was achieved with the malachite green photosensitizer when used at higher concentrations than those employed for the phenothiazinic dyes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Eubiotic properties of rifaximin: Disruption of the traditional concepts in gut microbiota modulation.

    PubMed

    Ponziani, Francesca Romana; Zocco, Maria Assunta; D'Aversa, Francesca; Pompili, Maurizio; Gasbarrini, Antonio

    2017-07-07

    Antibiotics are usually prescribed to cure infections but they also have significant modulatory effects on the gut microbiota. Several alterations of the intestinal bacterial community have been reported during antibiotic treatment, including the reduction of beneficial bacteria as well as of microbial alpha-diversity. Although after the discontinuation of antibiotic therapies it has been observed a trend towards the restoration of the original condition, the new steady state is different from the previous one, as if antibiotics induced some kind of irreversible perturbation of the gut microbial community. The poorly absorbed antibiotic rifaximin seem to be different from the other antibiotics, because it exerts non-traditional effects additional to the bactericidal/bacteriostatic activity on the gut microbiota. Rifaximin is able to reduce bacterial virulence and translocation, has anti-inflammatory properties and has been demonstrated to positively modulate the gut microbial composition. Animal models, culture studies and metagenomic analyses have demonstrated an increase in Bifidobacterium , Faecalibacterium prausnitzii and Lactobacillus abundance after rifaximin treatment, probably consequent to the induction of bacterial resistance, with no major change in the overall gut microbiota composition. Antibiotics are therefore modulators of the symbiotic relationship between the host and the gut microbiota. Specific antibiotics, such as rifaximin, can also induce eubiotic changes in the intestinal ecosystem; this additional property may represent a therapeutic advantage in specific clinical settings.

  11. Eubiotic properties of rifaximin: Disruption of the traditional concepts in gut microbiota modulation

    PubMed Central

    Ponziani, Francesca Romana; Zocco, Maria Assunta; D’Aversa, Francesca; Pompili, Maurizio; Gasbarrini, Antonio

    2017-01-01

    Antibiotics are usually prescribed to cure infections but they also have significant modulatory effects on the gut microbiota. Several alterations of the intestinal bacterial community have been reported during antibiotic treatment, including the reduction of beneficial bacteria as well as of microbial alpha-diversity. Although after the discontinuation of antibiotic therapies it has been observed a trend towards the restoration of the original condition, the new steady state is different from the previous one, as if antibiotics induced some kind of irreversible perturbation of the gut microbial community. The poorly absorbed antibiotic rifaximin seem to be different from the other antibiotics, because it exerts non-traditional effects additional to the bactericidal/bacteriostatic activity on the gut microbiota. Rifaximin is able to reduce bacterial virulence and translocation, has anti-inflammatory properties and has been demonstrated to positively modulate the gut microbial composition. Animal models, culture studies and metagenomic analyses have demonstrated an increase in Bifidobacterium, Faecalibacterium prausnitzii and Lactobacillus abundance after rifaximin treatment, probably consequent to the induction of bacterial resistance, with no major change in the overall gut microbiota composition. Antibiotics are therefore modulators of the symbiotic relationship between the host and the gut microbiota. Specific antibiotics, such as rifaximin, can also induce eubiotic changes in the intestinal ecosystem; this additional property may represent a therapeutic advantage in specific clinical settings. PMID:28740337

  12. Gallic acid modulates phenotypic behavior and gene expression in oral squamous cell carcinoma cells by interfering with leptin pathway.

    PubMed

    Santos, Eliane Macedo Sobrinho; da Rocha, Rogério Gonçalves; Santos, Hércules Otacílio; Guimarães, Talita Antunes; de Carvalho Fraga, Carlos Alberto; da Silveira, Luiz Henrique; Batista, Paulo Ricardo; de Oliveira, Paulo Sérgio Lopes; Melo, Geraldo Aclécio; Santos, Sérgio Henrique; de Paula, Alfredo Maurício Batista; Guimarães, André Luiz Sena; Farias, Lucyana Conceição

    2018-01-01

    Gallic acid is a polyphenolic compost appointed to interfere with neoplastic cells behavior. Evidence suggests an important role of leptin in carcinogenesis pathways, inducing a proliferative phenotype. We investigated the potential of gallic acid to modulate leptin-induced cell proliferation and migration of oral squamous cell carcinoma cell lines. The gallic acid effect on leptin secretion by oral squamous cell carcinoma cells, as well as the underlying molecular mechanisms, was also assessed. For this, we performed proliferation, migration, immunocytochemical and qPCR assays. The expression levels of cell migration-related genes (MMP2, MMP9, Col1A1, and E-cadherin), angiogenesis (HIF-1α, mir210), leptin signaling (LepR, p44/42 MAPK), apoptosis (casp-3), and secreted leptin levels by oral squamous cell carcinoma cells were also measured. Gallic acid decreased proliferation and migration of leptin-treated oral squamous cell carcinoma cells, and reduced mRNA expression of MMP2, MMP9, Col1A1, mir210, but did not change HIF-1α. Gallic acid decreased levels of leptin secreted by oral squamous cell carcinoma cells, accordingly with downregulation of p44/42 MAPK expression. Thus, gallic acid appears to break down neoplastic phenotype of oral squamous cell carcinoma cells by interfering with leptin pathway. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Environment and Colonisation Sequence Are Key Parameters Driving Cooperation and Competition between Pseudomonas aeruginosa Cystic Fibrosis Strains and Oral Commensal Streptococci

    PubMed Central

    Whiley, Robert A.; Fleming, Emily V.; Makhija, Ridhima; Waite, Richard D.

    2015-01-01

    Cystic fibrosis (CF) patient airways harbour diverse microbial consortia that, in addition to the recognized principal pathogen Pseudomonas aeruginosa, include other bacteria commonly regarded as commensals. The latter include the oral (viridans) streptococci, which recent evidence indicates play an active role during infection of this environmentally diverse niche. As the interactions between inhabitants of the CF airway can potentially alter disease progression, it is important to identify key cooperators/competitors and environmental influences if therapeutic intervention is to be improved and pulmonary decline arrested. Importantly, we recently showed that virulence of the P. aeruginosa Liverpool Epidemic Strain (LES) could be potentiated by the Anginosus-group of streptococci (AGS). In the present study we explored the relationships between other viridans streptococci (Streptococcus oralis, Streptococcus mitis, Streptococcus gordonii and Streptococcus sanguinis) and the LES and observed that co-culture outcome was dependent upon inoculation sequence and environment. All four streptococcal species were shown to potentiate LES virulence factor production in co-culture biofilms. However, in the case of S. oralis interactions were environmentally determined; in air cooperation within a high cell density co-culture biofilm occurred together with stimulation of LES virulence factor production, while in an atmosphere containing added CO2 this species became a competitor antagonising LES growth through hydrogen peroxide (H2O2) production, significantly altering biofilm population dynamics and appearance. Streptococcus mitis, S. gordonii and S. sanguinis were also capable of H2O2 mediated inhibition of P. aeruginosa growth, but this was only visible when inoculated as a primary coloniser prior to introduction of the LES. Therefore, these observations, which are made in conditions relevant to the biology of CF disease pathogenesis, show that the pathogenic and colonisation potential of P. aeruginosa isolates can be modulated positively and negatively by the presence of oral commensal streptococci. PMID:25710466

  14. Oral manifestations of inflammatory bowel disease.

    PubMed

    Mortada, I; Leone, A; Gerges Geagea, A; Mortada, R; Matar, C; Rizzo, M; Hajj Hussein, I; Massaad-Massade, L; Jurjus, A

    2017-01-01

    Inflammatory bowel diseases (IBD), including Crohn’s disease and ulcerative colitis, have important extraintestinal manifestations, notably in the oral cavity. These oral manifestations can constitute important clinical clues in the diagnosis and management of IBD, and include changes at the immune and bacterial levels. Aphthous ulcers, pyostomatitis vegetans, cobblestoning and gingivitis are important oral findings frequently observed in IBD patients. Their presentations vary considerably and might be well diagnosed and distinguished from other oral lesions. Infections, drug side effects, deficiencies in some nutrients and many other diseases involved with oral manifestations should also be taken into account. This article discusses the most recent findings on the oral manifestations of IBD with a focus on bacterial modulations and immune changes. It also includes an overview on options for management of the oral lesions of IBD.

  15. Top-down systems biology integration of conditional prebiotic modulated transgenomic interactions in a humanized microbiome mouse model

    PubMed Central

    Martin, Francois-Pierre J; Wang, Yulan; Sprenger, Norbert; Yap, Ivan K S; Rezzi, Serge; Ramadan, Ziad; Peré-Trepat, Emma; Rochat, Florence; Cherbut, Christine; van Bladeren, Peter; Fay, Laurent B; Kochhar, Sunil; Lindon, John C; Holmes, Elaine; Nicholson, Jeremy K

    2008-01-01

    Gut microbiome–host metabolic interactions affect human health and can be modified by probiotic and prebiotic supplementation. Here, we have assessed the effects of consumption of a combination of probiotics (Lactobacillus paracasei or L. rhamnosus) and two galactosyl-oligosaccharide prebiotics on the symbiotic microbiome–mammalian supersystem using integrative metabolic profiling and modeling of multiple compartments in germ-free mice inoculated with a model of human baby microbiota. We have shown specific impacts of two prebiotics on the microbial populations of HBM mice when co-administered with two probiotics. We observed an increase in the populations of Bifidobacterium longum and B. breve, and a reduction in Clostridium perfringens, which were more marked when combining prebiotics with L. rhamnosus. In turn, these microbial effects were associated with modulation of a range of host metabolic pathways observed via changes in lipid profiles, gluconeogenesis, and amino-acid and methylamine metabolism associated to fermentation of carbohydrates by different bacterial strains. These results provide evidence for the potential use of prebiotics for beneficially modifying the gut microbial balance as well as host energy and lipid homeostasis. PMID:18628745

  16. iss053e215867

    NASA Image and Video Library

    2017-11-20

    iss053e215867 (Nov. 20, 2017) --- The EcAMSat, short for E. coli AntiMicrobial Satellite, is seen moments after being ejected from the NanoRacks CubeSat Deployer attached to the outside of Kibo laboratory module from the Japan Aerospace Exploration Agency. The E. coli AntiMicrobial Satellite (EcAMSat) mission will investigate space microgravity effects on the antibiotic resistance of E. coli, a bacterial pathogen responsible for urinary tract infection in humans and animals.

  17. iss053e215850

    NASA Image and Video Library

    2017-11-20

    iss053e215850 (Nov. 20, 2017) --- The EcAMSat, short for E. coli AntiMicrobial Satellite, is seen moments after being ejected from the NanoRacks CubeSat Deployer attached to the outside of Kibo laboratory module from the Japan Aerospace Exploration Agency. The E. coli AntiMicrobial Satellite (EcAMSat) mission will investigate space microgravity effects on the antibiotic resistance of E. coli, a bacterial pathogen responsible for urinary tract infection in humans and animals.

  18. Commensal bacteria modulate the tumor microenvironment.

    PubMed

    Poutahidis, Theofilos; Erdman, Susan E

    2016-09-28

    It has been recently shown that gut microbes modulate whole host immune and hormonal factors impacting the fate of distant preneoplastic lesions toward malignancy or regression. This raises the possibility that the tumor microenvironment interacts with broader systemic microbial-immune networks. These accumulated findings suggest novel therapeutic opportunities for holobiont engineering in emerging tumor microenvironments. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Isolation of bacterial extrachromosomal DNA from human dental plaque associated with periodontal disease, using transposon-aided capture (TRACA).

    PubMed

    Warburton, Philip J; Allan, Elaine; Hunter, Stephanie; Ward, John; Booth, Veronica; Wade, William G; Mullany, Peter

    2011-11-01

    The human oral cavity is host to a complex microbial community estimated to comprise >700 bacterial species, of which at least half are thought to be not yet cultivable in vitro. To investigate the plasmids present in this community, we used a transposon-aided capture system, which allowed the isolation of plasmids from human oral supra- and subgingival plaque samples. Thirty-two novel plasmids and a circular molecule that could be an integrase-generated circular intermediate were isolated. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Optimise the microbial flora with milk and yoghurt to prevent disease.

    PubMed

    Morris, James A

    2018-05-01

    Pathogenic bacteria, which are temporary or permanent members of our microbial flora, cause or contribute to a wide range of human disease at all ages. Conditions include Alzheimer's disease, atherosclerosis, diabetes mellitus, obesity, cancer, autoimmunity and psychosis, amongst others. The mechanism of damage is inflammation which can be chronic or acute. An optimal microbial flora includes a wide range of pathogenic bacteria in low dose. This allows specific immunity to be developed and maintained with minimal inflammatory damage. Human milk has evolved to deliver an optimal microbial flora to the infant. Cow's milk has the potential, following appropriate fortification, to maintain an optimal human microbial flora throughout life. Yoghurt is a fermented milk product in which bacteria normally present in milk convert sugars to lactic acid. The acid suppresses the growth of pathogens in the oral cavity, oropharynx and oesophagus. Thus yoghurt can restore an optimal flora in these regions in the short term. Since bacteria are transported between epithelial surfaces, yoghurt will also optimise the flora elsewhere. The judicious use of milk and yogurt could prevent a high proportion of human disease. Copyright © 2018 The Author. Published by Elsevier Ltd.. All rights reserved.

  1. Microbial role in periodontitis: Have we reached the top? Some unsung bacteria other than red complex

    PubMed Central

    Arora, Nupur; Mishra, Ashank; Chugh, Samir

    2014-01-01

    The microbial etiology of periodontal disease has been the focus of researchers for a long time. The search for the pathogens of periodontal diseases has been underway for more than 100 years, and continues up today. Despite the increasing knowledge about oral microbiota, we are not able to implicate any one particular organism that can be considered as a candidate pathogen. In fact the term “candidate pathogen” has lost its steam with a myriad of microorganisms being incriminated from time to time. Most studies of the bacterial etiology of periodontitis have used either culture-based or targeted deoxyribonucleic acid approaches and so it is likely that pathogens remain undiscovered. The advent of 16S cloning and sequencing has facilitated identification of several uncultivable bacteria in the oral cavity. The concept that not one single organism, but several organisms contained in the biofilm orchestrating in a medley of the show appears to be more plausible. The present review highlights some lesser known bacteria associated with periodontal destruction. PMID:24744537

  2. Influences of pH and Iron Concentration on the Salivary Microbiome in Individual Humans with and without Caries

    PubMed Central

    Zhou, Jianye; Jiang, Nan; Wang, Zhenzhen; Li, Longqing; Zhang, Jumei; Ma, Rui; Nie, Hongbing

    2016-01-01

    ABSTRACT This study aimed to identify the differences in the oral microbial communities in saliva from patients with and without caries by performing sequencing with the Illumina MiSeq platform, as well as to further assess their relationships with environmental factors (salivary pH and iron concentration). Forty-three volunteers were selected, including 21 subjects with and 22 without caries, from one village in Gansu, China. Based on 966,255 trimmed sequences and clustering at the 97% similarity level, 1,303 species-level operational taxonomic units were generated. The sequencing data for the two groups revealed that (i) particular distribution patterns (synergistic effects or competition) existed in the subjects with and without caries at both the genus and species levels and (ii) both the salivary pH and iron concentration had significant influences on the microbial community structure. IMPORTANCE The significant influences of the oral environment observed in this study increase the current understanding of the salivary microbiome in caries. These results will be useful for expanding research directions and for improving disease diagnosis, prognosis, and therapy. PMID:27940544

  3. Influences of pH and Iron Concentration on the Salivary Microbiome in Individual Humans with and without Caries.

    PubMed

    Zhou, Jianye; Jiang, Nan; Wang, Zhenzhen; Li, Longqing; Zhang, Jumei; Ma, Rui; Nie, Hongbing; Li, Zhiqiang

    2017-02-15

    This study aimed to identify the differences in the oral microbial communities in saliva from patients with and without caries by performing sequencing with the Illumina MiSeq platform, as well as to further assess their relationships with environmental factors (salivary pH and iron concentration). Forty-three volunteers were selected, including 21 subjects with and 22 without caries, from one village in Gansu, China. Based on 966,255 trimmed sequences and clustering at the 97% similarity level, 1,303 species-level operational taxonomic units were generated. The sequencing data for the two groups revealed that (i) particular distribution patterns (synergistic effects or competition) existed in the subjects with and without caries at both the genus and species levels and (ii) both the salivary pH and iron concentration had significant influences on the microbial community structure. The significant influences of the oral environment observed in this study increase the current understanding of the salivary microbiome in caries. These results will be useful for expanding research directions and for improving disease diagnosis, prognosis, and therapy. Copyright © 2017 Zhou et al.

  4. Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures.

    PubMed

    Xiu, Yu; Jang, Sungho; Jones, J Andrew; Zill, Nicholas A; Linhardt, Robert J; Yuan, Qipeng; Jung, Gyoo Yeol; Koffas, Mattheos A G

    2017-10-01

    The ability to design and construct combinatorial synthetic metabolic pathways has far exceeded our capacity for efficient screening and selection of the resulting microbial strains. The need for high-throughput rapid screening techniques is of upmost importance for the future of synthetic biology and metabolic engineering. Here we describe the development of an RNA riboswitch-based biosensor module with dual fluorescent reporters, and demonstrate a high-throughput flow cytometry-based screening method for identification of naringenin over producing Escherichia coli strains in co-culture. Our efforts helped identify a number of key operating parameters that affect biosensor performance, including the selection of promoter and linker elements within the sensor-actuator domain, and the effect of host strain, fermentation time, and growth medium on sensor dynamic range. The resulting biosensor demonstrates a high correlation between specific fluorescence of the biosensor strain and naringenin titer produced by the second member of the synthetic co-culture system. This technique represents a novel application for synthetic microbial co-cultures and can be expanded from naringenin to any metabolite if a suitable riboswitch is identified. The co-culture technique presented here can be applied to a variety of target metabolites in combination with the SELEX approach for aptamer design. Due to the compartmentalization of the two genetic constructs responsible for production and detection into separate cells and application as independent modules of a synthetic microbial co-culture we have subsequently reduced the need for re-optimization of the producer module when the biosensor is replaced or removed. Biotechnol. Bioeng. 2017;114: 2235-2244. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. The Selective Interaction of Pistacia lentiscus Oil vs. Human Streptococci, an Old Functional Food Revisited with New Tools.

    PubMed

    Orrù, Germano; Demontis, Cristina; Mameli, Antonello; Tuveri, Enrica; Coni, Pierpaolo; Pichiri, Giuseppina; Coghe, Ferdinando; Rosa, Antonella; Rossi, Paola; D'hallewin, Guy

    2017-01-01

    Pistacia lentiscus berry oil (LBO) represents a typical vegetal product of the Mediterranean basin that has been formally used in traditional cuisine for 100s of years. In addition to its interesting alimentary properties, this product could represent an interesting candidate in the field of research on the study of new anti-infective agents. In fact, in Mediterranean countries, lentisk oil still continues to be widely used in folk medicine for oral and skin affections, in particular, acute gingivitis, pediatric skin infections such as impetigo and foot plaques, and biofilm related infections often associated with Streptococcus spp. Following these observations, we have hypothesized a "lentisk oil-bacteria" interaction, placing particular emphasis on the different Streptococcal species involved in these oral and skin diseases. In accordance with this hypothesis, the use of standard antimicrobial-antibiofilm methods (MIC, MBC, MBIC) allowed the interesting behavior of these bacteria to be observed and, in this context, the response to lentisk oil appears to be correlated with the pathogenic profile of the considered microorganism. Two probiotic strains of S. salivarius K12/M18 appeared to be non-sensitive to this product, while a set of five different pathogenic strains ( S. agalactiae, S. intermedius, S. mitis, S. mutans, S. pyogenes ) showed a response that was correlated to the fatty acid metabolic pathway of the considered species. In fact, at different times of bacteria development, selective High Performance Liquid Chromatography analysis of the growth medium containing LBO detected a significant increase in free unsaturated fatty acids (UFAs) in particular oleic, palmitic and linoleic acids, which are already known for their antibacterial activity. In this context, we have hypothesized that LBO could be able to modulate the pathogen/probiotic rate in a Streptococcal population using the fatty acid metabolic pathway to help the probiotic strain. This hypothesis was strengthened by performing antibacterial testing with oleic acid and an in silico evaluation of the Streptococcal MCRA protein, an enzyme involved in the production of saturated fatty acids from UFA. These results show that LBO may have been used in ancient times as a "natural microbial modulating extract" in the prevention of biofilm- associated diseases.

  6. Salivary microbiomes of indigenous Tsimane mothers and infants are distinct despite frequent premastication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Cliff S.; Martin, Melanie Ann; Dichosa, Armand E. K.

    Background Premastication, the transfer of pre-chewed food, is a common infant and young child feeding practice among the Tsimane, forager-horticulturalists living in the Bolivian Amazon. Research conducted primarily with Western populations has shown that infants harbor distinct oral microbiota from their mothers. Premastication, which is less common in these populations, may influence the colonization and maturation of infant oral microbiota, including via transmission of oral pathogens. We collected premasticated food and saliva samples from Tsimane mothers and infants (9–24 months of age) to test for evidence of bacterial transmission in premasticated foods and overlap in maternal and infant salivary microbiota.more » We extracted bacterial DNA from two premasticated food samples and 12 matched salivary samples from maternal-infant pairs. DNA sequencing was performed with MiSeq (Illumina). We evaluated maternal and infant microbial composition in terms of relative abundance of specific taxa, alpha and beta diversity, and dissimilarity distances. Results The bacteria in saliva and premasticated food were mapped to 19 phyla and 400 genera and were dominated by Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. The oral microbial communities of Tsimane mothers and infants who frequently share premasticated food were well-separated in a non-metric multi-dimensional scaling ordination (NMDS) plot. Infant microbiotas clustered together, with weighted Unifrac distances significantly differing between mothers and infants. Infant saliva contained more Firmicutes ( p  < 0.01) and fewer Proteobacteria ( p  < 0.05) than did maternal saliva. Many genera previously associated with dental and periodontal infections, e.g.  Neisseria , Gemella , Rothia , Actinomyces , Fusobacterium , and Leptotrichia , were more abundant in mothers than in infants. Conclusions Salivary microbiota of Tsimane infants and young children up to two years of age do not appear closely related to those of their mothers, despite frequent premastication and preliminary evidence that maternal bacteria is transmitted to premasticated foods. Infant physiology and diet may constrain colonization by maternal bacteria, including several oral pathogens.« less

  7. Salivary microbiomes of indigenous Tsimane mothers and infants are distinct despite frequent premastication

    DOE PAGES

    Han, Cliff S.; Martin, Melanie Ann; Dichosa, Armand E. K.; ...

    2016-11-03

    Background Premastication, the transfer of pre-chewed food, is a common infant and young child feeding practice among the Tsimane, forager-horticulturalists living in the Bolivian Amazon. Research conducted primarily with Western populations has shown that infants harbor distinct oral microbiota from their mothers. Premastication, which is less common in these populations, may influence the colonization and maturation of infant oral microbiota, including via transmission of oral pathogens. We collected premasticated food and saliva samples from Tsimane mothers and infants (9–24 months of age) to test for evidence of bacterial transmission in premasticated foods and overlap in maternal and infant salivary microbiota.more » We extracted bacterial DNA from two premasticated food samples and 12 matched salivary samples from maternal-infant pairs. DNA sequencing was performed with MiSeq (Illumina). We evaluated maternal and infant microbial composition in terms of relative abundance of specific taxa, alpha and beta diversity, and dissimilarity distances. Results The bacteria in saliva and premasticated food were mapped to 19 phyla and 400 genera and were dominated by Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. The oral microbial communities of Tsimane mothers and infants who frequently share premasticated food were well-separated in a non-metric multi-dimensional scaling ordination (NMDS) plot. Infant microbiotas clustered together, with weighted Unifrac distances significantly differing between mothers and infants. Infant saliva contained more Firmicutes ( p  < 0.01) and fewer Proteobacteria ( p  < 0.05) than did maternal saliva. Many genera previously associated with dental and periodontal infections, e.g.  Neisseria , Gemella , Rothia , Actinomyces , Fusobacterium , and Leptotrichia , were more abundant in mothers than in infants. Conclusions Salivary microbiota of Tsimane infants and young children up to two years of age do not appear closely related to those of their mothers, despite frequent premastication and preliminary evidence that maternal bacteria is transmitted to premasticated foods. Infant physiology and diet may constrain colonization by maternal bacteria, including several oral pathogens.« less

  8. The salivary microbiome is altered in the presence of a high salivary glucose concentration

    PubMed Central

    Hartman, Mor-Li; Shi, Ping; Hasturk, Hatice; Yaskell, Tina; Vargas, Jorel; Song, Xiaoqing; Cugini, Maryann; Barake, Roula; Alsmadi, Osama; Al-Mutawa, Sabiha; Ariga, Jitendra; Soparkar, Pramod; Behbehani, Jawad; Behbehani, Kazem

    2017-01-01

    Background Type II diabetes (T2D) has been associated with changes in oral bacterial diversity and frequency. It is not known whether these changes are part of the etiology of T2D, or one of its effects. Methods We measured the glucose concentration, bacterial counts, and relative frequencies of 42 bacterial species in whole saliva samples from 8,173 Kuwaiti adolescents (mean age 10.00 ± 0.67 years) using DNA probe analysis. In addition, clinical data related to obesity, dental caries, and gingivitis were collected. Data were compared between adolescents with high salivary glucose (HSG; glucose concentration ≥ 1.0 mg/d, n = 175) and those with low salivary glucose (LSG, glucose concentration < 0.1 mg/dL n = 2,537). Results HSG was associated with dental caries and gingivitis in the study population. The overall salivary bacterial load in saliva decreased with increasing salivary glucose concentration. Under HSG conditions, the bacterial count for 35 (83%) of 42 species was significantly reduced, and relative bacterial frequencies in 27 species (64%) were altered, as compared with LSG conditions. These alterations were stronger predictors of high salivary glucose than measures of oral disease, obesity, sleep or fitness. Conclusions HSG was associated with a reduction in overall bacterial load and alterations to many relative bacterial frequencies in saliva when compared with LSG in samples from adolescents. We propose that hyperglycemia due to obesity and/or T2D results in HSG and subsequent acidification of the oral environment, leading to a generalized perturbation in the oral microbiome. This suggests a basis for the observation that hyperglycemia is associated with an increased risk of dental erosion, dental caries, and gingivitis. We conclude that HSG in adolescents may be predicted from salivary microbial diversity or frequency, and that the changes in the oral microbial composition seen in adolescents with developing metabolic disease may the consequence of hyperglycemia. PMID:28249034

  9. Development of an Acetate-Fed or Sugar-Fed Microbial Power Generator for Military Bases

    DTIC Science & Technology

    2011-01-01

    quarter. We tested graphite and stainless steel as anode materials for ARB growth, showing the greater suitability of carbon fibers as anode material...microbial electrolysis cells (MECs) with graphite rods and stainless steel meshes as anodes to select the optimum material for use in MFC modules to...be tested in the future. We selected meshes made from 316-grade stainless steel for these initial studies. We conducted several trials with the MECs

  10. Gut microbiota and cardiometabolic outcomes: influence of dietary patterns and their associated components.

    PubMed

    Wong, Julia M W

    2014-07-01

    Many dietary patterns have been associated with cardiometabolic risk reduction. A commonality between these dietary patterns is the emphasis on plant-based foods. Studies in individuals who consume vegetarian and vegan diets have shown a reduced risk of cardiovascular events and incidence of diabetes. Plant-based dietary patterns may promote a more favorable gut microbial profile. Such diets are high in dietary fiber and fermentable substrate (ie, nondigestible or undigested carbohydrates), which are sources of metabolic fuel for gut microbial fermentation and, in turn, result in end products that may be used by the host (eg, short-chain fatty acids). These end products may have direct or indirect effects on modulating the health of their host. Modulation of the gut microbiota is an area of growing interest, and it has been suggested to have the potential to reduce risk factors associated with chronic diseases. Examples of dietary components that alter the gut microbial composition include prebiotics and resistant starches. Emerging evidence also suggests a potential link between interindividual differences in the gut microbiota and variations in physiology or predisposition to certain chronic disease risk factors. Alterations in the gut microbiota may also stimulate certain populations and may assist in biotransformation of bioactive components found in plant foods. Strategies to modify microbial communities may therefore provide a novel approach in the treatment and management of chronic diseases. © 2014 American Society for Nutrition.

  11. The oral microbiome in human immunodeficiency virus (HIV)-positive individuals.

    PubMed

    Kistler, James O; Arirachakaran, Pratanporn; Poovorawan, Yong; Dahlén, Gunnar; Wade, William G

    2015-09-01

    Human immunodeficiency virus (HIV) infection is associated with a range of oral conditions, and increased numbers of disease-associated microbial species have previously been found in HIV-positive subjects. The aim of this study was to use next-generation sequencing to compare the composition of the oral microbiome in HIV-positive and -negative individuals. Plaque and saliva were collected from 37 HIV-positive individuals and 37 HIV-negative individuals, and their bacterial composition determined by pyrosequencing of partial 16S rRNA genes. A total of 855,222 sequences were analysed. The number of species-level operational taxonomic units (OTUs) detected was significantly lower in the saliva of HIV-positive individuals (mean = 303.3) than in that of HIV-negative individuals (mean = 365.5) (P < 0.0003). Principal coordinates analysis (PCoA) based on community membership (Jaccard index) and structure (Yue and Clayton measure of dissimilarity) showed significant separation of plaque and saliva samples [analysis of molecular variance (AMOVA), P < 0.001]. PCoA plots did not show any clear separation based on HIV status. However, AMOVA indicated that there was a significant difference in the community membership of saliva between HIV-positive and -negative groups (P = 0.001). Linear discriminant analysis effect size revealed an OTU identified as Haemophilus parainfluenzae to be significantly associated with HIV-positive individuals, whilst Streptococcus mitis/HOT473 was most significantly associated with HIV-negative individuals. In conclusion, this study has confirmed that the microbial composition of saliva and plaque is different. The oral microbiomes of HIV-positive and -negative individuals were found to be similar overall, although there were minor but significant differences in the composition of the salivary microbiota of the two groups.

  12. Oral microbiota species in acute apical endodontic abscesses

    PubMed Central

    George, Noelle; Flamiatos, Erin; Kawasaki, Kellie; Kim, Namgu; Carriere, Charles; Phan, Brian; Joseph, Raphael; Strauss, Shay; Kohli, Richie; Choi, Dongseok; Craig Baumgartner, J.; Sedgley, Christine; Maier, Tom; Machida, Curtis A.

    2016-01-01

    Background and objectives Acute apical abscesses are serious endodontic diseases resulting from pulpal infection with opportunistic oral microorganisms. The objective of this study was to identify and compare the oral microbiota in patients (N=18) exhibiting acute apical abscesses, originating from the demographic region in Portland, Oregon. The study hypothesis is that abscesses obtained from this demographic region may contain unique microorganisms not identified in specimens from other regions. Design Endodontic abscesses were sampled from patients at the Oregon Health & Science University (OHSU) School of Dentistry. DNA from abscess specimens was subjected to polymerase chain reaction amplification using 16S rRNA gene-specific primers and Cy3-dCTP labeling. Labeled DNA was then applied to microbial microarrays (280 species) generated by the Human Oral Microbial Identification Microarray Laboratory (Forsyth Institute, Cambridge, MA). Results The most prevalent microorganisms, found across multiple abscess specimens, include Fusobacterium nucleatum, Parvimonas micra, Megasphaera species clone CS025, Prevotella multisaccharivorax, Atopobium rimae, and Porphyromonas endodontalis. The most abundant microorganisms, found in highest numbers within individual abscesses, include F. nucleatum, P. micra, Streptococcus Cluster III, Solobacterium moorei, Streptococcus constellatus, and Porphyromonas endodontalis. Strong bacterial associations were identified between Prevotella multisaccharivorax, Acidaminococcaceae species clone DM071, Megasphaera species clone CS025, Actinomyces species clone EP053, and Streptococcus cristatus (all with Spearman coefficients >0.9). Conclusions Cultivable and uncultivable bacterial species have been identified in endodontic abscesses obtained from the Portland, Oregon demographic region, and taxa identifications correlated well with other published studies, with the exception of Treponema and Streptococcus cristae, which were not commonly identified in endodontic abscesses between the demographic region in Portland, Oregon and other regions. PMID:26983837

  13. Interactions between Lactobacillus rhamnosus GG and oral micro-organisms in an in vitro biofilm model.

    PubMed

    Jiang, Qingru; Stamatova, Iva; Kainulainen, Veera; Korpela, Riitta; Meurman, Jukka H

    2016-07-12

    Probiotics have shown favourable properties in maintaining oral health. By interacting with oral microbial communities, these species could contribute to healthier microbial equilibrium. This study aimed to investigate in vitro the ability of probiotic Lactobacillus rhamnosus GG (L.GG) to integrate in oral biofilm and affect its species composition. Five oral strains, Streptococcus mutans, Streptococcus sanguinis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum and Candida albicans were involved. The group setup included 6 mono-species groups, 3 dual-species groups (L.GG + S. mutans/S. sanguinis/C. albicans), and 4 multi-species groups (4/5 species and 4/5 species + L.GG, 4 species were all the tested strains except S. mutans). Cell suspensions of six strains were pooled according to the group setup. Biofilms were grown on saliva-coated hydroxyapatite (HA) discs at 37 °C in anaerobic conditions for 64.5 h. Biofilm medium was added and refreshed at 0, 16.5, and 40.5 h. The pH of spent media was measured. Viable cells of the 16.5 h and 64.5 h biofilms were counted. 64.5 h biofilms were stained and scanned with confocal laser scanning microscopy. Our results showed that L.GG and S. mutans demonstrated stronger adhesion ability than the other strains to saliva-coated HA discs. L.GG, C. albicans, S. mutans and F. nucleatum, with poor ability to grow in mono-species biofilms demonstrated better abilities of adhesion and reproduction in dual- and/or multi-species biofilms. L.GG slightly suppressed the growth of C. albicans in all groups, markedly weakened the growth of S. sanguinis and F. nucleatum in 4sp + L.GG group, and slightly reduced the adhesion of S. mutans in L.GG+ S. mutans group. To conclude, in this in vitro model L.GG successfully integrated in all oral biofilms, and reduced the counts of S. sanguinis and C. albicans and lowered the biofilm-forming ability of F. nucleatum, but only slightly reduced the adhesion of S. mutans. C. albicans significantly promoted the growth of L.GG.

