Sample records for modulating social behavior

  1. Sex-specific modulation of juvenile social play behavior by vasopressin and oxytocin depends on social context

    PubMed Central

    Bredewold, Remco; Smith, Caroline J. W.; Dumais, Kelly M.; Veenema, Alexa H.

    2014-01-01

    We recently demonstrated that vasopressin (AVP) in the lateral septum modulates social play behavior differently in male and female juvenile rats. However, the extent to which different social contexts (i.e., exposure to an unfamiliar play partner in different environments) affect the regulation of social play remains largely unknown. Given that AVP and the closely related neuropeptide oxytocin (OXT) modulate social behavior as well as anxiety-like behavior, we hypothesized that these neuropeptides may regulate social play behavior differently in novel (novel cage) as opposed to familiar (home cage) social environments. Administration of the specific AVP V1a receptor (V1aR) antagonist (CH2)5Tyr(Me2)AVP into the lateral septum enhanced home cage social play behavior in males but reduced it in females, confirming our previous findings. These effects were context-specific because V1aR blockade did not alter novel cage social play behavior in either sex. Furthermore, social play in females was reduced by AVP in the novel cage and by OXT in the home cage. Additionally, females administered the specific OXT receptor antagonist desGly-NH2,d(CH2)5−[Tyr(Me)2,Thr4]OVT showed less social play in the novel as compared to the home cage. AVP enhanced anxiety-related behavior in males (tested on the elevated plus-maze), but failed to do so in females, suggesting that exogenous AVP alters social play and anxiety-related behavior via distinct and sex-specific mechanisms. Moreover, none of the other drug treatments that altered social play had an effect on anxiety, suggesting that these drug-induced behavioral alterations are relatively specific to social behavior. Overall, we showed that AVP and OXT systems in the lateral septum modulate social play in juvenile rats in neuropeptide-, sex- and social context-specific ways. These findings underscore the importance of considering not only sex, but also social context, in how AVP and OXT modulate social behavior. PMID:24982623

  2. To Modulate and Be Modulated: Estrogenic Influences on Auditory Processing of Communication Signals within a Socio-Neuro-Endocrine Framework

    PubMed Central

    Yoder, Kathleen M.; Vicario, David S.

    2012-01-01

    Gonadal hormones modulate behavioral responses to sexual stimuli, and communication signals can also modulate circulating hormone levels. In several species, these combined effects appear to underlie a two-way interaction between circulating gonadal hormones and behavioral responses to socially salient stimuli. Recent work in songbirds has shown that manipulating local estradiol levels in the auditory forebrain produces physiological changes that affect discrimination of conspecific vocalizations and can affect behavior. These studies provide new evidence that estrogens can directly alter auditory processing and indirectly alter the behavioral response to a stimulus. These studies show that: 1. Local estradiol action within an auditory area is necessary for socially-relevant sounds to induce normal physiological responses in the brains of both sexes; 2. These physiological effects occur much more quickly than predicted by the classical time-frame for genomic effects; 3. Estradiol action within the auditory forebrain enables behavioral discrimination among socially-relevant sounds in males; and 4. Estradiol is produced locally in the male brain during exposure to particular social interactions. The accumulating evidence suggests a socio-neuro-endocrinology framework in which estradiol is essential to auditory processing, is increased by a socially relevant stimulus, acts rapidly to shape perception of subsequent stimuli experienced during social interactions, and modulates behavioral responses to these stimuli. Brain estrogens are likely to function similarly in both songbird sexes because aromatase and estrogen receptors are present in both male and female forebrain. Estrogenic modulation of perception in songbirds and perhaps other animals could fine-tune male advertising signals and female ability to discriminate them, facilitating mate selection by modulating behaviors. Keywords: Estrogens, Songbird, Social Context, Auditory Perception PMID:22201281

  3. Oxytocin receptors modulate a social salience neural network in male prairie voles.

    PubMed

    Johnson, Zachary V; Walum, Hasse; Xiao, Yao; Riefkohl, Paula C; Young, Larry J

    2017-01-01

    Social behavior is regulated by conserved neural networks across vertebrates. Variation in the organization of neuropeptide systems across these networks is thought to contribute to individual and species diversity in network function during social contexts. For example, oxytocin (OT) is an ancient neuropeptide that binds to OT receptors (OTRs) in the brain and modulates social and reproductive behavior across vertebrate species, including humans. Central OTRs exhibit extraordinarily diverse expression patterns that are associated with individual and species differences in social behavior. In voles, OTR density in the nucleus accumbens (NAc)-a region important for social and reward learning-is associated with individual and species variation in social attachment behavior. Here we test whether OTRs in the NAc modulate a social salience network (SSN)-a network of interconnected brain nuclei thought to encode valence and incentive salience of sociosensory cues-during a social context in the socially monogamous male prairie vole. Using a selective OTR antagonist, we test whether activation of OTRs in the NAc during sociosexual interaction and mating modulates expression of the immediate early gene product Fos across nuclei of the SSN. We show that blockade of endogenous OTR signaling in the NAc during sociosexual interaction and mating does not strongly modulate levels of Fos expression in individual nodes of the network, but strongly modulates patterns of correlated Fos expression between the NAc and other SSN nuclei. Published by Elsevier Inc.

  4. CANNABINOID AND OPIOID MODULATION OF SOCIAL PLAY BEHAVIOR IN ADOLESCENT RATS: DIFFERENTIAL BEHAVIORAL MECHANISMS

    PubMed Central

    Trezza, Viviana; Vanderschuren, Louk J.M.J.

    2008-01-01

    We have recently shown that the pharmacological mechanisms through which cannabinoid and opioid drugs influence social play behavior in adolescent rats can be partially dissociated. Here, we characterize the effects of the direct cannabinoid agonist WIN55,212-2, the indirect cannabinoid agonist URB597 and the opioid agonist morphine on social play at the behavioral level. By treating either one or both partners of the test dyad, we show that these drugs differentially affect play solicitation and play responsiveness. By testing these drugs in animals which were either familiar or unfamiliar to the test cage, we show that environmental factors differentially modulate the effects of cannabinoid and opioid drugs on social play. These results support and extend our previous findings suggesting that, although cannabinoid and opioid systems interact in the modulation of social play behavior in adolescent rats, they do so through partially dissociable behavioral and pharmacological mechanisms. PMID:18434104

  5. Intranasal oxytocin modulates neural functional connectivity during human social interaction.

    PubMed

    Rilling, James K; Chen, Xiangchuan; Chen, Xu; Haroon, Ebrahim

    2018-02-10

    Oxytocin (OT) modulates social behavior in primates and many other vertebrate species. Studies in non-primate animals have demonstrated that, in addition to influencing activity within individual brain areas, OT influences functional connectivity across networks of areas involved in social behavior. Previously, we used fMRI to image brain function in human subjects during a dyadic social interaction task following administration of either intranasal oxytocin (INOT) or placebo, and analyzed the data with a standard general linear model. Here, we conduct an extensive re-analysis of these data to explore how OT modulates functional connectivity across a neural network that animal studies implicate in social behavior. OT induced widespread increases in functional connectivity in response to positive social interactions among men and widespread decreases in functional connectivity in response to negative social interactions among women. Nucleus basalis of Meynert, an important regulator of selective attention and motivation with a particularly high density of OT receptors, had the largest number of OT-modulated connections. Regions known to receive mesolimbic dopamine projections such as the nucleus accumbens and lateral septum were also hubs for OT effects on functional connectivity. Our results suggest that the neural mechanism by which OT influences primate social cognition may include changes in patterns of activity across neural networks that regulate social behavior in other animals. © 2018 Wiley Periodicals, Inc.

  6. Optogenetic insights on the relationship between anxiety-related behaviors and social deficits

    PubMed Central

    Allsop, Stephen A.; Vander Weele, Caitlin M.; Wichmann, Romy; Tye, Kay M.

