Science.gov

Sample records for modulating radiation-induced heart

  1. Radiation-induced heart disease in rats

    SciTech Connect

    Lauk, S.; Kiszel, Z.; Buschmann, J.; Trott, K.R.

    1985-04-01

    After local irradiation of the rat heart with X ray doses of over 10 Gy (single dose), animals developed symptoms of radiation-induced heart disease, which at higher doses would lead to fatal cardiac failure. The LD 50 at 1 year was between 15 Gy and 20 Gy. The pericardium and epicardium responded to irradiation with exudative pericarditis after 4 months. Focal myocardial damage was secondary to progressive capillary damage.

  2. Radiation-induced heart disease in lung cancer radiotherapy

    PubMed Central

    Ming, Xin; Feng, Yuanming; Yang, Chengwen; Wang, Wei; Wang, Ping; Deng, Jun

    2016-01-01

    Abstract Background: Radiation-induced heart disease (RIHD), which affects the patients’ prognosis with both acute and late side effects, has been published extensively in the radiotherapy of breast cancer, lymphoma and other benign diseases. Studies on RIHD in lung cancer radiotherapy, however, are less extensive and clear even though the patients with lung cancer are delivered with higher doses to the heart during radiation treatment. Methods: In this article, after extensive literature search and analysis, we reviewed the current evidence on RIHD in lung cancer patients after their radiation treatments and investigated the potential risk factors for RIHD as compared to other types of cancers. Result: Cardiac toxicity has been found highly relevant in lung cancer radiotherapy. So far, the crude incidence of cardiac complications in the lung cancer patients after radiotherapy has been up to 33%. Conclusion: The dose to the heart, the lobar location of tumor, the treatment modality, the history of heart and pulmonary disease and smoking were considered as potential risk factors for RIHD in lung cancer radiotherapy. As treatment techniques improve over the time with better prognosis for lung cancer survivors, an improved prediction model can be established to further reduce the cardiac toxicity in lung cancer radiotherapy. PMID:27741117

  3. Early corticosteroid administration in experimental radiation-induced heart disease

    SciTech Connect

    Reeves, W.C.; Stryker, J.A.; Abt, A.A.; Chung, C.K.; Whitesell, L.; Zelis, R.

    1980-02-01

    The ability of dexamethasone (DEX) to reduce the severity of the late stage of radiation-induced heart disease (RIHD) was assessed in 25 New Zealand white rabbits. Ten rabbits served as unirradiated controls (CONT). In Group A, seven rabbits received intravenous DEX prior to irradiation and every 24 hours for three consecutive days. DEX was not administered to the eight rabbits in Group B. At 100 days postirradiation, the severity of the late state was determined by microscopic examination (MICRO) for myocardial fibrosis and determination of myocardial hydroxyproline content (MHP). Myocardial fibrosis was evident in groups A (40%) and B (80%) while none was present in CONT by MICRO. One rabbit in Group B with no fibrosis by MICRO had abnormally increased MHP. MHP was significantly increased in Groups A and B, as compared to CONT (p < 0.01). In addition to less fibrosis by MICRO, Group A demonstrated a significant reduction of MHP when compared to Group B (p < 0.05). Determination of MHP may be superior to MICRO in the detection of the late stage of RIHD. Also, early DEX administration appears to reduce myocardial collagen content (fibrosis) in this experimental model.

  4. Radiation-Induced Immune Modulation in Prostate Cancer

    DTIC Science & Technology

    2007-01-01

    postulate that radiation-induced TNFR I probably acts as a “ brake ” on immunity. Because of the high risk of the proposed experiment and high...the rest of body shielded. Tumor diameters were measured in three mutually orthogonal dimensions at 2–3 day intervals with a vernier caliper and the

  5. Modulation of Radiation-Induced Apoptosis by Thiolamines

    NASA Technical Reports Server (NTRS)

    Warters, R. L.; Roberts, J. C.; Wilmore, B. H.; Kelley, L. L.

    1997-01-01

    Exposure to the thiolamine radioprotector N-(2-mercaptoethyl)-1,3-propanediamine (WR-1065) induced apoptosis in the mouse TB8-3 hybridoma after 60-minute (LD(sub50) = 4.5mM) or during a 20-hour (LD(sub50) = 0.15 mM) exposure. In contrast, a 20-hour exposure to 17 mM L-cysteine or 10 mM cysteamine was required to induce 50 percent apoptosis within 20 hours. Apoptosis was not induced by either a 60-minute or 20-hour exposure to 10 mM of the thiazolidime prodrugs ribose-cysteine (RibCys) or ribose-cysteamine (RibCyst). Thiolamine-induced apoptosis appeared to be a p53-independent process since it was induced by WR-1065 exposure in human HL60 cells. Exposure to WR-1065 (4mM for 15 minutes) or cysteine (10mM for 60 minutes) before and during irradiation protected cells against the induction of both DNA double-strand breaks and apoptosis, while exposure to RibCys (10 mM for 3 hours) did not. Treatment with either WR-1065, cysteine, RibCys or RibCyst for 60 minutes beginning 60 minutes after irradiation did not affect the level of radiation-induced apoptosis. In contrast, treatment with either cysteine, cysteamine or RibCys for 20 hours beginning 60 minutes after irradiation enhanced radiation-induced apoptosis. Similar experiments could not be conducted with WR-1065 because of its extreme toxicity. Our results indicate that thiolamine enhancement of radiation-induced apoptosis is not involved in their previously reported capacity to reduce radiation-induced mutations.

  6. Modulation of radiation-induced hemopoietic suppression by acute thrombocytopenia

    SciTech Connect

    Ebbe, S.; Phalen, E.; Threatte, G.; Londe, H.

    1985-01-01

    Modifications of radiation-induced hemopoietic suppression by acute thrombocytopenia were evaluated. Immediately before or after exposure to sublethal irradiation, mice were given a single injection of anti-mouse platelet serum (APS), normal heterologous serum, neuraminidase (N'ase), or saline, or no further treatment was provided. Hemopoiesis was evaluated by blood cell counts, hematocrits, and incorporation of (75Se)selenomethionine into platelets. APS and N'ase induced an acute thrombocytopenia from which there was partial recovery before the platelet count started to fall from the radiation. During the second post-treatment week, both thrombocytopoiesis and erythropoiesis were greater in mice that received APS or N'ase in addition to radiation than in control irradiated mice. Differences in leukopoiesis were not apparent. Therefore, both thrombocytopoiesis and erythropoiesis appeared to be responsive to a stimulus generated by acute thrombocytopenia in sublethally irradiated mice.

  7. UV radiation induced surface modulation time evolution in polymeric materials

    NASA Astrophysics Data System (ADS)

    Apostol, I.; Apostol, D.; Damian, V.; Iordache, I.; Hurduc, N.; Sava, I.; Sacarescu, L.; Stoica, I.

    2010-11-01

    The reorganization processes at submicron level of the polymeric materials have been investigated because of their applications in optoelectronics and bio-science. We have obtained surface relief modulation in single step processing on the photo resist and polysiloxane films. But for technical applications the time evolution and stability of the induced surface structure is an important parameter and is a problem to be discussed. In case of single step surface relief formation on polymeric materials the process is connected with the photochromic behavior of the materials. As it is known the UV light induced effects on the material structure are reversible under the action of visible light, but with different speeds. In this report is analyzed the time evolution of the surface modulation obtained under the action of the UV light for azopolymers with different structures.

  8. Radiation-Induce Immune Modulation in Prostate Cancer

    DTIC Science & Technology

    2005-01-01

    Pei Liao,* Chun-Chieh Wang,*Il Lisa H. Butterfield,* James S. Economou,t Antoni Ribas ,t Wilson S. Meng,4 Keisuke S. Iwamoto,* and William H. McBride2...prostate cancer model. Int. J. Radiat. Oncol. Biol. Phys.. 59:579- 583, 2004. Liao, Y-P., C-C. Wang, L.H. Butterfield, J.S. Economou, A. Ribas , W.S. Meng...A. Ribas and W.H. McBride: Radiation modulates tumor antigen presentation by dendritic cells. In: Abstracts of Papers for the 95 "h Annual Meeting of

  9. Studies on Pentoxifylline and Tocopherol Combination for Radiation-Induced Heart Disease in Rats

    SciTech Connect

    Liu Hui; Xiong Mai; Xia Yunfei; Cui Nianji; Lu Rubiao; Deng Ling; Lin Yuehao; Rong Tiehua

    2009-04-01

    Purpose: To investigate whether the application of pentoxifylline (PTX) and tocopherol l (Vit. E) could modify the development of radiation-induced heart disease and downregulate the expression of transforming growth factor (TGF)-{beta}1mRNA in rats. Methods and Materials: A total of 120 Sprague-Dawley rats were separated into four groups: control group, irradiated group, experimental group 1, and experiment group 2. Supplementation was started 3 days before irradiation; in experimental group 1, injection of PTX (15 mg/kg/d) and Vit. E (5.5 mg/kg/d) continued till the 12th week postirradiation, whereas in experimental group 2 it was continued until the 24th week postirradiation. All rats were administrated a single dose of 20 Gy irradiation to the heart except the control group. Histopathologic evaluation was performed at various time points (Days 1, 2, 4, 8, and 12 and 24th week) up to 24 weeks after irradiation. Changes of levels of TGF-{beta}1 mRNA expression were also investigated at the same time points using competitive polymerase chain reaction. Results: Compared with the irradiated group, levels of TGF-{beta}1 mRNA of the rat hearts were relatively low in the two experimental groups on the 12th week postirradiation. In experimental group 1, there was a rebound expression of TGF-{beta}1 mRNA on the 24th week postirradiation, whereas that of the experimental group 2 remained low (p < 0.05). The proportions of collagen fibers of the two experimental groups were lower than that of irradiated group (p < 0.05). A rebound could be observed in the experimental group 1. Conclusion: PTX and Vit. E downregulated the expression of TGF-{beta}1 mRNA. The irradiated rat hearts showed a marked pathologic response to the drugs. The withdrawal of drugs in the 12th week postirradiation could cause rebound effects of the development of fibrosis.

  10. Modulation of radiation-induced apoptosis and G{sub 2}/M block in murine T-lymphoma cells

    SciTech Connect

    Palayoor, S.T.; Macklis, R.M.; Bump, E.A.; Coleman, C.N.

    1995-03-01

    Radiation-induced apoptosis in lymphocyte-derived cell lines is characterized by endonucleolytic cleavage of cellular DNA within hours after radiation exposure. We have studied this phenomenon qualitatively (DNA gel electrophoresis) and quantitatively (diphenylamine reagent assay) in murine EL4 T-lymphoma cells exposed to {sup 137}Cs {gamma} irradiation. Fragmentation was discernible within 18-24 h after exposure. It increased with time and dose and reached a plateau after 8 Gy of {gamma} radiation. We studied the effect of several pharmacological agents on the radiation-induced G{sub 2}/M block and DNA fragmentation. The agents which reduced the radiation-induced G{sub 2}/M-phase arrest (caffeine, theobromine, theophylline and 2-aminopurine) enhanced the degree of DNA fragmentation at 24 h. In contrast, the agents which sustained the radiation-induced G{sub 2}/M-phase arrest (TPA, DBcAMP, IBMX and 3-aminobenzamide) inhibited the DNA fragmentation at 24 h. These studies on EL4 lymphoma cells are consistent with the hypothesis that cells with radiation-induced genetic damage are eliminated by apoptosis subsequent to a G{sub 2}/M block. Furthermore, it may be possible to modulate the process of radiation-induced apoptosis in lymphoma cells with pharmacological agents that modify the radiation-induced G{sub 2}/M block, and to use this effect in the treatment of patients with malignant disease. 59 refs., 7 figs.

  11. Roles of Sensory Nerves in the Regulation of Radiation-Induced Structural and Functional Changes in the Heart

    SciTech Connect

    Sridharan, Vijayalakshmi; Tripathi, Preeti; Sharma, Sunil; Moros, Eduardo G.; Zheng, Junying; Hauer-Jensen, Martin; Boerma, Marjan

    2014-01-01

    Purpose: Radiation-induced heart disease (RIHD) is a chronic severe side effect of radiation therapy of intrathoracic and chest wall tumors. The heart contains a dense network of sensory neurons that not only are involved in monitoring of cardiac events such as ischemia and reperfusion but also play a role in cardiac tissue homeostasis, preconditioning, and repair. The purpose of this study was to examine the role of sensory nerves in RIHD. Methods and Materials: Male Sprague-Dawley rats were administered capsaicin to permanently ablate sensory nerves, 2 weeks before local image-guided heart x-ray irradiation with a single dose of 21 Gy. During the 6 months of follow-up, heart function was assessed with high-resolution echocardiography. At 6 months after irradiation, cardiac structural and molecular changes were examined with histology, immunohistochemistry, and Western blot analysis. Results: Capsaicin pretreatment blunted the effects of radiation on myocardial fibrosis and mast cell infiltration and activity. By contrast, capsaicin pretreatment caused a small but significant reduction in cardiac output 6 months after irradiation. Capsaicin did not alter the effects of radiation on cardiac macrophage number or indicators of autophagy and apoptosis. Conclusions: These results suggest that sensory nerves, although they play a predominantly protective role in radiation-induced cardiac function changes, may eventually enhance radiation-induced myocardial fibrosis and mast cell activity.

  12. Radiation-induced inflammatory markers of brain injury are modulated by PPARdelta activation in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Schnegg, Caroline Isabel

    As a result of improvements in cancer therapy and health care, the population of long-term cancer survivors is growing. For these approximately 12 million long-term cancer survivors, brain metastases are a significant risk. Fractionated partial or whole-brain irradiation (fWBI) is often required to treat both primary and metastatic brain cancer. Radiation-induced normal tissue injury, including progressive cognitive impairment, however, can significantly affect the well-being of the approximately 200,000 patients who receive these treatments each year. Recent reports indicate that radiation-induced brain injury is associated with chronic inflammatory and oxidative stress responses, as well as increased microglial activation in the brain. Anti-inflammatory drugs may, therefore, be a beneficial therapy to mitigate radiation-induced brain injury. We hypothesized that activation of peroxisomal proliferator activated receptor delta (PPARō) would prevent or ameliorate radiation-induced brain injury, including cognitive impairment, in part, by alleviating inflammatory responses in microglia. For our in vitro studies, we hypothesized that PPARō activation would prevent the radiation-induced inflammatory response in microglia following irradiation. Incubating BV-2 murine microglial cells with the (PPAR)ō agonist, L-165041, prevented the radiation-induced increase in: i) intracellular ROS generation, ii) Cox-2 and MCP-1 expression, and iii) IL-1β and TNF-α message levels. This occured, in part, through PPARō-mediated modulation of stress activated kinases and proinflammatory transcription factors. PPARō inhibited NF-κB via transrepression by physically interacting with the p65 subunit, and prevented activation of the PKCα/MEK1/2/ERK1/2/AP-1 pathway by inhibiting the radiation-induced increase in intracellular ROS generation. These data support the hypothesis that PPARō activation can modulate the radiation-induced oxidative stress and inflammatory

  13. Radiation-Induced Cancers From Modern Radiotherapy Techniques: Intensity-Modulated Radiotherapy Versus Proton Therapy

    SciTech Connect

    Yoon, Myonggeun; Ahn, Sung Hwan; Kim, Jinsung; Shin, Dong Ho; Park, Sung Yong; Lee, Se Byeong; Shin, Kyung Hwan; Cho, Kwan Ho

    2010-08-01

    Purpose: To assess and compare secondary cancer risk resulting from intensity-modulated radiotherapy (IMRT) and proton therapy in patients with prostate and head-and-neck cancer. Methods and Materials: Intensity-modulated radiotherapy and proton therapy in the scattering mode were planned for 5 prostate caner patients and 5 head-and-neck cancer patients. The secondary doses during irradiation were measured using ion chamber and CR-39 detectors for IMRT and proton therapy, respectively. Organ-specific radiation-induced cancer risk was estimated by applying organ equivalent dose to dose distributions. Results: The average secondary doses of proton therapy for prostate cancer patients, measured 20-60cm from the isocenter, ranged from 0.4 mSv/Gy to 0.1 mSv/Gy. The average secondary doses of IMRT for prostate patients, however, ranged between 3 mSv/Gy and 1 mSv/Gy, approximately one order of magnitude higher than for proton therapy. Although the average secondary doses of IMRT were higher than those of proton therapy for head-and-neck cancers, these differences were not significant. Organ equivalent dose calculations showed that, for prostate cancer patients, the risk of secondary cancers in out-of-field organs, such as the stomach, lungs, and thyroid, was at least 5 times higher for IMRT than for proton therapy, whereas the difference was lower for head-and-neck cancer patients. Conclusions: Comparisons of organ-specific organ equivalent dose showed that the estimated secondary cancer risk using scattering mode in proton therapy is either significantly lower than the cases in IMRT treatment or, at least, does not exceed the risk induced by conventional IMRT treatment.

  14. Effects of Adenovirus-Mediated Delivery of the Human Hepatocyte Growth Factor Gene in Experimental Radiation-Induced Heart Disease

    SciTech Connect

    Hu Shunying; Chen Yundai; Li Libing; Chen Jinlong; Wu Bin; Zhou, Xiao; Zhi Guang; Li Qingfang; Wang Rongliang; Duan Haifeng; Guo Zikuan; Yang Yuefeng; Xiao Fengjun; Wang Hua; Wang Lisheng

    2009-12-01

    Purpose: Irradiation to the heart may lead to late cardiovascular complications. The purpose of this study was to investigate whether adenovirus-mediated delivery of the human hepatocyte growth factor gene could reduce post-irradiation damage of the rat heart and improve heart function. Methods and Materials: Twenty rats received single-dose irradiation of 20 Gy gamma ray locally to the heart and were randomized into two groups. Two weeks after irradiation, these two groups of rats received Ad-HGF or mock adenovirus vector intramyocardial injection, respectively. Another 10 rats served as sham-irradiated controls. At post-irradiation Day 120, myocardial perfusion was tested by myocardial contrast echocardiography with contrast agent injected intravenously. At post-irradiation Day 180, cardiac function was assessed using the Langendorff technique with an isolated working heart model, after which heart samples were collected for histological evaluation. Results: Myocardial blood flow was significantly improved in HGF-treated animals as measured by myocardial contrast echocardiography at post-irradiation Day 120 . At post-irradiation Day 180, cardiac function was significantly improved in the HGF group compared with mock vector group, as measured by left ventricular peak systolic pressure (58.80 +- 9.01 vs. 41.94 +- 6.65 mm Hg, p < 0.05), the maximum dP/dt (5634 +- 1303 vs. 1667 +- 304 mm Hg/s, p < 0.01), and the minimum dP/dt (3477 +- 1084 vs. 1566 +- 499 mm Hg/s, p < 0.05). Picrosirius red staining analysis also revealed a significant reduction of fibrosis in the HGF group. Conclusion: Based on the study findings, hepatocyte growth factor gene transfer can attenuate radiation-induced cardiac injury and can preserve cardiac function.

  15. Myocardial hydroxyproline reduced by early administration of methylprednisolone or ibuprofen to rabbits with radiation-induced heart disease

    SciTech Connect

    Reeves, W.C.; Cunningham, D.; Schwiter, E.J.; Abt, A.; Skarlatos, S.; Wood, M.A.; Whitesell, L.

    1982-05-01

    The ability of methylprednisolone (MP) and ibuprofen (IB) to reduce the severity of the late state of radiation-induced heart disease was assessed in 57 New Zealand white rabbits. Before and shortly after cardiac irradiation, 15 rabbits received i.v. MP, 30 mg/kg twice daily for 3 days, and 15 others received IB, 12.5 mg/kg twice daily for 2 days. No drug administered to 14 irradiated rabbits, and neither irradiation nor drugs were administered to 13 rabbits that served as controls. All 15 rabbits treated with MP and 13 of the 15 treated with IB lived for 100 days. Only seven of the untreated, irradiated rabbits lived that long. Longevity of each treated group of rabbits was better (p < 0.01 and 0.05) than that of the untreated, irradiated rabbits. Surviving rabbits were killed 100 days after irradiation. Pericarditis (p < 0.05) and pericardial effusion (p < 0.01) were less frequent in the treated, irradiated groups than in the untreated, irradiated rabbits. At least some rabbits in each irradiated group had microscopic evidence of myocardial fibrosis. The fibrosis was quantitated by determination of myocardial hydroxyproline concentrations (MHP). MHP concentration in the untreated, irradiated rabbits was greater than in those treated with MP (p < 0.05) or IB (p < 0.01) and in the untreated, unirradiated rabbits (p < 0.01). Early administrative of MP or IB retarded the development of myocardial fibrosis, pericarditis and pericardial effusin, and improved survival in this experimental model of radiation-induced heart disease.

  16. Myocardial hydroxyproline reduced by early administration of methylprednisolone or ibuprofen to rabbits with radiation-induced heart disease

    SciTech Connect

    Reeves, W.C.; Cunningham, D.; Schwiter, E.J.; Abt, A.; Skarlatos, S.; Wood, M.A.; Whitesell, L.

    1982-05-01

    The ability of methylprednisolone (MP) and ibuprofen (IB) to reduce the severity of the late state of radiation-induced heart disease was assessed in 57 New Zealand white rabbits. Before and shortly after cardiac irradiation, 15 rabbits received i.v. MP, 30 mg/kg twice daily for 3 days, and 15 others received IB, 12.5 mg/kg twice daily for 2 days. No drug was administered to 14 irradiated rabbits, and neither irradiation nor drugs were administered to 13 rabbits that served as controls, All 15 rabbits treated with MP and 13 of the 15 treated with IB lived for 100 days. Only seven of the untreated, irradiated rabbits lived that long. Longevity of each treated group of rabbits was better (p less than 0.01 and 0.05) than that of the untreated, irradiated rabbits. Surviving rabbits were killed 100 days after irradiation. Pericarditis (p less than 0.05) and pericardial effusion (p less than 0.01) were less frequent in the treated, irradiated groups than in the untreated, irradiated rabbits. At least some rabbits in each irradiated group had microscopic evidence of myocardial fibrosis. The fibrosis was quantitated by determination of myocardial hydroxyproline concentrations (MHP). MHP concentration in the untreated, irradiated rabbits was greater than in those treated with MP (p less than 0.05) or IB (p less than 0.01) and in the untreated, unirradiated rabbits (p less than 0.01). Early administration of MP or IB retarded the development of myocardial fibrosis, pericarditis and pericardial effusion, and improved survival in this experimental model of radiation-induced heart disease.

  17. Modulation of radiation-induced alteration in the antioxidant status of mice by naringin.

    PubMed

    Jagetia, Ganesh Chandra; Reddy, Tiyyagura Koti

    2005-07-01

    The alteration in the antioxidant status and lipid peroxidation was investigated in Swiss albino mice treated with 2 mg/kg b.wt. naringin, a citrus flavoglycoside, before exposure to 0.5, 1, 2, 3, and 4 Gy gamma radiation. Lipid peroxidation, glutathione, glutathione peroxidase, catalase and superoxide dismutase were determined in the liver and small intestine of mice treated or not with naringin at 0.5, 1, 2, 4 and 8 h post-irradiation. Whole-body irradiation of mice caused a dose-dependent elevation in the lipid peroxidation while a dose-dependent depletion was observed for glutathione, glutathione peroxidase, superoxide dismutase and catalase in both liver as well as small intestine. Treatment of mice with 2 mg/kg b. wt. naringin inhibited the radiation-induced elevation in the lipid peroxidation as well as depletion of glutathione, glutathione peroxidase, superoxide dismutase and catalase in liver and small intestine. Radiation-induced lipid peroxidation increased with time, which was greatest at 2 h post-irradiation and declined thereafter in the liver and small intestine. Similarly, a maximum decline in the glutathione glutathione peroxidase, and superoxide dismutase was observed at 1 h, while catalase showed a maximum decline at 2 h post-irradiation. Our study demonstrates that naringin protects mouse liver and intestine against the radiation-induced damage by elevating the antioxidant status and reducing the lipid peroxidation.

  18. Cholecystokinin attenuates radiation-induced lung cancer cell apoptosis by modulating p53 gene transcription

    PubMed Central

    Han, Yi; Su, Chongyu; Yu, Daping; Zhou, Shijie; Song, Xiaoyun; Liu, Shuku; Qin, Ming; Li, Yunsong; Xiao, Ning; Cao, Xiaoqing; Shi, Kang; Cheng, Xu; Liu, Zhidong

    2017-01-01

    The deregulation of p53 in cancer cells is one of the important factors by which cancer cells escape from the immune surveillance. Cholecystokinin (CCK) has strong bioactivity in the regulation of a number of cell activities. This study tests a hypothesis that CCK interferes with p53 expression to affect the apoptotic process in lung cancer (tumor) cells. In this study, tumor-bearing mice and A549 cells (a tumor cell line) were irradiated. The expression of CCK and p53 in tumor cells was assessed with RT-qPCR and Western blotting. The binding of p300 to the promoter of p53 was evaluated by chromatin immunoprecipitation. We observed that, with a given amount and within a given period, small doses/more sessions of irradiation markedly increased the levels of CCK in the sera and tumor cells, which were positively correlated with the tumor growth in mice and negatively correlated with tumor cell apoptosis. CCK increased the levels of histone acetyltransferase p300 and repressed the levels of nuclear factor-kB at the p53 promoter locus in tumor cells, which suppressed the expression of p53. In conclusion, CCK plays an important role in attenuating the radiation-induced lung cancer cell apoptosis. CCK may be a novel therapeutic target in the treatment of lung cancers. PMID:28337291

  19. Modulation of radiation induced lipid peroxidation by phospholipase A 2 and calmodulin antagonists: Relevance to detoxification

    NASA Astrophysics Data System (ADS)

    Varshney, Rajeev; Kale, R. K.

    1995-04-01

    Ghost membranes prepared from erythrocytes of Swiss albino mice were irradiated with 0.9 Gy s -1. Lipid peroxidation initiated by ionizing radiation was enhanced by phospholipase A 2, and required both phospholipase A 2 and GSH-peroxidase for consecutive action to convert fatty acid peroxides into corresponding alcohols. The ability of phospholipase A 2 to enhance lipid peroxidation was increased in presence of Ca 2+. However, in combination, phospholipase A 2 and GSH-peroxidase were effective in inhibiting lipid peroxidation. These findings show that free fatty acid peroxides considerably increase the peroxidation. Calmodulin antagonists inhibit lipid peroxidation and decrease the radiation induced release of Ca 2+ from the membranes. Our results suggest the importance of Ca 2+ dependent phospholipase A 2 in detoxification of fatty acid peroxides in the membranes. It is quite possible that scavenging of free radicals by calmodulin antagonists lower the formation of hydroperoxides, resulting in the decrease in activity of phospholipase A 2. Alternatively, decrease in Ca 2+ release due to the calmodulin antagonists might have affected the activity of phospholipase A 2. Our observations might be of considerable significance in the understanding of post irradiation effect on biological membranes.

  20. Low Concentration of Exogenous Carbon Monoxide Modulates Radiation-Induced Bystander Effect in Mammalian Cell Cluster Model.

    PubMed

    Wu, Wenqing; Nie, Lili; Yu, K N; Wu, Lijun; Kong, Peizhong; Bao, Lingzhi; Chen, Guodong; Yang, Haoran; Han, Wei

    2016-12-08

    During radiotherapy procedures, radiation-induced bystander effect (RIBE) can potentially lead to genetic hazards to normal tissues surrounding the targeted regions. Previous studies showed that RIBE intensities in cell cluster models were much higher than those in monolayer cultured cell models. On the other hand, low-concentration carbon monoxide (CO) was previously shown to exert biological functions via binding to the heme domain of proteins and then modulating various signaling pathways. In relation, our previous studies showed that exogenous CO generated by the CO releasing molecule, tricarbonyldichlororuthenium (CORM-2), at a relatively low concentration (20 µM), effectively attenuated the formation of RIBE-induced DNA double-strand breaks (DSB) and micronucleus (MN). In the present work, we further investigated the capability of a low concentration of exogenous CO (CORM-2) of attenuating or inhibiting RIBE in a mixed-cell cluster model. Our results showed that CO (CORM-2) with a low concentration of 30 µM could effectively suppress RIBE-induced DSB (p53 binding protein 1, p53BP1), MN formation and cell proliferation in bystander cells but not irradiated cells via modulating the inducible nitric oxide synthase (iNOS) andcyclooxygenase-2 (COX-2). The results can help mitigate RIBE-induced hazards during radiotherapy procedures.

  1. Differential modulation of a radiation-induced bystander effect in glioblastoma cells by pifithrin-α and wortmannin

    NASA Astrophysics Data System (ADS)

    Shao, Chunlin; Zhang, Jianghong; Prise, Kevin M.

    2010-03-01

    The implication of radiation-induced bystander effect (RIBE) for both radiation protection and radiotherapy has attracted significant attention, but a key question is how to modulate the RIBE. The present study found that, when a fraction of glioblastoma cells in T98G population were individually targeted with precise helium particles through their nucleus, micronucleus (MN) were induced and its yield increased non-linearly with radiation dose. After co-culturing with irradiated cells, additional MN could be induced in the non-irradiated bystander cells and its yield was independent of irradiation dose, giving direct evidence of a RIBE. Further results showed that the RIBE could be eliminated by pifithrin-α (p53 inhibitor) but enhanced by wortmannin (PI3K inhibitor). Moreover, it was found that nitric oxide (NO) contributed to this RIBE, and the levels of NO of both irradiated cells and bystander cells could be extensively diminished by pifithrin-α but insignificantly reduced by wortmannin. Our results indicate that RIBE can be modulated by p53 and PI3K through a NO-dependent and NO-independent pathway, respectively.

  2. Low Concentration of Exogenous Carbon Monoxide Modulates Radiation-Induced Bystander Effect in Mammalian Cell Cluster Model

    PubMed Central

    Wu, Wenqing; Nie, Lili; Yu, K. N.; Wu, Lijun; Kong, Peizhong; Bao, Lingzhi; Chen, Guodong; Yang, Haoran; Han, Wei

    2016-01-01

    During radiotherapy procedures, radiation-induced bystander effect (RIBE) can potentially lead to genetic hazards to normal tissues surrounding the targeted regions. Previous studies showed that RIBE intensities in cell cluster models were much higher than those in monolayer cultured cell models. On the other hand, low-concentration carbon monoxide (CO) was previously shown to exert biological functions via binding to the heme domain of proteins and then modulating various signaling pathways. In relation, our previous studies showed that exogenous CO generated by the CO releasing molecule, tricarbonyldichlororuthenium (CORM-2), at a relatively low concentration (20 µM), effectively attenuated the formation of RIBE-induced DNA double-strand breaks (DSB) and micronucleus (MN). In the present work, we further investigated the capability of a low concentration of exogenous CO (CORM-2) of attenuating or inhibiting RIBE in a mixed-cell cluster model. Our results showed that CO (CORM-2) with a low concentration of 30 µM could effectively suppress RIBE-induced DSB (p53 binding protein 1, p53BP1), MN formation and cell proliferation in bystander cells but not irradiated cells via modulating the inducible nitric oxide synthase (iNOS) andcyclooxygenase-2 (COX-2). The results can help mitigate RIBE-induced hazards during radiotherapy procedures. PMID:27941646

  3. Evidence for factors modulating radiation-induced G2-delay: potential application as radioprotectors

    NASA Technical Reports Server (NTRS)

    Cheong, N.; Zeng, Z. C.; Wang, Y.; Iliakis, G.

    2001-01-01

    Manipulation of checkpoint response to DNA damage can be developed as a means for protecting astronauts from the adverse effects of unexpected, or background exposures to ionizing radiation. To achieve this goal reagents need to be developed that protect cells from radiation injury by prolonging checkpoint response, thus promoting repair. We present evidence for a low molecular weight substance excreted by cells that dramatically increases the duration of the G2-delay. This compound is termed G2-Arrest Modulating Activity (GAMA). A rat cell line (A1-5) generated by transforming rat embryo fibroblasts with a temperature sensitive form of p53 plus H-ras demonstrates a dramatic increase in radiation resistance after exposure to low LET radiation that is not associated with an increase in the efficiency of rejoining of DNA double strand breaks. Radioresistance in this cell line correlates with a dramatic increase in the duration of the G2 arrest that is modulated by a GAMA produced by actively growing cells. The properties of GAMA suggest that it is a low molecular weight heat-stable peptide. Further characterization of this substance and elucidation of its mechanism of action may allow the development of a biological response modifier with potential applications as a radioprotector. GAMA may be useful for protecting astronauts from radiation injury as preliminary evidence suggests that it is able to modulate the response of cells exposed to heavy ion radiation, similar to that encountered in outer space.

  4. Investigating the influence of respiratory motion on the radiation induced bystander effect in modulated radiotherapy

    NASA Astrophysics Data System (ADS)

    Cole, Aidan J.; McGarry, Conor K.; Butterworth, Karl T.; McMahon, Stephen J.; Hounsell, Alan R.; Prise, Kevin M.; O'Sullivan, Joe M.

    2013-12-01

    Respiratory motion introduces complex spatio-temporal variations in the dosimetry of radiotherapy and may contribute towards uncertainties in radiotherapy planning. This study investigates the potential radiobiological implications occurring due to tumour motion in areas of geometric miss in lung cancer radiotherapy. A bespoke phantom and motor-driven platform to replicate respiratory motion and study the consequences on tumour cell survival in vitro was constructed. Human non-small-cell lung cancer cell lines H460 and H1299 were irradiated in modulated radiotherapy configurations in the presence and absence of respiratory motion. Clonogenic survival was calculated for irradiated and shielded regions. Direction of motion, replication of dosimetry by multi-leaf collimator (MLC) manipulation and oscillating lead shielding were investigated to confirm differences in cell survival. Respiratory motion was shown to significantly increase survival for out-of-field regions for H460/H1299 cell lines when compared with static irradiation (p < 0.001). Significantly higher survival was found in the in-field region for the H460 cell line (p < 0.030). Oscillating lead shielding also produced these significant differences. Respiratory motion and oscillatory delivery of radiation dose to human tumour cells has a significant impact on in- and out-of-field survival in the presence of non-uniform irradiation in this in vitro set-up. This may have important radiobiological consequences for modulated radiotherapy in lung cancer.

  5. Modulation of radiation-induced alterations in oxidative stress and cytokine expression in lung tissue by Panax ginseng extract.

    PubMed

    Jang, Seong Soon; Kim, Hyeong Geug; Han, Jong Min; Lee, Jin Seok; Choi, Min Kyung; Huh, Gil Ja; Son, Chang Gue

    2015-02-01

    We investigated the modulating effect of Panax ginseng extract (PGE) on radiation-induced lung injury (RILI) by measuring early changes in oxidative stress levels, cytokine expression, and the histopathology of mouse lung tissue treated with high dose of X-ray radiation. The mice were pretreated with 25, 50, and 100-mg/kg doses of PGE orally for four consecutive days, and their thoraces were then exposed to 15-Gy X-ray radiation 1 h after the last administration of PGE on day 4. The pretreatments with 50 and 100 mg/kg PGE led to significant reductions in the elevation of lipid peroxidation levels at 2 and 10 days, respectively, after irradiation. The mice pretreated with PGE exhibited dose-dependent reductions in the irradiation-induced production of tumor necrosis factor α and transforming growth factor β1 cytokines 10 days after irradiation, with these reductions nearly reaching the control levels after the 100-mg/kg dose. Furthermore, together with providing significant protection against reductions in catalase activity and glutathione content, pretreatment with 100 mg/kg PGE resulted in a marked attenuation of the severity of inflammatory changes in lung tissue 10 days after irradiation. A high pretreatment dose of PGE may be a useful pharmacological approach for protection against RILI.

  6. Radiation-induced accelerated coronary arteriosclerosis

    SciTech Connect

    Mittal, B.; Deutsch, M.; Thompson, M.; Dameshek, H.L.

    1986-07-01

    There is a paucity of information on radiation-induced coronary heart disease. A young patient with myocardial infarction following mediastinal irradiation is described. The role of radiotherapy and chemotherapy on the subsequent development of coronary heart disease is discussed.

  7. The Effect of Intensity-Modulated Radiotherapy on Radiation-Induced Second Malignancies

    SciTech Connect

    Ruben, Jeremy D. Davis, Sidney; Evans, Cherie; Jones, Phillip; Gagliardi, Frank; Haynes, Matthew; Hunter, Alistair

    2008-04-01

    Purpose: To compare intensity-modulated radiotherapy (IMRT) with three-dimensional conformal radiotherapy (3D-CRT) in terms of carcinogenic risk for actual clinical scenarios. Method and Materials: Clinically equivalent IMRT plans were generated for prostate, breast, and head-and-neck cases treated with 3D-CRT. Two possible dose-response models for radiocarcinogenesis were generated based on A-bomb survivor data corrected for fractionation. Dose-volume histogram analysis was used to determine dose and its distribution to nontargeted tissues within the planning CT scan volume and thermoluminescent dosimetry for the rest of the body. Carcinogenic estimates were calculated with and without a correction factor accounting for cancer patients' advanced age and reduced longevity. Results: For the model assuming a plateau in risk above 2-Gy single-fraction-equivalent (SFE), IMRT and 3D-CRT produced risks of 1.7% and 2.1%, respectively, for prostate; 1.9% and 1.8%, respectively, for nasopharynx; 1% each for tonsil; and 1.4-2.2% and 1.5-1.6%, respectively, depending on technique, for breast. Assuming a reduction in risk above 2-Gy SFE, risks for IMRT and 3D-CRT were 1.1% and 1.5%, respectively, for prostate; 1.4% and 1.2%, respectively, for nasopharynx; 1% each for tonsil; and 1.3-1.8% vs. 1.3-1.6%, respectively, for breast. Applying a correction factor of 0.5 for cancer patients halved these risks and their relative differences. Conclusions: Carcinogenic risks were comparable in absolute terms between modalities. Risks are dependant on technique used. Risks with IMRT are influenced by monitor unit demand and are therefore software/hardware dependant. The dose-response model accounting for cell killing at higher doses fitted best with actual observed risks.

  8. Low-dose spiruchostatin-B, a potent histone deacetylase inhibitor enhances radiation-induced apoptosis in human lymphoma U937 cells via modulation of redox signaling.

    PubMed

    Rehman, Mati Ur; Jawaid, Paras; Zhao, Qing Li; Li, Peng; Narita, Koichi; Katoh, Tadashi; Shimizu, Tadamichi; Kondo, Takashi

    2016-06-01

    Spiruchostatin B (SP-B), is a potent histone deacetylase (HDAC) inhibitor, in addition to HDAC inhibition, the pharmacological effects of SP-B are also attributed to its ability to produce intracellular reactive oxygen species (ROS), particularly H2O2. In this study, we investigated the effects of low dose (non-toxic) SP-B on radiation-induced apoptosis in human lymphoma U937 cells in vitro. The treatment of cells with low-dose SP-B induced the acetylation of histones, however, does not induce apoptosis. Whereas, the combined treatment with SP-B and radiation significantly enhanced the radiation-induced apoptosis, suggesting the potential role of this combined treatment for future radiation therapy. Interestingly, the enhancement of apoptosis was accompanied by significant increased in the ROS generation. Pre-treatment with an antioxidant, N-acetyl-l-cysteine (NAC) significantly inhibited the enhancement of apoptosis induced by combined treatment, indicating that ROS play an essential role. It was also found that SP-B combined with radiation caused the activation of death receptor and intrinsic apoptotic pathways, via modulation of ROS-mediated signaling. Moreover, SP-B also significantly enhanced the radiation-induced apoptosis in other lymphoma cell lines such as Molt-4 and HL-60. Taken together, our findings suggest that the low-dose SP-B enhances radiation-induced apoptosis via modulation of redox signaling because of its ability to serve as an intracellular ROS generating agent, mainly (H2O2 or [Formula: see text]). This study provides further insights into the mechanism of action of SP-B with radiation and demonstrates that SP-B can be used as a future novel sensitizer for radiation therapy.

  9. A dose-dependent perturbation in cardiac energy metabolism is linked to radiation-induced ischemic heart disease in Mayak nuclear workers.

    PubMed

    Azimzadeh, Omid; Azizova, Tamara; Merl-Pham, Juliane; Subramanian, Vikram; Bakshi, Mayur V; Moseeva, Maria; Zubkova, Olga; Hauck, Stefanie M; Anastasov, Nataša; Atkinson, Michael J; Tapio, Soile

    2017-02-07

    Epidemiological studies show a significant increase in ischemic heart disease (IHD) incidence associated with total external gamma-ray dose among Mayak plutonium enrichment plant workers. Our previous studies using mouse models suggest that persistent alteration of heart metabolism due to the inhibition of peroxisome proliferator-activated receptor (PPAR) alpha accompanies cardiac damage after high doses of ionising radiation. The aim of the present study was to elucidate the mechanism of radiation-induced IHD in humans. The cardiac proteome response to irradiation was analysed in Mayak workers who were exposed only to external doses of gamma rays. All participants were diagnosed during their lifetime with IHD that also was the cause of death. Label-free quantitative proteomics analysis was performed on tissue samples from the cardiac left ventricles of individuals stratified into four radiation dose groups (0 Gy, < 100 mGy, 100-500 mGy, and > 500 mGy). The groups could be separated using principal component analysis based on all proteomics features. Proteome profiling showed a dose-dependent increase in the number of downregulated mitochondrial and structural proteins. Both proteomics and immunoblotting showed decreased expression of several oxidative stress responsive proteins in the irradiated hearts. The phosphorylation of transcription factor PPAR alpha was increased in a dose-dependent manner, which is indicative of a reduction in transcriptional activity with increased radiation dose. These data suggest that chronic external radiation enhances the risk for IHD by inhibiting PPAR alpha and altering the expression of mitochondrial, structural, and antioxidant components of the heart.

  10. Podophyllotoxin and Rutin Modulates Ionizing Radiation-Induced Oxidative Stress and Apoptotic Cell Death in Mice Bone Marrow and Spleen.

    PubMed

    Singh, Abhinav; Yashavarddhan, M H; Kalita, Bhargab; Ranjan, Rajiv; Bajaj, Sania; Prakash, Hridayesh; Gupta, Manju Lata

    2017-01-01

    The present study is aimed to investigate the radioprotective efficacy of G-003M (combination of podophyllotoxin and rutin) against gamma radiation-induced oxidative stress and subsequent cell death in mice bone marrow and spleen. Prophylactic administration of G-003M (-1 h) rendered more than 85% survival in mice exposed to 9 Gy (lethal dose) with dose reduction factor of 1.26. G-003M pretreated mice demonstrated significantly reduced level of reactive oxygen species, membrane lipid peroxidation, and retained glutathione level. In the same group, we obtained increased expression of master redox regulator, nuclear factor erythroid-derived like-2 factor (Nrf-2), and its downstream targets (heme oxygenase-1, Nqo-1, glutathione S-transferase, and thioredoxin reductase-1). In addition, G-003M preadministration has also shown a significant reduction in Keap-1 level (Nrf-2 inhibitor). Radiation-induced lethality was significantly amended in combination-treated (G-003M) mice as demonstrated by reduced 8-OHdG, annexin V FITC(+) cells, and restored mitochondrial membrane potential. Expression of antiapoptotic protein Bcl-2 and Bcl-xL was restored in G-003M pretreated group. However, proapoptotic proteins (Puma, Bax, Bak, Caspase-3, and Caspase-7) were significantly declined in this group. Further analysis of immune cells revealed G-003M-mediated restoration of CD3 and CD19 receptor, which was found decreased to significant level following irradiation. Similarly, Gr-1, a marker of granulocytes, was also retained by G-003M administration prior to radiation. Modulatory potential of this formulation (G-003M) can be exploited as a safe and effective countermeasure against radiation-induced lymphohemopoietic injury.

  11. Podophyllotoxin and Rutin Modulates Ionizing Radiation-Induced Oxidative Stress and Apoptotic Cell Death in Mice Bone Marrow and Spleen

    PubMed Central

    Singh, Abhinav; Yashavarddhan, M. H.; Kalita, Bhargab; Ranjan, Rajiv; Bajaj, Sania; Prakash, Hridayesh; Gupta, Manju Lata

    2017-01-01

    The present study is aimed to investigate the radioprotective efficacy of G-003M (combination of podophyllotoxin and rutin) against gamma radiation-induced oxidative stress and subsequent cell death in mice bone marrow and spleen. Prophylactic administration of G-003M (−1 h) rendered more than 85% survival in mice exposed to 9 Gy (lethal dose) with dose reduction factor of 1.26. G-003M pretreated mice demonstrated significantly reduced level of reactive oxygen species, membrane lipid peroxidation, and retained glutathione level. In the same group, we obtained increased expression of master redox regulator, nuclear factor erythroid-derived like-2 factor (Nrf-2), and its downstream targets (heme oxygenase-1, Nqo-1, glutathione S-transferase, and thioredoxin reductase-1). In addition, G-003M preadministration has also shown a significant reduction in Keap-1 level (Nrf-2 inhibitor). Radiation-induced lethality was significantly amended in combination-treated (G-003M) mice as demonstrated by reduced 8-OHdG, annexin V FITC+ cells, and restored mitochondrial membrane potential. Expression of antiapoptotic protein Bcl-2 and Bcl-xL was restored in G-003M pretreated group. However, proapoptotic proteins (Puma, Bax, Bak, Caspase-3, and Caspase-7) were significantly declined in this group. Further analysis of immune cells revealed G-003M-mediated restoration of CD3 and CD19 receptor, which was found decreased to significant level following irradiation. Similarly, Gr-1, a marker of granulocytes, was also retained by G-003M administration prior to radiation. Modulatory potential of this formulation (G-003M) can be exploited as a safe and effective countermeasure against radiation-induced lymphohemopoietic injury. PMID:28289414

  12. Amelioration of radiation-induced hematopoietic syndrome by an antioxidant chlorophyllin through increased stem cell activity and modulation of hematopoiesis.

    PubMed

    Suryavanshi, Shweta; Sharma, Deepak; Checker, Rahul; Thoh, Maikho; Gota, Vikram; Sandur, Santosh K; Sainis, Krishna B

    2015-08-01

    Hematopoietic stem cells and progenitor cells (HSPC) are low in abundance and exhibit high radiosensitivity and their ability to divide dramatically decreases following exposure to ionizing radiation. Our earlier studies have shown antiapoptotic, immune-stimulatory, and antioxidant effects of chlorophyllin, a constituent of the over the counter drug derifil. Here we describe the beneficial effects of chlorophyllin against radiation-induced hematopoietic syndrome. Chlorophyllin administration significantly enhanced the abundance of HSPC in vivo. It induced a transient cell cycle arrest in lineage-negative cells in the bone marrow. However, the chlorophyllin-treated mice exposed to whole body irradiation (WBI) had a significantly higher proportion of actively dividing HSPC in the bone marrow as compared to only WBI-exposed mice. It significantly increased the number of colony forming units (CFUs) by bone marrow cells in vitro and spleen CFUs in irradiated mice in vivo. Pharmacokinetic study showed that chlorophyllin had a serum half-life of 141.8 min in mice. Chlorophyllin upregulated antiapoptotic genes and antioxidant machinery via activation of prosurvival transcription factors Nrf-2 and NF-κB and increased the survival and recovery of bone marrow cells in mice exposed to WBI. Chlorophyllin stimulated granulocyte production in bone marrow and increased the abundance of peripheral blood neutrophils by enhancing serum levels of granulocyte-colony stimulation factor (GCSF). Most importantly, prophylactic treatment of mice with chlorophyllin significantly abrogated radiation-induced mortality. Chlorophyllin mitigates radiation-induced hematopoietic syndrome by increasing the abundance of hematopoietic stem cells, enhancing granulopoiesis, and stimulating prosurvival pathways in bone marrow cells and lymphocytes.

  13. Method for Correction of Consequences of Radiation-Induced Heart Disease using Low-Intensity Electromagnetic Emission under Experimental Conditions.

    PubMed

    Bavrina, A P; Monich, V A; Malinovskaya, S L; Yakovleva, E I; Bugrova, M L; Lazukin, V F

    2015-05-01

    Effects of successive exposure to ionizing irradiation and low-intensity broadband red light on electrical activity of the heart and myocardium microstructure were studied in rats. Lowintensity red light corrected some ECG parameters, in particular, it normalized QT and QTc intervals and voltage of R and T waves. Changes in ECG parameters were followed by alterations in microstructure of muscle fi laments in the myocardium of treatment group animals comparing to control group.

  14. The modulating effect of royal jelly consumption against radiation-induced apoptosis in human peripheral blood leukocytes.

    PubMed

    Rafat, Navid; Monfared, Ali Shabestani; Shahidi, Maryam; Pourfallah, Tayyeb Allahverdi

    2016-01-01

    The present work was designed to assess the radioprotective effect of royal jelly (RJ) against radiation-induced apoptosis in human peripheral blood leukocytes. In this study, peripheral blood samples were obtained on days 0, 4, 7, and 14 of the study from six healthy male volunteers taking a 1000 mg RJ capsule orally per day for 14 consecutive days. On each sampling day, all collected whole blood samples were divided into control and irradiated groups which were then exposed to the selected dose of 4 Gy X-ray. Percentage of apoptotic cells (Ap %) was evaluated for all samples immediately after irradiation (Ap0) and also after a 24 h postirradiation incubation at 37°C in 5% CO2 (Ap24) by the use of neutral comet assay. Concerning Ap0, collected data demonstrated that the percentage of apoptotic cells in both control and irradiated groups did not significantly change during the study period. However, with respect to Ap24, the percentage of apoptotic cells in irradiated groups gradually reduced during the experiment, according to which a significant decrease was found after 14 days RJ consumption (P = 0.002). In conclusion, the present study revealed the protective role of 14 days RJ consumption against radiation-induced apoptosis in human peripheral blood leukocytes.

  15. BRCA1, FANCD2 and Chk1 are potential molecular targets for the modulation of a radiation-induced DNA damage response in bystander cells.

    PubMed

    Burdak-Rothkamm, Susanne; Rothkamm, Kai; McClelland, Keeva; Al Rashid, Shahnaz T; Prise, Kevin M

    2015-01-28

    Radiotherapy is an important treatment option for many human cancers. Current research is investigating the use of molecular targeted drugs in order to improve responses to radiotherapy in various cancers. The cellular response to irradiation is driven by both direct DNA damage in the targeted cell and intercellular signalling leading to a broad range of bystander effects. This study aims to elucidate radiation-induced DNA damage response signalling in bystander cells and to identify potential molecular targets to modulate the radiation induced bystander response in a therapeutic setting. Stalled replication forks in T98G bystander cells were visualised via bromodeoxyuridine (BrdU) nuclear foci detection at sites of single stranded DNA. γH2AX co-localised with these BrdU foci. BRCA1 and FANCD2 foci formed in T98G bystander cells. Using ATR mutant F02-98 hTERT and ATM deficient GM05849 fibroblasts it could be shown that ATR but not ATM was required for the recruitment of FANCD2 to sites of replication associated DNA damage in bystander cells whereas BRCA1 bystander foci were ATM-dependent. Phospho-Chk1 foci formation was observed in T98G bystander cells. Clonogenic survival assays showed moderate radiosensitisation of directly irradiated cells by the Chk1 inhibitor UCN-01 but increased radioresistance of bystander cells. This study identifies BRCA1, FANCD2 and Chk1 as potential targets for the modulation of radiation response in bystander cells. It adds to our understanding of the key molecular events propagating out-of-field effects of radiation and provides a rationale for the development of novel molecular targeted drugs for radiotherapy optimisation.

  16. H2-blocker modulates heart rate variability.

    PubMed

    Ooie, T; Saikawa, T; Hara, M; Ono, H; Seike, M; Sakata, T

    1999-01-01

    The use of H2-blockers in the treatment of patients with peptic ulcer has become popular. However, this treatment has adverse cardiovascular effects. The aim of this study was to investigate proarrhythmic rhythm and autonomic nervous activity by analyzing heart rate variability in patients treated with omeprazole, ranitidine, and plaunotol. Nineteen patients (mean age 67.5 +/- 2.7 years) with active gastric ulcer were treated with omeprazole (20 mg/day) for 8 weeks, then ranitidine (300 mg/day) for the next 4 months, and finally plaunotol (240 mg/day). At each stage of the treatment, Holter electrocardiography was performed, and heart rate variability and arrhythmias analyzed. Heart rate variability yielded power in the low- (0.04-0.15 Hz) and high-frequency components (0.15-0.4 Hz). Although both ranitidine and omeprazole induced little change in cardiac rhythm, the high-frequency power was higher (10.3 +/- 0.8 vs 8.6 +/- 0.6 ms, P < 0.05) and the ratio of low-to-high frequency power was lower (1.41 +/-0.10 vs 1.59 +/- 0.09. P < 0.05) during ranitidine than during plaunotol treatment. Cosinor analysis of heart rate variability revealed a decreased amplitude of low-frequency power during omeprazole compared with during ranitidine and plaunotol treatment. Ranitidine modulated high-frequency power which may be related to the adverse cardiovascular effects of H2-blocker.

  17. The M. D. Anderson Symptom Inventory-Head and Neck Module, a Patient-Reported Outcome Instrument, Accurately Predicts the Severity of Radiation-Induced Mucositis

    SciTech Connect

    Rosenthal, David I. Mendoza, Tito R.; Chambers, Mark; Burkett, V. Shannon; Garden, Adam S.; Hessell, Amy C.; Lewin, Jan S.; Ang, K. Kian; Kies, Merrill S.

    2008-12-01

    Purpose: To compare the M. D. Anderson Symptom Inventory-Head and Neck (MDASI-HN) module, a symptom burden instrument, with the Functional Assessment of Cancer Therapy-Head and Neck (FACT-HN) module, a quality-of-life instrument, for the assessment of mucositis in patients with head-and-neck cancer treated with radiotherapy and to identify the most distressing symptoms from the patient's perspective. Methods and Materials: Consecutive patients with head-and-neck cancer (n = 134) completed the MDASI-HN and FACT-HN before radiotherapy (time 1) and after 6 weeks of radiotherapy or chemoradiotherapy (time 2). The mean global and subscale scores for each instrument were compared with the objective mucositis scores determined from the National Cancer Institute Common Terminology Criteria for Adverse Events, version 3.0. Results: The global and subscale scores for each instrument showed highly significant changes from time 1 to time 2 and a significant correlation with the objective mucositis scores at time 2. Only the MDASI scores, however, were significant predictors of objective Common Terminology Criteria for Adverse Events mucositis scores on multivariate regression analysis (standardized regression coefficient, 0.355 for the global score and 0.310 for the head-and-neck cancer-specific score). Most of the moderate and severe symptoms associated with mucositis as identified on the MDASI-HN are not present on the FACT-HN. Conclusion: Both the MDASI-HN and FACT-HN modules can predict the mucositis scores. However, the MDASI-HN, a symptom burden instrument, was more closely associated with the severity of radiation-induced mucositis than the FACT-HN on multivariate regression analysis. This greater association was most likely related to the inclusion of a greater number of face-valid mucositis-related items in the MDASI-HN compared with the FACT-HN.

  18. Ferulic acid inhibits UVB-radiation induced photocarcinogenesis through modulating inflammatory and apoptotic signaling in Swiss albino mice.

    PubMed

    Ambothi, Kanagalakshmi; Prasad, N Rajendra; Balupillai, Agilan

    2015-08-01

    The aim of this study was to evaluate the photochemopreventive effects of ferulic acid (FA) against chronic ultraviolet-B (290-320 nm) induced oxidative stress, inflammation and angiogenesis in the skin of Swiss albino mice. Chronic UVB exposure (180 mJ/cm(2) for 30 weeks; thrice in a week) induced tumor formation in the mice skin that showed increased expression of carcinogenic and inflammatory markers when compared with the control animals. The intraperitoneal (FAIP) and topical (FAT) administration of FA significantly reduced the incidence of UVB-induced tumor volume and tumor weight in the mice skin. Histopathological studies revealed that both FAIP and FAT administration prevented the UVB-induced hyperplasia, squamous cell carcinoma (SCC) and dysplastic feature in the mice skin. Further, it has been observed that FA treatment reverted chronic UVB-induced oxidative damage (thiobarbituric acid reactive substances, superoxide dismutase, catalase, glutathione peroxidase) accompanied with modulation of vascular endothelial growth factor (VEGF), inducible nitric oxide synthase (iNOS), TNF-α and IL-6 in the mice skin tumor. FA treatment also modulates mutated p53, Bcl-2 and Bax expressions in the UVB-induced mice skin tumor. Thus, the results of the present study indicate ferulic acid has potential against UVB-induced carcinogenesis in the Swiss albino mice.

  19. Predicted Risk of Radiation-Induced Cancers After Involved Field and Involved Node Radiotherapy With or Without Intensity Modulation for Early-Stage Hodgkin Lymphoma in Female Patients

    SciTech Connect

    Weber, Damien C.; Johanson, Safora; Peguret, Nicolas; Cozzi, Luca; Olsen, Dag R.

    2011-10-01

    Purpose: To assess the excess relative risk (ERR) of radiation-induced cancers (RIC) in female patients with Hodgkin lymphoma (HL) female patients treated with conformal (3DCRT), intensity modulated (IMRT), or volumetric modulated arc (RA) radiation therapy. Methods and Materials: Plans for 10 early-stage HL female patients were computed for 3DCRT, IMRT, and RA with involved field RT (IFRT) and involvednode RT (INRT) radiation fields. Organs at risk dose--volume histograms were computed and inter-compared for IFRT vs. INRT and 3DCRT vs. IMRT/RA, respectively. The ERR for cancer induction in breasts, lungs, and thyroid was estimated using both linear and nonlinear models. Results: The mean estimated ERR for breast, lung, and thyroid were significantly lower (p < 0.01) with INRT than with IFRT planning, regardless of the radiation delivery technique used, assuming a linear dose-risk relationship. We found that using the nonlinear model, the mean ERR values were significantly (p < 0.01) increased with IMRT or RA compared to those with 3DCRT planning for the breast, lung, and thyroid, using an IFRT paradigm. After INRT planning, IMRT or RA increased the risk of RIC for lung and thyroid only. Conclusions: In this comparative planning study, using a nonlinear dose--risk model, IMRT or RA increased the estimated risk of RIC for breast, lung, and thyroid for HL female patients. This study also suggests that INRT planning, compared to IFRT planning, may reduce the ERR of RIC when risk is predicted using a linear model. Observing the opposite effect, with a nonlinear model, however, questions the validity of these biologically parameterized models.

  20. Adipose Mesenchymal Stem Cell Secretome Modulated in Hypoxia for Remodeling of Radiation-Induced Salivary Gland Damage

    PubMed Central

    An, Hye-Young; Shin, Hyun-Soo; Choi, Jeong-Seok; Kim, Hun Jung

    2015-01-01

    Background and Purpose This study was conducted to determine whether a secretome from mesenchymal stem cells (MSC) modulated by hypoxic conditions to contain therapeutic factors contributes to salivary gland (SG) tissue remodeling and has the potential to improve irradiation (IR)-induced salivary hypofunction in a mouse model. Materials and Methods Human adipose mesenchymal stem cells (hAdMSC) were isolated, expanded, and exposed to hypoxic conditions (O2 < 5%). The hypoxia-conditioned medium was then filtered to a high molecular weight fraction and prepared as a hAdMSC secretome. The hAdMSC secretome was subsequently infused into the tail vein of C3H mice immediately after local IR once a day for seven consecutive days. The control group received equal volume (500 μL) of vehicle (PBS) only. SG function and structural tissue remodeling by the hAdMSC secretome were investigated. Human parotid epithelial cells (HPEC) were obtained, expanded in vitro, and then irradiated and treated with either the hypoxia-conditioned medium or a normoxic control medium. Cell proliferation and IR-induced cell death were examined to determine the mechanism by which the hAdMSC secretome exerted its effects. Results The conditioned hAdMSC secretome contained high levels of GM-CSF, VEGF, IL-6, and IGF-1. Repeated systemic infusion with the hAdMSC secretome resulted in improved salivation capacity and increased levels of salivary proteins, including amylase and EGF, relative to the PBS group. The microscopic structural integrity of SG was maintained and salivary epithelial (AQP-5), endothelial (CD31), myoepithelial (α-SMA) and SG progenitor cells (c-Kit) were successfully protected from radiation damage and remodeled. The hAdMSC secretome strongly induced proliferation of HPEC and led to a significant decrease in cell death in vivo and in vitro. Moreover, the anti-apoptotic effects of the hAdMSC secretome were found to be promoted after hypoxia-preconditioning relative to normoxia

  1. Radiation-induced gliomas

    PubMed Central

    Prasad, Gautam; Haas-Kogan, Daphne A.

    2013-01-01

    Radiation-induced gliomas represent a relatively rare but well-characterized entity in the neuro-oncologic literature. Extensive retrospective cohort data in pediatric populations after therapeutic intracranial radiation show a clearly increased risk in glioma incidence that is both patient age- and radiation dose/volume-dependent. Data in adults are more limited but show heightened risk in certain groups exposed to radiation. In both populations, there is no evidence linking increased risk associated with routine exposure to diagnostic radiation. At the molecular level, recent studies have found distinct genetic differences between radiation-induced gliomas and their spontaneously-occurring counterparts. Clinically, there is understandable reluctance on the part of clinicians to re-treat patients due to concern for cumulative neurotoxicity. However, available data suggest that aggressive intervention can lead to improved outcomes in patients with radiation-induced gliomas. PMID:19831840

  2. Reducing the probability of radiation-induced hepatic toxicity by changing the treatment modality from helical tomotherapy to fixed-beam intensity-modulated radiotherapy

    PubMed Central

    Song, Jin Ho; Son, Seok Hyun; Kay, Chul Seung; Jang, Hong Seok

    2015-01-01

    Purpose To estimate and compare the risk of radiation-induced hepatic toxicity (RIHT) in helical tomotherapy and fixed-beam intensity-modulated radiotherapy (IMRT) for the treatment of hepatocellular carcinoma (HCC). Materials and Methods Twenty patients with unresectable HCC treated with tomotherapy were selected. We performed tomotherapy re-planning to reduce the non-target normal liver volume receiving a dose of more than 15 Gy (NTNL-V15Gy), and we created a fixed-beam IMRT plan (FB-P). We compared the dosimetric results as well as the estimated probability of RIHT among the tomotherapy initial plan (T-IP), the tomotherapy re-plan (T-RP), and the FB-P. Results Comparing the T-RP and FB-P, the homogeneity index was 0.11 better with the T-RP. However, the mean NTNL-V15Gy was 6.3% lower with the FB-P. These differences result in a decline in the probability of RIHT from 0.216 in the T-RP to 0.115 in the FB-P. In patients whose NTNL-V15Gy was higher than 43.2% with the T-RP, the probability of RIHT markedly reduced from 0.533 to 0.274. Conclusions By changing the treatment modality from tomotherapy to fixed-beam IMRT, we could reduce the liver dose and the probability of RIHT without scarifying the target coverage, especially in patients whose liver dose is high. PMID:26376679

  3. Radiation-induced cardiovascular effects

    NASA Astrophysics Data System (ADS)

    Tapio, Soile

    Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.

  4. Radiation-Induced Bioradicals

    NASA Astrophysics Data System (ADS)

    Lahorte, Philippe; Mondelaers, Wim

    This chapter represents the second part of a review in which the production and application of radiation-induced radicals in biological matter are discussed. In part one the general aspects of the four stages (physical, physicochemical, chemical and biological) of interaction of radiation with matter in general and biological matter in particular, were discussed. Here an overview is presented of modem technologies and theoretical methods available for studying these radiation effects. The relevance is highlighted of electron paramagnetic resonance spectroscopy and quantum chemical calculations with respect to obtaining structural information on bioradicals, and a survey is given of the research studies in this field. We also discuss some basic aspects of modem accelerator technologies which can be used for creating radicals and we conclude with an overview of applications of radiation processing in biology and related fields such as biomedical and environmental engineering, food technology, medicine and pharmacy.

  5. Radiation Induced Oral Mucositis

    PubMed Central

    PS, Satheesh Kumar; Balan, Anita; Sankar, Arun; Bose, Tinky

    2009-01-01

    Patients receiving radiotherapy or chemotherapy will receive some degree of oral mucositis The incidence of oral mucositis was especially high in patients: (i) With primary tumors in the oral cavity, oropharynx, or nasopharynx; (ii) who also received concomitant chemotherapy; (iii) who received a total dose over 5,000 cGy; and (iv) who were treated with altered fractionation radiation schedules. Radiation-induced oral mucositis affects the quality of life of the patients and the family concerned. The present day management of oral mucositis is mostly palliative and or supportive care. The newer guidelines are suggesting Palifermin, which is the first active mucositis drug as well as Amifostine, for radiation protection and cryotherapy. The current management should focus more on palliative measures, such as pain management, nutritional support, and maintenance, of good oral hygiene PMID:20668585

  6. Lowering Whole-Body Radiation Doses in Pediatric Intensity-Modulated Radiotherapy Through the Use of Unflattened Photon Beams;Flattening filter; Pediatric; Intensity-modulated radiotherapy; Second cancers; Radiation-induced malignancies

    SciTech Connect

    Cashmore, Jason; Ramtohul, Mark; Ford, Dan

    2011-07-15

    Purpose: Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. Methods and Materials: An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery of pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Results: Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. Conclusions: IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments.

  7. Radiation-induced second primary cancer risks from modern external beam radiotherapy for early prostate cancer: impact of stereotactic ablative radiotherapy (SABR), volumetric modulated arc therapy (VMAT) and flattening filter free (FFF) radiotherapy

    NASA Astrophysics Data System (ADS)

    Murray, Louise J.; Thompson, Christopher M.; Lilley, John; Cosgrove, Vivian; Franks, Kevin; Sebag-Montefiore, David; Henry, Ann M.

    2015-02-01

    Risks of radiation-induced second primary cancer following prostate radiotherapy using 3D-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), flattening filter free (FFF) and stereotactic ablative radiotherapy (SABR) were evaluated. Prostate plans were created using 10 MV 3D-CRT (78 Gy in 39 fractions) and 6 MV 5-field IMRT (78 Gy in 39 fractions), VMAT (78 Gy in 39 fractions, with standard flattened and energy-matched FFF beams) and SABR (42.7 Gy in 7 fractions with standard flattened and energy-matched FFF beams). Dose-volume histograms from pelvic planning CT scans of three prostate patients, each planned using all 6 techniques, were used to calculate organ equivalent doses (OED) and excess absolute risks (EAR) of second rectal and bladder cancers, and pelvic bone and soft tissue sarcomas, using mechanistic, bell-shaped and plateau models. For organs distant to the treatment field, chamber measurements recorded in an anthropomorphic phantom were used to calculate OEDs and EARs using a linear model. Ratios of OED give relative radiation-induced second cancer risks. SABR resulted in lower second cancer risks at all sites relative to 3D-CRT. FFF resulted in lower second cancer risks in out-of-field tissues relative to equivalent flattened techniques, with increasing impact in organs at greater distances from the field. For example, FFF reduced second cancer risk by up to 20% in the stomach and up to 56% in the brain, relative to the equivalent flattened technique. Relative to 10 MV 3D-CRT, 6 MV IMRT or VMAT with flattening filter increased second cancer risks in several out-of-field organs, by up to 26% and 55%, respectively. For all techniques, EARs were consistently low. The observed large relative differences between techniques, in absolute terms, were very low, highlighting the importance of considering absolute risks alongside the corresponding relative risks, since when absolute

  8. Radiation Induced Genomic Instability

    SciTech Connect

    Morgan, William F.

    2011-03-01

    Radiation induced genomic instability can be observed in the progeny of irradiated cells multiple generations after irradiation of parental cells. The phenotype is well established both in vivo (Morgan 2003) and in vitro (Morgan 2003), and may be critical in radiation carcinogenesis (Little 2000, Huang et al. 2003). Instability can be induced by both the deposition of energy in irradiated cells as well as by signals transmitted by irradiated (targeted) cells to non-irradiated (non-targeted) cells (Kadhim et al. 1992, Lorimore et al. 1998). Thus both targeted and non-targeted cells can pass on the legacy of radiation to their progeny. However the radiation induced events and cellular processes that respond to both targeted and non-targeted radiation effects that lead to the unstable phenotype remain elusive. The cell system we have used to study radiation induced genomic instability utilizes human hamster GM10115 cells. These cells have a single copy of human chromosome 4 in a background of hamster chromosomes. Instability is evaluated in the clonal progeny of irradiated cells and a clone is considered unstable if it contains three or more metaphase sub-populations involving unique rearrangements of the human chromosome (Marder and Morgan 1993). Many of these unstable clones have been maintained in culture for many years and have been extensively characterized. As initially described by Clutton et al., (Clutton et al. 1996) many of our unstable clones exhibit persistently elevated levels of reactive oxygen species (Limoli et al. 2003), which appear to be due dysfunctional mitochondria (Kim et al. 2006, Kim et al. 2006). Interestingly, but perhaps not surprisingly, our unstable clones do not demonstrate a “mutator phenotype” (Limoli et al. 1997), but they do continue to rearrange their genomes for many years. The limiting factor with this system is the target – the human chromosome. While some clones demonstrate amplification of this chromosome and thus lend

  9. Modulation of ionizing radiation induced oxidative imbalance by semi-fractionated extract of Piper betle: an in vitro and in vivo assessment.

    PubMed

    Verma, Savita; Gupta, Manju Lata; Dutta, Ajaswrata; Sankhwar, Sanghmitra; Shukla, Sandeep Kumar; Flora, Swaran J S

    2010-01-01

    The study was planned to evaluate modulatory effect of aqueous extract of Piper betle leaf (PBL) on ionizing radiation mediated oxidative stress leading to normal tissues damage during radiotherapy and other radiation exposures. The total polyphenols and flavonoids known as free radical scavenger (chelators) were measured in the extract. To ascertain antioxidant potential of PBL extract we studied free radical scavenging, metal chelation, reducing power, lipid peroxidation inhibition and ferric reducing antioxidant properties (FRAP) using in vitro assays. Mice were exposed to varied radiation doses administered with the same extract prior to irradiation to confirm its oxidative stress minimizing efficacy by evaluating ferric reducing ability of plasma, reduced glutathione, lipid peroxidation and micro-nuclei frequency. PBL extract was effective in scavenging DPPH (up to 92% at 100 microg/ml) and superoxide radicals (up to 95% at 80 microg/ml), chelated metal ions (up to 83% at 50 microg/ml) and inhibited lipid peroxidation (up to 55.65% at 500 microg/ml) in a dose dependant manner using in vitro model. Oral administration of PBL extract (225 mg/kg body weight) 1 hr before irradiation in mice significantly enhanced (p < 0.01) radiation abated antioxidant potential of plasma and GSH level in all the observed organs. The treatment with extract effectively lowered the radiation induced lipid peroxidation at 24 hrs in all the selected organs with maximum inhibition in thymus (p < 0.01). After 48 hrs, lipid peroxidation was maximally inhibited in the group treated with the extract. Frequency of radiation induced micronucleated cells declined significantly (34.78%, p < 0.01) at 24 hrs post-irradiation interval by PBL extract administration. The results suggest that PBL extract has high antioxidant potential and relatively non-toxic and thus could be assertively used to mitigate radiotherapy inflicted normal tissues damage and also injuries caused by moderate doses of

  10. Transesophageal Echocardiography and Radiation-induced Damages

    PubMed Central

    Cottini, Marzia; Polizzi, Vincenzo; Pino, Paolo Giuseppe; Buffa, Vitaliano; Musumeci, Francesco

    2016-01-01

    The long-term sequelae of mantle therapy include, especially lung and cardiac disease but also involve the vessels and the organs in the neck and thorax (such as thyroid, aorta, and esophagus). We presented the case of 66-year-old female admitted for congestive heart failure in radiation-induced heart disease. The patient had undergone to massive radiotherapy 42 years ago for Hodgkin's disease (type 1A). Transesophageal echocardiography was performed unsuccessfully with difficulty because of the rigidity and impedance of esophageal walls. Our case is an extraordinary report of radiotherapy's latency effect as a result of dramatic changes in the structure of mediastinum, in particular in the esophagus, causing unavailability of a transesophageal echocardiogram. PMID:27867461

  11. Pathology and biology of radiation-induced cardiac disease

    PubMed Central

    Tapio, Soile

    2016-01-01

    Heart disease is the leading global cause of death. The risk for this disease is significantly increased in populations exposed to ionizing radiation, but the mechanisms are not fully elucidated yet. This review aims to gather and discuss the latest data about pathological and biological consequences in the radiation-exposed heart in a comprehensive manner. A better understanding of the molecular and cellular mechanisms underlying radiation-induced damage in heart tissue and cardiac vasculature will provide novel targets for therapeutic interventions. These may be valuable for individuals clinically or occupationally exposed to varying doses of ionizing radiation. PMID:27422929

  12. Radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Kronenberg, A.

    1994-01-01

    Quantitative assessment of the heritable somatic effects of ionizing radiation exposures has relied upon the assumption that radiation-induced lesions were 'fixed' in the DNA prior to the first postirradiation mitosis. Lesion conversion was thought to occur during the initial round of DNA replication or as a consequence of error-prone enzymatic processing of lesions. The standard experimental protocols for the assessment of a variety of radiation-induced endpoints (cell death, specific locus mutations, neoplastic transformation and chromosome aberrations) evaluate these various endpoints at a single snapshot in time. In contrast with the aforementioned approaches, some studies have specifically assessed radiation effects as a function of time following exposure. Evidence has accumulated in support of the hypothesis that radiation exposure induces a persistent destabilization of the genome. This instability has been observed as a delayed expression of lethal mutations, as an enhanced rate of accumulation of non-lethal heritable alterations, and as a progressive intraclonal chromosomal heterogeneity. The genetic controls and biochemical mechanisms underlying radiation-induced genomic instability have not yet been delineated. The aim is to integrate the accumulated evidence that suggests that radiation exposure has a persistent effect on the stability of the mammalian genome.

  13. Potential for reduced radiation-induced toxicity using intensity-modulated arc therapy for whole-brain radiotherapy with hippocampal sparing.

    PubMed

    Pokhrel, Damodar; Sood, Sumit; Lominska, Christopher; Kumar, Parvesh; Badkul, Rajeev; Jiang, Hongyu; Wang, Fen

    2015-09-01

    The purpose of this study was to retrospectively investigate the accuracy, plan quality, and efficiency of using intensity-modulated arc therapy (IMAT) for whole brain radiotherapy (WBRT) patients with sparing not only the hippocampus (following RTOG 0933 compliance criteria) but also other organs at risk (OARs). A total of 10 patients previously treated with nonconformal opposed laterals whole-brain radiotherapy (NC-WBRT) were retrospectively replanned for hippocampal sparing using IMAT treatment planning. The hippocampus was volumetrically contoured on fused diagnostic T1-weighted MRI with planning CT images and hippocampus avoidance zone (HAZ) was generated using a 5 mm uniform margin around the hippocampus. Both hippocampi were defined as one paired organ. Whole brain tissue minus HAZ was defined as the whole-brain planning target volume (WB-PTV). Highly conformal IMAT plans were generated in the Eclipse treatment planning system for Novalis TX linear accelerator consisting of high-definition multileaf collimators (HD-MLCs: 2.5 mm leaf width at isocenter) and 6 MV beam for a prescription dose of 30 Gy in 10 fractions following RTOG 0933 dosimetric criteria. Two full coplanar arcs with orbits avoidance sectors were used. In addition to RTOG criteria, doses to other organs at risk (OARs), such as parotid glands, cochlea, external/middle ear canals, skin, scalp, optic pathways, brainstem, and eyes/lens, were also evaluated. Subsequently, dose delivery efficiency and accuracy of each IMAT plan was assessed by delivering quality assurance (QA) plans with a MapCHECK device, recording actual beam-on time and measuring planed vs. measured dose agreement using a gamma index. On IMAT plans, following RTOG 0933 dosimetric criteria, the maximum dose to WB-PTV, mean WB-PTV D2%, and mean WB-PTV D98% were 34.9±0.3 Gy,33.2±0.4 Gy, and 26.0±0.4 Gy, respectively. Accordingly, WB-PTV received the prescription dose of 30 Gy and mean V30 was 90.5%±0.5%. The D100%, and mean

  14. Potential for reduced radiation-induced toxicity using intensity-modulated arc therapy for whole-brain radiotherapy with hippocampal sparing.