  14. Effects of Hangeshashinto on Growth of Oral Microorganisms

    PubMed Central

    Fukamachi, Haruka; Matsumoto, Chinami; Omiya, Yuji; Arimoto, Takafumi; Kataoka, Hideo; Kadena, Miki; Funatsu, Takahiro; Fukutake, Masato; Kase, Yoshio; Kuwata, Hirotaka

    2015-01-01

    Oral mucositis (OM) in cancer patients induced by chemotherapy or radiotherapy has a significant impact on quality of life, and causes considerable morbidity. Oral microorganisms are likely to intensify the inflammatory process and aggravate the formation of ulcers. Hangeshashinto (HST), a Japanese kampo medicine, has been reported to be effective when used as a gargle for the treatment of OM. To clarify the effects of HST on oral microorganisms, we assessed its antimicrobial activity against 27 microbial species, including 19 oral bacteria and one fungus. HST extract inhibited the growth of Gram-negative bacteria, including Fusobacterium nucleatum, Porphyromonas gingivalis, Porphyromonas endodontalis, Prevotella intermedia, Prevotella melaninogenica, Tannerella forsythia, Treponema denticola, and Porphyromonas asaccharolytica, though inhibitory effects were less pronounced for Gram-positive bacteria and the fungal strain. We then investigated the effects of antibacterial activities on 15 purified ingredients of HST and determined that baicalein, berberine, coptisine, [6]-shogaol, and homogentisic acid actively inhibited the growth of these bacteria. These findings showed that HST inhibits the growth of specific Gram-negative periodontopathogenic bacteria, which are significant pathogens in OM, without disturbing the normal oral flora. Our data suggest that HST may be a useful treatment for OM in patients undergoing anticancer treatment. PMID:26170876

  15. From birth to ‘immuno-health’, allergies and enterocolitis

    PubMed Central

    Houghteling, Pearl D.; Walker, W. Allan

    2015-01-01

    Microbial signals stimulate development and maintenance of the neonatal immune system. The process begins in utero, with limited exposure to microbes in the intrauterine environment, as well as maternal immune signals priming the developing immune system. After birth and initial colonization, the immune system must be able to activate against pathogens, but also achieve oral tolerance of food and resident gut microbes. Through microbial signals and appropriate nutrition, the immune system is able to achieve homeostasis. Major challenges to successful colonization and immune system regulation include abnormal microbial inoculi (cesarean section, hygiene) and antibiotics. When normal colonization is interrupted, dysbiosis occurs. This imbalance of microbes and subsequently of the immune system can result in allergic diseases, asthma or necrotizing enterocolitis. Probiotics and probiotic-derived therapies represent an exciting avenue to replete the population of commensal microbes and to prevent the immune-mediated sequelae of dysbiosis. PMID:26447970

  16. [Intestinal microbial ecology and its modulation under the influence of immunodepressants].

    PubMed

    Amanov, N; Garib, F Iu; Umarov, Ia A

    1989-06-01

    Oral administration of immunodepressants such as imuran (purine analog) and batriden (gossypol derivative) for 3 months led to development of dysbacterioses in various sections of the rat gastrointestinal tract. The dysbacterioses differed in their levels and the pattern of the recovery process. As compared to batriden, imuran in a dose of 30 mg/kg body weight administered at the early observation periods (days 7, 14 and 30) induced more marked disorders in the intestine microecology. The imuran-induced dysbacteriosis was characterized by lower quantities of lactobacilli and bifidobacteria in the rat intestine. After the use of batriden the quantities of bifidobacteria, lactobacilli and bacteroides decreased. After the batriden use at the late observation periods (days 60 to 90) the ratio of anaerobes and lactobacilli to aerobes recovered at the background of increased quantities of Candida in all the intestine sections while the ratio of bacteroides recovered in the stomach. When immunity was suppressed by imuran the recovery period was characterized by normalization of the microflora composition in the distal sections and preservation of the contamination symptom in the proximal section which was evident from predominance of aerobes over anaerobes.

  17. Identifying Low pH Active and Lactate-Utilizing Taxa within Oral Microbiome Communities from Healthy Children Using Stable Isotope Probing Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLean, Jeffrey S.; Fansler, Sarah J.; Majors, Paul D.

    Many human microbial infectious diseases including dental caries are polymicrobial in nature and how these complex multi-species communities evolve from a healthy to a diseased state is not well understood. Although many health- or disease-associated oral microbes have been characterized in vitro, their physiology in vivo in the presence of the complex oral microbiome is difficult to determine with current approaches. In addition, about half of these oral species remain uncultivated to date and little is known except their 16S rRNA sequence. Lacking culture-based physiological analyses, the functional roles of uncultivated microorganisms will remain enigmatic despite their apparent disease correlation.more » To start addressing these knowledge gaps, we applied a novel combination of in vivo Magnetic Resonance Spectroscopy (MRS) with RNA and DNA based Stable Isotope Probing (SIP) to oral plaque communities from healthy children for temporal monitoring of carbohydrate utilization, organic acid production and identification of metabolically active and inactive bacterial species.« less

  18. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions

    PubMed Central

    Adler, Christina J; Dobney, Keith; Weyrich, Laura S; Kaidonis, John; Walker, Alan W; Haak, Wolfgang; Bradshaw, Corey JA; Townsend, Grant; Sołtysiak, Arkadiusz; Alt, Kurt W; Parkhill, Julian; Cooper, Alan

    2014-01-01

    The importance of commensal microbes for human health is increasingly recognized1-5, yet the impacts of evolutionary changes in human diet and culture on commensal microbiota remain almost unknown. Two of the greatest dietary shifts in human evolution involved the adoption of carbohydrate-rich Neolithic (farming) diets6,7 (beginning ~10,000 years BP6,8), and the more recent advent of industrially processed flour and sugar (~1850)9. Here, we show that calcified dental plaque (dental calculus) on ancient teeth preserves a detailed genetic record throughout this period. Data from 34 early European skeletons indicate that the transition from hunter-gatherer to farming shifted the oral microbial community to a disease-associated configuration. The composition of oral microbiota remained surprisingly constant between Neolithic and Medieval times, after which (the now ubiquitous) cariogenic bacteria became dominant, apparently during the Industrial Revolution. Modern oral microbiota are markedly less diverse than historic populations, which might be contributing to chronic oral (and other) disease in post-industrial lifestyles. PMID:23416520

  19. A bioarchitectonic approach to the modular engineering of metabolism.

    PubMed

    Kerfeld, Cheryl A

    2017-09-26

    Dissociating the complexity of metabolic processes into modules is a shift in focus from the single gene/gene product to functional and evolutionary units spanning the scale of biological organization. When viewing the levels of biological organization through this conceptual lens, modules are found across the continuum: domains within proteins, co-regulated groups of functionally associated genes, operons, metabolic pathways and (sub)cellular compartments. Combining modules as components or subsystems of a larger system typically leads to increased complexity and the emergence of new functions. By virtue of their potential for 'plug and play' into new contexts, modules can be viewed as units of both evolution and engineering. Through consideration of lessons learned from recent efforts to install new metabolic modules into cells and the emerging understanding of the structure, function and assembly of protein-based organelles, bacterial microcompartments, a structural bioengineering approach is described: one that builds from an architectural vocabulary of protein domains. This bioarchitectonic approach to engineering cellular metabolism can be applied to microbial cell factories, used in the programming of members of synthetic microbial communities or used to attain additional levels of metabolic organization in eukaryotic cells for increasing primary productivity and as the foundation of a green economy.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  20. Disruption of T-cell immunoglobulin and mucin domain molecule (TIM)-1/TIM4 interaction as a therapeutic strategy in a dendritic cell-induced peanut allergy model.

    PubMed

    Feng, Bai-Sui; Chen, Xiao; He, Shao-Heng; Zheng, Peng-Yuan; Foster, Jane; Xing, Zhou; Bienenstock, John; Yang, Ping-Chang

    2008-07-01

    Recent reports indicate that dendritic cell (DC)-derived T-cell immunoglobulin and mucin domain molecule (TIM)-4 plays an important role in the initiation of T(H)2 polarization. This study aims to elucidate the mechanisms of peanut allergy mediated by microbial products and DCs and the relationship between peanut allergy and TIM4. Mouse bone marrow-derived DCs (BMDCs) were generated and exposed to cholera toxin (CT) or/and peanut extract (PE) for 24 hours and then adoptively transferred to naive mice. After re-exposure to specific antigen PE, the mice were killed; intestinal allergic status was determined. Increased expression of TIM4 and costimulatory molecules was detected in BMDCs after concurrent exposure to CT and PE. Adoptively transferred CT/PE-conditioned BMDCs resulted in the increases in serum PE-specific IgE and skewed T(H)2 polarization in the intestine. Oral challenge with specific antigen PE induced mast cell activation in the intestine. Treating with Toll-like receptor 4 small interfering RNA abolished increased expression of TIM4 and costimulatory molecules by BMDCs. Pretreatment with anti-TIM1 or anti-TIM4 antibody abolished PE-specific T(H)2 polarization and allergy in the intestine. Concurrent exposure to microbial product CT and food antigen PE increases TIM4 expression in DCs and promotes DC maturation, which plays an important role in the initiation of PE-specific T(H)2 polarization and allergy in the intestine. Modulation of TIM4 production in DCs represents a novel therapeutic approach for the treatment of peanut allergy.

  1. A Workflow to Model Microbial Loadings in Watersheds ...

    EPA Pesticide Factsheets

    Many watershed models simulate overland and instream microbial fate and transport, but few actually provide loading rates on land surfaces and point sources to the water body network. This paper describes the underlying general equations for microbial loading rates associated with 1) land-applied manure on undeveloped areas from domestic animals; 2) direct shedding on undeveloped lands by domestic animals and wildlife; 3) urban or engineered areas; and 4) point sources that directly discharge to streams from septic systems and shedding by domestic animals. A microbial source module, which houses these formulations, is linked within a workflow containing eight models and a set of databases that form a loosely configured modeling infrastructure which supports watershed-scale microbial source-to-receptor modeling by focusing on animal-impacted catchments. A hypothetical example application – accessing, retrieving, and using real-world data – demonstrates the ability of the infrastructure to automate many of the manual steps associated with a standard watershed assessment, culminating with calibrated flow and microbial densities at the pour point of a watershed. Presented at 2016 Biennial Conference, International Environmental Modelling & Software Society.

  2. Cigarette smoking and the oral microbiome in a large study of American adults

    PubMed Central

    Wu, Jing; Peters, Brandilyn A; Dominianni, Christine; Zhang, Yilong; Pei, Zhiheng; Yang, Liying; Ma, Yingfei; Purdue, Mark P; Jacobs, Eric J; Gapstur, Susan M; Li, Huilin; Alekseyenko, Alexander V; Hayes, Richard B; Ahn, Jiyoung

    2016-01-01

    Oral microbiome dysbiosis is associated with oral disease and potentially with systemic diseases; however, the determinants of these microbial imbalances are largely unknown. In a study of 1204 US adults, we assessed the relationship of cigarette smoking with the oral microbiome. 16S rRNA gene sequencing was performed on DNA from oral wash samples, sequences were clustered into operational taxonomic units (OTUs) using QIIME and metagenomic content was inferred using PICRUSt. Overall oral microbiome composition differed between current and non-current (former and never) smokers (P<0.001). Current smokers had lower relative abundance of the phylum Proteobacteria (4.6%) compared with never smokers (11.7%) (false discovery rate q=5.2 × 10−7), with no difference between former and never smokers; the depletion of Proteobacteria in current smokers was also observed at class, genus and OTU levels. Taxa not belonging to Proteobacteria were also associated with smoking: the genera Capnocytophaga, Peptostreptococcus and Leptotrichia were depleted, while Atopobium and Streptococcus were enriched, in current compared with never smokers. Functional analysis from inferred metagenomes showed that bacterial genera depleted by smoking were related to carbohydrate and energy metabolism, and to xenobiotic metabolism. Our findings demonstrate that smoking alters the oral microbiome, potentially leading to shifts in functional pathways with implications for smoking-related diseases. PMID:27015003

  3. Microbial Changes during Pregnancy, Birth, and Infancy

    PubMed Central

    Nuriel-Ohayon, Meital; Neuman, Hadar; Koren, Omry

    2016-01-01

    Several healthy developmental processes such as pregnancy, fetal development, and infant development include a multitude of physiological changes: weight gain, hormonal, and metabolic changes, as well as immune changes. In this review, we present an additional important factor which both influences and is affected by these physiological processes—the microbiome. We summarize the known changes in microbiota composition at a variety of body sites including gut, vagina, oral cavity, and placenta, throughout pregnancy, fetal development, and early childhood. There is still a lot to be discovered; yet several pieces of research point to the healthy desired microbial changes. Future research is likely to unravel precise roles and mechanisms of the microbiota in gestation; perhaps linking the metabolic, hormonal, and immune changes together. Although some research has started to link microbial dysbiosis and specific microbial populations with unhealthy pregnancy complications, it is important to first understand the context of the natural healthy microbial changes occurring. Until recently the placenta and developing fetus were considered to be germ free, containing no apparent microbiome. We present multiple study results showing distinct microbiota compositions in the placenta and meconium, alluding to early microbial colonization. These results may change dogmas and our overall understanding of the importance and roles of microbiota from the beginning of life. We further review the main factors shaping the infant microbiome—modes of delivery, feeding, weaning, and exposure to antibiotics. Taken together, we are starting to build a broader understanding of healthy vs. abnormal microbial alterations throughout major developmental time-points. PMID:27471494

  4. Microbial community composition but not diversity changes along succession in arctic sand dunes.

    PubMed

    Poosakkannu, Anbu; Nissinen, Riitta; Männistö, Minna; Kytöviita, Minna-Maarit

    2017-02-01

    The generality of increasing diversity of fungi and bacteria across arctic sand dune succession was tested. Microbial communities were examined by high-throughput sequencing of 16S rRNA genes (bacteria) and internal transcribed spacer (ITS) regions (fungi). We studied four microbial compartments (inside leaf, inside root, rhizosphere and bulk soil) and characterized microbes associated with a single plant species (Deschampsia flexuosa) across two sand dune successional stages (early and late). Bacterial richness increased across succession in bulk soil and leaf endosphere. In contrast, soil fungal richness remained constant while root endosphere fungal richness increased across succession. There was, however, no significant difference in Shannon diversity indices between early and late successional stage in any compartment. There was a significant difference in the composition of microbial communities between early and late successional stage in all compartments, although the major microbial OTUs were shared between early and late successional stage. Co-occurrence network analysis revealed successional stage-specific microbial groups. There were more co-occurring modules in early successional stage than in late stage. Altogether, these results emphasize that succession strongly affects distribution of microbial species, but not microbial diversity in arctic sand dune ecosystem and that fungi and bacteria may not follow the same successional trajectories. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Manual de Adiestramiento sobre Terapia de Rehidratacion Oral y Control de las Enfermedades Diarreicas (Oral Rehydration Therapy and the Control of Diarrheal Diseases). Training for Development. Peace Corps Information Collection & Exchange Training Manual No. T-53.

    ERIC Educational Resources Information Center

    Clark, Mari; And Others

    This Spanish-language manual was developed to train Peace Corps volunteers and other community health workers in Spanish-speaking countries in oral rehydration therapy (ORT) and the control of diarrheal diseases. Using a competency-based format, the manual contains three training modules (organized in seven sessions) that focus on interrelated…

  6. Modulation of surgical fibrosis by microbial zwitterionic polysaccharides

    NASA Astrophysics Data System (ADS)

    Ruiz-Perez, Begonia; Chung, Doo R.; Sharpe, Arlene H.; Yagita, Hideo; Kalka-Moll, Wiltrud M.; Sayegh, Mohamed H.; Kasper, Dennis L.; Tzianabos, Arthur O.

    2005-11-01

    Bacterial carbohydrates have long been considered T cell-independent antigens that primarily induce humoral immune responses. Recently, it has been demonstrated that bacterial capsules that possess a zwitterionic charge motif can activate CD4+ T cells after processing and presentation by antigen-presenting cells. Here we show that these zwitterionic polysaccharides can prevent T helper 1-mediated fibrosis by signaling for the release of IL-10 from CD4+ T cells in vivo. IL-10 production by these T cells and their ability to prevent fibrosis is controlled by the inducible costimulator (ICOS)-ICOS ligand pathway. These data demonstrate that the interaction of the zwitterionic polysaccharides with T cells results in modulation of surgical fibrosis in vivo and suggest a previously undescribed approach to "harnessing" T cell function to prevent inflammatory tissue disorders in humans. IL-10 | microbial polysaccharides | inducible costimulator

  7. Dehydroandrographolide, an iNOS inhibitor, extracted from Andrographis paniculata (Burm.f.) Nees, induces autophagy in human oral cancer cells.

    PubMed

    Hsieh, Ming-Ju; Lin, Chiao-Wen; Chiou, Hui-Ling; Yang, Shun-Fa; Chen, Mu-Kuan

    2015-10-13

    Autophagy, which is constitutively executed at the basal level in all cells, promotes cellular homeostasis by regulating the turnover of organelles and proteins. Andrographolide and dehydroandrographolide (DA) are the two principle components of Andrographis paniculata (Burm.f.) Nees. and are the main contributors to its therapeutic properties. However, the pharmacological activities of dehydroandrographolide (DA) remain unclear. In this study, DA induces oral cancer cell death by activating autophagy. Treatment with autophagy inhibitors inhibited DA-induced human oral cancer cell death. In addition, DA increased LC3-II expression and reduced p53 expression in a time- and concentration-dependent manner. Furthermore, DA induced autophagy and decreased cell viability through modulation of p53 expression. DA-induced autophagy was triggered by an activation of JNK1/2 and an inhibition of Akt and p38. In conclusion, this study demonstrated that DA induced autophagy in human oral cancer cells by modulating p53 expression, activating JNK1/2, and inhibiting Akt and p38. Finally, an administration of DA effectively suppressed the tumor formation in the oral carcinoma xenograft model in vivo. This is the first study to reveal the novel function of DA in activating autophagy, suggesting that DA could serve as a new and potential chemopreventive agent for treating human oral cancer.

  8. Dehydroandrographolide, an iNOS inhibitor, extracted from from Andrographis paniculata (Burm.f.) Nees, induces autophagy in human oral cancer cells

    PubMed Central

    Hsieh, Ming-Ju; Lin, Chiao-Wen; Chiou, Hui-Ling; Yang, Shun-Fa; Chen, Mu-Kuan

    2015-01-01

    Autophagy, which is constitutively executed at the basal level in all cells, promotes cellular homeostasis by regulating the turnover of organelles and proteins. Andrographolide and dehydroandrographolide (DA) are the two principle components of Andrographis paniculata (Burm.f.) Nees. and are the main contributors to its therapeutic properties. However, the pharmacological activities of dehydroandrographolide (DA) remain unclear. In this study, DA induces oral cancer cell death by activating autophagy. Treatment with autophagy inhibitors inhibited DA-induced human oral cancer cell death. In addition, DA increased LC3-II expression and reduced p53 expression in a time- and concentration-dependent manner. Furthermore, DA induced autophagy and decreased cell viability through modulation of p53 expression. DA-induced autophagy was triggered by an activation of JNK1/2 and an inhibition of Akt and p38. In conclusion, this study demonstrated that DA induced autophagy in human oral cancer cells by modulating p53 expression, activating JNK1/2, and inhibiting Akt and p38. Finally, an administration of DA effectively suppressed the tumor formation in the oral carcinoma xenograft model in vivo. This is the first study to reveal the novel function of DA in activating autophagy, suggesting that DA could serve as a new and potential chemopreventive agent for treating human oral cancer. PMID:26356821

  9. An integrative view of microbiome-host interactions in inflammatory bowel diseases

    PubMed Central

    Wlodarska, Marta; Kostic, Aleksandar D.; Xavier, Ramnik J.

    2015-01-01

    Summary The intestinal microbiota, which is composed of bacteria, viruses, and micro-eukaryotes, acts as an accessory organ system with distinct functions along the intestinal tract that are critical for health. This review focuses on how the microbiota drives intestinal disease through alterations in microbial community architecture, disruption of the mucosal barrier, modulation of innate and adaptive immunity, and dysfunction of the enteric nervous system. Inflammatory bowel disease is used as a model system to understand these microbial-driven pathologies, but the knowledge gained in this space is extended to less well studied intestinal diseases that may also have an important microbial component, including environmental enteropathy and chronic colitis-associated colorectal cancer. PMID:25974300

  10. Development of Oral Health Training for Rural and Remote Aboriginal Health Workers.

    ERIC Educational Resources Information Center

    Pacza, Tom; Steele, Lesley; Tennant, Marc

    2001-01-01

    A culturally appropriate oral health training course tailored to the needs of rural Aboriginal health workers was developed in Western Australia. The course is taught in three modules ranging from introductory material to comprehensive practical and theoretical knowledge of basic dental health care. The program encourages Aboriginal health workers…

  11. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors

    NASA Astrophysics Data System (ADS)

    Lagorce, David; Douguet, Dominique; Miteva, Maria A.; Villoutreix, Bruno O.

    2017-04-01

    The modulation of PPIs by low molecular weight chemical compounds, particularly by orally bioavailable molecules, would be very valuable in numerous disease indications. However, it is known that PPI inhibitors (iPPIs) tend to have properties that are linked to poor Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) and in some cases to poor clinical outcomes. Previously reported in silico analyses of iPPIs have essentially focused on physicochemical properties but several other ADMET parameters would be important to assess. In order to gain new insights into the ADMET properties of iPPIs, computations were carried out on eight datasets collected from several databases. These datasets involve compounds targeting enzymes, GPCRs, ion channels, nuclear receptors, allosteric modulators, oral marketed drugs, oral natural product-derived marketed drugs and iPPIs. Several trends are reported that should assist the design and optimization of future PPI inhibitors, either for drug discovery endeavors or for chemical biology projects.

  12. Circadian oscillations of microbial and functional composition in the human salivary microbiome

    PubMed Central

    Takayasu, Lena; Suda, Wataru; Takanashi, Kageyasu; Iioka, Erica; Kurokawa, Rina; Shindo, Chie; Hattori, Yasue; Yamashita, Naoko; Nishijima, Suguru; Oshima, Kenshiro

    2017-01-01

    Abstract The human microbiomes across the body evidently interact with various signals in response to biogeographical physiological conditions. To understand such interactions in detail, we investigated how the salivary microbiome in the oral cavity would be regulated by host-related signals. Here, we show that the microbial abundance and gene participating in keeping the human salivary microbiome exhibit global circadian rhythm. Analysis of the 16S rRNA sequences of salivary microbial samples of six healthy adults collected at 4-h intervals for three days revealed that the microbial genera accounting for 68.4–89.6% of the total abundance were observed to significantly oscillate with the periodicity of ∼24 h. These oscillation patterns showed high variations amongst individuals, and the extent of circadian variations in individuals was generally lower than that of interindividual variations. Of the microbial categories oscillated, those classified by aerobic/anaerobic growth and Gram staining, Firmicutes including Streptococcus and Gemella, and Bacteroidetes including Prevotella showed high association with the circadian oscillation. The circadian oscillation was completely abolished by incubating the saliva in vitro, suggesting that host’s physiological changes mostly contributed to the microbial oscillation. Further metagenomic analysis showed that circadian oscillation enriched the functions of environmental responses such as various transporters and two-component regulatory systems in the evening, and those of metabolisms such as the biosynthesis of vitamins and fatty acids in the morning. PMID:28338745

  13. Influence of P-glycoprotein modulation on plasma concentrations and pharmacokinetics of orally administered prednisolone in dogs.

    PubMed

    Van der Heyden, Sara; Croubels, Siska; Gadeyne, Caroline; Ducatelle, Richard; Daminet, Sylvie; Murua Escobar, Hugo; Sterenczak, Katharina; Polis, Ingeborgh; Schauvliege, Stijn; Hesta, Myriam; Chiers, Koen

    2012-06-01

    To evaluate the impact of modulation of the membrane-bound efflux pump P-glycoprotein (P-gp) on plasma concentrations of orally administered prednisolone in dogs. 7 healthy adult Beagles. Each dog received 3 treatments (control [no treatment], rifampicin [100 mg/d, PO, for 21 days, as an inducer of P-gp], and ketoconazole [100 mg/d, PO, for 21 days, as an inhibitor of P-gp]). A single dose of prednisolone (1 mg/kg, PO) was administered on day 8 of each treatment period. There was a 7-day washout period between subsequent treatments. Plasma concentrations of prednisolone were determined by use of a validated liquid chromatography-tandem mass spectrometry method. Duodenum and colon biopsy specimens were obtained endoscopically from anesthetized dogs and assessed for P-gp protein labeling via immunohistochemical analysis and mRNA quantification via real-time PCR assay. Total fecal collection was performed for evaluation of effects of P-gp modulation on digestion of nutrients. Rifampicin treatment upregulated duodenal P-gp in dogs and significantly reduced the area under the plasma concentration-time curve of prednisolone. Ketoconazole typically downregulated expression of duodenal P-gp, with a subsequent increase in the area under the plasma concentration-time curve of prednisolone. There was a noticeable interindividual difference in response. Digestion of nutrients was not affected. Modulation of P-gp expression influenced plasma concentrations of prednisolone after oral administration in dogs. Thus, treatment response to prednisolone may be influenced by coadministration of P-gp-modulating medications or feed ingredients.

  14. Host-Microbiome Cross-talk in Oral Mucositis

    PubMed Central

    Vasconcelos, R.M.; Sanfilippo, N.; Paster, B.J.; Kerr, A.R.; Li, Y.; Ramalho, L.; Queiroz, E.L.; Smith, B.; Sonis, S.T.; Corby, P.M.

    2016-01-01

    Oral mucositis (OM) is among the most common, painful, and debilitating toxicities of cancer regimen–related treatment, resulting in the formation of ulcers, which are susceptible to increased colonization of microorganisms. Novel discoveries in OM have focused on understanding the host-microbial interactions, because current pathways have shown that major virulence factors from microorganisms have the potential to contribute to the development of OM and may even prolong the existence of already established ulcerations, affecting tissue healing. Additional comprehensive and disciplined clinical investigation is needed to carefully characterize the relationship between the clinical trajectory of OM, the local levels of inflammatory changes (both clinical and molecular), and the ebb and flow of the oral microbiota. Answering such questions will increase our knowledge of the mechanisms engaged by the oral immune system in response to mucositis, facilitating their translation into novel therapeutic approaches. In doing so, directed clinical strategies can be developed that specifically target those times and tissues that are most susceptible to intervention. PMID:27053118

  15. Green tea: a novel functional food for the oral health of older adults.

    PubMed

    Gaur, Sumit; Agnihotri, Rupali

    2014-04-01

    Functional foods are foods with positive health effects that extend beyond their nutritional value. They affect the function of the body and help in the management of specific health conditions. Green tea, a time-honoured Chinese herb, might be regarded as a functional food because of its inherent anti-oxidant, anti-inflammatory, antimicrobial and antimutagenic properties. They are attributed to its reservoir of polyphenols, particularly the catechin, epigallocatechin-3-gallate. Owing to these beneficial actions, this traditional beverage was used in the management of chronic systemic diseases including cancer. Recently, it has been emphasized that the host immuno-inflammatory reactions destroy the oral tissues to a greater extent than the microbial activity alone. Green tea with its wide spectrum of activities could be a healthy alternative for controlling these damaging reactions seen in oral diseases, specifically, chronic periodontitis, dental caries and oral cancer, which are a common occurrence in the elderly population. © 2013 Japan Geriatrics Society.

  16. Betel nut chewing, oral premalignant lesions, and the oral microbiome

    PubMed Central

    Hernandez, Brenda Y.; Zhu, Xuemei; Goodman, Marc T.; Gatewood, Robert; Mendiola, Paul; Quinata, Katrina; Paulino, Yvette C.

    2017-01-01

    Oral cancers are attributed to a number of causal agents including tobacco, alcohol, human papillomavirus (HPV), and areca (betel) nut. Although betel nut chewing has been established as an independent cause of oral cancer, the mechanisms of carcinogenesis are poorly understood. An investigation was undertaken to evaluate the influence of betel nut chewing on the oral microbiome and oral premalignant lesions. Study participants were recruited from a dental clinic in Guam. Structured interviews and oral examinations were performed. Oral swabbing and saliva samples were evaluated by 454 pyrosequencing of the V3- V5 region of the 16S rRNA bacterial gene and genotyped for HPV. One hundred twenty-two adults were enrolled including 64 current betel nut chewers, 37 former chewers, and 21 with no history of betel nut use. Oral premalignant lesions, including leukoplakia and submucous fibrosis, were observed in 10 chewers. Within-sample bacterial diversity was significantly lower in long-term (≥10 years) chewers vs. never chewers and in current chewers with oral lesions vs. individuals without lesions. Between-sample bacterial diversity based on Unifrac distances significantly differed by chewing status and oral lesion status. Current chewers had significantly elevated levels of Streptococcus infantis and higher and lower levels of distinct taxa of the Actinomyces and Streptococcus genera. Long-term chewers had reduced levels of Parascardovia and Streptococcus. Chewers with oral lesions had significantly elevated levels of Oribacterium, Actinomyces, and Streptococcus, including Streptococcus anginosus. In multivariate analyses, controlling for smoking, oral HPV, S.anginosus, and S. infantis levels, current betel nut chewing remained the only predictor of oral premalignant lesions. Our study provides evidence that betel nut chewing alters the oral bacterial microbiome including that of chewers who develop oral premalignant lesions. Nonetheless, whether microbial changes are involved in betel nut-induced oral carcinogenesis is only speculative. Further research is needed to discern the clinical significance of an altered oral microbiome and the mechanisms of oral cancer development in betel nut chewers. PMID:28225785

  17. Betel nut chewing, oral premalignant lesions, and the oral microbiome.

    PubMed

    Hernandez, Brenda Y; Zhu, Xuemei; Goodman, Marc T; Gatewood, Robert; Mendiola, Paul; Quinata, Katrina; Paulino, Yvette C

    2017-01-01

    Oral cancers are attributed to a number of causal agents including tobacco, alcohol, human papillomavirus (HPV), and areca (betel) nut. Although betel nut chewing has been established as an independent cause of oral cancer, the mechanisms of carcinogenesis are poorly understood. An investigation was undertaken to evaluate the influence of betel nut chewing on the oral microbiome and oral premalignant lesions. Study participants were recruited from a dental clinic in Guam. Structured interviews and oral examinations were performed. Oral swabbing and saliva samples were evaluated by 454 pyrosequencing of the V3- V5 region of the 16S rRNA bacterial gene and genotyped for HPV. One hundred twenty-two adults were enrolled including 64 current betel nut chewers, 37 former chewers, and 21 with no history of betel nut use. Oral premalignant lesions, including leukoplakia and submucous fibrosis, were observed in 10 chewers. Within-sample bacterial diversity was significantly lower in long-term (≥10 years) chewers vs. never chewers and in current chewers with oral lesions vs. individuals without lesions. Between-sample bacterial diversity based on Unifrac distances significantly differed by chewing status and oral lesion status. Current chewers had significantly elevated levels of Streptococcus infantis and higher and lower levels of distinct taxa of the Actinomyces and Streptococcus genera. Long-term chewers had reduced levels of Parascardovia and Streptococcus. Chewers with oral lesions had significantly elevated levels of Oribacterium, Actinomyces, and Streptococcus, including Streptococcus anginosus. In multivariate analyses, controlling for smoking, oral HPV, S.anginosus, and S. infantis levels, current betel nut chewing remained the only predictor of oral premalignant lesions. Our study provides evidence that betel nut chewing alters the oral bacterial microbiome including that of chewers who develop oral premalignant lesions. Nonetheless, whether microbial changes are involved in betel nut-induced oral carcinogenesis is only speculative. Further research is needed to discern the clinical significance of an altered oral microbiome and the mechanisms of oral cancer development in betel nut chewers.