    2014-01-01

    Many psychiatric illnesses are characterized by deficits in the social domain. For example, there is a high rate of co-morbidity between autism spectrum disorders and anxiety disorders. However, the common neural circuit mechanisms by which social deficits and other psychiatric disease states, such as anxiety, are co-expressed remains unclear. Here, we review optogenetic investigations of neural circuits in animal models of anxiety-related behaviors and social behaviors and discuss the important role of the amygdala in mediating aspects of these behaviors. In particular, we focus on recent evidence that projections from the basolateral amygdala (BLA) to the ventral hippocampus (vHPC) modulate anxiety-related behaviors and also alter social interaction. Understanding how this circuit influences both social behavior and anxiety may provide a mechanistic explanation for the pathogenesis of social anxiety disorder, as well as the prevalence of patients co-diagnosed with autism spectrum disorders and anxiety disorders. Furthermore, elucidating how circuits that modulate social behavior also mediate other complex emotional states will lead to a better understanding of the underlying mechanisms by which social deficits are expressed in psychiatric disease. PMID:25076878

  7. Oxytocin influences processing of socially relevant cues in the ventral tegmental area of the human brain.

    PubMed

    Groppe, Sarah E; Gossen, Anna; Rademacher, Lena; Hahn, Alexa; Westphal, Luzie; Gründer, Gerhard; Spreckelmeyer, Katja N

    2013-08-01

    Evidence accumulates that the neuropeptide oxytocin plays an important role in mediating social interaction among humans and that a dysfunction in oxytocin-modulated brain mechanisms might lie at the core of disturbed social behavior in neuropsychiatric disease. Explanatory models suggest that oxytocin guides social approach and avoidance by modulating the perceived salience of socially meaningful cues. Animal data point toward the ventral tegmental area (VTA) as the brain site where this modulation takes place. We used functional magnetic resonance imaging and a social incentive delay task to test the hypothesis that oxytocin modulates the neural processing of socially relevant cues in the VTA, hereby facilitating behavioral response. Twenty-eight nulliparous women (not taking any hormones) received intranasal oxytocin or placebo in a double-blind randomized clinical trial with a parallel-group design. Oxytocin significantly enhanced VTA activation in response to cues signaling social reward (friendly face) or social punishment (angry face). Oxytocin effects on behavioral performance were modulated by individual differences in sociability with enhanced performance in women scoring low but decreased performance in women scoring high on self-reported measures of agreeableness. Our data provide evidence that the VTA is the human brain site where oxytocin attaches salience to socially relevant cues. This mechanism might play an important role in triggering motivation to react at the prospect of social reward or punishment. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Impact of nutrition on social decision making.

    PubMed

    Strang, Sabrina; Hoeber, Christina; Uhl, Olaf; Koletzko, Berthold; Münte, Thomas F; Lehnert, Hendrik; Dolan, Raymond J; Schmid, Sebastian M; Park, Soyoung Q

    2017-06-20

    Food intake is essential for maintaining homeostasis, which is necessary for survival in all species. However, food intake also impacts multiple biochemical processes that influence our behavior. Here, we investigate the causal relationship between macronutrient composition, its bodily biochemical impact, and a modulation of human social decision making. Across two studies, we show that breakfasts with different macronutrient compositions modulated human social behavior. Breakfasts with a high-carbohydrate/protein ratio increased social punishment behavior in response to norm violations compared with that in response to a low carbohydrate/protein meal. We show that these macronutrient-induced behavioral changes in social decision making are causally related to a lowering of plasma tyrosine levels. The findings indicate that, in a limited sense, "we are what we eat" and provide a perspective on a nutrition-driven modulation of cognition. The findings have implications for education, economics, and public policy, and emphasize that the importance of a balanced diet may extend beyond the mere physical benefits of adequate nutrition.

  9. Impact of nutrition on social decision making

    PubMed Central

    Strang, Sabrina; Hoeber, Christina; Uhl, Olaf; Koletzko, Berthold; Münte, Thomas F.; Lehnert, Hendrik; Dolan, Raymond J.; Schmid, Sebastian M.; Park, Soyoung Q.

    2017-01-01

    Food intake is essential for maintaining homeostasis, which is necessary for survival in all species. However, food intake also impacts multiple biochemical processes that influence our behavior. Here, we investigate the causal relationship between macronutrient composition, its bodily biochemical impact, and a modulation of human social decision making. Across two studies, we show that breakfasts with different macronutrient compositions modulated human social behavior. Breakfasts with a high-carbohydrate/protein ratio increased social punishment behavior in response to norm violations compared with that in response to a low carbohydrate/protein meal. We show that these macronutrient-induced behavioral changes in social decision making are causally related to a lowering of plasma tyrosine levels. The findings indicate that, in a limited sense, “we are what we eat” and provide a perspective on a nutrition-driven modulation of cognition. The findings have implications for education, economics, and public policy, and emphasize that the importance of a balanced diet may extend beyond the mere physical benefits of adequate nutrition. PMID:28607064

  10. A matter of distance-The effect of oxytocin on social discounting is empathy-dependent.

    PubMed

    Strang, Sabrina; Gerhardt, Holger; Marsh, Nina; Oroz Artigas, Sergio; Hu, Yang; Hurlemann, René; Park, Soyoung Q

    2017-04-01

    Generosity is an important behavior enriching human society and can be observed across cultures. However, generosity has been shown to be modulated as a function of social distance, also referred to as social discounting. Oxytocin and empathy are other factors that have been shown to play an important role in generous behavior. However, how exactly oxytocin and empathy impact social discounting is yet unknown. Here, we administered oxytocin or placebo in a double-blind design, and measured social discounting behavior. Additionally, individual differences in empathy were assessed. Our results show that the effect of oxytocin on generous behavior is modulated by trait empathy; only for those subjects who received oxytocin there was a positive correlation between individual trait empathy and their generous behavior towards close others. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The "ABCs of AD": A pilot test of an online educational module to increase use of the autonomic dysreflexia clinical practice guidelines among paramedic and nurse trainees.

    PubMed

    Tomasone, Jennifer R; Martin Ginis, Kathleen A; Pulkkinen, Wayland; Krassioukov, Andrei

    2014-09-01

    Despite availability of clinical practice guidelines (CPGs), gaps in autonomic dysreflexia (AD) knowledge and practice persist. A free, online educational module, the "ABCs of AD", was developed to improve knowledge of the AD-CPGs among emergency healthcare personnel. We examine short-term changes in paramedic and nurse trainees' knowledge of, and social cognitions towards using, the AD-CPGs following module completion. Pre-post. Thirty-four paramedic and nurse trainees from two training programs in Canada completed measures immediately before and after viewing the online "ABCs of AD" module. AD knowledge test; Theory of Planned Behavior social cognition questionnaire; module feedback survey. Paired samples t-tests revealed significant increases in participants' AD knowledge test scores (M ± SDpre = 9.00 ± 2.46, M ± SDpost = 12.03 ± 4.07, P < 0.001; d = 0.84). Prior to viewing the module, participants reported positive social cognitions for using the AD-CPGs (all Ms ≥ 4.84 out of 7). From pre- to post-module, no significant changes were seen in participants' social cognitions for using the AD-CPGs. Participants' average module viewing time was 36.73 ± 24.17 minutes (range 8-90 minutes). There was a decline in viewing from the first to the last module sections, with only half of participants viewing all six sections. Knowledge alone is insufficient for clinical behavior change; as such, social cognitive determinants of behavior should be explicitly targeted in future iterations of the module to increase the likelihood of increased use of the AD-CPGs. To engage viewers across all module sections, the "ABCs of AD" module should include supplementary learning strategies, such as interactive quizzes and peer-to-peer interaction.