    PubMed

    Pokhrel, Damodar; Sood, Sumit; Lominska, Christopher; Kumar, Pravesh; Badkul, Rajeev; Jiang, Hongyu; Wang, Fen

    2015-09-08

    The purpose of this study was to retrospectively investigate the accuracy, plan quality, and efficiency of using intensity-modulated arc therapy (IMAT) for whole brain radiotherapy (WBRT) patients with sparing not only the hippocampus (following RTOG 0933 compliance criteria) but also other organs at risk (OARs). A total of 10 patients previously treated with nonconformal opposed laterals whole-brain radiotherapy (NC-WBRT) were retrospectively replanned for hippocampal sparing using IMAT treatment planning. The hippocampus was volumetrically contoured on fused diagnostic T1-weighted MRI with planning CT images and hippocampus avoidance zone (HAZ) was generated using a 5 mm uniform margin around the hippocampus. Both hippocampi were defined as one paired organ. Whole brain tissue minus HAZ was defined as the whole-brain planning target volume (WB-PTV). Highly conformal IMAT plans were generated in the Eclipse treatment planning system for Novalis TX linear accelerator consisting of high-definition multileaf collimators (HD-MLCs: 2.5 mm leaf width at isocenter) and 6 MV beam for a prescription dose of 30 Gy in 10 fractions following RTOG 0933 dosimetric criteria. Two full coplanar arcs with orbits avoidance sectors were used. In addition to RTOG criteria, doses to other organs at risk (OARs), such as parotid glands, cochlea, external/middle ear canals, skin, scalp, optic pathways, brainstem, and eyes/lens, were also evaluated. Subsequently, dose delivery efficiency and accuracy of each IMAT plan was assessed by delivering quality assurance (QA) plans with a MapCHECK device, recording actual beam-on time and measuring planed vs. measured dose agreement using a gamma index. On IMAT plans, following RTOG 0933 dosimetric criteria, the maximum dose to WB-PTV, mean WB-PTV D2%, and mean WB-PTV D98% were 34.9 ± 0.3 Gy, 33.2 ± 0.4 Gy, and 26.0± 0.4Gy, respectively. Accordingly, WB-PTV received the prescription dose of 30Gy and mean V30 was 90.5% ± 0.5%. The D100%, and

  15. 5-AED enhances survival of irradiated mice in a G-CSF-dependent manner, stimulates innate immune cell function, reduces radiation-induced DNA damage and induces genes that modulate cell cycle progression and apoptosis

    PubMed Central

    Grace, Marcy B.; Singh, Vijay K.; Rhee, Juong G.; Jackson, William E.; Kao, Tzu-Cheg; Whitnall, Mark H.

    2012-01-01

    The steroid androst-5-ene-3ß,17ß-diol (5-androstenediol, 5-AED) elevates circulating granulocytes and platelets in animals and humans, and enhances survival during the acute radiation syndrome (ARS) in mice and non-human primates. 5-AED promotes survival of irradiated human hematopoietic progenitors in vitro through induction of Nuclear Factor-κB (NFκB)-dependent Granulocyte Colony-Stimulating Factor (G-CSF) expression, and causes elevations of circulating G-CSF and interleukin-6 (IL-6). However, the in vivo cellular and molecular effects of 5-AED are not well understood. The aim of this study was to investigate the mechanisms of action of 5-AED administered subcutaneously (s.c.) to mice 24 h before total body γ- or X-irradiation (TBI). We used neutralizing antibodies, flow cytometric functional assays of circulating innate immune cells, analysis of expression of genes related to cell cycle progression, DNA repair and apoptosis, and assessment of DNA strand breaks with halo-comet assays. Neutralization experiments indicated endogenous G-CSF but not IL-6 was involved in survival enhancement by 5-AED. In keeping with known effects of G-CSF on the innate immune system, s.c. 5-AED stimulated phagocytosis in circulating granulocytes and oxidative burst in monocytes. 5-AED induced expression of both bax and bcl-2 in irradiated animals. Cdkn1a and ddb1, but not gadd45a expression, were upregulated by 5-AED in irradiated mice. S.c. 5-AED administration caused decreased DNA strand breaks in splenocytes from irradiated mice. Our results suggest 5-AED survival enhancement is G-CSF-dependent, and that it stimulates innate immune cell function and reduces radiation-induced DNA damage via induction of genes that modulate cell cycle progression and apoptosis. PMID:22843381

  16. 5-AED enhances survival of irradiated mice in a G-CSF-dependent manner, stimulates innate immune cell function, reduces radiation-induced DNA damage and induces genes that modulate cell cycle progression and apoptosis.

    PubMed

    Grace, Marcy B; Singh, Vijay K; Rhee, Juong G; Jackson, William E; Kao, Tzu-Cheg; Whitnall, Mark H

    2012-11-01

    The steroid androst-5-ene-3ß,17ß-diol (5-androstenediol, 5-AED) elevates circulating granulocytes and platelets in animals and humans, and enhances survival during the acute radiation syndrome (ARS) in mice and non-human primates. 5-AED promotes survival of irradiated human hematopoietic progenitors in vitro through induction of Nuclear Factor-κB (NFκB)-dependent Granulocyte Colony-Stimulating Factor (G-CSF) expression, and causes elevations of circulating G-CSF and interleukin-6 (IL-6). However, the in vivo cellular and molecular effects of 5-AED are not well understood. The aim of this study was to investigate the mechanisms of action of 5-AED administered subcutaneously (s.c.) to mice 24 h before total body γ- or X-irradiation (TBI). We used neutralizing antibodies, flow cytometric functional assays of circulating innate immune cells, analysis of expression of genes related to cell cycle progression, DNA repair and apoptosis, and assessment of DNA strand breaks with halo-comet assays. Neutralization experiments indicated endogenous G-CSF but not IL-6 was involved in survival enhancement by 5-AED. In keeping with known effects of G-CSF on the innate immune system, s.c. 5-AED stimulated phagocytosis in circulating granulocytes and oxidative burst in monocytes. 5-AED induced expression of both bax and bcl-2 in irradiated animals. Cdkn1a and ddb1, but not gadd45a expression, were upregulated by 5-AED in irradiated mice. S.c. 5-AED administration caused decreased DNA strand breaks in splenocytes from irradiated mice. Our results suggest 5-AED survival enhancement is G-CSF-dependent, and that it stimulates innate immune cell function and reduces radiation-induced DNA damage via induction of genes that modulate cell cycle progression and apoptosis.

  17. Respiratory modulation and baroreflex control of heart rate in space

    NASA Astrophysics Data System (ADS)

    Verheyden, Bart; Couckuyt, Kurt; Liu, Jiexin; Aubert, Andre

    During everyday life, gravity constantly stresses the human circulation by diminishing venous return in the upright position. This induces baroreflex-mediated cardiovascular adjustments that are aimed to prevent the blood pressure from falling. In weightlessness, gravitational pressure gradients do not arise in the circulation so that baroreflex function remains chronically unchallenged. This may contribute to the development of post spaceflight orthostatic intolerance. The purpose of this study was to evaluate respiratory modulation and baroreflex control of heart rate after a week of weightlessness in space. We tested the hypothesis that cardiovascular control in space will be similar to the baseline supine condition on Earth. We studied nine male cosmonauts during seven different space missions aboard the ISS (age 40 - 52 yrs, height 1.69 - 1.85 m, weight 67 - 90 kg). Data collection was performed between 30 and 45 days before launch in the standing and supine positions, and after 8 days in space. Cosmonauts were carefully trained to perform in-flight data collection by themselves. They were instructed to pace their breathing to a fixed rate of 12 breaths per minute (0.2 Hz) for a total duration of 3 minutes. The electrocardiogram and beat-by-beat finger arterial blood pressure were recorded at 1-kHz sample rate. Respiratory rate was evaluated using an abdominal pressure sensor. We used power spectral analysis to calculate respiratory sinus arrhythmia (RSA) as well as the low-frequency (0.04 - 0.15 Hz) powers of spontaneous oscillations in heart rate and systolic blood pressure. Baroreflex sensitivity (BRS) was estimated in the time domain using cross-correlation analysis. As expected, there was a rise in heart rate upon assuming the standing position before space- flight (59 ± 6 to 79 ± 11 beats per min; p ¡ 0.001). This was accompanied by an increase in mean arterial blood pressure (84 ± 6 to 93 ± 6 mmHg; p ¡ 0.001). Standing up further induced a marked

  18. Late onset radiation-induced constrictive pericarditis and cardiomyopathy after radiotherapy

    PubMed Central

    Zhuang, Xiao-feng; Yang, Yan-min; Sun, Xiao-lu; Liao, Zhong-kai; Huang, Jie

    2017-01-01

    Abstract Introduction: Radiation-induced heart disease (RIHD) is a serious side effect of cancer treatment, including coronary artery disease, valvular cardiac dysfunction, cardiomyopathy, aortopathy, and chronic constrictive pericarditis. Herein, this case we present was diagnosed as radiation-induced constrictive pericarditis and cardiomyopathy by means of cardiac magnetic resonance (CMR) and transthoracic echocardiogram, finally confirmed by pathology after performing heart transplant operation. Conclusions: This case supports a notion that RIHD often causes multiple heart impairment and CMR is helpful to diagnose cardiomyopathy after radiation. PMID:28151876

  19. Radiation-Induced Vaccination to Breast Cancer

    DTIC Science & Technology

    2014-10-01

    Award Number: W81XWH-11-1-0531 TITLE: Radiation-Induced Vaccination to Breast Cancer PRINCIPAL INVESTIGATOR: William H. McBride CONTRACTING...TITLE AND SUBTITLE Radiation-Induced Vaccination to Breast Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0531 5c. PROGRAM ELEMENT NUMBER

  20. The Influence of Motor Impairment on Autonomic Heart Rate Modulation among Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Zamuner, Antonio Roberto; Cunha, Andrea Baraldi; da Silva, Ester; Negri, Ana Paola; Tudella, Eloisa; Moreno, Marlene Aparecida

    2011-01-01

    The study of heart rate variability is an important tool for a noninvasive evaluation of the neurocardiac integrity. The present study aims to evaluate the autonomic heart rate modulation in supine and standing positions in 12 children diagnosed with cerebral palsy and 16 children with typical motor development (control group), as well as to…

  1. Treatment of Radiation-Induced Urethral Strictures.

    PubMed

    Hofer, Matthias D; Liu, Joceline S; Morey, Allen F

    2017-02-01

    Radiation therapy may result in urethral strictures from vascular damage. Most radiation-induced urethral strictures occur in the bulbomembranous junction, and urinary incontinence may result as a consequence of treatment. Radiation therapy may compromise reconstruction due to poor tissue healing and radionecrosis. Excision and primary anastomosis is the preferred urethroplasty technique for radiation-induced urethral stricture. Principles of posterior urethroplasty for trauma may be applied to the treatment of radiation-induced urethral strictures. Chronic management with suprapubic tube is an option based on patient comorbidities and preference.

  2. Radiation-induced moyamoya syndrome

    SciTech Connect

    Desai, Snehal S.; Paulino, Arnold C. . E-mail: apaulino@tmh.tmc.edu; Mai, Wei Y.; Teh, Bin S.

    2006-07-15

    Purpose: The moyamoya syndrome is an uncommon late complication after radiotherapy (RT). Methods and Materials: A PubMed search of English-language articles, with radiation, radiotherapy, and moyamoya syndrome used as search key words, yielded 33 articles from 1967 to 2002. Results: The series included 54 patients with a median age at initial RT of 3.8 years (range, 0.4 to 47). Age at RT was less than 5 years in 56.3%, 5 to 10 years in 22.9%, 11 to 20 years in 8.3%, 21 to 30 years in 6.3%, 31 to 40 years in 2.1%, and 41 to 50 years in 4.2%. Fourteen of 54 patients (25.9%) were diagnosed with neurofibromatosis type 1 (NF-1). The most common tumor treated with RT was low-grade glioma in 37 tumors (68.5%) of which 29 were optic-pathway glioma. The average RT dose was 46.5 Gy (range, 22-120 Gy). For NF-1-positive patients, the average RT dose was 46.5 Gy, and for NF-1-negative patients, it was 58.1 Gy. The median latent period for development of moyamoya syndrome was 40 months after RT (range, 4-240). Radiation-induced moyamoya syndrome occurred in 27.7% of patients by 2 years, 53.2% of patients by 4 years, 74.5% of patients by 6 years, and 95.7% of patients by 12 years after RT. Conclusions: Patients who received RT to the parasellar region at a young age (<5 years) are the most susceptible to moyamoya syndrome. The incidence for moyamoya syndrome continues to increase with time, with half of cases occurring within 4 years of RT and 95% of cases occurring within 12 years. Patients with NF-1 have a lower radiation-dose threshold for development of moyamoya syndrome.

  3. Radiation-Induced Vaccination to Breast Cancer

    DTIC Science & Technology

    2015-10-01

    Award Number: W81XWH-11-1-0531 TITLE: Radiation-Induced Vaccination to Breast Cancer PRINCIPAL INVESTIGATOR: William H. McBride CONTRACTING...FORM TO THE ABOVE ADDRESS. 1. REPORT DATE 2. REPORT TYPE Annual 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Radiation-Induced Vaccination to...determine abscopal responses that are hypothesized to be due to RT- induced vaccination . RT was started 10 days after the first and 3rd dose of

  4. Radiation-induced sarcoma of the thyroid

    SciTech Connect

    Griem, K.L.; Robb, P.K.; Caldarelli, D.D.; Templeton, A.C. )

    1989-08-01

    A 23-year-old white man presented with a thyroid mass 12 years after receiving high-dose radiotherapy for a T2 and N1 lymphoepithelioma of the nasopharynx. Following subtotal thyroidectomy, a histopathologic examination revealed liposarcoma of the thyroid gland. The relationship between sarcomas and irradiation is described and Cahan and colleagues' criteria for radiation-induced sarcomas are reviewed. To our knowledge, we are presenting the first such case of a radiation-induced sarcoma of the thyroid gland.

  5. RGS6, a Modulator of Parasympathetic Activation in Heart

    PubMed Central

    Yang, Jianqi; Huang, Jie; Maity, Biswanath; Gao, Zhan; Lorca, Ramón A.; Gudmundsson, Hjalti; Li, Jingdong; Stewart, Adele; Swaminathan, Paari Dominic; Ibeawuchi, Stella-Rita; Shepherd, Andrew; Chen, Ching-Kang; Kutschke, William; Mohler, Peter J.; Mohapatra, Durga P.; Anderson, Mark E.; Fisher, Rory A.

    2010-01-01

    Rationale Parasympathetic regulation of heart rate is mediated by acetylcholine binding to G protein-coupled muscarinic M2 receptors, which activate heterotrimeric Gi/o proteins to promote GIRK channel activation. RGS proteins, which function to inactivate G proteins, are indispensable for normal parasympathetic control of the heart. However it is unclear which of the more than twenty known RGS proteins function to negatively regulate and thereby ensure normal parasympathetic control of the heart. Objective To examine the specific contribution of RGS6 as an essential regulator of parasympathetic signaling in heart. Methods and Results We developed RGS6 knockout mice to determine the functional impact of loss of RGS6 on parasympathetic regulation of cardiac automaticity. RGS6 exhibited a uniquely robust expression in the heart, particularly in sinoatrial (SAN) and atrioventricular (AVN) nodal regions. Loss of RGS6 provoked dramatically exaggerated bradycardia in response to carbachol in mice and isolated perfused hearts and significantly enhanced the effect of carbachol on inhibition of spontaneous action potential firing in SAN cells. Consistent with a role of RGS6 in G protein inactivation, RGS6-deficient atrial myocytes exhibited a significant reduction in the time course of IKAch activation and deactivation, as well as the extent of IKAch desensitization. Conclusions RGS6 is a previously unrecognized, but essential regulator of parasympathetic activation in heart, functioning to prevent parasympathetic override and severe bradycardia. These effects likely result from actions of RGS6 as a negative regulator of G protein activation of GIRK channels. PMID:20864673

  6. Dysregulated long intergenic non-coding RNA modules contribute to heart failure

    PubMed Central

    Zhang, Xinxin; Yu, Fulong; Lan, Yujia; Xu, Jinyuan; Pang, Bo; Han, Dong; Xiao, Yun; Li, Xia

    2016-01-01

    Long intergenic non-coding RNAs (lincRNAs) are emerging as important regulatory molecules involved in diseases including heart failure. However, little is known about how the lincRNAs work together with protein-coding genes (PCGs) contributing to the pathogenesis of heart failure. In this study, we constructed a comprehensive transcriptome profile of lincRNAs, PCGs and miRNAs using RNA-seq and miRNA-seq data of 16 heart failure patients (HFs) and 8 non-failing individuals (NFs). Through integrating lincRNA and PCG expression profiles, we identified HF-associated lincRNA modules. We identified a heart-specific lincRNA module which was significantly enriched for differentially expressed lincRNAs and PCGs. This module was associated with heart failure rather than with other clinical traits such as sex, age, smoking and diabetes mellitus. Moreover, the module was significantly correlated with certain indicators of left ventricular function like ejection fraction and left ventricular end-diastolic diameter, implying the potential of its components as crucial biomarkers. Apart from enhancer-like function, lincRNAs in this module could act as competing endogenous RNAs (ceRNAs) to regulate genes which were associated with left-ventricular systolic function. Our work provided deep insights into the critical roles of lincRNAs in the pathology of heart failure and suggested that they could be valuable biomarkers and therapeutic targets. PMID:28040802

  7. Heart failure modulates electropharmacological characteristics of sinoatrial nodes

    PubMed Central

    Chang, Shih-Lin; Chuang, Hui-Lun; Chen, Yao-Chang; Kao, Yu-Hsun; Lin, Yung-Kuo; Yeh, Yung-Hsin; Chen, Shih-Ann; Chen, Yi-Jen

    2017-01-01

    The impact of heart failure (HF) on sinoatrial node (SAN) channel regulation and electropharmacological responses has remained elusive. The present study aimed to investigate the effects of HF on the electrical activity of SANs with and without pharmacological interventions. Action potentials (APs) were recorded in isolated SANs from normal rabbits (control) and those with HF (rapid ventricular pacing for 4 weeks) prior to and after administration of a funny current blocker (ivabradine; 0.1, 0.3, 3 or 10 µM), a calmodulin kinase II inhibitor (KN-93; 0.3 or 3 µM), a sarcoplasmic reticulum Ca2+ release inhibitor (ryanodine; 0.3 or 3 µM), a sodium current inhibitor (tetrodotoxin; 1, 3 or 10 µM) and a late sodium current inhibitor (ranolazine; 10 µM). Western blot analysis was used to investigate the protein expression in SANs from normal rabbits and those with HF. Control SANs had a higher beating rate than SANs from rabbits with HF (2.3±0.1 vs. 1.5±0.1 Hz; P<0.001). Similarly, ivabradine (10 µM), KN-93 (3 µM), ranolazine (10 µM) and ryanodine (3 µM) decreased the beating rates of SANs in the control (n=6) and HF (n=6) groups. Ivabradine treatment resulted in a higher incidence of AP block in HF vs. control SANs (66.7 vs. 0%; P<0.05). Tetrodotoxin (1, 3 or 10 µM) decreased the beating rate to a higher extent in SANs from rabbits with HF than in those from control rabbits and induced a higher incidence of AP block (66.7 vs. 0%; P<0.05). Furthermore, SANs from rabbits with HF had higher protein levels of phospholamban (PLB) and lower levels of hyperpolarization-activated cyclic nucleotide-gated potassium channel 4, ryanodine receptor and phosphorylated PLB than control SANs. In conclusion, HF modulates electropharmacological responses in the SAN by channel regulation, which may result in SAN dysfunction. PMID:28352365

  8. Perinatal hypothyroidism modulates antioxidant defence status in the developing rat liver and heart.

    PubMed

    Zhang, Hongmei; Dong, Yan; Su, Qing

    2017-02-01

    In the present study, we investigated oxidative stress parameters and antioxidant defence status in perinatal hypothyroid rat liver and heart. We found that the proteincarbonyl content did not differ significantly between the three groups both in the pup liver and in the heart. The OH˙ level was significantly decreased in the hypothyroid heart but not in the liver compared with controls. A slight but not significant decrease in SOD activity was observed in both perinatal hypothyroid liver and heart. A significantly increased activity of CAT was observed in the liver but not in the heart of hypothyroid pups. The GPx activity was considerably increased compared with controls in the perinatal hypothyroid heart and was unaltered in the liver of hypothyroid pups. We also found that vitamin E levels in the liver decreased significantly in hypothyroidism and were unaltered in the heart of perinatal hypothyroid rats. The GSH content was elevated significantly in both hypothyroid liver and heart. The total antioxidant capacity was higher in the liver of the hypothyroid group but not in the hypothyroid heart. Thyroxine replacement could not repair the above changes to normal. In conclusion, perinatal hypothyroidism modulates the oxidative stress status of the perinatal liver and heart.

  9. Interventional and device-based autonomic modulation in heart failure.

    PubMed

    Shen, Mark J; Zipes, Douglas P

    2015-04-01

    "Heart failure is an increasingly prevalent disease with high mortality and public health burden. It is associated with autonomic imbalance characterized by sympathetic hyperactivity and parasympathetic hypoactivity. Evolving novel interventional and device-based therapies have sought to restore autonomic balance by neuromodulation. Results of preclinical animal studies and early clinical trials have demonstrated the safety and efficacy of these therapies in heart failure. This article discusses specific neuromodulatory treatment modalities individually-spinal cord stimulation, vagus nerve stimulation, baroreceptor activation therapy, and renal sympathetic nerve denervation."

  10. Voluntary control of breathing does not alter vagal modulation of heart rate

    NASA Technical Reports Server (NTRS)

    Patwardhan, A. R.; Evans, J. M.; Bruce, E. N.; Eckberg, D. L.; Knapp, C. F.

    1995-01-01

    Variations in respiratory pattern influence the heart rate spectrum. It has been suggested, hence, that metronomic respiration should be used to correctly assess vagal modulation of heart rate by using spectral analysis. On the other hand, breathing to a metronome has been reported to increase heart rate spectral power in the high- or respiratory frequency region; this finding has led to the suggestion that metronomic respiration enhances vagal tone or alters vagal modulation of heart rate. To investigate whether metronomic breathing complicates the interpretation of heart rate spectra by altering vagal modulation, we recorded the electrocardiogram and respiration from eight volunteers during three breathing trials of 10 min each: 1) spontaneous breathing (mean rate of 14.4 breaths/min); 2) breathing to a metronome at the rate of 15, 18, and 21 breaths/min for 2, 6, and 2 min, respectively; and 3) breathing to a metronome at the rate of 18 breaths/min for 10 min. Data were also collected from eight volunteers who breathed spontaneously for 20 min and breathed metronomically at each subject's mean spontaneous breathing frequency for 20 min. Results from the three 10-min breathing trials showed that heart rate power in the respiratory frequency region was smaller during metronomic breathing than during spontaneous breathing. This decrease could be explained fully by the higher breathing frequencies used during trials 2 and 3 of metronomic breathing. When the subjects breathed metronomically at each subject's mean breathing frequency, the heart rate powers during metronomic breathing were similar to those during spontaneous breathing. Our results suggest that vagal modulation of heart rate is not altered and vagal tone is not enhanced during metronomic breathing.

  11. Nitric oxide modulates the frog heart ventricle morphodynamics.

    PubMed

    Acierno, Raffaele; Gattuso, Alfonsina; Guerrieri, Antonio; Mannarino, Cinzia; Amelio, Daniela; Tota, Bruno

    2008-09-01

    The aim of this work was to investigate in the avascular heart of the frog Rana esculenta the influence of nitric oxide (NO) on ventricular systolic and diastolic functions by using a novel image analysis technique. The external volume variations of the whole ventricle were monitored during the heart cycle by video acquisition(visible light) and analysed by an appropriately developed software with a specific formula for irregular convex solids. The system, which measures the rate of volume changes and the ejection fraction, directly determined the volumetric behaviour of the working frog heart after stimulation or inhibition of NOS-NOcGMP pathway. End-diastolic volume (EDVext), end-systolic volume (ESVext), contraction and relaxation velocities (dV/dtsys and dV/dtdia, respectively), stroke volume (SV) and ejection fraction (EF), were measured before and after perfusion with NOS substrate (L-arginine), NO donor (SIN-1), cGMP analogue (8-Br-cGMP),NOS inhibitors (NG-monomethyl-L-arginine, L-NMMA; L-N(5)-(1-iminoethyl)-ornithine, L-NIO; 7-Nitroindazole,7-NI) and guanylyl cyclase inhibitor (ODQ). The results showed that NO reduces ventricular systolicfunction improving diastolic filling, while NOS inhibition increases contractility impairing ventricular filling capacity. The presence of activated eNOS (p-eNOS) was morphologically documented, further supporting that the mechanical activity of the ventricular pump in frog is influenced by a tonic release of NOS-generated NO.

  12. Modulations of Heart Rate, ECG, and Cardio-Respiratory Coupling Observed in Polysomnography.

    PubMed

    Penzel, Thomas; Kantelhardt, Jan W; Bartsch, Ronny P; Riedl, Maik; Kraemer, Jan F; Wessel, Niels; Garcia, Carmen; Glos, Martin; Fietze, Ingo; Schöbel, Christoph

    2016-01-01

    The cardiac component of cardio-respiratory polysomnography is covered by ECG and heart rate recordings. However, their evaluation is often underrepresented in summarizing reports. As complements to EEG, EOG, and EMG, these signals provide diagnostic information for autonomic nervous activity during sleep. This review presents major methodological developments in sleep research regarding heart rate, ECG, and cardio-respiratory couplings in a chronological (historical) sequence. It presents physiological and pathophysiological insights related to sleep medicine obtained by new technical developments. Recorded nocturnal ECG facilitates conventional heart rate variability (HRV) analysis, studies of cyclical variations of heart rate, and analysis of ECG waveform. In healthy adults, the autonomous nervous system is regulated in totally different ways during wakefulness, slow-wave sleep, and REM sleep. Analysis of beat-to-beat heart-rate variations with statistical methods enables us to estimate sleep stages based on the differences in autonomic nervous system regulation. Furthermore, up to some degree, it is possible to track transitions from wakefulness to sleep by analysis of heart-rate variations. ECG and heart rate analysis allow assessment of selected sleep disorders as well. Sleep disordered breathing can be detected reliably by studying cyclical variation of heart rate combined with respiration-modulated changes in ECG morphology (amplitude of R wave and T wave).

  13. Modulations of Heart Rate, ECG, and Cardio-Respiratory Coupling Observed in Polysomnography

    PubMed Central

    Penzel, Thomas; Kantelhardt, Jan W.; Bartsch, Ronny P.; Riedl, Maik; Kraemer, Jan F.; Wessel, Niels; Garcia, Carmen; Glos, Martin; Fietze, Ingo; Schöbel, Christoph

    2016-01-01

    The cardiac component of cardio-respiratory polysomnography is covered by ECG and heart rate recordings. However, their evaluation is often underrepresented in summarizing reports. As complements to EEG, EOG, and EMG, these signals provide diagnostic information for autonomic nervous activity during sleep. This review presents major methodological developments in sleep research regarding heart rate, ECG, and cardio-respiratory couplings in a chronological (historical) sequence. It presents physiological and pathophysiological insights related to sleep medicine obtained by new technical developments. Recorded nocturnal ECG facilitates conventional heart rate variability (HRV) analysis, studies of cyclical variations of heart rate, and analysis of ECG waveform. In healthy adults, the autonomous nervous system is regulated in totally different ways during wakefulness, slow-wave sleep, and REM sleep. Analysis of beat-to-beat heart-rate variations with statistical methods enables us to estimate sleep stages based on the differences in autonomic nervous system regulation. Furthermore, up to some degree, it is possible to track transitions from wakefulness to sleep by analysis of heart-rate variations. ECG and heart rate analysis allow assessment of selected sleep disorders as well. Sleep disordered breathing can be detected reliably by studying cyclical variation of heart rate combined with respiration-modulated changes in ECG morphology (amplitude of R wave and T wave). PMID:27826247

  14. Factors that modify radiation-induced carcinogenesis.

    PubMed

    Kennedy, Ann R

    2009-11-01

    It is known that numerous factors can influence radiation carcinogenesis in animals; these factors include the specific characteristics of the radiation (radiation type and dose, dose-rate, dose-fractionation, dose distribution, etc.) as well as many other contributing elements that are not specific to the radiation exposure, such as animal genetic characteristics and age, the environment of the animal, dietary factors and whether specific modifying agents for radiation carcinogenesis have been utilized in the studies. This overview focuses on the modifying factors for radiation carcinogenesis, in both in vivo and in vitro systems, and includes a discussion of agents that enhance (e.g., promoting agents) or suppress (e.g., cancer preventive agents) radiation-induced carcinogenesis. The agents that enhance or suppress radiation carcinogenesis in experimental model systems have been shown to lead to effects equally as large as other known modifying factors for radiation-induced carcinogenesis (e.g., dose-rate, dose-fractionation, linear energy transfer). It is known that dietary factors play an important role in determining the yields of radiation-induced cancers in animal model systems, and it is likely that they also influence radiation-induced cancer risks in human populations.

  15. The Heart of Matter: A Nuclear Chemistry Module. Teacher's Guide.

    ERIC Educational Resources Information Center

    Viola, Vic; Hearle, Robert

    This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching nuclear chemistry. In this book, the fundamental concepts of nuclear science and the applications of nuclear energy are discussed. The material in this book can be integrated with the other modules in a sequence that helps students…

  16. Cardiolipin modulates allosterically peroxynitrite detoxification by horse heart cytochrome c

    SciTech Connect

    Ascenzi, Paolo; Ciaccio, Chiara; Sinibaldi, Federica; Santucci, Roberto; Coletta, Massimo

    2011-01-07

    Research highlights: {yields} Cardiolipin binding to cytochrome c. {yields} Cardiolipin-dependent peroxynitrite isomerization by cytochrome c. {yields} Cardiolipin-cytochrome c complex plays pro-apoptotic effects. {yields} Cardiolipin-cytochrome c complex plays anti-apoptotic effects. -- Abstract: Upon interaction with bovine heart cardiolipin (CL), horse heart cytochrome c (cytc) changes its tertiary structure disrupting the heme-Fe-Met80 distal bond, reduces drastically the midpoint potential out of the range required for its physiological role, binds CO and NO with high affinity, and displays peroxidase activity. Here, the effect of CL on peroxynitrite isomerization by ferric cytc (cytc-Fe(III)) is reported. In the absence of CL, hexa-coordinated cytc does not catalyze peroxynitrite isomerization. In contrast, CL facilitates cytc-Fe(III)-mediated isomerization of peroxynitrite in a dose-dependent fashion inducing the penta-coordination of the heme-Fe(III)-atom. The value of the second order rate constant for CL-cytc-Fe(III)-mediated isomerization of peroxynitrite (k{sub on}) is (3.2 {+-} 0.4) x 10{sup 5} M{sup -1} s{sup -1}. The apparent dissociation equilibrium constant for CL binding to cytc-Fe(III) is (5.1 {+-} 0.8) x 10{sup -5} M. These results suggest that CL-cytc could play either pro-apoptotic or anti-apoptotic effects facilitating lipid peroxidation and scavenging of reactive nitrogen species, such as peroxynitrite, respectively.

  17. Modulation of ventricular fibrillation in isolated perfused heart by dofetilide.

    PubMed

    Amitzur, Giora; Shenkar, Nitza; Leor, Jonathan; Novikov, Ilia; Eldar, Michael

    2003-06-01

    The authors studied the involvement of IKr potassium current in ventricular fibrillation during perfusion. Electrophysiologic parameters were measured before and after dofetilide administration (2.5, 7.5, and 12.5 x 10-7 M, n = 8) in isolated perfused feline hearts. During pacing, these parameters included epicardial conduction time, refractoriness, and the fastest rate for 1:1 pacing/response capture. During 8 minutes of electrically induced tachyarrhythmias, they included heart rate and normalized entropy reflecting the degree of organization. In all groups, arrhythmia rate was slower in the right ventricle than in the left ventricle. Dofetilide decreased the arrhythmia rate more than it increased organization, reduced its maintenance, or increased difficulty in initiation. Refractoriness was prolonged in a reverse use-dependent way which was less than 1:1 pacing/response capture. Unexpectedly, a moderate prolongation of conduction time was observed. Inverse correlation was found between the arrhythmia rate and changes in refractoriness and conduction time and between the degree of organization and refractoriness (both ventricles) and conduction time (right ventricle). Dofetilide, which intensively blocks IKr current and unexpectedly suppressed conduction, has different quantitative effects on fibrillation features. These changes in fibrillation suggest that these effects are mainly associated with refractoriness prolongation and do not seem to be attenuated by conduction suppression.

  18. [Quantification of radiation-induced genetic risk].

    PubMed

    Ehling, U H

    1987-05-01

    Associated with technical advances of our civilization is a radiation- and chemically-induced increase in the germ cell mutation rate in man. This would result in an increase in the frequency of genetic diseases and would be detrimental to future generations. It is the duty of our generation to keep this risk as low as possible. The estimation of the radiation-induced genetic risk of human populations is based on the extrapolation of results from animal experiments. Radiation-induced mutations are stochastic events. The probability of the event depends on the dose; the degree of the damage does not. The different methods to estimate the radiation-induced genetic risk will be discussed. The accuracy of the predicted results will be evaluated by a comparison with the observed incidence of dominant mutations in offspring born to radiation exposed survivors of the Hiroshima and Nagasaki atomic bombings. These methods will be used to predict the genetic damage from the fallout of the reactor accident at Chernobyl. For the exposure dose we used the upper limits of the mean effective life time equivalent dose from the fallout values in the Munich region. According to the direct method for the risk estimation we will expect for each 100 to 500 spontaneous dominant mutations one radiation-induced mutation in the first generation. With the indirect method we estimate a ratio of 100 dominant spontaneous mutations to one radiation-induced dominant mutation. The possibilities and the limitations of the different methods to estimate the genetic risk will be discussed. The discrepancy between the high safety standards for radiation protection and the low level of knowledge for the toxicological evaluation of chemical mutagens will be emphasized.

  19. Novel Radiomitigator for Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, A-S; Shirazi-fard, Y.; Terada, M.; Alwood, J. S.; Steczina, S.; Medina, C.; Tahimic, C. G. T.; Globus, R. K.

    2016-01-01

    Radiation-induced bone loss can occur with radiotherapy patients, accidental radiation exposure and during long-term spaceflight. Bone loss due to radiation is due to an early increase in oxidative stress, inflammation and bone resorption, resulting in an imbalance in bone remodeling. Furthermore, exposure to high-Linear Energy Transfer (LET) radiation will impair the bone forming progenitors and reduce bone formation. Radiation can be classified as high-LET or low-LET based on the amount of energy released. Dried Plum (DP) diet prevents bone loss in mice exposed to total body irradiation with both low-LET and high-LET radiation. DP prevents the early radiation-induced bone resorption, but furthermore, we show that DP protects the bone forming osteoblast progenitors from high-LET radiation. These results provide insight that DP re-balances the bone remodeling by preventing resorption and protecting the bone formation capacity. This data is important considering that most of the current osteoporosis treatments only block the bone resorption but do not protect bone formation. In addition, DP seems to act on both the oxidative stress and inflammation pathways. Finally, we have preliminary data showing the potential of DP to be radio-protective at a systemic effect and could possible protect other tissues at risk of total body-irradiation such as skin, brain and heart.

  20. Radiation-induced meningiomas in pediatric patients.

    PubMed

    Moss, S D; Rockswold, G L; Chou, S N; Yock, D; Berger, M S

    1988-04-01

    Radiation-induced meningiomas rarely have latency periods short enough from the time of irradiation to the clinical presentation of the tumor to present in the pediatric patient. Three cases of radiation-induced intracranial meningiomas in pediatric patients are presented. The first involved a meningioma of the right frontal region in a 10-year-old boy 6 years after the resection and irradiation of a 4th ventricular medulloblastoma. Review of our pediatric tumor cases produced a second case of a left temporal fossa meningioma presenting in a 15-year-old boy with a history of irradiation for retinoblastoma at age 3 years and a third case of a right frontoparietal meningioma in a 15-year-old girl after irradiation for acute lymphoblastic leukemia. Only three cases of meningiomas presenting in the pediatric age group after radiation therapy to the head were detected in our review of the literature.

  1. Radiation-induced meningiomas in pediatric patients

    SciTech Connect

    Moss, S.D.; Rockswold, G.L.; Chou, S.N.; Yock, D.; Berger, M.S.

    1988-04-01

    Radiation-induced meningiomas rarely have latency periods short enough from the time of irradiation to the clinical presentation of the tumor to present in the pediatric patient. Three cases of radiation-induced intracranial meningiomas in pediatric patients are presented. The first involved a meningioma of the right frontal region in a 10-year-old boy 6 years after the resection and irradiation of a 4th ventricular medulloblastoma. Review of our pediatric tumor cases produced a second case of a left temporal fossa meningioma presenting in a 15-year-old boy with a history of irradiation for retinoblastoma at age 3 years and a third case of a right frontoparietal meningioma in a 15-year-old girl after irradiation for acute lymphoblastic leukemia. Only three cases of meningiomas presenting in the pediatric age group after radiation therapy to the head were detected in our review of the literature.

  2. Study of chemical and radiation induced carcinogenesis

    SciTech Connect

    Chmura, A.

    1995-11-01

    The study of chemical and radiation induced carcinogenesis has up to now based many of its results on the detection of genetic aberrations using the fluorescent in situ hybridization (FISH) technique. FISH is time consuming and this tends to hinder its use for looking at large numbers of samples. We are currently developing new technological advances which will increase the speed, clarity and functionality of the FISH technique. These advances include multi-labeled probes, amplification techniques, and separation techniques.

  3. Design and analysis of a field modulated magnetic screw for artificial heart

    PubMed Central

    Ji, Jinghua; Wang, Fangqun; Bian, Fangfang

    2017-01-01

    This paper proposes a new electromechanical energy conversion system, called Field Modulated Magnetic Screw (FMMS) as a high force density linear actuator for artificial heart. This device is based on the concept of magnetic screw and linear magnetic gear. The proposed FMMS consists of three parts with the outer and inner carrying the radially magnetized helically permanent-magnet (PM), and the intermediate having a set of helically ferromagnetic pole pieces, which modulate the magnetic fields produced by the PMs. The configuration of the newly designed FMMS is presented and its electromagnetic performances are analyzed by using the finite-element analysis, verifying the advantages of the proposed structure. PMID:28217410

  4. Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 1D Simulation Study

    PubMed Central

    Gomez, Juan F.; Cardona, Karen; Romero, Lucia; Ferrero, Jose M.; Trenor, Beatriz

    2014-01-01

    Background Heart failure is a final common pathway or descriptor for various cardiac pathologies. It is associated with sudden cardiac death, which is frequently caused by ventricular arrhythmias. Electrophysiological remodeling, intercellular uncoupling, fibrosis and autonomic imbalance have been identified as major arrhythmogenic factors in heart failure etiology and progression. Objective In this study we investigate in silico the role of electrophysiological and structural heart failure remodeling on the modulation of key elements of the arrhythmogenic substrate, i.e., electrophysiological gradients and abnormal impulse propagation. Methods Two different mathematical models of the human ventricular action potential were used to formulate models of the failing ventricular myocyte. This provided the basis for simulations of the electrical activity within a transmural ventricular strand. Our main goal was to elucidate the roles of electrophysiological and structural remodeling in setting the stage for malignant life-threatening arrhythmias. Results Simulation results illustrate how the presence of M cells and heterogeneous electrophysiological remodeling in the human failing ventricle modulate the dispersion of action potential duration and repolarization time. Specifically, selective heterogeneous remodeling of expression levels for the Na+/Ca2+ exchanger and SERCA pump decrease these heterogeneities. In contrast, fibroblast proliferation and cellular uncoupling both strongly increase repolarization heterogeneities. Conduction velocity and the safety factor for conduction are also reduced by the progressive structural remodeling during heart failure. Conclusion An extensive literature now establishes that in human ventricle, as heart failure progresses, gradients for repolarization are changed significantly by protein specific electrophysiological remodeling (either homogeneous or heterogeneous). Our simulations illustrate and provide new insights into this

  5. A report on radiation-induced gliomas

    SciTech Connect

    Salvati, M.; Artico, M.; Caruso, R.; Rocchi, G.; Orlando, E.R.; Nucci, F. )

    1991-01-15

    Radiation-induced gliomas are uncommon, with only 73 cases on record to date. The disease that most frequently occasioned radiation therapy has been acute lymphoblastic leukemia (ALL). Three more cases are added here, two after irradiation for ALL and one after irradiation for tinea capitis. In a review of the relevant literature, the authors stress the possibility that the ALL-glioma and the retinoblastoma-glioma links point to syndromes in their own right that may occur without radiation therapy.56 references.

  6. Radiation-induced injury of the esophagus

    SciTech Connect

    Lepke, R.A.; Libshitz, H.I.

    1983-08-01

    Forty patients with functional or morphologic esophageal abnormalities following radiotherapy were identified. Abnormalities included abnormal motility with and without mucosal edema, stricture, ulceration and pseudodiverticulum, and fistula. Abnormal motility occurred 4 to 12 weeks following radiotherapy alone and as early as 1 week after therapy when concomitant chemotherapy had been given. Strictures developed 4 to 8 months following completion of radiotherapy. Ulceration, pseudodiverticulum, and fistula formation did not develop in a uniform time frame. Radiation-induced esophageal injury is more frequent when radiotherapy and chemotherapy are combined than it is with radiotherapy alone.

  7. Radiation-induced esophagitis in lung cancer

    PubMed Central

    Baker, Sarah; Fairchild, Alysa

    2016-01-01

    Radiation-induced esophagitis is the most common local acute toxicity of radiotherapy (RT) delivered for the curative or palliative intent treatment of lung cancer. Although concurrent chemotherapy and higher RT dose are associated with increased esophagitis risk, advancements in RT techniques as well as adherence to esophageal dosimetric constraints may reduce the incidence and severity. Mild acute esophagitis symptoms are generally self-limited, and supportive management options include analgesics, acid suppression, diet modification, treatment for candidiasis, and maintenance of adequate nutrition. Esophageal stricture is the most common late sequela from esophageal irradiation and can be addressed with endoscopic dilatation. Approaches to prevent or mitigate these toxicities are also discussed. PMID:28210168

  8. Radiation induced conductivity in space dielectric materials

    SciTech Connect

    Hanna, R.; Paulmier, T. Belhaj, M.; Dirassen, B.; Molinie, P.; Payan, D.; Balcon, N.

    2014-01-21

    The radiation-induced conductivity of some polymers was described mainly in literature by a competition between ionization, trapping/detrapping, and recombination processes or by radiation assisted ageing mechanisms. Our aim is to revise the effect of the aforementioned mechanisms on the complex evolution of Teflon{sup ®} FEP under space representative ionizing radiation. Through the definition of a new experimental protocol, revealing the effect of radiation dose and relaxation time, we have been able to demonstrate that the trapping/recombination model devised in this study agrees correctly with the observed experimental phenomenology at qualitative level and allows describing very well the evolution of radiation induced conductivity with irradiation time (or received radiation dose). According to this model, the complex behavior observed on Teflon{sup ®} FEP may be basically ascribed to the competition between electron/hole pairs generation and recombination: electrons are deeply trapped and act as recombination centers for free holes. Relaxation effects have been characterized through successive irradiations steps and have been again well described with the defined model at qualitative level: recombination centers created by the irradiation induce long term alteration on the electric properties, especially the effective bulk conductivity. One-month relaxation does not allow a complete recovery of the material initial charging behavior.

  9. Pharmacological analysis of dopamine modulation in the Drosophila melanogaster larval heart

    PubMed Central

    Titlow, Josh S; Rufer, Jenna M; King, Kayla E; Cooper, Robin L

    2013-01-01

    Dopamine (DA) and other neurotransmitters affect nonneuronal tissues in insects by circulating in the hemolymph. In several organisms, DA has been shown to modulate distinct aspects of cardiac function but the signal transduction pathways that mediate dopaminergic effects on the heart are not well characterized. Here, we used a semiintact Drosophila melanogaster larva preparation and drugs targeting DA receptors and canonical second messenger pathways to identify signaling cascades that mediate the effect of DA on a myogenic heart. DA has a positive chronotropic effect that is mimicked by SKF38393 (type-1 DA receptor agonist) and quinpirole (type-2 DA receptor agonist). SCH23390 and spiperone (type-1 and type-2 DA receptor antagonists) are moderately effective at inhibiting DA's effect. An adenylate cyclase inhibitor (SQ,22536) is also effective at blocking the stimulatory effect of DA but the drug has its own dose-dependent effect. Activation of protein kinase C with a diacylglycerol analog has a stimulatory effect on heart rate (HR). These results suggest that (1) both DA receptor subtypes are expressed in third instar larva cardiac myocytes to increase HR in response to rising levels of DA in the hemolymph, and (2) canonical second messenger pathways modulate HR in D. melanogaster larvae. Having these disparate signaling cascades converge toward a common modulatory function appears redundant, but in the context of multiple cardioactive chemicals this redundancy is likely to increase the fidelity of signal transduction. PMID:24303109

  10. Model for the respiratory modulation of the heart beat-to-beat time interval series

    NASA Astrophysics Data System (ADS)

    Capurro, Alberto; Diambra, Luis; Malta, C. P.

    2005-09-01

    In this study we present a model for the respiratory modulation of the heart beat-to-beat interval series. The model consists of a set of differential equations used to simulate the membrane potential of a single rabbit sinoatrial node cell, excited with a periodic input signal with added correlated noise. This signal, which simulates the input from the autonomous nervous system to the sinoatrial node, was included in the pacemaker equations as a modulation of the iNaK current pump and the potassium current iK. We focus at modeling the heart beat-to-beat time interval series from normal subjects during meditation of the Kundalini Yoga and Chi techniques. The analysis of the experimental data indicates that while the embedding of pre-meditation and control cases have a roughly circular shape, it acquires a polygonal shape during meditation, triangular for the Kundalini Yoga data and quadrangular in the case of Chi data. The model was used to assess the waveshape of the respiratory signals needed to reproduce the trajectory of the experimental data in the phase space. The embedding of the Chi data could be reproduced using a periodic signal obtained by smoothing a square wave. In the case of Kundalini Yoga data, the embedding was reproduced with a periodic signal obtained by smoothing a triangular wave having a rising branch of longer duration than the decreasing branch. Our study provides an estimation of the respiratory signal using only the heart beat-to-beat time interval series.

  11. Role of neurotensin in radiation-induced hypothermia in rats

    SciTech Connect

    Kandasamy, S.B.; Hunt, W.A.; Harris, A.H. )

    1991-05-01

    The role of neurotensin in radiation-induced hypothermia was examined. Intracerebroventricular (ICV) administration of neurotensin produced dose-dependent hypothermia. Histamine appears to mediate neurotensin-induced hypothermia because the mast cell stabilizer disodium cromoglycate and antihistamines blocked the hypothermic effects of neurotensin. An ICV pretreatment with neurotensin antibody attenuated neurotensin-induced hypothermia, but did not attenuate radiation-induced hypothermia, suggesting that radiation-induced hypothermia was not mediated by neurotensin.

  12. Plasma-Radiation-Induced Interface States in Metal-Nitride-Oxide-Silicon Structure of Charge-Coupled Device Image Sensor and Their Reduction Using Pulse-Time-Modulated Plasma

    NASA Astrophysics Data System (ADS)

    Okigawa, Mitsuru; Ishikawa, Yasushi; Samukawa, Seiji

    2003-04-01

    We found that ultraviolet (UV) light from helium discharge plasma and a halogen lamp clearly induce SiO2-Si interface states in a metal-silicon-nitride-oxide-silicon (MNOS) structure. A dark current originating in the interface states of charge-coupled-device (CCD) image sensors also increases by this UV irradiation. Pulse-time-modulated (TM) plasma suppresses the interface states, resulting in the CCD dark current, by decreasing the UV light. On the other hand, results of Capacitance-Voltage (CV) measurement did not show the difference between UV irradiation and no irradiation. This indicates that fixed charges in the SiO2 cannot be generated by the UV lights. Using optical filters, we revealed that a photon energy of 3.90 eV (318 nm) to 4.96 eV (250 nm) causes an increase in the interface states.

  13. Barriers to Radiation-Induced In Situ Tumor Vaccination

    PubMed Central

    Wennerberg, Erik; Lhuillier, Claire; Vanpouille-Box, Claire; Pilones, Karsten A.; García-Martínez, Elena; Rudqvist, Nils-Petter; Formenti, Silvia C.; Demaria, Sandra

    2017-01-01

    The immunostimulatory properties of radiation therapy (RT) have recently generated widespread interest due to preclinical and clinical evidence that tumor-localized RT can sometimes induce antitumor immune responses mediating regression of non-irradiated metastases (abscopal effect). The ability of RT to activate antitumor T cells explains the synergy of RT with immune checkpoint inhibitors, which has been well documented in mouse tumor models and is supported by observations of more frequent abscopal responses in patients refractory to immunotherapy who receive RT during immunotherapy. However, abscopal responses following RT remain relatively rare in the clinic, and antitumor immune responses are not effectively induced by RT against poorly immunogenic mouse tumors. This suggests that in order to improve the pro-immunogenic effects of RT, it is necessary to identify and overcome the barriers that pre-exist and/or are induced by RT in the tumor microenvironment. On the one hand, RT induces an immunogenic death of cancer cells associated with release of powerful danger signals that are essential to recruit and activate dendritic cells (DCs) and initiate antitumor immune responses. On the other hand, RT can promote the generation of immunosuppressive mediators that hinder DCs activation and impair the function of effector T cells. In this review, we discuss current evidence that several inhibitory pathways are induced and modulated in irradiated tumors. In particular, we will focus on factors that regulate and limit radiation-induced immunogenicity and emphasize current research on actionable targets that could increase the effectiveness of radiation-induced in situ tumor vaccination. PMID:28348554

  14. Radiation induced carcinoma of the larynx

    SciTech Connect

    Amendola, B.E.; Amendola, M.A.; McClatchey, K.D.

    1985-07-01

    A squamous cell carcinoma presented in a 20 year old female nonsmoker three years after receiving a high dosage of radiation therapy to the base of the skull, face and entire neuroaxis and intense combination chemotherapy for a parameningeal rhabdomyosarcoma of the paranasal sinuses is reported. The larynx received a dose of about 3,500 rads over an eight week period. This dosage in conjunction with the associated intense chemotherapy regimen given to the patient may explain the appearance of a radiation induced tumor in an unusually short latent period. This certainly represents a risk in young patients in whom an aggressive combined approach is taken and the physician should be aware of.

  15. Radiation-induced spinal cord hemorrhage (hematomyelia).

    PubMed

    Agarwal, Amit; Kanekar, Sangam; Thamburaj, Krishnamurthy; Vijay, Kanupriya

    2014-10-23

    Intraspinal hemorrhage is very rare and intramedullary hemorrhage, also called hematomyelia, is the rarest form of intraspinal hemorrhage, usually related to trauma. Spinal vascular malformations such intradural arteriovenous malformations are the most common cause of atraumatic hematomyelia. Other considerations include warfarin or heparin anticoagulation, bleeding disorders, spinal cord tumors. Radiation-induced hematomyelia of the cord is exceedingly rare with only one case in literature to date. We report the case of an 8 year old girl with Ewing's sarcoma of the thoracic vertebra, under radiation therapy, presenting with hematomyelia. We describe the clinical course, the findings on imaging studies and the available information in the literature. Recognition of the clinical pattern of spinal cord injury should lead clinicians to perform imaging studies to evaluate for compressive etiologies.

  16. Radiation-induced mutations and plant breeding

    SciTech Connect

    Naqvi, S.H.M.

    1985-01-01

    Ionizing radiation could cause genetic changes in an organism and could modify gene linkages. The induction of mutation through radiation is random and the probability of getting the desired genetic change is low but can be increased by manipulating different parameters such as dose rate, physical conditions under which the material has been irradiated, etc. Induced mutations have been used as a supplement to conventional plant breeding, particularly for creating genetic variability for specific characters such as improved plant structure, pest and disease resistance, and desired changes in maturity period; more than 200 varieties of crop plants have been developed by this technique. The Pakistan Atomic Energy Commission has used this technique fruitfully to evolve better germplasm in cotton, rice, chickpea, wheat and mungbean; some of the mutants have become popular commercial varieties. This paper describes some uses of radiation induced mutations and the results achieved in Pakistan so far.

  17. Radiation-induced mutation at minisatellite loci

    SciTech Connect

    Dubrova, Y.E. |; Nesterov, V.N.; Krouchinsky, N.G.

    1997-10-01

    We are studying the radiation-induced increase of mutation rate in minisatellite loci in mice and humans. Minisatellite mutations were scored by multilocus DNA fingerprint analysis in the progeny of {gamma}-irradiated and non-irradiated mice. The frequency of mutation in offspring of irradiated males was 1.7 higher that in the control group. Germline mutation at human minisatellite loci was studied among children born in heavily polluted areas of the Mogilev district of Belarus after the Chernobyl accident and in a control population. The frequency of mutation assayed both by DNA fingerprinting and by eight single locus probes was found to be two times higher in the exposed families than in the control group. Furthermore, mutation rate was correlated with the parental radiation dose for chronic exposure {sup 137}Cs, consistent with radiation-induction of germline mutation. The potential use of minisatellites in monitoring germline mutation in humans will be discussed.

  18. Pioglitazone Attenuates Acute Cocaine Toxicity in Rat Isolated Heart: Potential Protection by Metabolic Modulation

    PubMed Central

    Weinberg, Guy L.; Ripper, Richard; Bern, Sarah; Lin, Bocheng; Edelman, Lucas; DiGregorio, Guido; Piano, Mariann; Feinstein, Douglas L.

    2013-01-01

    Background The authors test whether cocaine depresses mitochondrial acylcarnitine exchange and if a drug that enhances glucose metabolism could protect against cocaine-induced cardiac dysfunction. Methods Oxygen consumption with and without cocaine was compared in rat cardiac mitochondria using either octanoylcarnitine (lipid) or pyruvate (non-lipid) substrates. Isolated hearts from rats with or without pioglitazone-supplemented diet were exposed to cocaine. Results Cocaine 0.5mM inhibited respiration supported by octanoylcarnitine (82 +/− 10.4 and 45.7 +/− 4.24 ngatomO min −1 mg −1 protein +/− SEM, for control and cocaine treatment, respectively; p < 0.02) but not pyruvate-supported respiration (281 +/− 12.5 and 267 +/− 12.7 ngatomO min −1 mg −1 protein +/− SEM; p = 0.45). Cocaine altered contractility, lusitropy, coronary resistance and lactate production in isolated heart. These effects were each blunted in pioglitazone-treated hearts. Pioglitazone diet attenuated the drop in rate-pressure product (p = 0.002), cocaine-induced diastolic dysfunction (p = 0.04) and myocardial vascular resistance (p = 0.05) compared to controls. Lactate production was higher in pretreated hearts (p = 0.008) and in ventricular myocytes cultured with pioglitazone (p = 0.0001). Conclusions Cocaine inhibited octanoylcarnitine-supported mitochondrial respiration. Pioglitazone diet significantly attenuated the effects of cocaine on isolated heart. The authors postulate that inhibition of acylcarnitine exchange could contribute to cocaine-induced cardiac dysfunction and that metabolic modulation warrants further study a potential treatment for such toxicity. PMID:21487283

  19. Polyol pathway and modulation of ischemia-reperfusion injury in Type 2 diabetic BBZ rat hearts

    PubMed Central

    Li, Qing; Hwang, Yuying C; Ananthakrishnan, Radha; Oates, Peter J; Guberski, Dennis; Ramasamy, Ravichandran

    2008-01-01

    We investigated the role of polyol pathway enzymes aldose reductase (AR) and sorbitol dehydrogenase (SDH) in mediating injury due to ischemia-reperfusion (IR) in Type 2 diabetic BBZ rat hearts. Specifically, we investigated, (a) changes in glucose flux via cardiac AR and SDH as a function of diabetes duration, (b) ischemic injury and function after IR, (c) the effect of inhibition of AR or SDH on ischemic injury and function. Hearts isolated from BBZ rats, after 12 weeks or 48 weeks diabetes duration, and their non-diabetic littermates, were subjected to IR protocol. Myocardial function, substrate flux via AR and SDH, and tissue lactate:pyruvate (L/P) ratio (a measure of cytosolic NADH/NAD+), and lactate dehydrogenase (LDH) release (a marker of IR injury) were measured. Zopolrestat, and CP-470,711 were used to inhibit AR and SDH, respectively. Myocardial sorbitol and fructose content, and associated changes in L/P ratios were significantly higher in BBZ rats compared to non-diabetics, and increased with disease duration. Induction of IR resulted in increased ischemic injury, reduced ATP levels, increases in L/P ratio, and poor cardiac function in BBZ rat hearts, while inhibition of AR or SDH attenuated these changes and protected hearts from IR injury. These data indicate that AR and SDH are key modulators of myocardial IR injury in BBZ rat hearts and that inhibition of polyol pathway could in principle be used as a therapeutic adjunct for protection of ischemic myocardium in Type 2 diabetic patients. PMID:18957123

  20. Modulation of Mitochondrial Permeability Transition in Ischemia-Reperfusion Injury of the Heart. Advantages and Limitations.

    PubMed

    Di Lisa, Fabio; Bernardi, Paolo

    2015-01-01

    In the last twenty years, numerous reports provided solid evidence on the involvement of the mitochondrial permeability transition pore (PTP) in myocardial injury caused by ischemia and reperfusion. Indeed, significant cardioprotection is obtained by reducing the open probability of the PTP. This goal has been achieved by pharmacological and genetic interventions aimed at inhibiting cyclophilin D (CyPD), a regulatory protein that favors PTP opening. On the other hand, CyPD inhibition or deletion has been shown to worsen remodeling of the hypertrophic heart, an adverse outcome that must find an explanation within PTP modulation by CyPD. In this review, recent advancements in defining the molecular identity of the PTP are analyzed in relation to its pathophysiological functions and pharmacological modulation. In this respect, advantages and limitations of compounds targeting CyPD are discussed with the analysis of novel PTP inhibitors that do not interact with CyPD.

  1. Investigations of radiation-induced and carrier-enhanced conductivity

    NASA Astrophysics Data System (ADS)

    Meulenberg, A., Jr.; Parker, L. W.; Yadlowski, E. J.; Hazelton, R. C.

    1985-03-01

    A steady-state carrier computer code, PECK (Parker Enhanced Carrier Kinetics), that predicts the radiation-induced conductivity (RIC) produced in a dielectric by an electron beam was developed. The model, which assumes instantly-trapped holes, was then applied to experimental measurements on thin Kapton samples penetrated by an electron beam. Measurements at high bias were matched in the model by an appropriate choice for the trap-modulated electron mobility. A fractional split between front and rear currents measured at zone bias is explained on the basis of beam-scattering. The effects of carrier-enhanced conductivity (CEC) on data obtained for thick, free-surface Kapton samples is described by using an analytical model that incorporates field injection of carriers from the RIC region. The computer code, LWPCHARGE, modified for carrier transport, is also used to predict partial penetration effects associated with CEC in the unirradiated region. Experimental currents and surface voltages, when incorporated in the appropriate models, provide a value for the trap modulated mobility that is in essential agreement with the RIC results.

  2. Investigations of radiation-induced and carrier-enhanced conductivity

    NASA Technical Reports Server (NTRS)

    Meulenberg, A., Jr.; Parker, L. W.; Yadlowski, E. J.; Hazelton, R. C.

    1985-01-01

    A steady-state carrier computer code, PECK (Parker Enhanced Carrier Kinetics), that predicts the radiation-induced conductivity (RIC) produced in a dielectric by an electron beam was developed. The model, which assumes instantly-trapped holes, was then applied to experimental measurements on thin Kapton samples penetrated by an electron beam. Measurements at high bias were matched in the model by an appropriate choice for the trap-modulated electron mobility. A fractional split between front and rear currents measured at zone bias is explained on the basis of beam-scattering. The effects of carrier-enhanced conductivity (CEC) on data obtained for thick, free-surface Kapton samples is described by using an analytical model that incorporates field injection of carriers from the RIC region. The computer code, LWPCHARGE, modified for carrier transport, is also used to predict partial penetration effects associated with CEC in the unirradiated region. Experimental currents and surface voltages, when incorporated in the appropriate models, provide a value for the trap modulated mobility that is in essential agreement with the RIC results.

  3. Grape seed extract Vitis vinifera protects against radiation-induced oxidative damage and metabolic disorders in rats.

    PubMed

    Saada, Helen N; Said, Ussama Z; Meky, Nefissa H; Abd El Azime, Afrag S

    2009-03-01

    Whole body exposure to ionizing radiation induces the formation of reactive oxygen species (ROS) in different tissues provoking oxidative damage, organ dysfunction and metabolic disturbances. The present study was designed to determine the possible protective effect of grape seed extract (GSE), rich in proanthocyanidins against gamma-radiation-induced oxidative stress in heart and pancreas tissues associated with serum metabolic disturbances. Irradiated rats were whole body exposed to 5 Gy gamma-radiation. GSE-treated irradiated rats received 100 mg GSE/kg/day, by gavage, for 14 days before irradiation. The animals were killed on days 1, 14 and 28 after irradiation. Significant decreases of SOD, CAT and GSH-Px activities associated with significant increases of TBARS levels were recorded in both tissues after irradiation. GSE administration pre-irradiation significantly attenuated the radiation-induced oxidative stress in heart tissues which was substantiated by a significant amelioration of serum LDH, CPK and AST activities. GSE treatment also attenuated the oxidative stress in pancreas tissues which was associated with a significant improvement in radiation-induced hyperglycemia and hyperinsulinemia. In conclusion, the present data demonstrate that GSE would protect the heart and pancreas tissues from oxidative damage induced by ionizing irradiation.

  4. The Role of α7 Nicotinic Acetylcholine Receptor in Modulation of Heart Rate Dynamics in Endotoxemic Rats

    PubMed Central

    Mazloom, Roham; Eftekhari, Golnar; Rahimi, Maryam; Khori, Vahid; Hajizadeh, Sohrab; Dehpour, Ahmad R.; Mani, Ali R.

    2013-01-01

    Previous reports have indicated that artificial stimulation of the vagus nerve reduces systemic inflammation in experimental models of sepsis. This phenomenon is a part of a broader cholinergic anti-inflammatory pathway which activates the vagus nerve to modulate inflammation through activation of alpha7 nicotinic acetylcholine receptors (α7nACHR). Heart rate variability represents the complex interplay between autonomic nervous system and cardiac pacemaker cells. Reduced heart rate variability and increased cardiac cycle regularity is a hallmark of clinical conditions that are associated with systemic inflammation (e.g. endotoxemia and sepsis). The present study was aimed to assess the role of α7nACHR in modulation of heart rate dynamics during systemic inflammation. Systemic inflammation was induced by injection of endotoxin (lipopolysaccharide) in rats. Electrocardiogram and body temperature were recorded in conscious animals using a telemetric system. Linear and non-linear indices of heart rate variability (e.g. sample entropy and fractal-like temporal structure) were assessed. RT-PCR and immunohistochemistry studies showed that α7nACHR is expressed in rat atrium and is mainly localized at the endothelial layer. Systemic administration of an α7nACHR antagonist (methyllycaconitine) did not show a significant effect on body temperature or heart rate dynamics in naïve rats. However, α7nACHR blockade could further reduce heart rate variability and elicit a febrile response in endotoxemic rats. Pre-treatment of endotoxemic animals with an α7nACHR agonist (PHA-543613) was unable to modulate heart rate dynamics in endotoxemic rats but could prevent the effect of endotoxin on body temperature within 24 h experiment. Neither methyllycaconitine nor PHA-543613 could affect cardiac beating variability of isolated perfused hearts taken from control or endotoxemic rats. Based on our observations we suggest a tonic role for nicotinic acetylcholine receptors in

  5. Microwave influence on the isolated heart function. 1: Effect of modulation

    SciTech Connect

    Pakhomov, A.G.; Dubovick, B.V.; Degtyariov, I.G.; Pronkevich, A.N.

    1995-09-01

    Dependence of the microwave effect on modulation parameters (pulse width, duty ratio, and peak intensity) was studied in an isolated frog auricle preparation. The rate and amplitude of spontaneous auricle twitches were measured during and after a 2 min exposure to 915 or 885 MHz microwaves and were compared to preexposure values. The studied ranges of modulation parameters were: pulse width, 10{sup {minus}6}--10{sup {minus}2} s; duty ratio, 7:100000, and peak specific absorption rate, 100--3,000 W/kg. Combinations of the parameters were chosen by chance, and about 400 various exposure regimes were tested. The experiments established that no regime was effective unless the average microwave power was high enough to induce preparation heating (0.1--0.4 C). The twitch rate instantly increased, and the amplitude decreased, as the temperature rose; similar changes could be induced by equivalent conventional heating. the data provide evidence that the effect of short-term microwave exposure on the isolated heart pacemaker and contractile functions depends on pulse modulation just as much as modulation determines the average absorbed power. These functions demonstrated no specific dependence on exposure parameters such as frequency or power windows.

  6. Microwave influence on the isolated heart function: I. Effect of modulation.

    PubMed

    Pakhomov, A G; Dubovick, B V; Degtyariov, I G; Pronkevich, A N

    1995-01-01

    Dependence of the microwave effect on modulation parameters (pulse width, duty ratio, and peak intensity) was studied in an isolated frog auricle preparation. The rate and amplitude of spontaneous auricle twitches were measured during and after a 2 min exposure to 915 or 885 MHz microwaves and were compared to preexposure values. The studied ranges of modulation parameters were: pulse width, 10(-6)-10(-2) s; duty ratio, 7:100000, and peak specific absorption rate, 100-3000 W/kg. Combinations of the parameters were chosen by chance, and about 400 various exposure regimes were tested. The experiments established that no regime was effective unless the average microwave power was high enough to induce preparation heating (0.1-0.4 degree C). The twitch rate instantly increased, and the amplitude decreased, as the temperature rose; similar changes could be induced by equivalent conventional heating. The data provide evidence that the effect of short-term microwave exposure on the isolated heart pacemaker and contractile functions depends on pulse modulation just as much as modulation determines the average absorbed power. These functions demonstrated no specific dependence on exposure parameters such as frequency or power windows.

  7. Hypnotizability-dependent modulation of the changes in heart rate control induced by upright stance.

    PubMed

    Santarcangelo, Enrica L; Balocchi, Rita; Scattina, Eliana; Manzoni, Diego; Bruschini, Luca; Ghelarducci, Brunello; Varanini, Maurizio

    2008-03-28

    Subjects with high (Highs) and low (Lows) susceptibility to hypnosis show differences in the sensory-motor integration for postural control and in the cardiovascular response to stress and experimental pain. Aim of the experiment was to assess whether the cardiac response to gravity-related stimulation depending on changes in the body position were different in the two groups. Thus, heart rate (HR) and heart rate variability (HRV) were evaluated in sitting and upright position in Highs and Lows. Position-related HRV changes were studied in the time (statistical indexes, Poincaré Plot) and frequency (spectral analysis) domain. Results indicated that upright stance was associated with similar changes in heart rate and different modulation of HRV in the two groups. The association of time and frequency domain analyses allowed hypothesizing different control mechanisms as responsible for the cardiac response to upright stance in Highs and Lows, likely due to a different role of the Very Low Frequency (VLF) spectral component of HRV in the two groups. The results are in line with previous findings indicating a natural protection of Highs against cardiovascular events and suggest that the Highs' cardiac function might be less impaired by microgravity than the Lows' one.

  8. Nitrite is a positive modulator of the Frank-Starling response in the vertebrate heart.

    PubMed

    Angelone, Tommaso; Gattuso, Alfonsina; Imbrogno, Sandra; Mazza, Rosa; Tota, Bruno

    2012-06-01

    Evidence from both mammalian and nonmammalian vertebrates indicates that intracardiac nitric oxide (NO) facilitates myocardial relaxation, ventricular diastolic distensibility, and, consequently, the Frank-Starling response, i.e., the preload-induced increase of cardiac output. Since nitrite ion (NO(2)(-)), the major storage pool of bioactive NO, recently emerged as a cardioprotective endogenous modulator, we explored its influence on the Frank-Starling response in eel, frog, and rat hearts, used as paradigms of fish, amphibians, and mammals, respectively. We demonstrated that, like NO, exogenous nitrite improves the Frank-Starling response in all species, as indicated by an increase of stroke volume and stroke work (eel and frog) and of left ventricular (LV) pressure and LVdP/dt max (rat), used as indexes of inotropism. Unlike in frog and rat, in eel, the positive influence of nitrite appeared to be dependent on NO synthase inhibition. In all species, the effect was sensitive to NO scavengers, independent on nitroxyl anion, and mediated by a cGMP/PKG-dependent pathway. Moreover, the nitrite treatment increased S-nitrosylation of lower-molecular-weight proteins in cytosolic and membrane fractions. These results suggest that nitrite acts as a physiological source of NO, modulating through different species-specific mechanisms, the stretch-induced intrinsic regulation of the vertebrate heart.

  9. Cardiovascular microRNAs: as modulators and diagnostic biomarkers of diabetic heart disease.

    PubMed

    Rawal, Shruti; Manning, Patrick; Katare, Rajesh

    2014-02-14

    Diabetic heart disease (DHD) is the leading cause of morbidity and mortality among the people with diabetes, with approximately 80% of the deaths in diabetics are due to cardiovascular complications. Importantly, heart disease in the diabetics develop at a much earlier stage, although remaining asymptomatic till the later stage of the disease, thereby restricting its early detection and active therapeutic management. Thus, a better understanding of the modulators involved in the pathophysiology of DHD is necessary for the early diagnosis and development of novel therapeutic implications for diabetes-associated cardiovascular complications. microRNAs (miRs) have recently been evolved as key players in the various cardiovascular events through the regulation of cardiac gene expression. Besides their credible involvement in controlling the cellular processes, they are also released in to the circulation in disease states where they serve as potential diagnostic biomarkers for cardiovascular disease. However, their potential role in DHD as modulators as well as diagnostic biomarkers is largely unexplored. In this review, we describe the putative mechanisms of the selected cardiovascular miRs in relation to cardiovascular diseases and discuss their possible involvement in the pathophysiology and early diagnosis of DHD.

  10. The mammalian target of rapamycin modulates the immunoproteasome system in the heart.

    PubMed

    Zhang, Hong-Mei; Fu, Jianliang; Hamilton, Ryan; Diaz, Vivian; Zhang, Yiqiang

    2015-09-01

    The mammalian target of rapamycin (mTOR) plays an important role in cardiac development and function. Inhibition of mTOR by rapamycin has been shown to attenuate pathological cardiac hypertrophy and improve the function of aging heart, accompanied by an inhibition of the cardiac proteasome activity. The current study aimed to determine the potential mechanism(s) by which mTOR inhibition modulates cardiac proteasome. Inhibition of mTOR by rapamycin was found to reduce primarily the immunoproteasome in both H9c2 cells in vitro and mouse heart in vivo, without significant effect on the constitutive proteasome and protein ubiquitination. Concurrent with the reduction of the immunoproteasome, rapamycin reduced two important inflammatory response pathways, the NF-κB and Stat3 signaling. In addition, rapamycin attenuated the induction of the immunoproteasome in H9c2 cells by inflammatory cytokines, including INFγ and TNFα, by suppressing NF-κB signaling. These data indicate that rapamycin indirectly modulated immunoproteasome through the suppression of inflammatory response pathways. Lastly, the role of the immunoproteasome during the development of cardiac hypertrophy was investigated. Administration of a specific inhibitor of the immunoproteasome ONX 0914 attenuated isoproterenol-induced cardiac hypertrophy, suggesting that the immunoproteasome may be involved in the development of cardiac hypertrophy and therefore could be a therapeutic target. In conclusion, rapamycin inhibits the immunoproteasome through its effect on the inflammatory signaling pathways and the immunoproteasome could be a potential therapeutic target for pathological cardiac hypertrophy.

  11. Radiation-induced cardiovascular diseases: Is the epidemiologic evidence compatible with the radiobiologic data?

    SciTech Connect

    Schultz-Hector, Susanne . E-mail: susanne.schultz-hector@helmholtz.de; Trott, Klaus-Ruediger Prof.

    2007-01-01

    The Life Span Study of Japanese atomic bomb survivors demonstrates that radiation exposure significantly increased the risk of developing ischemic heart disease, in particular myocardial infarction. Similarly, epidemiologic investigations in very large populations of patients who had received postoperative radiotherapy for breast cancer or for peptic ulcer demonstrate that radiation exposure of the heart with an average equivalent single dose of approximately 2 Gy significantly increased the risk of developing ischemic heart disease more than 10 years after irradiation. These epidemiologic findings are compatible with radiobiologic data on the pathogenesis of radiation-induced heart disease in experimental animals. The critical target structure appears to be the endothelial lining of blood vessels, in particular arteries, leading to early functional alterations such as pro-inflammatory responses and other changes, which are slowly progressive. Research should concentrate on the interaction of these radiation-induced endothelial changes with the early stages of age-related atherosclerosis to develop criteria for optimizing treatment plans in radiotherapy and also potential interventional strategies.

  12. Novel concepts in radiation-induced cardiovascular disease

    PubMed Central

    Cuomo, Jason R; Sharma, Gyanendra K; Conger, Preston D; Weintraub, Neal L

    2016-01-01

    Radiation-induced cardiovascular disease (RICVD) is the most common nonmalignant cause of morbidity and mortality among cancer survivors who have undergone mediastinal radiation therapy (RT). Cardiovascular complications include effusive or constrictive pericarditis, cardiomyopathy, valvular heart disease, and coronary/vascular disease. These are pathophysiologically distinct disease entities whose prevalence varies depending on the timing and extent of radiation exposure to the heart and great vessels. Although refinements in RT dosimetry and shielding will inevitably limit future cases of RICVD, the increasing number of long-term cancer survivors, including those treated with older higher-dose RT regimens, will ensure a steady flow of afflicted patients for the foreseeable future. Thus, there is a pressing need for enhanced understanding of the disease mechanisms, and improved detection methods and treatment strategies. Newly characterized mechanisms responsible for the establishment of chronic fibrosis, such as oxidative stress, inflammation and epigenetic modifications, are discussed and linked to potential treatments currently under study. Novel imaging modalities may serve as powerful screening tools in RICVD, and recent research and expert opinion advocating their use is introduced. Data arguing for the aggressive use of percutaneous interventions, such as transcutaneous valve replacement and drug-eluting stents, are examined and considered in the context of prior therapeutic approaches. RICVD and its treatment options are the subject of a rich and dynamic body of research, and patients who are at risk or suffering from this disease will benefit from the care of physicians with specialty expertise in the emerging field of cardio-oncology. PMID:27721934

  13. ALCOHOL MODULATION OF MMP AND TIMP EXPRESSION IN THE HEART FAVORS COLLAGEN ACCUMULATION

    PubMed Central

    El Hajj, E.C.; El hajj, M.C.; Voloshenyuk, T.G.; Mouton, A.J.; Khoutorova, E.; Molina, P.E.; Gilpin, N.W.; Gardner, J.D.