  18. Energy extraction from a large-scale microbial fuel cell system treating municipal wastewater

    NASA Astrophysics Data System (ADS)

    Ge, Zheng; Wu, Liao; Zhang, Fei; He, Zhen

    2015-11-01

    Development of microbial fuel cell (MFC) technology must address the challenges associated with energy extraction from large-scale MFC systems consisting of multiple modules. Herein, energy extraction is investigated with a 200-L MFC system (effective volume of 100 L for this study) treating actual municipal wastewater. A commercially available energy harvesting device (BQ 25504) is used successfully to convert 0.8-2.4 V from the MFCs to 5 V for charging ultracapacitors and running a DC motor. Four different types of serial connection containing different numbers of MFC modules are examined for energy extraction and conversion efficiency. The connection containing three rows of the MFCs has exhibited the best performance with the highest power output of ∼114 mW and the conversion efficiency of ∼80%. The weak performance of one-row MFCs negatively affects the overall performance of the connected MFCs in terms of both energy production and conversion. Those results indicate that an MFC system with balanced performance among individual modules will be critical to energy extraction. Future work will focus on application of the extracted energy to support MFC operation.

  19. Relationship between Oral Malodor and the Global Composition of Indigenous Bacterial Populations in Saliva ▿

    PubMed Central

    Takeshita, Toru; Suzuki, Nao; Nakano, Yoshio; Shimazaki, Yoshihiro; Yoneda, Masahiro; Hirofuji, Takao; Yamashita, Yoshihisa

    2010-01-01

    Oral malodor develops mostly from the metabolic activities of indigenous bacterial populations within the oral cavity, but whether healthy or oral malodor-related patterns of the global bacterial composition exist remains unclear. In this study, the bacterial compositions in the saliva of 240 subjects complaining of oral malodor were divided into groups based on terminal-restriction fragment length polymorphism (T-RFLP) profiles using hierarchical cluster analysis, and the patterns of the microbial community composition of those exhibiting higher and lower malodor were explored. Four types of bacterial community compositions were detected (clusters I, II, III, and IV). Two parameters for measuring oral malodor intensity (the concentration of volatile sulfur compounds in mouth air and the organoleptic score) were noticeably lower in cluster I than in the other clusters. Using multivariate analysis, the differences in the levels of oral malodor were significant after adjustment for potential confounding factors such as total bacterial count, mean periodontal pocket depth, and tongue coating score (P < 0.001). Among the four clusters with different proportions of indigenous members, the T-RFLP profiles of cluster I were implicated as the bacterial populations with higher proportions of Streptococcus, Granulicatella, Rothia, and Treponema species than those of the other clusters. These results clearly correlate the global composition of indigenous bacterial populations with the severity of oral malodor. PMID:20228112

  20. Effect of orally administered Lactobacillus brevis HY7401 in a food allergy mouse model.

    PubMed

    Lee, Jeongmin; Bang, Jieun; Woo, Hee-Jong

    2013-11-28

    We had found that orally administered Lactobacillus species were effective immune modulators in ovalbumin (OVA)-sensitized mice. To validate these findings, we investigated the effects of orally administered Lactobacillus brevis HY7401 in OVA-T cell receptor transgenic mice. This strain showed a tendency to induce Th1 cytokines and inhibit Th2 cytokines. All assayed isotypes of OVA-specific antibody were effectively reduced. Systemic anaphylaxis was also relatively reduced with the probiotic administration. These results reveal that L. brevis HY7401 might be useful to promote anti-allergic processes through oral administration.

  1. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer.

    PubMed

    Mishra, Alok; Kumar, Rakesh; Tyagi, Abhishek; Kohaar, Indu; Hedau, Suresh; Bharti, Alok C; Sarker, Subhodeep; Dey, Dipankar; Saluja, Daman; Das, Bhudev

    2015-01-01

    In this study, we investigated the effects of the natural antioxidant curcumin on the HPV16-positive oral carcinoma cell line 93VU147T and demonstrated that curcumin is not only a potent inhibitor for the activity of host nuclear transcription factors AP-1 and NF-kB but it also selectively suppresses transcription of the HPV16/E6 oncogene during the carcinogenic process in oral cancer cells. This study suggests a therapeutic potential of curcumin for high-risk human papilloma virus (HPV)-infected oral cancers.

  2. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer

    PubMed Central

    Mishra, Alok; Kumar, Rakesh; Tyagi, Abhishek; Kohaar, Indu; Hedau, Suresh; Bharti, Alok C; Sarker, Subhodeep; Dey, Dipankar; Saluja, Daman; Das, Bhudev

    2015-01-01

    In this study, we investigated the effects of the natural antioxidant curcumin on the HPV16-positive oral carcinoma cell line 93VU147T and demonstrated that curcumin is not only a potent inhibitor for the activity of host nuclear transcription factors AP-1 and NF-kB but it also selectively suppresses transcription of the HPV16/E6 oncogene during the carcinogenic process in oral cancer cells. This study suggests a therapeutic potential of curcumin for high-risk human papilloma virus (HPV)-infected oral cancers. PMID:25932049

  3. Optimal Antibiotic Dosage for Chronic Kidney Disease Patient: A Pharmacological Manual for Oral Clinicians.

    PubMed

    Chidambaram, Ramasamy

    2015-01-01

    Chronic kidney disease, (CKD) a gradual and inevitable deterioration in renal function, is the disease with the most associations in dentistry. Dosage adjustment is one amongst the vital elements to be familiar with during their oral care. CKD patients take extended duration to filter out medications, therefore dosage must always be tailored under the supervision of nephrologist. The relished benefits from antibiotic could transform as anti-microbial resistance on their abuse and nephrotoxic when contraindicated drugs are encouraged. New patented drug belonging to oxazoliodine group has driven the researchers to handle the emerging AMR. The present communication discusses the pharmacological factors influencing in prescribing the antibiotics for CKD patient from the dentist's point of view. The formulas destined for calculating the optimal dosage of antibiotics have been documented to aid oral physicians.

  4. Introduction to Clinical Microbiology for the General Dentist.

    PubMed

    Rams, Thomas E; van Winkelhoff, Arie J

    2017-04-01

    Clinical oral microbiology may help dental professionals identify infecting pathogenic species and evaluate their in vitro antimicrobial susceptibility. Saliva, dental plaque biofilms, mucosal smears, abscess aspirates, and soft tissue biopsies are sources of microorganisms for laboratory testing. Microbial-based treatment end points may help clinicians better identify patients in need of additional or altered dental therapies before the onset of clinical treatment failure, and help improve patient oral health outcomes. Microbiological testing appears particularly helpful in periodontal disease treatment planning. Further research and technological advances are likely to increase the availability and clinical utility of microbiological analysis in modern dental practice. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Nanoparticle curcumin ameliorates experimental colitis via modulation of gut microbiota and induction of regulatory T cells

    PubMed Central

    Ohno, Masashi; Sugitani, Yoshihiko; Nishino, Kyohei; Inatomi, Osamu; Sugimoto, Mitsushige; Kawahara, Masahiro; Andoh, Akira

    2017-01-01

    Background and Aims Curcumin is a hydrophobic polyphenol derived from turmeric, a traditional Indian spice. Curcumin exhibits various biological functions, but its clinical application is limited due to its poor absorbability after oral administration. A newly developed nanoparticle curcumin shows improved absorbability in vivo. In this study, we examined the effects of nanoparticle curcumin (named Theracurmin) on experimental colitis in mice. Methods BALB/c mice were fed with 3% dextran sulfate sodium (DSS) in water. Mucosal cytokine expression and lymphocyte subpopulation were analyzed by real-time PCR and flow cytometry, respectively. The profile of the gut microbiota was analyzed by real-time PCR. Results Treatment with nanoparticle curcumin significantly attenuated body weight loss, disease activity index, histological colitis score and significantly improved mucosal permeability. Immunoblot analysis showed that NF-κB activation in colonic epithelial cells was significantly suppressed by treatment with nanoparticle curcumin. Mucosal mRNA expression of inflammatory mediators was significantly suppressed by treatment with nanoparticle curcumin. Treatment with nanoparticle curcumin increased the abundance of butyrate-producing bacteria and fecal butyrate level. This was accompanied by increased expansion of CD4+ Foxp3+ regulatory T cells and CD103+ CD8α− regulatory dendritic cells in the colonic mucosa. Conclusions Treatment with nanoparticle curcumin suppressed the development of DSS-induced colitis potentially via modulation of gut microbial structure. These responses were associated with induction of mucosal immune cells with regulatory properties. Nanoparticle curcumin is one of the promising candidates as a therapeutic option for the treatment of IBD. PMID:28985227

  6. Chlorella vulgaris and Pseudomonas putida interaction modulates phosphate trafficking for reduced arsenic uptake in rice (Oryza sativa L.).

    PubMed

    Srivastava, Suchi; Srivastava, Sonal; Bist, Vidisha; Awasthi, Surabhi; Chauhan, Reshu; Chaudhry, Vasvi; Singh, Poonam C; Dwivedi, Sanjay; Niranjan, Abhishek; Agrawal, Lalit; Chauhan, Puneet Singh; Tripathi, Rudra Deo; Nautiyal, Chandra Shekhar

    2018-06-05

    Rice grown in arsenic (As) contaminated areas contributes to high dietary exposure of As inducing multiple adverse effects on human health. The As contamination and application of phosphate fertilizers during seedling stage creates a high P and As stress condition. The flooded paddy fields are also conducive for algal growth and microbial activity. The present study proposes potential role of microalgae, Chlorella vulgaris (CHL) and bacteria, Pseudomonas putida (RAR) on rice plant grown under excess As and phosphate (P) conditions. The results show synchronized interaction of CHL + RAR which, reduces As uptake through enhanced P:As and reduced As:biomass ratio by modulating P trafficking. Gene expression analysis of different phosphate transporters exhibited correlation with reduced As uptake and other essential metals. The balancing of reactive oxygen species (ROS), proline accumulation, hormone modulation, and As sequestration in microbial biomass were elucidated as possible mechanisms of As detoxification. The study concludes that RAR and CHL combination mitigates the As stress during P-enriched conditions in rice by: (i) reducing As availability, (ii) modulating the As uptake, and (iii) improving detoxification mechanism of the plant. The study will be important in assessing the role and applicability of P solubilizing biofertilizers in these conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil.

    PubMed

    Xu, Yilu; Seshadri, Balaji; Sarkar, Binoy; Wang, Hailong; Rumpel, Cornelia; Sparks, Donald; Farrell, Mark; Hall, Tony; Yang, Xiaodong; Bolan, Nanthi

    2018-04-15

    Soil organic carbon is essential to improve soil fertility and ecosystem functioning. Soil microorganisms contribute significantly to the carbon transformation and immobilisation processes. However, microorganisms are sensitive to environmental stresses such as heavy metals. Applying amendments, such as biochar, to contaminated soils can alleviate the metal toxicity and add carbon inputs. In this study, Cd and Pb spiked soils treated with macadamia nutshell biochar (5% w/w) were monitored during a 49days incubation period. Microbial phospholipid fatty acids (PLFAs) were extracted and analysed as biomarkers in order to identify the microbial community composition. Soil properties, metal bioavailability, microbial respiration, and microbial biomass carbon were measured after the incubation period. Microbial carbon use efficiency (CUE) was calculated from the ratio of carbon incorporated into microbial biomass to the carbon mineralised. Total PLFA concentration decreased to a greater extent in metal contaminated soils than uncontaminated soils. Microbial CUE also decreased due to metal toxicity. However, biochar addition alleviated the metal toxicity, and increased total PLFA concentration. Both microbial respiration and biomass carbon increased due to biochar application, and CUE was significantly (p<0.01) higher in biochar treated soils than untreated soils. Heavy metals reduced the microbial carbon sequestration in contaminated soils by negatively influencing the CUE. The improvement of CUE through biochar addition in the contaminated soils could be attributed to the decrease in metal bioavailability, thereby mitigating the biotoxicity to soil microorganisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Microbial modulation of bacoside A biosynthetic pathway and systemic defense mechanism in Bacopa monnieri under Meloidogyne incognita stress.

    PubMed

    Gupta, Rupali; Singh, Akanksha; Srivastava, Madhumita; Singh, Vivek; Gupta, M M; Pandey, Rakesh

    2017-02-03

    Plant-associated beneficial microbes have been explored to fulfill the imperative function for plant health. However, their impact on the host secondary metabolite production and nematode disease management remains elusive. Our present work has shown that chitinolytic microbes viz., Chitiniphilus sp. MTN22 and Streptomyces sp. MTN14 singly as well as in combination modulated the biosynthetic pathway of bacoside A and systemic defense mechanism against Meloidogyne incognita in Bacopa monnieri. Interestingly, expression of bacoside biosynthetic pathway genes (3-Hydroxy-3-methylglutaryl coenzyme A reductase, mevalonate diphosphate decarboxylase, and squalene synthase) were upregulated in plants treated with the microbial combination in the presence as well as in absence of M. incognita stress. These microbes not only augmented bacoside A production (1.5 fold) but also strengthened host resistance via enhancement in chlorophyll a, defense enzymes and phenolic compounds like gallic acid, syringic acid, ferulic acid and cinnamic acid. Furthermore, elevated lignification and callose deposition in the microbial combination treated plants corroborate well with the above findings. Overall, the results provide novel insights into the underlying mechanisms of priming by beneficial microbes and underscore their capacity to trigger bacoside A production in B. monnieri under biotic stress.

  9. Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host-microbe interactions contributing to obesity.

    PubMed

    Payne, A N; Chassard, C; Lacroix, C

    2012-09-01

    The Western diet, comprised of highly refined carbohydrates and fat but reduced complex plant polysaccharides, has been attributed to the prevalence of obesity. A concomitant rise in the consumption of fructose and sugar substitutes such as sugar alcohols, artificial sweeteners, even rare sugars, has mirrored this trend, as both probable contributor and solution to the epidemic. Acknowledgement of the gut microbiota as a factor involved in obesity has sparked much controversy as to the cause and consequence of this relationship. Dietary intakes are a known modulator of gut microbial phylogeny and metabolic activity, frequently exploited to stimulate beneficial bacteria, promoting health benefits. Comparably little research exists on the impact of 'unconscious' dietary modulation on the resident commensal community mediated by increased fructose and sugar substitute consumption. This review highlights mechanisms of potential host and gut microbial fructose and sugar substitute metabolism. Evidence is presented suggesting these sugar compounds, particularly fructose, condition the microbiota, resulting in acquisition of a westernized microbiome with altered metabolic capacity. Disturbances in host-microbe interactions resulting from fructose consumption are also explored. © 2012 The Authors. obesity reviews © 2012 International Association for the Study of Obesity.

  10. Reciprocal interaction of diet and microbiome in inflammatory bowel diseases.

    PubMed

    Schaubeck, Monika; Haller, Dirk

    2015-11-01

    Diet is an emerging but poorly defined disease modulator in inflammatory bowel diseases (IBDs). Dietary factors exert direct effects on epithelial and immune cells and indirectly modulate immune homeostasis by shaping the intestinal microbiota. The increase in IBD prevalence in industrialized countries is associated with lifestyle changes including diets rich in energy, saturated fats, meat and sugar. Despite the fact that the intestinal ecosystem shows high stability and resilience to short-term perturbations, long-term dietary habits have profound effects on composition and function eventually leading to dysbiosis, that is changes in microbial composition associated with deleterious effects to the host. High-throughput sequencing data generated deeper insights of the intestinal ecosystems related to health and disease. However, the available cohort-studies establish associative relationships between microbiota changes and disease, rather than causality. New mouse models of intestinal inflammation and the possibility to transfer disease-associated microbial consortia state an essential tool to unravel the potential of diet-induced microbial shifts. This review will discuss new insights of how nutrition or single dietary factors shape the intestinal ecosystem. Furthermore, we want to provide perspectives for clinical translation of this knowledge to treat or prevent IBD.

  11. Gut epithelial inducible heat-shock proteins and their modulation by diet and the microbiota

    PubMed Central

    Arnal, Marie-Edith

    2016-01-01

    The epidemic of metabolic diseases has raised questions about the interplay between the human diet and the gut and its microbiota. The gut has two vital roles: nutrient absorption and intestinal barrier function. Gut barrier defects are involved in many diseases. Excess energy intake disturbs the gut microbiota and favors body entry of microbial compounds that stimulate chronic metabolic inflammation. In this context, the natural defense mechanisms of gut epithelial cells and the potential to boost them nutritionally warrant further study. One such important defense system is the activation of inducible heat-shock proteins (iHSPs) which protect the gut epithelium against oxidative stress and inflammation. Importantly, various microbial components can induce the expression of iHSPs. This review examines gut epithelial iHSPs as the main targets of microbial signals and nutrients and presents data on diseases involving disturbances of gut epithelial iHSPs. In addition, a broad literature analysis of dietary modulation of gut epithelial iHSPs is provided. Future research aims should include the identification of gut microbes that can optimize gut-protective iHSPs and the evaluation of iHSP-mediated health benefits of nutrients and food components. PMID:26883882

  12. Inhibition of Streptococcus mutans biofilm formation, extracellular polysaccharide production, and virulence by an oxazole derivative.

    PubMed

    Chen, Lulu; Ren, Zhi; Zhou, Xuedong; Zeng, Jumei; Zou, Jing; Li, Yuqing

    2016-01-01

    Dental caries, a biofilm-related oral disease, is a result of disruption of the microbial ecological balance in the oral environment. Streptococcus mutans, which is one of the primary cariogenic bacteria, produces glucosyltransferases (Gtfs) that synthesize extracellular polysaccharides (EPSs). The EPSs, especially water-insoluble glucans, contribute to the formation of dental plaque, biofilm stability, and structural integrity, by allowing bacteria to adhere to tooth surfaces and supplying the bacteria with protection against noxious stimuli and other environmental attacks. The identification of novel alternatives that selectively inhibit cariogenic organisms without suppressing oral microbial residents is required. The goal of the current study is to investigate the influence of an oxazole derivative on S. mutans biofilm formation and the development of dental caries in rats, given that oxazole and its derivatives often exhibit extensive and pharmacologically important biological activities. Our data shows that one particular oxazole derivative, named 5H6, inhibited the formation of S. mutans biofilms and prevented synthesis of extracellular polysaccharides by antagonizing Gtfs in vitro, without affecting the growth of the bacteria. In addition, topical applications with the inhibitor resulted in diminished incidence and severity of both smooth and sulcal surface caries in vivo with a lower percentage of S. mutans in the animals' dental plaque compared to the control group (P < 0.05). Our results showed that this oxazole derivative has the capacity to inhibit biofilm formation and cariogenicity of S. mutans.

  13. Microenvironmental pH-modification to improve dissolution behavior and oral absorption for drugs with pH-dependent solubility.

    PubMed

    Taniguchi, Chika; Kawabata, Yohei; Wada, Koichi; Yamada, Shizuo; Onoue, Satomi

    2014-04-01

    Drug release and oral absorption of drugs with pH-dependent solubility are influenced by the conditions in the gastrointestinal tract. In some cases, poor oral absorption has been observed for these drugs, causing insufficient drug efficacy. The pH-modification of a formulation could be a promising approach to overcome the poor oral absorption of drugs with pH-dependent solubility. The present review aims to summarize the pH-modifier approach and strategic analyses of microenvironmental pH for formulation design and development. We also provide literature- and patent-based examples of the application of pH-modification technology to solid dosage forms. For the pH-modification approach, the microenvironmental pH at the diffusion area can be altered by dissolving pH-modifying excipients in the formulation. The modulation of the microenvironmental pH could improve dissolution behavior of drugs with pH-dependent solubility, possibly leading to better oral absorption. According to this concept, the modulated level of microenvironmental pH and its duration can be key factors for improvement in drug dissolution. The measurement of microenvironmental pH and release of pH-modifier would provide theoretical insight for the selection of an appropriate pH-modifier and optimization of the formulation.

  14. Metabolic and Microbial Modulation of the Large Intestine Ecosystem by Non-Absorbed Diet Phenolic Compounds: A Review.

    PubMed

    Mosele, Juana I; Macià, Alba; Motilva, Maria-José

    2015-09-18

    Phenolic compounds represent a diverse group of phytochemicals whose intake is associated with a wide spectrum of health benefits. As consequence of their low bioavailability, most of them reach the large intestine where, mediated by the action of local microbiota, a series of related microbial metabolites are accumulated. In the present review, gut microbial transformations of non-absorbed phenolic compounds are summarized. Several studies have reached a general consensus that unbalanced diets are associated with undesirable changes in gut metabolism that could be detrimental to intestinal health. In terms of explaining the possible effects of non-absorbed phenolic compounds, we have also gathered information regarded their influence on the local metabolism. For this purpose, a number of issues are discussed. Firstly, we consider the possible implications of phenolic compounds in the metabolism of colonic products, such as short chain fatty acids (SCFA), sterols (cholesterol and bile acids), and microbial products of non-absorbed proteins. Due to their being recognized as affective antioxidant and anti-inflammatory agents, the ability of phenolic compounds to counteract or suppress pro-oxidant and/or pro-inflammatory responses, triggered by bowel diseases, is also presented. The modulation of gut microbiota through dietetic maneuvers including phenolic compounds is also commented on. Although the available data seems to assume positive effects in terms of gut health protection, it is still insufficient for solid conclusions to be extracted, basically due to the lack of human trials to confirm the results obtained by the in vitro and animal studies. We consider that more emphasis should be focused on the study of phenolic compounds, particularly in their microbial metabolites, and their power to influence different aspects of gut health.

  15. Microbial interactions in marine water amended by eroded benthic biofilm: A case study from an intertidal mudflat

    NASA Astrophysics Data System (ADS)

    Montanié, Hélène; Ory, Pascaline; Orvain, Francis; Delmas, Daniel; Dupuy, Christine; Hartmann, Hans J.

    2014-09-01

    In shallow macrotidal ecosystems with large intertidal mudflats, the sediment-water coupling plays a crucial role in structuring the pelagic microbial food web functioning, since inorganic and organic matter and microbial components (viruses and microbes) of the microphytobenthic biofilm can be suspended toward the water column. Two experimental bioassays were conducted in March and July 2008 to investigate the importance of biofilm input for the pelagic microbial and viral loops. Pelagic inocula (< 0.6 μ- and < 10 μ filtrates) were diluted either with < 30 kDa-ultrafiltered seawater or with this ultrafiltrate enriched with the respective size-fractionated benthic biofilm or with < 30 kDa-benthic compounds (BC). The kinetics of heterotrophic nanoflagellates (HNF), bacteria and viruses were assessed together with bacterial and viral genomic fingerprints, bacterial enzymatic activities and viral life strategies. The experimental design allowed us to evaluate the effect of BC modulated by those of benthic size-fractionated microorganisms (virus + bacteria, + HNF). BC presented (1) in March, a positive effect on viruses and bacteria weakened by pelagic HNF. Benthic microorganisms consolidated this negative effect and sustained the viral production together with a relatively diverse and uneven bacterial assemblage structure; (2) in July, no direct impact on viruses but a positive effect on bacteria modulated by HNF, which indirectly enhanced viral multiplication. Both effects were intensified by benthic microorganisms and bacterial assemblage structure became more even. HNF indirectly profited from BC more in March than in July. The microbial loop would be stimulated by biofilm during periods of high resources (March) and the viral loop during periods of depleted resources (July).

  16. Health Instruction Packages: Consumer--Dental Hygiene.

    ERIC Educational Resources Information Center

    Tanner, Floyd R.; And Others

    Text, illustrations, and exercises are utilized in this set of five learning modules to instruct dental patients and the general public in the fundamental principles of dental hygiene. The first module, "Identify the Responsibilities for Your Oral Health" by Floyd R. Tanner, discusses the respective roles of the dentist and the patient…

  17. Salivary microbial profiles in relation to age, periodontal, and systemic diseases

    PubMed Central

    Lira-Junior, Ronaldo; Åkerman, Sigvard; Klinge, Björn

    2018-01-01

    Background Analysis of saliva is emerging as a promising tool to diagnose and monitor diseases which makes determination of the salivary microbial profile in different scenarios essential. Objective To evaluate the effects of age, periodontal disease, sex, smoking, and medical conditions on the salivary microbial profile. Design A randomly selected sample of 441 individuals was enrolled (51% women; mean age 48.5±16.8). Participants answered a health questionnaire and underwent an oral examination. Stimulated saliva was collected and the counts of 41 bacteria were determined by checkerboard DNA-DNA hybridization. Results Elderly participants (> 64 years old) presented a significant increase in 24 out of 41 bacterial species compared to adults (≤ 64 years old). Eubacterium nodatum, Porphyromonas gingivalis, and Tannerella forsythia were significantly higher in participants with generalized bone loss compared to without. Males and non-smokers had higher bacteria counts in saliva. Individuals having mental disorders or muscle and joint diseases showed significantly altered microbial profiles whereas small or no differences were found for subjects with high blood pressure, heart disease, previous heart surgery, bowel disease, tumors, or diabetes. Conclusion Age, periodontal status, sex, smoking, and certain medical conditions namely, mental disorders and muscle and joint diseases, might affect the microbial profile in saliva. PMID:29538390

  18. Microbial cross-contamination by airborne dispersion and contagion during defeathering of poultry.

    PubMed

    Allen, V M; Hinton, M H; Tinker, D B; Gibson, C; Mead, G C; Wathes, C M

    2003-09-01

    1. A readily identifiable strain of Escherichia coli K12 was used as a 'marker' organism to determine the sources, routes and patterns of microbial cross-contamination during mechanical defeathering of broiler chicken carcases. 2. Inoculation of scald water with the marker organism led to a relatively even pattern of carcase contamination during subsequent defeathering. Microbial cross-contamination was greater by this route of inoculation than by either surface inoculation of a 'seeder' carcase or oral inoculation of a live bird one day before slaughter. 3. Dispersal of the marker organism was strongly influenced by the mechanical action of the defeathering machines. Forward transmission of the marker occurred by aerosol or large airborne droplets and particulates such as feathers. Moving carcases through the defeathering machines when these were non-operational clearly reduced backward transmission of the marker. 4. Although microbial dispersal was unaffected by increasing the spacing between individual carcases or installing a water curtain at the entry and exit of the defeathering machines, shielding of carcases with aluminium baffles reduced counts of the marker organism from contaminated carcases by > 90%. 5. The results imply that microbial cross-contamination of broiler chicken carcases during defeathering occurs mainly via the airborne route, which could be contained by physical means.

  19. New perspectives on dandruff and seborrheic dermatitis: lessons we learned from bacterial and fungal skin microbiota.

    PubMed

    Paulino, Luciana Campos

    2017-06-01

    The human body is inhabited by complex microbial communities, which positively impact different aspects of our health, and might also be related to the development of diseases. Progress in technologies, particularly sequencing methods and bioinformatics tools, has been crucial for the advances in this field. Microbial communities from skin can modulate immune response and protect the host against pathogens, and there are also data supporting their association with several skin conditions; including dandruff and seborrheic dermatitis. For decades, they have been thought to be related to Malassezia yeasts; however, the microbial role has not been elucidated, and their etiology remains poorly understood. This review discusses the recent findings in dandruff and seborrheic dermatitis and their relation to the skin microbiota. Data provided new perceptions to aid in the understanding of these skin disorders, broadening our view of their etiology and the possible roles of microbial communities in symptom development.

  20. Intestinal Microbial Community Differs between Acute Pancreatitis Patients and Healthy Volunteers.

    PubMed

    Zhang, Xi Mei; Zhang, Zheng Yu; Zhang, Chen Huan; Wu, Jing; Wang, You Xin; Zhang, Guo Xin

    2018-01-01

    A case control study including 45 acute pancreatitis and 44 healthy volunteers was performed to investigate the association between intestinal microbial community and acute pancreatitis. High-throughput 16S rRNA gene amplicon sequencing was used to profile the microbiological composition of the samples. In total, 27 microbial phyla were detected and the samples of pancreatitis patients contained fewer phyla. Samples from acute pancreatitis patients contained more Bacteroidetes and Proteobacteria and fewer Firmicutes and Actinobacteria than those from healthy volunteers. PCoA analyses distinguished the fecal microbial communities of acute pancreatitis patients from those of healthy volunteers. The intestinal microbes of acute pancreatitis patients are different from those of healthy volunteers. Modulation of the intestinal microbiome may serve as an alternative strategy for treating acute pancreatitis. Copyright © 2018 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  1. Additive or non-additive effect of mixing oak in pine stands on soil properties depends on the tree species in Mediterranean forests.

    PubMed

    Brunel, Caroline; Gros, Raphael; Ziarelli, Fabio; Farnet Da Silva, Anne Marie

    2017-07-15

    This study investigated how oak abundance in pine stands (using relative Oak Basal Area %, OBA%) may modulate soil microbial functioning. Forests were composed of sclerophyllous species i.e. Quercus ilex mixed with Pinus halepensis Miller or of Q. pubescens mixed with P. sylvestris. We used a series of plots with OBA% ranging from 0 to 100% in the two types of stand (n=60) and both OLF and A-horizon compartments were analysed. Relations between OBA% and either soil chemical (C and N contents, quality of organic matter via solid-state NMR, pH, CaCO 3 ) or microbial (enzyme activities, basal respiration, biomass and catabolic diversity via BIOLOG) characteristics were described. OBA% increase led to a decrease in the recalcitrant fraction of organic matter (OM) in OLF and promoted microbial growth. Catabolic profiles of microbial communities from A-horizon were significantly modulated in Q. ilex and P. halepensis stand by OBA% and alkyl C to carboxyl C ratio (characteristic of cutin from Q. ilex tissues) and in Q. pubescens and P. sylvestris stands, by OBA% and pH. In A-horizon under Q. ilex and P. halepensis stands, linear regressions were found between catabolic diversity, microbial biomass and OBA% suggesting an additive effect. Conversely, in A-horizon Q. pubescens and P. sylvestris stands, the relationship between OBA% and either cellulase activities, polysaccharides or ammonium contents, suggested a non-additive effect of Q. pubescens and P. sylvestris, enhancing mineralization of the OM labile fraction for plots characterized by an OBA% ranging from 40% to 60%. Mixing oak with pine thus favored microbial dynamics in both type of stands though OBA% print varied with tree species and consequently sustainable soil functioning depend strongly on the composition of mixed stands. Our study indeed revealed that, when evaluating the benefits of forest mixed stand on soil microbial functioning and OM turnover, the identity of tree species has to be considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Answer Me These Questions Three: Using Online Training to Improve Students' Oral Source Citations

    ERIC Educational Resources Information Center

    Buerkle, C. Wesley; Gearhart, Christopher C.

    2017-01-01

    This experimental study examines an online module designed to increase student competence in oral citation behavior using a mastery training strategy. Students in the experimental condition provided complete citations at a higher rate and provided more citation information for traditional and web-based sources compared with a control group without…

  3. Perceptions of Examiner Behavior Modulate Power Relations in Oral Performance Testing

    ERIC Educational Resources Information Center

    Plough, India C.; Bogart, Pamela S. H.

    2008-01-01

    To what extent are the discourse behaviors of examiners salient to participants of an oral performance test? This exploratory study employs a grounded ethnographic approach to investigate the perceptions of the verbal, paralinguistic and nonverbal discourse behaviors of an examiner in a one-on-one role-play task that is one of four tasks in an…

  4. Detection and modulation of capsaicin perception in the human oral cavity.

    PubMed

    Smutzer, Gregory; Jacob, Jeswin C; Tran, Joseph T; Shah, Darshan I; Gambhir, Shilpa; Devassy, Roni K; Tran, Eric B; Hoang, Brian T; McCune, Joseph F

    2018-05-09

    Capsaicin causes a burning or spicy sensation when this vanilloid compound comes in contact with trigeminal neurons of the tongue. This compound has low solubility in water, which presents difficulties in examining the psychophysical properties of capsaicin by standard aqueous chemosensory tests. This report describes a new approach that utilizes edible strips for delivering precise amounts of capsaicin to the human oral cavity for examining threshold and suprathreshold amounts of this irritant. When incorporated into pullulan-based edible strips, recognition thresholds for capsaicin occurred over a narrow range, with a mean value near 1 nmol. When incorporated into edible strips at suprathreshold amounts, capsaicin yielded robust intensity values that were readily measured in our subject population. Maximal capsaicin intensity was observed 20 s after strips dissolved on the tongue surface, and then decreased in intensity. Suprathreshold studies showed that complete blockage of nasal airflow diminished capsaicin perception in the oral cavity. Oral rinses with vanillin-linoleic acid emulsions decreased mean intensity values for capsaicin by approximately 75%, but only modestly affected recognition threshold values. Also, oral rinses with isointense amounts of aqueous sucrose and sucralose solutions decreased mean intensity values for capsaicin by approximately 50%. In addition, this decrease in capsaicin intensity following an oral rinse with sucrose was partially reversed by the sweet taste inhibitor lactisole. These results suggest that blockage of nasal airflow, vanillin, sucrose, and sucralose modulate capsaicin perception in the human oral cavity. The results further suggest a chemosensory link between receptor cells that detect sweet taste stimuli and trigeminal neurons that detect capsaicin. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Role of salivary epithelial toll-like receptors 2 and 4 in modulating innate immune responses in chronic periodontitis.