  12. Environmental and social influences on neuroendocrine puberty and behavior in macaques and other nonhuman primates

    PubMed Central

    Stephens, Shannon B. Z.; Wallen, Kim

    2013-01-01

    Puberty is the developmental period when the hypothalamic-pituitary-gonadal (HPG) axis is activated, following a juvenile quiescent period, and reproductive capacity matures. Although pubertal events occur in a consistent sequence, there is considerable variation between individuals in the onset and timing of pubertal events, with puberty onset occurring earlier in girls than in boys. Evidence in humans demonstrates that social and environmental context influences the timing of puberty onset and may account for some of the observed variation. This review analyzes the nonhuman primate literature, focusing primarily on rhesus macaques (Macaca mulatta), to examine the social and environmental influences on puberty onset, how these factors influence puberty in males and females, and to review the relationship between puberty onset of adult neuroendocrine function and sexual behavior. Social and environmental factors influence the timing of puberty onset and pubertal events in nonhuman primates, as in humans, and the influences of these factors differ for males and females. In nonhuman primates, gonadal hormones are not required for sexual behavior, but modulate the frequency of occurrence of behavior, with social context influencing the relationship between gonadal hormones and sexual behavior. Thus, the onset of sexual behavior is independent of neuroendocrine changes at puberty; however, there are distinct behavioral changes that occur at puberty, which are modulated by social context. Puberty is possibly the developmental period when hormonal modulation of sexual behavior is organized, and thus, when social context interacts with hormonal state to strongly influence the expression of sexual behavior. PMID:23998667

  13. Genes and Social Behavior

    PubMed Central

    Robinson, Gene E.; Fernald, Russell D.; Clayton, David F.

    2011-01-01

    What specific genes and regulatory sequences contribute to the organization and functioning of brain circuits that support social behavior? How does social experience interact with information in the genome to modulate these brain circuits? Here we address these questions by highlighting progress that has been made in identifying and understanding two key “vectors of influence” that link genes, brain, and social behavior: 1) social information alters gene readout in the brain to influence behavior; and 2) genetic variation influences brain function and social behavior. We also briefly discuss how evolutionary changes in genomic elements influence social behavior and outline prospects for a systems biology of social behavior. PMID:18988841

  14. Social play behavior, ultrasonic vocalizations and their modulation by morphine and amphetamine in Wistar and Sprague-Dawley rats.

    PubMed

    Manduca, Antonia; Campolongo, Patrizia; Palmery, Maura; Vanderschuren, Louk J M J; Cuomo, Vincenzo; Trezza, Viviana

    2014-04-01

    Social play behavior is the most characteristic social behavior in young mammals. It is highly rewarding and crucial for proper neurobehavioral development. Despite the importance of genetic factors in normal and pathological social behaviors, little information is available about strain influences on social play. The aim of this study was to investigate differences in social play behavior, 50-kHz ultrasonic vocalizations (USVs) and their modulation by acute morphine and amphetamine administration in two rat strains widely used in behavioral pharmacology studies, i.e., Wistar and Sprague-Dawley rats. Sprague-Dawley rats showed higher levels of social play than Wistar rats. In both strains, no correlation was found between the performance of social behaviors and the emission of 50-kHz USVs. In Wistar and Sprague-Dawley rats, morphine increased and amphetamine decreased social play. The effects of morphine, however, were more pronounced in Wistar than Sprague-Dawley animals. In both strains, morphine did not affect USV emission, while amphetamine increased it during cage exploration. In Sprague-Dawley rats only, amphetamine decreased USVs during social interaction. Wistar and Sprague-Dawley rats differ in their absolute levels of social play behavior and 50-kHz USVs, and quantitative differences exist in their response to pharmacological manipulations of social play. The emission of 50-kHz USVs and the behavioral parameters thought to reflect rewarding social interactions in adolescent rats are dissociable.

  15. Racial bias shapes social reinforcement learning.

    PubMed

    Lindström, Björn; Selbing, Ida; Molapour, Tanaz; Olsson, Andreas

    2014-03-01

    Both emotional facial expressions and markers of racial-group belonging are ubiquitous signals in social interaction, but little is known about how these signals together affect future behavior through learning. To address this issue, we investigated how emotional (threatening or friendly) in-group and out-group faces reinforced behavior in a reinforcement-learning task. We asked whether reinforcement learning would be modulated by intergroup attitudes (i.e., racial bias). The results showed that individual differences in racial bias critically modulated reinforcement learning. As predicted, racial bias was associated with more efficiently learned avoidance of threatening out-group individuals. We used computational modeling analysis to quantitatively delimit the underlying processes affected by social reinforcement. These analyses showed that racial bias modulates the rate at which exposure to threatening out-group individuals is transformed into future avoidance behavior. In concert, these results shed new light on the learning processes underlying social interaction with racial-in-group and out-group individuals.

  16. Environmental and social influences on neuroendocrine puberty and behavior in macaques and other nonhuman primates.

    PubMed

    Stephens, Shannon B Z; Wallen, Kim

    2013-07-01

    This article is part of a Special Issue "Puberty and Adolescence". Puberty is the developmental period when the hypothalamic-pituitary-gonadal (HPG) axis is activated, following a juvenile quiescent period, and reproductive capacity matures. Although pubertal events occur in a consistent sequence, there is considerable variation between individuals in the onset and timing of pubertal events, with puberty onset occurring earlier in girls than in boys. Evidence in humans demonstrates that social and environmental context influences the timing of puberty onset and may account for some of the observed variation. This review analyzes the nonhuman primate literature, focusing primarily on rhesus macaques (Macaca mulatta), to examine the social and environmental influences on puberty onset, how these factors influence puberty in males and females, and to review the relationship between puberty onset of adult neuroendocrine function and sexual behavior. Social and environmental factors influence the timing of puberty onset and pubertal events in nonhuman primates, as in humans, and the influences of these factors differ for males and females. In nonhuman primates, gonadal hormones are not required for sexual behavior, but modulate the frequency of occurrence of behavior, with social context influencing the relationship between gonadal hormones and sexual behavior. Thus, the onset of sexual behavior is independent of neuroendocrine changes at puberty; however, there are distinct behavioral changes that occur at puberty, which are modulated by social context. Puberty is possibly the developmental period when hormonal modulation of sexual behavior is organized, and thus, when social context interacts with hormonal state to strongly influence the expression of sexual behavior. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Effects of AMPA receptor antagonist, NBQX, and extrasynaptic GABAA agonist, THIP, on social behavior of adolescent and adult rats.

    PubMed

    Dannenhoffer, Carol A; Varlinskaya, Elena I; Spear, Linda Patia

    2018-05-22

    Adolescence is characterized by high significance of social interactions, along with a propensity to exhibit social facilitating effects of ethanol while being less sensitive than adults to the inhibition of social behavior that emerges at higher doses of ethanol. Among the neural characteristics of adolescence are generally enhanced levels of glutamatergic (especially NMDA receptor) activity relative to adults, whereas the GABA system is still developmentally immature. Activation of NMDA receptors likely plays a role in modulation of social behavior in adolescent animals as well as in socially facilitating and suppressing effects of ethanol. For instance, adolescent and adult rats differ in their sensitivities to the effects of NMDA antagonists and ethanol on social behavior, with adolescents but not adults demonstrating social facilitation at lower doses of both drugs and adults being more sensitive to the socially suppressing effects evident at higher doses of each. The roles of AMPA and extrasynaptic GABA A receptors in modulation of social behavior during adolescence and in adulthood are still unknown. The present study was designed to assess whether pharmacological blockade of AMPA receptors and/or activation of extrasynaptic GABA A receptors results in age-dependent alterations of social behavior. Adolescent and adult male and female Sprague-Dawley rats were injected with an assigned dose of either a selective AMPA antagonist, NBQX (Experiment 1) or extrasynaptic GABA A agonist, THIP (Experiment 2) and placed into a modified social interaction chamber for a 30-min habituation period prior to a 10-min social interaction test with a novel age- and sex-matched partner. Behaviors such as social investigation, contact behavior and play behavior were scored from video recordings of the interaction tests. In Experiment 1, NBQX produced similar social inhibition at higher doses in both age groups. In Experiment 2, THIP induced inhibition in adolescents, but not adults. No social facilitation was evident following low doses of either drug. Therefore, AMPA and extrasynaptic GABA A receptors appear to play little role if any in modulation of peer-directed social behavior in adolescence and adulthood and not likely to contribute to previously observed age differences in the social effects of acute ethanol. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Social Approach and Autistic Behavior in Children with Fragile X Syndrome

    ERIC Educational Resources Information Center

    Roberts, Jane E.; Weisenfeld, Leigh Anne H.; Hatton, Deborah D.; Heath, Morgan; Kaufmann, Walter E.