    2013-01-01

    Background Chronic alcohol consumption has been shown in human and animal studies to result in collagen accumulation, myocardial fibrosis, and heart failure. Cardiac fibroblasts produce collagen and regulate extracellular matrix (ECM) homeostasis through the synthesis and activity of matrix metalloproteinases (MMP) and tissue inhibitors of MMPs (TIMP), with the balance of MMPs/TIMPs determining the rate of collagen turnover. Dynamic changes of MMP and TIMP expression were reported in alcohol induced hepatic fibrosis; however, the effect of alcohol on MMP/TIMP balance in the heart and cardiac fibroblasts is unknown. We hypothesized that alcohol exposure alters cardiac fibroblast MMP and TIMP expression to promote collagen accumulation in the heart. Methods Cardiac fibroblasts isolated from adult rats were cultured in the presence of alcohol (12.5–200 mM) for 48 hrs. MMP, TIMP, and collagen type I and III expression were assayed by Western blot analysis. Hydroxyproline (HPro) was used as a marker of collagen production. The in vivo cardiac effects of ethanol were determined using rats exposed to ethanol vapor for two weeks, resulting in blood alcohol levels of 150–200 mg/dl. Cardiac collagen volume fraction (CVF), as well as MMP, TIMP and collagen expression, was assessed. Results Ethanol exposed rats exhibited upregulation of TIMP-1, -3 and -4 in the heart, with no significant increases in MMPs. Cardiac fibroblasts exhibited transformation to a profibrotic phenotype following exposure to alcohol. These changes were reflected by increased α-smooth muscle actin and collagen I and III expression, as well as increased collagen secretion. In vivo ethanol exposure also produced fibrosis, indicated by increased CVF and expression of collagens. Conclusion Alcohol exposure modulates cardiac fibroblast MMP/TIMP expression favoring a profile associated with collagen accumulation. Our data suggest that this disrupted MMP/TIMP profile may contribute to the development of

  14. Differential modulation of citrate synthesis and release by fatty acids in perfused working rat hearts.

    PubMed

    Vincent, Genevieve; Bouchard, Bertrand; Khairallah, Maya; Des Rosiers, Christine

    2004-01-01

    The objective of this study was to test the effect of increasing fatty acid concentrations on substrate fluxes through pathways leading to citrate synthesis and release in the heart. This was accomplished using semirecirculating work-performing rat hearts perfused with substrate mixtures mimicking the in situ milieu (5.5 mM glucose, 8 nM insulin, 1 mM lactate, 0.2 mM pyruvate, and 0.4 mM oleate-albumin) and 13C methods. Raising the fatty acid concentration from 0.4 to 1 mM with long-chain oleate or medium-chain octanoate resulted in a lowering ( approximately 20%) of cardiac output and efficiency with unaltered O2 consumption. At the metabolic level, beyond the expected effects of high fatty acid levels on the contribution of pyruvate decarboxylation (reduced >3-fold) and beta-oxidation (enhanced approximately 3-fold) to citrate synthesis, there was also a 2.4-fold lowering of anaplerotic pyruvate carboxylation. Despite the dual inhibitory effect of high fatty acids on pyruvate decarboxylation and carboxylation, tissue citrate levels were twofold higher, but citrate release rates remained unchanged at 11-14 nmol/min, representing <0.5% of citric acid cycle flux. A similar trend was observed for most metabolic parameters after oleate or octanoate addition. Together, these results emphasize a differential modulation of anaplerotic pyruvate carboxylation and citrate release in the heart by fatty acids. We interpret the lack of effects of high fatty acid concentrations on citrate release rates as suggesting that, under physiological conditions, this process is maximal, probably limited by the activity of its mitochondrial or plasma membrane transporter. Limited citrate release at high fatty acid concentrations may have important consequences for the heart's fuel metabolism and function.

  15. The effect of ATP-sensitive potassium channel modulation on heart rate in isolated muskrat and guinea pig hearts.

    PubMed

    Streeby, D R; McKean, T A

    1994-12-01

    Muskrats (Ondontra zibethicus) are common freshwater diving mammals exhibiting a bradycardia with both forced and voluntary diving. This bradycardia is mediated by vagal innervation; however, if hypoxia is present there may be local factors that also decrease heart rate. Some of these local factors may include ATP-sensitive potassium channel activation and extracellular accumulation of potassium ions, hydrogen ions and lactate. The purpose of this study was to investigate the role of these factors in the isolated perfused hearts of muskrats and of a non-diving mammal, the guinea pig. Although lactate and proton administration reduced heart rate in isolated muskrat and guinea pig hearts, there was no difference in the response to lactate and proton infusion between the two species. Muskrat hearts were more sensitive to the heart-rate-lowering effects of exogenously applied potassium than were guinea pig hearts. Early increases in extracellular potassium concentration during hypoxia are thought to be mediated by the ATP-sensitive potassium channel. Activation of these channels under normoxic conditions had a mildly negative chronotropic effect in both species; however, activation of these channels with Lemakalim under hypoxic conditions caused the guinea pig heart to respond with an augmented bradycardia similar to that seen in the hypoxic muskrat heart in the absence of drugs. Inhibition of these channels by glibenclamide during hypoxia was partially successful in blocking the bradycardia in guinea pig hearts, but inhibition of the same channels in hypoxic muskrat hearts had a damaging effect as two of five hearts went into contracture during the hypoxia. Thus, although ATP-sensitive potassium channels appear to have a major role in the bradycardia of hypoxia in guinea pigs, the failure to prevent the bradycardia by inhibition of these channels in muskrat hearts suggests that multiple factors are involved in the hypoxia-induced bradycardia in this species.

  16. Radiation-induced degradation of aqueous fluoranthene

    NASA Astrophysics Data System (ADS)

    Popov, Petar; Getoff, Nikola

    2005-01-01

    The radiation-induced degradation of fluoranthene (FA) in slightly alkaline aqueous solution was investigated in the presence of air as well as of N 2O. Depending on the starting FA-concentration the determined Gi(-FA) was 0.34 for 1×10 -5 mol/l FA upto 0.67 for 4.6×10 -5 mol/l FA. As major radiolytic products found by HPLC-analysis were: 9-fluorene carboxylic acid ( Gi =0.006), 9-fluorenone ( Gi=0.004) and fluorene ( Gi=0.002) in addition to a mixture of carboxylic acids and aldehydes. In the presence of N 2O (90% OH, 10% H) practically the same products were observed, however in this case the yield of the carboxylic acids was about 2-times higher than in solutions saturated with air, but 4-times less aldehydes, resp. For illustration of the rather complicated degradation process a probable reaction mechanism is presented.

  17. Radiation-induced segregation, hardening, and IASCC

    SciTech Connect

    Eason, E.D.; Nelson, E.E.

    1995-12-31

    Intergranular cracking has been discovered after extended radiation exposure in several boiling water reactor (BWR) internal components made of austenitic stainless steel and nickel-based alloys. There are fewer field observations of intergranular cracking in pressurized water reactors (PWR), but failures have occurred in bolts, springs, and fuel cladding. There is concern for other PWR components, some of which will receive greater radiation doses than BWR components during the plant lifetime. This paper presents the results of an investigation on the connection between radiation induced segregation, hardening and irradiation-assisted stress corrosion cracking (IASCC). A data base was developed containing the available data on austenitic stainless steel where the grain boundary composition was measured by Field Emission Gun-Scanning Transmission Election Microscopy (FEG-STEM), the stress corrosion susceptibility was measured by constant extension rate tests (CERT) in light water reactor environments, some estimate of irradiated strength was available and the irradiation was conducted in a power reactor. The data base was analyzed using advanced data analysis techniques, including tree-structured pattern recognition and transformation analysis codes. The most sensitive variables and optimal modeling forms were identified using these techniques, then preliminary models were calibrated using nonlinear least squares. The results suggest that more than one mechanism causes IASCC.

  18. Development of a Standardized Method for Contouring the Lumbosacral Plexus: A Preliminary Dosimetric Analysis of this Organ at Risk Among 15 Patients Treated With Intensity-Modulated Radiotherapy for Lower Gastrointestinal Cancers and the Incidence of Radiation-Induced Lumbosacral Plexopathy

    SciTech Connect

    Yi, Sun K.; Mak, Walter; Yang, Claus C.; Liu Tianxiao; Cui Jing; Chen, Allen M.; Purdy, James A.; Monjazeb, Arta M.; Do, Ly

    2012-10-01

    Purpose: To generate a reproducible step-wise guideline for the delineation of the lumbosacral plexus (LSP) on axial computed tomography (CT) planning images and to provide a preliminary dosimetric analysis on 15 representative patients with rectal or anal cancers treated with an intensity-modulated radiotherapy (IMRT) technique. Methods and Materials: A standardized method for contouring the LSP on axial CT images was devised. The LSP was referenced to identifiable anatomic structures from the L4-5 interspace to the level of the sciatic nerve. It was then contoured retrospectively on 15 patients treated with IMRT for rectal or anal cancer. No dose limitations were placed on this organ at risk during initial treatment planning. Dosimetric parameters were evaluated. The incidence of radiation-induced lumbosacral plexopathy (RILSP) was calculated. Results: Total prescribed dose to 95% of the planned target volume ranged from 50.4 to 59.4 Gy (median 54 Gy). The mean ({+-}standard deviation [SD]) LSP volume for the 15 patients was 100 {+-} 22 cm{sup 3} (range, 71-138 cm{sup 3}). The mean maximal dose to the LSP was 52.6 {+-} 3.9 Gy (range, 44.5-58.6 Gy). The mean irradiated volumes of the LSP were V40Gy = 58% {+-} 19%, V50Gy = 22% {+-} 23%, and V55Gy = 0.5% {+-} 0.9%. One patient (7%) was found to have developed RILSP at 13 months after treatment. Conclusions: The true incidence of RILSP in the literature is likely underreported and is not a toxicity commonly assessed by radiation oncologists. In our analysis the LSP commonly received doses approaching the prescribed target dose, and 1 patient developed RILSP. Identification of the LSP during IMRT planning may reduce RILSP. We have provided a reproducible method for delineation of the LSP on CT images and a preliminary dosimetric analysis for potential future dose constraints.

  19. Akt protects the heart against ischaemia-reperfusion injury by modulating mitochondrial morphology.

    PubMed

    Ong, Sang-Bing; Hall, Andrew R; Dongworth, Rachel K; Kalkhoran, Siavash; Pyakurel, Aswin; Scorrano, Luca; Hausenloy, Derek J

    2015-03-01

    The mechanism through which the protein kinase Akt (also called PKB), protects the heart against acute ischaemia-reperfusion injury (IRI) is not clear. Here, we investigate whether Akt mediates its cardioprotective effect by modulating mitochondrial morphology. Transfection of HL-1 cardiac cells with constitutively active Akt (caAkt) changed mitochondrial morphology as evidenced by an increase in the proportion of cells displaying predominantly elongated mitochondria (73 ± 5.0 % caAkt vs 49 ± 5.8 % control: N=80 cells/group; p< 0.05). This effect was associated with delayed time taken to induce mitochondrial permeability transition pore (MPTP) opening (by 2.4 ± 0.5 fold; N=80 cells/group: p< 0.05); and reduced cell death following simulated IRI (32.8 ± 1.2 % caAkt vs 63.8 ± 5.6 % control: N=320 cells/group: p< 0.05). Similar effects on mitochondrial morphology, MPTP opening, and cell survival post-IRI, were demonstrated with pharmacological activation of Akt using the known cardioprotective cytokine, erythropoietin (EPO). The effect of Akt on inducing mitochondrial elongation was found to be dependent on the mitochondrial fusion protein, Mitofusin-1 (Mfn1), as ablation of Mfn1 in mouse embryonic fibroblasts (MEFs) abrogated Akt-mediated mitochondrial elongation. Finally, in vivo pre-treatment with EPO reduced myocardial infarct size (as a % of the area at risk) in adult mice subjected to IRI (26.2 ± 2.6 % with EPO vs 46.1 ± 6.5 % in control; N=7/group: p< 0.05), and reduced the proportion of cells displaying myofibrillar disarray and mitochondrial fragmentation observed by electron microscopy in adult murine hearts subjected to ischaemia from 5.8 ± 1.0 % to 2.2 ± 1.0 % (N=5 hearts/group; p< 0.05). In conclusion, we found that either genetic or pharmacological activation of Akt protected the heart against acute ischaemia-reperfusion injury by modulating mitochondrial morphology.

  20. Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases

    PubMed Central

    Wang, Yingying; Boerma, Marjan; Zhou, Daohong

    2016-01-01

    Exposure to ionizing radiation induces not only apoptosis but also senescence. While the role of endothelial cell apoptosis in mediating radiation-induced acute tissue injury has been extensively studied, little is known about the role of endothelial cell senescence in the pathogenesis of radiation-induced late effects. Senescent endothelial cells exhibit decreased production of nitric oxide and expression of thrombomodulin, increased expression of adhesion molecules, elevated production of reactive oxygen species and inflammatory cytokines and an inability to proliferate and form capillary-like structures in vitro. These findings suggest that endothelial cell senescence can lead to endothelial dysfunction by dysregulation of vasodilation and hemostasis, induction of oxidative stress and inflammation and inhibition of angiogenesis, which can potentially contribute to radiation-induced late effects such as cardiovascular diseases (CVDs). In this article, we discuss the mechanisms by which radiation induces endothelial cell senescence, the roles of endothelial cell senescence in radiation-induced CVDs and potential strategies to prevent, mitigate and treat radiation-induced CVDs by targeting senescent endothelial cells. PMID:27387862

  1. Radiation-Induced Immune Modulation in Prostate Cancer

    DTIC Science & Technology

    2006-01-01

    Research Society, Denver, CO, 2004. Dörthe Schaue, Yu-Pei Liao, Begonya Comin-Anduix, Antoni Ribas , Annelies Debucquoy, Karin Haustermans, and William H...Submitted, 2006. Schaue, D., Y. Liao, B. Comin-Anduix, A. Ribas , D.C. Altieri, A. Debucquoy, K. Haustermans and W.H. McBride: The Effect of Radiation...Comin-Anduix, A. Ribas , D.C. Altieri, A. Debucquoy, K. Haustermans and W.H. McBride: The Effect of Radiation Therapy on Tumor-Specific Immune Responses

  2. Radiation-Induced Immune Modulation in Prostate Cancer

    DTIC Science & Technology

    2008-01-01

    probably act as a “ brake ” on immunity in this system (Fig. 2 and Fig. 2 in 2006 annual report). These experiments are being repeated as we now have...starting treatment, and every Kachikwu 10 three to four days thereafter, using vernier calipers . Tumor volumes were calculated using the formula

  3. A Multidisciplinary Self-Directed Learning Module Improves Knowledge of a Quality Improvement Instrument: The HEART Pathway.

    PubMed

    Hartman, Nicholas D; Harper, Erin N; Leppert, Lauren M; Browning, Brittany M; Askew, Kim; Manthey, David E; Mahler, Simon A

    2016-07-20

    We created and tested an educational intervention to support implementation of an institution wide QI project (the HEART Pathway) designed to improve care for patients with acute chest pain. Although online learning modules have been shown effective in imparting knowledge regarding QI projects, it is unknown whether these modules are effective across specialties and healthcare professions. Participants, including nurses, advanced practice clinicians, house staff and attending physicians (N = 486), were enrolled into an online, self-directed learning course exploring the key concepts of the HEART Pathway. The module was completed by 97% of enrollees (469/486) and 90% passed on the first attempt (422/469). Out of 469 learners, 323 completed the pretest, learning module and posttest in the correct order. Mean test scores across learners improved significantly from 74% to 89% from the pretest to the posttest. Following the intervention, the HEART Pathway was used for 88% of patients presenting to our institution with acute chest pain. Our data demonstrate that this online, self-directed learning module can improve knowledge of the HEART Pathway across specialties-paving the way for more efficient and informed care for acute chest pain patients.

  4. Mechanisms of radiation-induced neoplastic cell transformation

    SciTech Connect

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table.

  5. Molecular Mechanisms and Treatment of Radiation-Induced Lung Fibrosis

    PubMed Central

    Ding, Nian-Hua; Li, Jian Jian; Sun, Lun-Quan

    2014-01-01

    Radiation-induced lung fibrosis (RILF) is a severe side effect of radiotherapy in lung cancer patients that presents as a progressive pulmonary injury combined with chronic inflammation and exaggerated organ repair. RILF is a major barrier to improving the cure rate and well-being of lung cancer patients because it limits the radiation dose that is required to effectively kill tumor cells and diminishes normal lung function. Although the exact mechanism is unclear, accumulating evidence suggests that various cells, cytokines and regulatory molecules are involved in the tissue reorganization and immune response modulation that occur in RILF. In this review, we will summarize the general symptoms, diagnostics, and current understanding of the cells and molecular factors that are linked to the signaling networks implicated in RILF. Potential approaches for the treatment of RILF will also be discussed. Elucidating the key molecular mediators that initiate and control the extent of RILF in response to therapeutic radiation may reveal additional targets for RILF treatment to significantly improve the efficacy of radiotherapy for lung cancer patients. PMID:23909719

  6. Radiation-Induced Alopecia after Endovascular Embolization under Fluoroscopy

    PubMed Central

    Ounsakul, Vipawee; Iamsumang, Wimolsiri

    2016-01-01

    Radiation-induced alopecia after fluoroscopically guided procedures is becoming more common due to an increasing use of endovascular procedures. It is characterized by geometric shapes of nonscarring alopecia related to the area of radiation. We report a case of a 46-year-old man presenting with asymptomatic, sharply demarcated rectangular, nonscarring alopecic patch on the occipital scalp following cerebral angiography with fistula embolization under fluoroscopy. His presentations were compatible with radiation-induced alopecia. Herein, we also report a novel scalp dermoscopic finding of blue-grey dots in a target pattern around yellow dots and follicles, which we detected in the lesion of radiation-induced alopecia. PMID:28074164

  7. Delayed Radiation-Induced Vasculitic Leukoencephalopathy

    SciTech Connect

    Rauch, Philipp J.; Park, Henry S.; Knisely, Jonathan P.S.; Chiang, Veronica L.; Vortmeyer, Alexander O.

    2012-05-01

    Purpose: Recently, single-fraction, high-dosed focused radiation therapy such as that administered by Gamma Knife radiosurgery has been used increasingly for the treatment of metastatic brain cancer. Radiation therapy to the brain can cause delayed leukoencephalopathy, which carries its own significant morbidity and mortality. While radiosurgery-induced leukoencephalopathy is known to be clinically different from that following fractionated radiation, pathological differences are not well characterized. In this study, we aimed to integrate novel radiographic and histopathologic observations to gain a conceptual understanding of radiosurgery-induced leukoencephalopathy. Methods and Materials: We examined resected tissues of 10 patients treated at Yale New Haven Hospital between January 1, 2009, and June 30, 2010, for brain metastases that had been previously treated with Gamma Knife radiosurgery, who subsequently required surgical management of a symptomatic regrowing lesion. None of the patients showed pathological evidence of tumor recurrence. Clinical and magnetic resonance imaging data for each of the 10 patients were then studied retrospectively. Results: We provide evidence to show that radiosurgery-induced leukoencephalopathy may present as an advancing process that extends beyond the original high-dose radiation field. Neuropathologic examination of the resected tissue revealed traditionally known leukoencephalopathic changes including demyelination, coagulation necrosis, and vascular sclerosis. Unexpectedly, small and medium-sized vessels revealed transmural T-cell infiltration indicative of active vasculitis. Conclusions: We propose that the presence of a vasculitic component in association with radiation-induced leukoencephalopathy may facilitate the progressive nature of the condition. It may also explain the resemblance of delayed leukoencephalopathy with recurring tumor on virtually all imaging modalities used for posttreatment follow-up.

  8. Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart

    PubMed Central

    Sárközy, Márta; Pipicz, Márton; Dux, László; Csont, Tamás

    2016-01-01

    Hypercholesterolemia is a frequent metabolic disorder associated with increased risk for cardiovascular morbidity and mortality. In addition to its well-known proatherogenic effect, hypercholesterolemia may exert direct effects on the myocardium resulting in contractile dysfunction, aggravated ischemia/reperfusion injury, and diminished stress adaptation. Both preclinical and clinical studies suggested that elevated oxidative and/or nitrative stress plays a key role in cardiac complications induced by hypercholesterolemia. Therefore, modulation of hypercholesterolemia-induced myocardial oxidative/nitrative stress is a feasible approach to prevent or treat deleterious cardiac consequences. In this review, we discuss the effects of various pharmaceuticals, nutraceuticals, some novel potential pharmacological approaches, and physical exercise on hypercholesterolemia-induced oxidative/nitrative stress and subsequent cardiac dysfunction as well as impaired ischemic stress adaptation of the heart in hypercholesterolemia. PMID:26788247

  9. Heart rate modulates the slow enhancement of contraction due to sudden left ventricular dilation.

    PubMed

    Tucci, P J; Murad, N; Rossi, C L; Nogueira, R J; Santana, O

    2001-05-01

    In isovolumic blood-perfused dog hearts, left ventricular developed pressure (DP) was recorded while a sudden ventricular dilation was promoted at three heart rate (HR) levels: low (L: 52 +/- 1.7 beats/min), intermediate (M: 82 +/- 2.2 beats/min), and high (H: 117 +/- 3.5 beats/min). DP increased instantaneously with chamber expansion (Delta(1)DP), and another continuous increase occurred for several minutes (Delta(2)DP). HR elevation did not alter Delta(1)DP (32.8 +/- 1.6, 33.6 +/- 1.5, and 34.3 +/- 1.2 mmHg for L, M, and H, respectively), even though it intensified Delta(2)DP (17.3 +/- 0.9, 20.7 +/- 1.0, and 26.8 +/- 1.2 mmHg for L, M, and H, respectively), meaning that the treppe phenomenon enhances the length dependence of the contraction component related to changes in intracellular Ca(2+) concentration. Frequency increments reduced the half time of the slow response (82 +/- 3.6, 67 +/- 2.6, and 53 +/- 2.0 s for L, M, and H, respectively), while the number of beats included in half time increased (72 +/- 2.9, 95 +/- 2.9, and 111 +/- 3.2 beats for L, M, and H, respectively). HR modulation of the slow response suggests that L-type Ca(2+) channel currents and/or the Na(+)/Ca(2+) exchanger plays a relevant role in the stretch-triggered Ca(2+) gain when HR increases in the canine heart.

  10. Modulation of gene expression in heart and liver of hibernating black bears (Ursus americanus)

    PubMed Central

    2011-01-01

    Background Hibernation is an adaptive strategy to survive in highly seasonal or unpredictable environments. The molecular and genetic basis of hibernation physiology in mammals has only recently been studied using large scale genomic approaches. We analyzed gene expression in the American black bear, Ursus americanus, using a custom 12,800 cDNA probe microarray to detect differences in expression that occur in heart and liver during winter hibernation in comparison to summer active animals. Results We identified 245 genes in heart and 319 genes in liver that were differentially expressed between winter and summer. The expression of 24 genes was significantly elevated during hibernation in both heart and liver. These genes are mostly involved in lipid catabolism and protein biosynthesis and include RNA binding protein motif 3 (Rbm3), which enhances protein synthesis at mildly hypothermic temperatures. Elevated expression of protein biosynthesis genes suggests induction of translation that may be related to adaptive mechanisms reducing cardiac and muscle atrophies over extended periods of low metabolism and immobility during hibernation in bears. Coordinated reduction of transcription of genes involved in amino acid catabolism suggests redirection of amino acids from catabolic pathways to protein biosynthesis. We identify common for black bears and small mammalian hibernators transcriptional changes in the liver that include induction of genes responsible for fatty acid β oxidation and carbohydrate synthesis and depression of genes involved in lipid biosynthesis, carbohydrate catabolism, cellular respiration and detoxification pathways. Conclusions Our findings show that modulation of gene expression during winter hibernation represents molecular mechanism of adaptation to extreme environments. PMID:21453527

  11. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together

  12. Radiation-induced cardiomyopathy as a function of radiation beam gating to the cardiac cycle

    NASA Astrophysics Data System (ADS)

    Gladstone, David J.; Flanagan, Michael F.; Southworth, Jean B.; Hadley, Vaughn; Thibualt, Melissa Wei; Hug, Eugen B.; Hoopes, P. Jack

    2004-04-01

    Portions of the heart are often unavoidably included in the primary treatment volume during thoracic radiotherapy, and radiation-induced heart disease has been observed as a treatment-related complication. Such complications have been observed in humans following radiation therapy for Hodgkin's disease and treatment of the left breast for carcinoma. Recent attempts have been made to prevent re-stenosis following angioplasty procedures using external beam irradiation. These attempts were not successful, however, due to the large volume of heart included in the treatment field and subsequent cardiac morbidity. We suggest a mechanism for sparing the heart from radiation damage by synchronizing the radiation beam with the cardiac cycle and delivering radiation only when the heart is in a relatively hypoxic state. We present data from a rat model testing this hypothesis and show that radiation damage to the heart can be altered by synchronizing the radiation beam with the cardiac cycle. This technique may be useful in reducing radiation damage to the heart secondary to treatment for diseases such as Hodgkin's disease and breast cancer.

  13. Radar detection of radiation-induced ionization in air

    DOEpatents

    Gopalsami, Nachappa; Heifetz, Alexander; Chien, Hual-Te; Liao, Shaolin; Koehl, Eugene R.; Raptis, Apostolos C.

    2015-07-21

    A millimeter wave measurement system has been developed for remote detection of airborne nuclear radiation, based on electromagnetic scattering from radiation-induced ionization in air. Specifically, methods of monitoring radiation-induced ionization of air have been investigated, and the ionized air has been identified as a source of millimeter wave radar reflection, which can be utilized to determine the size and strength of a radiation source.

  14. Titin/connectin-based modulation of the Frank-Starling mechanism of the heart.

    PubMed

    Fukuda, Norio; Granzier, Henk L

    2005-01-01

    The basis of the Frank-Starling mechanism of the heart is the increase in active force when muscle is stretched. Various findings have shown that muscle length, i.e., sarcomere length (SL), modulates activation of cardiac myofilaments at a given concentration of Ca2+ ([Ca2+]). This augmented Ca2+ activation with SL, commonly known as "length-dependent activation", is manifested as the leftward shift of the force-pCa (= -log [Ca2+]) relation as well as by the increase in maximal Ca2+ -activated force. Despite the numerous studies that have been undertaken, the molecular mechanism(s) of length-dependent activation is (are) still not fully understood. The giant sarcomere protein titin/connectin is the largest protein known to date. Titin/connectin is responsible for most passive force in vertebrate striated muscle and also functions as a molecular scaffold during myofibrillogenesis. Recent studies suggest that titin/connectin plays an important role in length-dependent activation by sensing stretch and promoting actomyosin interaction. Here we review and extend this previous work and focus on the mechanism by which titin/connectin might modulate actomyosin interaction.

  15. [Update in radiation-induced neoplasms: genetic studies].

    PubMed

    Chauveinc, Laurent; Lefevre, Sandrine; Malfoy, Bernard; Dutrillaux, Bernard

    2002-02-01

    Radiation induced tumors are a possible (very) late complications of radiotherapy. The evaluation of the risks of radiation-induced tumors has been presented in different epidemiological studies, with the evaluation of the relative risk for different tissues. But, the genetic studies are rare, and no global theory exists. Two cytogenetic profiles are described, one with translocations and one with genetic material losses, evoking two different genetic evolutions. Two questions are stated. What are the radiation-induced genetic mechanisms? Is it possible to differentiate the radiation-induced and spontaneous tumors with genetic approaches? With 37 cytogenetic cases, 12 analyzed in our laboratory, the radiation-induced tumors were characterized by genetic material losses. An anti-oncogenic evolution is probable. A new molecularly study confirm these results. Only thyroid tumors do not have this evolution. For tumors with simple karyotype, like meningioma, radiation-induced tumors seem to be more complex than spontaneous tumors. But for the others, the differentiation is impossible to be done with cytogenetic. The mechanism of the chromosomic material losses in unknown, but some hypothesis are discussed.

  16. Brain Correlates of Autonomic Modulation: Combining Heart Rate Variability with fMRI

    PubMed Central

    Napadow, Vitaly; Dhond, Rupali; Conti, Giulia; Makris, Nikos; Brown, Emery N.; Barbieri, Riccardo

    2008-01-01

    The central autonomic network (CAN) has been described in animal models but has been difficult to elucidate in humans. Potential confounds include physiological noise artifacts affecting brainstem neuroimaging data, and difficulty in deriving non-invasive continuous assessments of autonomic modulation. We have developed and implemented a new method which relates cardiac-gated fMRI timeseries with continuous-time heart rate variability (HRV) to estimate central autonomic processing. As many autonomic structures of interest are in brain regions strongly affected by cardiogenic pulsatility, we chose to cardiac-gate our fMRI acquisition to increase sensitivity. Cardiac-gating introduces T1-variability, which was corrected by transforming fMRI data to a fixed TR using a previously published method (Guimaraes et al. 1998). The electrocardiogram was analyzed with a novel point process adaptive-filter algorithm for computation of the high-frequency (HF) index, reflecting the time-varying dynamics of efferent cardiovagal modulation. Central command of cardiovagal outflow was inferred by using the HF timeseries resampled at as a regressor to the fMRI data. A grip task was used to perturb the autonomic nervous system. Our combined HRV-fMRI approach demonstrated HF correlation with fMRI activity in the hypothalamus, cerebellum, parabrachial nucleus/locus ceruleus, periaqueductal gray, amygdala, hippocampus, thalamus, and dorsomedial/dorsolateral prefrontal, posterior insular, and middle temporal cortices. While some regions consistent with central cardiovagal control in animal models gave corroborative evidence for our methodology, other mostly higher cortical or limbic-related brain regions may be unique to humans. Our approach should be optimized and applied to study the human brain correlates of autonomic modulation for various stimuli in both physiological and pathological states. PMID:18524629

  17. Dynamics of wound healing signaling as a potential therapeutic target for radiation-induced tissue damage.

    PubMed

    Chung, Yih-Lin; Pui, Newman N M

    2015-01-01

    We hypothesized the histone deacetylase inhibitor phenylbutyrate (PB) has beneficial effects on radiation-induced injury by modulating the expression of DNA repair and wound healing genes. Hamsters received a radiosurgical dose of radiation (40 Gy) to the cheek and were treated with varying PB dosing regimens. Gross alteration of the irradiated cheeks, eating function, histological changes, and gene expression during the course of wound healing were compared between treatment groups. Pathological analysis showed decreased radiation-induced mucositis, facilitated epithelial cell growth, and preventing ulcerative wound formation, after short-term PB treatment, but not after vehicle or sustained PB. The radiation-induced wound healing gene expression profile exhibited a sequential transition from the inflammatory and DNA repair phases to the tissue remodeling phase in the vehicle group. Sustained PB treatment resulted in a prolonged wound healing gene expression profile and delayed the wound healing process. Short-term PB shortened the duration of inflammatory cytokine expression, triggered repeated pulsed expression of cell cycle and DNA repair-regulating genes, and promoted earlier oscillatory expression of tissue remodeling genes. Distinct gene expression patterns between sustained and short-term treatment suggest dynamic profiling of wound healing gene expression can be an important part of a biological therapeutic strategy to mitigate radiation-related tissue injury.

  18. Inhibition of CDK4/6 protects against radiation-induced intestinal injury in mice

    PubMed Central

    Wei, Liang; Leibowitz, Brian J.; Wang, Xinwei; Epperly, Michael; Greenberger, Joel; Zhang, Lin

    2016-01-01

    Radiotherapy causes dose-limiting toxicity and long-term complications in rapidly renewing tissues, including the gastrointestinal tract. Currently, there is no FDA-approved agent for the prevention or treatment of radiation-induced intestinal injury. In this study, we have shown that PD 0332991 (PD), an FDA-approved selective inhibitor of cyclin-dependent kinase 4/6 (CDK4/6), prevents radiation-induced lethal intestinal injury in mice. Treating mice with PD or a structurally distinct CDK4/6 inhibitor prior to radiation blocked proliferation and crypt apoptosis and improved crypt regeneration. PD treatment also enhanced LGR5+ stem cell survival and regeneration after radiation. PD was an on-target inhibitor of RB phosphorylation and blocked G1/S transition in the intestinal crypts. PD treatment strongly but reversibly inhibited radiation-induced p53 activation, which blocked p53-upregulated modulator of apoptosis–dependent (PUMA-dependent) apoptosis without affecting p21-dependent suppression of DNA damage accumulation, with a repair bias toward nonhomologous end joining. Further, deletion of PUMA synergized with PD treatment for even greater intestinal radioprotection. Our results demonstrate that the cell cycle critically regulates the DNA damage response and survival of intestinal stem cells and support the concept that pharmacological quiescence is a potentially highly effective and selective strategy for intestinal radioprotection. PMID:27701148

  19. Clinical and dosimetric factors of radiation-induced esophageal injury: Radiation-induced esophageal toxicity

    PubMed Central

    Qiao, Wen-Bo; Zhao, Yan-Hui; Zhao, Yan-Bin; Wang, Rui-Zhi

    2005-01-01

    AIM: To analyze the clinical and dosimetric predictive factors for radiation-induced esophageal injury in patients with non-small-cell lung cancer (NSCLC) during three-dimensional conformal radiotherapy (3D-CRT). METHODS: We retrospectively analyzed 208 consecutive patients (146 men and 62 women) with NSCLC treated with 3D-CRT. The median age of the patients was 64 years (range 35-87 years). The clinical and treatment parameters including gender, age, performance status, sequential chemotherapy, concurrent chemotherapy, presence of carinal or subcarinal lymph nodes, pretreatment weight loss, mean dose to the entire esophagus, maximal point dose to the esophagus, and percentage of volume of esophagus receiving >55 Gy were studied. Clinical and dosimetric factors for radiation-induced acute and late grade 3-5 esophageal injury were analyzed according to Radiation Therapy Oncology Group (RTOG) criteria. RESULTS: Twenty-five (12%) of the two hundred and eight patients developed acute or late grade 3-5 esophageal injury. Among them, nine patients had both acute and late grade 3-5 esophageal injury, two died of late esophageal perforation. Concurrent chemotherapy and maximal point dose to the esophagus ≥60 Gy were significantly associated with the risk of grade 3-5 esophageal injury. Fifty-four (26%) of the two hundred and eight patients received concurrent chemotherapy. Among them, 25 (46%) developed grade 3-5 esophageal injury (P = 0.0001<0.01). However, no grade 3-5 esophageal injury occurred in patients who received a maximal point dose to the esophagus <60 Gy (P = 0.0001<0.01). CONCLUSION: Concurrent chemotherapy and the maximal esophageal point dose ≥60 Gy are significantly associated with the risk of grade 3-5 esophageal injury in patients with NSCLC treated with 3D-CRT. PMID:15849822

  20. Loss of Breathing Modulation of Heart Rate Variability in Patients with Recent and Long Standing Diabetes Mellitus Type II

    PubMed Central

    Estañol, Bruno; Fossion, Ruben; Toledo-Roy, Juan C.; Callejas-Rojas, José A.; Gien-López, José A.; Delgado-García, Guillermo R.; Frank, Alejandro

    2016-01-01

    Healthy subjects under rhythmic breathing have heart interbeat intervals with a respiratory band in the frequency domain that can be an index of vagal activity. Diabetes Mellitus Type II (DM) affects the autonomic nervous system of patients, thus it can be expected changes on the vagal activity. Here, the influence of DM on the breathing modulation of the heart rate is evaluated by analyzing in the frequency domain heart interbeat interval (IBI) records obtained from 30 recently diagnosed, 15 long standing DM patients, and 30 control subjects during standardized clinical tests of controlled breathing at 0.1 Hz, supine rest and standing upright. Fourier spectral analysis of IBI records quantifies heart rate variability in different regions: low-frequencies (LF, 0.04–0.15 Hz), high-frequencies (HF, 0.15–0.4 Hz), and a controlled breathing peak (RP, centered around 0.1 Hz). Two new parameters are introduced: the frequency radius rf (square root of the sum of LF and HF squared) and β (power of RP divided by the sum of LF and HF). As diabetes evolves, the controlled breathing peak loses power and shifts to smaller frequencies, indicating that heart rate modulation is slower in diabetic patients than in controls. In contrast to the traditional parameters LF, HF and LF/HF, which do not show significant differences between the three populations in neither of the clinical tests, the new parameters rf and β, distinguish between control and diabetic subjects in the case of controlled breathing. Sympathetic activity that is driven by the baroreceptor reflex associated with the 0.1 Hz breathing modulations is affected in DM patients. Diabetes produces not only a rigid heartbeat with less autonomic induced variability (rf diminishes), but also alters the coupling between breathing and heart rate (reduced β), due to a progressive decline of vagal and sympathetic activity. PMID:27802329

  1. Loss of Breathing Modulation of Heart Rate Variability in Patients with Recent and Long Standing Diabetes Mellitus Type II.

    PubMed

    Rivera, Ana Leonor; Estañol, Bruno; Fossion, Ruben; Toledo-Roy, Juan C; Callejas-Rojas, José A; Gien-López, José A; Delgado-García, Guillermo R; Frank, Alejandro

    2016-01-01

    Healthy subjects under rhythmic breathing have heart interbeat intervals with a respiratory band in the frequency domain that can be an index of vagal activity. Diabetes Mellitus Type II (DM) affects the autonomic nervous system of patients, thus it can be expected changes on the vagal activity. Here, the influence of DM on the breathing modulation of the heart rate is evaluated by analyzing in the frequency domain heart interbeat interval (IBI) records obtained from 30 recently diagnosed, 15 long standing DM patients, and 30 control subjects during standardized clinical tests of controlled breathing at 0.1 Hz, supine rest and standing upright. Fourier spectral analysis of IBI records quantifies heart rate variability in different regions: low-frequencies (LF, 0.04-0.15 Hz), high-frequencies (HF, 0.15-0.4 Hz), and a controlled breathing peak (RP, centered around 0.1 Hz). Two new parameters are introduced: the frequency radius rf (square root of the sum of LF and HF squared) and β (power of RP divided by the sum of LF and HF). As diabetes evolves, the controlled breathing peak loses power and shifts to smaller frequencies, indicating that heart rate modulation is slower in diabetic patients than in controls. In contrast to the traditional parameters LF, HF and LF/HF, which do not show significant differences between the three populations in neither of the clinical tests, the new parameters rf and β, distinguish between control and diabetic subjects in the case of controlled breathing. Sympathetic activity that is driven by the baroreceptor reflex associated with the 0.1 Hz breathing modulations is affected in DM patients. Diabetes produces not only a rigid heartbeat with less autonomic induced variability (rf diminishes), but also alters the coupling between breathing and heart rate (reduced β), due to a progressive decline of vagal and sympathetic activity.

  2. Augmented vagal heart rate modulation in active hypoestrogenic pre-menopausal women with functional hypothalamic amenorrhoea.

    PubMed

    O'Donnell, Emma; Goodman, Jack M; Morris, Beverly L; Floras, John S; Harvey, Paula J

    2015-11-01

    Compared with eumenorrhoeic women, exercise-trained women with functional hypothalamic amenorrhoea (ExFHA) exhibit low heart rates (HRs) and absent reflex renin-angiotensin-system activation and augmentation of their muscle sympathetic nerve response to orthostatic stress. To test the hypothesis that their autonomic HR modulation is altered concurrently, three age-matched (pooled mean, 24 ± 1 years; mean ± S.E.M.) groups of women were studied: active with either FHA (ExFHA; n=11) or eumenorrhoeic cycles (ExOv; n=17) and sedentary with eumenorrhoeic cycles (SedOv; n=17). Blood pressure (BP), HR and HR variability (HRV) in the frequency domain were determined during both supine rest and graded lower body negative pressure (LBNP; -10, -20 and -40 mmHg). Very low (VLF), low (LF) and high (HF) frequency power spectra (ms(2)) were determined and, owing to skewness, log10-transformed. LF/HF ratio and total power (VLF + LF + HF) were calculated. At baseline, HR and systolic BP (SBP) were lower (P<0.05) and HF and total power were higher (P<0.05) in ExFHA than in eumenorrhoeic women. In all groups, LBNP decreased (P<0.05) SBP, HF and total power and increased (P<0.05) HR and LF/HF ratio. However, HF and total power remained higher (P<0.05) and HR, SBP and LF/HF ratio remained lower (P<0.05) in ExFHA than in eumenorrhoeic women, in whom measures did not differ (P>0.05). At each stage, HR correlated inversely (P<0.05) with HF. In conclusion, ExFHA women demonstrate augmented vagal yet unchanged sympathetic HR modulation, both at rest and during orthostatic stress. Although the role of oestrogen deficiency is unclear, these findings are in contrast with studies reporting decreased HRV in hypoestrogenic post-menopausal women.

  3. A Tocotrienol-Enriched Formulation Protects against Radiation-Induced Changes in Cardiac Mitochondria without Modifying Late Cardiac Function or Structure

    PubMed Central

    Sridharan, Vijayalakshmi; Tripathi, Preeti; Aykin-Burns, Nukhet; Krager, Kimberly J; Sharma, Sunil K.; Moros, Eduardo G.; Melnyk, Stepan B.; Pavliv, Oleksandra; Hauer-Jensen, Martin; Boerma, Marjan

    2015-01-01

    Radiation-induced heart disease (RIHD) is a common and sometimes severe late side effect of radiation therapy for intrathoracic and chest wall tumors. We have previously shown that local heart irradiation in a rat model caused prolonged changes in mitochondrial respiration and increased susceptibility to mitochondrial permeability transition pore (mPTP) opening. Because tocotrienols are known to protect against oxidative stress-induced mitochondrial dysfunction, in this study, we examined the effects of tocotrienols on radiation-induced alterations in mitochondria, and structural and functional manifestations of RIHD. Male Sprague-Dawley rats received image-guided localized X irradiation to the heart to a total dose of 21 Gy. Twenty-four hours before irradiation, rats received a tocotrienol-enriched formulation or vehicle by oral gavage. Mitochondrial function and mitochondrial membrane parameters were studied at 2 weeks and 28 weeks after irradiation. In addition, cardiac function and histology were examined at 28 weeks. A single oral dose of the tocotrienol-enriched formulation preserved Bax/Bcl2 ratios and prevented mPTP opening and radiation-induced alterations in succinate-driven mitochondrial respiration. Nevertheless, the late effects of local heart irradiation pertaining to myocardial function and structure were not modified. Our studies suggest that a single dose of tocotrienols protects against radiation-induced mitochondrial changes, but these effects are not sufficient against long-term alterations in cardiac function or remodeling. PMID:25710576

  4. Radiation-induced myeloid leukemia in murine models

    PubMed Central

    2014-01-01

    The use of radiation therapy is a cornerstone of modern cancer treatment. The number of patients that undergo radiation as a part of their therapy regimen is only increasing every year, but this does not come without cost. As this number increases, so too does the incidence of secondary, radiation-induced neoplasias, creating a need for therapeutic agents targeted specifically towards incidence reduction and treatment of these cancers. Development and efficacy testing of these agents requires not only extensive in vitro testing but also a set of reliable animal models to accurately recreate the complex situations of radiation-induced carcinogenesis. As radiation-induced leukemic progression often involves genomic changes such as rearrangements, deletions, and changes in methylation, the laboratory mouse Mus musculus, with its fully sequenced genome, is a powerful tool in cancer research. This fact, combined with the molecular and physiological similarities it shares with man and its small size and high rate of breeding in captivity, makes it the most relevant model to use in radiation-induced leukemia research. In this work, we review relevant M. musculus inbred and F1 hybrid animal models, as well as methods of induction of radiation-induced myeloid leukemia. Associated molecular pathologies are also included. PMID:25062865

  5. Radiation-Induced Cataractogenesis: A Critical Literature Review for the Interventional Radiologist

    SciTech Connect

    Seals, Kevin F. Lee, Edward W.; Cagnon, Christopher H.; Al-Hakim, Ramsey A. Kee, Stephen T.

    2016-02-15

    Extensive research supports an association between radiation exposure and cataractogenesis. New data suggests that radiation-induced cataracts may form stochastically, without a threshold and at low radiation doses. We first review data linking cataractogenesis with interventional work. We then analyze the lens dose typical of various procedures, factors modulating dose, and predicted annual dosages. We conclude by critically evaluating the literature describing techniques for lens protection, finding that leaded eyeglasses may offer inadequate protection and exploring the available data on alternative strategies for cataract prevention.

  6. Radiofrequency radiation-induced calcium ion efflux enhancement from human and other neuroblastoma cells in culture

    SciTech Connect

    Dutta, S.K.; Ghosh, B.; Blackman, C.F.

    1989-01-01

    To test the generality of radiofrequency radiation-induced changes in /sup 45/Ca2+ efflux from avian and feline brain tissues, human neuroblastoma cells were exposed to electromagnetic radiation at 147 MHz, amplitude-modulated (AM) at 16 Hz, at specific absorption rates (SAR) of 0.1, 0.05, 0.01, 0.005, 0.001, and 0.0005 W/kg. Significant /sup 45/Ca2+ efflux was obtained at SAR values of 0.05 and 0.005 W/kg. Enhanced efflux at 0.05 W/kg peaked at the 13-16 Hz and at the 57.5-60 Hz modulation ranges. A Chinese hamster-mouse hybrid neuroblastoma was also shown to exhibit enhanced radiation-induced /sup 45/Ca2+ efflux at an SAR of 0.05 W/kg, using 147 MHz, AM at 16 Hz. These results confirm that amplitude-modulated radiofrequency radiation can induce responses in cells of nervous tissue origin from widely different animal species, including humans. The results are also consistent with the reports of similar findings in avian and feline brain tissues and indicate the general nature of the phenomenon.

  7. The Mechanisms of Radiation-Induced Bystander Effect

    PubMed Central

    Najafi, M; Fardid, R; Hadadi, Gh; Fardid, M

    2014-01-01

    The radiation-induced bystander effect is the phenomenon which non-irradiated cells exhibit effects along with their different levels as a result of signals received from nearby irradiated cells. Responses of non-irradiated cells may include changes in process of translation, gene expression, cell proliferation, apoptosis and cells death. These changes are confirmed by results of some In-Vivo studies. Most well-known important factors affecting radiation-induced bystander effect include free radicals, immune system factors, expression changes of some genes involved in inflammation pathway and epigenetic factors. PMID:25599062

  8. Panretinal photocoagulation for radiation-induced ocular ischemia

    SciTech Connect

    Augsburger, J.J.; Roth, S.E.; Magargal, L.E.; Shields, J.A.

    1987-08-01

    We present preliminary findings on the effectiveness of panretinal photocoagulation in preventing neovascular glaucoma in eyes with radiation-induced ocular ischemia. Our study group consisted of 20 patients who developed radiation-induced ocular ischemia following cobalt-60 plaque radiotherapy for a choroidal or ciliary body melanoma. Eleven of the 20 patients were treated by panretinal photocoagulation shortly after the diagnosis of ocular ischemia, but nine patients were left untreated. In this non-randomized study, the rate of development of neovascular glaucoma was significantly lower (p = 0.024) for the 11 photocoagulated patients than for the nine who were left untreated.

  9. [Symptoms, diagnosis and treatment of radiation-induced enteritis].

    PubMed

    Sinkó, Dániel; Baranyai, Zsolt; Nemeskéri, Csaba; Teknos, Dániel; Jósa, Valéria; Hegedus, László; Mayer, Arpád

    2010-09-05

    The number of radiotherapy in the treatment of malignant diseases is increasing worldwide. During the radiotherapy of tumors in the minor pelvis and abdomen intestinal inflammation of different degree may occur even if special attention is paid. Irradiation to the minor pelvis causes in half of the cases radiation induced acute enteritis, whereas in 25% chronic enteritis and colitis will develop. Chronic enteritis following radiotherapy raises a number of diagnostic and therapeutic problems that can be solved only with cooperation of different specialties. Authors present a short review regarding therapeutical options of radiation induced enteritis.

  10. G protein-mediated FMRFamidergic modulation of calcium influx in dissociated heart muscle cells from squid, Loligo forbesii

    PubMed Central

    Chrachri, Abdesslam; Ödblom, Maria; Williamson, Roddy

    2000-01-01

    The actions of the neuropeptide FMRFamide (Phe-Met-Arg-Phe-NH2) on the L-type (ICa,L) and T-type (ICa,T) calcium currents were investigated in muscle cells dissociated from the heart of squid, Loligo forbseii. The heart muscle cells could be divided into type I and type II cells, on the basis of morphological differences in the dissociated myocytes. FMRFamide induced a substantial block of the L-type calcium current seen in type I cells; this inhibition was rapid, reversible and dose dependent (IC50 = 0.1 μm). FMRFamide induced an increase in the amplitude of the L-type calcium current in the type II heart muscle cells, but had no effect on the T-type calcium current in either type of dissociated heart muscle cell, even at concentrations much higher than those found to affect the L-type calcium current. Internal dialysis of isolated type I heart muscle cells with guanosine 5′-O-(3-thiotriphosphate (GTPγS, 100 μm), a non-hydrolysable GTP analogue, mimicked the FMRFamide inhibition of the Ca2+ current and occluded any further FMRFamide-induced inhibition. Internal dialysis of these cells with guanosine 5′-O-(2-thiodiphosphate) (GDPβS, 100 μm) reduced the FMRFamide-induced inhibition of the peak Ca2+ current. The inhibitory effects of FMRFamide were abolished by pre-incubation of the cells with pertussis toxin (200 ng ml−1). The activation kinetics of ICa,L were not affected by FMRFamide application, nor by internal perfusion with GTPγS, and the FMRFamide-induced reduction in ICa,L was not relieved by large depolarising prepulses. These data indicate that FMRFamide can modulate ICa,L, but not ICa,T, in squid heart muscle cells, and that the underlying G protein pathway is dissimilar to that commonly associated with transmitter modulation of channel activity. The FMRFamide-modulated increase in ICa,L seen in the type II heart muscle cells was not mediated by a PTX-sensitive G protein pathway. PMID:10835048

  11. The use of heart rate variability measures as indicators of autonomic nervous modulation must be careful in patients after orthotopic heart transplantation.

    PubMed

    Lu, Wan-An; Chen, Gau-Yang; Shih, Chun-Che; Kuo, Cheng-Deng

    2016-10-01

    The precise relation between heart rate variability (HRV) and autonomic re-innervation has not been established explicitly in patients after orthotopic heart transplantation (OHT), but can be inferred from the fact that the HRV is reduced immediately after OHT and may increase gradually with time. The aim of this study was to investigate the residual HRV in patients about 1-2 years after OHT, as compared with patients after coronary artery bypass graft (CABG) surgery. Thirteen patients who had received OHT and 14 patients who had received CABG surgery were recruited. HRV analysis was performed and the HRV measures in supine position were compared between these two groups of patients. We found that the mean (mRRI), standard deviation and coefficient of variation of RR intervals, total power, very low frequency power (VLFP), low frequency power, high frequency power (HFP), normalized VLFP (nVLFP) and low-/high-frequency power ratio in the OHT group were all significantly decreased, while the heart rate (HR) and normalized HFP (nHFP) were significantly increased, as compared with the CABG group. The decrease in HRV was more severe in the VLFP region. A smaller nVLFP and a greater nHFP were associated with a smaller mRRI and a larger HR in the OHT patients. The slope of the power law relation of HRV became positive in OHT patients, instead of negative in CABG patients. We conclude that patients after OHT have residual HRV which were characterized by severely depressed time and frequency domain HRV, increased HR and nHFP, decreased nVLFP, and positive slope of the power-law relation of HRV. The use of nHFP as the indicator of vagal modulation and the use of nVLFP as the indicator of renin-angiotensin modulation, thermoregulation and vagal withdrawal must be careful in the OHT patients.

  12. Associations of Heart Rate With Inflammatory Markers Are Modulated by Gender and Obesity in Older Adults

    PubMed Central

    Bandinelli, Stefania; Gemma, Antonella; Ferrucci, Luigi; Incalzi, Raffaele Antonelli

    2015-01-01

    Background. Faster resting heart rate (HR), which is associated with inflammation and elevated cortisol levels, is a risk factor for excess cardiovascular morbidity and mortality. Obesity is associated with increased cardiovascular morbidity and mortality, inflammation, and elevated cortisol levels. The aim of the present study was to evaluate the interaction of Body Mass Index (BMI) with inflammation and cortisol in modulating HR in older subjects. Methods. We analyzed data of 895 participants aged 65+ enrolled in the “InCHIANTI” study, in sinus rhythm, and not taking beta blockers or digoxin. Linear regression was performed to assess the adjusted association between HR, IL-6, and cortisol levels. The model was also analyzed stratifying for BMI tertiles. Logistic regression was adopted for evaluating the association of HR exceeding the mean value with Il-6 and serum cortisol. Results. According to multivariable linear regression, IL-6 and cortisol levels were associated with HR (B = 1.42, 95% CI = 0.43–2.42; p = .005 and B = .34, 95% CI = 0.17–.51; p < .0001, respectively). The association was significant only among women in the highest BMI tertile (B = 4.16, 95% CI = 1.40–6.91; p = .003 for IL-6 and B = .57, 95% CI = 0.14–1.01; p = .010 for cortisol). Logistic regression confirmed that IL-6 and cortisol levels were associated with HR above the mean value in the highest BMI tertile (OR = 2.13, 95% CI = 1.15–3.97; p = .009 and OR = 1.14, 95% CI = 1.03–1.25; p = .009, respectively). Conclusions. Faster HR is associated with proinflammatory state in elderly patients; this association seems to be limited to women with higher BMI. PMID:25429009

  13. Radiation-induced xerostomia: pathophysiology, clinical course and supportive treatment.

    PubMed

    Guchelaar, H J; Vermes, A; Meerwaldt, J H

    1997-07-01

    Xerostomia, or oral dryness, is one of the most common complaints experienced by patients who have had radiotherapy of the oral cavity and neck region. The hallmarks of radiation-induced damage are acinar atrophy and chronic inflammation of the salivary glands. The early response, resulting in atrophy of the secretory cells without inflammation might be due to radiation-induced apoptosis. In contrast, the late response with inflammation could be a result of radiation-induced necrosis. The subjective complaint of a dry mouth appears to be poorly correlated with objective findings of salivary gland dysfunction. Xerostomia, with secondary symptoms of increased dental caries, difficulty in chewing, swallowing and speaking, and an increased incidence of oral candidiasis, can have a significant effect on the quality of life. At present there is no causal treatment for radiation-induced xerostomia. Temporary symptomatic relief can be offered by moistening agents and saliva substitutes, and is the only option for patients without residual salivary function. In patients with residual salivary function, oral administration of pilocarpine 5-10 mg three times a day is effective in increasing salivary flow and improving the symptoms of xerostomia, and this therapy should be considered as the treatment of choice. Effectiveness of sialogogue treatment requires residual salivary function, which emphasizes the potential benefit from sparing normal tissue during irradiation. The hypothesis concerning the existence of early apoptotic and late necrotic effects of irradiation on the salivary glands theoretically offers a way of achieving this goal.

  14. Obstructive jaundice due to radiation-induced hepatic duct stricture

    SciTech Connect

    Chandrasekhara, K.L.; Iyer, S.K.

    1984-10-01

    A case of obstructive jaundice due to radiation-induced hepatic duct stricture is reported. The patient received postoperative radiation for left adrenal carcinoma, seven years prior to this admission. The sequelae of hepatobiliary radiation and their management are discussed briefly.

  15. SPHINX Measurements of Radiation Induced Conductivity of Foam

    SciTech Connect

    Ballard, W.P.; Beutler, D.E.; Burt, M.; Dudley, K.J.; Stringer, T.A.

    1998-12-14

    Experiments on the SPHINX accelerator studying radiation-induced conductivity (RIC) in foam indicate that a field-exclusion boundary layer model better describes foam than a Maxwell-Garnett model that treats the conducting gas bubbles in the foam as modifying the dielectric constant. In both cases, wall attachment effects could be important but were neglected.

  16. Prevention of Radiation-Induced Breast Cancer by Amifostine

    DTIC Science & Technology

    2009-01-01

    acetylcysteine and captopril . 4 Task 2. To determine if post-irradiation amifostine treatment can reduce the frequency of radiation-induced ductal...similar to amifostine but more suited to oral administration such as WR- 3689, WR151327, N-acetylcysteine and captopril . The first task is to

  17. Prevention of Radiation-Induced Breast Cancer by Amifostine

    DTIC Science & Technology

    2006-06-01

    acetylcysteine and captopril . 4 Task 2. To determine if post-irradiation amifostine treatment can reduce the frequency of radiation-induced ductal...similar to amifostine but more suited to oral administration such as WR- 3689, WR151327, N-acetylcysteine and captopril . The first task is to

  18. Prevention of Radiation-Induced Breast Cancer by Amifostine

    DTIC Science & Technology

    2007-12-01

    and captopril . 4 Task 2. To determine if post-irradiation amifostine treatment can reduce the frequency of radiation-induced ductal dysplasia...amifostine but more suited to oral administration such as WR- 3689, WR151327, N-acetylcysteine and captopril . The first task is to determine if

  19. Radiation-induced instability and its relation to radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Ullrich, R. L.; Ponnaiya, B.

    1998-01-01

    PURPOSE: A model that identifies radiation-induced genetic instability as the earliest cellular event in the multi-step sequence leading to radiation-induced cancer was previously proposed. In this paper ongoing experiments are discussed which are designed to test this model and its predictions in mouse mammary epithelial cells. RESULTS: Several lines of evidence are presented that appear to support this model: first, the development of delayed mutations in p53 following irradiation in altered growth variants; secondly, the high frequencies for the induction of both instability and transformation following irradiation in mammary epithelial cells; and finally, the demonstration that susceptibility to the induction of cytogenetic instability is a heritable trait that correlates with susceptibility to transformation and radiation-induced mammary cancer. Mice resistant to transformation and mammary cancer development are also resistant to the development of instability after irradiation. In contrast, mice sensitive to transformation and cancer are also sensitive to the development of cytogenetic instability. CONCLUSIONS: Data from this laboratory and from the studies cited above suggest a specific, and perhaps unique, role for radiation-induced instability as a critical early event associated with initiation of the carcinogenic process.

  20. Poor outcome in radiation-induced constrictive pericarditis

    SciTech Connect

    Karram, T.; Rinkevitch, D.; Markiewicz, W. )

    1993-01-15

    The purpose was to compare the outcome of patients with radiation-induced constrictive pericarditis versus patients with constiction due to another etiology. Twenty patients with constrictive pericarditis were seen during 1975-1986 at a single medical center. Six had radiation-induced constrictive pericarditis (Group A). The etiology was idiopathic in ten subjects and secondary to carcinomatous encasement, chronic renal failure, purulent infection and tuberculosis in one patient each (Group B, N = 14). Meang age was 53.4 [+-] 15.5 years. Extensive pericardiectomy was performed in 3/6 Group A and 13/14 Group B patients. All Group A patients died, 4 weeks - 11 years post-diagnosis (median = 10 months). Two Group A patients died suddenly, one died post-operatively of respiratory failure, another of pneumonia and two of recurrent carcinoma. Thirteen Group B patients are alive (median follow-up = 72 months). The only death in this group was due to metastatic cancer. The poor outcome with radiation-induced constriction is probably multi-factorial. Poor surgical outcome is to be expected in patients with evidence of recurrent tumor, high-dose irradiation, pulmonary fibrosis or associated radiation-induced myocardinal, valvular or coronary damage.

  1. Radiation-induced augmentation of the immune response

    SciTech Connect

    Anderson, R.E.; Lefkovits, I.; Troup, G.M.

    1980-01-01

    Radiation-induced augmentation of the immune response has been shown to occur both in vivo and in vitro. Evidence is presented to implicate injury to an extremely radiosensitive T cell in the expression of this phenomenon. Experiments are outlined which could be employed to support or reflect this hypothesis.

  2. Data acquisition system used in radiation induced electrical degradation experiments

    SciTech Connect

    White, D.P.

    1995-04-01

    Radiation induced electrical degradation (RIED) of ceramic materials has recently been reported and is the topic of much research at the present time. The object of this report is to describe the data acquisition system for an experiment designed to study RIED at the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory.

  3. Radiation-induced nonlinear optical response of quartz fibers

    NASA Astrophysics Data System (ADS)

    Plaksin, O. A.

    2006-10-01

    The intensity of radiation-induced luminescence and transient optical losses in KU-1 (Russia) and K-3 (Japan) quartz glass optical tibers irradiated in a fast pulsed fission reactor (a pulse duration of 80 μs and a neutron flux up to 7 × 1016 cm 2 s 2) has been measured in the visible range. The intensity of the fast luminescence component nonlinearly depends on the neutron flux. The luminescence intensity and the transient optical losses depend on the probe light intensity. Suppression of radiation-induced luminescence is observed at wavelengths that are longer or shorter than the probe light wavelength. Light probing leads to an increase in transient optical losses and a more rapid recovery of transparency. A model of two photon fluxes is proposed to analyze the relationship of the effects of suppression of radiation-induced luminescence and the increase in optical losses upon light probing. The effect of suppression of radiation-induced luminescence can be used to control the optical properties of fibers in radiation fields.

  4. Speed Modulation of the Continuous-Flow Total Artificial Heart to Simulate a Physiologic Arterial Pressure Waveform

    PubMed Central

    Shiose, Akira; Nowak, Kathleen; Horvath, David J.; Massiello, Alex L.; Golding, Leonard A.R.; Fukamachi, Kiyotaka

    2010-01-01

    This study demonstrated the concept of using speed modulation in a continuous-flow total artificial heart (CFTAH) to shape arterial pressure waveforms and to adjust pressure pulsatility. A programmable function generator was used to determine the optimum pulsatile speed profile. Three speed profiles (sinusoidal, rectangular, and optimized [a profile optimized for generation of a physiologic arterial pressure waveform]) were evaluated using the CFTAH mock circulatory loop. Hemodynamic parameters were recorded at average pump speeds of 2,700 rpm and a modulation cycle of 60 beats per minute. The effects of varying physiologically relevant vascular resistance and lumped compliance on the hemodynamics were assessed. The feasibility of using speed modulation to manipulate systemic arterial pressure waveforms, including a physiologic pressure waveform, was demonstrated in vitro. The additional pump power consumption needed to generate a physiologic pulsatile pressure was 16.2% of the power consumption in nonpulsatile continuous-flow mode. The induced pressure waveforms and pulse pressure were shown to be very responsive to changes in both systemic vascular resistance and arterial compliance. This system also allowed pulsatile pulmonary arterial waveform. Speed modulation in the continuous-flow total artificial heart could enable physicians to obtain desired pressure waveforms by simple manual adjustment of speed control input waveforms. PMID:20616704

  5. Risk and survival outcomes of radiation-induced CNS tumors.

    PubMed

    Lee, Jessica W; Wernicke, A Gabriella

    2016-08-01

    Patients treated with cranial radiation are at risk of developing secondary CNS tumors. Understanding the incidence, treatment, and long-term outcomes of radiation-induced CNS tumors plays a role in clinical decision-making and patient education. Additionally, as meningiomas and pituitary tumors have been detected at increasing rates across all ages and may potentially be treated with radiation, it is important to know and communicate the risk of secondary tumors in children and adults. After conducting an extensive literature search, we identified publications that report incidence and long-term outcomes of radiation-induced CNS tumors. We reviewed 14 studies in children, which reported that radiation confers a 7- to 10-fold increase in subsequent CNS tumors, with a 20-year cumulative incidence ranging from 1.03 to 28.9 %. The latency period for secondary tumors ranged from 5.5 to 30 years, with gliomas developing in 5-10 years and meningiomas developing around 15 years after radiation. We also reviewed seven studies in adults, where the two strongest studies showed no increased risk while the remaining studies found a higher risk compared to the general population. The latency period for secondary CNS tumors in adults ranged from 5 to 34 years. Treatment and long-term outcomes of radiation-induced CNS tumors have been documented in four case series, which did not conclusively demonstrate that secondary CNS tumors fared worse than primary CNS tumors. Radiation-induced CNS tumors remain a rare occurrence that should not by itself impede radiation treatment. Additional investigation is needed on the risk of radiation-induced tumors in adults and the long-term outcomes of these tumors.

  6. Identification of dysfunctional modules and disease genes in congenital heart disease by a network-based approach

    PubMed Central

    2011-01-01

    Background The incidence of congenital heart disease (CHD) is continuously increasing among infants born alive nowadays, making it one of the leading causes of infant morbidity worldwide. Various studies suggest that both genetic and environmental factors lead to CHD, and therefore identifying its candidate genes and disease-markers has been one of the central topics in CHD research. By using the high-throughput genomic data of CHD which are available recently, network-based methods provide powerful alternatives of systematic analysis of complex diseases and identification of dysfunctional modules and candidate disease genes. Results In this paper, by modeling the information flow from source disease genes to targets of differentially expressed genes via a context-specific protein-protein interaction network, we extracted dysfunctional modules which were then validated by various types of measurements and independent datasets. Network topology analysis of these modules revealed major and auxiliary pathways and cellular processes in CHD, demonstrating the biological usefulness of the identified modules. We also prioritized a list of candidate CHD genes from these modules using a guilt-by-association approach, which are well supported by various kinds of literature and experimental evidence. Conclusions We provided a network-based analysis to detect dysfunctional modules and disease genes of CHD by modeling the information transmission from source disease genes to targets of differentially expressed genes. Our method resulted in 12 modules from the constructed CHD subnetwork. We further identified and prioritized candidate disease genes of CHD from these dysfunctional modules. In conclusion, module analysis not only revealed several important findings with regard to the underlying molecular mechanisms of CHD, but also suggested the distinct network properties of causal disease genes which lead to identification of candidate CHD genes. PMID:22136190

  7. Histamine H3-receptor stimulation is unable to modulate noradrenaline release by the isolated rat heart during ischaemia-reperfusion.

    PubMed

    Mazenot, C; Durand, A; Ribuot, C; Demenge, P; Godin-Ribuot, D

    1999-01-01

    The aim of this study was to evaluate the ability of H3-histaminergic prejunctional receptors to modulate the noradrenaline release induced by myocardial ischaemia in the rat, and the effects of an eventual modulation on haemodynamic, biochemical and electrophysiological parameters. Isolated rat hearts were perfused according to the Langendorff technique. Control hearts (n = 13) were not treated; two groups were treated with the H3-agonist R-alpha-methyl-histamine at 0.3 microM (n = 14) and 1 microM (n = 11) and one group, used as positive control, was treated with the selective alpha 2-agonist Mivazerol at 0.5 microM (n = 14) added to the perfusion medium. Noradrenaline, lactate and transaminase output in the coronary effluent, as well as various haemodynamic and electrophysiological parameters, were measured during global and total ischaemia (30 min) and reperfusion (30 min). alpha 2-receptor stimulation increased ischaemia-induced noradrenaline release during reperfusion (195 +/- 13 vs. 145 +/- 12 pmol.g-1 in control group, P < 0.05). In contrast, R-alpha-methyl-histamine, at both doses, did not significantly modify these parameters. Both treatments did not affect ischaemia- and reperfusion-induced haemodynamic (decrease in heart rate or in left ventricular developed pressure), biochemical (lactate and GOT release) and electrophysiological (arrhythmias or increase in action potential duration) alterations. Unlike other species, the rat appears to be insensitive to H3-histaminergic receptor modulation of ischaemia-induced noradrenaline release, although a modulation can be seen with other prejunctional receptor agonists.

  8. Cardiosphere-Derived Cells Facilitate Heart Repair by Modulating M1/M2 Macrophage Polarization and Neutrophil Recruitment

    PubMed Central

    Hasan, Al Shaimaa; Luo, Lan; Yan, Chen; Zhang, Tian-Xia; Urata, Yoshishige; Goto, Shinji; Mangoura, Safwat A.; Abdel-Raheem, Mahmoud H.; Zhang, Shouhua; Li, Tao-Sheng

    2016-01-01

    Cardiosphere-derived cells (CDCs), one of the promising stem cell sources for myocardial repair, have been tested in clinical trials and resulted in beneficial effects; however, the relevant mechanisms are not fully understood. In this study, we examined the hypothesis that CDCs favor heart repair by switching the macrophages from a pro-inflammatory phenotype (M1) into a regulatory anti-inflammatory phenotype (M2). Macrophages from mice were cultured with CDCs-conditioned medium or with fibroblasts-conditioned medium as a control. Immunostaining showed that CDCs-conditioned medium significantly enhanced the expression of CD206 (a marker for M2 macrophages), but decreased the expression of CD86 (a marker for M1 macrophages) 3 days after culture. For animal studies, we used an acute myocardial infarction model of mice. We injected CDCs, fibroblasts, or saline only into the border zone of infarction. Then we collected the heart tissues for histological analysis 5 and 14 days after treatment. Compared with control animals, CDCs treatment significantly decreased M1 macrophages and neutrophils but increased M2 macrophages in the infarcted heart. Furthermore, CDCs-treated mice had reduced infarct size and fewer apoptotic cells compared to the controls. Our data suggest that CDCs facilitate heart repair by modulating M1/M2 macrophage polarization and neutrophil recruitment, which may provide a new insight into the mechanisms of stem cell-based myocardial repair. PMID:27764217

  9. [Cardiac contractility modulation. A new form of therapy for patients with heart failure and narrow QRS complex?].

    PubMed

    Kleemann, T

    2015-11-01

    Cardiac contractility modulation (CCM) is a stimulation therapy by an implantable impulse generator, which enhances ventricular contractile performance by delivering CCM impulses to the right ventricle during the absolute refractory period. The CCM signals mediate increased inotropy by prolonging the duration of the action potential, which leads to an enhanced influx of calcium into cardiomyocytes and a greater release of calcium by the sarcoplasmic reticulum. The increase of cardiac contractility is not associated with increased oxygen consumption. Several small studies have shown that CCM therapy can safely improve symptoms of heart failure and peak oxygen consumption in patients with moderate to severe heart failure who are not eligible for resynchronization therapy. Therefore, CCM is a novel potential therapy for patients with heart failure, an ejection fraction ≤ 35 % and a normal QRS duration < 130 ms. However, apart from selecting appropriate patients for CCM therapy there are still unanswered questions, such as the impact of CCM therapy on established clinical endpoints. At present no data are available which have shown that CCM therapy leads to reduction of hospitalization for heart failure or mortality.

  10. Roselle Polyphenols Exert Potent Negative Inotropic Effects via Modulation of Intracellular Calcium Regulatory Channels in Isolated Rat Heart.

    PubMed

    Lim, Yi-Cheng; Budin, Siti Balkis; Othman, Faizah; Latip, Jalifah; Zainalabidin, Satirah

    2016-07-11

    Roselle (Hibiscus sabdariffa Linn.) calyces have demonstrated propitious cardioprotective effects in animal and clinical studies; however, little is known about its action on cardiac mechanical function. This study was undertaken to investigate direct action of roselle polyphenols (RP) on cardiac function in Langendorff-perfused rat hearts. We utilized RP extract which consists of 12 flavonoids and seven phenolic acids (as shown by HPLC profiling) and has a safe concentration range between 125 and 500 μg/ml in this study. Direct perfusion of RP in concentration-dependent manner lowered systolic function of the heart as shown by lowered LVDP and dP/dt max, suggesting a negative inotropic effect. RP also reduced heart rate (negative chronotropic action) while simultaneously increasing maximal velocity of relaxation (positive lusitropic action). Conversely, RP perfusion increased coronary pressure, an indicator for improvement in coronary blood flow. Inotropic responses elicited by pharmacological agonists for L-type Ca(2+) channel [(±)-Bay K 8644], ryanodine receptor (4-chloro-m-cresol), β-adrenergic receptor (isoproterenol) and SERCA blocker (thapsigargin) were all abolished by RP. In conclusion, RP elicits negative inotropic, negative chronotropic and positive lusitropic responses by possibly modulating calcium entry, release and reuptake in the heart. Our findings have shown the potential use of RP as a therapeutic agent to treat conditions like arrhythmia.

  11. Gossypetin ameliorates ionizing radiation-induced oxidative stress in mice liver--a molecular approach.

    PubMed

    Khan, Amitava; Manna, Krishnendu; Das, Dipesh Kr; Kesh, Swaraj Bandhu; Sinha, Mahuya; Das, Ujjal; Biswas, Sushobhan; Sengupta, Aaveri; Sikder, Kunal; Datta, Sanjukta; Ghosh, Mahua; Chakrabarty, Anindita; Banerji, Asoke; Dey, Sanjit

    2015-10-01

    Radioprotective action of gossypetin (GTIN) against gamma (γ)-radiation-induced oxidative stress in liver was explored in the present article. Our main aim was to evaluate the protective efficacy of GTIN against radiation-induced alteration of liver in murine system. To evaluate the effect of GTIN, it was orally administered to mice at a dose of 30 mg/kg body weight for three consecutive days prior to γ-radiation at a dose of 5 Gy. Radioprotective efficacy of GTIN were evaluated at physiological, cellular, and molecular level using biochemical analysis, comet assay, flow cytometry, histopathology, immunofluorescence, and immunoblotting techniques. Ionizing radiation was responsible for augmentation of hepatic oxidative stress in terms of lipid peroxidation and depletion of endogenous antioxidant enzymes. Immunoblotting and immunofluorescence studies showed that irradiation enhanced the nuclear translocation of nuclear factor kappa B (NF-κB) level, which leads to hepatic inflammation. To investigate further, we found that radiation induced the activation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK)-mediated apoptotic pathway and deactivation of the NF-E2-related factor 2 (Nrf2)-mediated redox signaling pathway, whereas GTIN pretreatment ameliorated these radiation-mediated effects. This is the novel report where GTIN rationally validated the molecular mechanism in terms of the modulation of cellular signaling system' instead of ' This is the novel report where GTIN is rationally validated in molecular terms to establish it as promising radioprotective agents. This might be fruitful especially for nuclear workers and defense personnel assuming the possibility of radiation exposure.

  12. Time and technology will tell: the pathophysiologic basis of neurohormonal modulation in heart failure.

    PubMed

    Reed, Brent N; Street, Sarah E; Jensen, Brian C

    2014-10-01

    The central roles of neurohormonal abnormalities in the pathobiology of heart failure have been defined in recent decades. Experiments have revealed both systemic involvement and intricate subcellular regulation by circulating effectors of the sympathetic nervous system, the renin-angiotensin-aldosterone system, and others. Randomized clinical trials substantiated these findings, establishing neurohormonal antagonists as cornerstones of heart failure pharmacotherapy, and occasionally offering further insight on mode of benefit. This review discusses the use of β-blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and aldosterone receptor antagonists in the treatment of heart failure, with particular attention to the pathophysiologic basis and mechanisms of action.

  13. Pediatric Cranio-spinal Axis Irradiation: Comparison of Radiation-induced Secondary Malignancy Estimations Based on Three Methods of Analysis for Three Different Treatment Modalities.

    PubMed

    Myers, P A; Mavroidis, P; Komisopoulos, G; Papanikolaou, N; Stathakis, S

    2015-04-01

    Pediatric cranio-spinal axis irradiation (CSI) is a valuable treatment for many central nervous system (CNS) diseases, but due to the life expectancies and quality of life expectations for children, the minimization of the risk for radiation-induced secondary malignancies must be a high priority. This study compared the estimated CSI-induced secondary malignancy risks of three radiation therapy modalities using three different models. Twenty-four (n = 24) pediatric patients previously treated with CSI for tumors of the CNS were planned using three different treatment modalities: three-dimensional conformal radiation therapy (3D-CRT), volume modulated arc therapy (VMAT), and Tomotherapy. Each plan was designed to deliver 23.4 Gy (1.8 Gy/fraction) to the target which was defined as the entire brain and spinal column with a 0.7 cm expansion. The mean doses as well as the dose volume histograms (DVH) of specific organs were analyzed for secondary malignancy risk according to three different methods: the effective dose equivalent (EDE), the excess relative risk (ERR), and the linear quadratic (LQ) models. Using the EDE model, the average secondary risk was highest for the 3D-CRT plans (37.60%), compared to VMAT (28.05%) and Tomotherapy (27.90%). The ERR model showed similarly that the 3D-CRT plans had considerably higher risk (10.84%) than VMAT and Tomotherapy, which showed almost equal risks (7.05 and 7.07%, respectively). The LQ model requires organ-specific cell survival parameters, which for the lungs, heart, and breast relevant values were found and applied. The lung risk for secondary malignancy was found to be 1.00, 1.96, and 2.07% for 3D-CRT, VMAT, and Tomotherapy, respectively. The secondary cancer risk for breast was estimated to be 0.09, 0.21, and 0.27% and for heart it was 9.75, 6.02 and 6.29% for 3D-CRT, VMAT, and Tomotherapy, respectively. Based on three methods of secondary malignancy estimation, the 3D-CRT plans produced highest radiation-induced

  14. Oligomer formation in the radiation-induced polymerization of styrene

    NASA Astrophysics Data System (ADS)

    Harayma, Hiroshi; Al-Sheikhly, Mohamad; Silverman, Joseph

    2003-12-01

    Analyses of the oligomers formed in radiation-induced polymerization of purified styrene were performed. The principal dimeric products were cis- and trans-diphenyl-cyclobutane with a relatively small amount of 1-phenyltetralin; the trimeric products were the optical isomers of 1-phenyl-4-[1'-phenylethyl-(1')]-tetralin in gamma-ray and 60 MeV proton irradiation. Oligomer formation increased with increasing dose, but more gradually than the linear formation of high polymer with dose. The yield was 0.25-3.1 μmol/J at low doses and decreased to an asymptotic value of 0.15 at higher doses. It appears that oligomers act as chain transfer agents during the polymerization reaction which would account for the observed decrease in molecular weight of the high polymer with increase in dose. Although the thermal and radiation-induced polymerization of styrene have different initiation steps, the oligomers produced by both reactions are similar in composition.