    PubMed

    Swaminathan, V; Prakasam, S; Puri, V; Srinivasan, M

    2013-12-01

    Chronic periodontitis is initiated by sequential colonization with a broad array of bacteria and is perpetuated by an immune-inflammatory response to the changing biofilm. Host recognition of microbes is largely mediated by toll-like receptors (TLRs), which interact with conserved pathogen-associated molecular patterns. Based on ligand recognition, TLR-2 and TLR-4 interact with most periodontal pathogens. Extracrevicular bacterial reservoirs, such as the oral epithelial cells, contribute to the persistence of periodontitis. Human saliva is a rich source of oral epithelial cells that express functional TLRs. In this study we investigated the role of salivary epithelial cell (SEC) TLR-2 and TLR-4 in patients with generalized chronic periodontitis. Unstimulated whole saliva (UWS) was collected from patients with generalized chronic periodontitis and from healthy individuals after obtaining informed consent. Epithelial cells isolated from each UWS sample were assessed for TLR-2, TLR-4, peptidoglycan recognition protein (PGRP)-3 and PGRP-4 by quantitative real-time PCR. In addition, the SECs were stimulated in vitro with microbial products for up to 24 h. The culture supernatant was assessed for cytokines by ELISA. Stimulation with TLR-2- or TLR-4-specific ligands induced cytokine secretion with differential kinetics and up-regulated TLR2 and TLR4 mRNAs, respectively, in cultures of SECs from patients with periodontitis. In addition, the SECs from patients with periodontitis exhibited reduced PGRP3 and PGRP4 mRNAs, the TLR-responsive genes with antibacterial properties. SECs derived from the UWS of patients with chronic periodontitis are phenotypically distinct and could represent potential resources for assessing the epithelial responses to periodontal pathogens in the course of disease progression and persistence. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Oral supplements of inulin during gestation offsets rotenone-induced oxidative impairments and neurotoxicity in maternal and prenatal rat brain.

    PubMed

    Krishna, Gokul; Muralidhara

    2018-05-25

    Environmental insults including pesticide exposure and their entry into the immature brain are of increased concern due to their developmental neurotoxicity. Several lines of evidence suggest that maternal gut microbiota influences in utero fetal development via modulation of host's microbial composition with prebiotics. Hence we examined the hypothesis if inulin (IN) supplements during pregnancy in rats possess the potential to alleviate brain oxidative response and mitochondrial deficits employing a developmental model of rotenone (ROT) neurotoxicity. Initially, pregnant Sprague-Dawley rats were gavaged during gestational days (GDs) 6-19 with 0 (control), 10 (low), 30 (mid) or 50 (high) mg/kg bw/day of ROT to recapitulate developmental effects on general fetotoxicity (assessed by the number of fetuses, fetal body and placental weights), markers of oxidative stress and cholinergic activities in maternal brain regions and whole fetal-brain. Secondly, dams orally supplemented with inulin (2×/day, 2 g/kg/bw) on GD 0-21 were administered ROT (50 mg/kg, GD 6-19). IN supplements increased maternal cecal bacterial numbers that significantly corresponded with improved exploratory-related behavior among ROT administered rats. In addition, IN supplements improved fetal and placental weight on GD 19. IN diminished gestational ROT-induced increased reactive oxygen species levels, protein and lipid peroxidation biomarkers, and cholinesterase activity in maternal brain regions (cortex, cerebellum, and striatum) and fetal brain. Moreover, in the maternal cortex, mitochondrial assessment revealed IN protected against ROT-induced reduction in NADH cytochrome c oxidoreductase and ATPase activities. These data suggest a potential role for indigestible oligosaccharides in reducing oxidative stress-mediated developmental origins of neurodegenerative disorders. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Consumption of apple-boysenberry beverage decreases salivary Actinomyces naeslundii and their adhesion in a multi-species biofilm model.

    PubMed

    Parkar, S G; Eady, S; Cabecinha, M; Skinner, M A

    2017-04-26

    We hypothesised that consumption of beverage rich in both fibre and polyphenols, rather than each bioactive alone, will modulate populations of selected salivary bacteria, and their adhesion characteristics and that some of these effects may be due to the anti-microbial activity of the beverage bioactives. We investigated the effect of 4 weeks' consumption of beverages, rich in apple fibre, boysenberry polyphenols, or both on salivary bacteria in healthy subjects. In this placebo-controlled crossover study, saliva samples were collected at the beginning and end of each treatment period, and used for qPCR quantitation of Lactobacillus spp., Actinomyces naeslundii and Streptococcus mutans. The counts of salivary A. naeslundii decreased after the consumption of the apple-boysenberry beverage (P<0.05, Student's t-test). We also examined the effect of the subjects' saliva on bacterial adhesion using a mixed species biofilm model. The salivary pellicles prepared before and after each treatment were inoculated with laboratory strains of A. naeslundii, Lactobacillus rhamnosus and S. mutans and tested for biofilm formation. The post appleboysenberry beverage salivary pellicle significantly decreased the adhesion of A. naeslundii at the end of both 3 and 24 h, in the in vitro biofilm. A 1/16 dilution of the apple-boysenberry beverage itself decreased the proliferation of test strains of A. naeslundii and S. mutans by 51 and 55%, respectively (P<0.005), indicating the antimicrobial activity of its bioactives. This study demonstrated that consumption of apple-boysenberry beverage, rather than apple or the boysenberry beverage alone or the placebo, decreased salivary A. naeslundii and their adhesion under laboratory conditions. These changes are factors that influence oral microecology and potentially oral health.

  8. Colonization-Induced Host-Gut Microbial Metabolic Interaction

    PubMed Central

    Claus, Sandrine P.; Ellero, Sandrine L.; Berger, Bernard; Krause, Lutz; Bruttin, Anne; Molina, Jérôme; Paris, Alain; Want, Elizabeth J.; de Waziers, Isabelle; Cloarec, Olivier; Richards, Selena E.; Wang, Yulan; Dumas, Marc-Emmanuel; Ross, Alastair; Rezzi, Serge; Kochhar, Sunil; Van Bladeren, Peter; Lindon, John C.; Holmes, Elaine; Nicholson, Jeremy K.

    2011-01-01

    The gut microbiota enhances the host’s metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems. We have probed the systemic metabolic adaptation to gut colonization for 20 days following exposure of axenic mice (n = 35) to a typical environmental microbial background using high-resolution 1H nuclear magnetic resonance (NMR) spectroscopy to analyze urine, plasma, liver, kidney, and colon (5 time points) metabolic profiles. Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization with parallel changes in multiple pathways in all compartments analyzed. The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis. These changes were associated with modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites, including taurocholate and tauromuricholate, which are essential regulators of lipid absorption. Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated. Remarkably, statistical modeling of the interactions between hepatic metabolic profiles and microbial composition analyzed by 16S rRNA gene pyrosequencing revealed strong associations of the Coriobacteriaceae family with both the hepatic triglyceride, glucose, and glycogen levels and the metabolism of xenobiotics. These data demonstrate the importance of microbial activity in metabolic phenotype development, indicating that microbiota manipulation is a useful tool for beneficially modulating xenobiotic metabolism and pharmacokinetics in personalized health care. PMID:21363910

  9. Enteral High Fat-Polyunsaturated Fatty Acid Blend Alters the Pathogen Composition of the Intestinal Microbiome in Premature Infants with an Enterostomy

    PubMed Central

    Younge, Noelle; Yang, Qing; Seed, Patrick C.

    2016-01-01

    Objective To determine the effect of enteral fish oil and safflower oil supplementation on the intestinal microbiome in premature infants with an enterostomy. Study design Premature infants with an enterostomy were randomized to receive early enteral supplementation with a high fat-polyunsaturated fatty acid (HF-PUFA) blend of fish oil and safflower oil versus standard nutritional therapy. We used 16S rRNA gene sequencing for longitudinal profiling of the microbiome from the time of study entry until bowel reanastomosis. We used weighted gene co-expression network analysis to identify microbial community modules that differed between study groups over time. We performed imputed metagenomic analysis to determine metabolic pathways associated with the microbial genes. Results Sixteen infants were randomized to receive enteral HF-PUFA supplementation and 16 infants received standard care. The intestinal microbiota of infants in the treatment group differed from those in the control group, with greater bacterial diversity and lower abundance of Streptococcus, Clostridium, and many pathogenic genera within the Enterobacteriaceae family. We identified four microbial community modules with significant differences between groups over time. Imputed metagenomic analysis of the microbial genes revealed metabolic pathways that differed between groups, including metabolism of amino acids, carbohydrates, fatty acids, and secondary bile acid synthesis. Conclusion Enteral HF-PUFA supplementation was associated with decreased abundance of pathogenic bacteria, greater bacterial diversity, and shifts in the potential metabolic functions of intestinal microbiota. Trial registration ClinicalTrials.gov: NCT01306838 PMID:27856001

  10. Enteral High Fat-Polyunsaturated Fatty Acid Blend Alters the Pathogen Composition of the Intestinal Microbiome in Premature Infants with an Enterostomy.

    PubMed

    Younge, Noelle; Yang, Qing; Seed, Patrick C

    2017-02-01

    To determine the effect of enteral fish oil and safflower oil supplementation on the intestinal microbiome in infants with an enterostomy born premature. Infants with an enterostomy born premature were randomized to receive early enteral supplementation with a high-fat polyunsaturated fatty acid (HF-PUFA) blend of fish oil and safflower oil vs standard nutritional therapy. We used 16S rRNA gene sequencing for longitudinal profiling of the microbiome from the time of study entry until bowel reanastomosis. We used weighted gene coexpression network analysis to identify microbial community modules that differed between study groups over time. We performed imputed metagenomic analysis to determine metabolic pathways associated with the microbial genes. Sixteen infants were randomized to receive enteral HF-PUFA supplementation, and 16 infants received standard care. The intestinal microbiota of infants in the treatment group differed from those in the control group, with greater bacterial diversity and lower abundance of Streptococcus, Clostridium, and many pathogenic genera within the Enterobacteriaceae family. We identified 4 microbial community modules with significant differences between groups over time. Imputed metagenomic analysis of the microbial genes revealed metabolic pathways that differed between groups, including metabolism of amino acids, carbohydrates, fatty acids, and secondary bile acid synthesis. Enteral HF-PUFA supplementation was associated with decreased abundance of pathogenic bacteria, greater bacterial diversity, and shifts in the potential metabolic functions of intestinal microbiota. ClinicalTrials.gov:NCT01306838. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. [The influence of alcohol on the oral cavity, salivary glands and saliva].

    PubMed

    Waszkiewicz, Napoleon; Zalewska, Anna; Szulc, Agata; Kepka, Alina; Konarzewska, Beata; Zalewska-Szajda, Beata; Chojnowska, Sylwia; Waszkiel, Danuta; Zwierz, Krzysztof

    2011-01-01

    Ethanol diffuses rapidly into saliva during the drinking, and immediately after its salivary concentration is temporarily much higher than in plasma. Within 30 minutes, salivary ethanol concentration equilibrates with the plasma level, thus suggesting that ethanol easily penetrates the whole body, including oral cavity tissues and salivary glands. After alcohol intake, the level of acetaldehyde in saliva strikingly exceeds the level in systemic blood. From saliva, acetaldehyde and ethanol easily reach all local tissues. Damage to the oral tissues seems to be ascribed mostly to the action of acetaldehyde, although some acute effects depend on a direct action of ethanol and formation of reactive oxygen species (ROS) and fatty acid ethyl esters (FAEEs). It is known that the oral mucosal surface is the home of numerous normal flora microorganisms and is the portal of entry for the majority of pathogens. The oral cavity and salivary antimicrobial immune defense systems eliminate pathogens and prevent massive overgrowth of microorganisms. An oral defense system participate in the protection of not only oral tissues, but also in the protection of upper digestive and respiratory tracts, against a number of microbial pathogens. Saliva plays the role in the oral cavity lubrication, maintenance of mucosal and tooth integrity, esophageal physiology, digestion and gastric cytoprotection. As alcohol abuse affects the structure and function of oral cavity mucosa, salivary glands and saliva, the maintenance of oral and general health under normal conditions is seriously impaired during the drinking. The severe tissue damage occurs in particular when alcohol abuse coincides with smoking.

  12. Licochalcone A induces apoptosis in KB human oral cancer cells via a caspase-dependent FasL signaling pathway

    PubMed Central

    KIM, JAE-SUNG; PARK, MI-RA; LEE, SOOK-YOUNG; KIM, DO KYOUNG; MOON, SUNG-MIN; KIM, CHUN SUNG; CHO, SEUNG SIK; YOON, GOO; IM, HEE-JEONG; YOU, JAE-SEEK; OH, JI-SU; KIM, SU-GWAN

    2014-01-01

    Licochalcone A (Lico-A) is a natural phenol licorice compound with multiple bioactivities, including anti-inflammatory, anti-microbial, anti-fungal and osteogenesis-inducing properties. In the present study, we investigated the Lico-A-induced apoptotic effects and examined the associated apoptosis pathway in KB human oral cancer cells. Lico-A decreased the number of viable KB oral cancer cells. However, Lico-A did not have an effect on primary normal human oral keratinocytes. In addition, the IC50 value of Lico-A was determined to be ~50 μM following dose-dependent stimulation. KB oral cancer cells stimulated with Lico-A for 24 h showed chromatin condensation by DAPI staining, genomic DNA fragmentation by agarose gel electrophoresis and a gradually increased apoptotic cell population by FACS analysis. These data suggest that Lico-A induces apoptosis in KB oral cancer cells. Additionally, Lico-A-induced apoptosis in KB oral cancer cells was mediated by the expression of factor associated suicide ligand (FasL) and activated caspase-8 and −3 and poly(ADP-ribose) polymerase (PARP). Furthermore, in the KB oral cancer cells co-stimulation with a caspase inhibitor (Z-VAD-fmk) and Lico-A significantly abolished the apoptotic phenomena. Our findings demonstrated that Lico-A-induced apoptosis in KB oral cancer cells involves the extrinsic apoptotic signaling pathway, which involves a caspase-dependent FasL-mediated death receptor pathway. Our data suggest that Lico-A be developed as a chemotherapeutic agent for the management of oral cancer. PMID:24337492

  13. Environmental Sources of Bacteria Differentially Influence Host-Associated Microbial Dynamics.

    PubMed

    Cardona, Cesar; Lax, Simon; Larsen, Peter; Stephens, Brent; Hampton-Marcell, Jarrad; Edwardson, Christian F; Henry, Chris; Van Bonn, Bill; Gilbert, Jack A

    2018-01-01

    Host-associated microbial dynamics are influenced by dietary and immune factors, but how exogenous microbial exposure shapes host-microbe dynamics remains poorly characterized. To investigate this phenomenon, we characterized the skin, rectum, and respiratory tract-associated microbiota in four aquarium-housed dolphins daily over a period of 6 weeks, including administration of a probiotic during weeks 4 to 6. The environmental bacterial sources were also characterized, including the animals' human handlers, the aquarium air and water, and the dolphins' food supply. Continuous microbial exposure occurred between all sites, yet each environment maintained a characteristic microbiota, suggesting that the majority of exposure events do not result in colonization. Small changes in water physicochemistry had a significant but weak correlation with change in dolphin-associated bacterial richness but had no influence on phylogenetic diversity. Food and air microbiota were the richest and had the largest conditional influence on other microbiota in the absence of probiotics, but during probiotic administration, food alone had the largest influence on the stability of the dolphin microbiota. Our results suggest that respiratory tract and gastrointestinal epithelium interactions with air- and food-associated microbes had the biggest influence on host-microbiota dynamics, while other interactions, such as skin transmission, played only a minor role. Finally, direct oral stimulation with a foreign exogenous microbial source can have a profound effect on microbial stability. IMPORTANCE These results provide valuable insights into the ecological influence of exogenous microbial exposure, as well as laying the foundation for improving aquarium management practices. By comparing data for dolphins from aquaria that use natural versus artificial seawater, we demonstrate the potential influence of aquarium water disinfection procedures on dolphin microbial dynamics.

  14. Effect of DNA Extraction Methods and Sampling Techniques on the Apparent Structure of Cow and Sheep Rumen Microbial Communities

    PubMed Central

    Henderson, Gemma; Cox, Faith; Kittelmann, Sandra; Miri, Vahideh Heidarian; Zethof, Michael; Noel, Samantha J.; Waghorn, Garry C.; Janssen, Peter H.

    2013-01-01

    Molecular microbial ecology techniques are widely used to study the composition of the rumen microbiota and to increase understanding of the roles they play. Therefore, sampling and DNA extraction methods that result in adequate yields of microbial DNA that also accurately represents the microbial community are crucial. Fifteen different methods were used to extract DNA from cow and sheep rumen samples. The DNA yield and quality, and its suitability for downstream PCR amplifications varied considerably, depending on the DNA extraction method used. DNA extracts from nine extraction methods that passed these first quality criteria were evaluated further by quantitative PCR enumeration of microbial marker loci. Absolute microbial numbers, determined on the same rumen samples, differed by more than 100-fold, depending on the DNA extraction method used. The apparent compositions of the archaeal, bacterial, ciliate protozoal, and fungal communities in identical rumen samples were assessed using 454 Titanium pyrosequencing. Significant differences in microbial community composition were observed between extraction methods, for example in the relative abundances of members of the phyla Bacteroidetes and Firmicutes. Microbial communities in parallel samples collected from cows by oral stomach-tubing or through a rumen fistula, and in liquid and solid rumen digesta fractions, were compared using one of the DNA extraction methods. Community representations were generally similar, regardless of the rumen sampling technique used, but significant differences in the abundances of some microbial taxa such as the Clostridiales and the Methanobrevibacter ruminantium clade were observed. The apparent microbial community composition differed between rumen sample fractions, and Prevotellaceae were most abundant in the liquid fraction. DNA extraction methods that involved phenol-chloroform extraction and mechanical lysis steps tended to be more comparable. However, comparison of data from studies in which different sampling techniques, different rumen sample fractions or different DNA extraction methods were used should be avoided. PMID:24040342

  15. Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities.

    PubMed

    Henderson, Gemma; Cox, Faith; Kittelmann, Sandra; Miri, Vahideh Heidarian; Zethof, Michael; Noel, Samantha J; Waghorn, Garry C; Janssen, Peter H

    2013-01-01

    Molecular microbial ecology techniques are widely used to study the composition of the rumen microbiota and to increase understanding of the roles they play. Therefore, sampling and DNA extraction methods that result in adequate yields of microbial DNA that also accurately represents the microbial community are crucial. Fifteen different methods were used to extract DNA from cow and sheep rumen samples. The DNA yield and quality, and its suitability for downstream PCR amplifications varied considerably, depending on the DNA extraction method used. DNA extracts from nine extraction methods that passed these first quality criteria were evaluated further by quantitative PCR enumeration of microbial marker loci. Absolute microbial numbers, determined on the same rumen samples, differed by more than 100-fold, depending on the DNA extraction method used. The apparent compositions of the archaeal, bacterial, ciliate protozoal, and fungal communities in identical rumen samples were assessed using 454 Titanium pyrosequencing. Significant differences in microbial community composition were observed between extraction methods, for example in the relative abundances of members of the phyla Bacteroidetes and Firmicutes. Microbial communities in parallel samples collected from cows by oral stomach-tubing or through a rumen fistula, and in liquid and solid rumen digesta fractions, were compared using one of the DNA extraction methods. Community representations were generally similar, regardless of the rumen sampling technique used, but significant differences in the abundances of some microbial taxa such as the Clostridiales and the Methanobrevibacter ruminantium clade were observed. The apparent microbial community composition differed between rumen sample fractions, and Prevotellaceae were most abundant in the liquid fraction. DNA extraction methods that involved phenol-chloroform extraction and mechanical lysis steps tended to be more comparable. However, comparison of data from studies in which different sampling techniques, different rumen sample fractions or different DNA extraction methods were used should be avoided.

  16. The Oral Mucosa Immune Environment and Oral Transmission of HIV/SIV

    PubMed Central

    Wood, Lianna F.; Chahroudi, Ann; Chen, Hui-Ling; Jaspan, Heather B.; Sodora, Donald L.

    2013-01-01

    Summary The global spread of human immunodeficiency virus (HIV) is dependent on the ability of this virus to efficiently cross from one host to the next by traversing a mucosal membrane. Unraveling how mucosal exposure of HIV results in systemic infection is critical for the development of effective therapeutic strategies. This review focuses on understanding the immune events associated with the oral route of transmission (via breastfeeding or sexual oral intercourse), which occurs across the oral and/or gastrointestinal mucosa. Studies in both humans and simian immunodeficiency virus (SIV) monkey models have identified viral changes and immune events associated with oral HIV/SIV exposure. This review covers our current knowledge of HIV oral transmission in both infants and adults, the use of SIV models in understanding early immune events, oral immune factors that modulate HIV/SIV susceptibility (including mucosal inflammation), and interventions that may impact oral HIV transmission rates. Understanding the factors that influence oral HIV transmission will provide the foundation for developing immune therapeutic and vaccine strategies that can protect both infants and adults from oral HIV transmission. PMID:23772613

  17. Identification of Microbial Pathogens in Periodontal disease and Diabetic patients of South Indian Population

    PubMed Central

    Chiranjeevi, Tikka; Prasad, Osuru Hari; Prasad, Uppu Venkateswara; Kumar, Avula Kishor; Chakravarthi, Veeraraghavulu Praveen; Rao, Paramala Balaji; Sarma, Potuguchi Venkata Gurunadha Krishna; Reddy, Nagi reddy Raveendra; Bhaskar, Matcha

    2014-01-01

    Periodontitis have been referred to as the sixth complication of diabetes found in high prevalence among diabetic patients than among healthy controls. The aim of the present study was to examine the periodontal disease status among collected dental plaque samples. Chromosomal DNA was isolated and amplified by universal primers. The DNA was sequenced for bacterial confirmation and phylogenetic analysis performed for the evolutionary relationship with other known pathogens. No amplification products were observed in groups labeled non periodontal and non Diabetes (NP&ND) and non Periodontal and Diabetes (NP&D). But in the case of Periodontal and non Diabetes (P&ND) groups 22 amplified products were observed. In case of Periodontal and Diabetes (P&D), 32 amplified products were positive for microbes. Among the four microbial groups, Treponemadenticola, and Tannerella forsythia were found to be prevalent in P&D. The phylogenetic analysis of 16s rRNA of Treponemadenticola showed the relationship with other Treponema oral pathogen species and with the Spirochaetazuelaera. Tannerella forsythia shows its evolutionary relationship only with four oral pathogens (Macellibacteroidesfermentans, Porphyromadaceae bacterium, Parabacteroidesmeredae and Bacillus fosythus). Prevotellaintermedia also showed its evolutionary relationship only with Prevotella Spcs while Fusobacterium revealed close evolutionary relationship only with Porpiromonasgingivalis. PMID:24966528

  18. Role of Vancomycin as a Component of Oral Nonabsorbable Antibiotics for Microbial Suppression in Leukemic Patients

    PubMed Central

    Bender, John F.; Schimpff, Stephen C.; Young, Viola Mae; Fortner, Clarence L.; Brouillet, Mary D.; Love, Lillian J.; Wiernik, Peter H.

    1979-01-01

    A total of 38 adult patients with acute leukemia who were undergoing remission induction chemotherapy in regular patient rooms were randomly allocated to one of two oral nonabsorbable antibiotic regimens for infection prophylaxis (gentamicin, vancomycin, and nystatin [GVN] or gentamicin and nystatin [GN]) to evaluate whether vancomycin was a necessary component. The patient population in both groups were comparable. Tolerance to GVN was less than GN but compliance was approximately equal (>85% in both groups). Patients receiving vancomycin demonstrated greater overall alimentary tract microbial suppression; however, acquisition of potential pathogens was approximately equal in both groups. The incidence of bacteremia, as well as the overall incidence of infection as related to the number of days at various granulocyte levels, was also approximately equal in both groups. Group D Streptococcus species were poorly suppressed by GN compared with GVN, although no patient developed an infection with these organisms. Colonization by newly acquired gram-negative bacilli was significantly less in the GN group (GN, 3 colonizations; GVN, 13 colonizations; P < 0.01). It is concluded that vancomycin may be safely eliminated from the GVN regimen provided microbiological data is monitored to detect resistant organisms. PMID:464573

  19. Microbial response to space environment, part B

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.; Chassay, C. E.; Ellis, W. L.; Foster, B. G.; Volz, P. A.; Spizizen, J.; Buecker, H.; Wrenn, R. T.; Simmonds, R. C.; Long, R. A.

    1972-01-01

    The performance of the microbial response to space environment experiment is considered excellent by all investigators. For most microbial systems, only preliminary survival data are available at this time. None of the available data indicate space flight-mediated changes in cell viability or recovery. One quite important observation has been made at this early date, however. The eggs produced after mice had been infected with N. dubius larvae demonstrated a significant decrease in hatchability when compared to identical ground controls. Except for the fact that the Apollo 16 flight larvae had been on board the command module, treatment of the flown larvae and ground control larvae was the same; neither had been exposed to UV irradiation. The significance and implications of this finding are currently being studied.

  20. The Bio-Community Perl toolkit for microbial ecology.

    PubMed

    Angly, Florent E; Fields, Christopher J; Tyson, Gene W

    2014-07-01

    The development of bioinformatic solutions for microbial ecology in Perl is limited by the lack of modules to represent and manipulate microbial community profiles from amplicon and meta-omics studies. Here we introduce Bio-Community, an open-source, collaborative toolkit that extends BioPerl. Bio-Community interfaces with commonly used programs using various file formats, including BIOM, and provides operations such as rarefaction and taxonomic summaries. Bio-Community will help bioinformaticians to quickly piece together custom analysis pipelines and develop novel software. Availability an implementation: Bio-Community is cross-platform Perl code available from http://search.cpan.org/dist/Bio-Community under the Perl license. A readme file describes software installation and how to contribute. © The Author 2014. Published by Oxford University Press.

  1. Potential Research and Development Synergies between Life support and Planetary protection

    NASA Astrophysics Data System (ADS)

    Lasseur, Ch.; Kminek, G.; Mergeay, M.

    Long term manned missions of our Russian colleagues have demonstrated the risks associated with microbial contamination These risks concern both crew health via the metabolic consumables contamination water air but and also the hardware degradation Over the last six years ESA and IBMP have developed a collaboration to elaborate and document these microbial contamination issues The collaboration involved the mutual exchanges of knowledge as well as microbial samples and leads up to the microbial survey of the Russian module of the ISS Based on these results and in addition to an external expert report commissioned by ESA the agency initiated the development of a rapid and automated microbial detection and identification tool for use in future space missions In parallel to these developments and via several international meetings planetary protection experts have agreed to place clear specification of the microbial quality of future hardware landing on virgin planets as well as elaborate the preliminary requirements of contamination for manned missions on surface For these activities its is necessary to have a better understanding of microbial activity to create culture collection and to develop on-line detection tools Within this paper we present more deeply the life support activities related to microbial issues we identify some potential synergies with Planetary protection developments and we propose some pathway for collaboration between these two communities

  2. Alternative Protein Sources in the Diet Modulate Microbiota and Functionality in the Distal Intestine of Atlantic Salmon (Salmo salar)

    PubMed Central

    Jaramillo-Torres, Alexander; Kortner, Trond M.; Merrifield, Daniel L.; Tinsley, John; Bakke, Anne Marie; Krogdahl, Åshild

    2016-01-01

    ABSTRACT The present study aimed to investigate whether alternative dietary protein sources modulate the microbial communities in the distal intestine (DI) of Atlantic salmon, and whether alterations in microbiota profiles are reflected in modifications in host intestinal function and health status. A 48-day feeding trial was conducted, in which groups of fish received one of five diets: a reference diet in which fishmeal (diet FM) was the only protein source and four experimental diets with commercially relevant compositions containing alternative ingredients as partial replacements of fishmeal, i.e., poultry meal (diet PM), a mix of soybean meal and wheat gluten (diet SBMWG), a mix of soy protein concentrate and poultry meal (diet SPCPM), and guar meal and wheat gluten (diet GMWG). Samples were taken of DI digesta and mucosa for microbial profiling using high-throughput sequencing and from DI whole tissue for immunohistochemistry and expression profiling of marker genes for gut health. Regardless of diet, there were significant differences between the microbial populations in the digesta and the mucosa in the salmon DI. Microbial richness was higher in the digesta than the mucosa. The digesta-associated bacterial communities were more affected by the diet than the mucosa-associated microbiota. Interestingly, both legume-based diets (SBMWG and GMWG) presented high relative abundance of lactic acid bacteria in addition to alteration in the expression of a salmon gene related to cell proliferation (pcna). It was, however, not possible to ascertain the cause-effect relationship between changes in bacterial communities and the host's intestinal responses to the diets. IMPORTANCE The intestine of cultivated Atlantic salmon shows symptoms of compromised function, which are most likely caused by imbalances related to the use of new feed ingredients. Intestinal microbiota profiling may become in the future a valuable endpoint measurement in order to assess fish intestinal health status and effects of diet. The present study aimed to gain information about whether alternative dietary protein sources modulate the microbial communities in the Atlantic salmon intestine and whether alterations in microbiota profiles are reflected in alterations in host intestinal function and health status. We demonstrate here that there are substantial differences between the intestinal digesta and mucosa in the presence and abundance of bacteria. The digesta-associated microbiota showed clear dependence on the diet composition, whereas mucosa-associated microbiota appeared to be less affected by diet composition. Most important, the study identified bacterial groups associated with diet-induced gut dysfunction that may be utilized as microbial markers of gut health status in fish. PMID:27986728

  3. Effects of frequent oral hygiene instructions on microbial levels and salivary buffer capacity in orthodontic patients and their parents.

    PubMed

    Katz-Sagi, Hadas; Redlich, Meir; Shapira, Joseph; Peretz, Benjamin; Steinberg, Doron

    2008-01-01

    To assess whether parental involvement can improve children's oral health as a strategiy to reduce caries risk in children undergoing orthodontic treatment. The study population consisted of 40 healthy children aged 7 to 15 years (mean 10.93 ± 2.78) and their accompanying parents (mother or father). Oral hygiene instructions were given simultaneously to all children and accompanying parents every 6 weeks at their regular orthodontic appointments. Levels of Streptococcus mutans and salivary buffer capacity were assessed for both children and parents before and 9 months into orthodontic treatment. The majority of children (74%) and parents (92%) expressed unchanged levels of Streptococcus mutans and stable salivary buffer capacity throughout the study. When analyzing child-parent pairs with respect to Streptococcus mutans and salivary buffer capacity, no significant differences were found prior to treatment. Nine months into treatment, 57% of the children and parents still showed similar Streptococcus mutans counts and buffer capacity. The child-parent approach succeeded in preventing deterioration of children's oral hygiene. Parental involvement has an essential part in maintaining children's oral health. Oral health care professionals should partner with parents when implementing any kind of health behavior. COPYRIGHT © 2008 BY QUINTESSENCE PUBLISHING CO, INC.

  4. Communication among Oral Bacteria

    PubMed Central

    Kolenbrander, Paul E.; Andersen, Roxanna N.; Blehert, David S.; Egland, Paul G.; Foster, Jamie S.; Palmer, Robert J.

    2002-01-01

    Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities. PMID:12209001

  5. Relationship between acetaldehyde concentration in mouth air and tongue coating volume.

    PubMed

    Yokoi, Aya; Maruyama, Takayuki; Yamanaka, Reiko; Ekuni, Daisuke; Tomofuji, Takaaki; Kashiwazaki, Haruhiko; Yamazaki, Yutaka; Morita, Manabu

    2015-01-01

    Acetaldehyde is the first metabolite of ethanol and is produced in the epithelium by mucosal ALDH, while higher levels are derived from microbial oxidation of ethanol by oral microflora such as Candida species. However, it is uncertain whether acetaldehyde concentration in human breath is related to oral condition or local production of acetaldehyde by oral microflora. The aim of this pilot study was to investigate the relationship between physiological acetaldehyde concentration and oral condition in healthy volunteers. Sixty-five volunteers (51 males and 14 females, aged from 20 to 87 years old) participated in the present study. Acetaldehyde concentration in mouth air was measured using a portable monitor. Oral examination, detection of oral Candida species and assessment of alcohol sensitivity were performed. Acetaldehyde concentration [median (25%, 75%)] in mouth air was 170.7 (73.5, 306.3) ppb. Acetaldehyde concentration in participants with a tongue coating status score of 3 was significantly higher than in those with a score of 1 (p<0.017). After removing tongue coating, acetaldehyde concentration decreased significantly (p<0.05). Acetaldehyde concentration was not correlated with other clinical parameters, presence of Candida species, smoking status or alcohol sensitivity. Physiological acetaldehyde concentration in mouth air was associated with tongue coating volume.