    2007-01-01

    Social avoidance is a core phenotypic characteristic of fragile X syndrome (FXS) that has critical cognitive and social consequences. However, no study has examined modulation of multiple social avoidant behaviors in children with FXS. In the current study, we introduce the "Social Approach Scale" (SAS), an observation scale that includes physical…

  19. Do you make a difference? Social context in a betting task

    PubMed Central

    Nelson, Eric E.; Pine, Daniel S.; Ernst, Monique

    2008-01-01

    Social context strongly influences human motivated behavior. The triadic model implicates three major nodes in the regulation of motivated behavior, i.e. amygdala, medial prefrontal cortex (mPFC) and striatum. The present work examines how social context modulates this system. Nineteen healthy subjects completed an event-related functional magnetic resonance imaging study of a monetary betting task in the presence (social trials) and in the absence of a social peer (nonsocial trials). In the social trials, the scanned subject played along with another subject, although their performances were independent from one another. In the nonsocial trials the scanned subject played alone. Although behavioral performance did not differ between social and nonsocial trials, BOLD signal changes during betting were significantly greater in the amygdala bilaterally and the right dorsolateral prefrontal cortex (BA 9) in the social condition relative to the nonsocial condition. In contrast, activation was greater in ventral striatum in the nonsocial condition relative to the social condition. These findings suggest that social context modulates the triadic neural-systems ensemble to adjust motivated behavior to the unique demands associated with the presence of conspecifics. PMID:19015081

  20. The “ABCs of AD”: A pilot test of an online educational module to increase use of the autonomic dysreflexia clinical practice guidelines among paramedic and nurse trainees

    PubMed Central

    Tomasone, Jennifer R.; Martin Ginis, Kathleen A.; Pulkkinen, Wayland; Krassioukov, Andrei

    2014-01-01

    Context/Objective Despite availability of clinical practice guidelines (CPGs), gaps in autonomic dysreflexia (AD) knowledge and practice persist. A free, online educational module, the “ABCs of AD”, was developed to improve knowledge of the AD-CPGs among emergency healthcare personnel. We examine short-term changes in paramedic and nurse trainees’ knowledge of, and social cognitions towards using, the AD-CPGs following module completion. Design Pre–post. Methods Thirty-four paramedic and nurse trainees from two training programs in Canada completed measures immediately before and after viewing the online “ABCs of AD” module. Outcome measures AD knowledge test; Theory of Planned Behavior social cognition questionnaire; module feedback survey. Results Paired samples t-tests revealed significant increases in participants’ AD knowledge test scores (M ± SDpre = 9.00 ± 2.46, M ± SDpost = 12.03 ± 4.07, P < 0.001; d = 0.84). Prior to viewing the module, participants reported positive social cognitions for using the AD-CPGs (all Ms ≥ 4.84 out of 7). From pre- to post-module, no significant changes were seen in participants’ social cognitions for using the AD-CPGs. Participants’ average module viewing time was 36.73 ± 24.17 minutes (range 8–90 minutes). There was a decline in viewing from the first to the last module sections, with only half of participants viewing all six sections. Conclusion Knowledge alone is insufficient for clinical behavior change; as such, social cognitive determinants of behavior should be explicitly targeted in future iterations of the module to increase the likelihood of increased use of the AD-CPGs. To engage viewers across all module sections, the “ABCs of AD” module should include supplementary learning strategies, such as interactive quizzes and peer-to-peer interaction. PMID:25055849

  1. What We Observe Is Biased by What Other People Tell Us: Beliefs about the Reliability of Gaze Behavior Modulate Attentional Orienting to Gaze Cues

    PubMed Central

    Wiese, Eva; Wykowska, Agnieszka; Müller, Hermann J.

    2014-01-01

    For effective social interactions with other people, information about the physical environment must be integrated with information about the interaction partner. In order to achieve this, processing of social information is guided by two components: a bottom-up mechanism reflexively triggered by stimulus-related information in the social scene and a top-down mechanism activated by task-related context information. In the present study, we investigated whether these components interact during attentional orienting to gaze direction. In particular, we examined whether the spatial specificity of gaze cueing is modulated by expectations about the reliability of gaze behavior. Expectations were either induced by instruction or could be derived from experience with displayed gaze behavior. Spatially specific cueing effects were observed with highly predictive gaze cues, but also when participants merely believed that actually non-predictive cues were highly predictive. Conversely, cueing effects for the whole gazed-at hemifield were observed with non-predictive gaze cues, and spatially specific cueing effects were attenuated when actually predictive gaze cues were believed to be non-predictive. This pattern indicates that (i) information about cue predictivity gained from sampling gaze behavior across social episodes can be incorporated in the attentional orienting to social cues, and that (ii) beliefs about gaze behavior modulate attentional orienting to gaze direction even when they contradict information available from social episodes. PMID:24722348

  2. GABAergic modulation of human social interaction in a prisoner's dilemma model by acute administration of alprazolam.

    PubMed

    Lane, Scott D; Gowin, Joshua L

    2009-10-01

    Recent work in neuroeconomics has used game theory paradigms to examine neural systems that subserve human social interaction and decision making. Attempts to modify social interaction through pharmacological manipulation have been less common. Here we show dose-dependent modification of human social behavior in a prisoner's dilemma model after acute administration of the γ-aminobutyric acid (GABA)-A modulating benzodiazepine alprazolam. Nine healthy adults received doses of placebo, 0.5, 1.0, and 2.0 mg alprazolam in a counterbalanced within-subject design, while completing multiple test blocks per day on an iterated prisoner's dilemma game. During test blocks in which peak subjective effects of alprazolam were reported, cooperative choices were significantly decreased as a function of dose. Consistent with previous reports showing that high acute doses of GABA-modulating drugs are associated with violence and other antisocial behavior, our data suggest that at sufficiently high doses, alprazolam can decrease cooperation. These behavioral changes may be facilitated by changes in inhibitory control facilitated by GABA. Game theory paradigms may prove useful in behavioral pharmacology studies seeking to measure social interaction, and may help inform the emerging field of neuroeconomics.

  3. GABAergic modulation of human social interaction in a prisoner’s dilemma model via acute administration of alprazolam

    PubMed Central

    Lane, Scott D.; Gowin, Joshua L.

    2010-01-01

    Recent work in neuroeconomics has utilized game theory paradigms to examine neural systems that subserve human social interaction and decision making. Attempts to modify social interaction through pharmacological manipulation have been less common. Here we show dose-dependent modification of human social behavior in a prisoner’s dilemma (PD) model following acute administration of the GABA-A modulating benzodiazepine alprazolam. Nine healthy adults received doses of placebo, 0.5, 1.0, and 2.0 mg alprazolam in a counterbalanced within-subject design, while completing multiple test blocks per day on an iterated PD game. During test blocks in which peak subjective effects of alprazolam were reported, cooperative choices were significantly decreased as a function of dose. Consistent with previous reports showing that high acute doses of GABA-modulating drugs are associated with violence and other antisocial behavior, our data suggest that at sufficiently high doses, alprazolam can decrease cooperation. These behavioral changes may be facilitated by changes in inhibitory control facilitated by GABA. Game theory paradigms may prove useful in behavioral pharmacology studies seeking to measure social interaction, and may help inform the emerging field of neuroeconomics. PMID:19667972

  4. Oxytocin, vasopressin, and the neurogenetics of sociality.

    PubMed

    Donaldson, Zoe R; Young, Larry J

    2008-11-07

    There is growing evidence that the neuropeptides oxytocin and vasopressin modulate complex social behavior and social cognition. These ancient neuropeptides display a marked conservation in gene structure and expression, yet diversity in the genetic regulation of their receptors seems to underlie natural variation in social behavior, both between and within species. Human studies are beginning to explore the roles of these neuropeptides in social cognition and behavior and suggest that variation in the genes encoding their receptors may contribute to variation in human social behavior by altering brain function. Understanding the neurobiology and neurogenetics of social cognition and behavior has important implications, both clinically and for society.