  15. Caffeine Markedly Enhanced Radiation-Induced Bystander Effects

    NASA Astrophysics Data System (ADS)

    Jiang, Erkang; Wu, Lijun

    2009-04-01

    In this paper it is shown that incubation with 2 mM caffeine enhanced significantly the MN (micronucleus) formation in both the 1 cGy α-particle irradiated and non-irradiated bystander regions. Moreover, caffeine treatment made the non-irradiated bystander cells more sensitive to damage signals. Treated by c-PTIO(2-(4-carboxy-phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide), a nitric oxide (NO) scavenger, the MN frequencies were effectively inhibited, showing that nitric oxide might be very important in mediating the enhanced damage. These results indicated that caffeine enhanced the low dose α-particle radiation-induced damage in irradiated and non-irradiated bystander regions, and therefore it is important to investigate the relationship between the radiosensitizer and radiation-induced bystander effects (RIBE).

  16. Radioadaptive response for protection against radiation-induced teratogenesis.

    PubMed

    Okazaki, Ryuji; Ootsuyama, Akira; Norimura, Toshiyuki

    2005-03-01

    To clarify the characteristics of the radioadaptive response in mice, we compared the incidence of radiation-induced malformations in ICR mice. Pregnant ICR mice were exposed to a priming dose of 2 cGy (667 muGy/min) on day 9.5 of gestation and to a challenging dose of 2 Gy (1.04 Gy/min) 4 h later and were killed on day 18.5 of gestation. The incidence of malformations and prenatal death and fetal body weights were studied. The incidence of external malformations was significantly lower (by approximately 10%) in the primed (2 cGy + 2 Gy) mice compared to the unprimed (2 Gy alone) mice. However, there were no differences in the incidence of prenatal death or the skeletal malformations or the body weights between primed and unprimed mice. These results suggest that primary conditioning with low doses of radiation suppresses radiation-induced teratogenesis.

  17. Radiation-induced transient darkening of optically transparent polymers

    SciTech Connect

    Downey, S.W.; Builta, L.A.; Carlson, R.L.; Czuchlewski, S.J.; Moir, D.C.

    1986-11-15

    Results are presented for the radiation-induced transient darkening of thin organic polymer films normally used as Cerenkov light emissions sources. The radiation source is a 27-MeV, 10-..mu..C, 200-ns electron beam generated by the PHERMEX accelerator. The typical dose for a single pulse is 5 Mrad. At this dose, the broadband time-resolved percent transmission above 520 nm was measured for four common polymers: polyimide (Kapton-H), polyethylene terephthalate (Mylar), cellulose acetate, and high-density polyethylene. Kapton was found to darken the most and polyethylene darkened the least. The recovery time to normal transmission for Kapton was found to be greater than 10--20 ..mu..s. The radiation-induced attenuation coefficient is shown to depend on electronic band energy separation. The results show that Kapton is not the material of choice for a Cerenkov light source.

  18. Faecal microbiota transplantation protects against radiation-induced toxicity.

    PubMed

    Cui, Ming; Xiao, Huiwen; Li, Yuan; Zhou, Lixin; Zhao, Shuyi; Luo, Dan; Zheng, Qisheng; Dong, Jiali; Zhao, Yu; Zhang, Xin; Zhang, Junling; Lu, Lu; Wang, Haichao; Fan, Saijun

    2017-04-01

    Severe radiation exposure may cause acute radiation syndrome, a possibly fatal condition requiring effective therapy. Gut microbiota can be manipulated to fight against many diseases. We explored whether intestinal microbe transplantation could alleviate radiation-induced toxicity. High-throughput sequencing showed that gastrointestinal bacterial community composition differed between male and female mice and was associated with susceptibility to radiation toxicity. Faecal microbiota transplantation (FMT) increased the survival rate of irradiated animals, elevated peripheral white blood cell counts and improved gastrointestinal tract function and intestinal epithelial integrity in irradiated male and female mice. FMT preserved the intestinal bacterial composition and retained mRNA and long non-coding RNA expression profiles of host small intestines in a sex-specific fashion. Despite promoting angiogenesis, sex-matched FMT did not accelerate the proliferation of cancer cells in vivo FMT might serve as a therapeutic to mitigate radiation-induced toxicity and improve the prognosis of tumour patients after radiotherapy.

  19. Dose and volume impact on radiation-induced xerostomia.

    PubMed

    Marmiroli, Luca; Salvi, Giovanna; Caiazza, Adolfo; Di Rienzo, Luigi; Massaccesi, Mariangela; Murino, Paola; Macchia, Gabriella

    2005-01-01

    Radiation-induced xerostomia consists in the chronic dryness of the mouth caused by parotid gland irradiation. Parotid glands produce approximately 60% of saliva while the rest is secreted by submandibular and accessory salivary glands. Methods of measuring the salivary output are essentially represented by 99mTc-pertechnate scintigraphy or simpler albeit less accurate methods in stimulated or unstimulated saliva. There are subjective and objective criteria of classification and grading of the secretion of saliva. Radiation-induced xerostomia, namely the residual salivary gland function is evidently associated with the mean dose absorbed. The salivary output tends to decrease after the end of radiotherapy. The partial dose-volume is substantially correlated with the mean dose to the whole gland. As for ipsilateral irradiation for head and neck cancer, conformal RT or IMRT allow to spare the contralateral parotid gland without increasing the risk of contralateral nodal recurrences. The monitoring system of late toxicity used by the authors is presented.

  20. Protective effects of L-selenomethionine on space radiation induced changes in gene expression.

    PubMed

    Stewart, J; Ko, Y-H; Kennedy, A R

    2007-06-01

    Ionizing radiation can produce adverse biological effects in astronauts during space travel. Of particular concern are the types of radiation from highly energetic, heavy, charged particles known as HZE particles. The aims of our studies are to characterize HZE particle radiation induced biological effects and evaluate the effects of L-selenomethionine (SeM) on these adverse biological effects. In this study, microarray technology was used to measure HZE radiation induced changes in gene expression, as well as to evaluate modulation of these changes by SeM. Human thyroid epithelial cells (HTori-3) were irradiated (1 GeV/n iron ions) in the presence or in the absence of 5 microM SeM. At 6 h post-irradiation, all cells were harvested for RNA isolation. Gene Chip U133Av2 from Affymetrix was used for the analysis of gene expression, and ANOVA and EASE were used for a determination of the genes and biological processes whose differential expression is statistically significant. Results of this microarray study indicate that exposure to small doses of radiation from HZE particles, 10 and 20 cGy from iron ions, induces statistically significant differential expression of 196 and 610 genes, respectively. In the presence of SeM, differential expression of 77 out of 196 genes (exposure to 10 cGy) and 336 out of 610 genes (exposure to 20 cGy) is abolished. In the presence or in the absence of SeM, radiation from HZE particles induces differential expression of genes whose products have roles in the induction of G1/S arrest during the mitotic cell cycle, as well as heat shock proteins. Some of the genes, whose expressions were affected by radiation from HZE particles and were unchanged in irradiated cells treated with SeM, have been shown to have altered expression levels in cancer cells. The conclusions of this report are that radiation from HZE particles can induce differential expression of many genes, some of which are known to play roles in the same processes that have

  1. Prosthodontic management of radiation induced xerostomic patient using flexible dentures

    PubMed Central

    Murthy, Varsha; V, Yuvraj; Nair, Preeti P; Thomas, Shaji

    2012-01-01

    Xerostomia causes discomfort for complete denture wearers as the tissues become dry and friable due to lack of lubricating properties of saliva. Common problems faced by such patients are glossitis, mucositis, angular chelitis, dysgeusia and difficulty in chewing and swallowing. This case report describes a new method in addressing such issues by using flexible complete denture construction in radiation induced xerostomic patient with minimal tissue damage during and after denture construction procedures. PMID:22605708

  2. Heavy-ion radiation induced bystander effect in mice

    NASA Astrophysics Data System (ADS)

    Liang, Shujian; Sun, Yeqing; Zhang, Meng; Wang, Wei; Cui, Changna

    2012-07-01

    Radiation-induced bystander effect is defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, Low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic, metabolomics and proteomics play significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male mice head were exposed to 2000mGy dose of 12C heavy-ion radiation and the distant organ liver was detected on 1h, 6h, 12h and 24h after radiation, respectively. MSAP was used to monitor the level of polymorphic DNA methylation changes. The results show that heavy-ion irradiate mouse head can induce liver DNA methylation changes significantly. The percent of DNA methylation changes are time-dependent and highest at 6h after radiation. We also prove that the hypo-methylation changes on 1h and 6h after irradiation. But the expression level of DNA methyltransferase DNMT3a is not changed. UPLC/Synapt HDMS G2 was employed to detect the proteomics of bystander liver 1h after irradiation. 64 proteins are found significantly different between treatment and control group. GO process show that six of 64 which were unique in irradiation group are associated with apoptosis and DNA damage response. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.

  3. Follistatin attenuates radiation-induced fibrosis in a murine model

    PubMed Central

    Forrester, Helen B.; de Kretser, David M.; Leong, Trevor; Hagekyriakou, Jim; Sprung, Carl N.

    2017-01-01

    Purpose Fibrosis can be a disabling, severe side effect of radiotherapy that can occur in patients, and for which there is currently no effective treatment. The activins, proteins which are members of the TGFβ superfamily, have a major role in stimulating the inflammatory response and subsequent fibrosis. Follistatin is an endogenous protein that binds the activins virtually irreversibly and inhibits their actions. These studies test if follistatin can attenuate the fibrotic response using a murine model of radiation-induced fibrosis. Experimental design C57BL/6 mice were subcutaneously injected with follistatin 24 hours prior to irradiation. Mice were irradiated in a 10 x 10 mm square area of the right hind leg with 35 Gy and were given follistatin 24 hours before radiation and three times a week for six months following. Leg extension was measured, and tissue was collected for histological and molecular analysis to evaluate the progression of the radiation-induced fibrosis. Results Leg extension was improved in follistatin treated mice compared to vehicle treated mice at six months after irradiation. Also, epidermal thickness and cell nucleus area of keratinocytes were decreased by the follistatin treatment compared to the cells in irradiated skin of control mice. Finally, the gene expression of transforming growth factor β1 (Tgfb1), and smooth muscle actin (Acta2) were decreased in the irradiated skin and Acta2 and inhibin βA subunit (Inhba) were decreased in the irradiated muscle of the follistatin treated mice. Conclusions Follistatin attenuated the radiation-induced fibrotic response in irradiated mice. These studies provide the data to support further investigation of the use of follistatin to reduce radiation-induced fibrosis in patients undergoing radiotherapy for cancer. PMID:28301516

  4. Thermodynamic models of radiation-induced processes in solids

    NASA Astrophysics Data System (ADS)

    Yurov, V. M.; Eremin, E. N.; Kasymov, S. S.; Laurinas, V. CH; Chernyavskii, A. V.

    2017-01-01

    A thermodynamic model is proposed to qualitatively describe the radiation-induced processes in solids: temperature dependence of the X-ray radio luminescence output, dependence of these processes on the excitation density, energy accumulating in a solid under exposure to ionizing radiation and its temperature dependence. The proposed model and the formula derived can be used to develop radiation-resistant and radiation-sensitive materials.

  5. Process and Radiation Induced Defects in Electronic Materials and Devices

    NASA Technical Reports Server (NTRS)

    Washington, Kenneth; Fogarty, T. N.

    1997-01-01

    Process and radiation induced defects are characterized by a variety of electrical techniques, including capacitance-voltage measurements and charge pumping. Separation of defect type into stacking faults, displacement damage, oxide traps, interface states, etc. and their related causes are discussed. The defects are then related to effects on device parameters. Silicon MOS technology is emphasized. Several reviews of radiation effects and silicon processing exist.

  6. Role of Neurotensin in Radiation-Induced Hypothermia in Rats

    DTIC Science & Technology

    1991-01-01

    variety of behavioral and physiolog- of Neurotensin in Radiation-induced Hypothermia in Rat.A- ical effects, including the stimulation of histamine relmeas...induction of hypothermia, after intracisternal or intraven- was examined. Intracerebroventricular (IafCV) adminis-tration of tricular administration...1S-4 7). ’The purposes of this study ne-urotensin produced dose-dependent hypoihermia. Histamine were to investigate the role of neurotensin in

  7. The role of protein kinase C alpha translocation in radiation-induced bystander effect.

    PubMed

    Fang, Zihui; Xu, An; Wu, Lijun; Hei, Tom K; Hong, Mei

    2016-05-11

    Ionizing radiation is a well known human carcinogen. Evidence accumulated over the past decade suggested that extranuclear/extracellular targets and events may also play a critical role in modulating biological responses to ionizing radiation. However, the underlying mechanism(s) of radiation-induced bystander effect is still unclear. In the current study, AL cells were irradiated with alpha particles and responses of bystander cells were investigated. We found out that in bystander AL cells, protein kinase C alpha (PKCα) translocated from cytosol to membrane fraction. Pre-treatment of cells with PKC translocation inhibitor chelerythrine chloride suppressed the induced extracellular signal-regulated kinases (ERK) activity and the increased cyclooxygenase 2 (COX-2) expression as well as the mutagenic effect in bystander cells. Furthermore, tumor necrosis factor alpha (TNFα) was elevated in directly irradiated but not bystander cells; while TNFα receptor 1 (TNFR1) increased in the membrane fraction of bystander cells. Further analysis revealed that PKC activation caused accelerated internalization and recycling of TNFR1. Our data suggested that PKCα translocation may occur as an early event in radiation-induced bystander responses and mediate TNFα-induced signaling pathways that lead to the activation of ERK and up-regulation of COX-2.

  8. Modeling radiation induced segregation in Iron-Chromium alloys

    SciTech Connect

    Senninger, Oriane; Soisson, Frederic; Martinez Saez, Enrique; Nastar, Maylise; Fu, Chu-Chun; Brechet, Yves

    2015-10-16

    Radiation induced segregation in ferritic Fe-Cr alloys is studied by Atomistic Kinetic Monte Carlo simulations that include di usion of chemical species by vacancy and interstitial migration, recombination, and elimination at sinks. The parameters of the di usion model are tted to DFT calculations. Transport coe cients that control the coupling between di usion of defects and chemical species are measured in dilute and concentrated alloys. Radiation induced segregation near grain boundaries is directly simulated with this model. We nd that the di usion of vacancies toward sinks leads to a Cr depletion. Meanwhile, the di usion of self-interstitials causes an enrichment of Cr in the vicinity of sinks. For concentrations lower than 15%Cr, we predict that sinks will be enriched with Cr for temperatures lower than a threshold. When the temperature is above this threshold value, the sinks will be depleted in Cr. These results are compared to previous experimental studies and models. Cases of radiation induced precipitation and radiation accelerated precipitation are considered.

  9. Modeling radiation induced segregation in Iron-Chromium alloys

    DOE PAGES

    Senninger, Oriane; Soisson, Frederic; Martinez Saez, Enrique; ...

    2015-10-16

    Radiation induced segregation in ferritic Fe-Cr alloys is studied by Atomistic Kinetic Monte Carlo simulations that include di usion of chemical species by vacancy and interstitial migration, recombination, and elimination at sinks. The parameters of the di usion model are tted to DFT calculations. Transport coe cients that control the coupling between di usion of defects and chemical species are measured in dilute and concentrated alloys. Radiation induced segregation near grain boundaries is directly simulated with this model. We nd that the di usion of vacancies toward sinks leads to a Cr depletion. Meanwhile, the di usion of self-interstitials causesmore » an enrichment of Cr in the vicinity of sinks. For concentrations lower than 15%Cr, we predict that sinks will be enriched with Cr for temperatures lower than a threshold. When the temperature is above this threshold value, the sinks will be depleted in Cr. These results are compared to previous experimental studies and models. Cases of radiation induced precipitation and radiation accelerated precipitation are considered.« less

  10. Dose-dependency and reversibility of radiation-induced injury in cardiac explant-derived cells of mice

    PubMed Central

    Luo, Lan; Yan, Chen; Urata, Yoshishige; Hasan, Al Shaimaa; Goto, Shinji; Guo, Chang-Ying; Zhang, Shouhua; Li, Tao-Sheng

    2017-01-01

    We evaluated the dose-dependency and reversibility of radiation-induced injury in cardiac explant-derived cells (CDCs), a mixed cell population grown from heart tissues. Adult C57BL/6 mice were exposed to 0, 10, 50 and 250 mGy γ-rays for 7 days and atrial tissues were collected for experiments 24 hours after last exposure. The number of CDCs was significantly decreased by daily exposure to over 250 mGy. Interestingly, daily exposure to over 50 mGy significantly decreased the c-kit expression and telomerase activity, increased 53BP1 foci in the nuclei of CDCs. However, CD90 expression and growth factors production in CDCs were not significantly changed even after daily exposure to 250 mGy. We further evaluated the reversibility of radiation-induced injury in CDCs at 1 week and 3 weeks after a single exposure to 3 Gy γ-rays. The number and growth factors production of CDCs were soon recovered at 1 week. However, the increased expression of CD90 were retained at 1 week, but recovered at 3 weeks. Moreover, the decreased expression of c-kit, impaired telomerase activity, and increased 53BP1 foci were poorly recovered even at 3 weeks. These data may help us to find the most sensitive and reliable bio-parameter(s) for evaluating radiation-induced injury in CDCs. PMID:28098222

  11. Simultaneous measurement and modulation of multiple physiological parameters in the isolated heart using optical techniques

    PubMed Central

    Lee, Peter; Yan, Ping; Ewart, Paul; Kohl, Peter

    2012-01-01

    Whole-heart multi-parametric optical mapping has provided valuable insight into the interplay of electro-physiological parameters, and this technology will continue to thrive as dyes are improved and technical solutions for imaging become simpler and cheaper. Here, we show the advantage of using improved 2nd-generation voltage dyes, provide a simple solution to panoramic multi-parametric mapping, and illustrate the application of flash photolysis of caged compounds for studies in the whole heart. For proof of principle, we used the isolated rat whole-heart model. After characterising the blue and green isosbestic points of di-4-ANBDQBS and di-4-ANBDQPQ, respectively, two voltage and calcium mapping systems are described. With two newly custom-made multi-band optical filters, (1) di-4-ANBDQBS and fluo-4 and (2) di-4-ANBDQPQ and rhod-2 mapping are demonstrated. Furthermore, we demonstrate three-parameter mapping using di-4-ANBDQPQ, rhod-2 and NADH. Using off-the-shelf optics and the di-4-ANBDQPQ and rhod-2 combination, we demonstrate panoramic multi-parametric mapping, affording a 360° spatiotemporal record of activity. Finally, local optical perturbation of calcium dynamics in the whole heart is demonstrated using the caged compound, o-nitrophenyl ethylene glycol tetraacetic acid (NP-EGTA), with an ultraviolet light-emitting diode (LED). Calcium maps (heart loaded with di-4-ANBDQPQ and rhod-2) demonstrate successful NP-EGTA loading and local flash photolysis. All imaging systems were built using only a single camera. In conclusion, using novel 2nd-generation voltage dyes, we developed scalable techniques for multi-parametric optical mapping of the whole heart from one point of view and panoramically. In addition to these parameter imaging approaches, we show that it is possible to use caged compounds and ultraviolet LEDs to locally perturb electrophysiological parameters in the whole heart. PMID:22886365

  12. Modulation of the Sympatho-Vagal Balance during Sleep: Frequency Domain Study of Heart Rate Variability and Respiration

    PubMed Central

    Cabiddu, Ramona; Cerutti, Sergio; Viardot, Geoffrey; Werner, Sandra; Bianchi, Anna M.

    2012-01-01

    Sleep is a complex state characterized by important changes in the autonomic modulation of the cardiovascular activity. Heart rate variability (HRV) greatly changes during different sleep stages, showing a predominant parasympathetic drive to the heart during non-rapid eye movement (NREM) sleep and an increased sympathetic activity during rapid eye movement (REM) sleep. Respiration undergoes important modifications as well, becoming deeper and more regular with deep sleep and shallower and more frequent during REM sleep. The aim of the present study is to assess both autonomic cardiac regulation and cardiopulmonary coupling variations during different sleep stages in healthy subjects, using spectral and cross-spectral analysis of the HRV and respiration signals. Polysomnographic sleep recordings were performed in 11 healthy women and the HRV signal and the respiration signal were obtained. The spectral and cross-spectral parameters of the HRV signal and of the respiration signal were computed at low frequency and at breathing frequency (high frequency, HF) during different sleep stages. Results attested a sympatho-vagal balance shift toward parasympathetic modulation during NREM sleep and toward sympathetic modulation during REM sleep. Spectral analysis of the HRV signal and of the respiration signal indicated a higher respiration regularity during deep sleep, and a higher parasympathetic drive was also confirmed by an increase in the coherence between the HRV and the respiration signal in the HF band during NREM sleep. Our findings about sleep stage-dependent variations in the HRV signal and in the respiratory activity are in line with previous evidences and confirm spectral analysis of the HRV and the respiration signal to be a suitable tool for investigating cardiac autonomic modulation and cardio-respiratory coupling during sleep. PMID:22416233

  13. Effects of heart rate variability biofeedback on cardiovascular responses and autonomic sympathovagal modulation following stressor tasks in prehypertensives.

    PubMed

    Chen, S; Sun, P; Wang, S; Lin, G; Wang, T

    2016-02-01

    Autonomic dysfunction is implicated in prehypertension, and previous studies have suggested that therapies that improve modulation of sympathovagal balance, such as biofeedback and slow abdominal breathing, are effective in patients with prehypertension at rest. However, considering that psychophysiological stressors may be associated with greater cardiovascular risk in prehypertensives, it is important to investigate whether heart rate variability biofeedback (HRV-BF) results in equivalent effects on autonomic cardiovascular responses control during stressful conditions in prehypertensives. A total of 32 college students with prehypertension were enrolled and randomly assigned to HRV-BF (n=12), slow abdominal breathing (SAB, n=10) or no treatment (control, n=10) groups. Then, a training experiment consisting of 15 sessions was employed to compare the effect of each intervention on the following cardiovascular response indicators before and after intervention: heart rate (HR); heart rate variability (HRV) components; blood volume pulse amplitude (BVPamp); galvanic skin response; respiration rate (RSP); and blood pressure. In addition, the cold pressor test and the mental arithmetic challenge test were also performed over two successive days before and after the invention as well as after 3 months of follow-up. A significant decrease in HR and RSP and a significant increase in BVPamp were observed after the HRV-BF intervention (P<0.001). For the HRV analysis, HRV-BF significantly reduced the ratio of low-frequency power to high-frequency power (the LF/HF ratio, P<0.001) and increased the normalized high-frequency power (HFnm) (P<0.001) during the stress tests, and an added benefit over SAB by improving HRV was also observed. In the 3-month follow-up study, similar effects on RSP, BVPamp, LF/HF and HFnm were observed in the HRV-BF group compared with the SAB group. HRV-BF training contributes to the beneficial effect of reducing the stress-related cardiovascular

  14. A dual-input nonlinear system analysis of autonomic modulation of heart rate.

    PubMed

    Chon, K H; Mullen, T J; Cohen, R J

    1996-05-01

    Linear analyses of fluctuations in heart rate and other hemodynamic variables have been used to elucidate cardiovascular regulatory mechanisms. The role of nonlinear contributions to fluctuations in hemodynamic variables has not been fully explored. This paper presents a nonlinear system analysis of the effect of fluctuations in instantaneous lung volume (ILV) and arterial blood pressure (ABP) on heart rate (HR) fluctuations. To successfully employ a nonlinear analysis based on the Laguerre expansion technique (LET), we introduce an efficient procedure for broadening the spectral content of the ILV and ABP inputs to the model by adding white noise. Results from computer simulations demonstrate the effectiveness of broadening the spectral band of input signals to obtain consistent and stable kernel estimates with the use of the LET. Without broadening the band of the ILV and ABP inputs, the LET did not provide stable kernel estimates. Moreover, we extend the LET to the case of multiple inputs in order to accommodate the analysis of the combined effect of ILV and ABP effect on heart rate. Analyzes of data based on the second-order Volterra-Wiener model reveal an important contribution of the second-order kernels to the description of the effect of lung volume and arterial blood pressure on heart rate. Furthermore, physiological effects of the autonomic blocking agents propranolol and atropine on changes in the first- and second-order kernels are also discussed.

  15. Exercise mediated protection of diabetic heart through modulation of microRNA mediated molecular pathways.

    PubMed

    Lew, Jason Kar Sheng; Pearson, James T; Schwenke, Daryl O; Katare, Rajesh

    2017-01-13

    Hyperglycaemia, hypertension, dyslipidemia and insulin resistance collectively impact on the myocardium of people with diabetes, triggering molecular, structural and myocardial abnormalities. These have been suggested to aggravate oxidative stress, systemic inflammation, myocardial lipotoxicity and impaired myocardial substrate utilization. As a consequence, this leads to the development of a spectrum of cardiovascular diseases, which may include but not limited to coronary endothelial dysfunction, and left ventricular remodelling and dysfunction. Diabetic heart disease (DHD) is the term used to describe the presence of heart disease specifically in diabetic patients. Despite significant advances in medical research and long clinical history of anti-diabetic medications, the risk of heart failure in people with diabetes never declines. Interestingly, sustainable and long-term exercise regimen has emerged as an effective synergistic therapy to combat the cardiovascular complications in people with diabetes, although the precise molecular mechanism(s) underlying this protection remain unclear. This review provides an overview of the underlying mechanisms of hyperglycaemia- and insulin resistance-mediated DHD with a detailed discussion on the role of different intensities of exercise in mitigating these molecular alterations in diabetic heart. In particular, we provide the possible role of exercise on microRNAs, the key molecular regulators of several pathophysiological processes.

  16. Heart rate response after emotional picture presentation is modulated by interoceptive awareness.

    PubMed

    Pollatos, Olga; Herbert, Beate M; Matthias, Ellen; Schandry, Rainer

    2007-01-01

    The perception of visceral signals plays a crucial role in many theories of emotions. The present study was designed to investigate the relationship between interoceptive awareness, emotional experience and heart rate responses in an emotional stimulation paradigm. Based on their performance in a heartbeat perception task 38 participants (16 males, 22 females) were classified as subjects with either high (n=19; 8 males) or low interoceptive awareness (n=19; 8 males). 120 pictures (40 pleasant, 40 unpleasant, 40 neutral slides) from the International Affective Picture System served as emotional stimuli. Heart rate changes were recorded during baseline and during slide presentation. After each slide, the subjects had to rate emotional valence and arousal on a 9-point self-report scale. Statistical analyses revealed significantly stronger heart rate responses to pleasant and unpleasant stimuli in subjects with high interoceptive awareness. Furthermore, subjects with high interoceptive awareness rated pleasant and unpleasant slides as significantly more arousing; no differences were found in the emotional valence ratings. Heartbeat perception scores correlated significantly positive with both the mean arousal rating and with the mean heart rate changes. Our results demonstrate a strong relationship between the perception of cardiac signals and the peripheral processing of emotional stimuli.

  17. A dual-input nonlinear system analysis of autonomic modulation of heart rate

    NASA Technical Reports Server (NTRS)

    Chon, K. H.; Mullen, T. J.; Cohen, R. J.

    1996-01-01

    Linear analyses of fluctuations in heart rate and other hemodynamic variables have been used to elucidate cardiovascular regulatory mechanisms. The role of nonlinear contributions to fluctuations in hemodynamic variables has not been fully explored. This paper presents a nonlinear system analysis of the effect of fluctuations in instantaneous lung volume (ILV) and arterial blood pressure (ABP) on heart rate (HR) fluctuations. To successfully employ a nonlinear analysis based on the Laguerre expansion technique (LET), we introduce an efficient procedure for broadening the spectral content of the ILV and ABP inputs to the model by adding white noise. Results from computer simulations demonstrate the effectiveness of broadening the spectral band of input signals to obtain consistent and stable kernel estimates with the use of the LET. Without broadening the band of the ILV and ABP inputs, the LET did not provide stable kernel estimates. Moreover, we extend the LET to the case of multiple inputs in order to accommodate the analysis of the combined effect of ILV and ABP effect on heart rate. Analyzes of data based on the second-order Volterra-Wiener model reveal an important contribution of the second-order kernels to the description of the effect of lung volume and arterial blood pressure on heart rate. Furthermore, physiological effects of the autonomic blocking agents propranolol and atropine on changes in the first- and second-order kernels are also discussed.

  18. Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 2D Simulation Study

    PubMed Central

    Gomez, Juan F.; Cardona, Karen; Martinez, Laura; Saiz, Javier; Trenor, Beatriz

    2014-01-01

    Background Heart failure is operationally defined as the inability of the heart to maintain blood flow to meet the needs of the body and it is the final common pathway of various cardiac pathologies. Electrophysiological remodeling, intercellular uncoupling and a pro-fibrotic response have been identified as major arrhythmogenic factors in heart failure. Objective In this study we investigate vulnerability to reentry under heart failure conditions by incorporating established electrophysiological and anatomical remodeling using computer simulations. Methods The electrical activity of human transmural ventricular tissue (5 cm×5 cm) was simulated using the human ventricular action potential model Grandi et al. under control and heart failure conditions. The MacCannell et al. model was used to model fibroblast electrical activity, and their electrotonic interactions with myocytes. Selected degrees of diffuse fibrosis and variations in intercellular coupling were considered and the vulnerable window (VW) for reentry was evaluated following cross-field stimulation. Results No reentry was observed in normal conditions or in the presence of HF ionic remodeling. However, defined amount of fibrosis and/or cellular uncoupling were sufficient to elicit reentrant activity. Under conditions where reentry was generated, HF electrophysiological remodeling did not alter the width of the VW. However, intermediate fibrosis and cellular uncoupling significantly widened the VW. In addition, biphasic behavior was observed, as very high fibrotic content or very low tissue conductivity hampered the development of reentry. Detailed phase analysis of reentry dynamics revealed an increase of phase singularities with progressive fibrotic components. Conclusion Structural remodeling is a key factor in the genesis of vulnerability to reentry. A range of intermediate levels of fibrosis and intercellular uncoupling can combine to favor reentrant activity. PMID:25054335

  19. Utility of a Novel Biofeedback Device for Within-Breath Modulation of Heart Rate in Rats: A Quantitative Comparison of Vagus Nerve vs. Right Atrial Pacing

    PubMed Central

    O'Callaghan, Erin L.; Chauhan, Ashok S.; Zhao, Le; Lataro, Renata M.; Salgado, Helio C.; Nogaret, Alain; Paton, Julian F. R.

    2016-01-01

    In an emerging bioelectronics era, there is a clinical need for physiological devices incorporating biofeedback that permits natural and demand-dependent control in real time. Here, we describe a novel device termed a central pattern generator (CPG) that uses cutting edge analog circuitry producing temporally controlled, electrical stimulus outputs based on the real time integration of physiological feedback. Motivated by the fact that respiratory sinus arrhythmia (RSA), which is the cyclical changes in heart rate every breath, is an essential component of heart rate variability (HRV) (an indicator of cardiac health), we have explored the versatility and efficiency of the CPG for producing respiratory modulation of heart rate in anesthetized, spontaneously breathing rats. Diaphragmatic electromyographic activity was used as the input to the device and its output connected to either the right cervical vagus nerve or the right atrium for pacing heart rate. We found that the CPG could induce respiratory related heart rate modulation that closely mimicked RSA. Whether connected to the vagus nerve or right atrium, the versatility of the device was demonstrated by permitting: (i) heart rate modulation in any phase of the respiratory cycle, (ii) control of the magnitude of heart rate modulation, and (iii) instant adaptation to changes in respiratory frequency. Vagal nerve pacing was only possible following transection of the nerve limiting its effective use chronically. Pacing via the right atrium permitted better flexibility and control of heart rate above its intrinsic level. This investigation now lays the foundation for future studies using this biofeedback technology permitting closer analysis of both the function and dysfunction of RSA. PMID:26869940

  20. Cardiac resynchronization therapy modulation of exercise left ventricular function and pulmonary O₂ uptake in heart failure.

    PubMed

    Tomczak, Corey R; Paterson, Ian; Haykowsky, Mark J; Lawrance, Richard; Martellotto, Andres; Pantano, Alfredo; Gulamhusein, Sajad; Haennel, Robert G

    2012-06-15

    To better understand the mechanisms contributing to improved exercise capacity with cardiac resynchronization therapy (CRT), we studied the effects of 6 mo of CRT on pulmonary O(2) uptake (Vo(2)) kinetics, exercise left ventricular (LV) function, and peak Vo(2) in 12 subjects (age: 56 ± 15 yr, peak Vo(2): 12.9 ± 3.2 ml·kg(-1)·min(-1), ejection fraction: 18 ± 3%) with heart failure. We hypothesized that CRT would speed Vo(2) kinetics due to an increase in stroke volume secondary to a reduction in LV end-systolic volume (ESV) and that the increase in peak Vo(2) would be related to an increase in cardiac output reserve. We found that Vo(2) kinetics were faster during the transition to moderate-intensity exercise after CRT (pre-CRT: 69 ± 21 s vs. post-CRT: 54 ± 17 s, P < 0.05). During moderate-intensity exercise, LV ESV reserve (exercise - resting) increased 9 ± 7 ml (vs. a 3 ± 9-ml decrease pre-CRT, P < 0.05), and steady-state stroke volume increased (pre-CRT: 42 ± 8 ml vs. post-CRT: 61 ± 12 ml, P < 0.05). LV end-diastolic volume did not change from rest to steady-state exercise post-CRT (P > 0.05). CRT improved heart rate, measured as a lower resting and steady-state exercise heart rate and as faster heart rate kinetics after CRT (pre-CRT: 89 ± 12 s vs. post-CRT: 69 ± 21 s, P < 0.05). For peak exercise, cardiac output reserve increased significantly post-CRT and was 22% higher at peak exercise post-CRT (both P < 0.05). The increase in cardiac output was due to both a significant increase in peak and reserve stroke volume and to a nonsignificant increase in heart rate reserve. Similar patterns in LV volumes as moderate-intensity exercise were observed at peak exercise. Cardiac output reserve was related to peak Vo(2) (r = 0.48, P < 0.05). These findings demonstrate the chronic CRT-mediated cardiac factors that contribute, in part, to the speeding in Vo(2) kinetics and increase in peak Vo(2) in clinically stable heart failure patients.

  1. Measurements of prompt radiation induced conductivity in Teflon (PTFE).

    SciTech Connect

    Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.; Preston, E.

    2013-05-01

    We performed measurements of the prompt radiation induced conductivity (RIC) in thin samples of Teflon (PTFE) at the Little Mountain Medusa LINAC facility in Ogden, UT. Three mil (76.2 microns) samples were irradiated with a 0.5 %CE%BCs pulse of 20 MeV electrons, yielding dose rates of 1E9 to 1E11 rad/s. We applied variable potentials up to 2 kV across the samples and measured the prompt conduction current. Details of the experimental apparatus and analysis are reported in this report on prompt RIC in Teflon.

  2. Skeletal Scintigraphy in Radiation-Induced Fibrosis With Lymphedema.

    PubMed

    Wang, Jieqi; Iranmanesh, Arya M; Oates, M Elizabeth

    2017-03-01

    Despite increasing reliance on CT, MRI, and FDG PET/CT for oncological imaging, whole-body skeletal scintigraphy remains a frontline modality for staging and surveillance of osseous metastatic disease. We present a 54-year-old woman with metastatic breast cancer who received palliative external-beam radiation to the left ilium. Serial follow-up Tc-MDP bone scans demonstrated progressive soft-tissue uptake in her left lower extremity, extending from thigh to leg, with associated enlargement and skin thickening, consistent with lymphedema related to radiation-induced fibrosis. Correlative abdominopelvic CT scans confirmed fibrotic changes in the left thigh.

  3. Facial reconstruction for radiation-induced skin cancer

    SciTech Connect

    Panje, W.R.; Dobleman, T.J. )

    1990-04-01

    Radiation-induced skin cancers can be difficult to diagnose and treat. Typically, a patient who has received orthovoltage radiotherapy for disorders such as acne, eczema, tinea capitis, skin tuberculosis, and skin cancer can expect that aggressive skin cancers and chronic radiodermatitis may develop subsequently. Cryptic facial cancers can lead to metastases and death. Prophylactic widefield excision of previously irradiated facial skin that has been subject to multiple recurrent skin cancers is suggested as a method of deterring future cutaneous malignancy and metastases. The use of tissue expanders and full-thickness skin grafts offers an expedient and successful method of subsequent reconstruction.

  4. Challenges and Opportunities in Radiation-induced Hemorrhagic Cystitis

    PubMed Central

    Zwaans, Bernadette M.M.; Nicolai, Heinz G.; Chancellor, Michael B.; Lamb, Laura E.

    2016-01-01

    As diagnosis and treatment of cancer is improving, medical and social issues related to cancer survivorship are becoming more prevalent. Hemorrhagic cystitis (HC), a rare but serious disease that may affect patients after pelvic radiation or systemic chemotherapy, has significant unmet medical needs. Although no definitive treatment is currently available, various interventions are employed for HC. Effects of nonsurgical treatments for HC are of modest success and studies aiming to control radiation-induced bladder symptoms are lacking. In this review, we present current and advanced therapeutic strategies for HC to help cancer survivors deal with long-term urologic health issues. PMID:27601964

  5. Radiation-Induced Intraspinal Chondrosarcoma: A Case Report

    PubMed Central

    Obid, Peter; Vierbuchen, Mathias; Wolf, Eduard; Reichl, Michael; Niemeyer, Thomas; Übeyli, Hüseyin; Richter, Alexander

    2015-01-01

    Study Design Case report and review of the literature. Objective To report a unique case of an intraspinal chondrosarcoma that was diagnosed 18 years after radiotherapy for a cervical carcinoma and its remarkably unusual clinical presentation. Methods A retrospective case description of an intraspinal mass lesion that occurred 6 weeks after previous spinal surgery. Results Within ∼9 weeks, the tumor had infiltrated the peritoneal cavity and reached the lumbar subcutaneous tissue. Conclusion Radiation-induced sarcomas are rare, are highly aggressive, and may be difficult to diagnose. Furthermore, the only means of achieving long-term survival is through early and extensive surgery. PMID:26430606

  6. Radiation-induced breast angiosarcoma: a case report

    PubMed Central

    Tato-Varela, Sara; Albalat-Fernández, Rosa; Pabón-Fernández, Sara; Núñez-García, Diego; Calle-Marcos, Manolo La

    2016-01-01

    Radiation-induced breast angiosarcoma is a severe but rare late complication in the breast-preserving management of breast cancer through surgery and radiotherapy [1]. Often the initial diagnosis of this entity is complex given its relatively anodyne nature and usually being present in the form of typically multifocal reddish-purple papular skin lesions [2]. Because of the low incidence of this tumour, there is a limited number of studies regarding its optimal therapeutic management [3]. The preferred treatment is aggressive surgical removal and the prognosis is poor with an overall survival rate of 12–20% at five years [4]. PMID:28101140

  7. Radiation-induced malignant and atypical peripheral nerve sheath tumors

    SciTech Connect

    Foley, K.M.; Woodruff, J.M.; Ellis, F.T.; Posner, J.B.

    1980-04-01

    The reported peripheral nerve complications of therapeutic irradiation in humans include brachial and lumbar plexus fibrosis and cranial and peripheral nerve atrophy. We have encountered 9 patients with malignant (7) and atypical (2) peripheral nerve tumors occurring in an irradiated site suggesting that such tumors represent another delayed effect of radiation treatment on peripheral nerve. In all instances the radio-theray was within an acceptable radiation dosage, yet 3 patients developed local radiation-induced skin and bony abnormalities. The malignant peripheral nerve sheath tumors developed only in the radiation port. Animal studies support the clinical observation that malignant peripheral nerve sheath tumors can occur as a delayed effect of irradiation.

  8. Radiation-Induced Premelting of Ice at Silica Interfaces

    SciTech Connect

    Schoeder, S.; Reichert, H.; Schroeder, H.; Mezger, M.; Okasinski, J. S.; Dosch, H.; Honkimaeki, V.; Bilgram, J.

    2009-08-28

    The existence of surface and interfacial melting of ice below 0 deg. C has been confirmed by many different experimental techniques. Here we present a high-energy x-ray reflectivity study of the interfacial melting of ice as a function of both temperature and x-ray irradiation dose. We found a clear increase of the thickness of the quasiliquid layer with the irradiation dose. By a systematic x-ray study, we have been able to unambiguously disentangle thermal and radiation-induced premelting phenomena. We also confirm the previously announced very high water density (1.25 g/cm{sup 3}) within the emerging quasiliquid layer.

  9. Measurements of prompt radiation induced conductivity of Kapton.

    SciTech Connect

    Preston, Eric F.; Zarick, Thomas Andrew; Sheridan, Timothy J.; Hartman, E. Frederick; Stringer, Thomas Arthur

    2010-10-01

    We performed measurements of the prompt radiation induced conductivity in thin samples of Kapton (polyimide) at the Little Mountain Medusa LINAC facility in Ogden, UT. Three mil samples were irradiated with a 0.5 {mu}s pulse of 20 MeV electrons, yielding dose rates of 1E9 to 1E10 rad/s. We applied variable potentials up to 2 kV across the samples and measured the prompt conduction current. Analysis rendered prompt conductivity coefficients between 6E-17 and 2E-16 mhos/m per rad/s, depending on the dose rate and the pulse width.

  10. Mechanisms of Radiation Induced Effects in Carbon Nanotubes

    DTIC Science & Technology

    2016-10-01

    8725 John J. Kingman Road, MS 6201 Fort Belvoir, VA 22060-6201 T E C H N IC A L R E P O R T DTRA-TR-17-5 Mechanisms of Radiation-Induced...CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 00-10-2016 Final Oct 5, 2010 - Dec 31, 2015 Mechanisms of...primary outcome of this program, determined using both theory and experiment, has been a complete understanding of the mechanisms of radiation damage

  11. Temperature modulation of α- and β-adrenoceptors in the isolated frog heart

    PubMed Central

    Buckley, G. A.; Jordan, C. C.

    1970-01-01

    1. The effects of adrenaline on the isolated frog's heart at 27° C are not antagonized by phentolamine (1·5 × 10-6M) but are abolished at 7° C. 2. At 27° C isoprenaline was more potent than noradrenaline, but at 7° C noradrenaline was more potent than isoprenaline. 3. Phenoxybenzamine (1·5 × 10-5M) or dibenamine (1·5 × 10-5M) at 7° C abolished the work output induced by adrenaline. When the temperature was raised to 24° C, adrenaline caused an increase in work output. 4. It is concluded that in the isolated frog heart there are at least two pools of adrenoceptors, the availability of which can be governed by temperature. PMID:5417862

  12. Identification of gene co-regulatory modules and associated cis-elements involved in degenerative heart disease

    PubMed Central

    2009-01-01

    Background Cardiomyopathies, degenerative diseases of cardiac muscle, are among the leading causes of death in the developed world. Microarray studies of cardiomyopathies have identified up to several hundred genes that significantly alter their expression patterns as the disease progresses. However, the regulatory mechanisms driving these changes, in particular the networks of transcription factors involved, remain poorly understood. Our goals are (A) to identify modules of co-regulated genes that undergo similar changes in expression in various types of cardiomyopathies, and (B) to reveal the specific pattern of transcription factor binding sites, cis-elements, in the proximal promoter region of genes comprising such modules. Methods We analyzed 149 microarray samples from human hypertrophic and dilated cardiomyopathies of various etiologies. Hierarchical clustering and Gene Ontology annotations were applied to identify modules enriched in genes with highly correlated expression and a similar physiological function. To discover motifs that may underly changes in expression, we used the promoter regions for genes in three of the most interesting modules as input to motif discovery algorithms. The resulting motifs were used to construct a probabilistic model predictive of changes in expression across different cardiomyopathies. Results We found that three modules with the highest degree of functional enrichment contain genes involved in myocardial contraction (n = 9), energy generation (n = 20), or protein translation (n = 20). Using motif discovery tools revealed that genes in the contractile module were found to contain a TATA-box followed by a CACC-box, and are depleted in other GC-rich motifs; whereas genes in the translation module contain a pyrimidine-rich initiator, Elk-1, SP-1, and a novel motif with a GCGC core. Using a naïve Bayes classifier revealed that patterns of motifs are statistically predictive of expression patterns, with odds ratios of 2

  13. Radiation-induced skin carcinomas of the head and neck

    SciTech Connect

    Ron, E.; Modan, B.; Preston, D.; Alfandary, E.; Stovall, M.; Boice, J.D. Jr. )

    1991-03-01

    Radiation exposures to the scalp during childhood for tinea capitis were associated with a fourfold increase in skin cancer, primarily basal cell carcinomas, and a threefold increase in benign skin tumors. Malignant melanoma, however, was not significantly elevated. Overall, 80 neoplasms were identified from an extensive search of the pathology logs of all major hospitals in Israel and computer linkage with the national cancer registry. Radiation dose to the scalp was computed for over 10,000 persons irradiated for ringworm (mean 7 Gy), and incidence rates were contrasted with those observed in 16,000 matched comparison subjects. The relative risk of radiogenic skin cancer did not differ significantly between men or women or by time since exposure; however, risk was greatest following exposures in early childhood. After adjusting for sex, ethnic origin, and attained age, the estimated excess relative risk was 0.7 per Gy and the average excess risk over the current follow-up was 0.31/10(4) PY-Gy. The risk per Gy of radiation-induced skin cancer was intermediate between the high risk found among whites and no risk found among blacks in a similar study conducted in New York City. This finding suggests the role that subsequent exposure to uv radiation likely plays in the expression of a potential radiation-induced skin malignancy.

  14. Nature of radiation-induced defects in quartz

    SciTech Connect

    Wang, Bu; Yu, Yingtian; Bauchy, Mathieu; Pignatelli, Isabella; Sant, Gaurav

    2015-07-14

    Although quartz (α-form) is a mineral used in numerous applications wherein radiation exposure is an issue, the nature of the atomistic defects formed during radiation-induced damage has not been fully clarified. Especially, the extent of oxygen vacancy formation is still debated, which is an issue of primary importance as optical techniques based on charged oxygen vacancies have been utilized to assess the level of radiation damage in quartz. In this paper, molecular dynamics simulations are applied to study the effects of ballistic impacts on the atomic network of quartz. We show that the defects that are formed mainly consist of over-coordinated Si and O, as well as Si–O connectivity defects, e.g., small Si–O rings and edge-sharing Si tetrahedra. Oxygen vacancies, on the contrary, are found in relatively low abundance, suggesting that characterizations based on E′ centers do not adequately capture radiation-induced structural damage in quartz. Finally, we evaluate the dependence on the incident energy, of the amount of each type of the point defects formed, and quantify unambiguously the threshold displacement energies for both O and Si atoms. These results provide a comprehensive basis to assess the nature and extent of radiation damage in quartz.

  15. Inhibition of radiation-induced polyuria by histamine receptor antagonists

    SciTech Connect

    Donlon, M.A.; Melia, J.A.; Helgeson, E.A.; Wolfe, W.W.

    1986-03-01

    In previous studies the authors have demonstrated that gamma radiation results in polyuria, which is preceded by polydypsia. This suggests that the increased thirst elicited by radiation causes increased urinary volume (UV). Histamine, which is released following radiation exposure, also elicits drinking by nonirradiated rats when administered exogenously. In this study the authors have investigated both the role of water deprivation and the effect of histamine receptor antagonists (HRA) on radiation-induced polyuria. Sprague-Dawley rats were housed individually in metabolic cages. Water was allowed ad libitum except in deprivation experiments where water was removed for 24 hr immediately following radiation. Cimetidine (CIM), an H2 HRA, and dexbromopheniramine (DXB), an H1 HRA, were administered i.p. (16 and 1 mg/kg, respectively) 30 min prior to irradiation (950 rads from a cobalt source). UV was determined at 24-hr intervals for 3 days preceding irradiation and 24 hr postirradiation. UV in DXB treated rats was significantly reduced 24 hr postirradiation (CON = 427 +/- 54%; DXB = 247 +/- 39% of preirradiated CON) compared to postirradiation control values. CIM did not affect postirradiation UV. These data suggest that radiation-induced polyuria is caused by polydypsia which is, in part, mediated by histamine induced by an H1 receptor.

  16. The thermal stability of radiation-induced defects in illite

    NASA Astrophysics Data System (ADS)

    Riegler, T.; Allard, T.; Beaufort, D.; Cantin, J.-L.; von Bardeleben, H. J.

    2016-01-01

    High-purity illite specimens from the Mesoproterozoic unconformity-related uranium deposits of Kiggavik, Thelon basin, Nunavut (Canada), and Shea Creek (Athabasca basin, Saskatchewan, Canada) have been studied using electron paramagnetic resonance spectroscopy to determine the thermal stability of the main radiation-induced defects and question the potential of using illite as a natural dosimeter. The observed spectra are complex as they can show in the same region several contributions: (1) an unstable native defect, (2) the main stable defect named Ai by reference to a previous study (Morichon et al. in Phys Chem Minerals 35:339-346, 2008), (3) a signal at g = 2.063 assigned to a new defect, not yet fully characterized, named Ai2 center and (4) impurities such as vanadyl complex or divalent manganese. Isochronal heating shows that the new signal corresponds to a stable species. Isothermal heating experiments at 400 and 450 °C provide values of half-life extrapolated at room temperature and activation energy of 1.9-29,109 years and 1.3-1.4 eV, respectively, corresponding to the Ai center. These parameters allow the use of stable radiation-induced defects as a record of radioactivity down to the Paleoproterozoic period.

  17. Radiation-induced dural fibrosarcoma with unusually short latent period

    SciTech Connect

    Ghatak, N.R.; Aydin, F.; Leshner, R.T. Tulane Univ., New Orleans, LA )

    1993-05-01

    Although rare, the occurrence of radiation-induced intracranial neoplasms of various types is well known. Among these tumors, fibrosarcomas, especially in the region of seila turcica, seem to be the most common type. These tumors characteristically occur after a long latent period, usually several years, following radiation therapy. The authors now report a case of apparently radiation-induced fibrosarcoma with some unusual features in a 10-year-old boy who was treated with radiation for medulloblastoma. He received a total dose of 53.2 Gy radiation delivered at 1.8 per fraction with 6 MV acceleration using the standard craniospinal technique. An MRI at 15 months after the completion of radiotherapy showed a mass over the cerebral convexity, which increased two-fold in size within a period of 4 months. A well circumscribed tumor was removed from the fronto-parietal convexity. The tumor measured 5x4.5x1.5 cm and was attached to the dura with invasion of the overlying bone. Histologically, it displayed the characteristic features of a low-grade fibrosarcoma. The patient remains free of tumor 18 months after the surgery. This case emphasizes the potential risk for the development of a second neoplasm following therapeutic radiation and also documents, to the authors' knowledge, the shortest latent period reported so far between administration of radiotherapy and development of an intracranial tumor.

  18. Radiation-induced recurrent intestinal pseudo-obstruction

    SciTech Connect

    Conklin, J.L.; Anuras, S.

    1981-06-01

    The syndrome of intestinal pseudo-obstruction is a complex of signs and symptoms of intestinal obstruction without evidence of mechanical obstruction of the intestinal lumen. A patient with radiation-induced intestinal pseudoobstruction is described. The patient is a 74-year old woman with a history of chronic diarrhea, recurrent episodes of crampy abdominal pain, nausea and vomiting since receiving a 13,000 rad radiation dose to the pelvis in 1954. She has been hospitalized on many occasions for symptoms and signs of bowel obstruction. Upper gastrointestinal contrast roentgenograms with small bowel follow-through done during these episodes revealed multiple dilated loops of small bowel with no obstructing lesion. Barium enemas revealed no obstructing lesion. Each episode resolved with conservative therapy. Other secondary causes for intestinal pseudo-obstruction were ruled out in our patient. She gave no history of familial gastrointestinal disorders. Although postirradiation motility abnormalities have been demonstrated experimentally this is the first report of radiation induced intestinal pseudo-obstruction.

  19. Sensitivity to Radiation-Induced Cancer in Hemochromatosis

    SciTech Connect

    Bull. Richard J.; Anderson, Larry E.

    2000-06-01

    The objectives of this pilot project using HFE-knockout homozygotes and heterozygotes are to (1) determine whether the knock-out mice have greater sensitivity to radiation-induced cancer of the colon, liver and breast, (2) establish the dependence of this sensitivity on the accumulation of iron, (3) determine the extent to which cell replication and apoptosis occur in these target tissues with varying iron load, and (4) correlate the increases in sensitivity with changes in insulin-related signaling in tumors and normal tissue from each target organ. Three experimental designs will be used in the pilot project. The sequence of experiments is designed to first explore the influence of iron load on the response and demonstrate that HFE knockout mice are more sensitive than the wild type to radiation-induced cancer in one or more of three target tissues (liver, colon and breast). The dose response relationships with a broader set of radiation doses will be explored in the second experiment. The final experiment is designed to explore the extent to which heterozygotes display the increased susceptibility to cancer induction and to independently assess the importance of iron load to the initiation versus promotion of tumors.

  20. Radiation-induced genomic instability in Caenorhabditis elegans.

    PubMed

    Huumonen, Katriina; Immonen, Hanna-Kaisa; Baverstock, Keith; Hiltunen, Mikko; Korkalainen, Merja; Lahtinen, Tapani; Parviainen, Juha; Viluksela, Matti; Wong, Garry; Naarala, Jonne; Juutilainen, Jukka

    2012-10-09

    Radiation-induced genomic instability has been well documented, particularly in vitro. However, the understanding of its mechanisms and their consequences in vivo is still limited. In this study, Caenorhabditis elegans (C. elegans; strain CB665) nematodes were exposed to X-rays at doses of 0.1, 1, 3 or 10Gy. The endpoints were measured several generations after exposure and included mutations in the movement-related gene unc-58, alterations in gene expression analysed with oligoarrays containing the entire C. elegans genome, and micro-satellite mutations measured by capillary electrophoresis. The progeny of the irradiated nematodes showed an increased mutation frequency in the unc-58 gene, with a maximum response observed at 1Gy. Significant differences were also found in gene expression between the irradiated (1Gy) and non-irradiated nematode lines. Differences in gene expression did not show clear clustering into certain gene categories, suggesting that the instability might be a chaotic process rather than a result of changes in the function of few specific genes such as, e.g., those responsible for DNA repair. Increased heterogeneity in gene expression, which has previously been described in irradiated cultured human lymphocytes, was also observed in the present study in C. elegans, the coefficient of variation of gene expression being higher in the progeny of irradiated nematodes than in control nematodes. To the best of our knowledge, this is the first publication reporting radiation-induced genomic instability in C. elegans.

  1. DNA damage in cells exhibiting radiation-induced genomic instability

    DOE PAGES

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less

  2. DNA damage in cells exhibiting radiation-induced genomic instability

    SciTech Connect

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesis that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.

  3. [Radiation-induced genomic instability: phenomenon, molecular mechanisms, pathogenetic significance].

    PubMed

    Mazurik, V K; Mikhaĭlov, V F

    2001-01-01

    The recent data on the radiation-induced genome instability as a special state of progeny of cells irradiated in vitro as well as after a whole body exposure to ionizing radiation, that make these cells considerably different from normal, unirradiated cells, were considered. This state presents a number of cytogenetical, molecular-biological, cytological and biochemical manifestations untypical for normal cells. The state is controlled by the mechanisms of regulation of checkpoints of cell cycle, and apoptosis, that is under gene p53 control. The proof has been found that this state transfers from irradiated maternal cells to their surviving progeny by the epigenetical mechanisms and would exist until the cells restore the original state of response on the DNA damage. From the point of view of the genome instability conception, that considers the chromatine rearrangement as the adaptive-evolution mechanism of adaptation of the species to changeable environmental conditions, the radiation-induced genome instability may be considered as transition of irradiated progeny to the state of read these to adaptation changes with two alternative pathways. The first leads to adaptation to enviromental conditions and restoring of normal cell functions. The second presents the cell transition into the transformed state with remain genome instability and with increase of tumour growth probability.

  4. Structure and function of cardiac troponin C (TNNC1): Implications for heart failure, cardiomyopathies, and troponin modulating drugs.

    PubMed

    Li, Monica X; Hwang, Peter M

    2015-10-25

    In striated muscle, the protein troponin complex turns contraction on and off in a calcium-dependent manner. The calcium-sensing component of the complex is troponin C, which is expressed from the TNNC1 gene in both cardiac muscle and slow-twitch skeletal muscle (identical transcript in both tissues) and the TNNC2 gene in fast-twitch skeletal muscle. Cardiac troponin C (cTnC) is made up of two globular EF-hand domains connected by a flexible linker. The structural C-domain (cCTnC) contains two high affinity calcium-binding sites that are always occupied by Ca(2+) or Mg(2+) under physiologic conditions, stabilizing an open conformation that remains anchored to the rest of the troponin complex. In contrast, the regulatory N-domain (cNTnC) contains a single low affinity site that is largely unoccupied at resting calcium concentrations. During muscle activation, calcium binding to cNTnC favors an open conformation that binds to the switch region of troponin I, removing adjacent inhibitory regions of troponin I from actin and allowing muscle contraction to proceed. Regulation of the calcium binding affinity of cNTnC is physiologically important, because it directly impacts the calcium sensitivity of muscle contraction. Calcium sensitivity can be modified by drugs that stabilize the open form of cNTnC, post-translational modifications like phosphorylation of troponin I, or downstream thin filament protein interactions that impact the availability of the troponin I switch region. Recently, mutations in cTnC have been associated with hypertrophic or dilated cardiomyopathy. A detailed understanding of how calcium sensitivity is regulated through the troponin complex is necessary for explaining how mutations perturb its function to promote cardiomyopathy and how post-translational modifications in the thin filament affect heart function and heart failure. Troponin modulating drugs are being developed for the treatment of cardiomyopathies and heart failure.

  5. Structure and Function of Cardiac Troponin C (TNNC1): Implications for Heart Failure, Cardiomyopathies, and Troponin Modulating Drugs

    PubMed Central

    Li, Monica X.; Hwang, Peter M.

    2015-01-01

    In striated muscle, the protein troponin complex turns contraction on and off in a calcium-dependent manner. The calcium-sensing component of the complex is troponin C, which is expressed from the TNNC1 gene in both cardiac muscle and slow-twitch skeletal muscle (identical transcript in both tissues) and the TNNC2 gene in fast-twitch skeletal muscle. Cardiac troponin C (cTnC) is made up of two globular EF-hand domains connected by a flexible linker. The structural C-domain (cCTnC) contains two high affinity calcium-binding sites that are always occupied by Ca2+ or Mg2+ under physiologic conditions, stabilizing an open conformation that remains anchored to the rest of the troponin complex. In contrast, the regulatory N-domain (cNTnC) contains a single low affinity site that is largely unoccupied at resting calcium concentrations. During muscle activation, calcium binding to cNTnC favors an open conformation that binds to the switch region of troponin I, removing adjacent inhibitory regions of troponin I from actin and allowing muscle contraction to proceed. Regulation of the calcium binding affinity of cNTnC is physiologically important, because it directly impacts the calcium sensitivity of muscle contraction. Calcium sensitivity can be modified by drugs that stabilize the open form of cNTnC, post-translational modifications like phosphorylation of troponin I, or downstream thin filament protein interactions that impact the availability of the troponin I switch region. Recently, mutations in cTnC have been associated with hypertrophic or dilated cardiomyopathy. A detailed understanding of how calcium sensitivity is regulated through the troponin complex is necessary for explaining how mutations perturb its function to promote cardiomyopathy and how post-translational modifications in the thin filament affect heart function and heart failure. Troponin modulating drugs are being developed for the treatment of cardiomyopathies and heart failure. PMID:26232335

  6. Immune Modulation of Cardiac Repair and Regeneration: The Art of Mending Broken Hearts

    PubMed Central

    Zlatanova, Ivana; Pinto, Cristina; Silvestre, Jean-Sébastien

    2016-01-01

    The accumulation of immune cells is among the earliest responses that manifest in the cardiac tissue after injury. Both innate and adaptive immunity coordinate distinct and mutually non-exclusive events governing cardiac repair, including elimination of the cellular debris, compensatory growth of the remaining cardiac tissue, activation of resident or circulating precursor cells, quantitative and qualitative modifications of the vascular network, and formation of a fibrotic scar. The present review summarizes the mounting evidence suggesting that the inflammatory response also guides the regenerative process following cardiac damage. In particular, recent literature has reinforced the central role of monocytes/macrophages in poising the refreshment of cardiomyocytes in myocardial infarction- or apical resection-induced cardiac insult. Macrophages dictate cardiac myocyte renewal through stimulation of preexisting cardiomyocyte proliferation and/or neovascularization. Nevertheless, substantial efforts are required to identify the nature of these macrophage-derived factors as well as the molecular mechanisms engendered by the distinct subsets of macrophages pertaining in the cardiac tissue. Among the growing inflammatory intermediaries that have been recognized as essential player in heart regeneration, we will focus on the role of interleukin (IL)-6 and IL-13. Finally, it is likely that within the mayhem of the injured cardiac tissue, additional types of inflammatory cells, such as neutrophils, will enter the dance to ignite and refresh the broken heart. However, the protective and detrimental inflammatory pathways have been mainly deciphered in animal models. Future research should be focused on understanding the cellular effectors and molecular signals regulating inflammation in human heart to pave the way for the development of factual therapies targeting the inflammatory compartment in cardiac diseases. PMID:27790620

  7. Contribution of radiation-induced, nitric oxide-mediated bystander effect to radiation-induced adaptive response.

    NASA Astrophysics Data System (ADS)

    Matsumoto, H.; Ohnishi, T.

    There has been a recent upsurge of interest in radiation-induced adaptive response and bystander effect which are specific modes in stress response to low-dose low-dose rate radiation Recently we found that the accumulation of inducible nitric oxide NO synthase iNOS in wt p53 cells was induced by chronic irradiation with gamma rays followed by acute irradiation with X-rays but not by each one resulting in an increase in nitrite concentrations of medium It is suggested that the accumulation of iNOS may be due to the depression of acute irradiation-induced p53 functions by pre-chronic irradiation In addition we found that the radiosensitivity of wt p53 cells against acute irradiation with X-rays was reduced after chronic irradiation with gamma rays This reduction of radiosensitivity of wt p53 cells was nearly completely suppressed by the addition of NO scavenger carboxy-PTIO to the medium This reduction of radiosensitivity of wt p53 cells is just radiation-induced adaptive response suggesting that NO-mediated bystander effect may considerably contribute to adaptive response induced by radiation

  8. Radiation induced genome instability: multiscale modelling and data analysis

    NASA Astrophysics Data System (ADS)

    Andreev, Sergey; Eidelman, Yuri

    2012-07-01

    Genome instability (GI) is thought to be an important step in cancer induction and progression. Radiation induced GI is usually defined as genome alterations in the progeny of irradiated cells. The aim of this report is to demonstrate an opportunity for integrative analysis of radiation induced GI on the basis of multiscale modelling. Integrative, systems level modelling is necessary to assess different pathways resulting in GI in which a variety of genetic and epigenetic processes are involved. The multilevel modelling includes the Monte Carlo based simulation of several key processes involved in GI: DNA double strand breaks (DSBs) generation in cells initially irradiated as well as in descendants of irradiated cells, damage transmission through mitosis. Taking the cell-cycle-dependent generation of DNA/chromosome breakage into account ensures an advantage in estimating the contribution of different DNA damage response pathways to GI, as to nonhomologous vs homologous recombination repair mechanisms, the role of DSBs at telomeres or interstitial chromosomal sites, etc. The preliminary estimates show that both telomeric and non-telomeric DSB interactions are involved in delayed effects of radiation although differentially for different cell types. The computational experiments provide the data on the wide spectrum of GI endpoints (dicentrics, micronuclei, nonclonal translocations, chromatid exchanges, chromosome fragments) similar to those obtained experimentally for various cell lines under various experimental conditions. The modelling based analysis of experimental data demonstrates that radiation induced GI may be viewed as processes of delayed DSB induction/interaction/transmission being a key for quantification of GI. On the other hand, this conclusion is not sufficient to understand GI as a whole because factors of DNA non-damaging origin can also induce GI. Additionally, new data on induced pluripotent stem cells reveal that GI is acquired in normal mature

  9. Radiation-induced lichen sclerosus of the vulva : First report in the medical literature.

    PubMed

    Edwards, Lisa R; Privette, Emily D; Patterson, James W; Tchernev, Georgi; Chokoeva, Anastasiya Atanasova; Wollina, Uwe; Lotti, Torello; Wilson, Barbara B

    2017-03-01

    A 67-year-old woman presented with a firm plaque in the perineal region, 16 months after diagnosis of a high-grade basaloid squamous cell carcinoma of the vagina and treatment by external beam radiation therapy and vaginal cuff brachytherapy. The differential diagnosis included radiation-induced morphea, radiation dermatitis, or, possibly, radiation-induced lichen sclerosus. Biopsy findings, including special staining, confirmed the diagnosis of radiation-induced lichen sclerosus. To our knowledge, this is the first report of radiation-induced lichen sclerosus of the vulvar region.

  10. Can geometric indices of heart rate variability predict improvement in autonomic modulation after resistance training in chronic obstructive pulmonary disease?

    PubMed

    Santos, Ana Alice Soares Dos; Ricci-Vitor, Ana Laura; Bragatto, Vanessa Santa Rosa; Santos, Ana Paula Soares Dos; Ramos, Ercy Mara Cipulo; Vanderlei, Luiz Carlos Marques

    2017-03-01

    Chronic obstructive pulmonary disease (COPD) is associated with autonomic dysfunctions that can be evaluated through heart rate variability (HRV). Resistance training promotes improvement in autonomic modulation; however, studies that evaluate this scenario using geometric indices, which include nonlinear evaluation, thus providing more accurate information for physiological interpretation of HRV, are unknown. This study aimed to investigate the influence of resistance training on autonomic modulation, using geometric indices of HRV, and peripheral muscle strength in individuals with COPD. Fourteen volunteers with COPD were submitted to resistance training consisting of 24 sessions lasting 60 min each, with a frequency of three times a week. The intensity was determined as 60% of one maximum repetition and was progressively increased until 80% for the upper and lower limbs. The HRV and dynamometry were performed at two moments, the beginning and the end of the experimental protocol. Significant increases were observed in the RRtri (4·81 ± 1·60 versus 6·55 ± 2·69, P = 0·033), TINN (65·36 ± 35·49 versus 101·07 ± 63·34, P = 0·028), SD1 (7·48 ± 3·17 versus 11·04 ± 6·45, P = 0·038) and SD2 (22·30 ± 8·56 versus 32·92 ± 18·78, P = 0·022) indices after the resistance training. Visual analysis of the Poincare plot demonstrated greater dispersion beat-to-beat and in the long-term interval between consecutive heart beats. Regarding muscle strength, there was a significant increase in the shoulder abduction and knee flexion. In conclusion, geometric indices of HRV can predict improvement in autonomic modulation after resistance training in individuals with COPD; improvement in peripheral muscle strength in patients with COPD was also observed.

  11. Cell Therapy in Ischemic Heart Disease: Interventions That Modulate Cardiac Regeneration

    PubMed Central

    Schaun, Maximiliano I.; Eibel, Bruna; Kristocheck, Melissa; Sausen, Grasiele; Machado, Luana; Koche, Andreia; Markoski, Melissa M.

    2016-01-01

    The incidence of severe ischemic heart disease caused by coronary obstruction has progressively increased. Alternative forms of treatment have been studied in an attempt to regenerate myocardial tissue, induce angiogenesis, and improve clinical conditions. In this context, cell therapy has emerged as a promising alternative using cells with regenerative potential, focusing on the release of paracrine and autocrine factors that contribute to cell survival, angiogenesis, and tissue remodeling. Evidence of the safety, feasibility, and potential effectiveness of cell therapy has emerged from several clinical trials using different lineages of adult stem cells. The clinical benefit, however, is not yet well established. In this review, we discuss the therapeutic potential of cell therapy in terms of regenerative and angiogenic capacity after myocardial ischemia. In addition, we addressed nonpharmacological interventions that may influence this therapeutic practice, such as diet and physical training. This review brings together current data on pharmacological and nonpharmacological approaches to improve cell homing and cardiac repair. PMID:26880938

  12. Anatomic Localization and Autonomic Modulation of AV Junctional Rhythm in Failing Human Hearts

    PubMed Central

    Fedorov, Vadim V.; Ambrosi, Christina M.; Kostecki, Geran; Hucker, William J.; Glukhov, Alexey V.; Wuskell, Joseph P.; Loew, Leslie M.; Moazami, Nader; Efimov, Igor R.

    2011-01-01

    Background The structure-function relationship in the atrioventricular junction (AVJ) of various animal species has been investigated in detail, however less is known about the human AVJ. In this study, we performed high-resolution optical mapping of the human AVJ (n=6) to define its pacemaker properties and response to autonomic stimulation. Methods and Results Isolated, coronary-perfused AVJ preparations from failing human hearts (n=6, 53±6 years) were optically mapped using the near-infrared, voltage-sensitive dye, di-4-ANBDQBS, with isoproterenol (Iso, 1 μM) and acetylcholine (ACh, 1μM). An algorithm detecting multiple components of optical action potentials was used to reconstruct multi-layered intramural AVJ activation and to identify specialized slow and fast conduction pathways (SP and FP). The anatomical origin and propagation of pacemaker activity was verified via histology. Spontaneous AVJ rhythms of 29±11 bpm (n=6) originated in the nodal-His region (NH, n=3) and/or the proximal His bundle (H, n=4). Iso accelerated the AVJ rhythm to 69±12 bpm (n=5); shifted the leading pacemaker to the transitional cell (TC) regions near the FP and SP (n=4) and/or coronary sinus (n=2); and triggered reentrant arrhythmias (n=2). ACh (n=4) decreased the AVJ rhythm to 18±4 bpm; slowed FP/SP conduction leading to block between the AVJ and atrium; and shifted the pacemaker to either the TC or TC/NH (bifocal activation). Conclusions We have demonstrated that the AVJ pacemaker in failing human hearts is located in the NH or H-regions and can be modified with autonomic stimulation. Moreover, we found that both the FP and SP are involved in anterograde and retrograde conduction. PMID:21646375

  13. Radiation-induced bystander effect: early process and rapid assessment.

    PubMed

    Wang, Hongzhi; Yu, K N; Hou, Jue; Liu, Qian; Han, Wei

    2015-01-01

    Radiation-induced bystander effect (RIBE) is a biological process that has received attention over the past two decades. RIBE refers to a plethora of biological effects in non-irradiated cells, including induction of genetic damages, gene expression, cell transformation, proliferation and cell death, which are initiated by receiving bystander signals released from irradiated cells. RIBE brings potential hazards to normal tissues in radiotherapy, and imparts a higher risk from low-dose radiation than we previously thought. Detection with proteins related to DNA damage and repair, cell cycle control, proliferation, etc. have enabled rapid assessment of RIBE in a number of research systems such as cultured cells, three-dimensional tissue models and animal models. Accumulated experimental data have suggested that RIBE may be initiated rapidly within a time frame as short as several minutes after radiation. These have led to the requirement of techniques capable of rapidly assessing RIBE itself as well as assessing the early processes involved.

  14. The Dose Window for Radiation-Induced Protective Adaptive Responses

    PubMed Central

    Mitchel, Ronald E. J.

    2009-01-01

    Adaptive responses to low doses of low LET radiation occur in all organisms thus far examined, from single cell lower eukaryotes to mammals. These responses reduce the deleterious consequences of DNA damaging events, including radiation-induced or spontaneous cancer and non-cancer diseases in mice. The adaptive response in mammalian cells and mammals operates within a certain window that can be defined by upper and lower dose thresholds, typically between about 1 and 100 mGy for a single low dose rate exposure. However, these thresholds for protection are not a fixed function of total dose, but also vary with dose rate, additional radiation or non-radiation stressors, tissue type and p53 functional status. Exposures above the upper threshold are generally detrimental, while exposures below the lower threshold may or may not increase either cancer or non-cancer disease risk. PMID:20585438

  15. Calculation of radiation-induced creep and stress relaxation

    NASA Astrophysics Data System (ADS)

    Nagakawa, Johsei

    1995-08-01

    Numerical calculation based on a computer simulation of point defect kinetics under stress was performed to predict radiation-induced deformation in an Inconel X-750 bolt in a LWR core and for a 316 stainless steel blanket in experimental fusion reactors with the water-coolant scenario. Although the displacement rate is rather low, modest irradiation creep with nearly linear stress dependence was predicted below 200 MPa at 300°C in the LWR core. This low stress dependence causes significant stress relaxation, which coincides with the experimental data to 2 dpa. An almost equal amount of enhanced irradiation creep strain was predicted at 60°C in both solution annealed and cold worker 316 stainless steel in the water-cooled blanket. The stress relaxation is practically not expected without irradiation in both the cases, but the calculation predicts that it is definitely expected under irradiation.

  16. Measurements of prompt radiation induced conductivity of alumina and sapphire

    SciTech Connect

    Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.; Preston, Eric F.

    2011-04-01

    We performed measurements of the prompt radiation induced conductivity in thin samples of Alumina and Sapphire at the Little Mountain Medusa LINAC facility in Ogden, UT. Five mil thick samples were irradiated with pulses of 20 MeV electrons, yielding dose rates of 1E7 to 1E9 rad/s. We applied variable potentials up to 1 kV across the samples and measured the prompt conduction current. Analysis rendered prompt conductivity coefficients between 1E10 and 1E9 mho/m/(rad/s), depending on the dose rate and the pulse width for Alumina and 1E7 to 6E7 mho/m/(rad/s) for Sapphire.

  17. Factors that modify risks of radiation-induced cancer

    SciTech Connect

    Fabrikant, J.I.

    1988-11-01

    The collective influence of biologic and physical factors that modify risks of radiation-induced cancer introduces uncertainties sufficient to deny precision of estimates of human cancer risk that can be calculated for low-dose radiation in exposed populations. The important biologic characteristics include the tissue sites and cell types, baseline cancer incidence, minimum latent period, time-to-tumor recognition, and the influence of individual host (age and sex) and competing etiologic influences. Physical factors include radiation dose, dose rate, and radiation quality. Statistical factors include time-response projection models, risk coefficients, and dose-response relationships. Other modifying factors include other carcinogens, and other biological sources (hormonal status, immune status, hereditary factors).

  18. Invertase immobilization onto radiation-induced graft copolymerized polyethylene pellets

    NASA Astrophysics Data System (ADS)

    de Queiroz, Alvaro Antonio Alencar; Vitolo, Michele; de Oliveira, Rômulo Cesar; Higa, Olga Zazuco

    1996-06-01

    The graft copolymer poly(ethylene-g-acrylic acid) (LDPE-g-AA) was prepared by radiation-induced graft copolymerization of acrylic acid onto low density polyethylene (LDPE) pellets, and characterized by infrared photoacoustic spectroscopy and scanning electron microscopy (SEM). The presence of the grafted poly(acrylic acid) (PAA) was established. Invertase was immobilized onto the graft polymer and the thermodynamic parameters of the soluble and immobilized enzyme were determined. The Michaelis constant, Km, and the maximum reaction velocity, Vmax, were determined for the free and the immobilized invertase. The Michaelis constant, Km was larger for the immobilized invertase than for the free enzyme, whereas Vmax was smaller for the immobilized invertase. The thermal stability of the immobilized invertase was higher than that of the free enzyme.

  19. Radiation-induced polymerization for the immobilization of penicillin acylase

    SciTech Connect

    Boccu, E.; Carenza, M.; Lora, S.; Palma, G.; Veronese, F.M.