  6. Relationship between acetaldehyde concentration in mouth air and tongue coating volume

    PubMed Central

    YOKOI, Aya; MARUYAMA, Takayuki; YAMANAKA, Reiko; EKUNI, Daisuke; TOMOFUJI, Takaaki; KASHIWAZAKI, Haruhiko; YAMAZAKI, Yutaka; MORITA, Manabu

    2015-01-01

    Objective Acetaldehyde is the first metabolite of ethanol and is produced in the epithelium by mucosal ALDH, while higher levels are derived from microbial oxidation of ethanol by oral microflora such as Candida species. However, it is uncertain whether acetaldehyde concentration in human breath is related to oral condition or local production of acetaldehyde by oral microflora. The aim of this pilot study was to investigate the relationship between physiological acetaldehyde concentration and oral condition in healthy volunteers. Material and Methods Sixty-five volunteers (51 males and 14 females, aged from 20 to 87 years old) participated in the present study. Acetaldehyde concentration in mouth air was measured using a portable monitor. Oral examination, detection of oral Candida species and assessment of alcohol sensitivity were performed. Results Acetaldehyde concentration [median (25%, 75%)] in mouth air was 170.7 (73.5, 306.3) ppb. Acetaldehyde concentration in participants with a tongue coating status score of 3 was significantly higher than in those with a score of 1 (p<0.017). After removing tongue coating, acetaldehyde concentration decreased significantly (p<0.05). Acetaldehyde concentration was not correlated with other clinical parameters, presence of Candida species, smoking status or alcohol sensitivity. Conclusion Physiological acetaldehyde concentration in mouth air was associated with tongue coating volume. PMID:25760268

  7. A Workflow to Model Microbial Loadings in Watersheds ...

    EPA Pesticide Factsheets

    Many watershed models simulate overland and instream microbial fate and transport, but few actually provide loading rates on land surfaces and point sources to the water body network. This paper describes the underlying general equations for microbial loading rates associated with 1) land-applied manure on undeveloped areas from domestic animals; 2) direct shedding on undeveloped lands by domestic animals and wildlife; 3) urban or engineered areas; and 4) point sources that directly discharge to streams from septic systems and shedding by domestic animals. A microbial source module, which houses these formulations, is linked within a workflow containing eight models and a set of databases that form a loosely configured modeling infrastructure which supports watershed-scale microbial source-to-receptor modeling by focusing on animal-impacted catchments. A hypothetical example application – accessing, retrieving, and using real-world data – demonstrates the ability of the infrastructure to automate many of the manual steps associated with a standard watershed assessment, culminating with calibrated flow and microbial densities at the pour point of a watershed. In the Proceedings of the International Environmental Modelling and Software Society (iEMSs), 8th International Congress on Environmental Modelling and Software, Toulouse, France

  8. Construction and Analysis of Functional Networks in the Gut Microbiome of Type 2 Diabetes Patients.

    PubMed

    Li, Lianshuo; Wang, Zicheng; He, Peng; Ma, Shining; Du, Jie; Jiang, Rui

    2016-10-01

    Although networks of microbial species have been widely used in the analysis of 16S rRNA sequencing data of a microbiome, the construction and analysis of a complete microbial gene network are in general problematic because of the large number of microbial genes in metagenomics studies. To overcome this limitation, we propose to map microbial genes to functional units, including KEGG orthologous groups and the evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) orthologous groups, to enable the construction and analysis of a microbial functional network. We devised two statistical methods to infer pairwise relationships between microbial functional units based on a deep sequencing dataset of gut microbiome from type 2 diabetes (T2D) patients as well as healthy controls. Networks containing such functional units and their significant interactions were constructed subsequently. We conducted a variety of analyses of global properties, local properties, and functional modules in the resulting functional networks. Our data indicate that besides the observations consistent with the current knowledge, this study provides novel biological insights into the gut microbiome associated with T2D. Copyright © 2016. Production and hosting by Elsevier Ltd.

  9. Modelling the cost of community interventions to reduce child mortality in South Africa using the Lives Saved Tool (LiST).

    PubMed

    Nkonki, Lungiswa Ll; Chola, Lumbwe L; Tugendhaft, Aviva A; Hofman, Karen K

    2017-08-28

    To estimate the costs and impact on reducing child mortality of scaling up interventions that can be delivered by community health workers at community level from a provider's perspective. In this study, we used the Lives Saved Tool (LiST), a module in the spectrum software. Within the spectrum software, LiST interacts with other modules, the AIDS Impact Module, Family Planning Module and Demography Projections Module (Dem Proj), to model the impact of more than 60 interventions that affect cause-specific mortality. DemProj Based on National South African Data. A total of nine interventions namely, breastfeeding promotion, complementary feeding, vitamin supplementation, hand washing with soap, hygienic disposal of children's stools, oral rehydration solution, oral antibiotics for the treatment of pneumonia, therapeutic feeding for wasting and treatment for moderate malnutrition. Reducing child mortality. A total of 9 interventions can prevent 8891 deaths by 2030. Hand washing with soap (21%) accounts for the highest number of deaths prevented, followed by therapeutic feeding (19%) and oral rehydration therapy (16%). The top 5 interventions account for 77% of all deaths prevented. At scale, an estimated cost of US$169.5 million (US$3 per capita) per year will be required in community health worker costs. The use of community health workers offers enormous opportunities for saving lives. These programmes require appropriate financial investments. Findings from this study show what can be achieved if concerted effort is channelled towards the identified set of life-saving interventions. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Health-Associated Niche Inhabitants as Oral Probiotics: The Case of Streptococcus dentisani

    PubMed Central

    López-López, Arantxa; Camelo-Castillo, Anny; Ferrer, María D.; Simon-Soro, Áurea; Mira, Alex

    2017-01-01

    Oral diseases, including dental caries and periodontitis, are among the most prevalent diseases worldwide and develop as a consequence of a microbial dysbiosis. Several bacterial strains are being tested as potential oral health-promoting organisms, but usually they are species isolated from niches other than the site where they must exert its probiotic action, typically from fecal samples. We hypothesize that oral inhabitants associated to health conditions will be more effective than traditional, gut-associated probiotic species in key aspects such as colonization of the oral site where disease takes place or the possession of oral health promoting functions, as well as more practical issues like safety and toxicity, and establishing proper doses for administration. As an example of these active colonizers, we describe the case of Streptococcus dentisani, a new streptococcal species isolated from dental plaque of caries-free individuals. We have detected it in 98% of dental plaque samples from healthy individuals and, as expected, it does not produce any toxic secondary metabolite and does not survive a simulated stomach digestion, preventing potential secondary effects. Besides, this species has a double probiotic action, as it inhibits the growth of major oral pathogens through the production of bacteriocins, and also buffers acidic pH (the primary cause of dental caries) through an arginolytic pathway. We propose the use of S. dentisani as a promising probiotic against tooth decay. PMID:28344574

  11. Pseudomembranous Type of Oral Candidiasis is Associated with Decreased Salivary Flow Rate and Secretory Immunoglobulin A Levels.

    PubMed

    Mahajan, Bela; Bagul, Neeta; Desai, Rajiv; Reddy, Mamatha; Mahajan, Amit; Shete, Ashwini; Risbud, Arun; Mane, Arati

    2015-08-01

    Saliva plays an important role in maintaining microbial homeostasis in the oral cavity, while salivary gland hypofunction predisposes the oral mucosa to pathologic alteration and increases the risk for oral candidiasis. This study sought to determine the salivary flow rate (SFR) and secretory immunoglobulin A (SIgA) levels in HIV-positive and HIV-negative individuals and evaluate their relationship with the determinants of oral candidiasis. Sixty HIV-positive (30 with and 30 without oral candidiasis) and 30 healthy HIV-negative individuals were enrolled. Cotton pellet was weighed pre- and post-saliva collection for the assessment of SFR, while SIgA levels were estimated by commercial ELISA (Diametra, Italy) kit. The mean ± SD, SFR and SIgA levels in HIV-positive individuals with candidiasis, without candidiasis and HIV-negative controls were 0.396 ± 0.290, 0.546 ± 0.355 and 0.534 ± 0.214 ml/min and 115.891 ± 37.621, 136.024 ± 51.075 and 149.418 ± 31.765 µg/ml, respectively. A positive correlation between low CD4 counts (indicator of immunodeficiency) and SIgA was observed in HIV-positive individuals with candidiasis (r = 0.373, p = 0.045). We also report here for the first time the significant decrease in SFR and SIgA levels in individuals presenting with pseudomembranous type of oral candidiasis and Candida albicans infection.

  12. Anti-inflammatory and protective effects of 2-methacryloyloxyethyl phosphorylcholine polymer on oral epithelial cells.

    PubMed

    Yumoto, Hiromichi; Hirota, Katsuhiko; Hirao, Kouji; Miyazaki, Tsuyoshi; Yamamoto, Nobuyuki; Miyamoto, Koji; Murakami, Keiji; Fujiwara, Natsumi; Matsuo, Takashi; Miyake, Yoichiro

    2015-02-01

    Periodontitis is a chronic inflammatory disease initiated by a microbial biofilm formed in the periodontal pocket. Gingival epithelium plays important roles as the first physical barrier to bacterial invasion and in orchestrating the innate immune reaction via toll-like receptors (TLRs), which recognize various bacterial products, and maintaining its function. Newly developed oral care products to inhibit bacterial adherence, subsequent inflammatory reaction and protect the gingival epithelium are expected. We previously reported that 2-methacryloyloxyethyl phosphorylcholine (MPC)-polymer coating decreased bacterial adhesion to human oral keratinocytes, RT-7, and mouth-rinsing with MPC-polymer inhibited the increase of oral bacteria. In this study, regarding the possibility of MPC-polymer application for preventing the adherence of periodontal pathogen, subsequent inflammatory reaction and protection of gingival epithelium, we examined the effects of MPC-polymer on the adherence of Porphyromonas gingivalis, major periodontitis-related pathogen, and TLR2 ligand to RT-7 and subsequent interleukin (IL)-8 production. MPC-polymer treatment significantly reduced P. gingivalis adherence by 44% and TLR2-mediated IL-8 production by blocking the binding of its specific-ligand in a concentration-dependent manner. Furthermore, MPC-polymer pretreatment protected RT-7 from injury by chemical irritants, cetylpyridinium chloride. These findings suggest that MPC-polymer is potentially useful for oral care to prevent oral infection and to maintain oral epithelial function. © 2014 Wiley Periodicals, Inc.

  13. Nanotechnology in dentistry: drug delivery systems for the control of biofilm-dependent oral diseases.

    PubMed

    de Sousa, Francisco Fabio Oliveira; Ferraz, Camila; Rodrigues, Lidiany K Arla de Azevedo; Nojosa, Jacqueline de Santiago; Yamauti, Monica

    2014-01-01

    Dental disorders, such as caries, periodontal and endodontic diseases are major public health issues worldwide. In common, they are biofilm-dependent oral diseases, and the specific conditions of oral cavity may develop infectious foci that could affect other physiological systems. Efforts have been made to develop new treatment routes for the treatment of oral diseases, and therefore, for the prevention of some systemic illnesses. New drugs and materials have been challenged to prevent and treat these conditions, especially by means of bacteria elimination. "Recent progresses in understanding the etiology, epidemiology and microbiology of the microbial flora in those circumstances have given insight and motivated the innovation on new therapeutic approaches for the management of the oral diseases progression". Some of the greatest advances in the medical field have been based in nanosized systems, ranging from the drug release with designed nanoparticles to tissue scaffolds based on nanotechnology. These systems offer new possibilities for specific and efficient therapies, been assayed successfully in preventive/curative therapies to the oral cavity, opening new challenges and opportunities to overcome common diseases based on bacterial biofilm development. The aim of this review is to summarize the recent nanotechnological developments in the drug delivery field related to the prevention and treatment of the major biofilm-dependent oral diseases and to identify those systems, which may have higher potential for clinical use.

  14. Liaison between micro-organisms and oral cancer

    PubMed Central

    Srinivasprasad, Vijayan; Dineshshankar, Janardhanam; Sathiyajeeva, J.; Karthikeyan, M.; Sunitha, J.; Ragunathan, Ramachandran

    2015-01-01

    Oral cancer which is a subtype of head and neck, cancer is any neoplastic tissue growth in the oral cavity. It comprises an abnormal mass of cells that foists genetic mutation and impedes the normal cell cycle, resulting in its unrestrained growth. Various studies on the plausible link between oral microbial flora and cancer notwithstanding, our understanding of their link remains obscure and inadequate. The multitude of mechanisms by which the microflora initiate or spur Carcinogenesis are still under study and scrutiny. As is widely known, the oral cavity is an abode to a wide assortment of microbes, each present in contrasting amounts. It is observed that increased growth of the microflora is concomitant with known clinical risk factors for oral cancer. Manifold bacterial species have been found to interfere directly with eukaryotic cellular signaling, adopting a style typical of tumor promoters. Bacteria are also known to impede apoptosis thereby potentially promoting carcinogenesis. The viral role in carcinogenesis (by annulling of p53 tumor suppressor gene and other cellular proteins with subsequent alteration in host genome function) is well documented. Furthermore, the changes occurring in the commensal microflora in accompaniment with cancer development could possibly be used as a diagnostic indicator for early cancer detection. The intention of this review is to obtain a better understanding of the “role” that micro-organisms play in oral cancer etiology. PMID:26538877

  15. Oral and intraperitoneal administration of phosphorothioate oligodeoxynucleotides leads to control of Cryptosporidium parvum infection in neonatal mice.

    PubMed

    Barrier, Mathieu; Lacroix-Lamandé, Sonia; Mancassola, Roselyne; Auray, Gaël; Bernardet, Nelly; Chaussé, Anne-Marie; Uematsu, Satoshi; Akira, Shizuo; Laurent, Fabrice

    2006-05-15

    Neonates are particularly vulnerable to infections, in part because of the incomplete development of their immune system. Recent advances in immunostimulatory treatments based on conserved microbial components led us to assess the potential of oligodeoxynucleotides (ODNs) for decreasing the sensitivity of neonates to Cryptosporidium parvum infection. Neonate mice were treated orally or intraperitoneally (ip) with CpG ODNs or non-CpG ODNs 24 h before C. parvum infection, and parasite load and cytokine up-regulation were evaluated. CpG ODN 1668 and non-CpG ODN 1668 administered orally, as well as CpG ODN 1668 administered ip, induced an 80%-95% decrease in intestinal parasite load 6 days after infection. Intraperitoneal and oral pretreatment with CpG ODN 1668 led to a strong initial up-regulation of cytokines and CD69 messenger RNA in the intestine and a decrease in parasite load by a Toll-like receptor 9 (TLR9)-dependent mechanism. By contrast, oral administration of non-CpG ODN 1668 decreased parasite load by a TLR9-independent mechanism. The control of neonatal C. parvum infection by ip or oral administration of ODNs is feasible by 2 different mechanisms: (1) the well-known interaction involving CpG/TLR9, leading to the production of cytokines and lymphocyte activation, and (2) a new unknown mechanism that is independent of TLR9 and effective orally.

  16. The effects of family, dentition, and dental caries on the salivary microbiome.

    PubMed

    Foxman, Betsy; Luo, Ting; Srinivasan, Usha; Ramadugu, Kirtana; Wen, Ai; Goldberg, Deborah; Shedden, Kerby; Crout, Richard; McNeil, Daniel W; Weyant, Robert; Marazita, Mary L

    2016-05-01

    Family members share genes, environment, and microbial communities. If there is a strong effect of family on the salivary microbiota, controlling for family will enhance identification of microbial communities associated with cariogenesis. The present study was designed to assess the similarity of the salivary microbiome among families and the association between the salivary microbiome and dental decay taking age into account. We selected families (n = 49) participating in the cohort study of oral health conducted by the Center for Oral Health Research in Appalachia. All families where at least two children and at least one parent gave a saliva sample (n = 173) were included. Saliva samples were collected at least 1 hour after eating or drinking. After DNA extraction, the V6 region of the 16s rRNA gene was sequenced. Paired ends were joined using fast length adjustment of short reads, sequences were demultiplexed and filtered using Quantitative Insights Into Microbial Ecology 1.9.0, and taxonomy was assigned using the Ribosomal Database Project (RDP; http://rdp.cme.msu.edu/) classifier and sequences aligned with the CORE database using PyNAST. The salivary microbiome changed with age and was more similar within families than between families. There was no difference in the diversity of the salivary microbiome by dental decay. After taking into account age and family, signals of dental decay were weak in the saliva, whether examined at the phyla, genus, or operational taxonomic level. The salivary microbiome does not appear to be a good indicator of dental caries. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The antimicrobial efficacy of commercial dentifrices.

    PubMed

    Haraszthy, Violet I; Zambon, Joseph J; Sreenivasan, Prem K

    2010-01-01

    This investigation compared the effects of a fluoride dentifrice and toothpastes formulated with antimicrobial ingredients (stannous fluoride and triclosan/copolymer) on oral micro-organisms, including those found in samples taken from the human oral cavity. Microbiological techniques determined the minimum inhibitory concentrations (MICs) of each dentifrice necessary to inhibit the growth of bacterial strains from the healthy oral cavity, as well as those found in dental caries, periodontal disease, and halitosis. Ex vivo studies utilized oral rinse samples and supragingival plaque from adults to determine antimicrobial effects on the entire microbial diversity of these samples, including biofilm-derived micro-organisms. The triclosan/copolymer dentifrice demonstrated the lowest MICs and significantly inhibited Gram-positive and Gram-negative bacteria (including the periodontal pathogens Aggregatibacter actinomycetemcomitans, Eikenella corrodens, and Fusobacterium nucleatum). In the ex vivo tests, the triclosan/copolymer dentifrice demonstrated substantial inhibition in the oral rinse samples over each treatment period (p > 0.0005) as compared to either the fluoride or stannous fluoride dentifrices. Similarly, the triclosan/copolymer dentifrice demonstrated the highest inhibition of micro-organisms in the supragingival plaque biofilm (p < 0.0005). No significant differences were observed between the fluoride and stannous fluoride dentifrices (p > 0.5).

  18. Oral microbiota in youth with perinatally acquired HIV infection.

    PubMed

    Starr, Jacqueline R; Huang, Yanmei; Lee, Kyu Ha; Murphy, C M; Moscicki, Anna-Barbara; Shiboski, Caroline H; Ryder, Mark I; Yao, Tzy-Jyun; Faller, Lina L; Van Dyke, Russell B; Paster, Bruce J

    2018-05-31

    Microbially mediated oral diseases can signal underlying HIV/AIDS progression in HIV-infected adults. The role of the oral microbiota in HIV-infected youth is not known. The Adolescent Master Protocol of the Pediatric HIV/AIDS Cohort Study is a longitudinal study of perinatally HIV-infected (PHIV) and HIV-exposed, uninfected (PHEU) youth. We compared oral microbiome levels and associations with caries or periodontitis in 154 PHIV and 100 PHEU youth. Species richness and alpha diversity differed little between PHIV and PHEU youth. Group differences in average counts met the significance threshold for six taxa; two Corynebacterium species were lower in PHIV and met thresholds for noteworthiness. Several known periodontitis-associated organisms (Prevotella nigrescens, Tannerella forsythia, Aggregatibacter actinomycetemcomitans, and Filifactor alocis) exhibited expected associations with periodontitis in PHEU youth, associations not observed in PHIV youth. In both groups, odds of caries increased with counts of taxa in four genera, Streptococcus, Scardovia, Bifidobacterium, and Lactobacillus. The microbiomes of PHIV and PHEU youth were similar, although PHIV youth seemed to have fewer "health"-associated taxa such as Corynebacterium species. These results are consistent with the hypothesis that HIV infection, or its treatment, may contribute to oral dysbiosis.

  19. Contemporary perspective on plaque control.

    PubMed

    Marsh, P D

    2012-06-22

    The aim of this review article is to provide a scientific platform that will enable the dental team to develop a rational approach to plaque control based on the latest knowledge of the role of the oral microflora in health and disease. The resident oral microflora is natural and forms spatially-organised, interactive, multi-species biofilms on mucosal and dental surfaces in the mouth. These resident oral microbial communities play a key function in the normal development of the physiology of the host and are important in preventing colonisation by exogenous and often undesirable microbes. A dynamic balance exists between the resident microflora and the host in health, and disease results from a breakdown of this delicate relationship. Patients should be taught effective plaque control techniques that maintain dental biofilms at levels compatible with oral health so as to retain the beneficial properties of the resident microflora while reducing the risk of dental disease from excessive plaque accumulation. Antimicrobial and antiplaque agents in oral care products can augment mechanical plaque control by several direct and indirect mechanisms that not only involve reducing or removing dental biofilms but also include inhibiting bacterial metabolism when the agents are still present at sub-lethal concentrations.

  20. A Reproducible Oral Microcosm Biofilm Model for Testing Dental Materials

    PubMed Central

    Rudney, J.D.; Chen, R.; Lenton, P.; Li, J.; Li, Y.; Jones, R.S.; Reilly, C.; Fok, A.S.; Aparicio, C.

    2012-01-01

    Aims Most studies of biofilm effects on dental materials use single-species biofilms, or consortia. Microcosm biofilms grown directly from saliva or plaque are much more diverse, but difficult to characterize. We used the Human Oral Microbial Identification Microarray (HOMIM) to validate a reproducible oral microcosm model. Methods and Results Saliva and dental plaque were collected from adults and children. Hydroxyapatite and dental composite disks were inoculated with either saliva or plaque, and microcosm biofilms were grown in a CDC biofilm reactor. In later experiments, the reactor was pulsed with sucrose. DNA from inoculums and microcosms were analyzed by HOMIM for 272 species. Microcosms included about 60% of species from the original inoculum. Biofilms grown on hydroxyapatite and composites were extremely similar. Sucrose-pulsing decreased diversity and pH, but increased the abundance of Streptococcus and Veilonella. Biofilms from the same donor, grown at different times, clustered together. Conclusions This model produced reproducible microcosm biofilms that were representative of the oral microbiota. Sucrose induced changes associated with dental caries. Significance and Impact of the Study This is the first use of HOMIM to validate an oral microcosm model that can be used to study the effects of complex biofilms on dental materials. PMID:22925110

  1. The Negative Effects of Volatile Sulphur Compounds.

    PubMed

    Milella, Lisa

    2015-01-01

    Oral malodor has been studied extensively in humans but not necessarily to the same degree in our veterinary patients where malodor constitutes a significant problem. Breath malodor may originate from the mouth, or from an extra oral source, originating from other organ systems such as gastrointestinal, respiratory, or even systemic disease. Oral malodor is a result of microbial metabolism of exogenous and endogenous proteinaceous substrates leading to the production of compounds such as indole, skatole, tyramine, cadaverine, puterescine, mercaptans, and sulphides. Volatile sulphur compounds have been shown to be the main cause of oral malodor. Although most clients perceive oral malodor to be primarily a cosmetic problem, there is an increasing volume of evidence in human dental literature demonstrating that volatile sulphur compounds produced by bacteria, even at low concentrations, are toxic to tissues and play a role in the pathogenesis of periodontitis. This article reviews the current available literature in human dentistry looking at these negative effects. No veterinary studies have been conducted looking at the negative effects of volatile sulphur compounds specifically, but as this article highlights, we should be aware of the potential negative effects of volatile sulphur compounds and consider this an area of future research.

  2. Oral microbiota in patients with atherosclerosis.

    PubMed

    Fåk, Frida; Tremaroli, Valentina; Bergström, Göran; Bäckhed, Fredrik

    2015-12-01

    Recent evidence suggests that the microbiota may be considered as an environmental factor that contributes to the development of atherosclerosis. Periodontal disease has been associated with cardio- and cerebrovascular events, and inflammation in the periodontium is suggested to increase the systemic inflammatory level of the host, which may in turn influence plaque composition and rupture. We previously showed that bacteria from the oral cavity and the gut could be found in atherosclerotic plaques. To elucidate whether the oral microbiota composition differed between patients with asymptomatic and symptomatic atherosclerosis we performed pyrosequencing of the oral microbiota of 92 individuals including patients with asymptomatic and symptomatic atherosclerosis and control individuals without carotid plaques or previous stroke or myocardial infarction. The overall microbial structure was similar in controls and atherosclerosis patients, but patients with symptomatic atherosclerosis had higher relative abundance of Anaeroglobus (mean 0.040% (SD 0.049)) than the control group (0.010% (SD 0.028)) (P = 0.03). Using linear regression analysis, we found that Parvimonas associated positively with uCRP and Capnocytophaga, Catonella and Lactobacillus associated with blood lipid markers. In conclusion, abundance of Anaeroglobus in the oral cavity could be associated with symptomatic atherosclerosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information

    PubMed Central

    Chen, Tsute; Yu, Wen-Han; Izard, Jacques; Baranova, Oxana V.; Lakshmanan, Abirami; Dewhirst, Floyd E.

    2010-01-01

    The human oral microbiome is the most studied human microflora, but 53% of the species have not yet been validly named and 35% remain uncultivated. The uncultivated taxa are known primarily from 16S rRNA sequence information. Sequence information tied solely to obscure isolate or clone numbers, and usually lacking accurate phylogenetic placement, is a major impediment to working with human oral microbiome data. The goal of creating the Human Oral Microbiome Database (HOMD) is to provide the scientific community with a body site-specific comprehensive database for the more than 600 prokaryote species that are present in the human oral cavity based on a curated 16S rRNA gene-based provisional naming scheme. Currently, two primary types of information are provided in HOMD—taxonomic and genomic. Named oral species and taxa identified from 16S rRNA gene sequence analysis of oral isolates and cloning studies were placed into defined 16S rRNA phylotypes and each given unique Human Oral Taxon (HOT) number. The HOT interlinks phenotypic, phylogenetic, genomic, clinical and bibliographic information for each taxon. A BLAST search tool is provided to match user 16S rRNA gene sequences to a curated, full length, 16S rRNA gene reference data set. For genomic analysis, HOMD provides comprehensive set of analysis tools and maintains frequently updated annotations for all the human oral microbial genomes that have been sequenced and publicly released. Oral bacterial genome sequences, determined as part of the Human Microbiome Project, are being added to the HOMD as they become available. We provide HOMD as a conceptual model for the presentation of microbiome data for other human body sites. Database URL: http://www.homd.org PMID:20624719

  4. The oral microbiota in patients with pancreatic cancer, patients with IPMNs, and controls: a pilot study.

    PubMed

    Olson, Sara H; Satagopan, Jaya; Xu, Youming; Ling, Lilan; Leong, Siok; Orlow, Irene; Saldia, Amethyst; Li, Peter; Nunes, Pamela; Madonia, Vincent; Allen, Peter J; O'Reilly, Eileen; Pamer, Eric; Kurtz, Robert C

    2017-09-01

    Poor oral health appears to be a risk factor for pancreatic cancer, possibly implicating the oral microbiota. In this pilot study, we evaluated the characteristics of the oral microbiota in patients with pancreatic ductal adenocarcinoma (PDAC), intraductal papillary mucinous neoplasms (IPMN), and healthy controls. Forty newly diagnosed PDAC patients, 39 IPMN patients, and 58 controls, excluding current smokers and users of antibiotics, provided saliva samples. Common oral bacterial species were comprehensively surveyed by sequencing of the 16S rRNA microbial genes. We obtained measures of diversity and the mean relative proportions of individual taxa. We explored the degree to which these measures differed according to respondent characteristics based on individual interviews. PDAC cases did not differ in diversity measures from either controls or IPMN cases. PDAC cases had higher mean relative proportions of Firmicutes and related taxa, while controls had higher mean relative proportions of Proteobacteria and related taxa. Results were generally similar when comparing PDAC to IPMN cases. Among IPMNs and controls combined, younger individuals had higher levels of several taxa within the Proteobacteria. The only other variable consistently related to mean relative proportions was mouthwash use, with taxa within Firmicutes more common among users. While there were no differences in diversity of the oral microbiota among these groups, there were differences in the mean relative proportions of some taxa. Characteristics of the oral microbiota are not associated with most measures of oral health.

  5. SFA 2.0- Metabolic Potential

    ScienceCinema

    Banfield, Jill; Beller, Harry

    2018-05-23

    Berkeley Lab Earth Scientists Jill Banfield and Harry Beller explain the Sustainable Systems SFA 2.0 project's research on metabolic potential—or how metabolic lifestyles of microbial communities modulate in response to as well as influence environmental change.

  6. The HMI™ module: a new tool to study the Host-Microbiota Interaction in the human gastrointestinal tract in vitro.

    PubMed

    Marzorati, Massimo; Vanhoecke, Barbara; De Ryck, Tine; Sadaghian Sadabad, Mehdi; Pinheiro, Iris; Possemiers, Sam; Van den Abbeele, Pieter; Derycke, Lara; Bracke, Marc; Pieters, Jan; Hennebel, Tom; Harmsen, Hermie J; Verstraete, Willy; Van de Wiele, Tom

    2014-05-22

    Recent scientific developments have shed more light on the importance of the host-microbe interaction, particularly in the gut. However, the mechanistic study of the host-microbe interplay is complicated by the intrinsic limitations in reaching the different areas of the gastrointestinal tract (GIT) in vivo. In this paper, we present the technical validation of a new device--the Host-Microbiota Interaction (HMI) module--and the evidence that it can be used in combination with a gut dynamic simulator to evaluate the effect of a specific treatment at the level of the luminal microbial community and of the host surface colonization and signaling. The HMI module recreates conditions that are physiologically relevant for the GIT: i) a mucosal area to which bacteria can adhere under relevant shear stress (3 dynes cm(-2)); ii) the bilateral transport of low molecular weight metabolites (4 to 150 kDa) with permeation coefficients ranging from 2.4 × 10(-6) to 7.1 × 10(-9) cm sec(-1); and iii) microaerophilic conditions at the bottom of the growing biofilm (PmO2 = 2.5 × 10(-4) cm sec(-1)). In a long-term study, the host's cells in the HMI module were still viable after a 48-hour exposure to a complex microbial community. The dominant mucus-associated microbiota differed from the luminal one and its composition was influenced by the treatment with a dried product derived from yeast fermentation. The latter--with known anti-inflammatory properties--induced a decrease of pro-inflammatory IL-8 production between 24 and 48 h. The study of the in vivo functionality of adhering bacterial communities in the human GIT and of the localized effect on the host is frequently hindered by the complexity of reaching particular areas of the GIT. The HMI module offers the possibility of co-culturing a gut representative microbial community with enterocyte-like cells up to 48 h and may therefore contribute to the mechanistic understanding of host-microbiome interactions.

  7. The HMI™ module: a new tool to study the Host-Microbiota Interaction in the human gastrointestinal tract in vitro

    PubMed Central

    2014-01-01

    Background Recent scientific developments have shed more light on the importance of the host-microbe interaction, particularly in the gut. However, the mechanistic study of the host-microbe interplay is complicated by the intrinsic limitations in reaching the different areas of the gastrointestinal tract (GIT) in vivo. In this paper, we present the technical validation of a new device - the Host-Microbiota Interaction (HMI) module - and the evidence that it can be used in combination with a gut dynamic simulator to evaluate the effect of a specific treatment at the level of the luminal microbial community and of the host surface colonization and signaling. Results The HMI module recreates conditions that are physiologically relevant for the GIT: i) a mucosal area to which bacteria can adhere under relevant shear stress (3 dynes cm−2); ii) the bilateral transport of low molecular weight metabolites (4 to 150 kDa) with permeation coefficients ranging from 2.4 × 10−6 to 7.1 × 10−9 cm sec−1; and iii) microaerophilic conditions at the bottom of the growing biofilm (PmO2 = 2.5 × 10−4 cm sec−1). In a long-term study, the host’s cells in the HMI module were still viable after a 48-hour exposure to a complex microbial community. The dominant mucus-associated microbiota differed from the luminal one and its composition was influenced by the treatment with a dried product derived from yeast fermentation. The latter - with known anti-inflammatory properties - induced a decrease of pro-inflammatory IL-8 production between 24 and 48 h. Conclusions The study of the in vivo functionality of adhering bacterial communities in the human GIT and of the localized effect on the host is frequently hindered by the complexity of reaching particular areas of the GIT. The HMI module offers the possibility of co-culturing a gut representative microbial community with enterocyte-like cells up to 48 h and may therefore contribute to the mechanistic understanding of host-microbiome interactions. PMID:24884540

  8. Probiotics, antibiotics and the immune responses to vaccines

    PubMed Central

    Praharaj, Ira; John, Sushil M.; Bandyopadhyay, Rini; Kang, Gagandeep

    2015-01-01

    Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. PMID:25964456

  9. Diflerent formulations of microbial respiratory losses and microbial efficiency have pronounced short and long term consequences for soil C dynamics and soil respiration

    NASA Astrophysics Data System (ADS)

    Ballantyne, F.; Billings, S. A.

    2016-12-01

    Much of the variability in projections of Earth's future C balance derives from uncertainty in how to formulate and parameterize models of biologically mediated transformations of soil organic C (SOC). Over the past decade, models of belowground decomposition have incorporated more realism, namely microbial biomass and exoenzyme pools, but it remains unclear whether microbially mediated decomposition is accurately formulated. Different models and different assumptions about how microbial efficiency, defined in terms of respiratory losses, varies with temperature exert great influence on SOC and CO2 flux projections for the future. Here, we incorporate a physiologically realistic formulation of CO2 loss from microbes, distinct from extant formulations and logically consistent with microbial C uptake and losses, into belowground dynamics and contrast its projections for SOC pools and CO2 flux from soils to those from the phenomenological formulations of efficiency in current models. We quantitatively describe how short and long term SOC dynamics are influenced by different mathematical formulations of efficiency, and that our lack of knowledge regarding loss rates from SOC and microbial biomass pools, specific respiration rate and maximum substrate uptake rate severely constrains our ability to confidently parameterize microbial SOC modules in Earth System Models. Both steady-state SOC and microbial biomass C pools, as well as transient responses to perturbations, can differ substantially depending on how microbial efficiency is derived. In particular, the discrepancy between SOC stocks for different formulations of efficiency varies from negligible to more than two orders of magnitude, depending on the relative values of respiratory versus non-respiratory losses from microbial biomass. Mass-specific respiration and proportional loss rates from soil microbes emerge as key determinants of the consequences of different formulations of efficiency for C flux in soils.