  5. Enhanced male-evoked responses in the ventromedial hypothalamus of sexually receptive female mice.

    PubMed

    Nomoto, Kensaku; Lima, Susana Q

    2015-03-02

    Social encounters often start with routine investigatory behaviors before developing into distinct outcomes, such as affiliative or aggressive actions. For example, a female mouse will initially engage in investigatory behavior with a male but will then show copulation or rejection, depending on her reproductive state. To promote adaptive social behavior, her brain must combine internal ovarian signals and external social stimuli, but little is known about how socially evoked neural activity is modulated across the reproductive cycle [1]. To investigate this, we performed single-unit recordings in the ventrolateral region of the ventromedial hypothalamus (VMHvl) in freely behaving, naturally cycling, female mice interacting with conspecifics of both genders. The VMHvl has been implicated in rodent sociosexual behavior [2, 3]: it has access to social sensory stimuli [4-8] and is involved in aggression and mating [9-11]. Furthermore, many VMHvl neurons express ovarian hormone receptors [12, 13], which play a central role in female sociosexual behavior [14-16]. We found that a large fraction of VMHvl neurons was activated in the presence of conspecifics with preference to male stimuli and that the activity of most VMHvl neurons was modulated throughout social interactions rather than in response to specific social events. Furthermore, neuronal responses to male, but not female, conspecifics in the VMHvl were enhanced during the sexually receptive state. Thus, male-evoked VMHvl responses are modulated by the reproductive state, and VMHvl neural activity could drive gender-specific and reproductive state-dependent sociosexual behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Early Social Fear Predicts Kindergarteners' Socially Anxious Behaviors: Direct Associations, Moderation by Inhibitory Control, and Differences from Nonsocial Fear

    PubMed Central

    Brooker, Rebecca J.; Kiel, Elizabeth J.; Buss, Kristin A.

    2015-01-01

    Although social and nonsocial fear are discernable as early as preschool, little is known about their distinct associations with developmental outcomes. For example, fear has been identified as a predictor of social anxiety problems, but no work has examined whether social and nonsocial fear make independent contributions to risk. We investigated the extent to which early social and non-social fear were associated with socially anxious behaviors during kindergarten. To do this, we identified distinct trajectories of social and nonsocial fear across toddlerhood and preschool. Only social fear was associated with socially anxious behaviors at ages 2 and 5. Because the ability to regulate fear contributes to the degree to which fearful children are at risk for anxiety problems, we also tested whether an early-developing aspect of self-regulation modulated associations between early fear and kindergarten socially anxious behaviors. Specifically, we tested whether inhibitory control differentially modulated associations between early levels of social and nonsocial fear and socially anxious behaviors during kindergarten. Associations between trajectories of early social fear and age 5 socially anxious behaviors were moderated by individual differences in inhibitory control. Consistent with previous research showing associations between overcontrol and anxiety symptoms, more negative outcomes were observed when stable, high levels of social fear across childhood were coupled with high levels of inhibitory control. Results suggest that the combination of social fear and overcontrol reflect a profile of early risk for the development of social inhibition and social anxiety problems. PMID:27213729

  7. Pigment-Dispersing Factor Modulates Pheromone Production in Clock Cells that Influence Mating in Drosophila

    PubMed Central

    Krupp, Joshua J.; Billeter, Jean-Christophe; Wong, Amy; Choi, Charles; Nitabach, Michael N.; Levine, Joel D.

    2014-01-01

    Summary Social cues contribute to the circadian entrainment of physiological and behavioral rhythms. These cues supplement the influence of daily and seasonal cycles in light and temperature. In Drosophila, the social environment modulates circadian mechanisms that regulate sex pheromone production and mating behavior. Here we demonstrate that a neuroendocrine pathway, defined by the neuropeptide Pigment-Dispersing Factor (PDF), couples the central nervous system (CNS) to the physiological output of peripheral clock cells that produce pheromones, the oenocytes. PDF signaling from the CNS modulates the phase of the oenocyte clock. Despite its requirement for sustaining free-running locomoter activity rhythms, PDF is not necessary to sustain molecular rhythms in the oenocytes. Interestingly, disruption of the PDF signaling pathway reduces male sex pheromones and results in sex-specific differences in mating behavior. Our findings highlight the role of neuropeptide signaling and the circadian system in synchronizing the physiological and behavioral processes which govern social interactions. PMID:23849197

  8. Behavioral and Neural Adaptation in Approach Behavior.

    PubMed

    Wang, Shuo; Falvello, Virginia; Porter, Jenny; Said, Christopher P; Todorov, Alexander

    2018-06-01

    People often make approachability decisions based on perceived facial trustworthiness. However, it remains unclear how people learn trustworthiness from a population of faces and whether this learning influences their approachability decisions. Here we investigated the neural underpinning of approach behavior and tested two important hypotheses: whether the amygdala adapts to different trustworthiness ranges and whether the amygdala is modulated by task instructions and evaluative goals. We showed that participants adapted to the stimulus range of perceived trustworthiness when making approach decisions and that these decisions were further modulated by the social context. The right amygdala showed both linear response and quadratic response to trustworthiness level, as observed in prior studies. Notably, the amygdala's response to trustworthiness was not modulated by stimulus range or social context, a possible neural dynamic adaptation. Together, our data have revealed a robust behavioral adaptation to different trustworthiness ranges as well as a neural substrate underlying approach behavior based on perceived facial trustworthiness.

  9. Dynamic changes in extracellular release of GABA and glutamate in the lateral septum during social play behavior in juvenile rats: Implications for sex-specific regulation of social play behavior

    PubMed Central

    Bredewold, Remco; Schiavo, Jennifer K.; van der Hart, Marieke; Verreij, Michelle; Veenema, Alexa H.

    2015-01-01

    Social play is a motivated and rewarding behavior that is displayed by nearly all mammals and peaks in the juvenile period. Moreover, social play is essential for the development of social skills and is impaired in social disorders like autism. We recently showed that the lateral septum (LS) is involved in the regulation of social play behavior in juvenile male and female rats. The LS is largely modulated by GABA and glutamate neurotransmission, but their role in social play behavior is unknown. Here, we determined whether social play behavior is associated with changes in the extracellular release of GABA and glutamate in the LS and to what extent such changes modulate social play behavior in male and female juvenile rats. Using intracerebral microdialysis in freely behaving rats, we found no sex difference in extracellular GABA concentrations, but extracellular glutamate concentrations are higher in males than in females under baseline condition and during social play. This resulted in a higher glutamate/GABA concentration ratio in males versus females and thus, an excitatory predominance in the LS of males. Furthermore, social play behavior in both sexes is associated with significant increases in extracellular release of GABA and glutamate in the LS. Pharmacological blockade of GABA-A receptors in the LS with bicuculline (100 ng/0.5 µl, 250 ng/0.5 µl) dose-dependently decreased the duration of social play behavior in both sexes. In contrast, pharmacological blockade of ionotropic glutamate receptors (NMDA and AMPA/kainate receptors) in the LS with AP-5 + CNQX (2 mM+0.4 mM/0.5 µl, 30 mM+3 mM/0.5 µl) dose-dependently decreased the duration of social play behavior in females, but did not alter social play behavior in males. Together, these data suggest a role for GABA neurotransmission in the LS in the regulation of juvenile social play behavior in both sexes, while glutamate neurotransmission in the LS is involved in the sex-specific regulation of juvenile social play behavior. PMID:26318330

  10. The colony environment modulates sleep in honey bee workers.

    PubMed

    Eban-Rothschild, Ada; Bloch, Guy

    2015-02-01

    One of the most important and evolutionarily conserved roles of sleep is the processing and consolidation of information acquired during wakefulness. In both insects and mammals, environmental and social stimuli can modify sleep physiology and behavior, yet relatively little is known about the specifics of the wake experiences and their relative contribution to experience-dependent modulation of sleep. Honey bees provide an excellent model system in this regard because their behavioral repertoire is well characterized and the environment they experience during the day can be manipulated while keeping an ecologically and sociobiologically relevant context. We examined whether social experience modulates sleep in honey bees, and evaluated the relative contribution of different social signals. We exposed newly emerged bees to different components of their natural social environment and then monitored their sleep behavior in individual cages in a constant lab environment. We found that rich waking experience modulates subsequent sleep. Bees that experienced the colony environment for 1 or 2 days slept more than same-age sister bees that were caged individually or in small groups in the lab. Furthermore, bees placed in mesh-enclosures in the colony, that prevented direct contact with nestmates, slept similarly to bees freely moving in the colony. These results suggest that social signals that do not require direct or close distance interactions between bees are sufficiently rich to encompass almost the entire effect of the colony on sleep. Our findings provide a remarkable example of social experience-dependent modulation of an essential biological process. © 2015. Published by The Company of Biologists Ltd.