    1987-06-01

    The immobilization of Escherichia coli penicillin acylase was investigated by radiation-induced polymerization of 2-hydroxyethyl methacrylate at low temperature. A leak-proof composite that does not swell in water was obtained by adding the cross-linking agent trimethylolpropane trimethacrylate to the monomer-aqueous enzyme mixture. Penicillin acylase, which was immobilized with greater than 70% yield, possessed a higher Km value toward the substrate 6-nitro-3-phenylacetamidobenzoic acid than the free enzyme form (Km = 1.7 X 10(-5) and 1 X 10(-5) M, respectively). The structural stability of immobilized penicillin acylase, as assessed by heat, guanidinium chloride, and pH denaturation profiles, was very similar to that of the free-enzyme form, thus suggesting that penicillin acylase was entrapped in its native state into aqueous free spaces of the polymer matrix.

  20. Radiation-induced degradation of 4-chloroaniline in aqueous solution

    NASA Astrophysics Data System (ADS)

    Sánchez, M.; Wolfger, H.; Getoff, N.

    2002-12-01

    The radiation-induced decomposition of 4-chloroaniline (4-ClA) was studied under steady-state conditions using aqueous solutions saturated with air, pure oxygen, N 2O, argon and argon in the presence of t-Butanol. Using HPLC-method, the initial G-values of the substrate degradation as well as of a number of radiolytic products were determined. The formation of aminophenols, chlorophenols, aniline and phenol in addition to chloride, ammonia, formaldehyde and mixture of aldehydes as well as carboxylic acids was studied as a function of absorbed dose. Based on the experimental data, probable reaction mechanisms for the degradation of 4-ClA by γ-rays and the formation of the identified products are presented.

  1. Pulsed radiation-induced attenuation in certain optical fibers

    SciTech Connect

    Weiss, J.D. )

    1992-05-01

    Using the X-ray pulse from the HERMES II simulation machine at Sandia National Laboratories, the pulsed radiation-induced attenuation was measured in two optical fibers considered to be 'nonrad-hard': the 50-micron-core, graded-index fiber from Corning and the plastic (PMMA) fiber from the Mitsubishi Rayon Company. These fibers were exposed to radiation up to doses of 19.5 and 28 krad(Si), respectively. In addition, fits of their post-radiation recovery were made to the geminate recombination model, from which the recombination-rate and generation constants, characteristic of this theory, were determined. These parameters should be useful in determining the response of the fibers to radiation conditions other than those encountered here. 18 refs.

  2. Modification of microcrystalline cellulose by gamma radiation-induced grafting

    NASA Astrophysics Data System (ADS)

    Madrid, Jordan F.; Abad, Lucille V.

    2015-10-01

    Modified microcrystalline cellulose (MCC) was prepared through gamma radiation-induced graft polymerization of glycidyl methacrylate (GMA). Simultaneous grafting was employed wherein MCC with GMA in methanol was irradiated with gamma radiation in nitrogen atmosphere. The effects of different experimental factors such as monomer concentration, type of solvent and absorbed dose on the degree of grafting, Dg, were studied. The amount of grafted GMA, expressed as Dg, was determined gravimetrically. Information from grafted samples subjected to Fourier transformed infrared spectroscopy (FTIR) in attenuated total reflectance (ATR) mode showed peaks corresponding to GMA which indicates successful grafting. The X-ray diffraction (XRD) analysis revealed that the crystalline region of MCC was not adversely affected after grafting with GMA. The thermogravimetric analysis (TGA) data showed that the decomposition of grafted MCC occurred at higher temperature compared to the base MCC polymer.

  3. Radiation-induced cerebral meningioma: a recognizable entity.

    PubMed

    Rubinstein, A B; Shalit, M N; Cohen, M L; Zandbank, U; Reichenthal, E

    1984-11-01

    The authors retrospectively analyzed the clinical and histopathological findings in 201 patients with intracranial meningiomas operated on in the period 1978 to 1982. Forty-three of the patients (21.4%) had at some previous time received radiation treatment to their scalp, the majority for tinea capitis. The findings in these 43 irradiated patients were compared with those in the 158 non-irradiated patients. Several distinctive clinical and histological features were identified in the irradiated group, which suggest that radiation-induced meningiomas can be defined as a separate nosological subgroup. The use of irradiation in large numbers of children with tinea capitis in the era prior to the availability of griseofulvin may be responsible for a significantly increased incidence of intracranial meningiomas.

  4. Study of radiation induced cancers in a breast screening programme.

    PubMed

    León, A; Verdú, G; Cuevas, M D; Salas, M D; Villaescusa, J I; Bueno, F

    2001-01-01

    It is demonstrated that screening mammography programmes reduce breast cancer mortality considerably. Nevertheless, radiology techniques have an intrinsic risk, the most important being the late somatic effect of the induction of cancer. This study was carried out in order to evaluate the risk to the population produced by the Comunidad Valenciana Breast Screening Programme. All the calculations are carried out for two risk models, UNSCEAR 94 and NRPB 93. On the one hand, screening series detriments are investigated as a function of doses delivered and other parameters related to population structure and X ray equipment. On the other hand the radiation induced cancer probability for a woman who starts at 45 years and remains in the programme until 65 years old is calculated as a function of mammography units' doses and average compression breast thickness. Finally, risk comparison between a screening programme starting at 45 years old and another one starting at 50 years old is made.

  5. Radiation-induced cationic polymerization of. beta. -pinene

    SciTech Connect

    Adur, A.M.; Williams, F.

    1981-03-01

    The radiation-induced polymerization of ..beta..-pinene carried out in bulk at ca.25/sup 0/ has been studied for different methods of monomer drying. It has been confirmed that the polymerization is sensitive to adventitious moisture and that substantial polymer yields (ca. 10% conversion per Mrad) can only be obtained under extremely dry conditions. Complete inhibition of the reaction by added tripropylamine corroborates the view that the polymerization is cationic. About half of the polymer formed is insoluble in the monomer. The number-average molecular weights for the soluble poly(..beta..-pinene) fraction have been measured by vapor pressure osmometry and are in the narrow range from 1700 to 2400 with little or no dependence on the degree of monomer conversion to polymer, at least up to 80%. The results are compared with literature reports on the polymerization of ..beta..-pinene by catalytic initiators.

  6. Radiation Induced Cystitis and Proctitis - Prediction, Assessment and Management.

    PubMed

    Mallick, Supriya; Madan, Renu; Julka, Pramod K; Rath, Goura K

    2015-01-01

    Cystitis and proctitis are defined as inflammation of bladder and rectum respectively. Haemorrhagic cystitis is the most severe clinical manifestation of radiation and chemical cystitis. Radiation proctitis and cystitis are major complications following radiotherapy. Prevention of radiation-induced haemorrhagic cystitis has been investigated using various oral agents with minimal benefit. Bladder irrigation remains the most frequently adopted modality followed by intra-vesical instillation of alum or formalin. In intractable cases, surgical intervention is required in the form of diversion ureterostomy or cystectomy. Proctitis is more common in even low dose ranges but is self-limiting and improves on treatment interruption. However, treatment of radiation proctitis is broadly non-invasive or invasive. Non-invasive treatment consists of non-steroid anti-inflammatory drugs (NSAIDs), anti-oxidants, sucralfate, short chain fatty acids and hyperbaric oxygen. Invasive treatment consists of ablative procedures like formalin application, endoscopic YAG laser coagulation or argon plasma coagulation and surgery as a last resort.

  7. Probabilistic methodology for estimating radiation-induced cancer risk

    SciTech Connect

    Dunning, D.E. Jr.; Leggett, R.W.; Williams, L.R.

    1981-01-01

    The RICRAC computer code was developed at Oak Ridge National Laboratory to provide a versatile and convenient methodology for radiation risk assessment. The code allows as input essentially any dose pattern commonly encountered in risk assessments for either acute or chronic exposures, and it includes consideration of the age structure of the exposed population. Results produced by the analysis include the probability of one or more radiation-induced cancer deaths in a specified population, expected numbers of deaths, and expected years of life lost as a result of premature fatalities. These calculatons include consideration of competing risks of death from all other causes. The program also generates a probability frequency distribution of the expected number of cancers in any specified cohort resulting from a given radiation dose. The methods may be applied to any specified population and dose scenario.

  8. Radiatively induced breaking of conformal symmetry in a superpotential

    NASA Astrophysics Data System (ADS)

    Arbuzov, A. B.; Cirilo-Lombardo, D. J.

    2016-07-01

    Radiatively induced symmetry breaking is considered for a toy model with one scalar and one fermion field unified in a superfield. It is shown that the classical quartic self-interaction of the superfield possesses a quantum infrared singularity. Application of the Coleman-Weinberg mechanism for effective potential leads to the appearance of condensates and masses for both scalar and fermion components. That induces a spontaneous breaking of the initial classical symmetries: the supersymmetry and the conformal one. The energy scales for the scalar and fermion condensates appear to be of the same order, while the renormalization scale is many orders of magnitude higher. A possibility to relate the considered toy model to conformal symmetry breaking in the Standard Model is discussed.

  9. Bystander effects in radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Morgan, William F.; Hartmann, Andreas; Limoli, Charles L.; Nagar, Shruti; Ponnaiya, Brian

    2002-01-01

    Exposure of GM10115 hamster-human hybrid cells to X-rays can result in the induction of chromosomal instability in the progeny of surviving cells. This instability manifests as the dynamic production of novel sub-populations of cells with unique cytogenetic rearrangements involving the "marker" human chromosome. We have used the comet assay to investigate whether there was an elevated level of endogenous DNA breaks in chromosomally unstable clones that could provide a source for the chromosomal rearrangements and thus account for the persistent instability observed. Our results indicate no significant difference in comet tail measurement between non-irradiated and radiation-induced chromosomally unstable clones. Using two-color fluorescence in situ hybridization we also investigated whether recombinational events involving the interstitial telomere repeat-like sequences in GM10115 cells were involved at frequencies higher than random processes would otherwise predict. Nine of 11 clones demonstrated a significantly higher than expected involvement of these interstitial telomere repeat-like sequences at the recombination junction between the human and hamster chromosomes. Since elevated levels of endogenous breaks were not detected in unstable clones we propose that epigenetic or bystander effects (BSEs) lead to the activation of recombinational pathways that perpetuate the unstable phenotype. Specifically, we expand upon the hypothesis that radiation induces conditions and/or factors that stimulate the production of reactive oxygen species (ROS). These reactive intermediates then contribute to a chronic pro-oxidant environment that cycles over multiple generations, promoting chromosomal recombination and other phenotypes associated with genomic instability.

  10. Radiation-induced fibrosis: mechanisms and implications for therapy

    PubMed Central

    Straub, Jeffrey M.; New, Jacob; Hamilton, Chase D.; Lominska, Chris; Shnayder, Yelizaveta

    2015-01-01

    Purpose Radiation-induced fibrosis (RIF) is a long-term side effect of external beam radiation therapy for the treatment of cancer. It results in a multitude of symptoms that significantly impact quality of life. Understanding the mechanisms of RIF-induced changes is essential to developing effective strategies to prevent long-term disability and discomfort following radiation therapy. In this review, we describe the current understanding of the etiology, clinical presentation, pathogenesis, treatment, and directions of future therapy for this condition. Methods A literature review of publications describing mechanisms or treatments of RIF was performed. Specific databases utilized included PubMed and clinicaltrials.gov, using keywords “Radiation-Induced Fibrosis,” “Radiotherapy Complications,” “Fibrosis Therapy,” and other closely related terms. Results RIF is the result of a misguided wound healing response. In addition to causing direct DNA damage, ionizing radiation generates reactive oxygen and nitrogen species that lead to localized inflammation. This inflammatory process ultimately evolves into a fibrotic one characterized by increased collagen deposition, poor vascularity, and scarring. Tumor growth factor beta serves as the primary mediator in this response along with a host of other cytokines and growth factors. Current therapies have largely been directed toward these molecular targets and their associated signaling pathways. Conclusion Although RIF is widely prevalent among patients undergoing radiation therapy and significantly impacts quality of life, there is still much to learn about its pathogenesis and mechanisms. Current treatments have stemmed from this understanding, and it is anticipated that further elucidation will be essential for the development of more effective therapies. PMID:25910988

  11. Ion beam induced luminescence: Relevance to radiation induced bystander effects

    NASA Astrophysics Data System (ADS)

    Ahmad, S. B.; McNeill, F. E.; Byun, S. H.; Prestwich, W. V.; Seymour, C.; Mothersill, C. E.

    2012-10-01

    The aim of this work is quantify the light emitted as a result of charged particle interaction in materials which may be of relevance to radiation induced "bystander effects" studies. We have developed a system which employs single photon counting to measure the light emitted from samples irradiated under vacuum by a charged particle beam. The system uses a fast photomultiplier tube with a peak cathode response at 420 nm. It has been tested in a proof-of-principle experiment using polystyrene targets. Light output, as a result of irradiation, was measured. The luminescence yield appears to have a non-linear behavior with the incident ion fluence: it rises exponentially to an asymptotic value. The target was irradiated with beam energies varying from 1 to 2 MeV and showed saturation at or before an incident fluence rate of 3 × 1013 H+/cm2 s. The average saturation value for the photon output was found to be 40 × 106 cps. Some measurements were performed using filters to study the emission at specific wavelengths. In the case of filtered light measurements, the photon output was found to saturate at 28 × 103, 10 × 106, and 35 × 106 cps for wavelengths of 280 ± 5 nm, 320 ± 5 nm and 340 ± 5 nm respectively. The light output reaches a maximum value because of damage induced in the polymer. Our measurements indicate a "damage cross section" of the order of 10-14 cm2. The average radiant intensity was found to increase at wavelengths of 280 and 320 nm when the proton energy was increased. This was not found to occur at 340 nm. In conclusion, the light emission at specific wavelengths was found to depend upon the incident proton fluence and the proton energy. The wavelengths of the emitted light measured in this study have significance for the understanding of radiation induced bystander effects.

  12. Role of Oxidative Damage in Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Alwood, Joshua S.; Limoli, Charles L.; Globus, Ruth K.

    2014-01-01

    used an array of countermeasures (Antioxidant diets and injections) to prevent the radiation-induced bone loss, although these did not prevent bone loss, analysis is ongoing to determine if these countermeasure protected radiation-induced damage to other tissues.

  13. Radiation-induced leukemia: Comparative studies in mouse and man

    SciTech Connect

    Haas, M.

    1991-01-01

    We now have a clear understanding of the mechanism by which radiation-induced (T-cell) leukemia occurs. In irradiated mice (radiation-induced thymic leukemia) and in man (acute lymphoblastic T-cell leukemia, T-ALL) the mechanism of leukemogenesis is surprisingly similar. Expressed in the most elementary terms, T-cell leukemia occurs when T-cell differentiation is inhibited by a mutation, and pre-T cells attempt but fail to differentiate in the thymus. Instead of leaving the thymus for the periphery as functional T-cells they continue to proliferate in the thymus. The proliferating pre- (pro-) T-cells constitute the (early) acute T-cell leukemia (A-TCL). This model for the mechanism of T-cell leukemogenesis accounts for all the properties of both murine and human A-TCL. Important support for the model has recently come from work by Ilan Kirsch and others, who have shown that mutations/deletions in the genes SCL (TAL), SIL, and LCK constitute primary events in the development of T-ALL, by inhibiting differentiation of thymic pre- (pro-) T-cells. This mechanism of T-cell leukemogenesis brings several specific questions into focus: How do early A-TCL cells progress to become potently tumorigenic and poorly treatable Is it feasible to genetically suppress early and/or progressed A-TCL cells What is the mechanism by which the differentiation-inhibited (leukemic) pre-T cells proliferate During the first grant year we have worked on aspects of all three questions.

  14. Radiation-induced sarcomas of bone: factors that affect outcome.

    PubMed

    Kalra, S; Grimer, R J; Spooner, D; Carter, S R; Tillman, R M; Abudu, A

    2007-06-01

    We identified 42 patients who presented to our unit over a 27-year period with a secondary radiation-induced sarcoma of bone. We reviewed patient, tumour and treatment factors to identify those that affected outcome. The mean age of the patients at presentation was 45.6 years (10 to 84) and the mean latent interval between radiotherapy and diagnosis of the sarcoma was 17 years (4 to 50). The median dose of radiotherapy given was estimated at 50 Gy (mean 49; 20 to 66). There was no correlation between radiation dose and the time to development of a sarcoma. The pelvis was the most commonly affected site (14 patients (33%)). Breast cancer was the most common primary tumour (eight patients; 19%). Metastases were present at diagnosis of the sarcoma in nine patients (21.4%). Osteosarcoma was the most common diagnosis and occurred in 30 cases (71.4%). Treatment was by surgery and chemotherapy when indicated: 30 patients (71.4%) were treated with the intention to cure. The survival rate was 41% at five years for those treated with the intention to cure but in those treated palliatively the mean survival was only 8.8 months (2 to 22), and all had died by two years. The only factor found to be significant for survival was the ability to completely resect the tumour. Limb sarcomas had a better prognosis (66% survival at five years) than central ones (12% survival at five years) (p = 0.009). Radiation-induced sarcoma is a rare complication of radiotherapy. Both surgical and oncological treatment is likely to be compromised by the treatment received previously by the patient.

  15. Intercellular Adhesion Molecule 1 Knockout Abrogates Radiation Induced Pulmonary Inflammation

    NASA Astrophysics Data System (ADS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi

    1997-06-01

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  16. Calcium-ion movement and contractility in atrial strips of frog heart are not affected by low-frequency-modulated, 1 GHz electromagnetic radiation.

    PubMed

    Schwartz, J L; Mealing, G A

    1993-01-01

    Calcium efflux from electrically stimulated, 45Ca(2+)-preloaded atrial strips of the frog heart was measured from samples of the rinsing perfusate collected at 2-min intervals for 32 min in a continuous perfusion chamber. Contractile force was simultaneously monitored. The specimen chamber was located in a stripline apparatus in which the atrial strips were exposed for 32 min to constant (CW) or amplitude-modulated (AM), 1 GHz electromagnetic (EM) fields at specific absorption rates (SAR) ranging from 3.2 microW/kg to 1.6 W/kg. Amplitude modulation was either at 0.5 Hz, in synchrony with the electrical stimulus applied to the preparation, or at 16 Hz. Neither unmodulated nor 0.5 Hz or 16 Hz modulated 1 GHz waves affected the movement of calcium ions or the contractile force in isolated atrial strips of the frog heart.

  17. Aroused with heart: Modulation of heartbeat evoked potential by arousal induction and its oscillatory correlates

    PubMed Central

    Luft, Caroline Di Bernardi; Bhattacharya, Joydeep

    2015-01-01

    Recent studies showed that the visceral information is constantly processed by the brain, thereby potentially influencing cognition. One index of such process is the heartbeat evoked potential (HEP), an ERP component related to the cortical processing of the heartbeat. The HEP is sensitive to a number of factors such as motivation, attention, pain, which are associated with higher levels of arousal. However, the role of arousal and its associated brain oscillations on the HEP has not been characterized, yet it could underlie the previous findings. Here we analysed the effects of high- (HA) and low-arousal (LA) induction on the HEP. Further, we investigated the brain oscillations and their role in the HEP in response to HA and LA inductions. As compared to LA, HA was associated with a higher HEP and lower alpha oscillations. Interestingly, individual differences in the HEP modulation by arousal induction were correlated with alpha oscillations. In particular, participants with higher alpha power during the arousal inductions showed a larger HEP in response to HA compared to LA. In summary, we demonstrated that arousal induction affects the cortical processing of heartbeats; and that the alpha oscillations may modulate this effect. PMID:26503014

  18. Tai Chi Chuan modulates heart rate variability during abdominal breathing in elderly adults.

    PubMed

    Wei, Gao-Xia; Li, You-Fa; Yue, Xiao-Lin; Ma, Xiao; Chang, Yu-Kai; Yi, Long-Yan; Li, Jing-Cheng; Zuo, Xi-Nian

    2016-03-01

    Tai Chi Chuan (TCC) practice is currently intentionally applied in clinical populations, especially those with cardiovascular diseases because of its potential benefits on the autonomic nervous system. The long-term effect of TCC practice on heart rate variability (HRV) remains largely unknown. In this study, we recruited 23 TCC practitioners whose experience averaged approximately 21 years and 19 controls matched by age, sex and education to examine the effect of TCC practice on the autonomic nervous system during a resting state and during an abdominal breathing state. HRV was measured by traditional electrocardiogram (ECG) recording. The results showed that the low frequency, total power frequency, and normalized low frequency components and the low-frequency/high-frequency ratio were significantly higher, whereas the normalized high frequency was significantly lower in the TCC practitioners relative to controls during the abdominal breathing state. However, we did not detect any significant difference in the HRV measures during the resting state between the two groups. Additionally, TCC experience did not correlate with HRV components either in the abdominal state or the resting state in the TCC group. Considering all of these findings, we suggest that TCC improves vagal activity and the balance between sympathetic and parasympathetic activity during the relaxation state. This study also provides direct physiological evidence for the role of TCC practice in relaxation.

  19. Saturated fatty acids and risk of coronary heart disease: modulation by replacement nutrients.

    PubMed

    Siri-Tarino, Patty W; Sun, Qi; Hu, Frank B; Krauss, Ronald M

    2010-11-01

    Despite the well-established observation that substitution of saturated fats for carbohydrates or unsaturated fats increases low-density lipoprotein (LDL) cholesterol in humans and animal models, the relationship of saturated fat intake to risk for atherosclerotic cardiovascular disease in humans remains controversial. A critical question is what macronutrient should be used to replace saturated fat. Substituting polyunsaturated fat for saturated fat reduces LDL cholesterol and the total cholesterol to high-density lipoprotein cholesterol ratio. However, replacement of saturated fat by carbohydrates, particularly refined carbohydrates and added sugars, increases levels of triglyceride and small LDL particles and reduces high-density lipoprotein cholesterol, effects that are of particular concern in the context of the increased prevalence of obesity and insulin resistance. Epidemiologic studies and randomized clinical trials have provided consistent evidence that replacing saturated fat with polyunsaturated fat, but not carbohydrates, is beneficial for coronary heart disease. Therefore, dietary recommendations should emphasize substitution of polyunsaturated fat and minimally processed grains for saturated fat.

  20. Melatonin ameliorates metabolic risk factors, modulates apoptotic proteins, and protects the rat heart against diabetes-induced apoptosis.

    PubMed

    Amin, Ali H; El-Missiry, Mohamed A; Othman, Azza I

    2015-01-15

    The present study investigated the ability of melatonin in reducing metabolic risk factors and cardiac apoptosis induced by diabetes. Streptozotocin (60 mg/kg, i.p.) was injected into male rats, and after diabetic induction melatonin (10mg/kg i.g.) was administered orally for 21 days. Diabetic hearts showed increased number of apoptotic cells with downregulation of Bcl-2 and activation of p53 and CD95 as well as the caspases 9, 8 and 3. In addition, there was a significant decrease in insulin level, hyperglycemia, elevated HOMA-IR, glycosylated hemoglobin (HbA1c), total lipids, triglycerides, total cholesterol, low and very low-density lipoprotein and decreased high-density lipoprotein. These changes were coupled with a significant increase in the activities of creatin kinase-MB (CK-MB) and lactate dehydrogenase (LDH) in the serum of the diabetic rats indicating myocardium injury. Oral administration of melatonin for 3 weeks after diabetes induction ameliorated the levels of hyperglycemia, insulin, HbA1c, lipids profile and HOMA-IR. The oral melatonin treatment of diabetic rats significantly decreased the number of apoptotic cells in the heart compared to diabetic rats. It enhanced Bcl-2 expression and blocked the activation of CD95 as well as caspases 9, 8 and 3. These changes were accompanied with significant improvement of CK-MB and LDH in the serum indicating the ameliorative effect of melatonin on myocardium injury. Melatonin effectively ameliorated diabetic myocardium injury, apoptosis, reduced the metabolic risk factors and modulated important steps in both extrinsic and intrinsic pathways of apoptosis. Thus, melatonin may be a promising pharmacological agent for ameliorating potential cardiomyopathy associated with diabetes.

  1. Evidence for Radiation-Induced Disseminated Intravascular Coagulation as a Major Cause of Radiation-Induced Death in Ferrets

    PubMed Central

    Krigsfeld, Gabriel S.; Savage, Alexandria R.; Billings, Paul C.; Lin, Liyong; Kennedy, Ann R.

    2014-01-01

    Purpose/Objectives(s) The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events (SPEs), as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis. Methods and Materials Ferrets were exposed to 0 – 2 Gray (Gy) of whole body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation. Results The lethal dose of radiation to 50% of the population, known as the LD50, of ferrets was established at ~ 1.5 Gy, with 100% mortality at 2 Gy. Hypocoagulability was present as early as day 7 post-irradiation, with animals unable to generate a stable clot and exhibiting signs of platelet aggregation, thrombocytopenia, and fibrin clots in blood vessels of organs. Platelet counts were at normal levels during the early times post-irradiation when coagulopathies were present and progressively becoming more severe; platelet counts were greatly reduced at the time of the white blood cell nadir of 13 days. Conclusions The data presented here provide evidence that death at the LD50 in ferrets is most likely due to disseminated intravascular coagulation (DIC). These data question the current hypothesis that death at relatively low doses of radiation is solely due to the cell killing effects of hematopoietic cells. The recognition that radiation-induced DIC is the most likely mechanism of death in ferrets raises the question of whether DIC is a contributing mechanism to radiation induced death at relatively low doses in large mammals. PMID:24495588

  2. Evidence for Radiation-Induced Disseminated Intravascular Coagulation as a Major Cause of Radiation-Induced Death in Ferrets

    SciTech Connect

    Krigsfeld, Gabriel S.; Savage, Alexandria R.; Billings, Paul C.; Lin, Liyong; Kennedy, Ann R.

    2014-03-15

    Purpose: The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events, as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis. Methods and Materials: Ferrets were exposed to 0 to 2 Gy of whole-body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation. Results: The lethal dose of radiation to 50% of the population (LD{sub 50}) of the ferrets was established at ∼1.5 Gy, with 100% mortality at 2 Gy. Hypocoagulability was present as early as day 7 postirradiation, with animals unable to generate a stable clot and exhibiting signs of platelet aggregation, thrombocytopenia, and fibrin clots in blood vessels of organs. Platelet counts were at normal levels during the early time points postirradiation when coagulopathies were present and becoming progressively more severe; platelet counts were greatly reduced at the time of the white blood cell nadir of 13 days. Conclusions: Data presented here provide evidence that death at the LD{sub 50} in ferrets is most likely due to disseminated intravascular coagulation (DIC). These data question the current hypothesis that death at relatively low doses of radiation is due solely to the cell-killing effects of hematopoietic cells. The recognition that radiation-induced DIC is the most likely mechanism of death in ferrets raises the question of whether DIC is a contributing mechanism to radiation-induced death at relatively low doses in large mammals.

  3. Involvement of prostaglandins and histamine in radiation-induced temperature responses in rats

    SciTech Connect

    Kandasamy, S.B.; Hunt, W.A. )

    1990-01-01

    Exposure of rats to 1-15 Gy of gamma radiation induced hyperthermia, whereas exposure to 20-150 Gy produced hypothermia. Since radiation exposure induced the release of prostaglandins (PGs) and histamine, the role of PGs and histamine in radiation-induced temperature changes was examined. Radiation-induced hyper- and hypothermia were antagonized by pretreatment with indomethacin, a cyclooxygenase inhibitor. Intracerebroventricular administration of PGE2 and PGD2 induced hyper- and hypothermia, respectively. Administration of SC-19220, a specific PGE2 antagonist, attenuated PGE2- and radiation-induced hyperthermia, but it did not antagonize PGD2- or radiation-induced hypothermia. Consistent with an apparent role of histamine in hypothermia, administration of disodium cromoglycate (a mast cell stabilizer), mepyramine (H1-receptor antagonist), or cimetidine (H2-receptor antagonist) attenuated PGD2- and radiation-induced hypothermia. These results suggest that radiation-induced hyperthermia is mediated via PGE2 and that radiation-induced hypothermia is mediated by another PG, possibly PGD2, via histamine.

  4. Protein kinase C promotes cardiac fibrosis and heart failure by modulating galectin-3 expression.

    PubMed

    Song, Xiang; Qian, Xiaoqian; Shen, Ming; Jiang, Rong; Wagner, Mary B; Ding, Guoliang; Chen, Guangping; Shen, Baozhong

    2015-02-01

    Protein kinase C (PKC) and galectin-3 are two important mediators that play a key pathogenic role in cardiac hypertrophy and heart failure (HF). However, the molecular mechanisms and signaling pathways are not fully understood. In this study, we explored the relationship between and roles of PKC-α and galectin-3 in the development of HF. We found that activation of PKC by phorbol dibutyrate (PDB) increased galectin-3 expression by ~180%, as well as collagen I and fibronection accumulation in cultured HL-1 cardiomyocytes. Over-expression of galectin-3 in HL-1 cells increased collagen I protein production. Inhibition of galectin-3 by β-lactose blocked PDB-induced galectin-3 and collagen production, indicating that galectin-3 mediates PKC-induced cardiac fibrosis. In rats subjected to pulmonary artery banding (PAB) to induce right ventricular HF, galectin-3 was increased by ~140% in the right ventricle and also by ~240% in left ventricle compared to control. The elevated galectin-3 is consistent with an increase of total and activated (phosphorylated) PKC-α, α-SMA and collagen I. Finally, we extended our findings to examine the role of angiotensin II (Ang II), which activates the PKC pathway and contributes to cardiac fibrosis and the development of HF. We found that Ang II activated the PKC-α pathway and increased galectin-3 expression and collagen production. This study provides a new insight into the molecular mechanisms of HF mediated by PKC-α and galectin-3. PKC-α promotes cardiac fibrosis and HF by stimulation of galectin-3 expression.

  5. The effect of tianeptine in the prevention of radiation-induced neurocognitive impairment.

    PubMed

    Akyurek, Serap; Senturk, Vesile; Oncu, Bedriye; Ozyigit, Gokhan; Yilmaz, Sercan; Gokce, Saban Cakir

    2008-12-01

    Radiation-induced neurocognitive impairment is an undesirable radiation-induced toxicity and a common health problem in patients with primary or metastatic brain tumor. It greatly impairs quality of life for long-term brain tumor survivors. Hippocampus is the most important brain structure for neurocognitive functions. It has been shown that radiation affects the hippocampal neurogenesis due to either induce the apoptosis or reduce the precursor cell proliferation in the hippocampus. Radiation-induced microglial inflammatory response is also negative regulator of neurogenesis. Tianeptine is a clinically effective antidepressant that induces neurogenesis. It has also been shown that tianeptine is able to reduce apoptosis and cytoprotective against the effects of proinflammatory cytokines in the hippocampus. Given the putative role of impaired hippocampal neurogenesis in radiation-induced neurocognitive impairment we think that tianeptine can be effective for preventing radiation-induced neurocognitive impairment by increasing hippocampal neurogenesis.

  6. Modulation of heart rate response to acute stressors throughout the breeding season in the king penguin Aptenodytes patagonicus.

    PubMed

    Viblanc, Vincent A; Smith, Andrew D; Gineste, Benoit; Kauffmann, Marion; Groscolas, René

    2015-06-01

    'Fight-or-flight' stress responses allow animals to cope adaptively to sudden threats by mobilizing energy resources and priming the body for action. Because such responses can be costly and redirect behavior and energy from reproduction to survival, they are likely to be shaped by specific life-history stages, depending on the available energy resources and the commitment to reproduction. Here, we consider how heart rate (HR) responses to acute stressors are affected by the advancing breeding season in a colonial seabird, the king penguin (Aptenodytes patagonicus). We subjected 77 birds (44 males, 33 females) at various stages of incubation and chick-rearing to three experimental stressors (metal sound, distant approach and capture) known to vary both in their intensity and associated risk, and monitored their HR responses. Our results show that HR increase in response to acute stressors was progressively attenuated with the stage of breeding from incubation to chick-rearing. Stress responses did not vary according to nutritional status or seasonal timing (whether breeding was initiated early or late in the season), but were markedly lower during chick-rearing than during incubation. This pattern was obvious for all three stressors. We discuss how 'fight-or-flight' responses may be modulated by considering the energy commitment to breeding, nutritional status and reproductive value of the brood in breeding seabirds.

  7. Acute Radiation-Induced Nocturia in Prostate Cancer Patients Is Associated With Pretreatment Symptoms, Radical Prostatectomy, and Genetic Markers in the TGF{beta}1 Gene

    SciTech Connect

    De Langhe, Sofie; De Ruyck, Kim; Ost, Piet; Fonteyne, Valerie; Werbrouck, Joke; De Meerleer, Gert; De Neve, Wilfried; Thierens, Hubert

    2013-02-01

    Purpose: After radiation therapy for prostate cancer, approximately 50% of the patients experience acute genitourinary symptoms, mostly nocturia. This may be highly bothersome with a major impact on the patient's quality of life. In the past, nocturia is seldom reported as a single, physiologically distinct endpoint, and little is known about its etiology. It is assumed that in addition to dose-volume parameters and patient- and therapy-related factors, a genetic component contributes to the development of radiation-induced damage. In this study, we investigated the association among dosimetric, clinical, and TGF{beta}1 polymorphisms and the development of acute radiation-induced nocturia in prostate cancer patients. Methods and Materials: Data were available for 322 prostate cancer patients treated with primary or postoperative intensity modulated radiation therapy (IMRT). Five genetic markers in the TGF{beta}1 gene (-800 G>A, -509 C>T, codon 10 T>C, codon 25 G>C, g.10780 T>G), and a high number of clinical and dosimetric parameters were considered. Toxicity was scored using an symptom scale developed in-house. Results: Radical prostatectomy (P<.001) and the presence of pretreatment nocturia (P<.001) are significantly associated with the occurrence of radiation-induced acute toxicity. The -509 CT/TT (P=.010) and codon 10 TC/CC (P=.005) genotypes are significantly associated with an increased risk for radiation-induced acute nocturia. Conclusions: Radical prostatectomy, the presence of pretreatment nocturia symptoms, and the variant alleles of TGF{beta}1 -509 C>T and codon 10 T>C are identified as factors involved in the development of acute radiation-induced nocturia. These findings may contribute to the research on prediction of late nocturia after IMRT for prostate cancer.

  8. Cardiac energetic impairment in heart disease and the potential role of metabolic modulators: a review for clinicians.

    PubMed

    Singh, Satnam; Schwarz, Konstantin; Horowitz, John; Frenneaux, Michael

    2014-10-01

    Cardiac energetic impairment is a frequent finding in patients with both inherited and acquired diseases of heart muscle. In this review the mechanisms of energy generation in the healthy heart and their disturbances in heart muscle diseases are described. Therapeutic agents targeted at correcting cardiac energetic impairment are discussed.

  9. Citrus peel polymethoxylated flavones extract modulates liver and heart function parameters in diet induced hypercholesterolemic rats.

    PubMed

    Green, Curtis O; Wheatley, Andrew O; McGrowder, Donovan A; Dilworth, Lowell L; Asemota, Helen N

    2013-01-01

    The primary aim of this study was to investigate the effects of Ortanique peel polymethoxylated flavones extract (PMF(ort)) on organ function parameters in the serum of hypercholesterolemic and normal rats. Thirty Sprague-Dawley rats were fed high cholesterol diets supplemented with 1.5% PMF(ort) and niacin respectively for 49days. Hypercholesterolemic rats fed PMF(ort) had significant reductions in the activities of aspartate aminotransferase and alkaline phosphatase (69.12±3.34 and 87.22±8.42U/L respectively) compared to the untreated hypercholesterolemic group (118.61±4.85 and 132.62±10.62U/L respectively, p<0.05). Supplementation of the diet with niacin or PMF(ort) resulted in no significant differences in the serum levels of creatinine or urea in any of the groups. Total bilirubin was highest in the untreated hypercholesterolemic group. Supplementation of the diets of hypercholesterolemic rats with PMF(ort) resulted in significant reductions in the activities of serum creatine kinase and lactate dehydrogenase (119.3±25.3; 222.5±50.3U/L, p<0.05) respectively relative to the untreated hypercholesterolemic group (257.2±48.3; 648.8±103U/L, p<0.05). The results would suggest that PMF(ort) modulates hypercholesterolemia-associated organ injury in rats. PMF(ort) could therefore be a suitable candidate for prophylactic and therapeutic treatment of hypercholesterolemia-associated organ injury.

  10. Space-radiation-induced Photon Luminescence of the Moon

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas; Lee, Kerry

    2008-01-01

    We report on the results of a study of the photon luminescence of the Moon induced by Galactic Cosmic Rays (GCRs) and space radiation from the Sun, using the Monte Carlo program FLUKA. The model of the lunar surface is taken to be the chemical composition of soils found at various landing sites during the Apollo and Luna programs, averaged over all such sites to define a generic regolith for the present analysis. This then becomes the target that is bombarded by Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) above 1 keV in FLUKA to determine the photon fluence albedo produced by the Moon's surface when there is no sunlight and Earthshine. This is to be distinguished from the gamma-ray spectrum produced by the radioactive decay of radiogenic constituents lying in the surface and interior of the Moon. From the photon fluence we derive the spectrum which can be utilized to examine existing lunar spectral data and to design orbiting instrumentation for measuring various components of the space-radiation-induced photon luminescence present on the Moon.

  11. Gamma radiation induces hydrogen absorption by copper in water

    PubMed Central

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-01-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories. PMID:27086752

  12. Outcome of Carotid Artery Stenting for Radiation-Induced Stenosis

    SciTech Connect

    Dorresteijn, Lucille; Vogels, Oscar; Leeuw, Frank-Erik de; Vos, Jan-Albert; Christiaans, Marleen H.; Ackerstaff, Rob; Kappelle, Arnoud C.

    2010-08-01

    Purpose: Patients who have been irradiated at the neck have an increased risk of symptomatic stenosis of the carotid artery during follow-up. Carotid angioplasty and stenting (CAS) can be a preferable alternative treatment to carotid endarterectomy, which is associated with increased operative risks in these patients. Methods and Materials: We performed a prospective cohort study of 24 previously irradiated patients who underwent CAS for symptomatic carotid stenosis. We assessed periprocedural and nonprocedural events including transient ischemic attack (TIA), nondisabling stroke, disabling stoke, and death. Patency rates were evaluated on duplex ultrasound scans. Restenosis was defined as a stenosis of >50% at the stent location. Results: Periprocedural TIA rate was 8%, and periprocedural stroke (nondisabling) occurred in 4% of patients. After a mean follow-up of 3.3 years (range, 0.3-11.0 years), only one ipsilateral incident event (TIA) had occurred (4%). In 12% of patients, a contralateral incident event was present: one TIA (4%) and two strokes (12%, two disabling strokes). Restenosis was apparent in 17%, 33%, and 42% at 3, 12, and 24 months, respectively, although none of the patients with restenosed vessels became symptomatic. The length of the irradiation to CAS interval proved the only significant risk factor for restenosis. Conclusions: The results of CAS for radiation-induced carotid stenosis are favorable in terms of recurrence of cerebrovascular events at the CAS site.

  13. Radiation-induced thymine base damage in replicating chromatin

    SciTech Connect

    Warters, R.L.; Childers, T.J.

    1982-06-01

    The efficiency of radiation-induced production of 5',6'-dihydroxydihydrothymine (t/sup ..gamma../)-type damage was determined in nascent and mature chromatin DNA for the dose range of 50 to 150 krad. These large doses affected neither the total fraction of nuclear DNA in chromatin subunits nor the nucleosome subunit repeat length. The DNA in nascent chromatin, however, was found to be 3.3 times more sensitive than mature chromatin DNA to ..gamma..-ray (/sup 137/Cs)-induced t/sup ..gamma../-type damage, while thymine damage of this type was uniformly distributed in the nucleosomal DNA of mature chromatin (i.e., in the nucleosome core and spacer DNA). The half-time for the transition of nascent DNA sensitivity to mature chromatin DNA sensitivity levels was the same as the half-time at 37/sup 0/C for the maturation of nascent into mature chromatin structure. The rate at which nascent chromatin matured was unaffected by radiation doses as large as 150 krad. The most logical explanation for the greater sensitivity of nascent DNA to radiation is the decreased concentration of histone chromosomal proteins in nascent chromatin.

  14. Radiation induced degradation of dyes--an overview.

    PubMed

    Rauf, M A; Ashraf, S Salman

    2009-07-15

    Synthetic dyes are a major part of our life. Products ranging from clothes to leather accessories to furniture all depend on extensive use of organic dyes. An unfortunate side effect of extensive use of these chemicals is that huge amounts of these potentially carcinogenic compounds enter our water supplies. Various advanced oxidation processes (AOPs) including the use of high-energy radiation have been developed to degrade these compounds. In this review, dye decoloration and degradation as a result of its exposure to high energy radiation such as gamma radiation and pulsed electron beam are discussed in detail. The role of various transient species such as H, OH and e(aq)(-) are taken into account as reported by various researchers. Literature citations in this area show that e(aq)(-) is very effective in decolorization but is less active in the further degradation of the products formed. The degradation of the dyes is initiated exclusively by OH attack on electron-rich sites of the dye molecules. Additionally, various parameters that affect the efficiency of radiation induced degradation of dyes, such as effect of radiation dose, oxygen, pH, hydrogen peroxide, added ions and dye classes are also reviewed and summarized. Lastly, pilot plant application of radiation for wastewater treatment is briefly discussed.

  15. Gamma radiation induces hydrogen absorption by copper in water.

    PubMed

    Lousada, Cláudio M; Soroka, Inna L; Yagodzinskyy, Yuriy; Tarakina, Nadezda V; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A; Jonsson, Mats

    2016-04-18

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.

  16. Epigenetic determinants of space radiation-induced cognitive dysfunction

    PubMed Central

    Acharya, Munjal M.; Baddour, Al Anoud D.; Kawashita, Takumi; Allen, Barrett D.; Syage, Amber R.; Nguyen, Thuan H.; Yoon, Nicole; Giedzinski, Erich; Yu, Liping; Parihar, Vipan K.; Baulch, Janet E.

    2017-01-01

    Among the dangers to astronauts engaging in deep space missions such as a Mars expedition is exposure to radiations that put them at risk for severe cognitive dysfunction. These radiation-induced cognitive impairments are accompanied by functional and structural changes including oxidative stress, neuroinflammation, and degradation of neuronal architecture. The molecular mechanisms that dictate CNS function are multifaceted and it is unclear how irradiation induces persistent alterations in the brain. Among those determinants of cognitive function are neuroepigenetic mechanisms that translate radiation responses into altered gene expression and cellular phenotype. In this study, we have demonstrated a correlation between epigenetic aberrations and adverse effects of space relevant irradiation on cognition. In cognitively impaired irradiated mice we observed increased 5-methylcytosine and 5-hydroxymethylcytosine levels in the hippocampus that coincided with increased levels of the DNA methylating enzymes DNMT3a, TET1 and TET3. By inhibiting methylation using 5-iodotubercidin, we demonstrated amelioration of the epigenetic effects of irradiation. In addition to protecting against those molecular effects of irradiation, 5-iodotubercidin restored behavioral performance to that of unirradiated animals. The findings of this study establish the possibility that neuroepigenetic mechanisms significantly contribute to the functional and structural changes that affect the irradiated brain and cognition. PMID:28220892

  17. Progesterone prevents radiation-induced apoptosis in breast cancer cells.

    PubMed

    Vares, Guillaume; Ory, Katherine; Lectard, Bruno; Levalois, Céline; Altmeyer-Morel, Sandrine; Chevillard, Sylvie; Lebeau, Jérôme

    2004-06-03

    Sex steroid hormones play an essential role in the control of homeostasis in the mammary gland. Although the involvement of progesterone in cellular proliferation and differentiation is well established, its exact role in the control of cell death still remains unclear. As dysregulation of the apoptotic process plays an important role in the pathogenesis of breast cancer, we investigated the regulation of apoptosis by progesterone in various breast cancer cell lines. Our results show that progesterone treatment protects against radiation-induced apoptosis. This prevention appears to be mediated by the progesterone receptor and is unrelated to p53 status. There is also no correlation with the intrinsic hormonal effect on cell proliferation, as the presence of cells in a particular phase of the cell cycle. Surprisingly, progesterone partly allows bypassing of the irradiation-induced growth arrest in G(2)/M in PgR+ cells, leading to an increase in cell proliferation after irradiation. One consequence of this effect is a higher rate of chromosome damage in these proliferating progesterone-treated cells compared to what is observed in untreated irradiated cells. We propose that progesterone, by inhibiting apoptosis and promoting the proliferation of cells with DNA damage, potentially facilitates the emergence of genetic mutations that may play a role in malignant transformation.

  18. Low dose radiation-induced endothelial cell retraction.

    PubMed

    Kantak, S S; Diglio, C A; Onoda, J M

    1993-09-01

    We characterized in vitro the effects of gamma-radiation (12.5-100 cGy) on pulmonary microvascular endothelial cell (PMEC) morphology and F-actin organization. Cellular retraction was documented by phase-contrast microscopy and the organization of actin microfilaments was determined by immunofluorescence. Characterization included radiation dose effects, their temporal duration and reversibility of the effects. A dose-dependent relationship between the level of exposure (12.5-100 cGy) and the rate and extent of endothelial retraction was observed. Moreover, analysis of radiation-induced depolymerization of F-actin microfilament stress fibres correlated positively with the changes in PMEC morphology. The depolymerization of the stress fibre bundles was dependent on radiation dose and time. Cells recovered from exposure to reform contact inhibited monolayers > or = 24 h post-irradiation. Concomitantly, the depolymerized microfilaments reorganized to their preirradiated state as microfilament stress fibres arrayed parallel to the boundaries of adjacent contact-inhibited cells. The data presented here are representative of a series of studies designed to characterize low-dose radiation effects on pulmonary microvascular endothelium. Our data suggest that post-irradiation lung injuries (e.g. oedema) may be induced with only a single fraction of therapeutic radiation, and thus microscopic oedema may initiate prior to the lethal effects of radiation on the microvascular endothelium, and much earlier than would be suggested by the time course for clinically-detectable oedema.

  19. Radiation-induced sarcomas of the head and neck

    PubMed Central

    Thiagarajan, Anuradha; Iyer, N Gopalakrishna

    2014-01-01

    With improved outcomes associated with radiotherapy, radiation-induced sarcomas (RIS) are increasingly seen in long-term survivors of head and neck cancers, with an estimated risk of up to 0.3%. They exhibit no subsite predilection within the head and neck and can arise in any irradiated tissue of mesenchymal origin. Common histologic subtypes of RIS parallel their de novo counterparts and include osteosarcoma, chondrosarcoma, malignant fibrous histiocytoma/sarcoma nitricoxide synthase, and fibrosarcoma. While imaging features of RIS are not pathognomonic, large size, extensive local invasion with bony destruction, marked enhancement within a prior radiotherapy field, and an appropriate latency period are suggestive of a diagnosis of RIS. RIS development may be influenced by factors such as radiation dose, age at initial exposure, exposure to chemotherapeutic agents and genetic tendency. Precise pathogenetic mechanisms of RIS are poorly understood and both directly mutagenizing effects of radiotherapy as well as changes in microenvironments are thought to play a role. Management of RIS is challenging, entailing surgery in irradiated tissue and a limited scope for further radiotherapy and chemotherapy. RIS is associated with significantly poorer outcomes than stage-matched sarcomas that arise independent of irradiation and surgical resection with clear margins seems to offer the best chance for cure. PMID:25493233

  20. Nocifensive Behaviors in Mice with Radiation-Induced Oral Mucositis.

    PubMed

    Nolan, Michael W; Long, C Tyler; Marcus, Karen L; Sarmadi, Shayan; Roback, Donald M; Fukuyama, Tomoki; Baeumer, Wolfgang; Lascelles, B Duncan X

    2017-02-10

    Oral mucositis can result in significant dysphagia, and is the most common dose-limiting acute toxicity in head and neck cancer patients receiving chemoradiotherapy. There is a critical need to determine the cellular and molecular mechanisms that underlie radiotherapy-associated discomfort in patients with mucositis. The objective was to induce oral mucositis in mice, using a clinical linear accelerator, and to quantify resultant discomfort, and characterize peripheral sensitization. A clinical linear accelerator was used to deliver ionizing radiation to the oral cavity of mice. Mucositis severity scoring, and various behavioral assays were performed to quantify bouts of orofacial wiping and scratching, bite force, gnawing behavior and burrowing activity. Calcium imaging was performed on neurons of the trigeminal ganglia. Glossitis was induced with a single fraction of at least 27 Gy. Body weight decreased and subsequently returned to baseline, in concert with development and resolution of mucositis, which was worst at day 10 and 11 postirradiation, however was resolved within another 10 days. Neither bite force, nor gnawing behavior were measurably affected. However, burrowing activity was decreased, and both facial wiping and scratching were increased while mice had visible mucositis lesions. Sensory nerves of irradiated mice were more responsive to histamine, tumor necrosis factor alpha and capsaicin. Radiation-induced glossitis is associated with hyper-reactivity of sensory neurons in the trigeminal ganglia of mice, and is accompanied by several behaviors indicative of both itch and pain. These data validate an appropriate model for cancer treatment related discomfort in humans.

  1. Radiation-Induced Notch Signaling in Breast Cancer Stem Cells

    SciTech Connect

    Lagadec, Chann; Vlashi, Erina; Alhiyari, Yazeed; Phillips, Tiffany M.; Bochkur Dratver, Milana; Pajonk, Frank

    2013-11-01

    Purpose: To explore patterns of Notch receptor and ligand expression in response to radiation that could be crucial in defining optimal dosing schemes for γ-secretase inhibitors if combined with radiation. Methods and Materials: Using MCF-7 and T47D breast cancer cell lines, we used real-time reverse transcription–polymerase chain reaction to study the Notch pathway in response to radiation. Results: We show that Notch receptor and ligand expression during the first 48 hours after irradiation followed a complex radiation dose–dependent pattern and was most pronounced in mammospheres, enriched for breast cancer stem cells. Additionally, radiation activated the Notch pathway. Treatment with a γ-secretase inhibitor prevented radiation-induced Notch family gene expression and led to a significant reduction in the size of the breast cancer stem cell pool. Conclusions: Our results indicate that, if combined with radiation, γ-secretase inhibitors may prevent up-regulation of Notch receptor and ligand family members and thus reduce the number of surviving breast cancer stem cells.

  2. Gamma radiation induced changes in nuclear waste glass containing Eu

    NASA Astrophysics Data System (ADS)

    Mohapatra, M.; Kadam, R. M.; Mishra, R. K.; Kaushik, C. P.; Tomar, B. S.; Godbole, S. V.

    2011-10-01

    Gamma radiation induced changes were investigated in sodium-barium borosilicate glasses containing Eu. The glass composition was similar to that of nuclear waste glasses used for vitrifying Trombay research reactor nuclear waste at Bhabha Atomic Research Centre, India. Photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques were used to study the speciation of the rare earth (RE) ion in the matrix before and after gamma irradiation. Judd-Ofelt ( J- O) analyses of the emission spectra were done before and after irradiation. The spin counting technique was employed to quantify the number of defect centres formed in the glass at the highest gamma dose studied. PL data suggested the stabilisation of the trivalent RE ion in the borosilicate glass matrix both before and after irradiation. It was also observed that, the RE ion distributes itself in two different environments in the irradiated glass. From the EPR data it was observed that, boron oxygen hole centre based radicals are the predominant defect centres produced in the glass after irradiation along with small amount of E’ centres. From the spin counting studies the concentration of defect centres in the glass was calculated to be 350 ppm at 900 kGy. This indicated the fact that bulk of the glass remained unaffected after gamma irradiation up to 900 kGy.

  3. Interleukin-32 Positively Regulates Radiation-Induced Vascular Inflammation

    SciTech Connect

    Kobayashi, Hanako; Yazlovitskaya, Eugenia M.; Lin, P. Charles

    2009-08-01

    Purpose: To study the role of interleukin-32 (IL-32), a novel protein only detected in human tissues, in ionizing radiation (IR)-induced vascular inflammation. Methods and Materials: Irradiated (0-6 Gy) human umbilical vein endothelial cells treated with or without various agents-a cytosolic phospholipase A2 (cPLA2) inhibitor, a cyclooxygenase-2 (Cox-2) inhibitor, or lysophosphatidylcholines (LPCs)-were used to assess IL-32 expression by Northern blot analysis and quantitative reverse transcriptase-polymerase chain reaction. Expression of cell adhesion molecules and leukocyte adhesion to endothelial cells using human acute monocytic leukemia cell line (THP-1) cells was also analyzed. Results: Ionizing radiation dramatically increased IL-32 expression in vascular endothelial cells through multiple pathways. Ionizing radiation induced IL-32 expression through nuclear factor {kappa}B activation, through induction of cPLA2 and LPC, as well as induction of Cox-2 and subsequent conversion of arachidonic acid to prostacyclin. Conversely, blocking nuclear factor {kappa}B, cPLA2, and Cox-2 activity impaired IR-induced IL-32 expression. Importantly, IL-32 significantly enhanced IR-induced expression of vascular cell adhesion molecules and leukocyte adhesion on endothelial cells. Conclusion: This study identifies IL-32 as a positive regulator in IR-induced vascular inflammation, and neutralization of IL-32 may be beneficial in protecting from IR-induced inflammation.

  4. Radiation induced destruction of thebaine, papaverine and noscapine in methanol

    NASA Astrophysics Data System (ADS)

    Kantoğlu, Ömer; Ergun, Ece

    2016-07-01

    The presence of methanol decreases the efficiency of radiation-induced decomposition of alkaloids in wastewater. Intermediate products were observed before the complete degradation of irradiated alkaloids. In order to identify the structure of the by-products and the formation pathway, thebaine, papaverine and noscapine solutions were prepared in pure methanol and irradiated using a 60Co gamma cell at absorbed doses of 0, 1, 3, 5, 7, 10, 30, 50 and 80 kGy. The dose-dependent alkaloid degradation and by-product formation were monitored by ESI mass spectrometer. Molecular structures of the by-products and reaction pathways were proposed. Oxygenated and methoxy group containing organic compounds was observed in the mass spectra of irradiated alkaloids. At initial dose values oxygenated by-products were formed due to the presence of dissolved oxygen in solutions. After the consumption of dissolved oxygen with radicals, the main mechanism was addition of solvent radicals to alkaloid structure. However, it was determined that alkaloids and by-products were completely degraded at doses higher than 50 kGy. The G-value and degradation efficiency of alkaloids were also evaluated.

  5. Radiation-induced removal of sulphadiazine antibiotics from wastewater.

    PubMed

    Liu, Yuankun; Hu, Jun; Wang, Jianlong

    2014-08-01

    The radiation-induced removal of sulphadiazine (SD) belonging to the heterocyclic sulphonamides pharmaceuticals was investigated by gamma irradiation at different conditions in laboratory scale. The influence of initial SD concentrations, pH values, 02 and N2 on SD degradation was determined. The experimental results showed that gamma-ray irradiation was efficient for removing SD from wastewater. SD could be completely removed at an absorbed dose of 10 kGy. The degradation kinetics of SD conformed to the first-order kinetic equation. When SD concentration was in the range of 10-30 mg/L, the dose constant (d) decreased with an increasing initial SD concentration. The mineralization of SD, in terms of total organic carbon removal, was not obvious at a low absorbed dose, but it increased to more than 75% at 100 kGy. The biodegradability of SD was improved after irradiation, suggesting that irradiation could be used as a pretreatment technology for treating SD-containing wastewater. The possible degradation pathway of SD was tentatively proposed based on the analysis of intermediate products during gamma irradiation.

  6. Radiation-induced optic neuropathy: A magnetic resonance imaging study

    SciTech Connect

    Guy, J.; Mancuso, A.; Beck, R.; Moster, M.L.; Sedwick, L.A.; Quisling, R.G.; Rhoton, A.L. Jr.; Protzko, E.E.; Schiffman, J. )

    1991-03-01

    Optic neuropathy induced by radiation is an infrequent cause of delayed visual loss that may at times be difficult to differentiate from compression of the visual pathways by recurrent neoplasm. The authors describe six patients with this disorder who experienced loss of vision 6 to 36 months after neurological surgery and radiation therapy. Of the six patients in the series, two had a pituitary adenoma and one each had a metastatic melanoma, multiple myeloma, craniopharyngioma, and lymphoepithelioma. Visual acuity in the affected eyes ranged from 20/25 to no light perception. Magnetic resonance (MR) imaging showed sellar and parasellar recurrence of both pituitary adenomas, but the intrinsic lesions of the optic nerves and optic chiasm induced by radiation were enhanced after gadolinium-diethylenetriaminepenta-acetic acid (DTPA) administration and were clearly distinguishable from the suprasellar compression of tumor. Repeated MR imaging showed spontaneous resolution of gadolinium-DTPA enhancement of the optic nerve in a patient who was initially suspected of harboring recurrence of a metastatic malignant melanoma as the cause of visual loss. The authors found the presumptive diagnosis of radiation-induced optic neuropathy facilitated by MR imaging with gadolinium-DTPA. This neuro-imaging procedure may help avert exploratory surgery in some patients with recurrent neoplasm in whom the etiology of visual loss is uncertain.

  7. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Astrophysics Data System (ADS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  8. Radiation-induced sarcomas of the chest wall

    SciTech Connect

    Souba, W.W.; McKenna, R.J. Jr.; Meis, J.; Benjamin, R.; Raymond, A.K.; Mountain, C.F.

    1986-02-01

    Sixteen patients are presented who had sarcomas of the chest wall at a site where a prior malignancy had been irradiated. The first malignancies included breast cancer (ten cases), Hodgkin's disease (four cases), and others (two cases). Radiation doses varied from 4200 to 5500 R (mean, 4900 R). The latency period ranged from 5 to 28 years (mean, 13 years). The histologic types of the radiation-induced sarcomas were as follows: malignant fibrous histiocytoma, nine cases; osteosarcoma, six cases; and malignant mesenchymoma, one case. The only long-term survivor is alive and well 12 years after resection of a clavicular chondroblastic osteosarcoma. Three cases were recently diagnosed. Despite aggressive multimodality treatment, the remaining 13 patients have all died from their sarcomas (mean survival, 13.5 months). All patients have apparently been cured of their first malignancies. Chemotherapy was ineffective. No treatment, including forequarter amputation, appeared to palliate the patients with supraclavicular soft tissue sarcomas. Major chest wall resection offered good palliation for seven of eight patients with sarcomas arising in the sternum or lateral chest wall. Close follow-up is needed to detect signs of these sarcomas in the ever-increasing number of patients receiving therapeutic irradiation.

  9. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  10. Temporal distributions of risk for radiation-induced cancers.

    PubMed

    Land, C E

    1987-01-01

    Observations of cancer risk in irradiated human populations over time after exposure suggest that there are at least two, and perhaps more, very different patterns of temporal distribution of risk for radiation-induced cancer. The first, exemplified by bone sarcoma following therapeutic injection of 224Ra and chronic granulocytic leukemia in Japanese A-bomb survivors, is an early, wave-like pulse consisting of an increase in risk followed by a gradual decline back to baseline levels. The second, exemplified by breast cancer following a brief exposure to external gamma ray or X ray, and by lung cancer and stomach cancer in A-bomb survivors, is an increase in relative risk over about 10 years to a value which appears to remain constant over time thereafter. The first pattern suggests that tumor growth kinetics may play a central role in the temporal distribution of risk following exposure, while the second seems more consistent with multi-event models for carcinogenesis, in which radiation or some other cause of early events must be followed by one or more later events whose frequencies depend mainly on attained age. There are, however, other data that appear to conform to neither of the two models just mentioned. Influences of other cancer causes, like tobacco smoking, are potentially serious confounding factors in studies of induction period.

  11. Radiation-induced chromosome damage in astronauts' lymphocytes.

    PubMed

    Testard, I; Ricoul, M; Hoffschir, F; Flury-Herard, A; Dutrillaux, B; Fedorenko, B; Gerasimenko, V; Sabatier, L

    1996-10-01

    The increased number of manned space missions has made it important to estimate the biological risks encountered by astronauts. As they are exposed to cosmic rays, especially ions with high linear energy transfer (LET), it is necessary to estimate the doses they receive. The most sensitive biological dosimetry used is based on the quantification of radiation-induced chromosome damage to human lymphocytes. After the space missions ANTARES (1992) and ALTAIR (1993), we performed cytogenetic analysis of blood samples from seven astronauts who had spent from 2 weeks to 6 months in space. After 2 or 3 weeks, the X-ray equivalent dose was found to be below the cytogenetic detection level of 20 mGy. After 6 months, the biological dose greatly varied among the astronauts, from 95 to 455 mGy equivalent dose. These doses are in the same range as those estimated by physical dosimetry (90 mGy absorbed dose and 180 mSv equivalent dose). Some blood cells exhibited the same cytogenetic pattern as the 'rogue cells' occasionally observed in controls, but with a higher frequency. We suggest that rogue cells might result from irradiation with high-LET particles of cosmic origin. However, the responsibility of such cells for the long-term effects of cosmic irradiation remains unknown and must be investigated.

  12. Perinatal radiation-induced renal damage in the beagle

    SciTech Connect

    Jaenke, R.S.; Angleton, G.M. )

    1990-04-01

    The developing perinatal kidney is particularly sensitive to radiation. The pathogenesis of the radiation-induced lesion is related to the destruction of outer cortical developing nephrons and direct radiation injury with secondary hemodynamic alterations in remnant nephrons. In this study, which is part of a life span investigation of the effects of whole-body gamma radiation during prenatal and early postnatal life, dogs were given 0, 0.16, 0.83, or 1.25 Gy irradiation at either 55 days postcoitus or 2 days postpartum and were examined morphometrically and histopathologically at 70 days of age. Although irradiated dogs showed no reduction in the total number of nephrons per kidney, there was a significant increase in the total number and relative percentage of immature, dysplastic glomeruli. In addition, deeper cortical glomeruli of irradiated kidneys exhibited mesangial sclerosis similar to that associated with progressive renal failure in our previous studies. These findings are in accord with those reported at doses of 2.24 to 3.57 Gy and demonstrate that the perinatal kidney is affected by radiation doses much lower than previously demonstrated.

  13. Effects of contrast medium on radiation-induced chromosome aberrations

    SciTech Connect

    Matsubara, S.; Suzuki, S.; Suzuki, H.; Kuwabara, Y.; Okano, T.

    1982-07-01

    The effects of contrast material (meglumine iothalamate) on radiation-induced chromosome aberrations were investigated in studies on the lymphocytes of patients who had undergone diagnostic radiography and in in vitro experiments with diagnostic x rays and /sup 60/Co gamma rays. Chromosome and chromatid aberrations were found to increase significantly with increasing concentrations of contrast material that were added at irradiation. However, the aberrations were not associated with elevation of the ratio of dicentric and ring chromosomes to the number of cells with unstable chromosome aberrations at the first mitosis. Lymphocytes irradiated in the absence of contrast material did not show an increase in chromosome-type aberrations when the agent was given in increasing concentrations during subsequent incubation, but there were greater numbers of chromatid gaps and breaks. When lymphocytes were exposed to 400 R (103.2 mC/kg) of /sup 60/Co gamma rays, the presence of contrast agent did not increase the yield of dicentric and ring chromosomes, but induced a marked delay in cell proliferation, especially in lymphocytes with more heavily damaged chromosomes. In additional examination, the contrast agent itself induced sister chromatid exchanges in lymphocytes.

  14. Glycyrrhetinic acid alleviates radiation-induced lung injury in mice

    PubMed Central

    Chen, Jinmei; Zhang, Weijian; Zhang, Lurong; Zhang, Jiemin; Chen, Xiuying; Yang, Meichun; Chen, Ting; Hong, Jinsheng

    2017-01-01

    Radiation-induced lung injury (RILI) is a common complication of thoracic radiotherapy, but efficacious therapy for RILI is lacking. This study ascertained whether glycyrrhetinic acid (GA; a functional hydrolyzed product of glycyrrhizic acid, which is extracted from herb licorice) can protect against RILI and investigated its relationship to the transforming growth factor (TGF)-β1/Smads signaling pathway. C57BL/6 mice were divided into four groups: a control group, a GA group and two irradiation (IR) groups. IR groups were exposed to a single fraction of X-rays (12 Gy) to the thorax and administered normal saline (IR + NS group) or GA (IR + GA group). Two days and 17 days after irradiation, histologic analyses were performed to assess the degree of lung injury, and the expression of TGF-β1, Smad2, Smad3 and Smad7 was recorded. GA administration mitigated the histologic changes of lung injury 2 days and 17 days after irradiation. Protein and mRNA expression of TGF-β1, Smad2 and Smad3, and the mRNA level of Smad7, in lung tissue were significantly elevated after irradiation. GA decreased expression of TGF-β1, Smad2 and Smad3 in lung tissue, but did not increase Smad7 expression. GA can protect against early-stage RILI. This protective effect may be associated with inhibition of the TGF-β1/Smads signaling pathway. PMID:27672101

  15. Radiation induced thyroid neoplasms 1920 to 1987: A vanishing problem

    SciTech Connect

    Mehta, M.P.; Goetowski, P.G.; Kinsella, T.J.

    1989-06-01

    Radiation for benign diseases has been implicated as an etiologic factor in thyroid cancer. From 1930-60, over 2 million children may have been exposed to therapeutic radiation and it is estimated that up to 7% may develop thyroid cancer after a 5-40 year latency. Thyroid stimulating hormone, secondary to radioinduced hypothyroidism, has been implicated as causative in animals. Such data has led to expensive screening programs in high risk patients. Because of a decline in irradiation for benign diseases in children over the last 2 decades, we questioned whether the incidence of radiation induced thyroid neoplasms (RITN) was also decreasing. Twenty-six of 227 patients (11%) with thyroid malignancies seen at our institution from 1974-87 had a history of previous head and neck irradiation. These included 13 papillary, 3 follicular, and 7 mixed carcinomas as well as 2 lymphomas and 1 synovial cell sarcoma. None of these 26 patients had abnormal thyroid function tests at presentation. Mean latency from irradiation to the diagnosis of thyroid cancer was 25.4 years (6-55 year range). Compared to the reported increasing incidence of RITN from 1940-70, there appears to be a significant decrease since 1970. Based on our analysis, the use of expensive screening programs in high risk populations may no longer be warranted. Additionally, the routine use of thyroid replacement in previously irradiated chemically hypothyroid patients is not recommended.30 references.

  16. Gamma radiation induces hydrogen absorption by copper in water

    NASA Astrophysics Data System (ADS)

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-04-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.

  17. beta-Adrenergic modulation of the inwardly rectifying potassium channel in isolated human ventricular myocytes. Alteration in channel response to beta-adrenergic stimulation in failing human hearts.

    PubMed Central

    Koumi, S; Backer, C L; Arentzen, C E; Sato, R

    1995-01-01

    The beta-adrenergic modulation of the inwardly-rectifying K+ channel (IK1) was examined in isolated human ventricular myocytes using patch-clamp techniques. Isoproterenol (ISO) reversibly depolarized the resting membrane potential and prolonged the action potential duration. Under the whole-cell C1- -free condition, ISO applied via the bath solution reversibly inhibited macroscopic IdK1. The reversal potential of the ISO-sensitive current was shifted by approximately 60 mV per 10-fold change in the external K+ concentration and was sensitive to Ba2+. The ISO-induced inhibition of IK1 was mimicked by forskolin and dibutyrl cAMP, and was prevented by including a cAMP-dependent protein kinase (PKA) inhibitor (PKI) in the pipette solution. In single-channel recordings from cell-attached patches, bath applied ISO could suppress IK1 channels by decreasing open state probability. Bath application of the purified catalytic sub-unit of PKA to inside-out patches also inhibited IK1 and the inhibition could be antagonized by alkaline phosphatase. When beta-adrenergic modulation of IK1 was compared between ventricular myocytes isolated from the failing and the nonfailing heart, channel response to ISO and PKA was significantly reduced in myocytes from the failing heart. Although ISO inhibited IK1 in a concentration-dependent fashion in both groups, a half-maximal concentration was greater in failing (0.12 microM) than in nonfailing hearts (0.023 microM). These results suggest that IK1 in human ventricular myocytes can be inhibited by a PKA-mediated phosphorylation and the modulation is significantly reduced in ventricular myocytes from the failing heart compared to the nonfailing heart. Images PMID:8675658

  18. Role of nitric oxide in the radiation-induced bystander effect.

    PubMed

    Yakovlev, Vasily A

    2015-12-01

    Cells that are not irradiated but are affected by "stress signal factors" released from irradiated cells are called bystander cells. These cells, as well as directly irradiated ones, express DNA damage-related proteins and display excess DNA damage, chromosome aberrations, mutations, and malignant transformation. This phenomenon has been studied widely in the past 20 years, since its first description by Nagasawa and Little in 1992, and is known as the radiation-induced bystander effect (RIBE). Several factors have been identified as playing a role in the bystander response. This review will focus on one of them, nitric oxide (NO), and its role in the stimulation and propagation of RIBE. The hydrophobic properties of NO, which permit its diffusion through the cytoplasm and plasma membranes, allow this signaling molecule to easily spread from irradiated cells to bystander cells without the involvement of gap junction intercellular communication. NO produced in irradiated tissues mediates cellular regulation through posttranslational modification of a number of regulatory proteins. The best studied of these modifications are S-nitrosylation (reversible oxidation of cysteine) and tyrosine nitration. These modifications can up- or down-regulate the functions of many proteins modulating different NO-dependent effects. These NO-dependent effects include the stimulation of genomic instability (GI) and the accumulation of DNA errors in bystander cells without direct DNA damage.

  19. Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons.

    PubMed

    Xu, Shangcheng; Zhou, Zhou; Zhang, Lei; Yu, Zhengping; Zhang, Wei; Wang, Yuan; Wang, Xubu; Li, Maoquan; Chen, Yang; Chen, Chunhai; He, Mindi; Zhang, Guangbin; Zhong, Min

    2010-01-22

    Increasing evidence indicates that oxidative stress may be involved in the adverse effects of radiofrequency (RF) radiation on the brain. Because mitochondrial DNA (mtDNA) defects are closely associated with various nervous system diseases and mtDNA is particularly susceptible to oxidative stress, the purpose of this study was to determine whether radiofrequency radiation can cause oxidative damage to mtDNA. In this study, we exposed primary cultured cortical neurons to pulsed RF electromagnetic fields at a frequency of 1800 MHz modulated by 217 Hz at an average special absorption rate (SAR) of 2 W/kg. At 24 h after exposure, we found that RF radiation induced a significant increase in the levels of 8-hydroxyguanine (8-OHdG), a common biomarker of DNA oxidative damage, in the mitochondria of neurons. Concomitant with this finding, the copy number of mtDNA and the levels of mitochondrial RNA (mtRNA) transcripts showed an obvious reduction after RF exposure. Each of these mtDNA disturbances could be reversed by pretreatment with melatonin, which is known to be an efficient antioxidant in the brain. Together, these results suggested that 1800 MHz RF radiation could cause oxidative damage to mtDNA in primary cultured neurons. Oxidative damage to mtDNA may account for the neurotoxicity of RF radiation in the brain.

  20. Radiation-induced lower cranial nerve palsy in patients with head and neck carcinoma

    PubMed Central

    JANSSEN, STEFAN; GLANZMANN, CHRISTOPH; YOUSEFI, BITA; LOEWENICH, KARL; HUBER, GERHARD; SCHMID, STEPHAN; STUDER, GABRIELA

    2015-01-01

    Radiation-induced cranial nerve palsy (RICNP) is a severe long-term complication in patients with head and neck cancer following high-dose radiation therapy (RT). We present the case report of a patient with bilateral RICNP of the hypoglossal and vagus cranial nerves (XII/X) following postoperative RT in the era prior to the introduction of intensity-modulated RT (IMRT), and an analysis of our IMRT patient cohort at risk including the case of a XII RICNP. A total of 201 patients whose glosso-pharyngeal (IX), X and XII cranial nerves had been exposed to >65 Gy definitive IMRT in our institution between January, 2002 and December, 2012 with or without systemic therapy, were retrospectively identified. A total of 151 patients out of 201 fulfilling the following criteria were included in the analysis: Locoregionally controlled disease, with a follow-up (FU) of >24 months and >65 Gy exposure of the nerves of interest. So far, one of the assessed 151 IMRT patients at risk exhibited symptoms of RICNP after 6 years. The mean/median FU of the entire cohort was 71/68 months (range, 27–145). The results were compared with literature reports. In conclusion, RICNP appears to be a rare complication. However, a longer FU and a larger sample size are required to draw reliable conclusions on the incidence of RICNP in the era of IMRT. PMID:26171186

  1. Ionizing radiation-induced mutant frequencies increase transiently in male germ cells of older mice.

    PubMed

    Xu, Guogang; McMahan, C Alex; Hildreth, Kim; Garcia, Rebecca A; Herbert, Damon C; Walter, Christi A

    2012-05-15

    Spontaneous mutant frequency in the male germline increases with age, thereby increasing the risk of siring offspring with genetic disorders. In the present study we investigated the effect of age on ionizing radiation-induced male germline mutagenesis. lacI transgenic mice were treated with ionizing radiation at 4-, 15- and 26-month-old, and mutant frequencies were determined for pachytene spermatocytes and round spermatids at 15 days or 49 days after ionizing radiation treatment. Cells collected 15 days after treatment were derivatives of irradiated differentiating spermatogenic cells while cells collected 49 days later were derivatives of spermatogonial stem cells. The results showed that (1) spontaneous mutant frequency increased in spermatogenic cells recovered from nonirradiated old mice (26-months-old), particularly in the round spermatids; (2) mutant frequencies were significantly increased in round spermatids obtained from middle-aged mice (15-months-old) and old age mice (26-months-old) at 15 and 49 days after irradiation compared to the sham-treated old mice; and (3) pachytene spermatocytes obtained from 15- or 26-month-old mice displayed a significantly increased mutant frequency at 15 days post irradiation. This study indicates that age modulates the mutagenic response to ionizing radiation in the male germline.

  2. The Effects of Fenugreek on Radiation Induced Toxicity for Human Blood T-Cells in Radiotherapy

    PubMed Central

    Tavakoli, Mohamed Bagher; Kiani, Ali; Roayaei, Mahnaz

    2015-01-01

    Many cellular damages either in normal or cancerous tissues are the outcome of molecular events affected by ionizing radiation. T-cells are the most important among immune system agents and are used for biological radiation dose measurement in recommended standard methods. The herbs with immune modulating properties may be useful to reduce the risk of the damages and subsequently the diseases. The T-cells as the most important immune cells being targeted for biological dosimetry of radiation. This study proposes a flowcytometric-method based on fluorescein isothiocyanate- and propidium iodide (PI)-labeled annexin-V to assess apoptosis in blood T-cells after irradiation in both presence and absence of fenugreek extract. T-cells peripheral blood lymphocyte isolated from blood samples of healthy individuals with no irradiated job background. The media of cultured cells was irradiated 1-h after the fenugreek extract was added. The number of apoptotic cells was assessed by annexin-V protocol and multicolor flowcytometry. An obvious variation in apoptotic cells number was observed in presence of fenugreek extract (>80%). The results suggest that fenugreek extract can potentiate the radiation induced apoptosis or radiation toxicity in blood T-cells (P < 0.05). PMID:26284174

  3. ATM Heterozygosity and the Development of Radiation-Induced Erectile Dysfunction and Urinary Morbidity Following Radiotherapy for Prostate Cancer

    DTIC Science & Technology

    2007-02-01

    whether there is a correlation between the presence of a mutation, development of a radiation -induced complication , and impairment of ATM protein...associated with the development of radiation -induced proctitis following prostate cancer radiotherapy for patients who receive the full prescription...possession of genetic variants in the ATM gene is associated with the development of radiation -induced proctitis following prostate cancer

  4. Effects of helium and hydrogen on radiation-induced microstructural changes in austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Jin, Hyung-Ha; Ko, Eunsol; Lim, Sangyeop; Kwon, Junhyun

    2015-09-01

    Microstructural changes in austenitic stainless steel by helium, hydrogen, and iron ion irradiation were investigated with transmission electron microscopy. Typical radiation-induced changes, such as the formation of Frank loops in the matrix and radiation-induced segregation (RIS) or depletion at grain boundaries, were observed after ion irradiation. The helium ion irradiation led to the formation of cavities both at grain boundaries and in the matrix, as well as the development of smaller Frank loops. The hydrogen ion irradiation generated stronger RIS behavior at the grain boundaries compared to irradiation with helium and iron ions. The effects of helium and hydrogen on radiation-induced microstructural changes were discussed.