  10. Protective and destructive immunity in the periodontium: Part 1--innate and humoral immunity and the periodontium.

    PubMed

    Teng, Y-T A

    2006-03-01

    Based on the results of recent research in the field, the present paper will discuss the protective and destructive aspects of the innate vs. adaptive (humoral and cell-mediated) immunity associated with the bacterial virulent factors or antigenic determinants during periodontal pathogenesis. Attention will be focused on: (i) the Toll-like receptors (TLR), the innate immune repertoire for recognizing the unique molecular patterns of microbial components that trigger innate and adaptive immunity for effective host defenses, in some general non-oral vs. periodontal microbial infections; (ii) T-cell-mediated immunity, Th-cytokines, and osteoclastogenesis in periodontal disease progression; and (iii) some molecular techniques developed and used to identify critical microbial virulence factors or antigens associated with host immunity (using Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis as the model species). Therefore, further understanding of the molecular interactions and mechanisms associated with the host's innate and adaptive immune responses will facilitate the development of new and innovative therapeutics for future periodontal treatments.

  11. Bacteria and Candida yeasts in inflammations of the oral mucosa in children with secondary immunodeficiency.

    PubMed

    Olczak-Kowalczyk, Dorota; Daszkiewicz, Marta; Krasuska-Sławińska; Dembowska-Bagińska, Bozena; Gozdowski, Dariusz; Daszkiewicz, Paweł; Fronc, Beata; Semczuk, Katarzyna

    2012-08-01

    Oral microbial flora and a damaged oral mucosa may increase the risk of bacteriemia, fungemia and complications in immunocompromised patients. Assessment of presence: bacteria and Candida spp. in different oral lesions, and the incidence of bacteremia in the case of a damaged mucosa in transplant recipients and patients receiving anti-tumour chemotherapy. Forty-five patients – 18 months to 18 years of life, were included (20 – organ recipients, 14– anti-tumour chemotherapy, 11 – control group). Clinical, oral mucosa examination focused on the type, severity and site of lesions, and microbiology assessed the presence of bacteria and fungi in the material from lesions. Blood cultures were performed in ten immunocompromised patients with manifestations of systemic infection. The control material consisted of blood cultures made prior to the onset of oral lesions and after 4–6 weeks following their remission in a diagnosed bacteremia. The statistical analysis was performed. In the subjects with secondary immunodeficiency, among other coagulase-negative Staphylococcus (CoNS), Candidia spp. were more frequent. In cancer patients, mucositis was associated with Candida spp., Streptococcus spp. Organ recipients with stomatitis exhibited the presence of CoNS, Streptococcus viridians and other. Oral lesions in the control group contained Haemophilus parainfluenzae, Neisseria spp. and Staphylococcus aureus. In 30% of immunocompromised patients, oral lesions were accompanied by bacteremia. A correlation has been found between oral lesions and the presence of S. aureus in patients without secondary immunodeficiency, and of CoNS, Enterococcus spp., Candida spp. in immunocompromised patients.

  12. Antimicrobial Decapeptide KSL-W Attenuates Candida albicans Virulence by Modulating Its Effects on Toll-Like Receptor, Human Beta-Defensin, and Cytokine Expression by Engineered human Oral Mucosa

    DTIC Science & Technology

    2011-02-02

    against phytopathogenic fungi that cause postharvest decay in fruits . Mol Plant Microbe Interact 2000;13:837–46. [28] Montesinos E, Antimicrobial peptides...inactivated KSL-W did not affect epithelial cell proliferation (Fig. 2). 3.3. KSL-W pre-treatment reduced Candida growth in the infected oral mucosa tissue...against fungi , such as C. albi- cans, remains to be determined. Oral candidiasis is associatedwith gingival tissuewhere epithe- lial cells are the primary

  13. Differential prooxidative effects of the green tea polyphenol, (-)-epigallocatechin-3-gallate, in normal and oral cancer cells are related to differences in sirtuin 3 signaling.

    PubMed

    Tao, Ling; Park, Jong-Yung; Lambert, Joshua D

    2015-02-01

    We have previously reported that the green tea catechin, (-)-epigallocatechin-3-gallate (EGCG), can induce oxidative stress in oral cancer cells but exerts antioxidant effects in normal cells. Here, we report that these differential prooxidative effects are associated with sirtuin 3 (SIRT3), an important mitochondrial redox modulator. EGCG rapidly induced mitochondria-localized reactive oxygen species in human oral squamous carcinoma cells (SCC-25, SCC-9) and premalignant leukoplakia cells (MSK-Leuk1), but not in normal human gingival fibroblast cells (HGF-1). EGCG suppressed SIRT3 mRNA and protein expression, as well as, SIRT3 activity in SCC-25 cells, whereas it increased SIRT3 activity in HGF-1 cells. EGCG selectively decreased the nuclear localization of the estrogen-related receptor α (ERRα), the transcription factor regulating SIRT3 expression, in SCC-25 cells. This indicates that EGCG may regulate SIRT3 transcription in oral cancer cells via ERRα. EGCG also differentially modulated the mRNA expressions of SIRT3-associated downstream targets including glutathione peroxidase 1 and superoxide dismutase 2 in normal and oral cancer cells. SIRT3 represents a novel potential target through which EGCG exerts differential prooxidant effects in cancer and normal cells. Our results provide new biomarkers to be further explored in animal studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Antioxidant, Immunomodulating, and Microbial-Modulating Activities of the Sustainable and Ecofriendly Spirulina

    PubMed Central

    Finamore, Alberto; Bensehaila, Sarra

    2017-01-01

    The highly nutritional and ecofriendly Spirulina (Arthrospira platensis) has hypolipidemic, hypoglycemic, and antihypertensive properties. Spirulina contains functional compounds, such as phenolics, phycocyanins, and polysaccharides, with antioxidant, anti-inflammatory, and immunostimulating effects. Studies conducted on Spirulina suggest that it is safe in healthy subjects, but attitude to eating probably affects the acceptability of Spirulina containing foods. Although the antioxidant effect of Spirulina is confirmed by the intervention studies, the concerted modulation of antioxidant and inflammatory responses, suggested by in vitro and animal studies, requires more confirmation in humans. Spirulina supplements seem to affect more effectively the innate immunity, promoting the activity of natural killer cells. The effects on cytokines and on lymphocytes' proliferation depend on age, gender, and body weight differences. In this context, ageing and obesity are both associated with chronic low grade inflammation, immune impairment, and intestinal dysbiosis. Microbial-modulating activities have been reported in vitro, suggesting that the association of Spirulina and probiotics could represent a new strategy to improve the growth of beneficial intestinal microbiota. Although Spirulina might represent a functional food with potential beneficial effects on human health, the human interventions used only supplements. Therefore, the effect of food containing Spirulina should be evaluated in the future. PMID:28182098

  15. The Modulation of Adaptive Immune Responses by Bacterial Zwitterionic Polysaccharides

    PubMed Central

    Stephen, Tom Li; Groneck, Laura; Kalka-Moll, Wiltrud Maria

    2010-01-01

    The detection of pathogen-derived molecules as foreign particles by adaptive immune cells triggers T and B lymphocytes to mount protective cellular and humoral responses, respectively. Recent immunological advances elucidated that proteins and some lipids are the principle biological molecules that induce protective T cell responses during microbial infections. Polysaccharides are important components of microbial pathogens and many vaccines. However, research concerning the activation of the adaptive immune system by polysaccharides gained interest only recently. Traditionally, polysaccharides were considered to be T cell-independent antigens that did not directly activate T cells or induce protective immune responses. Here, we review several recent advances in “carbohydrate immunobiology”. A group of bacterial polysaccharides that are known as “zwitterionic polysaccharides (ZPSs)” were recently identified as potent immune modulators. The immunomodulatory effect of ZPSs required antigen processing and presentation by antigen presenting cells, the activation of CD4 T cells and subpopulations of CD8 T cells and the modulation of host cytokine responses. In this review, we also discuss the potential use of these unique immunomodulatory ZPSs in new vaccination strategies against chronic inflammatory conditions, autoimmunity, infectious diseases, allergies and asthmatic conditions. PMID:21234388

  16. Plant Growth Module (PGM) conceptual design

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Rasmussen, Daryl

    1987-01-01

    The Plant Growth Module for the Controlled Ecological Life Support System (CELSS), designed to answer basic science questions related to growing plants in closed systems, is described functionally with artist's conception drawings. Subsystems are also described, including enclosure and access; data acquisition and control; gas monitor and control; heating, ventilation, and air conditioning; air delivery; nutrient monitor and control; microbial monitoring and control; plant support and nutrient delivery; illumination; and internal operations. The hardware development plan is outlined.

  17. Plasticity of Myeloid Cells during Oral Barrier Wound Healing and the Development of Bisphosphonate-related Osteonecrosis of the Jaw.

    PubMed

    Sun, Yujie; Kaur, Kawaljit; Kanayama, Keiichi; Morinaga, Kenzo; Park, Sil; Hokugo, Akishige; Kozlowska, Anna; McBride, William H; Li, Jun; Jewett, Anahid; Nishimura, Ichiro

    2016-09-23

    Injury to the barrier tissue initiates a rapid distribution of myeloid immune cells from bone marrow, which guide sound wound healing. Bisphosphonates, a widely used anti-bone resorptive drug with minimal systemic side effects, have been linked to an abnormal wound healing in the oral barrier tissue leading to, in some cases, osteonecrosis of the jaw (ONJ). Here we report that the development of ONJ may involve abnormal phenotypic plasticity of Ly6G+/Gr1+ myeloid cells in the oral barrier tissue undergoing tooth extraction wound healing. A bolus intravenous zoledronate (ZOL) injection to female C57Bl/6 mice followed by maxillary first molar extraction resulted in the development of ONJ-like lesion during the second week of wound healing. The multiplex assay of dissociated oral barrier cells exhibited the secretion of cytokines and chemokines, which was significantly modulated in ZOL mice. Tooth extraction-induced distribution of Ly6G+/Gr1+ cells in the oral barrier tissue increased in ZOL mice at week 2. ONJ-like lesion in ZOL mice contained Ly6G+/Gr1+ cells with abnormal size and morphology as well as different flow cytometric staining intensity. When anti-Ly6G (Gr1) antibody was intraperitoneally injected for 5 days during the second week of tooth extraction, CD11b+GR1(hi) cells in bone marrow and Ly6G+ cells in the oral barrier tissue were depleted, and the development of ONJ-like lesion was significantly attenuated. This study suggests that local modulation of myeloid cell plasticity in the oral barrier tissue may provide the basis for pathogenesis and thus therapeutic as well as preventive strategy of ONJ. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Dental plaque - associated infections and antibacterial oral hygiene products.

    PubMed

    Verran, J

    1991-02-01

    Synopsis Dental plaque accumulates on hard non-shedding surfaces such as teeth, dentures and orthodontic appliances. This accumulation is facilitated by the absence of adequate oral hygiene procedures. The term 'plaque' describes a mass of microorganisms embedded in an organic matrix of host and microbial origin. In addition to the aesthetic desirability of 'clean teeth, healthy gums and fresh breath' associated with the absence of plaque, obvious consequences of the presence of plaque include tooth decay (dental caries), gingivitis and periodontal (gum) disease and denture associated problems. Thus the prevention of plaque formation, the reduction of plaque accumulation and the effective removal of plaque are considerations of the cosmetic and health professions alike. There are many oral hygiene products available to the general public - toothpastes, mouthwashes, denture cleaners, and, more recently, chewing gums and novel mouthwashes. Several of these products have antimicrobial components. This paper reviews the microbiology of plaque and plaque associated problems, and surveys the type of products currently available for maintenance of good oral hygiene. Potential areas for future development are also explored.

  19. Oral Microbiota and Risk for Esophageal Squamous Cell Carcinoma in a High-Risk Area of China.

    PubMed

    Chen, Xingdong; Winckler, Björn; Lu, Ming; Cheng, Hongwei; Yuan, Ziyu; Yang, Yajun; Jin, Li; Ye, Weimin

    2015-01-01

    Poor oral health has been linked with an increased risk of esophageal squamous cell carcinoma (ESCC). We investigated whether alteration of oral microbiota is associated with ESCC risk. Fasting saliva samples were collected from 87 incident and histopathologicallly diagnosed ESCC cases, 63 subjects with dysplasia and 85 healthy controls. All subjects were also interviewed with a questionnaire. V3-V4 region of 16S rRNA was amplified and sequenced by 454-pyrosequencing platform. Carriage of each genus was compared by means of multivariate-adjusted odds ratios derived from logistic regression model. Relative abundance was compared using Metastats method. Beta diversity was estimated using Unifrac and weighted Unifrac distances. Principal coordinate analysis (PCoA) was applied to ordinate dissimilarity matrices. Multinomial logistic regression was used to compare the coordinates between different groups. ESCC subjects had an overall decreased microbial diversity compared to control and dysplasia subjects (P<0.001). Decreased carriage of genera Lautropia, Bulleidia, Catonella, Corynebacterium, Moryella, Peptococcus and Cardiobacterium were found in ESCC subjects compared to non-ESCC subjects. Multinomial logistic regression analyses on PCoA coordinates also revealed that ESCC subjects had significantly different levels for several coordinates compared to non-ESCC subjects. In conclusion, we observed a correlation between altered salivary bacterial microbiota and ESCC risk. The results of our study on the saliva microbiome are of particular interest as it reflects the shift in microbial communities. Further studies are warranted to verify this finding, and if being verified, to explore the underlying mechanisms.

  20. Insights of the dental calculi microbiome of pre-Columbian inhabitants from Puerto Rico

    PubMed Central

    Narganes-Storde, Yvonne; Toranzos, Gary A.; Cano, Raul J.

    2017-01-01

    Background The study of ancient microorganisms in mineralized dental plaque or calculi is providing insights into microbial evolution, as well as lifestyles and disease states of extinct cultures; yet, little is still known about the oral microbial community structure and function of pre-Columbian Caribbean cultures. In the present study, we investigated the dental calculi microbiome and predicted function of one of these cultures, known as the Saladoid. The Saladoids were horticulturalists that emphasized root-crop production. Fruits, as well as small marine and terrestrial animals were also part of the Saladoid diet. Methods Dental calculi samples were recovered from the archaeological site of Sorcé, in the municipal island of Vieques, Puerto Rico, characterized using 16S rRNA gene high-throughput sequencing, and compared to the microbiome of previously characterized coprolites of the same culture, as well modern plaque, saliva and stool microbiomes available from the Human Microbiome Project. Results Actinobacteria, Proteobacteria and Firmicutes comprised the majority of the Saladoid dental calculi microbiome. The Saladoid dental calculi microbiome was distinct when compared to those of modern saliva and dental plaque, but showed the presence of common inhabitants of modern oral cavities including Streptococcus sp., Veillonella dispar and Rothia mucilaginosa. Cell motility, signal transduction and biosynthesis of other secondary metabolites may be unique features of the Saladoid microbiome. Discussion Results suggest that the Saladoid dental calculi microbiome structure and function may possibly reflect a horticulturalist lifestyle and distinct dietary habits. Results also open the opportunity to further elucidate oral disease states in extinct Caribbean cultures and extinct indigenous cultures with similar lifestyles. PMID:28480145

  1. Insights of the dental calculi microbiome of pre-Columbian inhabitants from Puerto Rico.

    PubMed

    Santiago-Rodriguez, Tasha M; Narganes-Storde, Yvonne; Chanlatte-Baik, Luis; Toranzos, Gary A; Cano, Raul J

    2017-01-01

    The study of ancient microorganisms in mineralized dental plaque or calculi is providing insights into microbial evolution, as well as lifestyles and disease states of extinct cultures; yet, little is still known about the oral microbial community structure and function of pre-Columbian Caribbean cultures. In the present study, we investigated the dental calculi microbiome and predicted function of one of these cultures, known as the Saladoid. The Saladoids were horticulturalists that emphasized root-crop production. Fruits, as well as small marine and terrestrial animals were also part of the Saladoid diet. Dental calculi samples were recovered from the archaeological site of Sorcé, in the municipal island of Vieques, Puerto Rico, characterized using 16S rRNA gene high-throughput sequencing, and compared to the microbiome of previously characterized coprolites of the same culture, as well modern plaque, saliva and stool microbiomes available from the Human Microbiome Project. Actinobacteria, Proteobacteria and Firmicutes comprised the majority of the Saladoid dental calculi microbiome. The Saladoid dental calculi microbiome was distinct when compared to those of modern saliva and dental plaque, but showed the presence of common inhabitants of modern oral cavities including Streptococcus sp., Veillonella dispar and Rothia mucilaginosa . Cell motility, signal transduction and biosynthesis of other secondary metabolites may be unique features of the Saladoid microbiome. Results suggest that the Saladoid dental calculi microbiome structure and function may possibly reflect a horticulturalist lifestyle and distinct dietary habits. Results also open the opportunity to further elucidate oral disease states in extinct Caribbean cultures and extinct indigenous cultures with similar lifestyles.

  2. Effect of Periodontal Pathogens on the Metatranscriptome of a Healthy Multispecies Biofilm Model

    PubMed Central

    Duran-Pinedo, Ana

    2012-01-01

    Oral bacterial biofilms are highly complex microbial communities with up to 700 different bacterial taxa. We report here the use of metatranscriptomic analysis to study patterns of community gene expression in a multispecies biofilm model composed of species found in healthy oral biofilms (Actinomyces naeslundii, Lactobacillus casei, Streptococcus mitis, Veillonella parvula, and Fusobacterium nucleatum) and the same biofilm plus the periodontopathogens Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. The presence of the periodontopathogens altered patterns in gene expression, and data indicate that transcription of protein-encoding genes and small noncoding RNAs is stimulated. In the healthy biofilm hypothetical proteins, transporters and transcriptional regulators were upregulated while chaperones and cell division proteins were downregulated. However, when the pathogens were present, chaperones were highly upregulated, probably due to increased levels of stress. We also observed a significant upregulation of ABC transport systems and putative transposases. Changes in Clusters of Orthologous Groups functional categories as well as gene set enrichment analysis based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways showed that in the absence of pathogens, only sets of proteins related to transport and secondary metabolism were upregulated, while in the presence of pathogens, proteins related to growth and division as well as a large portion of transcription factors were upregulated. Finally, we identified several small noncoding RNAs whose predicted targets were genes differentially expressed in the open reading frame libraries. These results show the importance of pathogens controlling gene expression of a healthy oral community and the usefulness of metatranscriptomic techniques to study gene expression profiles in complex microbial community models. PMID:22328675

  3. Microbial modulation of bacoside A biosynthetic pathway and systemic defense mechanism in Bacopa monnieri under Meloidogyne incognita stress

    PubMed Central

    Gupta, Rupali; Singh, Akanksha; Srivastava, Madhumita; Singh, Vivek; Gupta, M. M.; Pandey, Rakesh

    2017-01-01

    Plant-associated beneficial microbes have been explored to fulfill the imperative function for plant health. However, their impact on the host secondary metabolite production and nematode disease management remains elusive. Our present work has shown that chitinolytic microbes viz., Chitiniphilus sp. MTN22 and Streptomyces sp. MTN14 singly as well as in combination modulated the biosynthetic pathway of bacoside A and systemic defense mechanism against Meloidogyne incognita in Bacopa monnieri. Interestingly, expression of bacoside biosynthetic pathway genes (3-Hydroxy-3-methylglutaryl coenzyme A reductase, mevalonate diphosphate decarboxylase, and squalene synthase) were upregulated in plants treated with the microbial combination in the presence as well as in absence of M. incognita stress. These microbes not only augmented bacoside A production (1.5 fold) but also strengthened host resistance via enhancement in chlorophyll a, defense enzymes and phenolic compounds like gallic acid, syringic acid, ferulic acid and cinnamic acid. Furthermore, elevated lignification and callose deposition in the microbial combination treated plants corroborate well with the above findings. Overall, the results provide novel insights into the underlying mechanisms of priming by beneficial microbes and underscore their capacity to trigger bacoside A production in B. monnieri under biotic stress. PMID:28157221

  4. Supplementing Blends of Sugars, Amino Acids, and Secondary Metabolites to the Diet of Termites (Reticulitermes flavipes) Drive Distinct Gut Bacterial Communities.

    PubMed

    Huang, Xing-Feng; Chaparro, Jacqueline M; Reardon, Kenneth F; Judd, Timothy M; Vivanco, Jorge M

    2016-10-01

    Although it is well known that diet is one of the major modulators of the gut microbiome, how the major components of diet shape the gut microbial community is not well understood. Here, we developed a simple system that allows the investigation of the impact of given compounds as supplements of the diet on the termite gut microbiome. The 16S rRNA pyrosequencing analysis revealed that feeding termites different blends of sugars and amino acids did not majorly impact gut community composition; however, ingestion of blends of secondary metabolites caused shifts in gut bacterial community composition. The supplementation of sugars and amino acids reduced the richness significantly, and sugars alone increased the evenness of the gut bacterial community significantly. Secondary metabolites created the most dramatic effects on the microbial community, potentially overriding the effect of other types of compounds. Furthermore, some microbial groups were stimulated specifically by particular groups of compounds. For instance, termites fed with secondary metabolites contained more Firmicutes and Spirochaetes compared to the other treatments. In conclusion, our results suggest that the termite (Reticulitermes flavipes) can be used as a simple and effective system to test the effects of particular chemical compounds in modulating the gut microbiome.

  5. Effects of dissolved oxygen on performance and microbial community structure in a micro-aerobic hydrolysis sludge in situ reduction process.

    PubMed

    Niu, Tianhao; Zhou, Zhen; Shen, Xuelian; Qiao, Weimin; Jiang, Lu-Man; Pan, Wei; Zhou, Jijun

    2016-03-01

    A sludge process reduction activated sludge (SPRAS), with a sludge process reduction module composed of a micro-aerobic tank and a settler positioned before conventional activated sludge process, showed good performance of pollutant removal and sludge reduction. Two SPRAS systems were operated to investigate effects of micro-aeration on sludge reduction performance and microbial community structure. When dissolved oxygen (DO) concentration in the micro-aerobic tank decreased from 2.5 (SPH) to 0.5 (SPL) mg/L, the sludge reduction efficiency increased from 42.9% to 68.3%. Compared to SPH, activated sludge in SPL showed higher contents of extracellular polymeric substances and dissolved organic matter. Destabilization of floc structure in the settler, and cell lysis in the sludge process reduction module were two major reasons for sludge reduction. Illumina-MiSeq sequencing showed that microbial diversity decreased under high DO concentration. Proteobacteria, Bacteroidetes and Chloroflexi were the most abundant phyla in the SPRAS. Specific comparisons down to the class and genus level showed that fermentative, predatory and slow-growing bacteria in SPL community were more abundant than in SPH. The results revealed that micro-aeration in the SPRAS improved hydrolysis efficiency and enriched fermentative and predatory bacteria responsible for sludge reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The Exopolysaccharide Matrix

    PubMed Central

    Koo, H.; Falsetta, M.L.; Klein, M.I.

    2013-01-01

    Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms. PMID:24045647

  7. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm.

    PubMed

    Koo, H; Falsetta, M L; Klein, M I

    2013-12-01

    Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms.

  8. Modulatory action of α-tocopherol on erythrocyte membrane adenosine triphosphatase against radiation damage in oral cancer.

    PubMed

    Chitra, Subramaniam; Shyamaladevi, Chennam Srinivasulu

    2011-03-01

    To investigate the possible effects of α-tocopherol on erythrocyte membrane adenosine triphosphatases against radiation damage in oral cancer patients. Adenosine triphosphatase activities were analysed in oral cancer patients before and after radiotherapy (at a dosage of 6000 cGY in five fractions per week for a period of six weeks) and after supplemented with α-tocopherol (400 IU per day for entire period of radiotherapy). The membrane bound enzymes such as Na(+)/K(+)-ATPase, Ca(2+)-ATPase, Mg(2+)-ATPase and some trace elements were altered in oral cancer patients before and after radiotherapy. Supplemented with α-tocopherol modulates the erythrocyte membrane which is damaged by radiotherapy which suggests that α-tocopherol protects the erythrocyte membrane from radiation damage in oral cancer patients.

  9. Smoking cessation alters intestinal microbiota: insights from quantitative investigations on human fecal samples using FISH.

    PubMed

    Biedermann, Luc; Brülisauer, Karin; Zeitz, Jonas; Frei, Pascal; Scharl, Michael; Vavricka, Stephan R; Fried, Michael; Loessner, Martin J; Rogler, Gerhard; Schuppler, Markus

    2014-09-01

    There has been a dramatic increase in investigations on the potential mechanistic role of the intestinal microbiota in various diseases and factors modulating intestinal microbial composition. We recently reported on intestinal microbial shifts after smoking cessation in humans. In this study, we aimed to conduct further microbial analyses and verify our previous results obtained by pyrosequencing using a direct quantitative microbial approach. Stool samples of healthy smoking human subjects undergoing controlled smoking cessation during a 9-week observational period were analyzed and compared with 2 control groups, ongoing smoking and nonsmoking subjects. Fluorescence in situ hybridization was applied to quantify specific bacterial groups. Intestinal microbiota composition was substantially altered after smoking cessation as characterized by an increase in key representatives from the phyla of Firmicutes (Clostridium coccoides, Eubacterium rectale, and Clostridium leptum subgroup) and Actinobacteria (HGC bacteria and Bifidobacteria) as well as a decrease in Bacteroidetes (Prevotella spp. and Bacteroides spp.) and Proteobacteria (β- and γ-subgroup of Proteobacteria). As determined by fluorescence in situ hybridization, an independent direct quantitative microbial approach, we could confirm that intestinal microbiota composition in humans is influenced by smoking. The characteristics of observed microbial shifts suggest a potential mechanistic association to alterations in body weight subsequent to smoking cessation. More importantly, regarding previously described microbial hallmarks of dysbiosis in inflammatory bowel diseases, a variety of observed microbial alterations after smoking cessation deserve further consideration in view of the divergent effect of smoking on the clinical course of Crohn's disease and ulcerative colitis.

  10. Oral Rehydration Therapy and the Control of Diarrheal Diseases. Training for Development. Peace Corps Information Collection & Exchange Training Manual No. T-34.

    ERIC Educational Resources Information Center

    Clark, Mari; And Others

    This manual was developed to train Peace Corps volunteers and other community health workers in oral rehydration therapy (ORT) and the control of diarrheal diseases. Using a competency-based format, the manual contains six training modules (organized in 22 sessions) that focus on interrelated health education and technical content areas. Each…

  11. Subsurface Environment Sampler for Improved In Situ Characterization of Subsurface Microbial Communities

    NASA Astrophysics Data System (ADS)

    Barnhart, E. P.; Ruppert, L. F.; Orem, W. H.; McIntosh, J. C.; Cunningham, A. B.; Fields, M. W.; Hiebert, R.; Hyatt, R.

    2016-12-01

    There is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by the extraction and transport of fossil fuels. This threat increases the need for improved groundwater monitoring and the ability to predict the extent to which microbial activity may remediate such contamination. The characterization of subsurface microbial communities could provide an ideal biomonitoring tool for the assessment of subsurface contamination due to prokaryotes environmental ubiquity, rapidity of response to environmental perturbation and the important role they play in hydrocarbon degradation and bioremediation. New DNA sequencing technologies provide the opportunity to cost-effectively identify the vast subsurface microbial ecosystem, but use of this new technology is restricted due to issues with sampling. Prior subsurface microbiology studies have relied on core samples that are expensive to obtain hard to collect aseptically and/or ground water samples that do not reflect in situ microbial densities or activities. The development of down-well incubation of sterile sediment with a Diffusive Microbial Sampler (DMS) has emerged as an alternative method to sample subsurface microbial communities that minimizes cost and contamination issues associated with traditional methods. We have designed a Subsurface Environment Sampler with a DMS module that could enable the anaerobic transport of the in situ microbial community from the field for laboratory bioremediation studies. This sampler could provide an inexpensive and standard method for subsurface microbial sampling which would make this tool useful for Federal, State, private and local agencies interested in monitoring contamination or the effectiveness of bioremediation activities in subsurface aquifers.

  12. Carbon and nitrogen inputs affect soil microbial community structure and function

    NASA Astrophysics Data System (ADS)

    Liu, X. J. A.; Mau, R. L.; Hayer, M.; Finley, B. K.; Schwartz, E.; Dijkstra, P.; Hungate, B. A.

    2016-12-01

    Climate change has been projected to increase energy and nutrient inputs to soils, affecting soil organic matter (SOM) decomposition (priming effect) and microbial communities. However, many important questions remain: how do labile C and/or N inputs affect priming and microbial communities? What is the relationship between them? To address these questions, we applied N (NH4NO3 ; 100 µg N g-1 wk-1), C (13C glucose; 1000 µg C g-1 wk-1), C+N to four different soils for five weeks. We found: 1) N showed no effect, whereas C induced the greatest priming, and C+N had significantly lower priming than C. 2) C and C+N additions increased the relative abundance of actinobacteria, proteobacteria, and firmicutes, but reduced relative abundance of acidobacteria, chloroflexi, verrucomicrobia, planctomycetes, and gemmatimonadetes. 3) Actinobacteria and proteobacteria increased relative abundance over time, but most others decreased over time. 4) substrate additions (N, C, C+N) significantly reduced microbial alpha diversity, which also decreased over time. 5) For beta diversity, C and C+N formed significantly different communities compare to the control and N treatments. Overtime, microbial community structure significantly altered. Four soils have drastically different community structures. These results indicate amounts of substrate C were determinant factors in modulating the rate of SOM decomposition and microbial communities. Variable responses of different microbial communities to labile C and N inputs indicate that complex relationships between priming and microbial functions. In general, we demonstrate that energy inputs can quickly accelerate SOM decomposition whereas extra N input can slow this process, though both had similar microbial community responses.

  13. Rapid culture-independent microbial analysis aboard the international space station (ISS) stage two: quantifying three microbial biomarkers.

    PubMed

    Morris, Heather C; Damon, Michael; Maule, Jake; Monaco, Lisa A; Wainwright, Norm

    2012-09-01

    Abstract A portable, rapid, microbial detection unit, the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS), was launched to the International Space Station (ISS) as a technology demonstration unit in December 2006. Results from the first series of experiments designed to detect Gram-negative bacteria on ISS surfaces by quantifying a single microbial biomarker lipopolysaccharide (LPS) were reported in a previous article. Herein, we report additional technology demonstration experiments expanding the on-orbit capabilities of the LOCAD-PTS to detecting three different microbial biomarkers on ISS surfaces. Six different astronauts on more than 20 occasions participated in these experiments, which were designed to test the new beta-glucan (fungal cell wall molecule) and lipoteichoic acid (LTA; Gram-positive bacterial cell wall component) cartridges individually and in tandem with the existing Limulus Amebocyte Lysate (LAL; Gram-negative bacterial LPS detection) cartridges. Additionally, we conducted the sampling side by side with the standard culture-based detection method currently used on the ISS. Therefore, we present data on the distribution of three microbial biomarkers collected from various surfaces in every module present on the ISS at the time of sampling. In accordance with our previous experiments, we determined that spacecraft surfaces known to be frequently in contact with crew members demonstrated higher values of all three microbial molecules. Key Words: Planetary protection-Spaceflight-Microbiology-Biosensor. Astrobiology 12, 830-840.

  14. The influence of e-waste recycling on the molecular ecological network of soil microbial communities in Pakistan and China.

    PubMed

    Jiang, Longfei; Cheng, Zhineng; Zhang, Dayi; Song, Mengke; Wang, Yujie; Luo, Chunling; Yin, Hua; Li, Jun; Zhang, Gan

    2017-12-01

    Primitive electronic waste (e-waste) recycling releases large amounts of organic pollutants and heavy metals into the environment. As crucial moderators of geochemical cycling processes and pollutant remediation, soil microbes may be affected by these contaminants. We collected soil samples heavily contaminated by e-waste recycling in China and Pakistan, and analyzed the indigenous microbial communities. The results of this work revealed that the microbial community composition and diversity, at both whole and core community levels, were affected significantly by polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and heavy metals (e.g., Cu, Zn, and Pb). The geographical distance showed limited impacts on microbial communities compared with geochemical factors. The constructed ecological network of soil microbial communities illustrated microbial co-occurrence, competition and antagonism across soils, revealing the response of microbes to soil properties and pollutants. Two of the three main modules constructed with core operational taxonomic units (OTUs) were sensitive to nutrition (total organic carbon and total nitrogen) and pollutants. Five key OTUs assigned to Acidobacteria, Proteobacteria, and Nitrospirae in ecological network were identified. This is the first study to report the effects of e-waste pollutants on soil microbial network, providing a deeper understanding of the ecological influence of crude e-waste recycling activities on soil ecological functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Geraniol modulates tongue and hepatic phase I and phase II conjugation activities and may contribute directly to the chemopreventive activity against experimental oral carcinogenesis.