  11. Partner Loss in Monogamous Rodents: Modulation of Pain and Emotional Behavior in Male Prairie Voles.

    PubMed

    Osako, Yoji; Nobuhara, Reiko; Arai, Young-Chang P; Tanaka, Kenjiro; Young, Larry J; Nishihara, Makoto; Mitsui, Shinichi; Yuri, Kazunari

    2018-01-01

    Pain is modulated by psychosocial factors, and social stress-induced hyperalgesia is a common clinical symptom in pain disorders. To provide a new animal model for studying social modulation of pain, we examined pain behaviors in monogamous prairie voles experiencing partner loss. After cohabitation with novel females, males (n = 79) were divided into two groups on the basis of preference test scores. Half of the males of each group were separated from their partner (loss group), whereas the other half remained paired (paired group). Thus, males from both groups experienced social isolation. Open field tests, plantar tests, and formalin tests were then conducted on males to assess anxiety and pain-related behaviors. Loss males showing partner preferences (n = 20) displayed a significant increase in anxiety-related behavior in the open-field test (central area/total distance: 13.65% [1.58%] for paired versus 6.45% [0.87%] for loss; p < .001), a low threshold of thermal stimulus in the plantar test (withdrawal latencies: 9.69 [0.98] seconds for paired versus 6.15 [0.75] seconds for loss; p = .037), and exacerbated pain behaviors in the formalin test (total number of lifts: 40.33 [4.46] for paired versus 54.42 [1.91] for loss; p = .042) as compared with paired males (n = 20). Thermal thresholds in the plantar test significantly correlated with anxiety-related behavior in the open-field test (r = 0.64). No such differences were observed in the males that did not display partner preferences (r = 0.15). Results indicate that social bonds and their disruption, but not social housing without bonding followed by isolation, modulate pain and emotion in male prairie voles. The prairie vole is a useful model for exploring the neural mechanisms by which social relationships contribute to pain and nociceptive processing in humans.

  12. The Microbiome-Gut-Behavior Axis: Crosstalk Between the Gut Microbiome and Oligodendrocytes Modulates Behavioral Responses.

    PubMed

    Ntranos, Achilles; Casaccia, Patrizia

    2018-01-01

    Environmental and dietary stimuli have always been implicated in brain development and behavioral responses. The gut, being the major portal of communication with the external environment, has recently been brought to the forefront of this interaction with the establishment of a gut-brain axis in health and disease. Moreover, recent breakthroughs in germ-free and antibiotic-treated mice have demonstrated the significant impact of the microbiome in modulating behavioral responses in mice and have established a more specific microbiome-gut-behavior axis. One of the mechanisms by which this axis affects social behavior is by regulating myelination at the prefrontal cortex, an important site for complex cognitive behavior planning and decision-making. The prefrontal cortex exhibits late myelination of its axonal projections that could extend into the third decade of life in humans, which make it susceptible to external influences, such as microbial metabolites. Changes in the gut microbiome were shown to alter the composition of the microbial metabolome affecting highly permeable bioactive compounds, such as p-cresol, which could impair oligodendrocyte differentiation. Dysregulated myelination in the prefrontal cortex is then able to affect behavioral responses in mice, shifting them towards social isolation. The reduced social interactions could then limit microbial exchange, which could otherwise pose a threat to the survival of the existing microbial community in the host and, thus, provide an evolutionary advantage to the specific microbial community. In this review, we will analyze the microbiome-gut-behavior axis, describe the interactions between the gut microbiome and oligodendrocytes and highlight their role in the modulation of social behavior.

  13. Single aggressive and non-aggressive social interactions elicit distinct behavioral patterns to the context in mice.

    PubMed

    Crestani, Ariela M; Cipriano, Ana C; Nunes-de-Souza, Ricardo L

    2018-04-16

    Aggressive interactions between conspecific animals have been used as a social stressor with ethological characteristics to study how social interactions can modulate animal's behavior. Here, a new protocol based on aggressive and non-aggressive interactions was developed to study how different social interactions can alter the behavioral profile of animals re-exposed to the context in which the interaction occurred. We used factor analysis to trace the behavioral profile of socially defeated and non-defeated mice when they were re-exposed to the apparatus [three interconnected chambers: home chamber, tunnel and surface area]; we also compared the behavior presented before (habituation) and 24 h after (re-exposure) the non-aggressive or aggressive interactions. A final factor analysis from defeated animals yielded 4 factors that represented 72.09% of total variance; whereas non-defeated animal's analysis was loaded with 5 factors that represented 85.46% of total variance. A 5-min non-aggressive interaction reduced the frequency of stretched attend behavior in the tunnel, whereas a single social defeat reduced time in the tunnel and increased time spent performing self-grooming in the home chamber without conditioning any other spatio-temporal and complementary measures. Together, these results suggest that different social interactions may modulate distinct behavioral profiles in animals when re-exposed to the context. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Central oxytocin receptors mediate mating-induced partner preferences and enhance correlated activation across forebrain nuclei in male prairie voles.

    PubMed

    Johnson, Zachary V; Walum, Hasse; Jamal, Yaseen A; Xiao, Yao; Keebaugh, Alaine C; Inoue, Kiyoshi; Young, Larry J

    2016-03-01

    Oxytocin (OT) is a deeply conserved nonapeptide that acts both peripherally and centrally to modulate reproductive physiology and sociosexual behavior across divergent taxa, including humans. In vertebrates, the distribution of the oxytocin receptor (OTR) in the brain is variable within and across species, and OTR signaling is critical for a variety of species-typical social and reproductive behaviors, including affiliative and pair bonding behaviors in multiple socially monogamous lineages of fishes, birds, and mammals. Early work in prairie voles suggested that the endogenous OT system modulates mating-induced partner preference formation in females but not males; however, there is significant evidence that central OTRs may modulate pair bonding behavior in both sexes. In addition, it remains unclear how transient windows of central OTR signaling during sociosexual interaction modulate neural activity to produce enduring shifts in sociobehavioral phenotypes, including the formation of selective social bonds. Here we re-examine the role of the central OT system in partner preference formation in male prairie voles using a selective OTR antagonist delivered intracranially. We then use the same antagonist to examine how central OTRs modulate behavior and immediate early gene (Fos) expression, a metric of neuronal activation, in males during brief sociosexual interaction with a female. Our results suggest that, as in females, OTR signaling is critical for partner preference formation in males and enhances correlated activation across sensory and reward processing brain areas during sociosexual interaction. These results are consistent with the hypothesis that central OTR signaling facilitates social bond formation by coordinating activity across a pair bonding neural network. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Contrasting Roles of Dopamine and Noradrenaline in the Motivational Properties of Social Play Behavior in Rats.

    PubMed

    Achterberg, E J Marijke; van Kerkhof, Linda W M; Servadio, Michela; van Swieten, Maaike M H; Houwing, Danielle J; Aalderink, Mandy; Driel, Nina V; Trezza, Viviana; Vanderschuren, Louk J M J

    2016-02-01

    Social play behavior, abundant in the young of most mammalian species, is thought to be important for social and cognitive development. Social play is highly rewarding, and as such, the expression of social play depends on its pleasurable and motivational properties. Since the motivational properties of social play have only sporadically been investigated, we developed a setup in which rats responded for social play under a progressive ratio schedule of reinforcement. Dopaminergic neurotransmission plays a key role in incentive motivational processes, and both dopamine and noradrenaline have been implicated in the modulation of social play behavior. Therefore, we investigated the role of dopamine and noradrenaline in the motivation for social play. Treatment with the psychostimulant drugs methylphenidate and cocaine increased responding for social play, but suppressed its expression during reinforced play periods. The dopamine reuptake inhibitor GBR-12909 increased responding for social play, but did not affect its expression, whereas the noradrenaline reuptake inhibitor atomoxetine decreased responding for social play as well as its expression. The effects of methylphenidate and cocaine on responding for social play, but not their play-suppressant effects, were blocked by pretreatment with the dopamine receptor antagonist α-flupenthixol. In contrast, pretreatment with the α2-adrenoceptor antagonist RX821002 prevented the play-suppressant effect of methylphenidate, but left its effect on responding for social play unaltered. In sum, the present study introduces a novel method to study the incentive motivational properties of social play behavior in rats. Using this paradigm, we demonstrate dissociable roles for dopamine and noradrenaline in social play behavior: dopamine stimulates the motivation for social play, whereas noradrenaline negatively modulates the motivation for social play behavior and its expression.