  5. Pentoxifylline Regulates Plasminogen Activator Inhibitor-1 Expression and Protein Kinase A Phosphorylation in Radiation-Induced Lung Fibrosis

    PubMed Central

    Bae, Chang-Hwan; Jin, Young-Woo; Lee, Seung-Sook

    2017-01-01

    Purpose. Radiation-induced lung fibrosis (RILF) is a serious late complication of radiotherapy. In vitro studies have demonstrated that pentoxifylline (PTX) has suppressing effects in extracellular matrix production in fibroblasts, while the antifibrotic action of PTX alone using clinical dose is yet unexplored. Materials and Methods. We used micro-computed tomography (micro-CT) and histopathological analysis to evaluate the antifibrotic effects of PTX in a rat model of RILF. Results. Micro-CT findings showed that lung density, volume loss, and mediastinal shift are significantly increased at 16 weeks after irradiation. Simultaneously, histological analysis demonstrated thickening of alveolar walls, destruction of alveolar structures, and excessive collagen deposition in the irradiated lung. PTX treatment effectively attenuated the fibrotic changes based on both micro-CT and histopathological analyses. Western analysis also revealed increased levels of plasminogen activator inhibitor- (PAI-) 1 and fibronectin (FN) and PTX treatment reduced expression of PAI-1 and FN by restoring protein kinase A (PKA) phosphorylation but not TGF-β/Smad in both irradiated lung tissues and epithelial cells. Conclusions. Our results demonstrate the antifibrotic effect of PTX on radiation-induced lung fibrosis and its effect on modulation of PKA and PAI-1 expression as possible antifibrotic mechanisms. PMID:28337441

  6. Radiation-Induced Upregulation of Gene Expression From Adenoviral Vectors Mediated by DNA Damage Repair and Regulation

    SciTech Connect

    Nokisalmi, Petri; Rajecki, Maria; Pesonen, Sari; Escutenaire, Sophie; Soliymani, Rabah; Tenhunen, Mikko; Ahtiainen, Laura; Hemminki, Akseli

    2012-05-01

    Purpose: In the present study, we evaluated the combination of replication-deficient adenoviruses and radiotherapy in vitro. The purpose of the present study was to analyze the mechanism of radiation-mediated upregulation of adenoviral transgene expression. Methods and Materials: Adenoviral transgene expression (luciferase or green fluorescent protein) was studied with and without radiation in three cell lines: breast cancer M4A4-LM3, prostate cancer PC-3MM2, and lung cancer LNM35/enhanced green fluorescent protein. The effect of the radiation dose, modification of the viral capsid, and five different transgene promoters were studied. The cellular responses were studied using mass spectrometry and immunofluorescence analysis. Double strand break repair was modulated by inhibitors of heat shock protein 90, topoisomerase-I, and DNA protein kinase, and transgene expression was measured. Results: We found that a wide range of radiation doses increased adenoviral transgene expression regardless of the cell line, transgene, promoter, or viral capsid modification. Treatment with adenovirus, radiation, and double strand break repair inhibitors resulted in persistence of double strand breaks and subsequent increases in adenovirus transgene expression. Conclusions: Radiation-induced enhancement of adenoviral transgene expression is linked to DNA damage recognition and repair. Radiation induces a global cellular response that results in increased production of RNA and proteins, including adenoviral transgene products. This study provides a mechanistic rationale for combining radiation with adenoviral gene delivery.

  7. Radiation-induced second cancers: the impact of 3D-CRT and IMRT

    NASA Technical Reports Server (NTRS)

    Hall, Eric J.; Wuu, Cheng-Shie

    2003-01-01

    Information concerning radiation-induced malignancies comes from the A-bomb survivors and from medically exposed individuals, including second cancers in radiation therapy patients. The A-bomb survivors show an excess incidence of carcinomas in tissues such as the gastrointestinal tract, breast, thyroid, and bladder, which is linear with dose up to about 2.5 Sv. There is great uncertainty concerning the dose-response relationship for radiation-induced carcinogenesis at higher doses. Some animal and human data suggest a decrease at higher doses, usually attributed to cell killing; other data suggest a plateau in dose. Radiotherapy patients also show an excess incidence of carcinomas, often in sites remote from the treatment fields; in addition there is an excess incidence of sarcomas in the heavily irradiated in-field tissues. The transition from conventional radiotherapy to three-dimensional conformal radiation therapy (3D-CRT) involves a reduction in the volume of normal tissues receiving a high dose, with an increase in dose to the target volume that includes the tumor and a limited amount of normal tissue. One might expect a decrease in the number of sarcomas induced and also (less certain) a small decrease in the number of carcinomas. All around, a good thing. By contrast, the move from 3D-CRT to intensity-modulated radiation therapy (IMRT) involves more fields, and the dose-volume histograms show that, as a consequence, a larger volume of normal tissue is exposed to lower doses. In addition, the number of monitor units is increased by a factor of 2 to 3, increasing the total body exposure, due to leakage radiation. Both factors will tend to increase the risk of second cancers. Altogether, IMRT is likely to almost double the incidence of second malignancies compared with conventional radiotherapy from about 1% to 1.75% for patients surviving 10 years. The numbers may be larger for longer survival (or for younger patients), but the ratio should remain the same.

  8. Dosimetric Analysis of Radiation-Induced Gastric Bleeding

    PubMed Central

    Feng, Mary; Normolle, Daniel; Pan, Charlie C.; Dawson, Laura A.; Amarnath, Sudha; Ensminger, William D.; Lawrence, Theodore S.; Ten Haken, Randall K.

    2012-01-01

    Purpose Radiation-induced gastric bleeding has been poorly understood. In this study, we describe dosimetric predictors for gastric bleeding after fractionated radiotherapy and compare several predictive models. Materials & Methods The records of 139 sequential patients treated with 3-dimensional conformal radiotherapy (3D-CRT) for intrahepatic malignancies between January 1999 and April 2002 were reviewed. Median follow-up was 7.4 months. Logistic regression and Lyman normal tissue complication probability (NTCP) models for the occurrence of ≥ grade 3 gastric bleed were fit to the data. The principle of maximum likelihood was used to estimate parameters for all models. Results Sixteen of 116 evaluable patients (14%) developed gastric bleeds, at a median time of 4.0 months (mean 6.5 months, range 2.1–28.3 months) following completion of RT. The median and mean of the maximum doses to the stomach were 61 and 63 Gy (range 46 Gy–86 Gy), respectively, after bio-correction to equivalent 2 Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis was most predictive of gastric bleed (AUROC=0.92). Best fit Lyman NTCP model parameters were n =0.10, and m =0.21, with TD50(normal) =56 Gy and TD50(cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD50 value for the cirrhosis patients points out their greater sensitivity. Conclusion This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding, and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation. PMID:22541965

  9. Dosimetric Analysis of Radiation-induced Gastric Bleeding

    SciTech Connect

    Feng, Mary; Normolle, Daniel; Pan, Charlie C.; Dawson, Laura A.; Amarnath, Sudha; Ensminger, William D.; Lawrence, Theodore S.; Ten Haken, Randall K.

    2012-09-01

    Purpose: Radiation-induced gastric bleeding has been poorly understood. In this study, we described dosimetric predictors for gastric bleeding after fractionated radiation therapy. Methods and Materials: The records of 139 sequential patients treated with 3-dimensional conformal radiation therapy (3D-CRT) for intrahepatic malignancies were reviewed. Median follow-up was 7.4 months. The parameters of a Lyman normal tissue complication probability (NTCP) model for the occurrence of {>=}grade 3 gastric bleed, adjusted for cirrhosis, were fitted to the data. The principle of maximum likelihood was used to estimate parameters for NTCP models. Results: Sixteen of 116 evaluable patients (14%) developed gastric bleeds at a median time of 4.0 months (mean, 6.5 months; range, 2.1-28.3 months) following completion of RT. The median and mean maximum doses to the stomach were 61 and 63 Gy (range, 46-86 Gy), respectively, after biocorrection of each part of the 3D dose distributions to equivalent 2-Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis predicted gastric bleed. Best-fit Lyman NTCP model parameters were n=0.10 and m=0.21 and with TD{sub 50} (normal) = 56 Gy and TD{sub 50} (cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD{sub 50} value for the cirrhosis patients points out their greater sensitivity. Conclusions: This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation.

  10. Chronic radiation-induced dermatitis: challenges and solutions

    PubMed Central

    Spałek, Mateusz

    2016-01-01

    Chronic radiation dermatitis is a late side effect of skin irradiation, which may deteriorate patients’ quality of life. There is a lack of precise data about its incidence; however, several risk factors may predispose to the development of this condition. It includes radiotherapy dose, fractionation, technique, concurrent systemic therapy, comorbidities, and personal and genetic factors. Chronic radiation dermatitis is mostly caused by the imbalance of proinflammatory and profibrotic cytokines. Clinical manifestation includes changes in skin appearance, wounds, ulcerations, necrosis, fibrosis, and secondary cancers. The most severe complication of irradiation is extensive radiation-induced fibrosis (RIF). RIF can manifest in many ways, such as skin induration and retraction, lymphedema or restriction of joint motion. Diagnosis of chronic radiation dermatitis is usually made by clinical examination. In case of unclear clinical manifestation, a biopsy and histopathological examination are recommended to exclude secondary malignancy. The most effective prophylaxis of chronic radiation dermatitis is the use of proper radiation therapy techniques to avoid unnecessary irradiation of healthy skin. Treatment of chronic radiation dermatitis is demanding. The majority of the interventions are based only on clinical practice. Telangiectasia may be treated with pulse dye laser therapy. Chronic postirradiation wounds need special dressings. In case of necrosis or severe ulceration, surgical intervention may be considered. Management of RIF should be complex. Available methods are rehabilitative care, pharmacotherapy, hyperbaric oxygen therapy, and laser therapy. Future challenges include the assessment of late skin toxicity in modern irradiation techniques. Special attention should be paid on genomics and radiomics that allow scientists and clinicians to select patients who are at risk of the development of chronic radiation dermatitis. Novel treatment methods and clinical

  11. [Radiation-induced tumors of the nervous system in man].

    PubMed

    Hubert, D; Bertin, M

    1993-11-01

    The risk of developing a tumor of the nervous system in humans is analysed in several studies of populations, exposed to ionising radiation for medical reasons, or exposed to military or occupational radiation. The main data come from series of patients who underwent radiotherapy during childhood: a high incidence of tumors of the nervous system is found after irradiation of one to a few grays as treatment of a benign disease (especially tinea capitis), as well as after irradiation at higher doses of a few tens of grays for the treatment of cancer (in particular cerebral irradiation in acute lymphoblastic leukaemia). The type of radiation-induced tumors is variable, but meningioma is more frequent after low doses and glioma and sarcoma after higher doses used in the treatment of neoplastic diseases. A dose-effect relationship appeared between the risk of tumor of the nervous system and the radiation dose. The risk was higher when radiation was delivered at a younger age. Much less data are available after radiotherapy in the adulthood, but an increased risk of cerebral tumor appears in the series of ankylosing spondylitis patients. As for the exposures to radiodiagnosis exams, the main problem is the risk of cerebral tumor in children whose mother has undergone abdominal or pelvic X-rays during pregnancy. No risk of neurologic tumor was found in the A-bomb survivors irradiated at Hiroshima and Nagasaki. Occupational exposure to ionising radiation has been incriminated in the first radiologists exposed to high doses. In nuclear industry workers, the results of epidemiological studies are contradictory and at the present time it is not possible to link their radiologic exposure with a risk of tumor of the nervous system. In populations living near nuclear plants, mortality due to tumors of the nervous system was not increased.

  12. Chronic radiation-induced dermatitis: challenges and solutions.

    PubMed

    Spałek, Mateusz

    2016-01-01

    Chronic radiation dermatitis is a late side effect of skin irradiation, which may deteriorate patients' quality of life. There is a lack of precise data about its incidence; however, several risk factors may predispose to the development of this condition. It includes radiotherapy dose, fractionation, technique, concurrent systemic therapy, comorbidities, and personal and genetic factors. Chronic radiation dermatitis is mostly caused by the imbalance of proinflammatory and profibrotic cytokines. Clinical manifestation includes changes in skin appearance, wounds, ulcerations, necrosis, fibrosis, and secondary cancers. The most severe complication of irradiation is extensive radiation-induced fibrosis (RIF). RIF can manifest in many ways, such as skin induration and retraction, lymphedema or restriction of joint motion. Diagnosis of chronic radiation dermatitis is usually made by clinical examination. In case of unclear clinical manifestation, a biopsy and histopathological examination are recommended to exclude secondary malignancy. The most effective prophylaxis of chronic radiation dermatitis is the use of proper radiation therapy techniques to avoid unnecessary irradiation of healthy skin. Treatment of chronic radiation dermatitis is demanding. The majority of the interventions are based only on clinical practice. Telangiectasia may be treated with pulse dye laser therapy. Chronic postirradiation wounds need special dressings. In case of necrosis or severe ulceration, surgical intervention may be considered. Management of RIF should be complex. Available methods are rehabilitative care, pharmacotherapy, hyperbaric oxygen therapy, and laser therapy. Future challenges include the assessment of late skin toxicity in modern irradiation techniques. Special attention should be paid on genomics and radiomics that allow scientists and clinicians to select patients who are at risk of the development of chronic radiation dermatitis. Novel treatment methods and clinical

  13. Extensive radiation-induced heart disease in an adult patient treated for lymphoma as a child.

    PubMed

    Poulin, Frédéric; Semionov, Alexandre; Roméo, Philippe; Demers, Philippe; Pressacco, Josephine; Basmadjian, Arsène

    2011-01-01

    Cardiovascular complications are the second leading cause of late mortality in survivors of Hodgkin's lymphoma (HL) exposed to mediastinal radiotherapy. Symptomatic cardiac disease following classic thoracic irradiation for HL is reported in 10%-30% of patients at 5-10 years of follow-up. We present the case of a 44-year-old man with a history of left cervical nodular lymphocyte predominant HL treated at childhood with 40 Gy extended field thoracic irradiation (Mantle) who presented with mixed aortic and mitral valve disease, coronary artery stenosis, myocardial and aortic calcifications, and mediastinal fibrosis. Despite extensive cardiac surgery, the postoperative course was complicated and resulted in the patient's death. We review herein the typical cardiac involvement related to mediastinal radiotherapy and the controversies surrounding its surgical approach.

  14. Exhaustive endurance training for 6-9 weeks did not induce changes in intrinsic heart rate and cardiac autonomic modulation in female athletes.

    PubMed

    Uusitalo, A L; Uusitalo, A J; Rusko, H K

    1998-11-01

    We investigated the effects of progressively increased training load and overtraining on resting and intrinsic heart rate (IHR) and cardiac autonomic modulation (CAM), and their relationships to performance variables. Nine athletes (ETG) increased training volume at 70-90% of maximal oxygen uptake (VO2max) by 130% (p<0.01) and training volume at <70% VO2max by 100% (p < 0.01) during 6-9 weeks. The corresponding increases in six female control athletes (CG) were 5 and 10%. Pharmacological blocking through atropine and propranolol and the Rosenblueth and Simeone model were used to calculate the sympathovagal balance index (Abal) and to measure IHR. The results were analysed using two-way analysis of variance. VO2max, IHR and Abal did not change. Resting heart rate had a tendency to decrease in the ETG and increase in the CG during the training period (interaction p < 0.01). Five ETG athletes demonstrated overtraining state (OA subgroup). Their VO2max (mean+/-SEM) decreased from 53.0+/-2.2 ml x kg(-1) x min(-1) to 50.2+/-2.3 ml x kg(-1) x min(-1) (p < 0.01), but no changes in resting HR, IHR and Abal were found. A significant correlation between the baseline values of VO2max and the parasympathetic activity index was found (r=-0.59, p < 0.05). In conclusion, progressively increased training load and overtraining did not induce significant changes in intrinsic heart rate or cardiac autonomic modulation in female endurance athletes. Resting heart rate rather decreased with heavy endurance training and overtraining. High maximal oxygen uptake was correlated with high cardiac parasympathetic modulation.

  15. Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications.

    PubMed

    Zhao, Weiling; Robbins, Mike E C

    2009-01-01

    The threat of radiation-induced late normal tissue injury limits the dose of radiation that can be delivered safely to cancer patients presenting with solid tumors. Tissue dysfunction and failure, associated with atrophy, fibrosis and/or necrosis, as well as vascular injury, have been reported in late responding normal tissues, including the central nervous system, gut, kidney, liver, lung, and skin. The precise mechanisms involved in the pathogenesis of radiation-induced late normal tissue injury have not been fully elucidated. It has been proposed recently that the radiation-induced late effects are caused, in part, by chronic oxidative stress and inflammation. Increased production of reactive oxygen species, which leads to lipid peroxidation, oxidation of DNA and proteins, as well as activation of pro-inflammatory factors has been observed in vitro and in vivo. In this review, we will present direct and indirect evidence to support this hypothesis. To improve the long-term survival and quality of life for radiotherapy patients, new approaches have been examined in preclinical models for their efficacy in preventing or mitigating the radiation-induced chronic normal tissue injury. We and others have tested drugs that can either attenuate inflammation or reduce chronic oxidative stress in animal models of late radiation-induced normal tissue injury. The effectiveness of renin-angiotensin system blockers, peroxisome proliferator-activated receptor (PPAR) gamma agonists, and antioxidants/antioxidant enzymes in preventing or mitigating the severity of radiation-induced late effects indicates that radiation-induced chronic injury can be prevented and/or treated. This provides a rationale for the design and development of anti-inflammatory-based interventional approaches for the treatment of radiation-induced late normal tissue injury.

  16. Radiation-Induced Topological Disorder in Irradiated Network Structures

    SciTech Connect

    Hobbs, Linn W.

    2002-12-21

    This report summarizes results of a research program investigating the fundamental principles underlying the phenomenon of topological disordering in a radiation environment. This phenomenon is known popularly as amorphization, but is more formally described as a process of radiation-induced structural arrangement that leads in crystals to loss of long-range translational and orientational correlations and in glasses to analogous alteration of connectivity topologies. The program focus has been on a set compound ceramic solids with directed bonding exhibiting structures that can be described as networks. Such solids include SiO2, Si3N4, SiC, which are of interest to applications in fusion energy production, nuclear waste storage, and device manufacture involving ion implantation or use in radiation fields. The principal investigative tools comprise a combination of experimental diffraction-based techniques, topological modeling, and molecular-dynamics simulations that have proven a rich source of information in the preceding support period. The results from the present support period fall into three task areas. The first comprises enumeration of the rigidity constraints applying to (1) more complex ceramic structures (such as rutile, corundum, spinel and olivine structures) that exhibit multiply polytopic coordination units or multiple modes of connecting such units, (2) elemental solids (such as graphite, silicon and diamond) for which a correct choice of polytope is necessary to achieve correct representation of the constraints, and (3) compounds (such as spinel and silicon carbide) that exhibit chemical disorder on one or several sublattices. With correct identification of the topological constraints, a unique correlation is shown to exist between constraint and amorphizability which demonstrates that amorphization occurs at a critical constraint loss. The second task involves the application of molecular dynamics (MD) methods to topologically-generated models

  17. Radiation-induced osteosarcomas in the pediatric population

    SciTech Connect

    Koshy, Matthew; Paulino, Arnold C. . E-mail: apaulino@tmh.tmc.edu; Mai, Wei Y.; Teh, Bin S.

    2005-11-15

    Purpose: Radiation-induced osteosarcomas (R-OS) have historically been high-grade, locally invasive tumors with a poor prognosis. The purpose of this study was to perform a comprehensive literature review and analysis of reported cases dealing with R-OS in the pediatric population to identify the characteristics, prognostic factors, optimal treatment modalities, and overall survival of these patients. Methods and Materials: A MEDLINE/PubMed search of articles written in the English language dealing with OSs occurring after radiotherapy (RT) in the pediatric population yielded 30 studies from 1981 to 2004. Eligibility criteria included patients <21 years of age at the diagnosis of the primary cancer, cases satisfying the modified Cahan criteria, and information on treatment outcome. Factors analyzed included the type of primary cancer treated with RT, the radiation dose and beam energy, the latency period between RT and the development of R-OS, and the treatment, follow-up, and final outcome of R-OS. Results: The series included 109 patients with a median age at the diagnosis of primary cancer of 6 years (range, 0.08-21 years). The most common tumors treated with RT were Ewing's sarcoma (23.9%), rhabdomyosarcoma (17.4%), retinoblastoma (12.8%), Hodgkin's disease (9.2%), brain tumor (8.3%), and Wilms' tumor (6.4%). The median radiation dose was 47 Gy (range, 15-145 Gy). The median latency period from RT to the development of R-OS was 100 months (range, 36-636 months). The median follow-up after diagnosis of R-OS was 18 months (1-172 months). The 3- and 5-year cause-specific survival rate was 43.6% and 42.2%, respectively, and the 3- and 5-year overall survival rate was 41.7% and 40.2%, respectively. Variables, including age at RT, primary site, type of tumor treated with RT, total radiation dose, and latency period did not have a significant effect on survival. The 5-year cause-specific and overall survival rate for patients who received treatment for R-OS involving

  18. PAI-1-Dependent Endothelial Cell Death Determines Severity of Radiation-Induced Intestinal Injury

    PubMed Central

    Abderrahmani, Rym; François, Agnes; Buard, Valerie; Tarlet, Georges; Blirando, Karl; Hneino, Mohammad; Vaurijoux, Aurelie; Benderitter, Marc; Sabourin, Jean-Christophe; Milliat, Fabien

    2012-01-01

    Normal tissue toxicity still remains a dose-limiting factor in clinical radiation therapy. Recently, plasminogen activator inhibitor type 1 (SERPINE1/PAI-1) was reported as an essential mediator of late radiation-induced intestinal injury. However, it is not clear whether PAI-1 plays a role in acute radiation-induced intestinal damage and we hypothesized that PAI-1 may play a role in the endothelium radiosensitivity. In vivo, in a model of radiation enteropathy in PAI-1 −/− mice, apoptosis of radiosensitive compartments, epithelial and microvascular endothelium was quantified. In vitro, the role of PAI-1 in the radiation-induced endothelial cells (ECs) death was investigated. The level of apoptotic ECs is lower in PAI-1 −/− compared with Wt mice after irradiation. This is associated with a conserved microvascular density and consequently with a better mucosal integrity in PAI-1 −/− mice. In vitro, irradiation rapidly stimulates PAI-1 expression in ECs and radiation sensitivity is increased in ECs that stably overexpress PAI-1, whereas PAI-1 knockdown increases EC survival after irradiation. Moreover, ECs prepared from PAI-1 −/− mice are more resistant to radiation-induced cell death than Wt ECs and this is associated with activation of the Akt pathway. This study demonstrates that PAI-1 plays a key role in radiation-induced EC death in the intestine and suggests that this contributes strongly to the progression of radiation-induced intestinal injury. PMID:22563394

  19. Pyruvate metabolism: A therapeutic opportunity in radiation-induced skin injury

    SciTech Connect

    Yoo, Hyun; Kang, Jeong Wook; Lee, Dong Won; Oh, Sang Ho; Lee, Yun-Sil; Lee, Eun-Jung; Cho, Jaeho

    2015-05-08

    Ionizing radiation is used to treat a range of cancers. Despite recent technological progress, radiation therapy can damage the skin at the administration site. The specific molecular mechanisms involved in this effect have not been fully characterized. In this study, the effects of pyruvate, on radiation-induced skin injury were investigated, including the role of the pyruvate dehydrogenase kinase 2 (PDK2) signaling pathway. Next generation sequencing (NGS) identified a wide range of gene expression differences between the control and irradiated mice, including reduced expression of PDK2. This was confirmed using Q-PCR. Cell culture studies demonstrated that PDK2 overexpression and a high cellular pyruvate concentration inhibited radiation-induced cytokine expression. Immunohistochemical studies demonstrated radiation-induced skin thickening and gene expression changes. Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness and inflammatory cytokine expression. These findings indicated that regulation of the pyruvate metabolic pathway could provide an effective approach to the control of radiation-induced skin damage. - Highlights: • The effects of radiation on skin thickness in mice. • Next generation sequencing revealed that radiation inhibited pyruvate dehydrogenase kinase 2 expression. • PDK2 inhibited irradiation-induced cytokine gene expression. • Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness.

  20. Effects of ceramide inhibition on radiation-induced apoptosis in human leukemia MOLT-4 cells.

    PubMed

    Takahashi, Eriko; Inanami, Osamu; Asanuma, Taketoshi; Kuwabara, Mikinori

    2006-03-01

    In the present study, using inhibitors of ceramide synthase (fumonisin B1), ketosphinganine synthetase (L-cycloserine), acid sphingomyelinase (D609 and desipramine) and neutral sphingomyelinase (GW4869), the role of ceramide in X-ray-induced apoptosis was investigated in MOLT-4 cells. The diacylglycerol kinase (DGK) assay showed that the intracellular concentration of ceramide increased time-dependently after X irradiation of cells, and this radiation-induced accumulation of ceramide did not occur prior to the appearance of apoptotic cells. Treatment with D609 significantly inhibited radiation-induced apoptosis, but did not inhibit the increase of intracellular ceramide. Treatment with desipramine or GW4869 prevented neither radiation-induced apoptosis nor the induced increase of ceramide. On the other hand, fumonisin B1 and L-cycloserine had no effect on the radiation-induced induction of apoptosis, in spite of significant inhibition of the radiation-induced ceramide. From these results, it was suggested that the increase of the intracellular concentration of ceramide was not essential for radiation-induced apoptosis in MOLT-4 cells.

  1. Nitric oxide: a co-modulator of efferent peptidergic neurosecretory cells including a unique octopaminergic neurone innervating locust heart.

    PubMed

    Bullerjahn, Alexander; Mentel, Tim; Pflüger, Hans-Joachim; Stevenson, Paul A

    2006-08-01

    Our findings suggest that nitric oxide (NO) acts as peripheral neuromodulator in locusts, in which it is commonly co-localized with RF-like peptide in neurosecretory cells. We also present the first evidence for NO as a cardio-regulator in insects. Putative NO-producing neurones were detected in locust pre-genital free abdominal ganglia by NADPH-diaphorase histochemistry and with an antibody against NO synthase (NOS). With both methods, we identified the same 14 somata in each examined ganglion: two dorsal posterior midline somata; six ventral posterior midline somata; and three pairs of lateral somata. A combination of NOS-detection methods with nerve tracing and transmitter immunocytochemistry revealed that at least 12 of these cells were efferent, of which four were identified as peptidergic neurosecretory cells with an antiserum detecting RFamide-like peptides. One of the latter was unequivocally identified as an octopaminergic dorsal unpaired median (DUM) neurone, which specifically projected to the heart ("DUM-heart"). Its peripheral projections revealed by axon tracing appeared as a meshwork of varicose endings encapsulating the heart. NOS-like immunoreactive profiles were found in the heart nerve. NO donors caused a dose-dependent increase in heart rate. This cardio-excitatory effect was negatively correlated to resting heart rate and seemed to be dependent on the physiological state of the animal. Hence, NO released from neurones such as the rhythmically active DUM-heart might exert continuous control over the heart. Possible mechanisms for the actions of NO on the heart and interactions with other neuromodulators co-localized in the DUM-heart neurone (octopamine, taurine, RF-amide-like peptide) are discussed.

  2. Low concentration of exogenous carbon monoxide protects mammalian cells against proliferation induced by radiation-induced bystander effect.

    PubMed

    Tong, Liping; Yu, K N; Bao, Lingzhi; Wu, Wenqing; Wang, Hongzhi; Han, Wei

    2014-01-01

    Radiation-induced bystander effect (RIBE) has been proposed to have tight relationship with the irradiation-caused secondary cancers beyond the irradiation-treated area after radiotherapy. Our previous studies demonstrated a protective effect of low concentration carbon monoxide (CO) on the genotoxicity of RIBE after α-particle irradiation. In the present work, a significant inhibitory effect of low-dose exogenous CO, generated by tricarbonyldichlororuthenium (II) dimer [CO-releasing molecule (CORM-2)], on both RIBE-induced proliferation and chromosome aberration was observed. Further studies on the mechanism revealed that the transforming growth factor β1/nitric oxide (NO) signaling pathway, which mediated RIBE signaling transduction, could be modulated by CO involved in the protective effects. Considering the potential of exogenous CO in clinical applications and its protective effect on RIBE, the present work aims to provide a foundation for potential application of CO in radiotherapy.

  3. microRNA expression profiling and functional annotation analysis of their targets modulated by oxidative stress during embryonic heart development in diabetic mice

    PubMed Central

    Dong, Daoyin; Zhang, Yuji; Reece, E. Albert; Wang, Lei; Harman, Christopher R.; Yang, Peixin

    2017-01-01

    Maternal pregestational diabetes mellitus (PGDM) induces congenital heart defects (CHDs). The molecular mechanism underlying PGDM-induced CHDs is unknown. microRNAs (miRNAs), small non-coding RNAs, repress gene expression at the posttranscriptional level and play important roles in heart development. We performed a global miRNA profiling study to assist in revealing potential miRNAs modulated by PGDM and possible developmental pathways regulated by miRNAs during heart development. A total of 149 mapped miRNAs in the developing heart were significantly altered by PGDM. Bioinformatics analysis showed that the majority of the 2111 potential miRNA target genes were associated with cardiac development-related pathways including STAT3 and IGF-1 and transcription factors (Cited2, Zeb2, Mef2c, Smad4 and Ets1). Overexpression of the antioxidant enzyme, superoxide dismutase 1, reversed PGDM-altered miRNAs, suggesting that oxidative stress is responsible for dysregulation of miRNAs. Thus, our study provides the foundation for further investigation of a miRNA-dependent mechanism underlying PGDM-induced CHDs. PMID:27629361

  4. Estimate of the risk of radiation-induced cancers after linear-accelerator-based breast-cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Koh, Eui Kwan; Seo, Jungju; Baek, Tae Seong; Chung, Eun Ji; Yoon, Myonggeun; Lee, Hyun-ho

    2013-07-01

    The aim of this study is to assess and compare the excess absolute risks (EARs) of radiation-induced cancers following conformal (3D-CRT), fixed-field intensity-modulated (IMRT) and volumetric modulated arc (RapidArc) radiation therapy in patients with breast cancer. 3D-CRT, IMRT and RapidArc were planned for 10 breast cancer patients. The organ-specific EAR for cancer induction was estimated using the organ equivalent dose (OED) based on computed dose volume histograms (DVHs) and the secondary doses measured at various points from the field edge. The average secondary dose per Gy treatment dose from 3D-CRT, measured 10 to 50 cm from the field edge, ranged from 8.27 to 1.04 mGy. The secondary doses per Gy from IMRT and RapidArc, however, ranged between 5.86 and 0.54 mGy, indicating that IMRT and RapidArc are associated with smaller doses of secondary radiation than 3D-CRT. The organ specific EARs for out-of-field organs, such as the thyroid, liver and colon, were higher with 3D-CRT than with IMRT or RapidArc. In contrast, EARs for in-field organs were much lower with 3D-CRT than with IMRT or RapidArc. The overall estimate of EAR indicated that the radiation-induced cancer risk was 1.8-2.0 times lower with 3D-CRT than with IMRT or RapidArc. Comparisons of EARs during breast irradiation suggested that the predicted risk of secondary cancers was lower with 3D-CRT than with IMRT or RapidArc.

  5. A broad-spectrum sunscreen prevents UVA radiation-induced gene expression in reconstructed skin in vitro and in human skin in vivo.

    PubMed

    Marionnet, Claire; Grether-Beck, Susanne; Seité, Sophie; Marini, Alessandra; Jaenicke, Thomas; Lejeune, François; Bastien, Philippe; Rougier, André; Bernerd, Françoise; Krutmann, Jean

    2011-06-01

    The efficacy of sunscreens to protect against ultraviolet (UV) A radiation is usually assessed by measuring erythema formation and pigmentation. The biological relevance of these endpoints for UVA-induced skin damage, however, is not known. We therefore carried out two complementary studies to determine UVA protection provided by a broad-spectrum sunscreen product at a molecular level by studying UVA radiation-induced gene expression. One study was performed on human reconstructed skin in vitro with a semi-global gene expression analysis of 227 genes in fibroblasts and 244 in keratinocytes. The second one was conducted in vivo in human volunteers and focused on genes involved in oxidative stress response and photo-ageing (haeme oxygenase-1, superoxide dismutase-2, glutathione peroxidase, catalase, matrix metalloproteinase-1). In-vitro UVA radiation induced modulation of genes involved in extracellular matrix homeostasis, oxidative stress, heat shock responses, cell growth, inflammation and epidermal differentiation. Sunscreen pre-application abrogated or significantly reduced these effects, as underlined by unsupervised clustering analysis. The in vivo study confirmed that the sunscreen prevented UVA radiation-induced transcriptional expression of the five studied genes. These findings indicate the high efficacy of a broad-spectrum sunscreen in protecting human skin against UVA-induced gene responses and suggest that this approach is a biologically relevant complement to existing methods.

  6. Role of Interleukin-1 in Radiation-Induced Cardiomyopathy

    PubMed Central

    Mezzaroma, Eleonora; Mikkelsen, Ross B; Toldo, Stefano; Mauro, Adolfo G; Sharma, Khushboo; Marchetti, Carlo; Alam, Asim; Van Tassell, Benjamin W; Gewirtz, David A; Abbate, Antonio

    2015-01-01

    Thoracic X-ray therapy (XRT), used in cancer treatment, is associated with increased risk of heart failure. XRT-mediated injury to the heart induces an inflammatory response leading to cardiomyopathy. The aim of this study was to determine the role of interleukin (IL)-1 in response to XRT injury to the heart and on the cardiomyopathy development in the mouse. Female mice with genetic deletion of the IL-1 receptor type I (IL-1R1 knockout mice [IL-1R1 KO]) and treatment with recombinant human IL-1 receptor antagonist anakinra, 10 mg/kg twice daily for 7 d, were used as independent approaches to determine the role of IL-1. Wild-type (wt) or IL-1R1 KO mice were treated with a single session of XRT (20 or 14 gray [Gy]). Echocardiography (before and after isoproterenol challenge) and left ventricular (LV) catheterization were performed to evaluate changes in LV dimensions and function. Masson’s trichrome was used to assess myocardial fibrosis and pericardial thickening. After 20 Gy, the contractile reserve was impaired in wt mice at d 3, and the LV ejection fraction (EF) was reduced after 4 months when compared with sham-XRT. IL-1R1 KO mice had preserved contractile reserve at 3 d and 4 months and LVEF at 4 months after XRT. Anakinra treatment for 1 d before and 7 d after XRT prevented the impairment in contractile reserve. A significant increase in LV end-diastolic pressure, associated with increased myocardial interstitial fibrosis and pericardial thickening, was observed in wt mice, as well as in IL-1R1 KO–or anakinra-treated mice. In conclusion, induction of IL-1 by XRT mediates the development of some, such as the contractile impairment, but not all aspects of the XRT-induced cardiomyopathy, such as myocardial fibrosis or pericardial thickening. PMID:25822795

  7. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    SciTech Connect

    Jones, Keith W.

    1999-09-01

    and increase in scientific use can be maintained for the synchrotron x-ray source. A short summary of the present state of the synchrotron radiation-induced x-ray emission (SRIXE) method is presented here. Basically, SRIXE experiments can include any that depend on the detection. of characteristic x-rays produced by the incident x-ray beam born the synchrotron source as they interact with a sample. Thus, experiments done to measure elemental composition, chemical state, crystal, structure, and other sample parameters can be considered in a discussion of SRIXE. It is also clear that the experimentalist may well wish to use a variety of complementary techniques for study of a given sample. For this reason, discussion of computed microtomography (CMT) and x-ray diffraction is included here. It is hoped that this present discussion will serve as a succinct introduction to the basic ideas of SRIXE for those not working in the field and possibly help to stimulate new types of work by those starting in the field as well as by experienced practitioners of the art. The topics covered include short descriptions of (1) the properties of synchrotron radiation, (2) a description of facilities used for its production, (3) collimated microprobe, (4) focused microprobes, (5) continuum and monoenergetic excitation, (6) detection limits, (7) quantitation, (8) applications of SRIXE, (9) computed microtomography (CMT), and (10)chemical speciation using x-ray absorption near-edge structure (XANES) and extended x-ray absorption fine structure (EXAFS). An effort has been made to cite a wide variety of work from different laboratories to show the vital nature of the field.

  8. Image-based modeling of radiation-induced foci

    NASA Astrophysics Data System (ADS)

    Costes, Sylvain; Cucinotta, Francis A.; Ponomarev, Artem; Barcellos-Hoff, Mary Helen; Chen, James; Chou, William; Gascard, Philippe

    Several proteins involved in the response to DNA double strand breaks (DSB) form microscopically visible nuclear domains, or foci, after exposure to ionizing radiation. Radiation-induced foci (RIF) are believed to be located where DNA damage occurs. To test this assumption, we used Monte Carlo simulations to predict the spatial distribution of DSB in human nuclei exposed to high or low-LET radiation. We then compared these predictions to the distribution patterns of three DNA damage sensing proteins, i.e. 53BP1, phosphorylated ATM and γH2AX in human mammary epithelial. The probability to induce DSB can be derived from DNA fragment data measured experimentally by pulsed-field gel electrophoresis. We first used this probability in Monte Carlo simulations to predict DSB locations in synthetic nuclei geometrically described by a complete set of human chromosomes, taking into account microscope optics from real experiments. Simulations showed a very good agreement for high-LET, predicting 0.7 foci/µm along the path of a 1 GeV/amu Fe particle against measurement of 0.69 to 0.82 foci/µm for various RIF 5 min following exposure (LET 150 keV/µm). On the other hand, discrepancies were shown in foci frequency for low-LET, with measurements 20One drawback using a theoretical model for the nucleus is that it assumes a simplistic and static pattern for DNA densities. However DNA damage pattern is highly correlated to DNA density pattern (i.e. the more DNA, the more likely to have a break). Therefore, we generalized our Monte Carlo approach to real microscope images, assuming pixel intensity of DAPI in the nucleus was directly proportional to the amount of DNA in that pixel. With such approach we could predict DNA damage pattern in real images on a per nucleus basis. Since energy is randomly deposited along high-LET particle paths, RIF along these paths should also be randomly distributed. As expected, simulations produced DNA-weighted random (Poisson) distributions. In

  9. Radiation-Induced Liver Damage: Correlation of Histopathology with Hepatobiliary Magnetic Resonance Imaging, a Feasibility Study

    SciTech Connect

    Seidensticker, Max; Burak, Miroslaw; Kalinski, Thomas; Garlipp, Benjamin; Koelble, Konrad; Wust, Peter; Antweiler, Kai; Seidensticker, Ricarda; Mohnike, Konrad; Pech, Maciej; Ricke, Jens

    2015-02-15

    PurposeRadiotherapy of liver malignancies shows promising results (radioembolization, stereotactic irradiation, interstitial brachytherapy). Regardless of the route of application, a certain amount of nontumorous liver parenchyma will be collaterally damaged by radiation. The functional reserve may be significantly reduced with an impact on further treatment planning. Monitoring of radiation-induced liver damage by imaging is neither established nor validated. We performed an analysis to correlate the histopathological presence of radiation-induced liver damage with functional magnetic resonance imaging (MRI) utilizing hepatobiliary contrast media (Gd-BOPTA).MethodsPatients undergoing local high-dose-rate brachytherapy for whom a follow-up hepatobiliary MRI within 120 days after radiotherapy as well as an evaluable liver biopsy from radiation-exposed liver tissue within 7 days before MRI were retrospectively identified. Planning computed tomography (CT)/dosimetry was merged to the CT-documentation of the liver biopsy and to the MRI. Presence/absence of radiation-induced liver damage (histopathology) and Gd-BOPTA uptake (MRI) as well as the dose applied during brachytherapy at the site of tissue sampling was determined.ResultsFourteen biopsies from eight patients were evaluated. In all cases with histopathological evidence of radiation-induced liver damage (n = 11), no uptake of Gd-BOPTA was seen. In the remaining three, cases no radiation-induced liver damage but Gd-BOPTA uptake was seen. Presence of radiation-induced liver damage and absence of Gd-BOPTA uptake was correlated with a former high-dose exposition.ConclusionsAbsence of hepatobiliary MRI contrast media uptake in radiation-exposed liver parenchyma may indicate radiation-induced liver damage. Confirmatory studies are warranted.

  10. Radiation-Induced Cytogenetic Damage as a Predictor of Cancer Risk for Protons and Fe Ions

    NASA Technical Reports Server (NTRS)

    Williams, Jerry R.

    1999-01-01

    We have successfully completed the series of experiments planned for year 1 and the first part of year 2 measuring the induction of chromosome aberrations induced in multiple cell types by three model space radiations: Fe-ions, protons and photons. Most of these data have now been compiled and a significant part subjected to detailed data analyses, although continuing data analysis is an important part of our current and future efforts. These analyses are directed toward defining the patterns of chromosomal damage induction by the three radiations and the extent to which such patterns are dependent on the type of cell irradiated. Our studies show significant differences, both quantitatively and qualitatively, between response of different cell types to these radiations however there is an overall pattern that characterizes each type of radiation in most cell lines. Thus our data identifies general dose-response patterns for each radiation for induction of multiple types of chromosomal aberrations but also identifies significant differences in response between some cell types. Specifically, we observe significant resistance for induction of aberrations in rat mammary epithelial cells when they are irradiated in vivo and assayed in vitro. Further, we have observed some remarkable differences in susceptibility to certain radiation-induced aberrations in cells whose genome has been modulated for two cancer- relevant genes, TP53 and CDKNIA. This data, if confirmed, may represent the first evidence of gene-specific differences in cellular metabolism of damage induced by densely-ionizing radiation that confers substantial sensitivity to protons compared to photons.

  11. Chronic Intake of Japanese Sake Mediates Radiation-Induced Metabolic Alterations in Mouse Liver

    PubMed Central

    Nakajima, Tetsuo; Vares, Guillaume; Wang, Bing; Nenoi, Mitsuru

    2016-01-01

    Sake is a traditional Japanese alcoholic beverage that is gaining popularity worldwide. Although sake is reported to have beneficial health effects, it is not known whether chronic sake consumption modulates health risks due to radiation exposure or other factors. Here, the effects of chronic administration of sake on radiation-induced metabolic alterations in the livers of mice were evaluated. Sake (junmai-shu) was administered daily to female mice (C3H/He) for one month, and the mice were exposed to fractionated doses of X-rays (0.75 Gy/day) for the last four days of the sake administration period. For comparative analysis, a group of mice were administered 15% (v/v) ethanol in water instead of sake. Metabolites in the liver were analyzed by capillary electrophoresis-time-of-flight mass spectrometry one day following the last exposure to radiation. The metabolite profiles of mice chronically administered sake in combination with radiation showed marked changes in purine, pyrimidine, and glutathione (GSH) metabolism, which were only partially altered by radiation or sake administration alone. Notably, the changes in GSH metabolism were not observed in mice treated with radiation following chronic administration of 15% ethanol in water. Changes in several metabolites, including methionine and valine, were induced by radiation alone, but were not detected in the livers of mice who received chronic administration of sake. In addition, the chronic administration of sake increased the level of serum triglycerides, although radiation exposure suppressed this increase. Taken together, the present findings suggest that chronic sake consumption promotes GSH metabolism and anti-oxidative activities in the liver, and thereby may contribute to minimizing the adverse effects associated with radiation. PMID:26752639

  12. Ionizing radiation and heart risks.

    PubMed

    Bhattacharya, Souparno; Asaithamby, Aroumougame

    2016-10-01

    Cardiovascular disease and cancer are the two leading causes of morbidity and mortality worldwide. As advancements in radiation therapy (RT) have significantly increased the number of cancer survivors, the risk of radiation-induced cardiovascular disease (RICD) in this group is a growing concern. Recent epidemiological data suggest that accidental or occupational exposure to low dose radiation, in addition to therapeutic ionizing radiation, can result in cardiovascular complications. The progression of radiation-induced cardiotoxicity often takes years to manifest but is also multifaceted, as the heart may be affected by a variety of pathologies. The risk of cardiovascular disease development in RT cancer survivors has been known for 40 years and several risk factors have been identified in the last two decades. However, most of the early work focused on clinical symptoms and manifestations, rather than understanding cellular processes regulating homeostatic processes of the cardiovascular system in response to radiation. Recent studies have suggested that a different approach may be needed to refute the risk of cardiovascular disease following radiation exposure. In this review, we will focus on how different radiation types and doses may induce cardiovascular complications, highlighting clinical manifestations and the mechanisms involved in the pathophysiology of radiation-induced cardiotoxicity. We will finally discuss how current and future research on heart development and homeostasis can help reduce the incidence of RICD.

  13. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    SciTech Connect

    Meng, Zhen; Gan, Ye-Hua

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  14. Modulating effect of SIRT1 activation induced by resveratrol on Foxo1-associated apoptotic signalling in senescent heart.

    PubMed

    Sin, Thomas K; Yu, Angus P; Yung, Benjamin Y; Yip, Shea Ping; Chan, Lawrence W; Wong, Cesar S; Ying, Michael; Rudd, John A; Siu, Parco M

    2014-06-15

    Elevations of cardiomyocyte apoptosis and fibrotic deposition are major characteristics of the ageing heart. Resveratrol, a polyphenol in grapes and red wine, is known to improve insulin resistance and increase mitochondrial biogenesis through the SIRT1-PGC-1α signalling axis. Recent studies attempted to relate SIRT1 activation by resveratrol to the regulation of apoptosis in various disease models of cardiac muscle. In the present study, we tested the hypothesis that long-term (8-month) treatment of resveratrol would activate SIRT1 and improve the cardiac function of senescent mice through suppression of Foxo1-associated pro-apoptotic signalling. Our echocardiographic measurements indicated that the cardiac systolic function measured as fractional shortening and ejection fraction was significantly reduced in aged mice when compared with the young mice. These reductions, however, were not observed in resveratrol-treated hearts. Ageing significantly reduced the deacetylase activity, but not the protein abundance of SIRT1 in the heart. This reduction was accompanied by increased acetylation of the Foxo1 transcription factor and transactivation of its target, pro-apoptotic Bim. Subsequent analyses indicated that pro-apoptotic signalling measured as p53, Bax and apoptotic DNA fragmentation was up-regulated in the heart of aged mice. In contrast, resveratrol restored SIRT1 activity and suppressed elevations of Foxo1 acetylation, Bim and pro-apoptotic signalling in the aged heart. In parallel, resveratrol also attenuated the ageing-induced elevations of fibrotic collagen deposition and markers of oxidative damage including 4HNE and nitrotyrosine. In conclusion, these novel data demonstrate that resveratrol mitigates pro-apoptotic signalling in senescent heart through a deacetylation mechanism of SIRT1 that represses the Foxo1-Bim-associated pro-apoptotic signalling axis.

  15. Modulating effect of SIRT1 activation induced by resveratrol on Foxo1-associated apoptotic signalling in senescent heart

    PubMed Central

    Sin, Thomas K; Yu, Angus P; Yung, Benjamin Y; Yip, Shea Ping; Chan, Lawrence W; Wong, Cesar S; Ying, Michael; Rudd, John A; Siu, Parco M

    2014-01-01

    Elevations of cardiomyocyte apoptosis and fibrotic deposition are major characteristics of the ageing heart. Resveratrol, a polyphenol in grapes and red wine, is known to improve insulin resistance and increase mitochondrial biogenesis through the SIRT1–PGC-1α signalling axis. Recent studies attempted to relate SIRT1 activation by resveratrol to the regulation of apoptosis in various disease models of cardiac muscle. In the present study, we tested the hypothesis that long-term (8-month) treatment of resveratrol would activate SIRT1 and improve the cardiac function of senescent mice through suppression of Foxo1-associated pro-apoptotic signalling. Our echocardiographic measurements indicated that the cardiac systolic function measured as fractional shortening and ejection fraction was significantly reduced in aged mice when compared with the young mice. These reductions, however, were not observed in resveratrol-treated hearts. Ageing significantly reduced the deacetylase activity, but not the protein abundance of SIRT1 in the heart. This reduction was accompanied by increased acetylation of the Foxo1 transcription factor and transactivation of its target, pro-apoptotic Bim. Subsequent analyses indicated that pro-apoptotic signalling measured as p53, Bax and apoptotic DNA fragmentation was up-regulated in the heart of aged mice. In contrast, resveratrol restored SIRT1 activity and suppressed elevations of Foxo1 acetylation, Bim and pro-apoptotic signalling in the aged heart. In parallel, resveratrol also attenuated the ageing-induced elevations of fibrotic collagen deposition and markers of oxidative damage including 4HNE and nitrotyrosine. In conclusion, these novel data demonstrate that resveratrol mitigates pro-apoptotic signalling in senescent heart through a deacetylation mechanism of SIRT1 that represses the Foxo1–Bim-associated pro-apoptotic signalling axis. PMID:24639483

  16. Viscosity-adjusted estimation of pressure head and pump flow with quasi-pulsatile modulation of rotary blood pump for a total artificial heart.

    PubMed

    Yurimoto, Terumi; Hara, Shintaro; Isoyama, Takashi; Saito, Itsuro; Ono, Toshiya; Abe, Yusuke

    2016-09-01

    Estimation of pressure and flow has been an important subject for developing implantable artificial hearts. To realize real-time viscosity-adjusted estimation of pressure head and pump flow for a total artificial heart, we propose the table estimation method with quasi-pulsatile modulation of rotary blood pump in which systolic high flow and diastolic low flow phased are generated. The table estimation method utilizes three kinds of tables: viscosity, pressure and flow tables. Viscosity is estimated from the characteristic that differential value in motor speed between systolic and diastolic phases varies depending on viscosity. Potential of this estimation method was investigated using mock circulation system. Glycerin solution diluted with salty water was used to adjust viscosity of fluid. In verification of this method using continuous flow data, fairly good estimation could be possible when differential pulse width modulation (PWM) value of the motor between systolic and diastolic phases was high. In estimation under quasi-pulsatile condition, inertia correction was provided and fairly good estimation was possible when the differential PWM value was high, which was not different from the verification results using continuous flow data. In the experiment of real-time estimation applying moving average method to the estimated viscosity, fair estimation could be possible when the differential PWM value was high, showing that real-time viscosity-adjusted estimation of pressure head and pump flow would be possible with this novel estimation method when the differential PWM value would be set high.

  17. Effects of temperature on the nitric oxide-dependent modulation of the Frank-Starling mechanism: the fish heart as a case study.

    PubMed

    Amelio, D; Garofalo, F; Capria, C; Tota, B; Imbrogno, S

    2013-02-01

    The Frank-Starling law is a fundamental property of the vertebrate myocardium which allows, when the end-diastolic volume increases, that the consequent stretch of the myocardial fibers generates a more forceful contraction. It has been shown that in the eel (Anguilla anguilla) heart, nitric oxide (NO) exerts a direct myocardial relaxant effect, increasing the sensitivity of the Frank-Starling response (Garofalo et al., 2009). With the use of isolated working heart preparations, this study investigated the relationship between NO modulation of Frank-Starling response and temperature challenges in the eel. The results showed that while, in long-term acclimated fish (spring animals perfused at 20 °C and winter animals perfused at 10 °C) the inhibition of NO production by L-N5 (1-iminoethyl)ornithine (L-NIO) significantly reduced the Frank-Starling response, under thermal shock conditions (spring animals perfused at 10 or 15 °C and winter animals perfused at 15 or 20 °C) L-NIO treatment resulted without effect. Western blotting analysis revealed a decrease of peNOS and pAkt expressions in samples subjected to thermal shock. Moreover, an increase in Hsp90 protein levels was observed under heat thermal stress. Together, these data suggest that the NO synthase/NO-dependent modulation of the Frank-Starling mechanism in fish is sensitive to thermal stress.

  18. Comparison of Heart and Coronary Artery Doses Associated With Intensity-Modulated Radiotherapy Versus Three-Dimensional Conformal Radiotherapy for Distal Esophageal Cancer

    SciTech Connect

    Kole, Thomas P.; Aghayere, Osarhieme; Kwah, Jason; Yorke, Ellen D.; Goodman, Karyn A.

    2012-08-01

    Purpose: To compare heart and coronary artery radiation exposure using intensity-modulated radiotherapy (IMRT) vs. four-field three-dimensional conformal radiotherapy (3D-CRT) treatment plans for patients with distal esophageal cancer undergoing chemoradiation. Methods and Materials: Nineteen patients with distal esophageal cancers treated with IMRT from March 2007 to May 2008 were identified. All patients were treated to 50.4 Gy with five-field IMRT plans. Theoretical 3D-CRT plans with four-field beam arrangements were generated. Dose-volume histograms of the planning target volume, heart, right coronary artery, left coronary artery, and other critical normal tissues were compared between the IMRT and 3D-CRT plans, and selected parameters were statistically evaluated using the Wilcoxon rank-sum test. Results: Intensity-modulated radiotherapy treatment planning showed significant reduction (p < 0.05) in heart dose over 3D-CRT as assessed by average mean dose (22.9 vs. 28.2 Gy) and V30 (24.8% vs. 61.0%). There was also significant sparing of the right coronary artery (average mean dose, 23.8 Gy vs. 35.5 Gy), whereas the left coronary artery showed no significant improvement (mean dose, 11.2 Gy vs. 9.2 Gy), p = 0.11. There was no significant difference in percentage of total lung volume receiving at least 10, 15, or 20 Gy or in the mean lung dose between the planning methods. There were also no significant differences observed for the kidneys, liver, stomach, or spinal cord. Intensity-modulated radiotherapy achieved a significant improvement in target conformity as measured by the conformality index (ratio of total volume receiving 95% of prescription dose to planning target volume receiving 95% of prescription dose), with the mean conformality index reduced from 1.56 to 1.30 using IMRT. Conclusions: Treatment of patients with distal esophageal cancer using IMRT significantly decreases the exposure of the heart and right coronary artery when compared with 3D

  19. ATM Heterozygosity and the Development of Radiation-Induced Erectile Dysfunction and Urinary Morbidity Following Radiotherapy for Prostate Cancer

    DTIC Science & Technology

    2006-02-01

    mutation are more likely to develop radiation -induced complications . The principal goal of this project is to determine whether men who inherit a...W81XWH-04-1-0172 TITLE: ATM Heterozygosity and the Development of Radiation -Induced Erectile Dysfunction and Urinary Morbidity Following...SUBTITLE 5a. CONTRACT NUMBER ATM Heterozygosity and the Development of Radiation -Induced Erectile Dysfunction and Urinary Morbidity Following

  20. Radiation-induced trapped charge in metal-nitride-oxide-semiconductor structure

    SciTech Connect

    Takahashi, Y.; Ohnishi, K.; Fujimaki, T.; Yoshikawa, M.

    1999-12-01

    The radiation-induced trapped charge in insulation layer of metal-nitride-oxide-semiconductor (MNOS) structure has been investigated. The mechanism of charge trapping under irradiation is studied by the radiation-induced mid-gap voltage shift using a simple charge trap model. The depth profile of fixed charge in insulator before irradiation was evaluated by the mid-gap voltage of MNOS structures with varying insulator thicknesses using slanted etching method. The irradiation tests were carried out using Co-60 gamma ray source up to 1 Mrad(Si) with the gate voltage of +6 or {minus}6 V. The calculated results using the model can be fitted well to the experimental results, and the authors confirmed the model is very useful to discuss the radiation-induced trapped charge. By simulating the mid-gap voltage shift of MNOS structures, they considered the possibility for radiation hardened device.

  1. Attenuation of a radiation-induced conditioned taste aversion after the development of ethanol tolerance

    SciTech Connect

    Hunt, W.A.; Rabin, B.M.

    1988-01-01

    An attempt to reduce a radiation-induced conditioned taste aversion (CTA) was undertaken by rendering animals tolerant to ethanol. Ethanol tolerance, developed over 5 days, was sufficient to block a radiation-induced taste aversion, as well as an ethanol-induced CTA. Several intermittent doses of ethanol, which did not induce tolerance but removed the novelty of the conditioning stimulus, blocked an ethanol-induced CTA but not the radiation-induced CTA. A CTA induced by doses of radiation up to 500 rads was attenuated. These data suggest that radioprotection developing in association with ethanol tolerance is a result of a physiological response to the chronic presence of ethanol not to the ethanol itself.

  2. A molecular dynamics study of radiation induced diffusion in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Martin, G.; Maillard, S.; Brutzel, L. Van; Garcia, P.; Dorado, B.; Valot, C.

    2009-03-01

    The nuclear oxide fuels are submitted 'in-pile' to strong structural and chemical modifications due to the fissions and temperature. The diffusion of species is notably the result of a thermal activation and of radiation induced diffusion. This study proposes to estimate to what extent the radiation induced diffusion contributes to the diffusion of lattice atoms in UO2. Irradiations are simulated using molecular dynamics simulation by displacement cascades induced by uranium primary knock-on atoms between 1 and 80 keV. As atoms are easier to displace when their vibration amplitude increases, the temperature range which have been investigated is 300-1400 K. Cascade overlaps were also simulated. The material is shown to melt at the end of cascades, yielding a reduced threshold energy displacement. The nuclear contribution to the radiation induced diffusion is compared to thermally activated diffusion under in-reactor and long-term storage conditions.

  3. Radiation-induced genomic instability and its implications for radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Huang, Lei; Snyder, Andrew R.; Morgan, William F.

    2003-01-01

    Radiation-induced genomic instability is characterized by an increased rate of genetic alterations including cytogenetic rearrangements, mutations, gene amplifications, transformation and cell death in the progeny of irradiated cells multiple generations after the initial insult. Chromosomal rearrangements are the best-characterized end point of radiation-induced genomic instability, and many of the rearrangements described are similar to those found in human cancers. Chromosome breakage syndromes are defined by chromosome instability, and individuals with these diseases are cancer prone. Consequently, chromosomal instability as a phenotype may underlie some fraction of those changes leading to cancer. Here we attempt to relate current knowledge regarding radiation-induced chromosome instability with the emerging molecular information on the chromosome breakage syndromes. The goal is to understand how genetic and epigenetic factors might influence the onset of chromosome instability and the role of chromosomal instability in carcinogenesis.

  4. Prostaglandin E2 reduces radiation-induced epithelial apoptosis through a mechanism involving AKT activation and bax translocation.

    PubMed

    Tessner, Teresa G; Muhale, Filipe; Riehl, Terrence E; Anant, Shrikant; Stenson, William F

    2004-12-01

    Prostaglandin E2 (PGE2) synthesis modulates the response to radiation injury in the mouse intestinal epithelium through effects on crypt survival and apoptosis; however, the downstream signaling events have not been elucidated. WT mice receiving 16,16-dimethyl PGE2 (dmPGE2) had fewer apoptotic cells per crypt than untreated mice. Apoptosis in Bax(-/-) mice receiving 12 Gy was approximately 50% less than in WT mice, and the ability of dmPGE2 to attenuate apoptosis was lost in Bax(-/-) mice. Positional analysis revealed that apoptosis in the Bax(-/-) mice was diminished only in the bax-expressing cells of the lower crypts and that in WT mice, dmPGE2 decreased apoptosis only in the bax-expressing cells. The HCT-116 intestinal cell line and Bax(-/-) HCT-116 recapitulated the apoptotic response of the mouse small intestine with regard to irradiation and dmPGE2. Irradiation of HCT-116 cells resulted in phosphorylation of AKT that was enhanced by dmPGE2 through transactivation of the EGFR. Inhibition of AKT phosphorylation prevented the reduction of apoptosis by dmPGE2 following radiation. Transfection of HCT-116 cells with a constitutively active AKT reduced apoptosis in irradiated cells to the same extent as in nontransfected cells treated with dmPGE2. Treatment with dmPGE2 did not alter bax or bcl-x expression but suppressed bax translocation to the mitochondrial membrane. Our in vivo studies indicate that there are bax-dependent and bax-independent radiation-induced apoptosis in the intestine but that only the bax-dependent apoptosis is reduced by dmPGE2. The in vitro studies indicate that dmPGE2, most likely by signaling through the E prostaglandin receptor EP2, reduces radiation-induced apoptosis through transactivation of the EGFR and enhanced activation of AKT and that this results in reduced bax translocation to the mitochondria.

  5. Heart Health - Brave Heart

    MedlinePlus

    ... Bar Home Current Issue Past Issues Cover Story Heart Health Brave Heart Past Issues / Winter 2009 Table of Contents For ... you can have a good life after a heart attack." Lifestyle Changes Surviving—and thriving—after such ...

  6. Survival and Margin Status in Head and Neck Radiation-Induced Sarcomas and De Novo Sarcomas.

    PubMed

    Rosko, Andrew J; Birkeland, Andrew C; Chinn, Steven B; Shuman, Andrew G; Prince, Mark E; Patel, Rajiv M; McHugh, Jonathan B; Spector, Matthew E

    2017-04-01

    Objective To describe histologic subtypes and oncologic outcomes among patients with radiation-induced and de novo sarcomas of the head and neck. Study Design Retrospective case series with chart review. Setting Tertiary academic center. Subject and Methods In total, 166 adult patients with sarcoma of the head and neck treated from January 1, 1985, to January 1, 2010, were included. Tumors were characterized as radiation induced (15.1%) vs de novo sarcomas (84.9%). Clinical and tumor characteristics were compared. The primary outcomes were overall survival (OS) and disease-specific survival (DSS). Results Radiation-induced sarcomas were more likely to be high grade ( P = .006) and advanced stage ( P = .03). Chondrosarcoma was more common in de novo tumors ( P = .02) while leiomyosarcoma ( P = .01), sarcoma not otherwise specified ( P = .02), and undifferentiated pleomorphic sarcoma ( P < .001) were more common in radiation-induced sarcomas. Radiation-induced sarcomas were associated with statistically significantly worse DSS ( P = .019) and OS ( P = .005) compared with de novo sarcomas, but when only high-grade soft tissue sarcomas were analyzed, neither DSS ( P = .48) nor OS ( P = .29) differed. Margin status was a significant predictor of survival as both R0 and R1 resections correlated with statistically better DSS and OS compared with R2 ( P < .001) resections and patients treated with radiation therapy/chemoradiation therapy alone ( P = .005). Conclusion Radiation-induced sarcomas of the head and neck correlate with worse survival compared with de novo tumors; however, when controlling for tumor grade and resection status, there is no statistically significant difference in observed outcomes.

  7. RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration

    SciTech Connect

    Rousseau, Matthieu; Gaugler, Marie-Helene; Rodallec, Audrey; Bonnaud, Stephanie; Paris, Francois; Corre, Isabelle

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer We explore the role of RhoA in endothelial cell response to ionizing radiation. Black-Right-Pointing-Pointer RhoA is rapidly activated by single high-dose of radiation. Black-Right-Pointing-Pointer Radiation leads to RhoA/ROCK-dependent actin cytoskeleton remodeling. Black-Right-Pointing-Pointer Radiation-induced apoptosis does not require the RhoA/ROCK pathway. Black-Right-Pointing-Pointer Radiation-induced alteration of endothelial adhesion and migration requires RhoA/ROCK. -- Abstract: Endothelial cells of the microvasculature are major target of ionizing radiation, responsible of the radiation-induced vascular early dysfunctions. Molecular signaling pathways involved in endothelial responses to ionizing radiation, despite being increasingly investigated, still need precise characterization. Small GTPase RhoA and its effector ROCK are crucial signaling molecules involved in many endothelial cellular functions. Recent studies identified implication of RhoA/ROCK in radiation-induced increase in endothelial permeability but other endothelial functions altered by radiation might also require RhoA proteins. Human microvascular endothelial cells HMEC-1, either treated with Y-27632 (inhibitor of ROCK) or invalidated for RhoA by RNA interference were exposed to 15 Gy. We showed a rapid radiation-induced activation of RhoA, leading to a deep reorganisation of actin cytoskeleton with rapid formation of stress fibers. Endothelial early apoptosis induced by ionizing radiation was not affected by Y-27632 pre-treatment or RhoA depletion. Endothelial adhesion to fibronectin and formation of focal adhesions increased in response to radiation in a RhoA/ROCK-dependent manner. Consistent with its pro-adhesive role, ionizing radiation also decreased endothelial cells migration and RhoA was required for this inhibition. These results highlight the role of RhoA GTPase in ionizing radiation-induced deregulation of essential endothelial

  8. Compositional trends of radiation-induced effects in ternary systems of chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Kovalskiy, A.

    2003-01-01

    The effect of gamma-irradiation on the optical transmittance spectra of pseudobinary stoichiometric and non-stoichiometric cuts of ternary systems of chalcogenide glasses was studied. The application of chemical-bond approach is proposed to explain the features of compositional dependencies of radiation-induced effects in these materials. It is shown that free volume concept must be taken into consideration at the presence of different radiation-sensitive structural units. The creation processes of coordination defects connected with the formation of free volume and coupled with the capability of the constituent atoms to passivation are the main factors determining the magnitude of the radiation-induced effects in chalcogenide glasses.

  9. Distinction between neoplastic and radiation-induced brachial plexopathy, with emphasis on the role of EMG

    SciTech Connect

    Harper, C.M. Jr.; Thomas, J.E.; Cascino, T.L.; Litchy, W.J.

    1989-04-01

    The results of clinical, radiologic, and electrophysiologic studies are retrospectively reviewed for 55 patients with neoplastic and 35 patients with radiation-induced brachial plexopathy. The presence or absence of pain as the presenting symptom, temporal profile of the illness, presence of a discrete mass on CT of the plexus, and presence of myokymic discharges on EMG contributed significantly to the prediction of the underlying cause of the brachial plexopathy. The distribution of weakness and the results of nerve conduction studies were of no help in distinguishing neoplastic from radiation-induced brachial plexopathy.

  10. Detection of radiation-induced hydrocarbons in baked sponged cake prepared with irradiated liquid egg

    NASA Astrophysics Data System (ADS)

    Schulzki, G.; Spiegelberg, A.; Bögl, K. W.; Schreiber, G. A.

    1995-02-01

    For identification of irradiated food, radiation-induced volatile hydrocarbons (HC) are determined by gas chromatography in the non-polar fraction of fat. However, in complex food matrices the detection is often disturbed by fat-associated compounds. On-line coupling of high performance liquid chromatography (LC) and gas chromatography (GC) is very efficient to remove such compounds from the HC fraction. The high sensitivity of this fast and efficient technique is demonstrated by the example of detection of radiation-induced HC in fat isolated from baked sponge cake which had been prepared with irradiated liquid egg.

  11. Growth hormone used to control intractable bleeding caused by radiation-induced gastritis.

    PubMed

    Zhang, Liang; Xia, Wen-Jie; Zhang, Zheng-Sen; Lu, Xin-Liang

    2015-08-21

    Intractable bleeding caused by radiation-induced gastritis is rare. We describe a 69-year-old man with intractable hemorrhagic gastritis induced by postoperative radiotherapy for the treatment of esophageal carcinoma. Although anti-secretory therapy with or without octreotide was initiated for hemostasis over three months, melena still occurred off and on, and the patient required blood transfusions to maintain stable hemoglobin. Finally growth hormone was used in the treatment of hemorrhage for two weeks, and hemostasis was successfully achieved. This is the first report that growth hormone has been used to control intractable bleeding caused by radiation-induced gastritis.

  12. Antimicrobial fabric adsorbed iodine produced by radiation-induced graft polymerization

    NASA Astrophysics Data System (ADS)

    Aoki, Shoji; Fujiwara, Kunio; Sugo, Takanobu; Suzuki, Koichi

    2013-03-01

    Antimicrobial fabric was synthesized by radiation-induced graft polymerization of N-vinyl pyrrolidone onto polyolefine nonwoven fabric and subsequent adsorption of iodine. In response of the huge request for the antimicrobial material applied to face masks for swine flu in 2009, operation procedure of continuous radiation-induced graft polymerization apparatus was improved. The improved grafting production per week increased 3.8 times compared to the production by former operation procedure. Shipped antimicrobial fabric had reached 130,000 m2 from June until December, 2009.

  13. Non-Problematic Risks from Low-Dose Radiation-Induced DNA Damage Clusters

    PubMed Central

    Hayes, Daniel P.

    2008-01-01

    Radiation-induced DNA damage clusters have been proposed and are usually considered to pose the threat of serious biological damage. This has been attributed to DNA repair debilitation or cessation arising from the complexity of cluster damage. It will be shown here, contrary to both previous suggestions and perceived wisdom, that radiation induced damage clusters contribute to non-problematic risks in the low-dose, low-LET regime. The very complexity of cluster damage which inhibits and/or compromises DNA repair will ultimately be responsible for the elimination and/or diminution of precancer-ous and cancerous cells. PMID:18648573

  14. Gamma radiation-induced blue shift of resonance peaks of Bragg gratings in pure silica fibres

    SciTech Connect

    Faustov, A V; Mégret, P; Wuilpart, M; Kinet, D; Gusarov, A I; Zhukov, A V; Novikov, S G; Svetukhin, V V; Fotiadi, A A

    2016-02-28

    We report the first observation of a significant gamma radiation-induced blue shift of the reflection/transmission peak of fibre Bragg gratings inscribed into pure-silica core fibres via multiphoton absorption of femtosecond pulses. At a total dose of ∼100 kGy, the shift is ∼20 pm. The observed effect is attributable to the ionising radiation-induced decrease in the density of the silica glass when the rate of colour centre formation is slow. We present results of experimental measurements that provide the key parameters of the dynamics of the gratings for remote dosimetry and temperature sensing. (laser crystals and braggg ratings)

  15. Hydroxychloroquine reduces heart rate by modulating the hyperpolarization-activated current If: Novel electrophysiological insights and therapeutic potential

    PubMed Central

    Capel, Rebecca A.; Herring, Neil; Kalla, Manish; Yavari, Arash; Mirams, Gary R.; Douglas, Gillian; Bub, Gil; Channon, Keith; Paterson, David J.; Terrar, Derek A.; Burton, Rebecca-Ann B.

    2015-01-01

    Background Bradycardic agents are of interest for the treatment of ischemic heart disease and heart failure, as heart rate is an important determinant of myocardial oxygen consumption. Objectives The purpose of this study was to investigate the propensity of hydroxychloroquine (HCQ) to cause bradycardia. Methods We assessed the effects of HCQ on (1) cardiac beating rate in vitro (mice); (2) the “funny” current (If) in isolated guinea pig sinoatrial node (SAN) myocytes (1, 3, 10 µM); (3) heart rate and blood pressure in vivo by acute bolus injection (rat, dose range 1–30 mg/kg), (4) blood pressure and ventricular function during feeding (mouse, 100 mg/kg/d for 2 wk, tail cuff plethysmography, anesthetized echocardiography). Results In mouse atria, spontaneous beating rate was significantly (P < .05) reduced (by 9% ± 3% and 15% ± 2% at 3 and 10 µM HCQ, n = 7). In guinea pig isolated SAN cells, HCQ conferred a significant reduction in spontaneous action potential firing rate (17% ± 6%, 1 μM dose) and a dose-dependent reduction in If (13% ± 3% at 1 µM; 19% ± 2% at 3 µM). Effects were also observed on L-type calcium ion current (ICaL) (12% ± 4% reduction) and rapid delayed rectifier potassium current (IKr) (35% ± 4%) at 3 µM. Intravenous HCQ decreased heart rate in anesthetized rats (14.3% ± 1.1% at 15mg/kg; n = 6) without significantly reducing mean arterial blood pressure. In vivo feeding studies in mice showed no significant change in systolic blood pressure nor left ventricular function. Conclusions We have shown that HCQ acts as a bradycardic agent in SAN cells, in atrial preparations, and in vivo. HCQ slows the rate of spontaneous action potential firing in the SAN through multichannel inhibition, including that of If. PMID:26025323

  16. Modulation of radiation-induced organs toxicity by cremophor-el in experimental animals.

    PubMed

    Ramadan, L A; Shouman, S A; Sayed-Ahmed, M M; El-Habit, O H

    2001-02-01

    Pharmacological and cytogenetic evaluations of the protective effects of polyethoxylated castor oil cremophor-EL (cremophor) against hepato, renal and bone marrow toxicity induced by gamma irradiation in normal rats were carried out. A single dose of irradiation (6 Gy) caused hepatic and renal damage manifested biochemically as an elevation in levels of serum alanine and aspartate aminotransferase as well as an increase in blood urea. Cremophor administration at a dose level of 50 microl kg-1 intravenously 1 day before exposure to irradiation (6 Gy) protected the liver and kidney as indicated by the recovery of levels of hepatic aminotransferase, urea and lipid profiles to normal values. Gamma irradiation of male rats caused a decrease in reduced glutathione and an increase in the oxidized form in rat-liver homogenate. A highly significant increase in the incidence of micronucleated normochromatic erythrocytes and micronucleated polychromatic erythrocytes was observed after irradiation exposure. The induced genotoxicity in the bone marrow cells was corrected by pretreatment with cremophor. The findings of this study suggest that cremophor pretreatment can potentially be used clinically to prevent irradiation-induced hepato, renal and bone marrow toxicity without interference with its cytotoxic activity.

  17. Necdin modulates proliferative cell survival of human cells in response to radiation-induced genotoxic stress

    PubMed Central

    2012-01-01

    Background The finite replicative lifespan of cells, termed cellular senescence, has been proposed as a protective mechanism against the proliferation of oncogenically damaged cells, that fuel cancer. This concept is further supported by the induction of premature senescence, a process which is activated when an oncogene is expressed in normal primary cells as well as following intense genotoxic stresses. Thus, deregulation of genes that control this process, like the tumor suppressor p53, may contribute to promoting cancer by allowing cells to bypass senescence. A better understanding of the genes that contribute to the establishment of senescence is therefore warranted. Necdin interacts with p53 and is also a p53 target gene, although the importance of Necdin in the p53 response is not clearly understood. Methods In this study, we first investigated Necdin protein expression during replicative senescence and premature senescence induced by gamma irradiation and by the overexpression of oncogenic RasV12. Gain and loss of function experiments were used to evaluate the contribution of Necdin during the senescence process. Results Necdin expression declined during replicative aging of IMR90 primary human fibroblasts or following induction of premature senescence. Decrease in Necdin expression seemed to be a consequence of the establishment of senescence since the depletion of Necdin in human cells did not induce a senescence-like growth arrest nor a flat morphology or SA-β-galactosidase activity normally associated with senescence. Similarly, overexpression of Necdin did not affect the life span of IMR90 cells. However, we demonstrate that in normal human cells, Necdin expression mimicked the effect of p53 inactivation by increasing radioresistance. Conclusion This result suggests that Necdin potentially attenuate p53 signaling in response to genotoxic stress in human cells and supports similar results describing an inhibitory function of Necdin over p53-dependent growth arrest in mice. PMID:22691188

  18. Radiation-induced DNA damage and chromatin structure

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    DNA lesions induced by ionizing radiation in cells are clustered and not randomly distributed. For low linear energy transfer (LET) radiation this clustering occurs mainly on the small scales of DNA molecules and nucleosomes. For example, experimental evidence suggests that both strands of DNA on the nucleosomal surface can be damaged in single events and that this damage occurs with a 10-bp modulation because of protection by histones. For high LET radiation, clustering also occurs on a larger scale and depends on chromatin organization. A particularly significant clustering occurs when an ionizing particle traverses the 30 nm chromatin fiber with generation of heavily damaged DNA regions with an average size of about 2 kbp. On an even larger scale, high LET radiation can produce several DNA double-strand breaks in closer proximity than expected from randomness. It is suggested that this increases the probability of misrejoining of DNA ends and generation of lethal chromosome aberrations.

  19. Radiation-induced gene expression in the nematode Caenorhabditis elegans

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Jones, Tamako A.; Chesnut, Aaron; Smith, Anna L.