    PubMed

    Madankumar, Arumugam; Jayakumar, Subramaniyan; Gokuladhas, Krishnan; Rajan, Balan; Raghunandhakumar, Subramanian; Asokkumar, Selvamani; Devaki, Thiruvengadam

    2013-04-05

    Xenobiotic metabolizing enzymes are chief determinants in both the susceptibility to mutagenic effect of chemical carcinogens and in the response of tumors to chemotherapy. The present study was aimed to analyze the effect of geraniol administration on the activity of phase I and phase II carcinogen metabolizing enzymes through the nuclear factor erythroid 2-related factor-2 (Nrf2) activation against 4-niroquinoline-1-oxide (4NQO) induced oral carcinogenesis. The well-known chemical carcinogen 4NQO (50 ppm) was used to induce oral carcinogenesis through drinking water for 4, 12, and 20 weeks. The degree of cancer progression at each stage was confirmed by histological examination. At the end of the experimental period, 100% tumor formation was observed in the oral cavity of 4NQO induced animals with significant (P<0.05) alteration in the status of tumor markers, tongue and liver phase I and phase II drug metabolizing enzymes indicating progression of disease. Oral administration of geraniol at the dose of 200 mg/kg b.wt., thrice a week to 4NQO induced animals was able to inhibit tumor formation and thereby delayed the progression of oral carcinogenesis by modulating tongue and liver phase I and phase II drug metabolizing enzymes, as substantiated further by the histological and transmission electron microscopic studies. Our results demonstrate that geraniol exerts its chemopreventive potential by altering activities of phases I and II drug metabolizing enzymes to achieve minimum bioactivation of carcinogen and maximum detoxification. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Interkingdom cooperation between Candida albicans, Streptococcus oralis and Actinomyces oris modulates early biofilm development on denture material.

    PubMed

    Cavalcanti, Indira M G; Nobbs, Angela H; Ricomini-Filho, Antônio Pedro; Jenkinson, Howard F; Del Bel Cury, Altair A

    2016-04-01

    Candida-associated stomatitis affects up to 60% of denture wearers, and Candida albicans remains the most commonly isolated fungal species. The oral bacteria Actinomyces oris and Streptococcus oralis are abundant in early dental plaque. The aims of this study were to determine the effects of S. oralis and A. oris on the development of C. albicans biofilms on denture material. Resin discs were coated with saliva and at early (1.5 h) or later (24 h) stages of biofilm development, cell numbers of each species were determined. Spatial distribution of microorganisms was visualized by confocal scanning laser microscopy of biofilms labelled by differential fluorescence or by fluorescence in situ hybridization. Interkingdom interactions underpinning biofilm development were also evaluated planktonically utilizing fluorescence microscopy. Synergistic interactions between all three species occurred within biofilms and planktonically. Bacterial cells coaggregated with each other and adhered singly or in coaggregates to C. albicans hyphal filaments. Streptococcus oralis appeared to enhance hyphal filament production and C. albicans biovolume was increased 2-fold. Concomitantly, cell numbers of S. oralis and A. oris were enhanced by C. albicans. Thus, cooperative physical and metabolic processes occurring between these three microbial species intensify pathogenic plaque communities on denture surfaces. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Development of the Human Mycobiome over the First Month of Life and across Body Sites.

    PubMed

    Ward, Tonya L; Dominguez-Bello, Maria Gloria; Heisel, Tim; Al-Ghalith, Gabriel; Knights, Dan; Gale, Cheryl A

    2018-01-01

    With the advent of next-generation sequencing and microbial community characterization, we are beginning to understand the key factors that shape early-life microbial colonization and associated health outcomes. Studies characterizing infant microbial colonization have focused mostly on bacteria in the microbiome and have largely neglected fungi (the mycobiome), despite their relevance to mucosal infections in healthy infants. In this pilot study, we characterized the skin, oral, and anal mycobiomes of infants over the first month of life ( n = 17) and the anal and vaginal mycobiomes of mothers ( n = 16) by internal transcribed spacer 2 (ITS2) amplicon sequencing. We found that infant mycobiomes differed by body site, with the infant mycobiomes at the anal sites being different from those at the skin and oral sites. The relative abundances of body site-specific taxa differed by birth mode, with significantly more Candida albicans fungi present on the skin of vaginally born infants on day 30 and significantly more Candida orthopsilosis fungi present in the oral cavity of caesarean section-born infants throughout the first month of life. We found the mycobiomes within individual infants to be variable over the first month of life, and vaginal birth did not result in infant mycobiomes that were more similar to the mother's vaginal mycobiome. Therefore, although vertical transmission of specific fungal isolates from mother to infant has been reported, it is likely that other sources (environment, other caregivers) also contribute to early-life mycobiome establishment. Thus, future longitudinal studies of mycobiome and bacterial microbiome codevelopment, with dense sampling from birth to beyond the first month of life, are warranted. IMPORTANCE Humans are colonized by diverse fungi (mycobiome), which have received much less study to date than colonizing bacteria. We know very little about the succession of fungal colonization in early life and whether it may relate to long-term health. To better understand fungal colonization and its sources, we studied the skin, oral, and anal mycobiomes of healthy term infants and the vaginal and anal mycobiomes of their mothers. Generally, infants were colonized by few fungal taxa, and fungal alpha diversity did not increase over the first month of life. There was no clear community maturation over the first month of life, regardless of body site. Key body-site-specific taxa, but not overall fungal community structures, were impacted by birth mode. Thus, additional studies to characterize mycobiome acquisition and succession throughout early life are needed to form a foundation for research into the relationship between mycobiome development and human disease.

  18. Integrating Environmental Genomics and Biogeochemical Models: a Gene-centric Approach

    NASA Astrophysics Data System (ADS)

    Reed, D. C.; Algar, C. K.; Huber, J. A.; Dick, G.

    2013-12-01

    Rapid advances in molecular microbial ecology have yielded an unprecedented amount of data about the evolutionary relationships and functional traits of microbial communities that regulate global geochemical cycles. Biogeochemical models, however, are trailing in the wake of the environmental genomics revolution and such models rarely incorporate explicit representations of bacteria and archaea, nor are they compatible with nucleic acid or protein sequence data. Here, we present a functional gene-based framework for describing microbial communities in biogeochemical models that uses genomics data and provides predictions that are readily testable using cutting-edge molecular tools. To demonstrate the approach in practice, nitrogen cycling in the Arabian Sea oxygen minimum zone (OMZ) was modelled to examine key questions about cryptic sulphur cycling and dinitrogen production pathways in OMZs. By directly linking geochemical dynamics to the genetic composition of microbial communities, the method provides mechanistic insights into patterns and biogeochemical consequences of marine microbes. Such an approach is critical for informing our understanding of the key role microbes play in modulating Earth's biogeochemistry.

  19. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction.

    PubMed

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2015-12-01

    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Apollo experience report: Potable water system

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Calley, D. J.

    1973-01-01

    A description of the design and function of the Apollo potable water system is presented. The command module potable water is supplied as a byproduct of the fuel cells. The cells, located in the service module, function primarily to supply electrical energy to the spacecraft. The source of the lunar module potable water is three tanks, which are filled before lift-off. The technique of supplying the water in each of these cases and the problems associated with materials compatibility are described. The chemical and microbiological quality of the water is reviewed, as are efforts to maintain the water in a microbially safe condition for drinking and food mixing.

  1. The microbial-mammalian metabolic axis: a critical symbiotic relationship.

    PubMed

    Chilloux, Julien; Neves, Ana Luisa; Boulangé, Claire L; Dumas, Marc-Emmanuel

    2016-07-01

    The microbial-mammalian symbiosis plays a critical role in metabolic health. Microbial metabolites emerge as key messengers in the complex communication between the gut microbiota and their host. These chemical signals are mainly derived from nutritional precursors, which in turn are also able to modify gut microbiota population. Recent advances in the characterization of the gut microbiome and the mechanisms involved in this symbiosis allow the development of nutritional interventions. This review covers the latest findings on the microbial-mammalian metabolic axis as a critical symbiotic relationship particularly relevant to clinical nutrition. The modulation of host metabolism by metabolites derived from the gut microbiota highlights the importance of gut microbiota in disease prevention and causation. The composition of microbial populations in our gut ecosystem is a critical pathophysiological factor, mainly regulated by diet, but also by the host's characteristics (e.g. genetics, circadian clock, immune system, age). Tailored interventions, including dietary changes, the use of antibiotics, prebiotic and probiotic supplementation and faecal transplantation are promising strategies to manipulate microbial ecology. The microbiome is now considered as an easily reachable target to prevent and treat related diseases. Recent findings in both mechanisms of its interactions with host metabolism and in strategies to modify gut microbiota will allow us to develop more effective treatments especially in metabolic diseases.

  2. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2.

    PubMed

    Jin, Qusheng; Kirk, Matthew F

    2016-01-01

    Geological carbon sequestration captures CO 2 from industrial sources and stores the CO 2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO 2 concentration. This study uses biogeochemical modeling to explore the influence of CO 2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO 2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO 2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO 2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO 2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  3. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2

    PubMed Central

    Jin, Qusheng; Kirk, Matthew F.

    2016-01-01

    Geological carbon sequestration captures CO2 from industrial sources and stores the CO2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO2 concentration. This study uses biogeochemical modeling to explore the influence of CO2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses. PMID:27909425

  4. Novel series of potent, nonsteroidal, selective androgen receptor modulators based on 7H-[1,4]oxazino[3,2-g]quinolin-7-ones.

    PubMed

    Higuchi, Robert I; Arienti, Kristen L; López, Francisco J; Mani, Neelakhanda S; Mais, Dale E; Caferro, Thomas R; Long, Yun Oliver; Jones, Todd K; Edwards, James P; Zhi, Lin; Schrader, William T; Negro-Vilar, Andrés; Marschke, Keith B

    2007-05-17

    Recent interest in orally available androgens has fueled the search for new androgens for use in hormone replacement therapy and as anabolic agents. In pursuit of this, we have discovered a series of novel androgen receptor modulators derived from 7H-[1,4]oxazino[3,2-g]quinolin-7-ones. These compounds were synthesized and evaluated in competitive binding assays and an androgen receptor transcriptional activation assay. A number of compounds from the series demonstrated single-digit nanomolar agonist activity in vitro. In addition, lead compound (R)-16e was orally active in established rodent models that measure androgenic and anabolic properties of these agents. In this assay, (R)-16e demonstrated full efficacy in muscle and only partially stimulated the prostate at 100 mg/kg. These data suggest that these compounds may be utilized as selective androgen receptor modulators or SARMs. This series represents a novel class of compounds for use in androgen replacement therapy.

  5. Longitudinal research on the oral environment of elderly wearing fixed or removable prostheses.

    PubMed

    Tanaka, Junko; Tanaka, Masahiro; Kawazoe, Takayoshi

    2009-04-01

    The purpose of this study was to investigate oral environmental risk factors involved in caries incidence in the elderly. We investigated the relationship between the oral environment factors of the elderly with both fixed prostheses and removable prostheses at baseline and at follow-up and examined time-course changes of each oral environmental factor by prosthesis type. The subject group consisted 11 elderly patients with fixed prostheses and 11 who wore removable prostheses. We examined oral environmental factors by saliva tests. Five oral environmental factors were examined: the stimulated salivary flow rate, buffering capacity, and the counts of mutans streptococci (SM), lactobacilli (LB), and Candida (CA). We compared these factors for subjects with fixed prostheses and those wearing removable prostheses at baseline and at follow-up. Furthermore, 3-year changes in the factors of each oral environment were compared and evaluated. Significant differences were observed between the two groups in the salivary microbial counts of SM and LB at baseline and at follow-up. The LB counts increased in the Denture group during the 3-year period and significant differences were noted. We found that fixed prostheses are less cariogenic, and removable prostheses cause an increase in the cariogenic bacterial count. Regarding time-course changes by the type of prosthesis, the LB count tended to increase in the subjects with removable prostheses. The risk of caries due to a fixed prosthesis may be lower than that of removable prostheses.

  6. In-vitro analysis of APA microcapsules for oral delivery of live bacterial cells.

    PubMed

    Chen, H; Ouyang, W; Jones, M; Haque, T; Lawuyi, B; Prakash, S

    2005-08-01

    Oral administration of microcapsules containing live bacterial cells has potential as an alternative therapy for several diseases. This article evaluates the suitability of the alginate-poly-L-lysine-alginate (APA) microcapsules for oral delivery of live bacterial cells, in-vitro, using a dynamic simulated human gastro-intestinal (GI) model. Results showed that the APA microcapsules were morphologically stable in the simulated stomach conditions, but did not retain their structural integrity after a 3-day exposure in simulated human GI media. The microbial populations of the tested bacterial cells and the activities of the tested enzymes in the simulated human GI suspension were not substantially altered by the presence of the APA microcapsules, suggesting that there were no significant adverse effects of oral administration of the APA microcapsules on the flora of the human gastrointestinal tract. When the APA microcapsules containing Lactobacillus plantarum 80 (LP80) were challenged in the simulated gastric medium (pH = 2.0), 80.0% of the encapsulated cells remained viable after a 5-min incubation; however, the viability decreased considerably (8.3%) after 15 min and dropped to 2.6% after 30 min and lower than 0.2% after 60 min, indicating the limitations of the currently obtainable APA membrane for oral delivery of live bacteria. Further in-vivo studies are required before conclusions can be made concerning the inadequacy of APA microcapsules for oral delivery of live bacterial cells.

  7. Composition and development of oral bacterial communities.

    PubMed

    Palmer, Robert J

    2014-02-01

    The oral bacterial microbiome encompasses approximately 700 commonly occurring phylotypes, approximately half of which can be present at any time in any individual. These bacteria are largely indigenous to the oral cavity; this limited habitat range suggests that interactions between the various phylotypes, and between the phylotypes and their environment, are crucial for their existence. Molecular cataloging has confirmed many basic observations on the composition of the oral microbiome that were formulated well before ribosomal RNA-based systematics, but the power and the scope of molecular taxonomy have resulted in the discovery of new phylotypes and, more importantly, have made possible a level of bacterial community analysis that was unachievable with classical methods. Bacterial community structure varies with location within the mouth, and changes in community structure are related to disease initiation and disease progression. Factors that influence the formation and the evolution of communities include selective adherence to epithelial or tooth surfaces, specific cell-to-cell binding as a driver of early community composition, and interorganismal interaction leading to alteration of the local environment, which represents the first step on the road to oral disease. A comprehensive understanding of how these factors interact to drive changes in the composition of the oral microbial community can lead to new strategies for the inhibition of periodontal diseases and dental caries. Published 2013. This article is a US Government work and is in the public domain in the USA.

  8. Natural Antimicrobials and Oral Microorganisms: A Systematic Review on Herbal Interventions for the Eradication of Multispecies Oral Biofilms

    PubMed Central

    Karygianni, Lamprini; Al-Ahmad, Ali; Argyropoulou, Aikaterini; Hellwig, Elmar; Anderson, Annette C.; Skaltsounis, Alexios L.

    2016-01-01

    Oral diseases such as caries and periodontitis are mainly caused by microbial biofilms. Antibiotic therapy has reached its limits with regard to antimicrobial resistance, and new therapeutic measures utilizing natural phytochemicals are currently a focus of research. Hence, this systematic review provides a critical presentation of the antimicrobial effects of various medicinal herbs against in vitro, ex vivo, and in situ formed multispecies oral biofilms. Searches were performed in three English databases (PubMed, EMBASE, CAMbase) and the electronic archives of five German journals from the times of their establishment until October 10th, 2014, with the search terms “(plant extracts OR herbal extracts OR plant OR herb) AND (oral biofilm OR dental biofilm OR dental plaque OR oral disease OR dental disease).” The pooled data were assessed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA). Initially, 1848 articles were identified, out of which 585 full-text articles were screened, 149 articles were reevaluated for eligibility and finally, 14 articles met all inclusion criteria. The data of 14 reports disclosed enhanced antiadhesive and antibiofilm activity by the plant extracts obtained from Vitis vinifera, Pinus spp., Coffea canephora, Camellia sinensis, Vaccinium macrocarpon, Galla chinensis, Caesalpinia ferrea Martius, Psidium cattleianum, representative Brazilian plants and manuka honey. Overall, a positive correlation was revealed between herb-based therapies and elimination rates of all types of multispecies oral biofilms. In that context, integrating or even replacing conventional dental therapy protocols with herbal-inspired treatments can allow effective antimicrobial control of oral biofilms and thus, dental diseases. PMID:26834707

  9. Natural Antimicrobials and Oral Microorganisms: A Systematic Review on Herbal Interventions for the Eradication of Multispecies Oral Biofilms.

    PubMed

    Karygianni, Lamprini; Al-Ahmad, Ali; Argyropoulou, Aikaterini; Hellwig, Elmar; Anderson, Annette C; Skaltsounis, Alexios L

    2015-01-01

    Oral diseases such as caries and periodontitis are mainly caused by microbial biofilms. Antibiotic therapy has reached its limits with regard to antimicrobial resistance, and new therapeutic measures utilizing natural phytochemicals are currently a focus of research. Hence, this systematic review provides a critical presentation of the antimicrobial effects of various medicinal herbs against in vitro, ex vivo, and in situ formed multispecies oral biofilms. Searches were performed in three English databases (PubMed, EMBASE, CAMbase) and the electronic archives of five German journals from the times of their establishment until October 10th, 2014, with the search terms "(plant extracts OR herbal extracts OR plant OR herb) AND (oral biofilm OR dental biofilm OR dental plaque OR oral disease OR dental disease)." The pooled data were assessed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA). Initially, 1848 articles were identified, out of which 585 full-text articles were screened, 149 articles were reevaluated for eligibility and finally, 14 articles met all inclusion criteria. The data of 14 reports disclosed enhanced antiadhesive and antibiofilm activity by the plant extracts obtained from Vitis vinifera, Pinus spp., Coffea canephora, Camellia sinensis, Vaccinium macrocarpon, Galla chinensis, Caesalpinia ferrea Martius, Psidium cattleianum, representative Brazilian plants and manuka honey. Overall, a positive correlation was revealed between herb-based therapies and elimination rates of all types of multispecies oral biofilms. In that context, integrating or even replacing conventional dental therapy protocols with herbal-inspired treatments can allow effective antimicrobial control of oral biofilms and thus, dental diseases.

  10. The Selective Interaction of Pistacia lentiscus Oil vs. Human Streptococci, an Old Functional Food Revisited with New Tools

    PubMed Central

    Orrù, Germano; Demontis, Cristina; Mameli, Antonello; Tuveri, Enrica; Coni, Pierpaolo; Pichiri, Giuseppina; Coghe, Ferdinando; Rosa, Antonella; Rossi, Paola; D’hallewin, Guy

    2017-01-01

    Pistacia lentiscus berry oil (LBO) represents a typical vegetal product of the Mediterranean basin that has been formally used in traditional cuisine for 100s of years. In addition to its interesting alimentary properties, this product could represent an interesting candidate in the field of research on the study of new anti-infective agents. In fact, in Mediterranean countries, lentisk oil still continues to be widely used in folk medicine for oral and skin affections, in particular, acute gingivitis, pediatric skin infections such as impetigo and foot plaques, and biofilm related infections often associated with Streptococcus spp. Following these observations, we have hypothesized a “lentisk oil-bacteria” interaction, placing particular emphasis on the different Streptococcal species involved in these oral and skin diseases. In accordance with this hypothesis, the use of standard antimicrobial-antibiofilm methods (MIC, MBC, MBIC) allowed the interesting behavior of these bacteria to be observed and, in this context, the response to lentisk oil appears to be correlated with the pathogenic profile of the considered microorganism. Two probiotic strains of S. salivarius K12/M18 appeared to be non-sensitive to this product, while a set of five different pathogenic strains (S. agalactiae, S. intermedius, S. mitis, S. mutans, S. pyogenes) showed a response that was correlated to the fatty acid metabolic pathway of the considered species. In fact, at different times of bacteria development, selective High Performance Liquid Chromatography analysis of the growth medium containing LBO detected a significant increase in free unsaturated fatty acids (UFAs) in particular oleic, palmitic and linoleic acids, which are already known for their antibacterial activity. In this context, we have hypothesized that LBO could be able to modulate the pathogen/probiotic rate in a Streptococcal population using the fatty acid metabolic pathway to help the probiotic strain. This hypothesis was strengthened by performing antibacterial testing with oleic acid and an in silico evaluation of the Streptococcal MCRA protein, an enzyme involved in the production of saturated fatty acids from UFA. These results show that LBO may have been used in ancient times as a “natural microbial modulating extract” in the prevention of biofilm- associated diseases. PMID:29114245

  11. Subgingival Microbial Communities in Leukocyte Adhesion Deficiency and Their Relationship with Local Immunopathology

    PubMed Central

    Moutsopoulos, Niki M.; Abusleme, Loreto; Greenwell-Wild, Teresa; Dutzan, Nicolas; Paster, Bruce J.; Munson, Peter J.; Fine, Daniel H.; Uzel, Gulbu; Holland, Steven M.

    2015-01-01

    Leukocyte Adhesion Deficiency I (LAD-I) is a primary immunodeficiency caused by single gene mutations in the CD18 subunit of β2 integrins which result in defective transmigration of neutrophils into the tissues. Affected patients suffer from recurrent life threatening infections and severe oral disease (periodontitis). Microbial communities in the local environment (subgingival plaque) are thought to be the triggers for inflammatory periodontitis, yet little is known regarding the microbial communities associated with LAD-I periodontitis. Here we present the first comprehensive characterization of the subgingival communities in LAD-I, using a 16S rRNA gene-based microarray, and investigate the relationship of this tooth adherent microbiome to the local immunopathology of periodontitis. We show that the LAD subgingival microbiome is distinct from that of health and Localized Aggressive Periodontitits. Select periodontitis-associated species in the LAD microbiome included Parvimonas micra, Porphyromonas endodontalis, Eubacterium brachy and Treponema species. Pseudomonas aeruginosa, a bacterium not typically found in subgingival plaque is detected in LAD-I. We suggest that microbial products from LAD-associated communities may have a role in stimulating the local inflammatory response. We demonstrate that bacterial LPS translocates into the lesions of LAD-periodontitis potentially triggering immunopathology. We also show in in vitro assays with human macrophages and in vivo in animal models that microbial products from LAD-associated subgingival plaque trigger IL-23-related immune responses, which have been shown to dominate in patient lesions. In conclusion, our current study characterizes the subgingival microbial communities in LAD-periodontitis and supports their role as triggers of disease pathogenesis. PMID:25741691

  12. Subgingival microbial communities in Leukocyte Adhesion Deficiency and their relationship with local immunopathology.

    PubMed

    Moutsopoulos, Niki M; Chalmers, Natalia I; Barb, Jennifer J; Abusleme, Loreto; Greenwell-Wild, Teresa; Dutzan, Nicolas; Paster, Bruce J; Munson, Peter J; Fine, Daniel H; Uzel, Gulbu; Holland, Steven M

    2015-03-01

    Leukocyte Adhesion Deficiency I (LAD-I) is a primary immunodeficiency caused by single gene mutations in the CD18 subunit of β2 integrins which result in defective transmigration of neutrophils into the tissues. Affected patients suffer from recurrent life threatening infections and severe oral disease (periodontitis). Microbial communities in the local environment (subgingival plaque) are thought to be the triggers for inflammatory periodontitis, yet little is known regarding the microbial communities associated with LAD-I periodontitis. Here we present the first comprehensive characterization of the subgingival communities in LAD-I, using a 16S rRNA gene-based microarray, and investigate the relationship of this tooth adherent microbiome to the local immunopathology of periodontitis. We show that the LAD subgingival microbiome is distinct from that of health and Localized Aggressive Periodontitits. Select periodontitis-associated species in the LAD microbiome included Parvimonas micra, Porphyromonas endodontalis, Eubacterium brachy and Treponema species. Pseudomonas aeruginosa, a bacterium not typically found in subgingival plaque is detected in LAD-I. We suggest that microbial products from LAD-associated communities may have a role in stimulating the local inflammatory response. We demonstrate that bacterial LPS translocates into the lesions of LAD-periodontitis potentially triggering immunopathology. We also show in in vitro assays with human macrophages and in vivo in animal models that microbial products from LAD-associated subgingival plaque trigger IL-23-related immune responses, which have been shown to dominate in patient lesions. In conclusion, our current study characterizes the subgingival microbial communities in LAD-periodontitis and supports their role as triggers of disease pathogenesis.

  13. Soil Microbial Properties and Plant Growth Responses to Carbon and Water Addition in a Temperate Steppe: The Importance of Nutrient Availability

    PubMed Central

    Guo, Chengyuan; Wang, Renzhong; Xiao, Chunwang

    2012-01-01

    Background Global climatic change is generally expected to stimulate net primary production, and consequently increase soil carbon (C) input. The enhanced C input together with potentially increased precipitation may affect soil microbial processes and plant growth. Methodology/Principal Findings To examine the effects of C and water additions on soil microbial properties and plant growth, we conducted an experiment lasting two years in a temperate steppe of northeastern China. We found that soil C and water additions significantly affected microbial properties and stimulated plant growth. Carbon addition significantly increased soil microbial biomass and activity but had a limited effect on microbial community structure. Water addition significantly increased soil microbial activity in the first year but the response to water decreased in the second year. The water-induced changes of microbial activity could be ascribed to decreased soil nitrogen (N) availability and to the shift in soil microbial community structure. However, no water effect on soil microbial activity was visible under C addition during the two years, likely because C addition alleviated nutrient limitation of soil microbes. In addition, C and water additions interacted to affect plant functional group composition. Water addition significantly increased the ratio of grass to forb biomass in C addition plots but showed only minor effects under ambient C levels. Our results suggest that soil microbial activity and plant growth are limited by nutrient (C and N) and water availability, and highlight the importance of nutrient availability in modulating the responses of soil microbes and plants to potentially increased precipitation in the temperate steppe. Conclusions/Significance Increased soil C input and precipitation would show significant effects on soil microbial properties and plant growth in the temperate steppe. These findings will improve our understanding of the responses of soil microbes and plants to the indirect and direct climate change effects. PMID:22496905

  14. Effect of 12-month weekly professional oral hygiene care on the composition of the oral flora in dentate, dependent elderly residents: A prospective study.

    PubMed

    Wikström, Maude; Kareem, Kawa L; Almståhl, Annica; Palmgren, Erika; Lingström, Peter; Wårdh, Inger

    2017-06-01

    To study the effect of weekly professional oral hygiene care on the proportion of micro-organisms associated with good oral health, caries, and periodontal and soft tissue diseases in oral biofilms in dentate, dependent elderly residents. Assisted oral hygiene care reduces the plaque score and number of micro-organisms in the oral biofilms in elderly residents. Less is known about the effect on the quality/composition of the remaining oral flora. Participants comprised 33 residents in the study and 35 in the control group. Dental status (≥10 natural teeth and no removable dentures to be included), plaque score, salivary secretion rate and prescription medicines were recorded. Duplicate samples, collected from supragingival plaque and tongue, were analysed using cultivation technique. Differences between and within groups were analysed using one-way and two-way ANOVA, respectively. At the baseline, the number of teeth in the participants (mean age, 83.7 ± 7.4 years) was 22.0 ± 4.5. The number of prescription medicines was 9.4 ± 4.5. Seventy-six per cent had low salivary secretion rate. Fifty per cent had "visible thick" supragingival plaque. At the 12-month registration, "no visible" or "visible but thin" plaque was recorded in 92% in the study group. The proportions of bacteria associated with good oral health and periodontal diseases were decreased over time, while the frequency and proportions of micro-organisms associated with caries and soft tissue infection were unaffected or increased. The results indicate that assisted oral hygiene care alone is not sufficient to regain an oral microbial flora associated with good oral health in dentate, dependent elderly residents. © 2016 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  15. Identification of Rothia Bacteria as Gluten-Degrading Natural Colonizers of the Upper Gastro-Intestinal Tract

    PubMed Central

    Zamakhchari, Maram; Wei, Guoxian; Dewhirst, Floyd; Lee, Jaeseop; Schuppan, Detlef; Oppenheim, Frank G.; Helmerhorst, Eva J.

    2011-01-01

    Background Gluten proteins, prominent constituents of barley, wheat and rye, cause celiac disease in genetically predisposed subjects. Gluten is notoriously difficult to digest by mammalian proteolytic enzymes and the protease-resistant domains contain multiple immunogenic epitopes. The aim of this study was to identify novel sources of gluten-digesting microbial enzymes from the upper gastro-intestinal tract with the potential to neutralize gluten epitopes. Methodology/Principal Findings Oral microorganisms with gluten-degrading capacity were obtained by a selective plating strategy using gluten agar. Microbial speciations were carried out by 16S rDNA gene sequencing. Enzyme activities were assessed using gliadin-derived enzymatic substrates, gliadins in solution, gliadin zymography, and 33-mer α-gliadin and 26-mer γ-gliadin immunogenic peptides. Fragments of the gliadin peptides were separated by RP-HPLC and structurally characterized by mass spectrometry. Strains with high activity towards gluten were typed as Rothia mucilaginosa and Rothia aeria. Gliadins (250 µg/ml) added to Rothia cell suspensions (OD620 1.2) were degraded by 50% after ∼30 min of incubation. Importantly, the 33-mer and 26-mer immunogenic peptides were also cleaved, primarily C-terminal to Xaa-Pro-Gln (XPQ) and Xaa-Pro-Tyr (XPY). The major gliadin-degrading enzymes produced by the Rothia strains were ∼70–75 kDa in size, and the enzyme expressed by Rothia aeria was active over a wide pH range (pH 3–10). Conclusion/Significance While the human digestive enzyme system lacks the capacity to cleave immunogenic gluten, such activities are naturally present in the oral microbial enzyme repertoire. The identified bacteria may be exploited for physiologic degradation of harmful gluten peptides. PMID:21957450

  16. Identification of Rothia bacteria as gluten-degrading natural colonizers of the upper gastro-intestinal tract.

    PubMed

    Zamakhchari, Maram; Wei, Guoxian; Dewhirst, Floyd; Lee, Jaeseop; Schuppan, Detlef; Oppenheim, Frank G; Helmerhorst, Eva J

    2011-01-01

    Gluten proteins, prominent constituents of barley, wheat and rye, cause celiac disease in genetically predisposed subjects. Gluten is notoriously difficult to digest by mammalian proteolytic enzymes and the protease-resistant domains contain multiple immunogenic epitopes. The aim of this study was to identify novel sources of gluten-digesting microbial enzymes from the upper gastro-intestinal tract with the potential to neutralize gluten epitopes. Oral microorganisms with gluten-degrading capacity were obtained by a selective plating strategy using gluten agar. Microbial speciations were carried out by 16S rDNA gene sequencing. Enzyme activities were assessed using gliadin-derived enzymatic substrates, gliadins in solution, gliadin zymography, and 33-mer α-gliadin and 26-mer γ-gliadin immunogenic peptides. Fragments of the gliadin peptides were separated by RP-HPLC and structurally characterized by mass spectrometry. Strains with high activity towards gluten were typed as Rothia mucilaginosa and Rothia aeria. Gliadins (250 µg/ml) added to Rothia cell suspensions (OD(620) 1.2) were degraded by 50% after ∼30 min of incubation. Importantly, the 33-mer and 26-mer immunogenic peptides were also cleaved, primarily C-terminal to Xaa-Pro-Gln (XPQ) and Xaa-Pro-Tyr (XPY). The major gliadin-degrading enzymes produced by the Rothia strains were ∼70-75 kDa in size, and the enzyme expressed by Rothia aeria was active over a wide pH range (pH 3-10). While the human digestive enzyme system lacks the capacity to cleave immunogenic gluten, such activities are naturally present in the oral microbial enzyme repertoire. The identified bacteria may be exploited for physiologic degradation of harmful gluten peptides.