  16. Oxytocin and vasopressin modulation of the neural correlates of motivation and emotion: results from functional MRI studies in awake rats.

    PubMed

    Febo, Marcelo; Ferris, Craig F

    2014-09-11

    Oxytocin and vasopressin modulate a range of species typical behavioral functions that include social recognition, maternal-infant attachment, and modulation of memory, offensive aggression, defensive fear reactions, and reward seeking. We have employed novel functional magnetic resonance mapping techniques in awake rats to explore the roles of these neuropeptides in the maternal and non-maternal brain. Results from the functional neuroimaging studies that are summarized here have directly and indirectly confirmed and supported previous findings. Oxytocin is released within the lactating rat brain during suckling stimulation and activates specific subcortical networks in the maternal brain. Both vasopressin and oxytocin modulate brain regions involved unconditioned fear, processing of social stimuli and the expression of agonistic behaviors. Across studies there are relatively consistent brain networks associated with internal motivational drives and emotional states that are modulated by oxytocin and vasopressin. This article is part of a Special Issue entitled Oxytocin and Social Behav. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Region specific up-regulation of oxytocin receptors in the opioid oprm1 (-/-) mouse model of autism.

    PubMed

    Gigliucci, Valentina; Leonzino, Marianna; Busnelli, Marta; Luchetti, Alessandra; Palladino, Viola Stella; D'Amato, Francesca R; Chini, Bice

    2014-01-01

    Autism spectrum disorders (ASDs) are characterized by impaired communication, social impairments, and restricted and repetitive behaviors and interests. Recently, altered motivation and reward processes have been suggested to participate in the physiopathology of ASDs, and μ-opioid receptors (MORs) have been investigated in relation to social reward due to their involvement in the neural circuitry of reward. Mice lacking a functional MOR gene (Oprm1 (-/-) mice) display abnormal social behavior and major autistic-like core symptoms, making them an animal model of autism. The oxytocin (OXT) system is a key regulator of social behavior and co-operates with the opioidergic system in the modulation of social behavior. To better understand the opioid-OXT interplay in the central nervous system, we first determined the expression of the oxytocin receptor (OXTR) in the brain of WT C57BL6/J mice by quantitative autoradiography; we then evaluated OXTR regional alterations in Oprm1 (-/-) mice. Moreover, we tested these mice in a paradigm of social behavior, the male-female social interaction test, and analyzed the effects of acute intranasal OXT treatment on their performance. In autoradiography, Oprm1 (-/-) mice selectively displayed increased OXTR expression in the Medial Anterior Olfactory Nucleus, the Central and Medial Amygdaloid nuclei, and the Nucleus Accumbens. Our behavioral results confirmed that Oprm1 (-/-) male mice displayed social impairments, as indicated by reduced ultrasonic calls, and that these were rescued by a single intranasal administration of OXT. Taken together, our results provide evidence of an interaction between OXT and opioids in socially relevant brain areas and in the modulation of social behavior. Moreover, they suggest that the oxytocinergic system may act as a compensative mechanism to bypass and/or restore alterations in circuits linked to impaired social behavior.

  18. Oxytocin and vasopressin neural networks: implications for social behavioral diversity and translational neuroscience

    PubMed Central

    Johnson, Zachary V.; Young, Larry J.

    2017-01-01

    Oxytocin- and vasopressin-related systems are present in invertebrate and vertebrate bilaterian animals, including humans, and exhibit conserved neuroanatomical and functional properties. In vertebrates, these systems innervate conserved neural networks that regulate social learning and behavior, including conspecific recognition, social attachment, and parental behavior. Individual and species-level variation in central organization of oxytocin and vasopressin systems has been linked to individual and species variation in social learning and behavior. In humans, genetic polymorphisms in the genes encoding oxytocin and vasopressin peptides and/or their respective target receptors have been associated with individual variation in social recognition, social attachment phenotypes, parental behavior, and psychiatric phenotypes such as autism. Here we describe both conserved and variable features of central oxytocin and vasopressin systems in the context of social behavioral diversity, with a particular focus on neural networks that modulate social learning, behavior, and salience of sociosensory stimuli during species-typical social contexts. PMID:28434591

  19. Social status modulates prosocial behavior and egalitarianism in preschool children and adults

    PubMed Central

    Guinote, Ana; Cotzia, Ioanna; Sandhu, Sanpreet; Siwa, Pramila

    2015-01-01

    Humans are a cooperative species, capable of altruism and the creation of shared norms that ensure fairness in society. However, individuals with different educational, cultural, economic, or ethnic backgrounds differ in their levels of social investment and endorsement of egalitarian values. We present four experiments showing that subtle cues to social status (i.e., prestige and reputation in the eyes of others) modulate prosocial orientation. The experiments found that individuals who experienced low status showed more communal and prosocial behavior, and endorsed more egalitarian life goals and values compared with those who experienced high status. Behavioral differences across high- and low-status positions appeared early in human ontogeny (4–5 y of age). PMID:25561527

  20. Integrative neurochemistry and neurobiology of social recognition and behavior analyzed with respect to CD38-dependent brain oxytocin secretion.

    PubMed

    Salmina, Alla B; Lopatina, Olga; Kuvacheva, Natalia V; Higashida, Haruhiro

    2013-01-01

    This review summarizes the literature and our own data regarding the role of NAD⁺-glycohydrolase/CD38-controlled molecular mechanisms of hypothalamic and pituitary oxytocin secretion in social behavior regulation. Current approaches to the modulation of both CD38 expression and brain cell activity that represent prospective treatments for disorders associated with altered social behavior are discussed.

  1. Arginine Vasotocin, the Social Neuropeptide of Amphibians and Reptiles

    PubMed Central

    Wilczynski, Walter; Quispe, Maricel; Muñoz, Matías I.; Penna, Mario

    2017-01-01

    Arginine vasotocin (AVT) is the non-mammalian homolog of arginine vasopressin (AVP) and, like vasopressin, serves as an important modulator of social behavior in addition to its peripheral functions related to osmoregulation, reproductive physiology, and stress hormone release. In amphibians and reptiles, the neuroanatomical organization of brain AVT cells and fibers broadly resembles that seen in mammals and other taxa. Both parvocellular and magnocellular AVT-containing neurons are present in multiple populations located mainly in the basal forebrain from the accumbens–amygdala area to the preoptic area and hypothalamus, from which originate widespread fiber connections spanning the brain with a particularly heavy innervation of areas associated with social behavior and decision-making. As for mammalian AVP, AVT is present in greater amounts in males in many brain areas, and its presence varies seasonally, with hormonal state, and in males with differing social status. AVT’s social influence is also conserved across herpetological taxa, with significant effects on social signaling and aggression, and, based on the very small number of studies investigating more complex social behaviors in amphibians and reptiles, AVT may also modulate parental care and social bonding when it is present in these vertebrates. Within this conserved pattern, however, both AVT anatomy and social behavior effects vary significantly across species. Accounting for this diversity represents a challenge to understanding the mechanisms by which AVT exerts its behavioral effects, as well are a potential tool for discerning the structure-function relationships underlying AVT’s many effects on behavior. PMID:28824546

  2. Arginine Vasotocin, the Social Neuropeptide of Amphibians and Reptiles.

    PubMed

    Wilczynski, Walter; Quispe, Maricel; Muñoz, Matías I; Penna, Mario

    2017-01-01

    Arginine vasotocin (AVT) is the non-mammalian homolog of arginine vasopressin (AVP) and, like vasopressin, serves as an important modulator of social behavior in addition to its peripheral functions related to osmoregulation, reproductive physiology, and stress hormone release. In amphibians and reptiles, the neuroanatomical organization of brain AVT cells and fibers broadly resembles that seen in mammals and other taxa. Both parvocellular and magnocellular AVT-containing neurons are present in multiple populations located mainly in the basal forebrain from the accumbens-amygdala area to the preoptic area and hypothalamus, from which originate widespread fiber connections spanning the brain with a particularly heavy innervation of areas associated with social behavior and decision-making. As for mammalian AVP, AVT is present in greater amounts in males in many brain areas, and its presence varies seasonally, with hormonal state, and in males with differing social status. AVT's social influence is also conserved across herpetological taxa, with significant effects on social signaling and aggression, and, based on the very small number of studies investigating more complex social behaviors in amphibians and reptiles, AVT may also modulate parental care and social bonding when it is present in these vertebrates. Within this conserved pattern, however, both AVT anatomy and social behavior effects vary significantly across species. Accounting for this diversity represents a challenge to understanding the mechanisms by which AVT exerts its behavioral effects, as well are a potential tool for discerning the structure-function relationships underlying AVT's many effects on behavior.