    2002-01-01

    We used the nematode C. elegans to characterize the genotoxic and cytotoxic effects of ionizing radiation in a simple animal model emphasizing the unique effects of charged particle radiation. Here we demonstrate by RT-PCR differential display and whole genome microarray hybridization experiments that gamma rays, accelerated protons and iron ions at the same physical dose lead to unique transcription profiles. 599 of 17871 genes analyzed (3.4%) showed differential expression 3 hrs after exposure to 3 Gy of radiation. 193 were up-regulated, 406 were down-regulated and 90% were affected only by a single species of radiation. A novel statistical clustering technique identified the regulatory relationships between the radiation-modulated genes and showed that genes affected by each radiation species were associated with unique regulatory clusters. This suggests that independent homeostatic mechanisms are activated in response to radiation exposure as a function of track structure or ionization density.

  20. Use of probiotics for prevention of radiation-induced diarrhea.

    PubMed

    Blanarova, C; Galovicova, A; Petrasova, D

    2009-01-01

    Probiotics can be applied in therapy and mainly in prevention of many civilization disorders. Experimental studies in animal models and clinical trials of patients with inflammatory bowel disease (IBD) have consistently shown that the use of probiotic organisms may effectively down-modulate the severity of intestinal inflammation by altering the composition and metabolic and functional properties of indigenous flora of the gut. Previous studies showed a protective effect of probiotic administration after radiation therapy, and probiotic may play an important role in the pathogenesis of radiation enteropathy. These studies indicate that probiotics may decrease the risk of accumulated reactive oxygen species (ROS) in host organisms and could potentially be used as probiotic food supplements to reduce oxidative stress (Tab. 2, Ref. 47). Full Text (Free, PDF) www.bmj.sk.

  1. Heart Failure

    MedlinePlus

    ... version of this page please turn Javascript on. Heart Failure What is Heart Failure? In heart failure, the heart cannot pump enough ... failure often experience tiredness and shortness of breath. Heart Failure is Serious Heart failure is a serious and ...

  2. Heart MRI

    MedlinePlus

    Magnetic resonance imaging - cardiac; Magnetic resonance imaging - heart; Nuclear magnetic resonance - cardiac; NMR - cardiac; MRI of the heart; Cardiomyopathy - MRI; Heart failure - MRI; Congenital heart disease - MRI

  3. New Methodology for First Principle Calculations of Electrical Levels for Radiation Induced Defects in Silicates

    DTIC Science & Technology

    2005-02-22

    GRANT NUMBER 4. TITLE AND SUBTITLE New Methodology For First Principle Calculations Of Electrical Levels For Radiation Induced Defects In Silicates ...materials, space materials, Silicon on Insulator ( SOI ) materials 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON DONALD J SMITH

  4. Deep Friction Massage in Treatment of Radiation-induced Fibrosis: Rehabilitative Care for Breast Cancer Survivors

    PubMed Central

    Warpenburg, Mary J.

    2014-01-01

    Treatment for invasive breast cancer usually involves some combination of surgery, radiation therapy, chemotherapy, hormone therapy, and/or targeted therapy. For approximately 50% of patients, radiation therapy is a component of the therapies used. As a result, radiation-induced fibrosis is becoming a common and crippling side effect, leading to muscle imbalance with a lessened range of motion as well as pain and dysfunction of the vascular and lymphatic systems. No good estimates are available for how many patients experience complications from radiation. Radiation-induced fibrosis can affect the underlying fascia, muscles, organs, and bones within the primary target field and the larger secondary field that is caused by the scatter effect of radioactive elements. For breast cancer patients, the total radiation field may include the neck, shoulder, axillary, and thoracic muscles and the ribs for both the ipsilateral (cancer-affected) and contralateral sides. This case study indicates that therapy using deep friction massage can affect radiation-induced fibrosis beneficially, particularly in the thoracic muscles and the intercostals (ie, the muscles between the ribs). When delivered in intensive sessions using deep friction techniques, massage has the potential to break down fibrotic tissues, releasing the inflammation and free radicals that are caused by radiation therapy. In the course of the massage, painful and debilitating spasms resulting from fibrosis can be relieved and the progressive nature of the radiation-induced fibrosis interrupted. PMID:26770116

  5. Inactivation of Kupffer Cells by Gadolinium Chloride Protects Murine Liver From Radiation-Induced Apoptosis

    SciTech Connect

    Du Shisuo; Qiang Min; Zeng Zhaochong; Ke Aiwu; Ji Yuan; Zhang Zhengyu; Zeng Haiying; Liu Zhongshan

    2010-03-15

    Purpose: To determine whether the inhibition of Kupffer cells before radiotherapy (RT) would protect hepatocytes from radiation-induced apoptosis. Materials and Methods: A single 30-Gy fraction was administered to the upper abdomen of Sprague-Dawley rats. The Kupffer cell inhibitor gadolinium chloride (GdCl3; 10 mg/kg body weight) was intravenously injected 24 h before RT. The rats were divided into four groups: group 1, sham RT plus saline (control group); group 2, sham RT plus GdCl3; group 3, RT plus saline; and group 4, RT plus GdCl3. Liver tissue was collected for measurement of apoptotic cytokine expression and evaluation of radiation-induced liver toxicity by analysis of liver enzyme activities, hepatocyte micronucleus formation, apoptosis, and histologic staining. Results: The expression of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha was significantly attenuated in group 4 compared with group 3 at 2, 6, 24, and 48 h after injection (p <0.05). At early points after RT, the rats in group 4 exhibited significantly lower levels of liver enzyme activity, apoptotic response, and hepatocyte micronucleus formation compared with those in group 3. Conclusion: Selective inactivation of Kupffer cells with GdCl3 reduced radiation-induced cytokine production and protected the liver against acute radiation-induced damage.

  6. In vivo evidence for an endothelium-dependent mechanism in radiation-induced normal tissue injury

    PubMed Central

    Rannou, Emilie; François, Agnès; Toullec, Aurore; Guipaud, Olivier; Buard, Valérie; Tarlet, Georges; Mintet, Elodie; Jaillet, Cyprien; Iruela-Arispe, Maria Luisa; Benderitter, Marc; Sabourin, Jean-Christophe; Milliat, Fabien

    2015-01-01

    The pathophysiological mechanism involved in side effects of radiation therapy, and especially the role of the endothelium remains unclear. Previous results showed that plasminogen activator inhibitor-type 1 (PAI-1) contributes to radiation-induced intestinal injury and suggested that this role could be driven by an endothelium-dependent mechanism. We investigated whether endothelial-specific PAI-1 deletion could affect radiation-induced intestinal injury. We created a mouse model with a specific deletion of PAI-1 in the endothelium (PAI-1KOendo) by a Cre-LoxP system. In a model of radiation enteropathy, survival and intestinal radiation injury were followed as well as intestinal gene transcriptional profile and inflammatory cells intestinal infiltration. Irradiated PAI-1KOendo mice exhibited increased survival, reduced acute enteritis severity and attenuated late fibrosis compared with irradiated PAI-1flx/flx mice. Double E-cadherin/TUNEL labeling confirmed a reduced epithelial cell apoptosis in irradiated PAI-1KOendo. High-throughput gene expression combined with bioinformatic analyses revealed a putative involvement of macrophages. We observed a decrease in CD68+cells in irradiated intestinal tissues from PAI-1KOendo mice as well as modifications associated with M1/M2 polarization. This work shows that PAI-1 plays a role in radiation-induced intestinal injury by an endothelium-dependent mechanism and demonstrates in vivo that the endothelium is directly involved in the progression of radiation-induced enteritis. PMID:26510580

  7. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposur...

  8. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENNTIAL FLUORESENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposures...

  9. The radiation-induced changes in rectal mucosa: Hyperfractionated vs. hypofractionated preoperative radiation for rectal cancer

    SciTech Connect

    Starzewski, Jacek J.; Pajak, Jacek T.; Pawelczyk, Iwona; Lange, Dariusz; Golka, Dariusz . E-mail: dargolka@wp.pl; Brzeziska, Monika; Lorenc, Zbigniew

    2006-03-01

    Purpose: The purpose of the study was the qualitative and quantitative evaluation of acute radiation-induced rectal changes in patients who underwent preoperative radiotherapy according to two different irradiation protocols. Patients and Methods: Sixty-eight patients with rectal adenocarcinoma underwent preoperative radiotherapy; 44 and 24 patients underwent hyperfractionated and hypofractionated protocol, respectively. Fifteen patients treated with surgery alone served as a control group. Five basic histopathologic features (meganucleosis, inflammatory infiltrations, eosinophils, mucus secretion, and erosions) and two additional features (mitotic figures and architectural glandular abnormalities) of radiation-induced changes were qualified and quantified. Results: Acute radiation-induced reactions were found in 66 patients. The most common were eosinophilic and plasma-cell inflammatory infiltrations (65 patients), erosions, and decreased mucus secretion (54 patients). Meganucleosis and mitotic figures were more common in patients who underwent hyperfractionated radiotherapy. The least common were the glandular architectural distortions, especially in patients treated with hypofractionated radiotherapy. Statistically significant differences in morphologic parameters studied between groups treated with different irradiation protocols were found. Conclusion: The system of assessment is a valuable tool in the evaluation of radiation-induced changes in the rectal mucosa. A greater intensity of regenerative changes was found in patients treated with hyperfractionated radiotherapy.

  10. The Therapeutic Effect of Adipose-Derived Mesenchymal Stem Cells for Radiation-Induced Bladder Injury

    PubMed Central

    Qiu, Xuefeng; Zhang, Shiwei; Zhao, Xiaozhi; Fu, Kai; Guo, Hongqian

    2016-01-01

    This study was designed to investigate the protective effect of adipose derived mesenchymal stem cells (AdMSCs) against radiation-induced bladder injury (RIBI). Female rats were divided into 4 groups: (a) controls, consisting of nontreated rats; (b) radiation-treated rats; (c) radiation-treated rats receiving AdMSCs; and (d) radiation-treated rats receiving AdMSCs conditioned medium. AdMSCs or AdMSCs conditioned medium was injected into the muscular layer of bladder 24 h after radiation. Twelve weeks after radiation, urinary bladder tissue was collected for histological assessment and enzyme-linked immunosorbent assay (ELISA) after metabolic cage investigation. At the 1 w, 4 w, and 8 w time points following cells injection, 3 randomly selected rats in RC group and AdMSCs group were sacrificed to track injected AdMSCs. Metabolic cage investigation revealed that AdMSCs showed protective effect for radiation-induced bladder dysfunction. The histological and ELISA results indicated that the fibrosis and inflammation within the bladder were ameliorated by AdMSCs. AdMSCs conditioned medium showed similar effects in preventing radiation-induced bladder dysfunction. In addition, histological data indicated a time-dependent decrease in the number of AdMSCs in the bladder following injection. AdMSCs prevented radiation induced bladder dysfunction and histological changes. Paracrine effect might be involved in the protective effects of AdMSCs for RIBI. PMID:27051426

  11. 3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian

    2014-03-01

    Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.

  12. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury.

    PubMed

    Yang, Lianhong; Yang, Jianhua; Li, Guoqian; Li, Yi; Wu, Rong; Cheng, Jinping; Tang, Yamei

    2017-03-01

    The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.

  13. Evolved Cellular Mechanisms to Respond to Genotoxic Insults: Implications for Radiation-Induced Hematologic Malignancies

    PubMed Central

    Fleenor, Courtney J.; Higa, Kelly; Weil, Michael M.; DeGregori, James

    2015-01-01

    Human exposure to ionizing radiation is highly associated with adverse health effects, including reduced hematopoietic cell function and increased risk of carcinogenesis. The hematopoietic deficits manifest across blood cell types and persist for years after radiation exposure, suggesting a long-lived and multi-potent cellular reservoir for radiation-induced effects. As such, research has focused on identifying both the immediate and latent hematopoietic stem cell responses to radiation exposure. Radiation-associated effects on hematopoietic function and malignancy development have generally been attributed to the direct induction of mutations resulting from radiation-induced DNA damage. Other studies have illuminated the role of cellular programs that both limit and enhance radiation-induced tissue phenotypes and carcinogenesis. In this review, distinct but collaborative cellular responses to genotoxic insults are highlighted, with an emphasis on how these programmed responses impact hematopoietic cellular fitness and competition. These radiation-induced cellular programs include apoptosis, senescence and impaired self-renewal within the hematopoietic stem cell (HSC) pool. In the context of sporadic DNA damage to a cell, these cellular responses act in concert to restore tissue function and prevent selection for adaptive oncogenic mutations. But in the contexts of whole-tissue exposure or whole-body exposure to genotoxins, such as radiotherapy or chemotherapy, we propose that these programs can contribute to long-lasting tissue impairment and increased carcinogenesis. PMID:26414506

  14. Impaired repair of ionizing radiation-induced DNA damage in Cockayne syndrome cells.

    PubMed

    Cramers, Patricia; Verhoeven, Esther E; Filon, A Ronald; Rockx, Davy A P; Santos, Susy J; van der Leer, Anneke A; Kleinjans, Jos C S; van Zeeland, Albert A; Mullenders, Leon H F

    2011-04-01

    Cockayne syndrome (CS) cells are defective in transcription-coupled repair (TCR) and sensitive to oxidizing agents, including ionizing radiation. We examined the hypothesis that TCR plays a role in ionizing radiation-induced oxidative DNA damage repair or alternatively that CS plays a role in transcription elongation after irradiation. Irradiation with doses up to 100 Gy did not inhibit RNA polymerase II-dependent transcription in normal and CS-B fibroblasts. In contrast, RNA polymerase I-dependent transcription was severely inhibited at 5 Gy in normal cells, indicating different mechanisms of transcription response to X rays. The frequency of radiation-induced base damage was 2 × 10(-7) lesions/base/Gy, implying that 150 Gy is required to induce one lesion/30-kb transcription unit; no TCR of X-ray-induced base damage in the p53 gene was observed. Therefore, it is highly unlikely that defective TCR underlies the sensitivity of CS to ionizing radiation. Overall genome repair levels of radiation-induced DNA damage measured by repair replication were significantly reduced in CS-A and CS-B cells. Taken together, the results do not provide evidence for a key role of TCR in repair of radiation-induced oxidative damages in human cells; rather, impaired repair of oxidative lesions throughout the genome may contribute to the CS phenotype.

  15. Molecular, Cellular and Functional Effects of Radiation-Induced Brain Injury: A Review

    PubMed Central

    Balentova, Sona; Adamkov, Marian

    2015-01-01

    Radiation therapy is the most effective non-surgical treatment of primary brain tumors and metastases. Preclinical studies have provided valuable insights into pathogenesis of radiation-induced injury to the central nervous system. Radiation-induced brain injury can damage neuronal, glial and vascular compartments of the brain and may lead to molecular, cellular and functional changes. Given its central role in memory and adult neurogenesis, the majority of studies have focused on the hippocampus. These findings suggested that hippocampal avoidance in cranial radiotherapy prevents radiation-induced cognitive impairment of patients. However, multiple rodent studies have shown that this problem is more complex. As the radiation-induced cognitive impairment reflects hippocampal and non-hippocampal compartments, it is of critical importance to investigate molecular, cellular and functional modifications in various brain regions as well as their integration at clinically relevant doses and schedules. We here provide a literature overview, including our previously published results, in order to support the translation of preclinical findings to clinical practice, and improve the physical and mental status of patients with brain tumors. PMID:26610477

  16. Neurogenic differentiation factor NeuroD confers protection against radiation-induced intestinal injury in mice

    PubMed Central

    Li, Ming; Du, Aonan; Xu, Jing; Ma, Yanchao; Cao, Han; Yang, Chao; Yang, Xiao-Dong; Xing, Chun-Gen; Chen, Ming; Zhu, Wei; Zhang, Shuyu; Cao, Jianping

    2016-01-01

    The gastrointestinal tract, especially the small intestine, is particularly sensitive to radiation, and is prone to radiation-induced injury as a result. Neurogenic differentiation factor (NeuroD) is an evolutionarily-conserved basic helix-loop-helix (bHLH) transcription factor. NeuroD contains a protein transduction domain (PTD), which allows it to be exogenously delivered across the membrane of mammalian cells, whereupon its transcription activity can be unleashed. Whether NeuroD has therapeutic effects for radiation-induced injury remains unclear. In the present study, we prepared a NeuroD-EGFP recombinant protein, and explored its protective effects on the survival and intestinal damage induced by ionizing radiation. Our results showed that NeuroD-EGFP could be transduced into small intestine epithelial cells and tissues. NeuroD-EGFP administration significantly increased overall survival of mice exposed to lethal total body irradiation (TBI). This recombinant NeuroD also reduced radiation-induced intestinal mucosal injury and apoptosis, and improved crypt survival. Expression profiling of NeuroD-EGFP-treated mice revealed upregulation of tissue inhibitor of metalloproteinase 1 (TIMP-1), a known inhibitor of apoptosis in mammalian cells. In conclusion, NeuroD confers protection against radiation-induced intestinal injury, and provides a novel therapeutic clinical option for the prevention of intestinal side effects of radiotherapy and the treatment of victims of incidental exposure. PMID:27436572

  17. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    SciTech Connect

    Yannam, Govardhana Rao; Han, Bing; Setoyama, Kentaro; Yamamoto, Toshiyuki; Ito, Ryotaro; Brooks, Jenna M.; Guzman-Lepe, Jorge; Galambos, Csaba; Fong, Jason V.; Deutsch, Melvin; Quader, Mubina A.; Yamanouchi, Kosho; Kabarriti, Rafi; Mehta, Keyur; Soto-Gutierrez, Alejandro; and others

    2014-02-01

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury.

  18. Deep Friction Massage in Treatment of Radiation-induced Fibrosis: Rehabilitative Care for Breast Cancer Survivors.

    PubMed

    Warpenburg, Mary J

    2014-10-01

    Treatment for invasive breast cancer usually involves some combination of surgery, radiation therapy, chemotherapy, hormone therapy, and/or targeted therapy. For approximately 50% of patients, radiation therapy is a component of the therapies used. As a result, radiation-induced fibrosis is becoming a common and crippling side effect, leading to muscle imbalance with a lessened range of motion as well as pain and dysfunction of the vascular and lymphatic systems. No good estimates are available for how many patients experience complications from radiation. Radiation-induced fibrosis can affect the underlying fascia, muscles, organs, and bones within the primary target field and the larger secondary field that is caused by the scatter effect of radioactive elements. For breast cancer patients, the total radiation field may include the neck, shoulder, axillary, and thoracic muscles and the ribs for both the ipsilateral (cancer-affected) and contralateral sides. This case study indicates that therapy using deep friction massage can affect radiation-induced fibrosis beneficially, particularly in the thoracic muscles and the intercostals (ie, the muscles between the ribs). When delivered in intensive sessions using deep friction techniques, massage has the potential to break down fibrotic tissues, releasing the inflammation and free radicals that are caused by radiation therapy. In the course of the massage, painful and debilitating spasms resulting from fibrosis can be relieved and the progressive nature of the radiation-induced fibrosis interrupted.

  19. Radiation-induced meningioma after treatment for pituitary adenoma: Case report and literature review

    SciTech Connect

    Partington, M.D.; Davis, D.H. )

    1990-02-01

    Radiation-induced meningiomas are becoming increasingly well-recognized. We report a case of a 35-year-old man who developed a suprasellar meningioma 9 years after receiving a radiation dose of 4480 cGy for a pituitary adenoma. The literature is also reviewed. 10 references.

  20. Radiation induces genomic instability and mammary ductal dysplasia in Atm heterozygous mice

    NASA Technical Reports Server (NTRS)

    Weil, M. M.; Kittrell, F. S.; Yu, Y.; McCarthy, M.; Zabriskie, R. C.; Ullrich, R. L.

    2001-01-01

    Ataxia-telangiectasia (AT) is a genetic syndrome resulting from the inheritance of two defective copies of the ATM gene that includes among its stigmata radiosensitivity and cancer susceptibility. Epidemiological studies have demonstrated that although women with a single defective copy of ATM (AT heterozygotes) appear clinically normal, they may never the less have an increased relative risk of developing breast cancer. Whether they are at increased risk for radiation-induced breast cancer from medical exposures to ionizing radiation is unknown. We have used a murine model of AT to investigate the effect of a single defective Atm allele, the murine homologue of ATM, on the susceptibility of mammary epithelial cells to radiation-induced transformation. Here we report that mammary epithelial cells from irradiated mice with one copy of Atm truncated in the PI-3 kinase domain were susceptible to radiation-induced genomic instability and generated a 10% incidence of dysplastic mammary ducts when transplanted into syngenic recipients, whereas cells from Atm(+/+) mice were stable and formed only normal ducts. Since radiation-induced ductal dysplasia is a precursor to mammary cancer, the results indicate that AT heterozygosity increases susceptibility to radiogenic breast cancer in this murine model system.

  1. Radiation-induced conductivity and high-temperature Q changes in quartz resonators

    SciTech Connect

    Koehler, D R

    1981-01-01

    While high temperature electrolysis has proven beneficial as a technique to remove interstitial impurities from quartz, reliable indices to measure the efficacy of such a processing step are still under development. The present work is directed toward providing such an index. Two techniques have been investigated - one involves measurement of the radiation induced conductivity in quartz along the optic axis, and the second involves measurement of high temperature Q changes. Both effects originate when impurity charge compensators are released from their traps, in the first case resulting in ionic conduction and in the second case resulting in increased acoustic losses. Radiation induced conductivity measurements have been carried out with a 200 kV, 14 mA x-ray machine producing 5 rads/s. With electric fields of the order of 10/sup 4/ V/cm, the noise level in the current measuring system is equivalent to an ionic current generated by quartz impurities in the 1 ppB range. The accuracy of the high temperature ( 300 to 800/sup 0/K) Q/sup -1/ measurement technique will be determined. A number of resonators constructed of quartz material of different impurity contents have been tested and both the radiation induced conductivity and the high temperature Q/sup -1/ results compared with earlier radiation induced frequency and resonator resistance changes. 10 figures.

  2. A new CT-based method to quantify radiation-induced lung damage in patients.

    PubMed

    Ghobadi, Ghazaleh; Wiegman, Erwin M; Langendijk, Johannes A; Widder, Joachim; Coppes, Robert P; van Luijk, Peter

    2015-10-01

    A new method to assess radiation-induced lung toxicity (RILT) using CT-scans was developed. It is more sensitive in detecting damage and corresponds better to physician-rated radiation pneumonitis than routinely-used methods. Use of this method may improve lung toxicity assessment and thereby facilitate development of more accurate predictive models for RILT.

  3. A Prospective Cohort Study on Radiation-induced Hypothyroidism: Development of an NTCP Model

    SciTech Connect

    Boomsma, Marjolein J.; Bijl, Hendrik P.; Christianen, Miranda E.M.C.; Beetz, Ivo; Chouvalova, Olga; Steenbakkers, Roel J.H.M.; Laan, Bernard F.A.M. van der; Oosting, Sjoukje F.; Schilstra, Cornelis; Langendijk, Johannes A.

    2012-11-01

    Purpose: To establish a multivariate normal tissue complication probability (NTCP) model for radiation-induced hypothyroidism. Methods and Materials: The thyroid-stimulating hormone (TSH) level of 105 patients treated with (chemo-) radiation therapy for head-and-neck cancer was prospectively measured during a median follow-up of 2.5 years. Hypothyroidism was defined as elevated serum TSH with decreased or normal free thyroxin (T4). A multivariate logistic regression model with bootstrapping was used to determine the most important prognostic variables for radiation-induced hypothyroidism. Results: Thirty-five patients (33%) developed primary hypothyroidism within 2 years after radiation therapy. An NTCP model based on 2 variables, including the mean thyroid gland dose and the thyroid gland volume, was most predictive for radiation-induced hypothyroidism. NTCP values increased with higher mean thyroid gland dose (odds ratio [OR]: 1.064/Gy) and decreased with higher thyroid gland volume (OR: 0.826/cm{sup 3}). Model performance was good with an area under the curve (AUC) of 0.85. Conclusions: This is the first prospective study resulting in an NTCP model for radiation-induced hypothyroidism. The probability of hypothyroidism rises with increasing dose to the thyroid gland, whereas it reduces with increasing thyroid gland volume.

  4. Management of late radiation-induced rectal injury after treatment of carcinoma of the uterus

    SciTech Connect

    Allen-Mersh, T.G.; Wilson, E.J.; Hope-Stone, H.F.; Mann, C.V.

    1987-06-01

    Sixty-one of 1418 (4.3 per cent) patients treated with radiation for carcinoma of the uterus from 1963 to 1983 had significant radiation-induced complications of the intestine develop which required a surgical opinion considering further management. Ninety-three per cent of these complications involved the rectum. Florid proctitis resolved within two years of onset in 33 per cent of the patients who were managed conservatively while 22 per cent of the patients died of disseminated disease within the same time period. Surgical treatment was eventually necessary in 39 per cent of the patients who were initially treated conservatively for radiation induced proctitis. Rectal excision with coloanal sleeve anastomosis produced a satisfactory result in eight of 11 patients with severe radiation injury involving the rectum. The incidence of radiation-induced and malignant rectovaginal fistula were similar (1 per cent), but disease-induced symptoms tended to occur earlier after primary treatment (a median of eight months) compared with radiation-induced symptoms (a median of 16 months).

  5. Angiotensin-(1-7) receptor Mas is an essential modulator of extracellular matrix protein expression in the heart.

    PubMed

    Gava, Elisandra; de Castro, Carlos Henrique; Ferreira, Anderson J; Colleta, Heloísa; Melo, Marcos B; Alenina, Natalia; Bader, Michael; Oliveira, Laser A; Santos, Robson A S; Kitten, Gregory T

    2012-04-10

    In this study we investigated the effects of genetic deletion of the Angiotensin-(1-7) receptor Mas or the Angiotensin II receptor AT(2) on the expression of specific extracellular matrix (ECM) proteins in atria, right ventricles and atrioventricular (AV) valves of neonatal and adult mice. Quantification of collagen types I, III and VI and fibronectin was performed using immunofluorescence-labeling and confocal microscopy. Picrosirius red staining was used for the histological assessment of the overall collagen distribution pattern. ECM proteins, metalloproteinases (MMP), ERK1/2 and p38 levels were quantified by western blot analysis. Gelatin zymography was used to evaluate the activity of MMP-2 and MMP-9. We observed that the relative levels of collagen types I and III and fibronectin are significantly higher in both the right ventricle and AV valves of neonatal Mas(-/-) mouse hearts (e.g., collagen type I: 85.28±6.66 vs 43.50±4.41 arbitrary units in the right ventricles of Mas(+/+) mice). Conversely, the level of collagen type VI was lower in the right ventricle and AV valves of Mas(-/-) mice. Adult Mas(-/-) mouse hearts presented similar patterns as observed in neonates. No significant differences in ECM protein level were detected in atria. Likewise, no changes in ECM levels were observed in AT(2) knockout mouse hearts. Although deletion of Mas induced a significant reduction in the level of the active form of MMP-2 in neonate hearts and a reduction of both MMP-2 and MMP-9 in adult Mas(-/-) mice, no significant differences were observed in MMP enzymatic activities when compared to controls. The levels of the active, phosphorylated forms of ERK1/2 and p38 were higher in hearts of both neonatal and adult Mas(-/-) mice. These observations suggest that Mas is involved in the selective expression of specific ECM proteins within both the ventricular myocardium and AV valves. The changes in the ECM profile may alter the connective tissue framework and contribute to

  6. Prophylaxis and management of acute radiation-induced skin reactions: a systematic review of the literature

    PubMed Central

    Salvo, N.; Barnes, E.; van Draanen, J.; Stacey, E.; Mitera, G.; Breen, D.; Giotis, A.; Czarnota, G.; Pang, J.; De Angelis, C.

    2010-01-01

    Radiation therapy is a common treatment for cancer patients. One of the most common side effects of radiation is acute skin reaction (radiation dermatitis) that ranges from a mild rash to severe ulceration. Approximately 85% of patients treated with radiation therapy will experience a moderate-to-severe skin reaction. Acute radiation-induced skin reactions often lead to itching and pain, delays in treatment, and diminished aesthetic appearance—and subsequently to a decrease in quality of life. Surveys have demonstrated that a wide variety of topical, oral, and intravenous agents are used to prevent or to treat radiation-induced skin reactions. We conducted a literature review to identify trials that investigated products for the prophylaxis and management of acute radiation dermatitis. Thirty-nine studies met the pre-defined criteria, with thirty-three being categorized as prophylactic trials and six as management trials. For objective evaluation of skin reactions, the Radiation Therapy Oncology Group criteria and the U.S. National Cancer Institute Common Toxicity Criteria were the most commonly used tools (65% of the studies). Topical corticosteroid agents were found to significantly reduce the severity of skin reactions; however, the trials of corticosteroids evaluated various agents, and no clear indication about a preferred corticosteroid has emerged. Amifostine and oral enzymes were somewhat effective in preventing radiation-induced skin reactions in phase ii and phase iii trials respectively; further large randomized controlled trials should be undertaken to better investigate those products. Biafine cream (Ortho–McNeil Pharmaceuticals, Titusville, NJ, U.S.A.) was found not to be superior to standard regimes in the prevention of radiation-induced skin reactions (n = 6). In conclusion, the evidence is insufficient to support the use of a particular agent for the prevention and management of acute radiation-induced skin reactions. Future trials should focus

  7. Detecting Radiation-Induced Injury Using Rapid 3D Variogram Analysis of CT Images of Rat Lungs

    SciTech Connect

    Jacob, Rick E.; Murphy, Mark K.; Creim, Jeffrey A.; Carson, James P.

    2013-10-01

    A new heterogeneity analysis approach to discern radiation-induced lung damage was tested on CT images of irradiated rats. The method, combining octree decomposition with variogram analysis, demonstrated a significant correlation with radiation exposure levels, whereas conventional measurements and pulmonary function tests did not. The results suggest the new approach may be highly sensitive for assessing even subtle radiation-induced changes

  8. Role of cellular communication in the pathways of radiation-induced biological damage

    NASA Astrophysics Data System (ADS)

    Ballarini, Francesca; Facoetti, Angelica; Mariotti, Luca; Nano, Rosanna; Ottolenghi, Andrea

    During the last decade, a large number of experimental studies on the so-called "non-targeted effects", in particular bystander effects, outlined that cellular communication plays a signifi- cant role in the pathways leading to radiation-induced biological damage. This might imply a paradigm shift in (low-dose) radiobiology, according to which one has to consider the response of groups of cells behaving like a population rather than single cells behaving as individuals. Furthermore, bystander effects, which are observed both for lethal endpoints (e.g. clonogenic inactivation and apoptosis) and for non-lethal ones (e.g. mutations and neoplastic transformation), tend to show non-linear dose responses characterized by a sharp increase followed by a plateau. This might have significant consequences in terms of low-dose risk, which is generally calculated on the basis of the "Linear No Threshold" hypothesis. Although it is known that two types of cellular communication (i.e. via gap junctions and/or molecular messengers diffusing in the extra-cellular environment, such as cytokines) play a major role, it is of utmost importance to better understand the underlying mechanisms, and how such mechanisms can be modulated by ionizing radiation. Though the "final" goal is to elucidate the in vivo scenario, in the meanwhile also in vitro studies can provide useful insights. In the present paper we will discuss key issues on the mechanisms underlying non-targeted effects and, more generally, cell communication, with focus on candidate molecular signals. Theoretical models and simulation codes can be of help in elucidating such mechanisms. In this framework, we will present a model and Monte Carlo code, under development at the University of Pavia, simulating the release, diffusion and internalization of candidate signals (typically cytokines) travelling in the extra-cellular environment, both by unirradiated (i.e., control) cells and by irradiated cells. The focus will be on the

  9. Feasibility of OCT to detect radiation-induced esophageal damage in small animal models (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jelvehgaran, Pouya; Alderliesten, Tanja; Salguero, Javier; Borst, Gerben; Song, Ji-Ying; van Leeuwen, Ton G.; de Boer, Johannes F.; de Bruin, Daniel M.; van Herk, Marcel B.

    2016-03-01

    Lung cancer survival is poor and radiotherapy patients often suffer serious treatment side effects. The esophagus is particularly sensitive leading to reduced food intake or even fistula formation. Only few direct techniques exist to measure radiation-induced esophageal damage, for which knowledge is needed to improve the balance between risk of tumor recurrence and complications. Optical coherence tomography (OCT) is a minimally-invasive imaging technique that obtains cross-sectional, high-resolution (1-10µm) images and is capable of scanning the esophageal wall up to 2-3mm depth. In this study we investigated the feasibility of OCT to detect esophageal radiation damage in mice. In total 30 mice were included in 4 study groups (1 main and 3 control groups). Mice underwent cone-beam CT imaging for initial setup assessment and dose planning followed by single-fraction dose delivery of 4, 10, 16, and 20Gy on 5mm spots, spaced 10mm apart. Mice were repeatedly imaged using OCT: pre-irradiation and up to 3 months post-irradiation. The control groups received either OCT only, irradiation only, or were sham-operated. We used histopathology as gold standard for radiation-induced damage diagnosis. The study showed edema in both the main and OCT-only groups. Furthermore, radiation-induced damage was primarily found in the highest dose region (distal esophagus). Based on the histopathology reports we were able to identify the radiation-induced damage in the OCT images as a change in tissue scattering related to the type of induced damage. This finding indicates the feasibility and thereby the potentially promising role of OCT in radiation-induced esophageal damage assessment.

  10. Sensitivity of cloned muscle, heart and neuronal voltage-gated sodium channels to block by polyamines: a possible basis for modulation of excitability in vivo.

    PubMed

    Fu, Li-Ying; Cummins, Theodore R; Moczydlowski, Edward G

    2012-01-01

    Spermidine and spermine, are endogenous polyamines (PAs) that regulate cell growth and modulate the activity of numerous ion channel proteins. In particular, intracellular PAs are potent blockers of many different cation channels and are responsible for strong suppression of outward K (+) current, a phenomenon known as inward rectification characteristic of a major class of KIR K (+) channels. We previously described block of heterologously expressed voltage-gated Na (+) channels (NaV) of rat muscle by intracellular PAs and PAs have recently been found to modulate excitability of brain neocortical neurons by blocking neuronal NaV channels. In this study, we compared the sensitivity of four different cloned mammalian NaV isoforms to PAs to investigate whether PA block is a common feature of NaV channel pharmacology. We find that outward Na (+) current of muscle (NaV 1.4), heart (NaV 1.5), and neuronal (NaV 1.2, NaV 1.7) NaV isoforms is blocked by PAs, suggesting that PA metabolism may be linked to modulation of action potential firing in numerous excitable tissues. Interestingly, the cardiac NaV 1.5 channel is more sensitive to PA block than other isoforms. Our results also indicate that rapid binding of PAs to blocking sites in the NaV 1.4 channel is restricted to access from the cytoplasmic side of the channel, but plasma membrane transport pathways for PA uptake may contribute to long-term NaV channel modulation. PAs may also play a role in drug interactions since spermine attenuates the use-dependent effect of the lidocaine, a typical local anesthetic and anti-arrhythmic drug.

  11. MicroRNA-1 transfected embryonic stem cells enhance cardiac myocyte differentiation and inhibit apoptosis by modulating the PTEN/Akt pathway in the infarcted heart.

    PubMed

    Glass, Carley; Singla, Dinender K

    2011-11-01

    microRNAs (miRs) have emerged as critical modulators of various physiological processes including stem cell differentiation. Indeed, miR-1 has been reported to play an integral role in the regulation of cardiac muscle progenitor cell differentiation. However, whether overexpression of miR-1 in embryonic stem (ES) cells (miR-1-ES cells) will enhance cardiac myocyte differentiation following transplantation into the infarcted myocardium is unknown. In the present study, myocardial infarction (MI) was produced in C57BL/6 mice by left anterior descending artery ligation. miR-1-ES cells, ES cells, or culture medium (control) was transplanted into the border zone of the infarcted heart, and 2 wk post-MI, cardiac myocyte differentiation, adverse ventricular remodeling, and cardiac function were assessed. We provide evidence demonstrating enhanced cardiac myocyte commitment of transplanted miR-1-ES cells in the mouse infarcted heart as compared with ES cells. Assessment of apoptosis revealed that overexpression of miR-1 in transplanted ES cells protected host myocardium from MI-induced apoptosis through activation of p-AKT and inhibition of caspase-3, phosphatase and tensin homolog, and superoxide production. A significant reduction in interstitial and vascular fibrosis was quantified in miR-1-ES cell and ES cell transplanted groups compared with control MI. However, no statistical significance between miR-1-ES cell and ES cell groups was observed. Finally, mice receiving miR-1-ES cell transplantation post-MI had significantly improved heart function compared with respective controls (P < 0.05). Our data suggest miR-1 drives cardiac myocyte differentiation from transplanted ES cells and inhibits apoptosis post-MI, ultimately giving rise to enhanced cardiac repair, regeneration, and function.

  12. A cardiac-specific health-related quality of life module for young adults with congenital heart disease: development and validation.

    PubMed

    Kamphuis, M; Zwinderman, K H; Vogels, T; Vliegen, H W; Kamphuis, R P; Ottenkamp, J; Verloove-Vanhorick, S P; Bruil, J

    2004-05-01

    This study represents the development and validation of a cardiac-specific module of the generic health-related quality of life (HRQoL) instrument, the TAAQOL (TNO/AZL Adult Quality Of Life), for young adults with congenital heart disease (CHD). Items were selected based on literature, an explorative previous study in CHD patients, interviews with patients, and the advice of experts. The newly developed Congenital Heart Disease-TNO/AZL Adult Quality of Life (CHD-TAAQOL) was tested in 156 patients with mild or complex CHD and consisted of three hypothesised subject scales: 'Symptoms' (9 items), 'Impact Cardiac Surveillance' (7 items), and 'Worries' (10 items). Cronbach's alpha for the three scales were 0.77, 0.78, and 0.82, respectively. Scale structure was confirmed by Principal Component Analysis, corrected item-scale and interscale correlations. Overall, 55% of reported health status problems were associated with negative emotions, which is an argument for assessing HRQoL as a concept distinct from health status. Convergent validity with validated generic instruments (TAAQOL and Short Form-36, SF-36) showed satisfactory coefficients. Discriminant validity was proven by significantly higher scores for mild CHD patients compared with those with complex CHD. In conclusion, the CHD-TAAQOL module together with the generic TAAQOL can be used to assess group differences for cardiac-specific HRQoL in young adults with CHD. Testing psychometric properties of the CHD-TAAQOL shows satisfactory results. However, to detect changes in HRQoL over time, further research is needed.

  13. Isoform-Specific Modulation of Inflammation Induced by Adenoviral Mediated Delivery of Platelet-Derived Growth Factors in the Adult Mouse Heart

    PubMed Central

    Ylä-Herttuala, Seppo; Betsholtz, Christer; Andrae, Johanna

    2016-01-01

    Platelet-derived growth factors (PDGFs) are key regulators of mesenchymal cells in vertebrate development. To what extent PDGFs also exert beneficial homeostatic or reparative roles in adult organs, as opposed to adverse fibrogenic responses in pathology, are unclear. PDGF signaling plays critical roles during heart development, during which forced overexpression of PDGFs induces detrimental cardiac fibrosis; other studies have implicated PDGF signaling in post-infarct myocardial repair. Different PDGFs may exert different effects mediated through the two PDGF receptors (PDGFRα and PDGFRβ) in different cell types. Here, we assessed responses induced by five known PDGF isoforms in the adult mouse heart in the context of adenovirus vector-mediated inflammation. Our results show that different PDGFs have different, in some cases even opposing, effects. Strikingly, whereas the major PDGFRα agonists (PDGF-A and -C) decreased the amount of scar tissue and increased the numbers of PDGFRα-positive fibroblasts, PDGFRβ agonists either induced large scars with extensive inflammation (PDGF-B) or dampened the adenovirus-induced inflammation and produced a small and dense scar (PDGF-D). These results provide evidence for PDGF isoform-specific inflammation-modulating functions that may have therapeutic implications. They also illustrate a surprising complexity in the PDGF-mediated pathophysiological responses. PMID:27513343

  14. Heart murmurs

    MedlinePlus

    Chest sounds - murmurs; Heart sounds - abnormal; Murmur - innocent; Innocent murmur; Systolic heart murmur; Diastolic heart murmur ... The heart has 4 chambers: Two upper chambers (atria) Two lower chambers (ventricles) The heart has valves that close ...

  15. Radiation Dose-Volume Effects in the Heart

    SciTech Connect

    Gagliardi, Giovanna; Constine, Louis S.; Moiseenko, Vitali; Correa, Candace; Pierce, Lori J.; Allen, Aaron M.; Marks, Lawrence B.

    2010-03-01

    The literature is reviewed to identify the main clinical and dose-volume predictors for acute and late radiation-induced heart disease. A clear quantitative dose and/or volume dependence for most cardiac toxicity has not yet been shown, primarily because of the scarcity of the data. Several clinical factors, such as age, comorbidities and doxorubicin use, appear to increase the risk of injury. The existing dose-volume data is presented, as well as suggestions for future investigations to better define radiation-induced cardiac injury.

  16. BDNF modulates heart contraction force and long-term homeostasis through truncated TrkB.T1 receptor activation

    PubMed Central

    Fulgenzi, Gianluca; Tomassoni-Ardori, Francesco; Babini, Lucia; Becker, Jodi; Barrick, Colleen; Puverel, Sandrine

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is critical for mammalian development and plasticity of neuronal circuitries affecting memory, mood, anxiety, pain sensitivity, and energy homeostasis. Here we report a novel unexpected role of BDNF in regulating the cardiac contraction force independent of the nervous system innervation. This function is mediated by the truncated TrkB.T1 receptor expressed in cardiomyocytes. Loss of TrkB.T1 in these cells impairs calcium signaling and causes cardiomyopathy. TrkB.T1 is activated by BDNF produced by cardiomyocytes, suggesting an autocrine/paracrine loop. These findings unveil a novel signaling mechanism in the heart that is activated by BDNF and provide evidence for a global role of this neurotrophin in the homeostasis of the organism by signaling through different TrkB receptor isoforms. PMID:26347138

  17. Targeting hexokinase II to mitochondria to modulate energy metabolism and reduce ischaemia-reperfusion injury in heart

    PubMed Central

    Nederlof, Rianne; Eerbeek, Otto; Hollmann, Markus W; Southworth, Richard; Zuurbier, Coert J

    2014-01-01

    Mitochondrially bound hexokinase II (mtHKII) has long been known to confer cancer cells with their resilience against cell death. More recently, mtHKII has emerged as a powerful protector against cardiac cell death. mtHKII protects against ischaemia-reperfusion (IR) injury in skeletal muscle and heart, attenuates cardiac hypertrophy and remodelling, and is one of the major end-effectors through which ischaemic preconditioning protects against myocardial IR injury. Mechanisms of mtHKII cardioprotection against reperfusion injury entail the maintenance of regulated outer mitochondrial membrane (OMM) permeability during ischaemia and reperfusion resulting in stabilization of mitochondrial membrane potential, the prevention of OMM breakage and cytochrome C release, and reduced reactive oxygen species production. Increasing mtHK may also have important metabolic consequences, such as improvement of glucose-induced insulin release, prevention of acidosis through enhanced coupling of glycolysis and glucose oxidation, and inhibition of fatty acid oxidation. Deficiencies in expression and distorted cellular signalling of HKII may contribute to the altered sensitivity of diabetes to cardiac ischaemic diseases. The interaction of HKII with the mitochondrion constitutes a powerful endogenous molecular mechanism to protect against cell death in almost all cell types examined (neurons, tumours, kidney, lung, skeletal muscle, heart). The challenge now is to harness mtHKII in the treatment of infarction, stroke, elective surgery and transplantation. Remote ischaemic preconditioning, metformin administration and miR-155/miR-144 manipulations are potential means of doing just that. LINKED ARTICLES This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24032601

  18. The Impact of Heart Irradiation on Dose-Volume Effects in the Rat Lung

    SciTech Connect

    Luijk, Peter van Faber, Hette; Meertens, Harm; Schippers, Jacobus M.; Langendijk, Johannes A.; Brandenburg, Sytze; Kampinga, Harm H.; Coppes, Robert P. Ph.D.

    2007-10-01

    Purpose: To test the hypothesis that heart irradiation increases the risk of a symptomatic radiation-induced loss of lung function (SRILF) and that this can be well-described as a modulation of the functional reserve of the lung. Methods and Materials: Rats were irradiated with 150-MeV protons. Dose-response curves were obtained for a significant increase in breathing frequency after irradiation of 100%, 75%, 50%, or 25% of the total lung volume, either including or excluding the heart from the irradiation field. A significant increase in the mean respiratory rate after 6-12 weeks compared with 0-4 weeks was defined as SRILF, based on biweekly measurements of the respiratory rate. The critical volume (CV) model was used to describe the risk of SRILF. Fits were done using a maximum likelihood method. Consistency between model and data was tested using a previously developed goodness-of-fit test. Results: The CV model could be fitted consistently to the data for lung irradiation only. However, this fitted model failed to predict the data that also included heart irradiation. Even refitting the model to all data resulted in a significant difference between model and data. These results imply that, although the CV model describes the risk of SRILF when the heart is spared, the model needs to be modified to account for the impact of dose to the heart on the risk of SRILF. Finally, a modified CV model is described that is consistent to all data. Conclusions: The detrimental effect of dose to the heart on the incidence of SRILF can be described by a dose dependent decrease in functional reserve of the lung.

  19. Heart rate variability shows different cardiovascular modulation in Parkinson's disease patients with tremor dominant subtype compared to those with akinetic rigid dominant subtype.

    PubMed

    Solla, Paolo; Cadeddu, Christian; Cannas, Antonino; Deidda, Martino; Mura, Nicola; Mercuro, Giuseppe; Marrosu, Francesco

    2015-10-01

    Parkinson's disease (PD) can present with different motor subtypes depending on the predominant symptoms (tremor or rigidity/bradykinesia). Slower disease progression and less cognitive decline are observed in tremor-dominant patients compared to those with akinetic-rigid subtype. Autonomic cardiovascular disorders have been described in parkinsonian patients, although the definite correlations with different subtypes of PD are not clear. In this context, heart rate variability (HRV) analysis represents a non-invasive and established tool in assessing cardiovascular autonomic modulation. We investigate cardiovascular autonomic modulation in PD patients with tremor dominant subtype in comparison to akinetic rigid dominant subtype subjects using HRV analysis. Twenty-eight PD patients (17 with tremor dominant subtype and 11 with akinetic rigid dominant subtype) were enrolled and compared to 17 age and sex-matched healthy controls. HRV was analyzed in time- and frequency-domains. Low-frequency (LF) values were significantly lower in the akinetic rigid dominant subtype than in the tremor dominant group [LF 41.4 ± 13.6 vs 55.5 ± 11.6 (p < 0.007)] indicating that the disease led to a more evident impairment of the baroreflex modulation of the autonomic outflow mediated by both sympathetic and parasympathetic systems in the first class of patients. These findings support the biological relevance of clinical subtypes supporting the idea of a different pathophysiological process between these subtypes. These differences also suggest that different subtypes may also result in different responses to therapy or in the possible development of cardiovascular side effects of dopaminergic drugs in these different populations.

  20. Reconstitution studies on the involvement of radiation-induced lipid peroxidation in damage to membrane enzymes.

    PubMed

    Yukawa, O; Nagatsuka, S; Nakazawa, T

    1983-04-01

    The effect of radiation on the drug-metabolizing enzyme system of microsomes, reconstituted with liposomes of microsomal phospholipids, NADPH-cytochrome P-450 reductase and cytochrome P-450, was examined to elucidate the role of lipid peroxidation of membranes in radiation-induced damage to membrane-bound enzymes. The reconstituted system of non-irradiated enzymes with irradiated liposomes showed a low activity of hexobarbital hydroxylation, whereas irradiated enzymes combined with non-irradiated liposomes exhibited an activity equal to that of unirradiated controls. Irradiation of liposomes caused a decrease in cytochrome P-450 content by destruction of the haem of cytochrome P-450 and also inhibited the binding capacity of cytochrome P-450 for hexobarbital. The relationship between radiation-induced lipid peroxidation and membrane-bound enzymes is discussed.

  1. Hyperbaric oxygen in the treatment of radiation-induced optic neuropathy

    SciTech Connect

    Guy, J.; Schatz, N.J.

    1986-08-01

    Four patients with radiation-induced optic neuropathies were treated with hyperbaric oxygen. They had received radiation therapy for treatment of pituitary tumors, reticulum cell sarcoma, and meningioma. Two presented with amaurosis fugax before the onset of unilateral visual loss and began hyperbaria within 72 hours after development of unilateral optic neuropathy. Both had return of visual function to baseline levels. The others initiated treatment two to six weeks after visual loss occurred in the second eye and had no significant improvement of vision. Treatment consisted of daily administration of 100% oxygen under 2.8 atmospheres of pressure for 14-28 days. There were no medical complications of hyperbaria. While hyperbaric oxygen is effective in the treatment of radiation-induced optic neuropathy, it must be instituted within several days of deterioration in vision for restoration of baseline function.

  2. Anti-apoptotic peptides protect against radiation-induced cell death.

    PubMed

    McConnell, Kevin W; Muenzer, Jared T; Chang, Kathy C; Davis, Chris G; McDunn, Jonathan E; Coopersmith, Craig M; Hilliard, Carolyn A; Hotchkiss, Richard S; Grigsby, Perry W; Hunt, Clayton R

    2007-04-06

    The risk of terrorist attacks utilizing either nuclear or radiological weapons has raised concerns about the current lack of effective radioprotectants. Here it is demonstrated that the BH4 peptide domain of the anti-apoptotic protein Bcl-xL can be delivered to cells by covalent attachment to the TAT peptide transduction domain (TAT-BH4) and provide protection in vitro and in vivo from radiation-induced apoptotic cell death. Isolated human lymphocytes treated with TAT-BH4 were protected against apoptosis following exposure to 15Gy radiation. In mice exposed to 5Gy radiation, TAT-BH4 treatment protected splenocytes and thymocytes from radiation-induced apoptotic cell death. Most importantly, in vivo radiation protection was observed in mice whether TAT-BH4 treatment was given prior to or after irradiation. Thus, by targeting steps within the apoptosis signaling pathway it is possible to develop post-exposure treatments to protect radio-sensitive tissues.

  3. Radiation induced darkening of the optical elements in the Startracker camera

    SciTech Connect

    White, R.H.; Wirtenson, G.R.

    1993-03-01

    Optical glass flats that closely simulate the elements used in the Startracker lens designs were exposed to doses of ionizing radiation ranging from 0.44 to 1300 krad. Photometer traces determined the transmittance of the samples as a function of both wavelength and dose for wavelengths in the range 300 to 1200 nm. Cerium stabilized glasses used in the radiation stabilized Startracker system showed only a small amount of darkening for doses up to and exceeding 1 Mrad. Glasses used in the unstabilized Startracker design showed significant darkening to visible and ultra-violet spectra for doses as low as 5 krad. Plots of transmittance versus wavelength for various doses are given for each of the Startracker optical elements. Radiation induced absorption parameters that determine the radiation induced absorption coefficient are tabulated and plotted versus wavelength.

  4. Radiation-induced 1/f noise degradation of bipolar linear voltage regulator

    NASA Astrophysics Data System (ADS)

    Qifeng, Zhao; Yiqi, Zhuang; Junlin, Bao; Wei, Hu

    2016-03-01

    Radiation-induced 1/f noise degradation in the LM117 bipolar linear voltage regulator is studied. Based on the radiation-induced degradation mechanism of the output voltage, it is suggested that the band-gap reference subcircuit is the critical component which leads to the 1/f noise degradation of the LM117. The radiation makes the base surface current of the bipolar junction transistors of the band-gap reference subcircuit increase, which leads to an increase in the output 1/f noise of the LM117. Compared to the output voltage, the 1/f noise parameter is more sensitive, it may be used to evaluate the radiation resistance capability of LM117. Project supported by the National Natural Science Foundation of China (Nos. 61076101, 61204092).

  5. Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis

    PubMed Central

    Weigel, Christoph; Veldwijk, Marlon R.; Oakes, Christopher C.; Seibold, Petra; Slynko, Alla; Liesenfeld, David B.; Rabionet, Mariona; Hanke, Sabrina A.; Wenz, Frederik; Sperk, Elena; Benner, Axel; Rösli, Christoph; Sandhoff, Roger; Assenov, Yassen; Plass, Christoph; Herskind, Carsten; Chang-Claude, Jenny; Schmezer, Peter; Popanda, Odilia

    2016-01-01

    Radiotherapy is a fundamental part of cancer treatment but its use is limited by the onset of late adverse effects in the normal tissue, especially radiation-induced fibrosis. Since the molecular causes for fibrosis are largely unknown, we analyse if epigenetic regulation might explain inter-individual differences in fibrosis risk. DNA methylation profiling of dermal fibroblasts obtained from breast cancer patients prior to irradiation identifies differences associated with fibrosis. One region is characterized as a differentially methylated enhancer of diacylglycerol kinase alpha (DGKA). Decreased DNA methylation at this enhancer enables recruitment of the profibrotic transcription factor early growth response 1 (EGR1) and facilitates radiation-induced DGKA transcription in cells from patients later developing fibrosis. Conversely, inhibition of DGKA has pronounced effects on diacylglycerol-mediated lipid homeostasis and reduces profibrotic fibroblast activation. Collectively, DGKA is an epigenetically deregulated kinase involved in radiation response and may serve as a marker and therapeutic target for personalized radiotherapy. PMID:26964756

  6. Spontaneous perseverative turning in rats with radiation-induced hippocampal damage

    SciTech Connect

    Mickley, G.A.; Ferguson, J.L.; Nemeth, T.J.; Mulvihill, M.A.; Alderks, C.E. )

    1989-08-01

    This study found a new behavioral correlate of lesions specific to the dentate granule cell layer of the hippocampus: spontaneous perseverative turning. Irradiation of a portion of the neonatal rat cerebral hemispheres produced hypoplasia of the granule cell layer of the hippocampal dentate gyrus while sparing the rest of the brain. Radiation-induced damage to the hippocampal formation caused rats placed in bowls to spontaneously turn in long, slow bouts without reversals. Irradiated subjects also exhibited other behaviors characteristic of hippocampal damage (e.g., perseveration in spontaneous exploration of the arms of a T-maze, retarded acquisition of a passive avoidance task, and increased horizontal locomotion). These data extend previously reported behavioral correlates of fascia dentata lesions and suggest the usefulness of a bout analysis of spontaneous bowl turning as a measure of nondiscrete-trial spontaneous alternation and a sensitive additional indicator of radiation-induced hippocampal damage.

  7. The potential influence of radiation-induced microenvironments in neoplastic progression

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Ionizing radiation is a complete carcinogen, able both to initiate and promote neoplastic progression and is a known carcinogen of human and murine mammary gland. Tissue response to radiation is a composite of genetic damage, cell death and induction of new gene expression patterns. Although DNA damage is believed to initiate carcinogenesis, the contribution of these other aspects of radiation response are beginning to be explored. Our studies demonstrate that radiation elicits rapid and persistent global alterations in the mammary gland microenvironment. We postulate that radiation-induced microenvironments may affect epithelial cells neoplastic transformation by altering their number or susceptibility. Alternatively, radiation induced microenvironments may exert a selective force on initiated cells and/or be conducive to progression. A key impetus for these studies is the possibility that blocking these events could be a strategy to interrupt neoplastic progression.

  8. Genome-wide microarray analysis of human fibroblasts in response to γ radiation and the radiation-induced bystander effect.

    PubMed

    Kalanxhi, Erta; Dahle, Jostein

    2012-01-01

    Radiation-induced bystander effects have been studied extensively due to their potential implications for cancer therapy and radiation protection; however, a complete understanding of the molecular mechanisms remains to be elucidated. In this study, we monitored transcriptional responses to γ radiation in irradiated and bystander fibroblasts simultaneously employing a genome-wide microarray approach to determine factors that may be modulated in the generation or propagation of the bystander effect. For the microarray data we employed analysis at both the single-gene and gene-set level to place the findings in a biological context. Unirradiated bystander fibroblasts that were recipients of growth medium harvested from irradiated cultures 2 h after exposure to 2 Gy displayed transient enrichment in gene sets belonging to ribosome, oxidative phosphorylation and neurodegenerative disease pathways associated with mitochondrial dysfunctions. The response to direct irradiation was characterized by induction of signaling and apoptosis genes and the gradual formation of a cellular immune response. A set of 14 genes, many of which were regulated by p53, were found to be induced early after irradiation (prior to medium transfer) and may be important in the generation or propagation of the bystander effect.

  9. MiRNA-Embedded ShRNAs for Radiation-Inducible LGMN Knockdown and the Antitumor Effects on Breast Cancer

    PubMed Central

    Zhang, Zhi-Qiang; Cao, Zhi; Liu, Cong; Li, Rong; Wang, Wei-Dong; Wang, Xing-Yong

    2016-01-01

    Legumain (LGMN) is highly expressed in breast cancer (BC) and other solid tumors and is a potential anticancer target. Here we investigate the anti-tumor effects of short hairpin RNAs (shRNAs) targeting LGMN embedded in a microRNA-155 (miR-155) architecture, which is driven by a radiation-inducible chimeric RNA polymerase II (Pol II) promoter. Lentiviral vectors were generated with the chimeric promoter which controlled the expression of downstream shRNA-miR-155 cassette. Fluorescence was observed by using confocal microscopy. Real-time quantitative PCR and Western blotting were used to determine the expression level of LGMN, MMP2, and MMP9. Furthermore, the proliferation and invasive ability of BC cells was analyzed via plate colony formation and invasion assays. Here we demonstrated that the chimeric promoter could be effectively induced by radiation treatment. Furthermore, the shRNA-miR-155 cassette targeting LGMN could be effectively activated by the chimeric promoter. Radiation plus knockdown of LGMN impairs colony formation and dampens cell migration and invasion in BC cells. Inhibition of LGMN downregulates MMP2 and MMP9 expression in BC cells. Pol II-driven shRNA-miR-155 could effectively suppress the growth and invasiveness of BC cells, and that the interference effects could be regulated by radiation doses. Moreover, knockdown of LGMN alleviates the aggressive phenotype of BC cells through modulating MMPs expression. PMID:27656894

  10. Polyphenolic glycoconjugates from medical plants of Rosaceae/Asteraceae family protect human lymphocytes against γ-radiation-induced damage.

    PubMed

    Szejk, Magdalena; Poplawski, Tomasz; Sarnik, Joanna; Pawlaczyk-Graja, Izabela; Czechowski, Franciszek; Olejnik, Alicja Klaudia; Gancarz, Roman; Zbikowska, Halina Malgorzata

    2017-01-01

    Radioprotective effects of the water-soluble polyphenolic glycoconjugates, isolated from flowers of Sanguisorba officinalis L.(SO) and Erigeron canadensis L.(EC), and from leaves of Fragaria vesca L. (FV) and Rubus plicatus Whe. Et N. E. (RP), against γ-radiation-induced toxicity in human peripheral blood lymphocytes were investigated. Cell treatment with glycoconjugates (1, 5 and 25μg/mL) prior exposure to 10/15Gy radiation resulted in concentration-dependent reduction of DNA damage including oxidative DNA lesions (comet assay), substantial inhibition of lipid peroxidation (TBARS) and restoration of superoxide dismutase and S-glutathione transferase activities. Glycoconjugates isolated from SO and EC ensured better protection versus these from RP and FV, with the SO product potential comparable to that of the reference quercetin. Strong antioxidant/radioprotective activity of the SO and EC glycoconjugates could be attributed to high abundance of syringol-type and ferulic acid units in their matrices, respectively. Moreover, polyphenolic glycoconjugates (25μg/mL), including RP and FV products, significantly decreased DNA damage when applied post-radiation suggesting their modulating effects on DNA repair pathways. Preliminary data on the glycoconjugate phenolic structural units, based on GLC/MS of the products of pyrolysis and in situ methylation, in relation to application of plant products as potential radioprotectors is promising and deserves further investigation.

  11. Semiquinone derivative isolated from Bacillus sp. INM-1 protects cellular antioxidant enzymes from γ-radiation-induced renal toxicity.

    PubMed

    Mishra, S; Reddy, D S K; Jamwal, V S; Bansal, D D; Patel, D D; Malhotra, P; Gupta, A K; Singh, P K; Jawed, S; Kumar, Raj

    2013-07-01

    This study was focused to evaluate protection of indigenous antioxidant system of mice against gamma radiation-induced oxidative stress using a semiquinone (SQGD)-rich fraction isolated from Bacillus sp. INM-1. Male C57bl/6 mice were administered SQGD (50 mg/kgb.w.i.p.) 2 h before irradiation (10 Gy) and modulation in antioxidant enzymes activities was estimated at different time intervals and compared with irradiated mice which were not pretreated by SQGD. Compared to untreated controls, SQGD pretreatment significantly (p < 0.05) accelerates superoxide dismutase, catalase, GSH, and glutathione-S-transferase activities. Similarly, significant (p < 0.05) increase in the expression of superoxide dismutase, catalase, GSH, and glutathione-S-transferase was observed in irradiated mice pretreated by SQGD, compared to only irradiated groups. Total antioxidant status equivalent to trolox was estimated in renal tissue of the mice after SQGD administration. Significant ABTS(+) radical formation was observed in H2O2-treated kidney homogenate, due to oxidative stress in the tissue. However, significant decrease in the levels of ABTS(+) radical was observed in kidney homogenate of the mice pretreated with SQGD. Therefore, it can be concluded that SQGD neutralizes oxidative stress by induction of antioxidant enzymes activities and thus improved total antioxidant status in cellular system and hence contributes to radioprotection.

  12. The Protective Roles of ROS-Mediated Mitophagy on 125I Seeds Radiation Induced Cell Death in HCT116 Cells

    PubMed Central

    Hu, Lelin; Wang, Hao; Huang, Li; Zhao, Yong

    2016-01-01

    For many unresectable carcinomas and locally recurrent cancers (LRC), 125I seeds brachytherapy is a feasible, effective, and safe treatment. Several studies have shown that 125I seeds radiation exerts anticancer activity by triggering DNA damage. However, recent evidence shows mitochondrial quality to be another crucial determinant of cell fate, with mitophagy playing a central role in this control mechanism. Herein, we found that 125I seeds irradiation injured mitochondria, leading to significantly elevated mitochondrial and intracellular ROS (reactive oxygen species) levels in HCT116 cells. The accumulation of mitochondrial ROS increased the expression of HIF-1α and its target genes BINP3 and NIX (BINP3L), which subsequently triggered mitophagy. Importantly, 125I seeds radiation induced mitophagy promoted cells survival and protected HCT116 cells from apoptosis. These results collectively indicated that 125I seeds radiation triggered mitophagy by upregulating the level of ROS to promote cellular homeostasis and survival. The present study uncovered the critical role of mitophagy in modulating the sensitivity of tumor cells to radiation therapy and suggested that chemotherapy targeting on mitophagy might improve the efficiency of 125I seeds radiation treatment, which might be of clinical significance in tumor therapy. PMID:28119765

  13. Tristetraprolin mediates radiation-induced TNF-α production in lung macrophages.

    PubMed

    Ray, Dipankar; Shukla, Shirish; Allam, Uday Sankar; Helman, Abigail; Ramanand, Susmita Gurjar; Tran, Linda; Bassetti, Michael; Krishnamurthy, Pranathi Meda; Rumschlag, Matthew; Paulsen, Michelle; Sun, Lei; Shanley, Thomas P; Ljungman, Mats; Nyati, Mukesh K; Zhang, Ming; Lawrence, Theodore S

    2013-01-01

    The efficacy of radiation therapy for lung cancer is limited by radiation-induced lung toxicity (RILT). Although tumor necrosis factor-alpha (TNF-α) signaling plays a critical role in RILT, the molecular regulators of radiation-induced TNF-α production remain unknown. We investigated the role of a major TNF-α regulator, Tristetraprolin (TTP), in radiation-induced TNF-α production by macrophages. For in vitro studies we irradiated (4 Gy) either a mouse lung macrophage cell line, MH-S or macrophages isolated from TTP knockout mice, and studied the effects of radiation on TTP and TNF-α levels. To study the in vivo relevance, mouse lungs were irradiated with a single dose (15 Gy) and assessed at varying times for TTP alterations. Irradiation of MH-S cells caused TTP to undergo an inhibitory phosphorylation at Ser-178 and proteasome-mediated degradation, which resulted in increased TNF-α mRNA stabilization and secretion. Similarly, MH-S cells treated with TTP siRNA or macrophages isolated from ttp (-/-) mice had higher basal levels of TNF-α, which was increased minimally after irradiation. Conversely, cells overexpressing TTP mutants defective in undergoing phosphorylation released significantly lower levels of TNF-α. Inhibition of p38, a known kinase for TTP, by either siRNA or a small molecule inhibitor abrogated radiation-induced TNF-α release by MH-S cells. Lung irradiation induced TTP(Ser178) phosphorylation and protein degradation and a simultaneous increase in TNF-α production in C57BL/6 mice starting 24 h post-radiation. In conclusion, irradiation of lung macrophages causes TTP inactivation via p38-mediated phosphorylation and proteasome-mediated degradation, leading to TNF-α production. These findings suggest that agents capable of blocking TTP phosphorylation or stabilizing TTP after irradiation could decrease RILT.

  14. Blockade of Kv1.3 channels ameliorates radiation-induced brain injury

    PubMed Central

    Peng, Ying; Lu, Kui; Li, Zichen; Zhao, Yaodong; Wang, Yiping; Hu, Bin; Xu, Pengfei; Shi, Xiaolei; Zhou, Bin; Pennington, Michael; Chandy, K. George; Tang, Yamei

    2014-01-01

    Background Tumors affecting the head, neck, and brain account for significant morbidity and mortality. The curative efficacy of radiotherapy for these tumors is well established, but radiation carries a significant risk of neurologic injury. So far, neuroprotective therapies for radiation-induced brain injury are still limited. In this study we demonstrate that Stichodactyla helianthus (ShK)–170, a specific inhibitor of the voltage-gated potassium (Kv)1.3 channel, protected mice from radiation-induced brain injury. Methods Mice were treated with ShK-170 for 3 days immediately after brain irradiation. Radiation-induced brain injury was assessed by MRI scans and a Morris water maze. Pathophysiological change of the brain was measured by immunofluorescence. Gene and protein expressions of Kv1.3 and inflammatory factors were measured by quantitative real-time PCR, reverse transcription PCR, ELISA assay, and western blot analyses. Kv currents were recorded in the whole-cell configuration of the patch-clamp technique. Results Radiation increased Kv1.3 mRNA and protein expression in microglia. Genetic silencing of Kv1.3 by specific short interference RNAs or pharmacological blockade with ShK-170 suppressed radiation-induced production of the proinflammatory factors interleukin-6, cyclooxygenase-2, and tumor necrosis factor–α by microglia. ShK-170 also inhibited neurotoxicity mediated by radiation-activated microglia and promoted neurogenesis by increasing the proliferation of neural progenitor cells. Conclusions The therapeutic effect of ShK-170 is mediated by suppression of microglial activation and microglia-mediated neurotoxicity and enhanced neurorestoration by promoting proliferation of neural progenitor cells. PMID:24305723

  15. Mitigating effect of EUK-207 on radiation-induced cognitive impairments.

    PubMed

    Raber, J; Davis, M J; Pfankuch, T; Rosenthal, R; Doctrow, S R; Moulder, J E

    2017-03-01

    The brain could be exposed to irradiation as part of a nuclear accident, radiological terrorism (dirty bomb scenario) or a medical radiological procedure. In the context of accidents or terrorism, there is considerable interest in compounds that can mitigate radiation-induced injury when treatment is initiated a day or more after the radiation exposure. As it will be challenging to determine the radiation exposure an individual has received within a relatively short time frame, it is also critical that the mitigating agent does not negatively affect individuals, including emergency workers, who might be treated, but who were not exposed. Alterations in hippocampus-dependent cognition often characterize radiation-induced cognitive injury. The catalytic ROS scavenger EUK-207 is a member of the class of metal-containing salen manganese (Mn) complexes that suppress oxidative stress, including in the mitochondria, and have been shown to mitigate radiation dermatitis, promote wound healing in irradiated skin, and mitigate vascular injuries in irradiated lungs. As the effects of EUK-207 against radiation injury in the brain are not known, we assessed the effects of EUK-207 on sham-irradiated animals and the ability of EUK-207 to mitigate radiation-induced cognitive injury. The day following irradiation or sham-irradiation, the mice started to receive EUK-207 and were cognitively tested 3 months following exposure. Mice irradiated at a dose of 15Gy showed cognitive impairments in the water maze probe trial. EUK-207 mitigated these impairments while not affecting cognitive performance of sham-irradiated mice in the water maze probe trial. Thus, EUK-207 has attractive properties and should be considered an ideal candidate to mitigate radiation-induced cognitive injury.

  16. Modification of polyethylene by radiation-induced graft polymerization of acrylic acid

    NASA Astrophysics Data System (ADS)

    Sidorova, L. P.; Aliev, A. D.; Zlobin, V. B.; Aliev, R. E.; Chalykh, A. E.; Kabanov, V. Ya.

    The kinetics investigation of the radiation-induced graft polymerization of acrylic acid onto low density polyethylene by direct method in aqueous solution in the presence of Mohr's salt, was performed. The technique of the contrasting of polyacrylic acid (PAA) graft layer was worked out by Ag +-ions. The structural and morphological peculiarities of grafted copolymers of PE with PAA were determined by the method of electron probe, and X-ray microanalysis by means of the electron microscopy.

  17. Radiation-induced conductivity and high temperature Q changes in quartz resonators

    SciTech Connect

    Koehler, D.R.

    1981-06-01

    While high temperature electrolysis has proven beneficial as a technique to remove interstitial impurities from quartz, reliable indices to measure the efficacy of such a processing step are still under development. The present work is directed toward providing such an index. Two techniques were investigated - one involves measurement of the radiation-induced conductivity in quartz along the optic axis, and the second involves measurement of high temperature Q changes. Both effects originate when impurity charge compensators are released from their traps, in the first case resulting in an associated increase in ionic conduction and in the second case resulting in increased acoustic losses. Radiation-induced conductivity measurements were carried out with a 200 kV, 14 mA X-ray machine producing approximately 5 rads/sec at the sample. With electric fields of the order of 10/sup 4/ V/cm, the noise level in the current measuring system is equivalent to an ionic current generated by quartz impurities in the 1 ppB range. The accuracy of the high temperature (300 to 800 K) Q/sup -1/ measurement technique is limited by the uncertainties associated with quantitative correlation of the high temperature acoustic losses with the concentration of impurity centers. A number of resonators constructed of quartz material of different impurity contents have been tested, and both the radiation-induced conductivity and the high temperature Q/sup -1/ results compared with earlier radiation-induced frequency and resonator resistance changes. A postirradiation-induced conductivity index and a high temperature Q index show excellent correlation with the earlier pulsed irradiation-induced dynamic resonator motional resistance changes, and it is therefore concluded that either measurement can be employed to serve as an acceptance criterion for radiation hardness.

  18. [Research advances in medical imaging for radiation-induced liver injury].

    PubMed

    Dong, Tian-ming; An, Ning-yu

    2013-12-01

    The applications of three dimensional conformal radiotherapy(3-DCRT)in the abdomen has been associated with the increased incidence of radiation-induced liver injury(RILI). Timely and appropriate evaluation of RILI is particularly important for the design and modification of clinical management of tumors. This article reviews the pathological and serological features of RILI, focusing on in the application of medical imaging.

  19. C-V and DLTS studies of radiation induced Si-SiO2 interface defects

    NASA Astrophysics Data System (ADS)

    Capan, I.; Janicki, V.; Jacimovic, R.; Pivac, B.

    2012-07-01

    Interface traps at the Si-SiO2 interface have been and will be an important performance limit in many (future) semiconductor devices. In this paper, we present a study of fast neutron radiation induced changes in the density of Si-SiO2 interface-related defects. Interface related defects (Pb centers) are detected before and upon the irradiation. The density of interface-related defects is increasing with the fast neutron fluence.

  20. Energy Distribution of Electrons in Radiation Induced-Helium Plasmas. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lo, R. H.

    1972-01-01

    Energy distribution of high energy electrons as they slow down and thermalize in a gaseous medium is studied. The energy distribution in the entire energy range from source energies down is studied analytically. A helium medium in which primary electrons are created by the passage of heavy-charged particles from nuclear reactions is emphasized. A radiation-induced plasma is of interest in a variety of applications, such as radiation pumped lasers and gaseous core nuclear reactors.

  1. Effect of sodium meclofenamate on radiation-induced esophagitis and cystitis

    SciTech Connect

    Ambrus, J.L.; Ambrus, C.M.; Lillie, D.B.; Johnson, R.J.; Gastpar, H.; Kishel, S.

    1984-01-01

    Stumptailed monkeys (Macaca arctoides) received 2000 rad irradiation to the upper half of the esophagus and to the bladder by a 6-MeV linear accelerator. Endoscopy and biopsy was obtained from these organs weekly for 3 weeks. At the end of this period, the animals were autopsied and histopathologic examination undertaken. Sodium meclofenamate in doses of 5-20 mg/kg/day p.os was found effective in reducing or preventing radiation-induced esophagitis and cystitis.

  2. A selenocysteine derivative therapy affects radiation-induced pneumonitis in the mouse.

    PubMed

    Kunwar, Amit; Jain, V K; Priyadarsini, K I; Haston, Christina K

    2013-10-01

    The mechanism leading to the radiation-induced lung response of pneumonitis is largely unknown. Here we investigated whether treatment with 3,3'-diselenodipropionic acid (DSePA), which reduces radiation-induced oxidative stress in acute response models, decreases the lung response to irradiation. Mice of the C3H/HeJ (alveolitis/pneumonitis-responding) strain received 18 Gy whole-thorax irradiation, and a subset of these mice was treated with DSePA (2 mg/kg) three times per week, beginning at 2 hours after radiation treatment, and continuing in the postirradiation period until death because of respiratory distress symptoms. DSePA treatment increased the postirradiation survival time of mice by an average of 32 days (P = 0.0002). Radiation-treated and DSePA-treated mice presented lower levels of lipid peroxidation and augmented glutathione peroxidase in the lungs, compared with those levels measured in mice receiving radiation only, when mice receiving radiation only were killed because of distress symptoms, whereas catalase and superoxide dismutase levels did not show consistent differences among treatment groups. DSePA treatment decreased pneumonitis and the numbers of mast cells, neutrophils, and lymphocytes in the lungs and bronchoalveolar lavage, respectively, of irradiated mice relative to mice exposed to radiation alone. DSePA treatment also decreased the radiation-induced increase in granulocyte colony-stimulating factor levels in the bronchoalveolar lavage and lung-tissue expression of intercellular adhesion molecule-1 and E-selectin, while increasing the expression of glutathione peroxidase-4. We conclude that DSePA treatment reduces radiation-induced pneumonitis in mice by delaying oxidative damage and the inflammatory cell influx.

  3. Vitamin D Deficiency Is Associated With the Severity of Radiation-Induced Proctitis in Cancer Patients

    SciTech Connect

    Ghorbanzadeh-Moghaddam, Amir; Gholamrezaei, Ali; Hemati, Simin

    2015-07-01

    Purpose: Radiation-induced injury to normal tissues is a common complication of radiation therapy in cancer patients. Considering the role of vitamin D in mucosal barrier hemostasis and inflammatory responses, we investigated whether vitamin D deficiency is associated with the severity of radiation-induced acute proctitis in cancer patients. Methods and Materials: This prospective observational study was conducted in cancer patients referred for pelvic radiation therapy. Serum concentration of 25-hydroxyvitamin D was measured before radiation therapy. Vitamin D deficiency was defined as 25-hydroxyvitamin D concentrations of <35 nmol/L and <40 nmol/L in male and female patients, respectively, based on available normative data. Acute proctitis was assessed after 5 weeks of radiation therapy (total received radiation dose of 50 Gy) and graded from 0 to 4 using Radiation Therapy Oncology Group (RTOG) criteria. Results: Ninety-eight patients (57.1% male) with a mean age of 62.8 ± 9.1 years were studied. Vitamin D deficiency was found in 57 patients (58.1%). Symptoms of acute proctitis occurred in 72 patients (73.4%) after radiation therapy. RTOG grade was significantly higher in patients with vitamin D deficiency than in normal cases (median [interquartile range] of 2 [0.5-3] vs 1 [0-2], P=.037). Vitamin D deficiency was associated with RTOG grade of ≥2, independent of possible confounding factors; odds ratio (95% confidence interval) = 3.07 (1.27-7.50), P=.013. Conclusions: Vitamin D deficiency is associated with increased severity of radiation-induced acute proctitis. Investigating the underlying mechanisms of this association and evaluating the effectiveness of vitamin D therapy in preventing radiation-induced acute proctitis is warranted.