  17. Same Exposure but Two Radically Different Responses to Antibiotics: Resilience of the Salivary Microbiome versus Long-Term Microbial Shifts in Feces

    PubMed Central

    Brandt, Bernd W.; Teixeira de Mattos, M. Joost; Buijs, Mark J.; Caspers, Martien P. M.; Rashid, Mamun-Ur; Weintraub, Andrej; Nord, Carl Erik; Savell, Ann; Hu, Yanmin; Coates, Antony R.; Hubank, Mike; Spratt, David A.; Wilson, Michael; Keijser, Bart J. F.; Crielaard, Wim

    2015-01-01

    ABSTRACT Due to the spread of resistance, antibiotic exposure receives increasing attention. Ecological consequences for the different niches of individual microbiomes are, however, largely ignored. Here, we report the effects of widely used antibiotics (clindamycin, ciprofloxacin, amoxicillin, and minocycline) with different modes of action on the ecology of both the gut and the oral microbiomes in 66 healthy adults from the United Kingdom and Sweden in a two-center randomized placebo-controlled clinical trial. Feces and saliva were collected at baseline, immediately after exposure, and 1, 2, 4, and 12 months after administration of antibiotics or placebo. Sequences of 16S rRNA gene amplicons from all samples and metagenomic shotgun sequences from selected baseline and post-antibiotic-treatment sample pairs were analyzed. Additionally, metagenomic predictions based on 16S rRNA gene amplicon data were performed using PICRUSt. The salivary microbiome was found to be significantly more robust, whereas the antibiotics negatively affected the fecal microbiome: in particular, health-associated butyrate-producing species became strongly underrepresented. Additionally, exposure to different antibiotics enriched genes associated with antibiotic resistance. In conclusion, healthy individuals, exposed to a single antibiotic treatment, undergo considerable microbial shifts and enrichment in antibiotic resistance in their feces, while their salivary microbiome composition remains unexpectedly stable. The health-related consequences for the gut microbiome should increase the awareness of the individual risks involved with antibiotic use, especially in a (diseased) population with an already dysregulated microbiome. On the other hand, understanding the mechanisms behind the resilience of the oral microbiome toward ecological collapse might prove useful in combating microbial dysbiosis elsewhere in the body. PMID:26556275

  18. Nano-graphene oxide incorporated into PMMA resin to prevent microbial adhesion.

    PubMed

    Lee, Jung-Hwan; Jo, Jeong-Ki; Kim, Dong-Ae; Patel, Kapil Dev; Kim, Hae-Won; Lee, Hae-Hyoung

    2018-04-01

    Although polymethyl methacrylate (PMMA) is widely used as a dental material, a major challenge of using this substance is its poor antimicrobial (anti-adhesion) effects, which increase oral infections. Here, graphene-oxide nanosheets (nGO) were incorporated into PMMA to introduce sustained antimicrobial-adhesive effects by increasing the hydrophilicity of PMMA. After characterizing nGO and nGO-incorporated PMMA (up to 2wt%) in terms of morphology and surface characteristics, 3-point flexural strength and hardness were evaluated. The anti-adhesive effects were determined for 4 different microbial species with experimental specimens and the underlying anti-adhesive mechanism was investigated by a non-thermal oxygen plasma treatment. Sustained antimicrobial-adhesive effects were characterized with incubation in artificial saliva for up to 28 days. The typical nanosheet morphology was observed for nGO. Incorporating nGO into PMMA roughened its surface and increased its hydrophilicity without compromising flexural strength or surface hardness. An anti-adhesive effect after 1h of exposure to microbial species in artificial saliva was observed in nGO-incorporated specimens, which accelerated with increasing levels of nGO without significant cytotoxicity to oral keratinocytes. Plasma treatment of native PMMA demonstrated that the antimicrobial-adhesive effects of nGO incorporation were at least partially due to increased hydrophilicity, not changes in the surface roughness. A sustained antimicrobial-adhesive property against Candida albicans was observed in 2% nGO for up to 28 days. The presence of sustained anti-adhesion properties in nGO-incorporated PMMA without loading any antimicrobial drugs suggests the potential usefulness of this compound as a promising antimicrobial dental material for dentures, orthodontic devices and provisional restorative materials. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Multiplexed chemostat system for quantification of biodiversity and ecosystem functioning in anaerobic digestion

    PubMed Central

    Plouchart, Diane; Guizard, Guillaume; Latrille, Eric

    2018-01-01

    Continuous cultures in chemostats have proven their value in microbiology, microbial ecology, systems biology and bioprocess engineering, among others. In these systems, microbial growth and ecosystem performance can be quantified under stable and defined environmental conditions. This is essential when linking microbial diversity to ecosystem function. Here, a new system to test this link in anaerobic, methanogenic microbial communities is introduced. Rigorously replicated experiments or a suitable experimental design typically require operating several chemostats in parallel. However, this is labor intensive, especially when measuring biogas production. Commercial solutions for multiplying reactors performing continuous anaerobic digestion exist but are expensive and use comparably large reactor volumes, requiring the preparation of substantial amounts of media. Here, a flexible system of Lab-scale Automated and Multiplexed Anaerobic Chemostat system (LAMACs) with a working volume of 200 mL is introduced. Sterile feeding, biomass wasting and pressure monitoring are automated. One module containing six reactors fits the typical dimensions of a lab bench. Thanks to automation, time required for reactor operation and maintenance are reduced compared to traditional lab-scale systems. Several modules can be used together, and so far the parallel operation of 30 reactors was demonstrated. The chemostats are autoclavable. Parameters like reactor volume, flow rates and operating temperature can be freely set. The robustness of the system was tested in a two-month long experiment in which three inocula in four replicates, i.e., twelve continuous digesters were monitored. Statistically significant differences in the biogas production between inocula were observed. In anaerobic digestion, biogas production and consequently pressure development in a closed environment is a proxy for ecosystem performance. The precision of the pressure measurement is thus crucial. The measured maximum and minimum rates of gas production could be determined at the same precision. The LAMACs is a tool that enables us to put in practice the often-demanded need for replication and rigorous testing in microbial ecology as well as bioprocess engineering. PMID:29518106

  20. Effects of the dietary protein level on the microbial composition and metabolomic profile in the hindgut of the pig.

    PubMed

    Zhou, Liping; Fang, Lingdong; Sun, Yue; Su, Yong; Zhu, Weiyun

    2016-04-01

    The aim of this study was to investigate the effects of a long-term low protein diet on the microbial composition and metabolomic profile in the hindgut of the pig. Thirty-six Duroc × Landrace × Large White growing barrows (70 days of age, 23.57 ± 1.77 kg) were randomly allocated to normal protein diet (NP) and low protein diet (LP) groups using a randomized block design. At the age of 170 days, the digesta in the hindguts of the pigs were collected for microbial and metabolomic analysis. The results showed that there were no significant differences in the average daily gain, average daily feed intake, or feed:gain ratio between the NP and LP groups. The concentrations of isobutyrate, isovalerate, and branched-chain fatty acids (BCFAs)/short-chain fatty acids (SCFAs) in the cecum decreased with the reduction of dietary protein. Pyrosequencing of the V1-V3 region of the 16S rRNA genes showed that LP diet significantly decreased the relative abundance of Lactobacillus in the cecum, and Streptococcus in the colon; however, the relative abundance of Prevotella and Coprococcus in the LP group was significantly higher than in the NP group in the cecum, and Sarcina, Peptostreptococcaceae incertae sedis, Mogibacterium, Subdoligranulum, and Coprococcus was higher in the colon. The gas chromatography-mass spectrometry (GC-MS) analysis showed that the dietary protein level mainly affected phenylalanine metabolism; glycine, serine, and threonine metabolism; the citrate cycle; pyruvate metabolism; and the alanine, aspartate, and glutamate metabolism. Moreover, the correlation analysis of the combined datasets revealed some potential relationships between the colonic metabolites and certain microbial species. These results suggest that a low protein diet may modulate the microbial composition and metabolites of the hindgut, without affecting the growth performance of pigs; however, potential roles of this modulation to the health of pigs remains unknown. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Temporal Variability of Oral Microbiota over 10 Months and the Implications for Future Epidemiologic Studies.

    PubMed

    Vogtmann, Emily; Hua, Xing; Zhou, Liang; Wan, Yunhu; Suman, Shalabh; Zhu, Bin; Dagnall, Casey L; Hutchinson, Amy; Jones, Kristine; Hicks, Belynda D; Sinha, Rashmi; Shi, Jianxin; Abnet, Christian C

    2018-05-01

    Background: Few studies have prospectively evaluated the association between oral microbiota and health outcomes. Precise estimates of the intrasubject microbial metric stability will allow better study planning. Therefore, we conducted a study to evaluate the temporal variability of oral microbiota. Methods: Forty individuals provided six oral samples using the OMNIgene ORAL kit and Scope mouthwash oral rinses approximately every two months over 10 months. DNA was extracted using the QIAsymphony and the V4 region of the 16S rRNA gene was amplified and sequenced using the MiSeq. To estimate temporal variation, we calculated intraclass correlation coefficients (ICCs) for a variety of metrics and examined stability after clustering samples into distinct community types using Dirichlet multinomial models (DMMs). Results: The ICCs for the alpha diversity measures were high, including for number of observed bacterial species [0.74; 95% confidence interval (CI): 0.65-0.82 and 0.79; 95% CI: 0.75-0.94] from OMNIgene ORAL and Scope mouthwash, respectively. The ICCs for the relative abundance of the top four phyla and beta diversity matrices were lower. Three clusters provided the best model fit for the DMM from the OMNIgene ORAL samples, and the probability of remaining in a specific cluster was high (59.5%-80.7%). Conclusions: The oral microbiota appears to be stable over time for multiple metrics, but some measures, particularly relative abundance, were less stable. Impact: We used this information to calculate stability-adjusted power calculations that will inform future field study protocols and experimental analytic designs. Cancer Epidemiol Biomarkers Prev; 27(5); 594-600. ©2018 AACR . ©2018 American Association for Cancer Research.

  2. Alternative Protein Sources in the Diet Modulate Microbiota and Functionality in the Distal Intestine of Atlantic Salmon (Salmo salar).

    PubMed

    Gajardo, Karina; Jaramillo-Torres, Alexander; Kortner, Trond M; Merrifield, Daniel L; Tinsley, John; Bakke, Anne Marie; Krogdahl, Åshild

    2017-03-01

    The present study aimed to investigate whether alternative dietary protein sources modulate the microbial communities in the distal intestine (DI) of Atlantic salmon, and whether alterations in microbiota profiles are reflected in modifications in host intestinal function and health status. A 48-day feeding trial was conducted, in which groups of fish received one of five diets: a reference diet in which fishmeal (diet FM) was the only protein source and four experimental diets with commercially relevant compositions containing alternative ingredients as partial replacements of fishmeal, i.e., poultry meal (diet PM), a mix of soybean meal and wheat gluten (diet SBMWG), a mix of soy protein concentrate and poultry meal (diet SPCPM), and guar meal and wheat gluten (diet GMWG). Samples were taken of DI digesta and mucosa for microbial profiling using high-throughput sequencing and from DI whole tissue for immunohistochemistry and expression profiling of marker genes for gut health. Regardless of diet, there were significant differences between the microbial populations in the digesta and the mucosa in the salmon DI. Microbial richness was higher in the digesta than the mucosa. The digesta-associated bacterial communities were more affected by the diet than the mucosa-associated microbiota. Interestingly, both legume-based diets (SBMWG and GMWG) presented high relative abundance of lactic acid bacteria in addition to alteration in the expression of a salmon gene related to cell proliferation ( pcna ). It was, however, not possible to ascertain the cause-effect relationship between changes in bacterial communities and the host's intestinal responses to the diets. IMPORTANCE The intestine of cultivated Atlantic salmon shows symptoms of compromised function, which are most likely caused by imbalances related to the use of new feed ingredients. Intestinal microbiota profiling may become in the future a valuable endpoint measurement in order to assess fish intestinal health status and effects of diet. The present study aimed to gain information about whether alternative dietary protein sources modulate the microbial communities in the Atlantic salmon intestine and whether alterations in microbiota profiles are reflected in alterations in host intestinal function and health status. We demonstrate here that there are substantial differences between the intestinal digesta and mucosa in the presence and abundance of bacteria. The digesta-associated microbiota showed clear dependence on the diet composition, whereas mucosa-associated microbiota appeared to be less affected by diet composition. Most important, the study identified bacterial groups associated with diet-induced gut dysfunction that may be utilized as microbial markers of gut health status in fish. Copyright © 2017 Gajardo et al.

  3. Effects of short-term xylitol gum chewing on the oral microbiome.

    PubMed

    Söderling, Eva; ElSalhy, Mohamed; Honkala, Eino; Fontana, Margherita; Flannagan, Susan; Eckert, George; Kokaras, Alexis; Paster, Bruce; Tolvanen, Mimmi; Honkala, Sisko

    2015-03-01

    The aim of this study was to determine the effects of short-term xylitol gum chewing on the salivary microbiota of children. The study was a randomised, controlled, double-blind trial. Healthy children used xylitol chewing gum (xylitol group, n = 35) or sorbitol chewing gum (control group, n = 38) for 5 weeks. The daily dose of xylitol/sorbitol was approximately 6 g/day. At baseline and at the end of the test period, unstimulated and paraffin-stimulated saliva were collected. The microbial composition of the saliva was assessed using human oral microbe identification microarray (HOMIM). Mutans streptococci (MS) were plate cultured. As judged by HOMIM results, no xylitol-induced changes in the salivary microbiota took place in the xylitol group. In the control group, Veillonella atypica showed a significant decrease (p = 0.0001). The xylitol gum chewing decreased viable counts of MS in both stimulated (p = 0.006) and unstimulated (p = 0.002) saliva, but similar effects were also seen in the control group. The use of xylitol gum decreased MS, in general, but did not change the salivary microbial composition. Short-term consumption of xylitol had no impact on the composition of the salivary microbiota, but resulted in a decrease in the levels of MS.

  4. The role of the gut microbiota in food allergy.

    PubMed

    Rachid, Rima; Chatila, Talal A

    2016-12-01

    The rise in the prevalence of food allergy over the past decades has focused attention of factors that may impact disease development, most notably the gut microbiota. The gut microbial communities play a crucial role in promoting oral tolerance. Their alteration by such factors as Cesarean section delivery, diet and antibiotics may influence disease development. This review highlights recent progress in our understanding of the role of the gut microbiota in the development of food allergy. Food allergy is associated with alterations in the gut microbiota or dysbiosis early in life that may be predictive of disease persistence versus tolerance acquisition. Evidence for the benefits of adjunct therapy with probiotics for the prevention of food allergies and for potentiating oral immunotherapy remains circumstantial, with further studies needed to validate its use. Studies in murine models of food allergy suggest that microbial therapy with protolerogenic bacteria such as certain Clostridial species holds promise in future applications for prevention or therapy of food allergy. Progress in understanding the role of dysbiosis in food allergy and the factors that promote its development, such as antibiotic therapy, diet, modes of infant delivery, and environmental exposures, offer windows of opportunity for both preventive and therapeutic interventions to stem the rising tide of the food allergy epidemic.

  5. Stunting Persists despite Optimal Feeding: Are Toilets Part of the Solution?

    PubMed

    Prendergast, Andrew J; Humphrey, Jean H

    2015-01-01

    Children in developing countries have an average length-for-age that is already below the World Health Organization standard at birth and show a further decline in linear growth over the first 24 months of life; however, complementary feeding interventions have only a modest impact on growth. Children living in conditions of poor sanitation and hygiene are frequently exposed to pathogenic microbes through feco-oral transmission. Acute diarrhea represents only the tip of the 'enteric disease iceberg', with a substantial underlying burden of chronic, subclinical enteropathy. Environmental enteric dysfunction (EED) is characterized by disturbance in small intestinal structure and impaired gut barrier function, enabling microbial translocation and chronic systemic inflammation, which may impair growth. Gut damage appears to arise early in infancy and markers of intestinal inflammation, intestinal permeability and systemic immune activation are inversely associated with linear growth. Reducing feco-oral microbial transmission by improving water, sanitation and hygiene (WASH) may theoretically prevent or ameliorate EED and improve linear growth; ongoing trials are exploring this hypothesis. Given the complex interplay of factors leading to stunting, multisectoral interventions are likely required. Improving WASH in addition to infant feeding may be one approach to improve the growth and developmental potential of infants in developing countries. © 2015 Nestec Ltd., Vevey/S. Karger AG, Basel.

  6. Comparative effects of direct-fed microbials alone or with a trace minerals supplements on the productive performance, blood metabolites, and antioxidant status in grazing Awassi lambs.

    PubMed

    Alhidary, I A; Abdelrahman, M M; Khan, R U

    2016-12-01

    Twenty Awassi lambs were used to find the effects of direct-fed microbials (DFM) and long-acting trace minerals rumen bolus (TMB) supplements on performance, blood biochemical variables, and antioxidant status of the lambs under grazing conditions. The lambs were randomly distributed into four groups as follows: (1) untreated, (2) oral dose of 5 mL DFM, (3) TMB, or (4) oral dose of 5 mL DFM and TMB. The treatments were carried out for 90 days. Supplementation with TMB significantly increased (P < 0.05) average daily gain (ADG) and feed efficiency compared with the control. A significant (P < 0.05) increase in blood albumin in the DFM and a significant (P < 0.05) decrease in aspartate aminotrasferase were found in the lambs supplemented with TMB alone or in combination with DFM. Supplementing lambs with TMB resulted in higher glutathione peroxidase, total antioxidant capacity (P < 0.001) and activity of superoxide dismutase (P < 0.05) compared with no supplementation and supplementation with DFM only. In conclusion, TMB supplementation had a positive impact on performance traits and the antioxidant system of the lambs under grazing condition.

  7. Integrating TRPV1 Receptor Function with Capsaicin Psychophysics

    PubMed Central

    Smutzer, Gregory; Devassy, Roni K.

    2016-01-01

    Capsaicin is a naturally occurring vanilloid that causes a hot, pungent sensation in the human oral cavity. This trigeminal stimulus activates TRPV1 receptors and stimulates an influx of cations into sensory cells. TRPV1 receptors function as homotetramers that also respond to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Kinase-mediated phosphorylation of TRPV1 leads to increased sensitivity to both chemical and thermal stimuli. In contrast, desensitization occurs via a calcium-dependent mechanism that results in receptor dephosphorylation. Human psychophysical studies have shown that capsaicin is detected at nanomole amounts and causes desensitization in the oral cavity. Psychophysical studies further indicate that desensitization can be temporarily reversed in the oral cavity if stimulation with capsaicin is resumed at short interstimulus intervals. Pretreatment of lingual epithelium with capsaicin modulates the perception of several primary taste qualities. Also, sweet taste stimuli may decrease the intensity of capsaicin perception in the oral cavity. In addition, capsaicin perception and hedonic responses may be modified by diet. Psychophysical studies with capsaicin are consistent with recent findings that have identified TRPV1 channel modulation by phosphorylation and interactions with membrane inositol phospholipids. Future studies will further clarify the importance of capsaicin and its receptor in human health and nutrition. PMID:26884754

  8. Probiotics, antibiotics and the immune responses to vaccines.

    PubMed

    Praharaj, Ira; John, Sushil M; Bandyopadhyay, Rini; Kang, Gagandeep

    2015-06-19

    Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Association among Vitamin D, Oral Candidiasis, and Calprotectinemia in HIV

    PubMed Central

    Sroussi, H.Y.; Burke-Miller, J.; French, A.L.; Adeyemi, O.M.; Weber, K.M.; Lu, Y.; Cohen, M.

    2012-01-01

    Vitamin D deficiency is associated with negative health outcomes, including infections. Vitamin D modulates inflammation and down-regulates the expression of calprotectin, a molecule which influences neutrophil functions and which has been linked to oral candidiasis (OC), the most prevalent oral lesion in human immunodeficiency virus (HIV). We hypothesized a positive association between vitamin D deficiency and OC, and that this effect was partially modulated by calprotectinemia. Plasma calprotectin and serum 25 (OH) vitamin D levels were measured in stored samples from 84 HIV-seropositive Chicago women enrolled in the Oral Substudy of the Women’s Interagency HIV Study (WIHS). OC and vitamin D deficiency were diagnosed in, respectively, 14 (16.7%) and 46 (54.8%) of those studied. Vitamin D deficiency was positively associated with OC (p = 0.011) and with higher calprotectinemia (p = 0.019) in univariate analysis. After adjustment for CD4, HIV viral load, HIV treatment, and tobacco and heroin/methadone use, vitamin D deficiency remained a significant predictor of OC (OR 5.66; 95% confidence interval 1.01-31.71). This association weakened after adjustment for calprotectinemia, supporting a role for calprotectinemia as a moderator of this effect. These findings support studies to examine the effect of vitamin D status on calprotectinemia, neutrophil functions, and opportunistic mucosal infections in HIV. PMID:22538413

  10. Association among vitamin D, oral candidiasis, and calprotectinemia in HIV.

    PubMed

    Sroussi, H Y; Burke-Miller, J; French, A L; Adeyemi, O M; Weber, K M; Lu, Y; Cohen, M

    2012-07-01

    Vitamin D deficiency is associated with negative health outcomes, including infections. Vitamin D modulates inflammation and down-regulates the expression of calprotectin, a molecule which influences neutrophil functions and which has been linked to oral candidiasis (OC), the most prevalent oral lesion in human immunodeficiency virus (HIV). We hypothesized a positive association between vitamin D deficiency and OC, and that this effect was partially modulated by calprotectinemia. Plasma calprotectin and serum 25 (OH) vitamin D levels were measured in stored samples from 84 HIV-seropositive Chicago women enrolled in the Oral Substudy of the Women's Interagency HIV Study (WIHS). OC and vitamin D deficiency were diagnosed in, respectively, 14 (16.7%) and 46 (54.8%) of those studied. Vitamin D deficiency was positively associated with OC (p = 0.011) and with higher calprotectinemia (p = 0.019) in univariate analysis. After adjustment for CD4, HIV viral load, HIV treatment, and tobacco and heroin/methadone use, vitamin D deficiency remained a significant predictor of OC (OR 5.66; 95% confidence interval 1.01-31.71). This association weakened after adjustment for calprotectinemia, supporting a role for calprotectinemia as a moderator of this effect. These findings support studies to examine the effect of vitamin D status on calprotectinemia, neutrophil functions, and opportunistic mucosal infections in HIV.

  11. [Relationship of consequences of anastomotic insufficiency and bacterial flora of oral cavity in patients with esophageal and cardia cancer].

    PubMed

    Balázs, Ákos; Winkler, Beáta; Kristóf, Katalin; Harsányi, László; Bokor, Lívia

    2017-01-01

    In the course of anastomotic insufficiency following resection of esophageal cancers the bacterial compound of the esophageal substance has a remarkable, presumable role in the outcome of complications. The purpose of this study is to compare the consequences of the anastomotic leak with the bacterial flora of patients' oral cavity. In this prospective study a total of 131 patients were investigated directly before the surgical intervention taking a bacterial sample. Bacterial flora of patients' oral cavity was analysed; and the correlation between the consequences of the anastomotic leak and the content of the bacterial flora was examined. Pathogenic bacteria in the oral microflora in 50 cases (38.2%) was found. Statistically significant, moderate correlation was found between the severity of the complication and the incidence of pathogenic bacteria (r s = 0.553; p≤0.05). Pathogenic agent in the microbial flora might induce higher risk and more severe outcome in case of anastomotic leakage and it might be evaluated as a determinative factor. Consideration of the bacterial flora of the oral cavity requires more attention in the preoperative preparation than before and it demands the change of the current practice. Orv. Hetil., 2017, 158(1), 25-30.

  12. In vitro gastric survival of commercially available probiotic strains and oral dosage forms.

    PubMed

    Caillard, Romain; Lapointe, Nicolas

    2017-03-15

    Although the intestinal microbial community is still incompletely understood, there is strong evidence of the benefits of using probiotics to address some medical states or conditions. As a result, the probiotics oral supplements market has exploded during the last few years. However, while their sensitivity to gastric juices, acidic pH and bile is well known, most of these oral forms would not guarantee any survival of the strains in such conditions. In this work, we have studied the resistance to simulated gastric juices of several commercially available probiotics products. These included sixteen strains and ten oral forms such as enteric/non-enteric capsules/tablets and microencapsulated strains. Results demonstrated that all tested strains showed high sensitivity to acidic conditions and suggested that most of these microorganisms would not show any viability when immersed in the stomach at fasting. Most probiotics oral forms did not provide any protection to strains, unless these forms presented strong enteric protection. Consequently, the efficacy of non-enteric products to fully provide to the patient the benefits related to the consumption of probiotics supplement would be strongly questionable. This study underlines the chasm between the current opinion about probiotics protection needs and the products proposed by many companies in the dietary supplements area. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The Role of Antibiotics in Gut Microbiota Modulation: The Eubiotic Effects of Rifaximin.

    PubMed

    Ponziani, Francesca Romana; Scaldaferri, Franco; Petito, Valentina; Paroni Sterbini, Francesco; Pecere, Silvia; Lopetuso, Loris R; Palladini, Alessandra; Gerardi, Viviana; Masucci, Luca; Pompili, Maurizio; Cammarota, Giovanni; Sanguinetti, Maurizio; Gasbarrini, Antonio

    2016-01-01

    Antibiotics are mainly used in clinical practice for their activity against pathogens, but they also alter the composition of commensal gut microbial community. Rifaximin is a non-absorbable antibiotic with additional effects on the gut microbiota about which very little is known. It is still not clear to what extent rifaximin can be able to modulate gut microbiota composition and diversity in different clinical settings. Studies based on culture-dependent techniques revealed that rifaximin treatment promotes the growth of beneficial bacteria, such as Bifidobacteria and Lactobacilli. Accordingly, our metagenomic analysis carried out on patients with different gastrointestinal and liver diseases highlighted a significant increase in Lactobacilli after rifaximin treatment, persisting in the short time period. This result was independent of the disease background and was not accompanied by a significant alteration of the overall gut microbial ecology. This suggests that rifaximin can exert important eubiotic effects independently of the original disease, producing a favorable gut microbiota perturbation without changing its overall composition and diversity. © 2016 S. Karger AG, Basel.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roux, Simon; Hawley, Alyse K.; Torres Beltran, Monica

    Viruses modulate microbial communities and alter ecosystem functions. However, due to cultivation bottlenecks, specific virus–host interaction dynamics remain cryptic. In this study, we examined 127 single-cell amplified genomes (SAGs) from uncultivated SUP05 bacteria isolated from a model marine oxygen minimum zone (OMZ) to identify 69 viral contigs representing five new genera within dsDNA Caudovirales and ssDNA Microviridae. Infection frequencies suggest that ∼1/3 of SUP05 bacteria is viral-infected, with higher infection frequency where oxygen-deficiency was most severe. Observed Microviridae clonality suggests recovery of bloom-terminating viruses, while systematic co-infection between dsDNA and ssDNA viruses posits previously unrecognized cooperation modes. Analyses of 186more » microbial and viral metagenomes revealed that SUP05 viruses persisted for years, but remained endemic to the OMZ. Finally, identification of virus-encoded dissimilatory sulfite reductase suggests SUP05 viruses reprogram their host's energy metabolism. Together, these results demonstrate closely coupled SUP05 virus–host co-evolutionary dynamics with the potential to modulate biogeochemical cycling in climate-critical and expanding OMZs.« less

  15. Capsule expression in Streptococcus mitis modulates interaction with oral keratinocytes and alters susceptibility to human antimicrobial peptides.

    PubMed

    Rukke, H V; Engen, S A; Schenck, K; Petersen, F C

    2016-08-01

    Streptococcus mitis is a colonizer of the oral cavity and the nasopharynx, and is closely related to Streptococcus pneumoniae. Both species occur in encapsulated and unencapsulated forms, but in S. mitis the role of the capsule in host interactions is mostly unknown. Therefore, the aim of this study was to examine how capsule expression in S. mitis can modulate interactions with the host with relevance for colonization. The S. mitis type strain, as well as two mutants of the type strain, an isogenic capsule deletion mutant, and a capsule switch mutant expressing the serotype 4 capsule of S. pneumoniae TIGR4, were used. Wild-type and capsule deletion strains of S. pneumoniae TIGR4 were included for comparison. We found that capsule production in S. mitis reduced adhesion to oral and lung epithelial cells. Further, exposure of oral epithelial cells to encapsulated S. mitis resulted in higher interleukin-6 and CXCL-8 transcription levels relative to the unencapsulated mutant. Capsule expression in S. mitis increased the sensitivity to human neutrophil peptide 1-3 but reduced the sensitivity to human β-defensin-3 and cathelicidin. This was in contrast with S. pneumoniae in which capsule expression has been generally associated with increased sensitivity to human antimicrobial peptides (AMPs). Collectively, these findings indicate that capsule expression in S. mitis is important in modulating interactions with epithelial cells, and is associated with increased or reduced susceptibility to AMPs depending on the nature of the AMP. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Melanin: the biophysiology of oral melanocytes and physiological oral pigmentation

    PubMed Central

    2014-01-01

    The presence of melanocytes in the oral epithelium is a well-established fact, but their physiological functions are not well defined. Melanin provides protection from environmental stressors such as ultraviolet radiation and reactive oxygen species; and melanocytes function as stress-sensors having the capacity both to react to and to produce a variety of microenvironmental cytokines and growth factors, modulating immune, inflammatory and antibacterial responses. Melanocytes also act as neuroendocrine cells producing local neurotransmitters including acetylcholine, catecholamines and opioids, and hormones of the melanocortin system such as proopiomelanocortin, adrenocorticotropic hormone and α-melanocyte stimulating hormone, that participate in intracellular and in intercellular signalling pathways, thus contributing to tissue homeostasis. There is a wide range of normal variation in melanin pigmentation of the oral mucosa. In general, darker skinned persons more frequently have oral melanin pigmentation than light-skinned persons. Variations in oral physiological pigmentation are genetically determined unless associated with some underlying disease. In this article, we discuss some aspects of the biophysiology of oral melanocytes, of the functions of melanin, and of physiological oral pigmentation. PMID:24661309

  17. Metabolomic and pharmacokinetic study on the mechanism underlying the lipid-lowering effect of oral-administrated berberine

    PubMed Central

    Gu, Shenghua; Cao, Bei; Sun, Runbin; Tang, Yueqing; Paletta, Janice L.; Wu, Xiao-Lei; Liu, Linsheng; Zha, Weibin; Zhao, Chunyan; Li, Yan; Radlon, Jason M.; Hylemon, Phillip B.; Zhou, Huiping; Aa, Jiye; Wang, Guangji

    2014-01-01

    Clinic and animal studies demonstrated that oral-administrated berberine had distinct lipid-lowering effect. However, pharmacokinetic studies showed berberine was poorly absorbed into the body so that the levels of berberine in the blood and target tissues were far below the effective concentrations revealed. To probe the underlying mechanism, the effect of berberine on biological system was studied on a high-fat-diet-induced hamster hyperlipidemia model. Our results showed that intragastric-administered berberine was poorly absorbed into circulation and most berberine accumulated in gut content. Although the bioavailability for intragastric-administered berberine was much lower than that of intraperitoneal-administered berberine, it had stronger lipid-lowing effect, indicating gastrointestinal is a potential target for hypolipidemic effect of berberine. Metabolomic study on both serum and gut content showed that oral-administrated berberine significantly regulated molecules involved in lipid metabolism, and increased the generation of bile acids in the hyperlipidemic model. DNA analysis revealed that the oral-administered berberine modulated the gut microbiota, and BBR showed a significant inhibition on the 7α-dehydroxylation conversion of cholic acid to deoxycholic acid, indicating a decreased elimination of bile acids in the gut. However, in model hamsters, elevated bile acids failed to down-regulate the expression and function of CYP7A1 in a negative feed-back way. It was suggested that the hypocholesterolemic effect for oral-administrated berberine is involved in its effect on modulating the turnover of bile acids and farnesoid X receptor signal pathway. PMID:25411028

  18. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis.

    PubMed

    Mortha, Arthur; Chudnovskiy, Aleksey; Hashimoto, Daigo; Bogunovic, Milena; Spencer, Sean P; Belkaid, Yasmine; Merad, Miriam

    2014-03-28

    The intestinal microbiota and tissue-resident myeloid cells promote immune responses that maintain intestinal homeostasis in the host. However, the cellular cues that translate microbial signals into intestinal homeostasis remain unclear. Here, we show that deficient granulocyte-macrophage colony-stimulating factor (GM-CSF) production altered mononuclear phagocyte effector functions and led to reduced regulatory T cell (T(reg)) numbers and impaired oral tolerance. We observed that RORγt(+) innate lymphoid cells (ILCs) are the primary source of GM-CSF in the gut and that ILC-driven GM-CSF production was dependent on the ability of macrophages to sense microbial signals and produce interleukin-1β. Our findings reveal that commensal microbes promote a crosstalk between innate myeloid and lymphoid cells that leads to immune homeostasis in the intestine.

  19. Taxon-Function Decoupling as an Adaptive Signature of Lake Microbial Metacommunities Under a Chronic Polymetallic Pollution Gradient

    PubMed Central

    Cheaib, Bachar; Le Boulch, Malo; Mercier, Pierre-Luc; Derome, Nicolas

    2018-01-01

    Adaptation of microbial communities to anthropogenic stressors can lead to reductions in microbial diversity and disequilibrium of ecosystem services. Such adaptation can change the molecular signatures of communities with differences in taxonomic and functional composition. Understanding the relationship between taxonomic and functional variation remains a critical issue in microbial ecology. Here, we assessed the taxonomic and functional diversity of a lake metacommunity system along a polymetallic pollution gradient caused by 60 years of chronic exposure to acid mine drainage (AMD). Our results highlight three adaptive signatures. First, a signature of taxon—function decoupling was detected in the microbial communities of moderately and highly polluted lakes. Second, parallel shifts in taxonomic composition occurred between polluted and unpolluted lakes. Third, variation in the abundance of functional modules suggested a gradual deterioration of ecosystem services (i.e., photosynthesis) and secondary metabolism in highly polluted lakes. Overall, changes in the abundance of taxa, function, and more importantly the polymetallic resistance genes such as copA, copB, czcA, cadR, cCusA, were correlated with trace metal content (mainly Cadmium) and acidity. Our findings highlight the impact of polymetallic pollution gradient at the lowest trophic levels. PMID:29774016

  20. Microbial community composition and endolith colonization at an Arctic thermal spring are driven by calcite precipitation

    USGS Publications Warehouse

    Starke, Verena; Kirshtein, Julie; Fogel, Marilyn L.; Steele, Andrew

    2013-01-01

    Environmental conditions shape community composition. Arctic thermal springs provide an opportunity to study how environmental gradients can impose strong selective pressures on microbial communities and provide a continuum of niche opportunities. We use microscopic and molecular methods to conduct a survey of microbial community composition at Troll Springs on Svalbard, Norway, in the high Arctic. Microorganisms there exist under a wide range of environmental conditions: in warm water as periphyton, in moist granular materials, and in cold, dry rock as endoliths. Troll Springs has two distinct ecosystems, aquatic and terrestrial, together in close proximity, with different underlying environmental factors shaping each microbial community. Periphyton are entrapped during precipitation of calcium carbonate from the spring's waters, providing microbial populations that serve as precursors for the development of endolithic communities. This process differs from most endolith colonization, in which the rock predates the communities that colonize it. Community composition is modulated as environmental conditions change within the springs. At Troll, the aquatic environments show a small number of dominant operational taxonomic units (OTUs) that are specific to each sample. The terrestrial environments show a more even distribution of OTUs common to multiple samples.

Top