  4. Effects of subdiaphragmatic vagotomy on the acquisition of a radiation-induced conditioned taste aversion

    SciTech Connect

    Hunt, W.A.; Rabin, B.M.; Lee, J.

    1987-01-01

    The effect of subdiaphragmatic vagotomy on the acquisition of a radiation-induced taste aversion was examined to assess the importance of the vagus nerve in transmitting information on the peripheral toxicity of radiation to the brain. Vagotomy had no effect on taste aversion learning, consistent with reports using other toxins. The data support the involvement of a blood-borne factor in the acquisition of taste aversion induced by ionizing radiation.

  5. Study on chemical, UV and gamma radiation-induced grafting of 2-hydroxyethyl methacrylate onto chitosan

    NASA Astrophysics Data System (ADS)

    Casimiro, M. H.; Botelho, M. L.; Leal, J. P.; Gil, M. H.

    2005-04-01

    In the present study, 2-hydroxyethyl methacrylate has been grafted onto chitosan by using either chemical initiation, or photo-induction or gamma radiation-induced polymerisation, all under heterogeneous conditions. The evidence of grafting was provided by Fourier transform infrared spectroscopy and thermal analysis. The results concerning the effect of initiator concentration, initial monomer concentration and dose rate influencing on the yield of grafting reactions are presented. These suggest that gamma irradiation is the method that leads to higher yields of grafting.

  6. Hesperidin as Radioprotector against Radiation-induced Lung Damage in Rat: A Histopathological Study

    PubMed Central

    Haddadi, Gholam Hassan; Rezaeyan, Abolhasan; Mosleh-Shirazi, Mohammad Amin; Hosseinzadeh, Massood; Fardid, Reza; Najafi, Masoud; Salajegheh, Ashkan

    2017-01-01

    Reactive oxygen species (ROS) are generated by ionizing radiation, and one of the organs commonly affected by ROS is the lung. Radiation-induced lung injury including pneumonia and lung fibrosis is a dose-limiting factor in radiotherapy (RT) of patients with thorax irradiation. Administration of antioxidants has been proved to protect against ROS. The present study was aimed to assess the protective effect of hesperidin (HES) against radiation-induced lung injury of male rats. Fifty rats were divided into three groups. G1: Received no HES and radiation (sham). G2: Underwent γ-irradiation to the thorax. G3: Received HES and underwent γ-irradiation. The rats were exposed to a single dose of 18 Gy using cobalt-60 unit and were administered HES (100 mg/kg) for 7 days before irradiation. Histopathological analysis was performed 24 h and 8 weeks after RT. Histopathological results in 24 h showed radiation-induced inflammation and presence of more inflammatory cells as compared to G1 (P < 0.05). Administration of HES significantly decreased such an effect when compared to G2 (P < 0.05). Histopathological evaluation in 8 weeks showed a significant increase in mast cells, inflammation, inflammatory cells, alveolar thickness, vascular thickness, pulmonary edema, and fibrosis in G2 when compared to G1 (P < 0.05). HES significantly decreased inflammatory response, fibrosis, and mast cells when compared to G2 (P < 0.05). Administration of HES resulted in decreased radiation pneumonitis and radiation fibrosis in the lung tissue. Thus, the present study showed HES to be an efficient radioprotector against radiation-induced damage in the lung of tissue rats.

  7. Impact of p53 status on heavy-ion radiation-induced micronuclei in circulating erythrocytes

    NASA Technical Reports Server (NTRS)

    Chang, P. Y.; Torous, D.; Lutze-Mann, L.; Winegar, R.

    2000-01-01

    Transgenic mice that differed in their p53 genetic status were exposed to an acute dose of highly charged and energetic (HZE) iron particle radiation. Micronuclei (MN) in two distinct populations of circulating peripheral blood erythrocytes, the immature reticulocytes (RETs) and the mature normochromatic erythrocytes (NCEs), were measured using a simple and efficient flow cytometric procedure. Our results show significant elevation in the frequency of micronucleated RETs (%MN-RETs) at 2 and 3 days post-radiation. At 3 days post-irradiation, the magnitude of the radiation-induced MN-RET was 2.3-fold higher in the irradiated p53 wild-type animals compared to the unirradiated controls, 2.5-fold higher in the p53 hemizygotes and 4.3-fold higher in the p53 nullizygotes. The persistence of this radiation-induced elevation of MN-RETs is dependent on the p53 genetic background of the animal. In the p53 wild-type and p53 hemizygotes, %MN-RETs returned to control levels by 9 days post-radiation. However, elevated levels of %MN-RETs in p53 nullizygous mice persisted beyond 56 days post-radiation. We also observed elevated MN-NCEs in the peripheral circulation after radiation, but the changes in radiation-induced levels of MN-NCEs appear dampened compared to those of the MN-RETs for all three strains of animals. These results suggest that the lack of p53 gene function may play a role in the iron particle radiation-induced genomic instability in stem cell populations in the hematopoietic system.

  8. Amelioration of radiation-induced hematopoietic and gastrointestinal damage by Ex-RAD(R) in mice.

    PubMed

    Ghosh, Sanchita P; Kulkarni, Shilpa; Perkins, Michael W; Hieber, Kevin; Pessu, Roli L; Gambles, Kristen; Maniar, Manoj; Kao, Tzu-Cheg; Seed, Thomas M; Kumar, K Sree

    2012-07-01

    The aim of the present study was to assess recovery from hematopoietic and gastrointestinal damage by Ex-RAD(®), also known as ON01210.Na (4-carboxystyryl-4-chlorobenzylsulfone, sodium salt), after total body radiation. In our previous study, we reported that Ex-RAD, a small-molecule radioprotectant, enhances survival of mice exposed to gamma radiation, and prevents radiation-induced apoptosis as measured by the inhibition of radiation-induced protein 53 (p53) expression in cultured cells. We have expanded this study to determine best effective dose, dose-reduction factor (DRF), hematological and gastrointestinal protection, and in vivo inhibition of p53 signaling. A total of 500 mg/kg of Ex-RAD administered at 24 h and 15 min before radiation resulted in a DRF of 1.16. Ex-RAD ameliorated radiation-induced hematopoietic damage as monitored by the accelerated recovery of peripheral blood cells, and protection of granulocyte macrophage colony-forming units (GM-CFU) in bone marrow. Western blot analysis on spleen indicated that Ex-RAD treatment inhibited p53 phosphorylation. Ex-RAD treatment reduces terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay (TUNEL)-positive cells in jejunum compared with vehicle-treated mice after radiation injury. Finally, Ex-RAD preserved intestinal crypt cells compared with the vehicle control at 13 and 14 Gy. The results demonstrated that Ex-RAD ameliorates radiation-induced peripheral blood cell depletion, promotes bone marrow recovery, reduces p53 signaling in spleen and protects intestine from radiation injury.

  9. Selenoprotein P Inhibits Radiation-Induced Late Reactive Oxygen Species Accumulation and Normal Cell Injury

    SciTech Connect

    Eckers, Jaimee C.; Kalen, Amanda L.; Xiao, Wusheng; Sarsour, Ehab H.; Goswami, Prabhat C.

    2013-11-01

    Purpose: Radiation is a common mode of cancer therapy whose outcome is often limited because of normal tissue toxicity. We have shown previously that the accumulation of radiation-induced late reactive oxygen species (ROS) precedes cell death, suggesting that metabolic oxidative stress could regulate cellular radiation response. The purpose of this study was to investigate whether selenoprotein P (SEPP1), a major supplier of selenium to tissues and an antioxidant, regulates late ROS accumulation and toxicity in irradiated normal human fibroblasts (NHFs). Methods and Materials: Flow cytometry analysis of cell viability, cell cycle phase distribution, and dihydroethidium oxidation, along with clonogenic assays, were used to measure oxidative stress and toxicity. Human antioxidant mechanisms array and quantitative real-time polymerase chain reaction assays were used to measure gene expression during late ROS accumulation in irradiated NHFs. Sodium selenite addition and SEPP1 overexpression were used to determine the causality of SEPP1 regulating late ROS accumulation and toxicity in irradiated NHFs. Results: Irradiated NHFs showed late ROS accumulation (4.5-fold increase from control; P<.05) that occurs after activation of the cell cycle checkpoint pathways and precedes cell death. The mRNA levels of CuZn- and Mn-superoxide dismutase, catalase, peroxiredoxin 3, and thioredoxin reductase 1 increased approximately 2- to 3-fold, whereas mRNA levels of cold shock domain containing E1 and SEPP1 increased more than 6-fold (P<.05). The addition of sodium selenite before the radiation treatment suppressed toxicity (45%; P<.05). SEPP1 overexpression suppressed radiation-induced late ROS accumulation (35%; P<.05) and protected NHFs from radiation-induced toxicity (58%; P<.05). Conclusion: SEPP1 mitigates radiation-induced late ROS accumulation and normal cell injury.

  10. Radiatively induced Lorentz-violating operator of mass dimension five in QED

    SciTech Connect

    Mariz, T.

    2011-02-15

    The first higher derivative term of the photon sector of Lorentz-violating QED, with an operator of mass dimension d=5, is radiatively induced from the fermion sector, which contains a derivative term with the dimensionless coefficient g{sup {lambda}{mu}{nu}}. The calculation is performed perturbatively in the coefficient for Lorentz violation, and, due to the fact that the contributions are quadratically divergent, we adopt dimensional regularization.

  11. Radiation-induced alterations in histone modification patterns and their potential impact on short-term radiation effects

    PubMed Central

    Friedl, Anna A.; Mazurek, Belinda; Seiler, Doris M.

    2012-01-01

    Detection and repair of radiation-induced DNA damage occur in the context of chromatin. An intricate network of mechanisms defines chromatin structure, including DNA methylation, incorporation of histone variants, histone modifications, and chromatin remodeling. In the last years it became clear that the cellular response to radiation-induced DNA damage involves all of these mechanisms. Here we focus on the current knowledge on radiation-induced alterations in post-translational histone modification patterns and their effect on the chromatin accessibility, transcriptional regulation and chromosomal stability. PMID:23050241

  12. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    PubMed

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  13. Effects of NOX1 on fibroblastic changes of endothelial cells in radiation-induced pulmonary fibrosis

    PubMed Central

    CHOI, SEO-HYUN; KIM, MISEON; LEE, HAE-JUNE; KIM, EUN-HO; KIM, CHUN-HO; LEE, YOON-JIN

    2016-01-01

    Lung fibrosis is a major complication in radiation-induced lung damage following thoracic radiotherapy, while the underlying mechanism has remained to be elucidated. The present study performed immunofluorescence and immunoblot assays on irradiated human pulmonary artery endothelial cells (HPAECs) with or without pre-treatment with VAS2870, a novel NADPH oxidase (NOX) inhibitor, or small hairpin (sh)RNA against NOX1, -2 or -4. VAS2870 reduced the cellular reactive oxygen species content induced by 5 Gy radiation in HPAECs and inhibited phenotypic changes in fibrotic cells, including increased alpha smooth muscle actin and vimentin, and decreased CD31 and vascular endothelial cadherin expression. These fibrotic changes were significantly inhibited by treatment with NOX1 shRNA, but not by NOX2 or NOX4 shRNA. Next, the role of NOX1 in pulmonary fibrosis development was assessed in the lung tissues of C57BL/6J mice following thoracic irradiation using trichrome staining. Administration of an NOX1-specific inhibitor suppressed radiation-induced collagen deposition and fibroblastic changes in the endothelial cells (ECs) of these mice. The results suggested that radiation-induced pulmonary fibrosis may be efficiently reduced by specific inhibition of NOX1, an effect mediated by reduction of fibrotic changes of ECs. PMID:27053172

  14. Protective effects of caffeic acid phenethyl ester against acute radiation-induced hepatic injury in rats.

    PubMed

    Chu, JianJun; Zhang, Xiaojun; Jin, Liugen; Chen, Junliang; Du, Bin; Pang, Qingfeng

    2015-03-01

    Caffeic acid phenyl ester (CAPE) is a potent anti-inflammatory agent and it can eliminate the free radicals. The current study was intended to evaluate the protective effect of CAPE against the acute radiation-induced liver damage in rats. Male Sprague-Dawley rats were intraperitoneally administered with CAPE (30 mg/kg) for 3 consecutive days before exposing them to a single dose of 30 Gy of β-ray irradiation to upper abdomen. We found that pretreatment with CAPE significantly decreased the serum levels of alanine aminotransferase and aspartate aminotransferase and increased the activity of superoxide dismutase and glutathione. Histological evaluation further confirmed the protection of CAPE against radiation-induced hepatotoxicity. TUNEL assay showed that CAPE pretreatment inhibited hepatocyte apoptosis. Moreover, CAPE inhibited the nuclear transport of NF-κB p65 subunit, decreased the level of tumor necrosis factor-α, nitric oxide and inducible nitric oxide synthase. Taken together, these results suggest that pretreatment with CAPE offers protection against radiation-induced hepatic injury.

  15. Role of the area postrema in radiation-induced taste aversion learning and emesis in cats

    SciTech Connect

    Rabin, B.M.; Hunt, W.A.; Chedester, A.L.; Lee, J.

    1986-01-01

    The role of the area postrema in radiation-induced emesis and taste aversion learning and the relationship between these behaviors were studied in cats. The potential involvement of neural factors which might be independent of the area postrema was minimized by using low levels of ionizing radiation (100 rads at a dose rate of 40 rads/min) to elicit a taste aversion, and by using body-only exposures (4500 and 6000 rads at 450 rads/min) to produce emesis. Lesions of the area postrema disrupted both taste aversion learning and emesis following irradiation. These results, which indicate that the area postrema is involved in the mediation of both radiation-induced emesis and taste aversion learning in cats under these experimental conditions, are interpreted as being consistent with the hypotheses that similar mechanisms mediate both responses to exposure to ionizing radiation, and that the taste aversion learning paradigm can therefore serve as a model system for studying radiation-induced emesis.

  16. Altered gastric emptying and prevention of radiation-induced vomiting in dogs. [Cobalt 60 irradiation

    SciTech Connect

    Dubois, A.; Jacobus, J.P.; Grissom, M.P.; Eng, R.R.; Conklin, J.J.

    1984-03-01

    The relation between radiation-induced vomiting and gastric emptying is unclear and the treatment of this condition is not established. We explored, therefore, (a) the effect of cobalt 60 irradiation on gastric emptying of solids and liquids and (b) the possibility of preventing radiation-induced vomiting with the dopamine antagonist, domperidone. Twenty dogs were studied on two separate days, blindly and in random order, after i.v. injection of either a placebo or 0.06 mg/kg domperidone. On a third day, they received 8 Gy (800 rads) whole body irradiation with cobalt 60 gamma-rays after either placebo (n . 10) or domperidone (n . 10). Before each study, each dog was fed chicken liver tagged in vivo with 99mTc-sulfur colloid (solid marker), and water containing 111In-diethylenetriamine pentaacetic acid (liquid marker). Dogs were placed in a Pavlov stand for the subsequent 3 h and radionuclide imaging was performed at 10-min intervals. Irradiation produced vomiting in 9 of 10 dogs given placebo but only in 1 of 10 dogs pretreated with domperidone (p less than 0.01). Gastric emptying of liquids and solids was significantly suppressed by irradiation (p less than 0.01) after both placebo and domperidone. These results demonstrate that radiation-induced vomiting is accompanied by suppression of gastric emptying. Furthermore, domperidone prevents vomiting produced by ionizing radiation but does not alter the accompanying delay of gastric emptying.

  17. Mint oil (Mentha spicata Linn.) offers behavioral radioprotection: a radiation-induced conditioned taste aversion study.

    PubMed

    Haksar, A; Sharma, A; Chawla, R; Kumar, Raj; Lahiri, S S; Islam, F; Arora, M P; Sharma, R K; Tripathi, R P; Arora, Rajesh

    2009-02-01

    Mentha spicata Linn. (mint), a herb well known for its gastroprotective properties in the traditional system of medicine has been shown to protect against radiation-induced lethality, and recently its constituents have been found to possess calcium channel antagonizing properties. The present study examined the behavioral radioprotective efficacy of mint oil (obtained from Mentha spicata), particularly in mitigating radiation-induced conditioned taste aversion (CTA), which has been proposed as a behavioral endpoint that is mediated by the toxic effects of gamma radiation on peripheral systems, primarily the gastrointestinal system in the Sprague-Dawley rat model. Intraperitoneal administration of Mentha spicata oil 10% (v/v), 1 h before 2 Gy gamma radiation, was found to render significant radioprotection against CTA (p < 0.05), by blocking the saccharin avoidance response within 5 post-treatment observational days, with the highest saccharin intake being observed on day 5. This finding clearly demonstrates that gastroprotective and calcium channel antagonizing properties of Mentha spicata can be effectively utilized in preventing radiation-induced behavioral changes.

  18. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  19. Mitigation of whole-body gamma radiation-induced damages by Clerodendron infortunatum in mammalian organisms.

    PubMed

    Chacko, Tiju; Menon, Aditya; Majeed, Teeju; Nair, Sivaprabha V; John, Nithu Sara; Nair, Cherupally Krishnan Krishnan

    2016-11-17

    Several phytoceuticals and extracts of medicinal plants are reported to mitigate deleterious effects of ionizing radiation. The potential of hydro-alcoholic extract of Clerodendron infortunatum (CIE) for providing protection to mice exposed to gamma radiation was investigated. Oral administration of CIE bestowed a survival advantage to mice exposed to lethal doses of gamma radiation. Radiation-induced depletion of the total blood count and bone marrow cellularity were prevented by treatment with CIE. Damage to the cellular DNA (as was evident from the comet assay and the micronucleus index) was also found to be decreased upon CIE administration. Radiation-induced damages to intestinal crypt cells was also reduced by CIE. Studies on gene expression in intestinal cells revealed that there was a marked increase in the Bax/Bcl-2 ratio in mice exposed to whole-body 4 Gy gamma radiation, and that administration of CIE resulted in significant lowering of this ratio, suggestive of reduction of radiation-induced apoptosis. Also, in the intestinal tissue of irradiated animals, following CIE treatment, levels of expression of the DNA repair gene Atm were found to be elevated, and there was reduction in the expression of the inflammatory Cox-2 gene. Thus, our results suggest a beneficial use of Clerodendron infortunatum for mitigating radiation toxicity.

  20. Blood glutathione as an index of radiation-induced oxidative stress in mice and humans.

    PubMed

    Navarro, J; Obrador, E; Pellicer, J A; Aseni, M; Viña, J; Estrela, J M

    1997-01-01

    The effect of x-rays on GSH and GSSG levels in blood was studied in mice and humans. An HPLC method that we recently developed was applied to accurately determine GSSG levels in blood. The glutathione redox status (GSH/GSSG) decreases after irradiation. This effect is mainly due to an increase in GSSG levels. Mice received single fraction radiotherapy, at total doses of 1.0 to 7.0 Gy. Changes in GSSG in mouse blood can be detected 10 min after irradiation and last for 6 h within a range of 2.0-7.0 Gy. The highest levels of GSSG (20.1 +/- 2.9 microM), a 4.7-fold increase as compared with controls) in mouse blood are found 2 h after radiation exposure (5 Gy). Breast and lung cancer patients received fractionated radiotherapy at total doses of 50.0 or 60.0 Gy, respectively. GSH/GSSG also decreases in humans in a dose-response fashion. Two reasons may explain the radiation-induced increase in blood GSSG: (a) the reaction of GSH with radiation-induced free radicals resulting in the formation of thyl radicals that react to produce GSSG; and (b) an increase of GSSG release from different organs (e.g., the liver) into the blood. Our results indicate that the glutathione redox ratio in blood can be used as an index of radiation-induced oxidative stress.

  1. Loss of Matrix Metalloproteinase-13 Attenuates Murine Radiation-Induced Pulmonary Fibrosis

    SciTech Connect

    Flechsig, Paul; Hartenstein, Bettina; Teurich, Sybille; Dadrich, Monika; Hauser, Kai; Abdollahi, Amir; Groene, Hermann-Josef; Angel, Peter; Huber, Peter E.

    2010-06-01

    Purpose: Pulmonary fibrosis is a disorder of the lungs with limited treatment options. Matrix metalloproteinases (MMPs) constitute a family of proteases that degrade extracellular matrix with roles in fibrosis. Here we studied the role of MMP13 in a radiation-induced lung fibrosis model using a MMP13 knockout mouse. Methods and Materials: We investigated the role of MMP13 in lung fibrosis by investigating the effects of MMP13 deficiency in C57Bl/6 mice after 20-Gy thoracic irradiation (6-MV Linac). The morphologic results in histology were correlated with qualitative and quantitative results of volume computed tomography (VCT), magnetic resonance imaging (MRI), and clinical outcome. Results: We found that MMP13 deficient mice developed less pulmonary fibrosis than their wildtype counterparts, showed attenuated acute pulmonary inflammation (days after irradiation), and a reduction of inflammation during the later fibrogenic phase (5-6 months after irradiation). The reduced fibrosis in MMP13 deficient mice was evident in histology with reduced thickening of alveolar septi and reduced remodeling of the lung architecture in good correlation with reduced features of lung fibrosis in qualitative and quantitative VCT and MRI studies. The partial resistance of MMP13-deficient mice to fibrosis was associated with a tendency towards a prolonged mouse survival. Conclusions: Our data indicate that MMP13 has a role in the development of radiation-induced pulmonary fibrosis. Further, our findings suggest that MMP13 constitutes a potential drug target to attenuate radiation-induced lung fibrosis.

  2. Sodium Tanshinone IIA Sulfonate Prevents Radiation-Induced Toxicity in H9c2 Cardiomyocytes

    PubMed Central

    Zhang, Wenjing; Li, Rui; Wang, Yaya; Zhu, Mengwen; Wang, Bowen; Li, Yanling; Li, Dongyun

    2017-01-01

    The present study was designed to elucidate the key parameters associated with X-ray radiation induced oxidative stress and the effects of STS on X-ray-induced toxicity in H9c2 cardiomyocytes. Cytotoxicity of STS and radiation was assessed by MTT. Antioxidant activity was evaluated by SOD and MDA. Apoptosis was measured by the flow cytometry, Hoechst 33258, clonogenic survival assay, and western blot. It was found that the cell viability of H9c2 cells exposed to X-ray radiation was significantly decreased in a dose-dependent manner and was associated with cell cycle arrest at the G0/G1 phase as well as apoptosis. STS treatment significantly reversed the morphological changes, attenuated radiation-induced apoptosis, and improved the antioxidant activity in the H9c2 cells. STS significantly increased the Bcl-2 and Bcl-2/Bax levels and decreased the Bax and caspase-3 levels, compared with the cells treated with radiation alone. STS treatment also resulted in a significant increase in p38-MAPK activation. STS could protect the cells from X-ray-induced cell cycle arrest, oxidative stress, and apoptosis. Therefore, we suggest the STS could be useful for the treatment of radiation-induced cardiovascular injury. PMID:28386289

  3. Standardized Herbal Formula PM014 Inhibits Radiation-Induced Pulmonary Inflammation in Mice

    PubMed Central

    Kim, Jee-Youn; Shin, Dasom; Lee, Gihyun; Kim, Jin-Mo; Kim, Dongwook; An, Yong-Min; Yoo, Byung Rok; Chang, Hanna; Kim, Miran; Cho, Jaeho; Bae, Hyunsu

    2017-01-01

    Radiation therapy is widely used for thoracic cancers. However, it occasionally causes radiation-induced lung injuries, including pneumonitis and fibrosis. Chung-Sang-Bo-Ha-Tang (CSBHT) has been traditionally used to treat chronic pulmonary disease in Korea. PM014, a modified herbal formula derived from CSBHT, contains medicinal herbs of seven species. In our previous studies, PM014 exhibited anti-inflammatory effects in a chronic obstructive pulmonary disease model. In this study, we have evaluated the effects of PM014 on radiation-induced lung inflammation. Mice in the treatment group were orally administered PM014 six times for 2 weeks. Effects of PM014 on radiation pneumonitis were evaluated based on histological findings and differential cell count in bronchoalveolar lavage fluid. PM014 treatment significantly inhibited immune cell recruitment and collagen deposition in lung tissue. Normal lung volume, evaluated by radiological analysis, in PM014-treated mice was higher compared to that in irradiated control mice. PM014-treated mice exhibited significant changes in inspiratory capacity, compliance and tissue damping and elastance. Additionally, PM014 treatment resulted in the downregulation of inflammatory cytokines, chemokines, and fibrosis-related genes and a reduction in the transforming growth factor-β1-positive cell population in lung tissue. Thus, PM014 is a potent therapeutic agent for radiation-induced lung fibrosis and inflammation. PMID:28322297

  4. Basic Fibroblast Growth Factor Ameliorates Endothelial Dysfunction in Radiation-Induced Bladder Injury

    PubMed Central

    Zhang, Shiwei; Qiu, Xuefeng; Zhang, Yanting; Fu, Kai; Zhao, Xiaozhi; Wu, Jinhui; Hu, Yiqiao; Zhu, Weiming; Guo, Hongqian

    2015-01-01

    This study was designed to explore the effect of basic fibroblast growth factor (bFGF) on radiation-induced endothelial dysfunction and histological changes in the urinary bladder. bFGF was administrated to human umbilical vein cells (HUVEC) or urinary bladder immediately after radiation. Reduced expression of thrombomodulin (TM) was indicated in the HUVEC and urinary bladder after treatment with radiation. Decreased apoptosis was observed in HUVEC treated with bFGF. Administration of bFGF increased the expression of TM in HUVEC medium, as well as in the urinary bladder at the early and delayed phases of radiation-induced bladder injury (RIBI). At the early phase, injection of bFGF increased the thickness of urothelium and reduced inflammation within the urinary bladder. At the delayed phase, bFGF was effective in reducing fibrosis within the urinary bladder. Our results indicate that endothelial dysfunction is a prominent feature of RIBI. Administration of bFGF can ameliorate radiation-induced endothelial dysfunction in urinary bladder and preserve bladder histology at early and delayed phases of RIBI. PMID:26351640

  5. Leaf extract of Moringa oleifera prevents ionizing radiation-induced oxidative stress in mice.

    PubMed

    Sinha, Mahuya; Das, Dipesh K; Bhattacharjee, Surajit; Majumdar, Subrata; Dey, Sanjit

    2011-10-01

    The present study evaluated the hepatoprotective effect of aqueous ethanolic Moringa oleifera leaf extract (MoLE) against radiation-induced oxidative stress, which is assessed in terms of inflammation and lipid peroxidation. Swiss albino mice were administered MoLE (300 mg/kg of body weight) for 15 consecutive days before exposing them to a single dose of 5 Gy of ⁶⁰Co γ-irradiation. Mice were sacrificed at 4 hours after irradiation. Liver was collected for immunoblotting and biochemical tests for the detection of markers of hepatic oxidative stress. Nuclear translocation of nuclear factor kappa B (NF-κB) and lipid peroxidation were augmented, whereas the superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), and ferric reducing antioxidant power (FRAP) values were decreased by radiation exposure. Translocation of NF-κB from cytoplasm to nucleus and lipid peroxidation were found to be inhibited, whereas increases in SOD, CAT, GSH, and FRAP were observed in the mice treated with MoLE prior to irradiation. Therefore pretreatment with MoLE protected against γ-radiation-induced liver damage. The protection may be attributed to the free radical scavenging activity of MoLE, through which it can ameliorate radiation-induced oxidative stress.

  6. Radiation-induced human endogenous retrovirus (HERV)-R env gene expression by epigenetic control.

    PubMed

    Lee, Ja-Rang; Ahn, Kung; Kim, Yun-Ji; Jung, Yi-Deun; Kim, Heui-Soo

    2012-11-01

    It is commonly accepted that ionizing radiation induces genomic instability by changes in genomic structure, epigenetic regulation and gene expression. Human endogenous retroviruses (HERV)-R also are often differentially expressed between normal and disease tissues under unstable genomic conditions and are implicated in the pathogenesis of several human diseases. To understand the influence of ionizing radiation on HERV-R expression, we performed quantitative reverse transcription-polymerase chain reaction (RT-PCR) analyses using γ-irradiated normal human cells. Compared to nonirradiated cells, HERV-R expression was up-regulated in γ-irradiated cells. The regulatory mechanism of HERV-R expression in irradiated cells was investigated by methylation analyses of HERV-R 5'LTRs and treatment with garcinol. These data indicated that the up-regulated transcription of HERV-R may be regulated by radiation-induced epigenetic changes induced by histone modification, and thus could be of great importance for understanding the relationship between radiation-induced biological effects and transposable elements.

  7. Systematic review of hyperbaric oxygen therapy for the treatment of radiation-induced skin necrosis.

    PubMed

    Borab, Zachary; Mirmanesh, Michael D; Gantz, Madeleine; Cusano, Alessandro; Pu, Lee L Q

    2017-04-01

    Every year, 1.2 million cancer patients receive radiation therapy in the United States. Late radiation tissue injury occurs in an estimated 5-15% of these patients. Tissue injury can include skin necrosis, which can lead to chronic nonhealing wounds. Despite many treatments available to help heal skin necrosis such as hyperbaric oxygen therapy, no clinical guidelines exist and evidence is lacking. The purpose of this review is to identify and comprehensively summarize studies published to date to evaluate the effectiveness of hyperbaric oxygen therapy for the treatment of radiation-induced skin necrosis. Adhering to PRISMA guidelines, a systematic review of currently published articles was performed, evaluating the use of hyperbaric oxygen to treat skin necrosis. Eight articles were identified, including one observational cohort, five case series, and two case reports. The articles describe changes in symptoms and alteration in wound healing of radiation-induced skin necrosis after treatment with hyperbaric oxygen therapy. Hyperbaric oxygen therapy is a safe intervention with promising outcomes; however, additional evidence is needed to endorse its application as a relevant therapy in the treatment of radiation-induced skin necrosis.

  8. Epigenetic Analysis of Heavy-ion Radiation Induced Bystander Effects in Mice

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Sun, Yeqing; Cui, Changna; Xue, Bei

    Abstract: Radiation-induced bystander effect was defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic and proteomics plays significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male Balb/c and C57BL mice were exposed head-only to 40, 200, 2000mGy dose of (12) C heavy-ion radiation, while the rest of the animal body was shielded. Directly radiation organ ear and the distant organ liver were detected on 1h, 6h, 12h and 24h after radiation, respectively. Methylation-sensitive amplification polymorphism (MSAP) was used to monitor the level of polymorphic genomic DNA methylation changed with dose and time effects. The results show that heavy-ion irradiated mouse head could induce genomic DNA methylation changes significantly in both the directly radiation organ ear and the distant organ liver. The percent of DNA methylation changes were time-dependent and tissue-specific. Demethylation polymorphism rate was highest separately at 1 h in 200 mGy and 6 h in 2000 mGy after irradiation. The global DNA methylation changes tended to occur in the CG sites. The results illustrated that genomic methylation changes of heavy ion radiation-induced bystander effect in liver could be obvious 1 h after radiation and achieved the maximum at 6 h, while the changes could recover gradually at 12 h. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in both directly radiation organ ear and distant organ liver. Moreover, our findings are important to understand the molecular mechanism of

  9. Combined inhibition of TGFβ and PDGF signaling attenuates radiation-induced pulmonary fibrosis.

    PubMed

    Dadrich, Monika; Nicolay, Nils H; Flechsig, Paul; Bickelhaupt, Sebastian; Hoeltgen, Line; Roeder, Falk; Hauser, Kai; Tietz, Alexandra; Jenne, Jürgen; Lopez, Ramon; Roehrich, Manuel; Wirkner, Ute; Lahn, Michael; Huber, Peter E

    2016-05-01

    Background : Radiotherapy (RT) is a mainstay for the treatment of lung cancer, but the effective dose is often limited by the development of radiation-induced pneumonitis and pulmonary fibrosis. Transforming growth factor β (TGFβ) and platelet-derived growth factor (PDGF) play crucial roles in the development of these diseases, but the effects of dual growth factor inhibition on pulmonary fibrosis development remain unclear. Methods : C57BL/6 mice were treated with 20 Gy to the thorax to induce pulmonary fibrosis. PDGF receptor inhibitors SU9518 and SU14816 (imatinib) and TGFβ receptor inhibitor galunisertib were applied individually or in combinations after RT. Lung density and septal fibrosis were measured by high-resolution CT and MRI. Lung histology and gene expression analyses were performed and Osteopontin levels were studied. Results : Treatment with SU9518, SU14816 or galunisertib individually attenuated radiation-induced pulmonary inflammation and fibrosis and decreased radiological and histological signs of lung damage. Combining PDGF and TGFβ inhibitors showed to be feasible and safe in a mouse model, and dual inhibition significantly attenuated radiation-induced lung damage and extended mouse survival compared to blockage of either pathway alone. Gene expression analysis of irradiated lung tissue showed upregulation of PDGF and TGFβ-dependent signaling components by thoracic irradiation, and upregulation patterns show crosstalk between downstream mediators of the PDGF and TGFβ pathways. Conclusion : Combined small-molecule inhibition of PDGF and TGFβ signaling is a safe and effective treatment for radiation-induced pulmonary inflammation and fibrosis in mice and may offer a novel approach for treatment of fibrotic lung diseases in humans. Translational statement : RT is an effective treatment modality for cancer with limitations due to acute and chronic toxicities, where TGFβ and PDGF play a key role. Here, we show that a combined inhibition of

  10. Combined inhibition of TGFβ and PDGF signaling attenuates radiation-induced pulmonary fibrosis

    PubMed Central

    Dadrich, Monika; Nicolay, Nils H.; Flechsig, Paul; Bickelhaupt, Sebastian; Hoeltgen, Line; Roeder, Falk; Hauser, Kai; Tietz, Alexandra; Jenne, Jürgen; Lopez, Ramon; Roehrich, Manuel; Wirkner, Ute; Lahn, Michael; Huber, Peter E.

    2016-01-01

    ABSTRACT Background: Radiotherapy (RT) is a mainstay for the treatment of lung cancer, but the effective dose is often limited by the development of radiation-induced pneumonitis and pulmonary fibrosis. Transforming growth factor β (TGFβ) and platelet-derived growth factor (PDGF) play crucial roles in the development of these diseases, but the effects of dual growth factor inhibition on pulmonary fibrosis development remain unclear. Methods: C57BL/6 mice were treated with 20 Gy to the thorax to induce pulmonary fibrosis. PDGF receptor inhibitors SU9518 and SU14816 (imatinib) and TGFβ receptor inhibitor galunisertib were applied individually or in combinations after RT. Lung density and septal fibrosis were measured by high-resolution CT and MRI. Lung histology and gene expression analyses were performed and Osteopontin levels were studied. Results: Treatment with SU9518, SU14816 or galunisertib individually attenuated radiation-induced pulmonary inflammation and fibrosis and decreased radiological and histological signs of lung damage. Combining PDGF and TGFβ inhibitors showed to be feasible and safe in a mouse model, and dual inhibition significantly attenuated radiation-induced lung damage and extended mouse survival compared to blockage of either pathway alone. Gene expression analysis of irradiated lung tissue showed upregulation of PDGF and TGFβ-dependent signaling components by thoracic irradiation, and upregulation patterns show crosstalk between downstream mediators of the PDGF and TGFβ pathways. Conclusion: Combined small-molecule inhibition of PDGF and TGFβ signaling is a safe and effective treatment for radiation-induced pulmonary inflammation and fibrosis in mice and may offer a novel approach for treatment of fibrotic lung diseases in humans. Translational statement: RT is an effective treatment modality for cancer with limitations due to acute and chronic toxicities, where TGFβ and PDGF play a key role. Here, we show that a combined

  11. Circadian Adaptation to Night Shift Work Influences Sleep, Performance, Mood and the Autonomic Modulation of the Heart

    PubMed Central

    Boudreau, Philippe; Dumont, Guy A.; Boivin, Diane B.

    2013-01-01

    Our aim was to investigate how circadian adaptation to night shift work affects psychomotor performance, sleep, subjective alertness and mood, melatonin levels, and heart rate variability (HRV). Fifteen healthy police officers on patrol working rotating shifts participated to a bright light intervention study with 2 participants studied under two conditions. The participants entered the laboratory for 48 h before and after a series of 7 consecutive night shifts in the field. The nighttime and daytime sleep periods were scheduled during the first and second laboratory visit, respectively. The subjects were considered “adapted” to night shifts if their peak salivary melatonin occurred during their daytime sleep period during the second visit. The sleep duration and quality were comparable between laboratory visits in the adapted group, whereas they were reduced during visit 2 in the non-adapted group. Reaction speed was higher at the end of the waking period during the second laboratory visit in the adapted compared to the non-adapted group. Sleep onset latency (SOL) and subjective mood levels were significantly reduced and the LF∶HF ratio during daytime sleep was significantly increased in the non-adapted group compared to the adapted group. Circadian adaptation to night shift work led to better performance, alertness and mood levels, longer daytime sleep, and lower sympathetic dominance during daytime sleep. These results suggest that the degree of circadian adaptation to night shift work is associated to different health indices. Longitudinal studies are required to investigate long-term clinical implications of circadian misalignment to atypical work schedules. PMID:23923024

  12. Protection against radiation-induced oxidative stress in cultured human epithelial cells by treatment with antioxidant agents

    SciTech Connect

    Wan, X. Steven; Ware, Jeffrey H.; Zhou, Zhaozong; Donahue, Jeremiah J.; Guan, Jun; Kennedy, Ann R. . E-mail: akennedy@mail.med.upenn.edu

    2006-04-01

    Purpose: To evaluate the protective effects of antioxidant agents against space radiation-induced oxidative stress in cultured human epithelial cells. Methods and Materials: The effects of selected concentrations of N-acetylcysteine, ascorbic acid, sodium ascorbate, co-enzyme Q10, {alpha}-lipoic acid, L-selenomethionine, and vitamin E succinate on radiation-induced oxidative stress were evaluated in MCF10 human breast epithelial cells exposed to radiation with X-rays, {gamma}-rays, protons, or high mass, high atomic number, and high energy particles using a dichlorofluorescein assay. Results: The results demonstrated that these antioxidants are effective in protecting against radiation-induced oxidative stress and complete or nearly complete protection was achieved by treating the cells with a combination of these agents before and during the radiation exposure. Conclusion: The combination of antioxidants evaluated in this study is likely be a promising countermeasure for protection against space radiation-induced adverse biologic effects.

  13. Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis

    PubMed Central

    Shim, Grace; Ricoul, Michelle; Hempel, William M.; Azzam, Edouard I.; Sabatier, Laure

    2014-01-01

    It is well established that ionizing radiation induces chromosomal damage, both following direct radiation exposure and via non-targeted (bystander) effects, activating DNA damage repair pathways, of which the proteins are closely linked to telomeric proteins and telomere maintenance. Long-term propagation of this radiation-induced chromosomal damage during cell proliferation results in chromosomal instability. Many studies have shown the link between radiation exposure and radiation-induced changes in oxidative stress and DNA damage repair in both targeted and non-targeted cells. However, the effect of these factors on telomeres, long established as guardians of the genome, still remains to be clarified. In this review, we will focus on what is known about how telomeres are affected by exposure to low- and high-LET ionizing radiation and during proliferation, and will discuss how telomeres may be a key player in the process of radiation-induced carcinogenesis. PMID:24486376

  14. High-frequency detection of the formation and stabilization of a radiation-induced defect cluster in semiconductor structures

    SciTech Connect

    Puzanov, A. S.; Obolenskiy, S. V. Kozlov, V. A.; Volkova, E. V.; Paveliev, D. G.

    2015-12-15

    The processes of the formation and stabilization of a radiation-induced defect cluster upon the arrival of a fast neutron to the space-charge region of a semiconductor diode are analyzed. The current pulse formed by secondary electrons is calculated and the spectrum of the signal generated by the diode (detector) under the action of an instantaneous neutron flux of the fission spectrum is determined. The possibility of experimental detection of the picosecond radiation-induced transition processes is discussed.

  15. Implication of Prostaglandins and Histamine H1 and H2 Receptors in Radiation-Induced Temperature Responses of Rats

    DTIC Science & Technology

    1988-05-01

    1988) S Implication of Prostaglandins and Histamine H1 and H 2 Receptors in Radiation-Induced Temperature Responses of Rats SATHASIVA B. KANDASAMY ... KANDASAMY , S. B., HUNT. W. A., AND MICKLEY, G. A. Implications of Prostaglandins and Histamine H I and H2 Receptors in Radiation-Induced Temperature...lateral ventricle according to coordinates derived from the atlas of Pelligrino et al. (31): 0.8 mm posterior to bregma. 2.5 mm lateral. 44 KANDASAMY , HUNT

  16. Age and cigarette smoking modulate the relationship between pulmonary function and arterial stiffness in heart failure patients

    PubMed Central

    Li, Li; Hu, Bangchuan; Gong, Shijin; Yu, Yihua; Yan, Jing

    2017-01-01

    Abstract The aim of this study was to assess the relationship between arterial stiffness and pulmonary function in chronic heart failure (CHF). Outpatients previously diagnosed as CHF were enrolled between April 2008 and March 2010, and submitted to arterial stiffness measurement and lung function assessment. Spirometry was performed by measuring forced vital capacity (FVC), the fraction of predicted FVC, forced expiratory volume in 1 second (FEV1), the percentage of predicted FEV1 in 1 second, FEV1 to FVC ratio, and the percentage of predicted FEV1/FVC. Cardio-ankle vascular index (CAVI) was considered for the estimation of arterial stiffness. The 354 patients assessed included 315 nonsmokers, and were 68.2 ± 7.2 years’ old. Unadjusted correlation analyses demonstrated CAVI was positively related to age (r = 0.3664, P < 0.0001), and negatively related to body mass index (BMI, r = −0.2040, P = 0.0001), E/A ratio (r = −0.1759, P = 0.0010), and FEV1 (r = −0.2987, P < 0.0001). Stepwise multivariate regression analyses showed age (r2 = 0.2391, P < 0.0001), BMI (r2 = −0.2139, P < 0.0001), smoking (r2 = 0.1211, P = 0.0130), E/A ratio (r2 = −0.1082, P = 0.0386), and FEV1 (r2 = −0.2550, P < 0.0001) were independent determinants of CAVI. In addition, there is a significant interaction between CAVI and forced expiratory volume in 1 second (FEV1) in relation to age (Pint < 0.0001) and smoking (Pint = 0.0001). Meanwhile, pulmonary function was not associated with BMI or E/A ratio. These findings demonstrated that reduced pulmonary function is associated with the increased CAVI, and had an interactive effect with age and smoking on CAVI in patients with CHF. PMID:28272233

  17. Heart Transplant

    MedlinePlus

    ... including how to maximize your recovery at home. Congenital Heart Defects • Home • About Congenital Heart Defects • The ... Physical Activity Recommendations for Heart Health • Tools & Resources Congenital Heart Defect Publications If Your Child Has a ...

  18. SWI/SNF Protein Component BAF250a Regulates Cardiac Progenitor Cell Differentiation by Modulating Chromatin Accessibility during Second Heart Field Development*

    PubMed Central

    Lei, Ienglam; Gao, Xiaolin; Sham, Mai Har; Wang, Zhong

    2012-01-01

    ATP-dependent SWI/SNF chromatin remodeling complexes alter the structure of chromatin at specific loci and facilitate tissue-specific gene regulation during development. Several SWI/SNF subunits are required for cardiogenesis. However, the function and mechanisms of SWI/SNF in mediating cardiac progenitor cell (CPC) differentiation during cardiogenesis are not well understood. Our studies of the SWI/SNF chromatin remodeling complex identified that BAF250a, a regulatory subunit of the SWI/SNF, plays a key role in CPC differentiation. BAF250a ablation in mouse second heart field (SHF) led to trabeculation defects in the right ventricle, ventricular septal defect, persistent truncus arteriosus, reduced myocardial proliferation, and embryonic lethality around E13. Using an embryonic stem cell culture system that models the formation and differentiation of SHF CPCs in vivo, we have shown that BAF250a ablation in CPCs specifically inhibits cardiomyocyte formation. Moreover, BAF250a selectively regulates the expression of key cardiac factors Mef2c, Nkx2.5, and Bmp10 in SHF CPCs. Chromatin immunoprecipitation and DNase I digestion assays indicate that BAF250a regulates gene expression by binding selectively to its target gene promoters and recruiting Brg1, the catalytic subunit of SWI/SNF, to modulate chromatin accessibility. Our results thus identify BAF250a-mediated chromatin remodeling as an essential epigenetic mechanism mediating CPC differentiation. PMID:22621927

  19. [Effect of radiation-induced bystander chemosignals of mice on the humoral immune response in spleen and lymph nodes of intact recipients].

    PubMed

    Sharetskiĭ, A N; Kharlamov, V A; Surinov, B P

    2012-01-01

    The ability of post-radiation (4 Gy) bystander chemosignals (the volatile components of mouse urine) to distantly modulate the humoral immune response to the sheep red blood cells in the spleen and popliteal lymph nodes of intact recipients has been investigated. It was shown that the exposure of animals to chemosignals before antigen injection resulted in the decrease and increase of the immune response in the spleen and lymph nodes, respectively. When animals were exposed to chemosignals after the antigenic stimulus, an increased immune response was observed in both spleen and lymph nodes. The contribution of radiation-induced bystander signaling in the response of socially organized animals to the effect of ionizing irradiation is discussed.

  20. Effects of Berberine Against Radiation-Induced Intestinal Injury in Mice

    SciTech Connect

    Li Guanghui; Zhang Yaping; Tang Jinliang; Chen Zhengtang; Hu Yide; Wei Hong; Li Dezhi; Hao Ping; Wang Donglin

    2010-08-01

    Purpose: Radiation-induced intestinal injury is a significant clinical problem in patients undergoing abdominal radiotherapy (RT). Berberine has been used as an antimicrobial, anti-inflammatory, and antimotility agent. The present study investigated the protective effect of berberine against radiation-induced intestinal injury. Methods and Materials: The mice were administrated berberine or distilled water. A total of 144 mice underwent 0, 3, 6, 12, or 16 Gy single session whole-abdominal RT and 16 mice underwent 3 Gy/fraction/d for four fractions of fractionated abdominal RT. Tumor necrosis factor-{alpha}, interleukin-10, diamine oxidase, intestinal fatty acid-binding protein, malonaldehyde, and apoptosis were assayed in the mice after RT. The body weight and food intake of the mice receiving fractionated RT were recorded. Another 72 mice who had undergone 12, 16, or 20 Gy abdominal RT were monitored for mortality every 12 h. Results: The body weight and food intake of the mice administered with distilled water decreased significantly compared with before RT. After the same dose of abdominal RT, tumor necrosis factor-{alpha}, diamine oxidase, intestinal fatty acid-binding protein in plasma and malonalhehyde and apoptosis of the intestine were significantly greater in the control group than in the mice administered berberine (p < .05-.01). In contrast, interleukin-10 in the mice with berberine treatment was significantly greater than in the control group (p < .01). A similar result was found in the fractionated RT experiment and at different points after 16 Gy abdominal RT (p < .05-.01). Berberine treatment significantly delayed the point of death after 20 Gy, but not 16 Gy, abdominal RT (p < .01). Conclusion: Treatment with berberine can delay mortality and attenuated intestinal injury in mice undergoing whole abdominal RT. These findings could provide a useful therapeutic strategy for radiation-induced intestinal injury.

  1. Smad, but not MAPK, pathway mediates the expression of type I collagen in radiation induced fibrosis

    SciTech Connect

    Yano, Hiroyuki; Hamanaka, Ryoji; Nakamura, Miki; Sumiyoshi, Hideaki; Matsuo, Noritaka; Yoshioka, Hidekatsu

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer We examine how radiation affects the expression level and signal pathway of collagen. Black-Right-Pointing-Pointer TGF-{beta}1 mRNA is elevated earlier than those of collagen genes after irradiation. Black-Right-Pointing-Pointer Smad pathway mediates the expression of collagen in radiation induced fibrosis. Black-Right-Pointing-Pointer MAPK pathways are not affected in the expression of collagen after irradiation. -- Abstract: Radiation induced fibrosis occurs following a therapeutic or accidental radiation exposure in normal tissues. Tissue fibrosis is the excessive accumulation of collagen and other extracellular matrix components. This study investigated how ionizing radiation affects the expression level and signal pathway of type I collagen. Real time RT-RCR showed that both {alpha}1and {alpha}2 chain of type I collagen mRNA were elevated from 48 h after irradiation with 10 Gy in NIH3T3 cells. The relative luciferase activities of both genes and type I collagen marker were elevated at 72 h. TGF-{beta}1 mRNA was elevated earlier than those of type I collagen genes. A Western blot analysis showed the elevation of Smad phosphorylation at 72 h. Conversely, treatment with TGF-{beta} receptor inhibitor inhibited the mRNA and relative luciferase activity of type I collagen. The phosphorylation of Smad was repressed with the inhibitor, and the luciferase activity was cancelled using a mutant construct of Smad binding site of {alpha}2(I) collagen gene. However, the MAPK pathways, p38, ERK1/2 and JNK, were not affected with specific inhibitors or siRNA. The data showed that the Smad pathway mediated the expression of type I collagen in radiation induced fibrosis.

  2. Carboplatin enhances the production and persistence of radiation-induced DNA single-strand breaks

    SciTech Connect

    Yang, L.; Douple, E.B.; O`Hara, J.A.; Wang, H.J.

    1995-09-01

    Fluorometric analysis of DNA unwinding and alkaline elution were used to investigate the production and persistence of DNA single-strand breaks (SSBs) in Chinese hamster V79 and xrs-5 cells treated with the chemotherapeutic agent carboplatin in combination with radiation. Carboplatin was administered to cells before irradiation in hypoxic conditions, or the drug was added immediately after irradiation during the postirradiation recovery period in air. The results of DNA unwinding studies suggest that carboplatin enhances the production of radiation-induced SSBs in hypoxic V79 cells and xrs-5 cells by a factor of 1.86 and 1.83, respectively, when combined with radiation compared to the SSBs produced by irradiation alone. Carboplatin alone did not produce a measureable number of SSBs. Alkaline elution profiles also indicated that the rate of elution of SSBs was higher in cells treated with the carboplatin is present after irradiation and during the postirradiation recovery period, the rejoining of radiation-induced SSBs by a factor of 1.46 in V79 cells with 20 Gy irradiation and by a factor of 2.02 in xrs-5 cells with 20 Gy irradiation. When carboplatin is present after irradiation and during the postirradiation recovery period, the rejoining of radiation-induced SSBs is inhibited during this postirradiation incubation period (radiopotentiation) with a relative inhibition factor at 1 h postirradiation of 1.25 in V79 cells and 1.15 in xrs-5 cells. An increased production and persistence of SSBs resulting from the interaction of carboplatin with radiation may be an important step in the mechanism responsible for the potentiated cell killing previously from studies in animal tumors and in cultured cells. 31 refs., 7 figs.

  3. Administration of interleukin-6 stimulates multilineage hematopoiesis and accelerates recovery from radiation-induced hematopoietic depression

    SciTech Connect

    Patchen, M.L.; MacVittie, T.J.; Williams, J.L.; Schwartz, G.N.; Souza, L.M. )

    1991-02-01

    Hematopoietic depression and subsequent susceptibility to potentially lethal opportunistic infections are well-documented phenomena following radiotherapy. Methods to therapeutically mitigate radiation-induced myelosuppression could offer great clinical value. In vivo studies have demonstrated that interleukin-6 (IL-6) stimulates pluripotent hematopoietic stem cell (CFU-s), granulocyte-macrophage progenitor cell (GM-CFC), and erythroid progenitor cell (CFU-e) proliferation in normal mice. Based on these results, the ability of IL-6 to stimulate hematopoietic regeneration following radiation-induced hematopoietic injury was also evaluated. C3H/HeN female mice were exposed to 6.5 Gy 60Co radiation and subcutaneously administered either saline or IL-6 on days 1 through 3 or 1 through 6 postexposure. On days 7, 10, 14, 17, and 22, femoral and splenic CFU-s, GM-CFC, and CFU-e contents and peripheral blood white cell, red cell, and platelet counts were determined. Compared with saline treatment, both 3-day and 6-day IL-6 treatments accelerated hematopoietic recovery; 6-day treatment produced the greater effects. For example, compared with normal control values (N), femoral and splenic CFU-s numbers in IL-6-treated mice 17 days postirradiation were 27% N and 136% N versus 2% N and 10% N in saline-treated mice. At the same time, bone marrow and splenic GM-CFC values were 58% N and 473% N versus 6% N and 196% N in saline-treated mice; bone marrow and splenic CFU-e numbers were 91% N and 250% N versus 31% N and 130% N in saline-treated mice; and peripheral blood white cell, red cell, and platelet values were 210% N, 60% N, and 24% N versus 18% N, 39% N, and 7% N in saline-treated mice. These studies demonstrate that therapeutically administered IL-6 can effectively accelerate multilineage hematopoietic recovery following radiation-induced hematopoietic injury.

  4. Quercetin liposomes protect against radiation-induced pulmonary injury in a murine model.

    PubMed

    Liu, Hao; Xue, Jian-Xing; Li, Xing; Ao, Rui; Lu, You

    2013-08-01

    In the present study, the hypothesis that quercetin liposomes are able to effectively protect against radiation-induced pulmonary injury in a murine model was tested. C57BL/6J mice receiving whole-thorax radiotherapy (16 Gy) were randomly divided into three groups: control, radiation therapy plus saline (RT+NS) and RT plus quercetin (RT+QU). At 1, 4, 8 and 24 weeks post-irradiation, lung injury was assessed by measuring oxidative damage and the extent of acute pneumonitis and late fibrosis. In the lung tissues from the RT+NS group, the malondialdehyde (MDA) levels were significantly elevated and superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities were significantly reduced; the total cell counts and inflammatory cell proportions in the bronchoalveolar lavage fluid (BALF), plasma tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β1 concentrations and the hydroxyproline (HP) content were significantly increased. Quercetin liposome administration significantly reduced the MDA content and increased SOD and GSH-PX activities in the lung tissues, and reduced the total cell counts and inflammatory cell proportions in the BALF, plasma TNF-α and TGF-β1 concentrations and the HP content in the lung tissues. A histological examination revealed suppression of the inflammatory response and reduced TGF-β1 expression and fibrosis scores. Radiation-induced oxidative damage ranged from pneumonitis to lung fibrosis. Quercetin liposomes were shown to protect against radiation-induced acute pneumonitis and late fibrosis, potentially by reducing oxidative damage.

  5. Accelerated senescence in skin in a murine model of radiation-induced multi-organ injury.

    PubMed

    McCart, Elizabeth A; Thangapazham, Rajesh L; Lombardini, Eric D; Mog, Steven R; Panganiban, Ronald Allan M; Dickson, Kelley M; Mansur, Rihab A; Nagy, Vitaly; Kim, Sung-Yop; Selwyn, Reed; Landauer, Michael R; Darling, Thomas N; Day, Regina M

    2017-03-18

    Accidental high-dose radiation exposures can lead to multi-organ injuries, including radiation dermatitis. The types of cellular damage leading to radiation dermatitis are not completely understood. To identify the cellular mechanisms that underlie radiation-induced skin injury in vivo, we evaluated the time-course of cellular effects of radiation (14, 16 or 17 Gy X-rays; 0.5 Gy/min) in the skin of C57BL/6 mice. Irradiation of 14 Gy induced mild inflammation, observed histologically, but no visible hair loss or erythema. However, 16 or 17 Gy radiation induced dry desquamation, erythema and mild ulceration, detectable within 14 days post-irradiation. Histological evaluation revealed inflammation with mast cell infiltration within 14 days. Fibrosis occurred 80 days following 17 Gy irradiation, with collagen deposition, admixed with neutrophilic dermatitis, and necrotic debris. We found that in cultures of normal human keratinocytes, exposure to 17.9 Gy irradiation caused the upregulation of p21/waf1, a marker of senescence. Using western blot analysis of 17.9 Gy-irradiated mice skin samples, we also detected a marker of accelerated senescence (p21/waf1) 7 days post-irradiation, and a marker of cellular apoptosis (activated caspase-3) at 30 days, both preceding histological evidence of inflammatory infiltrates. Immunohistochemistry revealed reduced epithelial stem cells from hair follicles 14-30 days post-irradiation. Furthermore, p21/waf1 expression was increased in the region of the hair follicle stem cells at 14 days post 17 Gy irradiation. These data indicate that radiation induces accelerated cellular senescence in the region of the stem cell population of the skin.

  6. Radiation induced bystander effect by GAP junction channels in human fibroblast cell

    NASA Astrophysics Data System (ADS)

    Furusawa, Y.; Shao, C.; Aoki, M.; Kobayashi, Y.; Funayama, T.; Ando, K.

    The chemical factor involved in bystander effect and its transfer pathway were investigated in a confluent human fibroblast cell (AG1522) population. Micronuclei (MN) and G1-phase arrest were detected in cells irradiated by carbon (~100 keV/μm) ions at HIMAC. A very low dose irradiation showed a high effectiveness in producing MN, suggesting a bystander effect. This effectiveness was enhanced by 8-Br-cAMP treatment that increases gap junctional intercellular communication (GJIC). On the other hand, the effect was reduced by 5% DMSO treatment, which reduce the reactive oxygen species (ROS), and suppressed by 100 μM lindane treatment, an inhibitor of GJIC. In addition, the radiation-induced G1-phase arrest was also enhanced by cAMP, and reduced or suppressed by DMSO or lindane. A microbeam device (JAERI) was also used for these studies. It was found that exposing one single cell in a confluent cell population to exactly one argon (~1260 keV/μm) or neon (~430 keV/ μm) ion, additional MN could be detected in many other unirradiated cells. The yield of MN increased with the number of irradiated cells. However, there was no significant difference in the MN induction when the cells were irradiated by increasing number of particles. MN induction by bystander effect was partly reduced by DMSO, and effectively suppressed by lindane. Our results obtained from both random irradiation and precise numbered irradiation indicate that both GJIC and ROS contributed to the radiation-induced bystander effect, but the cell gap junction channels likely play an essential role in the release and transfer of radiation-induced chemical factors.

  7. Quercetin liposomes protect against radiation-induced pulmonary injury in a murine model

    PubMed Central

    LIU, HAO; XUE, JIAN-XING; LI, XING; AO, RUI; LU, YOU

    2013-01-01

    In the present study, the hypothesis that quercetin liposomes are able to effectively protect against radiation-induced pulmonary injury in a murine model was tested. C57BL/6J mice receiving whole-thorax radiotherapy (16 Gy) were randomly divided into three groups: control, radiation therapy plus saline (RT+NS) and RT plus quercetin (RT+QU). At 1, 4, 8 and 24 weeks post-irradiation, lung injury was assessed by measuring oxidative damage and the extent of acute pneumonitis and late fibrosis. In the lung tissues from the RT+NS group, the malondialdehyde (MDA) levels were significantly elevated and superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities were significantly reduced; the total cell counts and inflammatory cell proportions in the bronchoalveolar lavage fluid (BALF), plasma tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β1 concentrations and the hydroxyproline (HP) content were significantly increased. Quercetin liposome administration significantly reduced the MDA content and increased SOD and GSH-PX activities in the lung tissues, and reduced the total cell counts and inflammatory cell proportions in the BALF, plasma TNF-α and TGF-β1 concentrations and the HP content in the lung tissues. A histological examination revealed suppression of the inflammatory response and reduced TGF-β1 expression and fibrosis scores. Radiation-induced oxidative damage ranged from pneumonitis to lung fibrosis. Quercetin liposomes were shown to protect against radiation-induced acute pneumonitis and late fibrosis, potentially by reducing oxidative damage. PMID:24137346

  8. Accumulation of radiation-induced charge in MNOS structures with different oxide thicknesses

    SciTech Connect

    Gurtov, V.A.; Evdokimov, V.D.; Nazarov, A.I.; Khrustalev, V.A.

    1986-05-01

    The authors attempt to answer questions regarding the dosimetry of x-ray radiation sources, especially in the region of high exposure doses, using silicon nitride. SiO/sub 2/ was obtained by thermal oxidation in dry oxygen or in a mixture of oxygen and argon. Silicon nitride was obtained by ammonolysis of silicon tetrachloride. Aluminum was used for the gate. The magnitude of the radiation-induced space charge was determined from the shift in the flat-band voltage on the high-frequency volt-faraday curves.

  9. Modification of radiation-induced oxidative damage in liposomal and microsomal membrane by eugenol

    NASA Astrophysics Data System (ADS)

    Pandey, B. N.; Lathika, K. M.; Mishra, K. P.

    2006-03-01

    Radiation-induced membrane oxidative damage, and their modification by eugenol, a natural antioxidant, was investigated in liposomes and microsomes. Liposomes prepared with DPH showed decrease in fluorescence after γ-irradiation, which was prevented significantly by eugenol and correlated with magnitude of oxidation of phospholipids. Presence of eugenol resulted in substantial inhibition in MDA formation in irradiated liposomes/microsomes, which was less effective when added after irradiation. Similarly, the increase in phospholipase C activity observed after irradiation in microsomes was inhibited in samples pre-treated with eugenol. Results suggest association of radio- oxidative membrane damage with alterations in signaling molecules, and eugenol significantly prevented these membrane damaging events.

  10. Observation of linear-polarization-sensitivity in the microwave-radiation-induced magnetoresistance oscillations

    SciTech Connect

    Mani, R. G.; Ramanayaka, A. N.; Wegscheider, W.

    2013-12-04

    We examine the linear polarization sensitivity of the radiation- induced magneto-resistance oscillations by investigating the effect of rotating in-situ the electric field of linearly polarized microwaves relative to the current, in the GaAs/AlGaAs system. We find that the frequency and the phase of the photo-excited magneto-resistance oscillations are insensitive to the polarization. On the other hand, the amplitude of the resistance oscillations are strongly sensitive to the relative orientation between the microwave antenna and the current-axis in the specimen.

  11. Resistance of radiation-induced tropical wood-polymer composites to fungal degradation

    NASA Astrophysics Data System (ADS)

    Chia, L. H. L.; Lim, V. S. L.; Yap, M. G. S.

    The resistance of six tropical hardwoods to fungal degradation by two wild-type strains of Phanerochaete chrysosporium Burdsall was investigated using vermiculite burial and wood-block weight loss techniques. Radiation-induced wood-polymer composites (WPC), based on two hardwoods Ramin and Rubber-wood with methyl methacrylate, were prepared, and samples were also exposed to the wood-rotting fungus. A significant improvement in resistance to fungal decay was observed in the WPC. Scanning-electron micrographs of the two woods and their composites after fungal degradation are presented and discussed.

  12. Altered Gastric Emptying and Prevention of Radiation-Induced Vomiting in Dogs

    DTIC Science & Technology

    1984-03-01

    nausea and vomiting is common10ily oh- of 10 dog$ pt’etrtolted wvith domperidone (p) < 0.01). served. These symptoms can occur after total body Gastric...Gastroenterol of radiotherapy-induced nausea and vomiting . Postgrad Med 1981;16(Suppl 67):33-6. 1979;55(Suppl 1):50-4. V.a, ...00_© 000 ’-- Altered gastric emptying and prevention of radiation-induced vomiting in dogs A. Dubois cc I J. P. Jacobus M. P. Grissom R.R. Eng J. J

  13. Radiation induced dechlorination of some chlorinated hydrocarbons in aqueous suspensions of various solid particles

    NASA Astrophysics Data System (ADS)

    Múčka, V.; Buňata, M.; Čuba, V.; Silber, R.; Juha, L.

    2015-07-01

    Radiation induced dechlorination of trichloroethylene (TCE) and tetrachloroethylene (PCE) in aqueous solutions containing the active carbon (AC) or cupric oxide (CuO) as the modifiers was studied. The obtained results were compared to the previously studied dechlorination of polychlorinated biphenyls (PCBs). Both modifiers were found to decrease the efficiency of dechlorination. The AC modifier acts mainly via adsorption of the aliphatic (unlike the aromatic) hydrocarbons and the CuO oxide mainly inhibits the mineralization of the perchloroethylene. The results presented in this paper will be also helpful for the studies of the impact of chlorinated hydrocarbons on the membrane permeability of living cells.

  14. Suppression of radiation-induced point defects by rhenium and osmium interstitials in tungsten

    NASA Astrophysics Data System (ADS)

    Suzudo, Tomoaki; Hasegawa, Akira

    2016-11-01

    Modeling the evolution of radiation-induced defects is important for finding radiation-resistant materials, which would be greatly appreciated in nuclear applications. We apply the density functional theory combined with comprehensive analyses of massive experimental database to indicate a mechanism to mitigate the effect of radiation on W crystals by adding particular solute elements that change the migration property of interstitials. The resultant mechanism is applicable to any body-centered-cubic (BCC) metals whose self-interstitial atoms become a stable crowdion and is expected to provide a general guideline for computational design of radiation-resistant alloys in the field of nuclear applications.

  15. About mechanisms of radiation-induced effect of nanostructurization of near-surface volumes of metals

    NASA Astrophysics Data System (ADS)

    Ivchenko, V. A.

    2017-01-01

    Mechanisms of the radiation-induced development of nanostructures in subsurface metal regions have been analyzed based on field-ion microscopy data. It is concluded that the modification of near-surface metal regions on a nanometer scale as a result of the interaction with Ar+ ion beams proceeds by several mechanisms. In particular, for a fluence of F = 1016 ion/cm2 (at an ion energy of E = 30 keV), the main contribution is due to the ion channeling. A tenfold increase in the ion fluence leads to prevailing deformation mechanism in nanostructure formation in the subsurface metal regions.

  16. Radiation-induced graft polymerization of acrylamide and acrylic acid onto polyethylene

    NASA Astrophysics Data System (ADS)

    Grushevskaya, L. N.; Aliev, R. E.; Kabanov, V. Ya.

    The radiation-induced grafting of acrylamide onto low-density polyethylene by the different methods and under different conditions was investigated: by the direct liquid phase method from this monomer solution in water (in neutral and acid media) and acetone, and by the pre-irradiation method from aqueous solutions as well as from its sublimated vapour. The molecular masses of polyacrylamide homopolymers were determined. The discussion and comparison of different methods of acrylamide grafting are performed. The relationship between rates of graft polymerization onto polyethylene and homopolymerization of acrylic acid in the presence of metal ions is considered.

  17. The influence of infrared radiation on short-term ultraviolet-radiation-induced injuries

    SciTech Connect

    Kaidbey, K.H.; Witkowski, T.A.; Kligman, A.M.

    1982-05-01

    Because heat has been reported to influence adversely short- and long-term ultraviolet (UV)-radiation-induced skin damage in animals, we investigated the short-term effects of infrared radiation on sunburn and on phototoxic reactions to topical methoxsalen and anthracene in human volunteers. Prior heating of the skin caused suppression of the phototoxic response to methoxsalen as evidenced by an increase in the threshold erythema dose. Heat administered either before or after exposure to UV radiation had no detectable influence on sunburn erythema or on phototoxic reactions provoked by anthracene.

  18. Effect of G/M ratio on the radiation-induced degradation of sodium alginate

    NASA Astrophysics Data System (ADS)

    Şen, Murat; Rendevski, Stojan; Kavaklı, Pınar Akkaş; Sepehrianazar, Amir

    2010-03-01

    Radiation-induced degradation of sodium alginate (NaAlg) having different G/M ratios was investigated. NaAlg samples were irradiated with gamma rays in air at ambient temperature in the solid state at low dose rate. Change in their molecular weights was followed by size exclusion chromatography (SEC). Changes in their rheological properties and viscosity values as a function of temperature, shear rate and irradiation dose were also determined. Chain scission yields, G( S), and degradation rates were calculated. It was observed that G/M ratio was an important factor controlling the G( S) and degradation rate of sodium alginate.

  19. Effect of bentonite on radiation induced dissolution of UO2 in an aqueous system

    NASA Astrophysics Data System (ADS)

    Barreiro Fidalgo, Alexandre; Sundin, Sara; Jonsson, Mats

    2014-04-01

    In order to elucidate the impact of bentonite on the process of radiation induced oxidative dissolution of UO2 in an aqueous system, the dissolution of U(VI) and consumption of H2O2 over time has been studied. In addition, γ-irradiation experiments were performed to study a more relevant and complex system, serving as a comparison with the previously stated system. In both cases, the experiments revealed that the presence of bentonite in water could either delay or prevent in part the release of uranium to the environment. The cause is mainly attributed to the scavenging of radiolytic oxidants rather than to the adsorption of uranium onto bentonite.

  20. Reversal of gamma-radiation-induced leukemogenesis in mice by immunomodulation with thiabendazole and dinitrofluorobenzene

    SciTech Connect

    Elgebaly, S.A.; Barton, R.; Forouhar, F.

    1985-04-01

    The effect of thiabendazole (TBZ) and dinitrofluorobenzene (DNFB) on radiation-induced leukemogenesis was investigated in the C57BL/6 mouse model. Administration of TBZ-DNFB during, post, or during and post irradiation successfully blocked leukemogenesis, as indicated by the absence of leukemia blast cells in thymus and peripheral blood, as well as prevented thymic lymphoma. TBZ-DNFB treatment prevented the development of leukemia when studies were terminated both after 7 months of last irradiation (disease fully developed) and after 5 months of last irradiation (disease in the process of development). This TBZ-DNFB treatment also resulted in a significant increase in survival.

  1. Suppression of radiation-induced point defects by rhenium and osmium interstitials in tungsten

    PubMed Central

    Suzudo, Tomoaki; Hasegawa, Akira

    2016-01-01

    Modeling the evolution of radiation-induced defects is important for finding radiation-resistant materials, which would be greatly appreciated in nuclear applications. We apply the density functional theory combined with comprehensive analyses of massive experimental database to indicate a mechanism to mitigate the effect of radiation on W crystals by adding particular solute elements that change the migration property of interstitials. The resultant mechanism is applicable to any body-centered-cubic (BCC) metals whose self-interstitial atoms become a stable crowdion and is expected to provide a general guideline for computational design of radiation-resistant alloys in the field of nuclear applications. PMID:27824134

  2. Suppression of radiation-induced point defects by rhenium and osmium interstitials in tungsten.

    PubMed

    Suzudo, Tomoaki; Hasegawa, Akira

    2016-11-08

    Modeling the evolution of radiation-induced defects is important for finding radiation-resistant materials, which would be greatly appreciated in nuclear applications. We apply the density functional theory combined with comprehensive analyses of massive experimental database to indicate a mechanism to mitigate the effect of radiation on W crystals by adding particular solute elements that change the migration property of interstitials. The resultant mechanism is applicable to any body-centered-cubic (BCC) metals whose self-interstitial atoms become a stable crowdion and is expected to provide a general guideline for computational design of radiation-resistant alloys in the field of nuclear applications.

  3. [High-dose radiation-induced meningioma following prophylactic cranial irradiation for acute lymphoblastic leukaemia].

    PubMed

    Matsuda, Ryosuke; Nikaido, Yuji; Yamada, Tomonori; Mishima, Hideaki; Tamaki, Ryo

    2005-03-01

    A 12 year-old girl was treated with prophylatic cranial irradiation for acute lymphoblastic leukaemia (ALL). At the age of 39, she was admitted to our hospital for status epilepticus. Computed tomography demonstrated two, enhancing bilateral sided intracranial tumors. After surgery, this patient presented meningiomas which histologically, were of the meningothelial type. The high cure rate in childhood ALL, attributable to aggressive chemotherapy and prophylatic cranial irradiation, is capable of inducing secondary brain tumor. Twelve cases of high-dose radiation-induced meningioma following ALL are also reviewed.

  4. The effects of hyper velocity impact phenomena on radiation induced defects

    NASA Astrophysics Data System (ADS)

    Yamanaka, C.; Ikeya, M.

    1994-06-01

    Effects of high speed impacts on radiation-induced defects were investigated with a plasma rail-gun. Vitreous quartz targets irradiated by γ-ray were shocked with polycarbonate projectiles at a speed of 7 km/s, then the remaining destroyed pieces were examined by ESR spectroscopy to investigate the degree of "impact-annealing". The white substance from the impact point showed a trace of melting and no ESR signal, while the rest of the scattered pieces showed a decrease of E' center density to 50 ± 10% of the initial density. The defect production efficiency for the impacted silica was almost two-third of the original material.

  5. EPR study of radiation-induced radicals in glutaric and amino acid derivatives in solid state

    NASA Astrophysics Data System (ADS)

    Yeşim Dicle, Işık

    2015-05-01

    Gamma radiation-induced radicals of 2-methylglutaric acid (2MG), diethyl amino malonate hydrochloride (DEAMHCl), ethyl malonate monoamide have been investigated at room temperature by the electron paramagnetic resonance technique. The type of radicals formed and their room temperature stability were evaluated. Three different radicals have been detected. The free radicals formed in compounds were attributed to the HOOCCH3ĊCH2CH2 COOH, CH3ĊHCO2CHNH2COCH2CH3 HCl and NH2COCH2COOĊHCH3 radicals, respectively. The results were found to be in good agreement with the existing literature data and theoretical predictions conformation.

  6. Summary of round robin measurements of radiation induced conductivity in Wesgo AL995 alumina

    SciTech Connect

    Zinkle, S.J.

    1996-10-01

    This existing data on radiation induced conductivity (RIC) measurements performed on the same heat of the IEA reference ceramic insulator are summarized. Six different sets of RIC measurements have been performed on Wesgo AL995 at dose rates between 10 Gy/s and 1 MGy/s. In general, good agreement was obtained between the different groups of researchers. The data indicate that the RIC at a test temperature of 400-500{degrees}C is approximately linear with ionizing dose rate up to {approximately}1000 Gy/s, and exhibits an approximately square root dependence on dose rate between 1 kGy/s and 1 MGy/s.

  7. Radiation-Induced Leiomyosarcoma after Breast Cancer Treatment and TRAM Flap Reconstruction

    PubMed Central

    Olcina, M.; Merck, B.; Giménez-Climent, M. J.; Almenar, S.; Sancho-Merle, M. F.; Llopis, F.; Vázquez-Albadalejo, C.

    2008-01-01

    The development of a radiation-induced sarcoma (RIS) in the post mastectomy thoracic treatment volume is an infrequent, but recognized, event. Its frequency is rising in relation with increasing survival of breast cancer patients treated with adjuvant radiation therapy, and is associated with poor prognosis despite treatment. We present a case of leiomyosarcoma in a patient who underwent mastectomy followed by radiotherapy for invasive ductal carcinoma. A delayed TRAM flap reconstruction was performed 10 years after and a rapid growing mass under the reconstructed flap appeared, on routine follow-up, twenty years later. This report analyzes the diagnostic and therapeutic approach of patients with RIS. PMID:18464918

  8. Tetrahydrobiopterin Protects against Radiation-induced Growth Inhibition in H9c2 Cardiomyocytes

    PubMed Central

    Zhang, Zheng-Yi; Li, Yi; Li, Rui; Zhang, An-An; Shang, Bo; Yu, Jing; Xie, Xiao-Dong

    2016-01-01

    Background: Tetrahydrobiopterin (BH4) is an essential cofactor of nitric oxide synthases (NOSs) for the synthesis of nitric oxide (NO). BH4 therapy can reverse the disease-related redox disequilibrium observed with BH4 deficiency. However, whether BH4 exerts a protective effect against radiation-induced damage to cardiomyocytes remains unknown. Methods: Clonogenic assays were performed to determine the effects of X-ray on H9c2 cells with or without BH4 treatment. The contents of lactate dehydrogenase (LDH), superoxide dismutase (SOD), and malondialdehyde (MDA) in H9c2 cells were measured to investigate oxidative stress levels. The cell cycle undergoing radiation with or without BH4 treatment was detected using flow cytometry. The expression levels of proteins in the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT)/P53 signaling pathway, inducible NOS (iNOS), and endothelial NOS (eNOS) were examined using Western blotting. Results: X-ray radiation significantly inhibited the growth of H9c2 cells in a