  3. The CC chemokine receptor 5 regulates olfactory and social recognition in mice.

    PubMed

    Kalkonde, Y V; Shelton, R; Villarreal, M; Sigala, J; Mishra, P K; Ahuja, S S; Barea-Rodriguez, E; Moretti, P; Ahuja, S K

    2011-12-01

    Chemokines are chemotactic cytokines that regulate cell migration and are thought to play an important role in a broad range of inflammatory diseases. The availability of chemokine receptor blockers makes them an important therapeutic target. In vitro, chemokines are shown to modulate neurotransmission. However, it is not very clear if chemokines play a role in behavior and cognition. Here we evaluated the role of CC chemokine receptor 5 (CCR5) in various behavioral tasks in mice using Wt (Ccr5⁺/⁺) and Ccr5-null (Ccr5⁻/⁻)mice. Ccr5⁻/⁻ mice showed enhanced social recognition. Administration of CC chemokine ligand 3 (CCL3), one of the CCR5-ligands, impaired social recognition. Since the social recognition task is dependent on the sense of olfaction, we tested olfactory recognition for social and non-social scents in these mice. Ccr5⁻/⁻ mice had enhanced olfactory recognition for both these scents indicating that enhanced performance in social recognition task could be due to enhanced olfactory recognition in these mice. Spatial memory and aversive memory were comparable in Wt and Ccr5⁻/⁻ mice. Collectively, these results suggest that chemokines/chemokine receptors might play an important role in olfactory recognition tasks in mice and to our knowledge represents the first direct demonstration of an in vivo role of CCR5 in modulating social behavior in mice. These studies are important as CCR5 blockers are undergoing clinical trials and can potentially modulate behavior. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Deficient Behavioral Inhibition and Anomalous Selective Attention in a Community Sample of Adolescents with Psychopathic Traits and Low-Anxiety Traits

    ERIC Educational Resources Information Center

    Vitale, Jennifer E.; Newman, Joseph P.; Bates, John E.; Goodnight, Jackson; Dodge, Kenneth A.; Pettit, Gregory S.

    2005-01-01

    Socialization is the important process by which individuals learn and then effectively apply the rules of appropriate societal behavior. Response modulation is a psychobiological process theorized to aid in socialization by allowing individuals to utilize contextual information to modify ongoing behavior appropriately. Using Hare's (1991)…

  5. Dynamic changes in extracellular release of GABA and glutamate in the lateral septum during social play behavior in juvenile rats: Implications for sex-specific regulation of social play behavior.

    PubMed

    Bredewold, R; Schiavo, J K; van der Hart, M; Verreij, M; Veenema, A H

    2015-10-29

    Social play is a motivated and rewarding behavior that is displayed by nearly all mammals and peaks in the juvenile period. Moreover, social play is essential for the development of social skills and is impaired in social disorders like autism. We recently showed that the lateral septum (LS) is involved in the regulation of social play behavior in juvenile male and female rats. The LS is largely modulated by GABA and glutamate neurotransmission, but their role in social play behavior is unknown. Here, we determined whether social play behavior is associated with changes in the extracellular release of GABA and glutamate in the LS and to what extent such changes modulate social play behavior in male and female juvenile rats. Using intracerebral microdialysis in freely behaving rats, we found no sex difference in extracellular GABA concentrations, but extracellular glutamate concentrations are higher in males than in females under baseline conditions and during social play. This resulted in a higher glutamate/GABA concentration ratio in males vs. females and thus, an excitatory predominance in the LS of males. Furthermore, social play behavior in both sexes is associated with significant increases in extracellular release of GABA and glutamate in the LS. Pharmacological blockade of GABA-A receptors in the LS with bicuculline (100 ng/0.5 μl, 250 ng/0.5 μl) dose-dependently decreased the duration of social play behavior in both sexes. In contrast, pharmacological blockade of ionotropic glutamate receptors (NMDA and AMPA/kainate receptors) in the LS with AP-5+CNQX (2mM+0.4mM/0.5 μl, 30 mM+3mM/0.5 μl) dose-dependently decreased the duration of social play behavior in females, but did not alter social play behavior in males. Together, these data suggest a role for GABA neurotransmission in the LS in the regulation of juvenile social play behavior in both sexes, while glutamate neurotransmission in the LS is involved in the sex-specific regulation of juvenile social play behavior. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Vasotocinergic control of agonistic behavior told by Neotropical fishes.

    PubMed

    Silva, Ana C; Pandolfi, Matías

    2018-04-24

    The hypothalamic neuropeptides of the vasopressin-oxytocin family (and their homologs for non-mammalian species) are key modulators of the Social Brain Network, acting via specific receptors reported in all the nuclei of this network. Different conclusive examples have proven the context-dependency actions of hypothalamic nonapeptides on social behavior in several vertebrate taxa. Teleost fishes provide endless possibilities of experimental model systems to explore the underlying mechanisms of nonapeptide actions on social behavior given that they are the most diverse group of vertebrates. Although it has been difficult to identify commonalities of nonapeptide actions across species, indisputable evidence in many teleost species have demonstrated a clear role of vasotocin in the modulation of aggressive and sexual behaviors. Though Neotropical South American fish contribute an important percentage of teleost diversity, most native species remain unexplored as model systems for the study of the neuroendocrine bases of social behavior. In this review, we will revise recent data on the two model systems of Neotropical fish, South American cichlids and weakly electric fish that have contributed to this issue. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Vasopressin Proves Es-sense-tial: Vasopressin and the Modulation of Sensory Processing in Mammals

    PubMed Central

    Bester-Meredith, Janet K.; Fancher, Alexandria P.; Mammarella, Grace E.

    2015-01-01

    As mammals develop, they encounter increasing social complexity in the surrounding world. In order to survive, mammals must show appropriate behaviors toward their mates, offspring, and same-sex conspecifics. Although the behavioral effects of the neuropeptide arginine vasopressin (AVP) have been studied in a variety of social contexts, the effects of this neuropeptide on multimodal sensory processing have received less attention. AVP is widely distributed through sensory regions of the brain and has been demonstrated to modulate olfactory, auditory, gustatory, and visual processing. Here, we review the evidence linking AVP to the processing of social stimuli in sensory regions of the brain and explore how sensory processing can shape behavioral responses to these stimuli. In addition, we address the interplay between hormonal and neural AVP in regulating sensory processing of social cues. Because AVP pathways show plasticity during development, early life experiences may shape life-long processing of sensory information. Furthermore, disorders of social behavior such as autism and schizophrenia that have been linked with AVP also have been linked with dysfunctions in sensory processing. Together, these studies suggest that AVP’s diversity of effects on social behavior across a variety of mammalian species may result from the effects of this neuropeptide on sensory processing. PMID:25705203

  8. Results of the "Aprender a Convivir" Program for Development of Social Competence and Prevention of Antisocial Behavior in Four-Year-Old Children

    ERIC Educational Resources Information Center

    Benitez, Juan L.; Fernandez, Maria; Justicia, Fernando; Fernandez, Eduardo; Justicia, Ana

    2011-01-01

    The present study is the result of implementing an antisocial behavior prevention program in preschool education. The intervention goal was to prevent the emergence of antisocial behaviors through developing social competence in the participants. The program, called "Aprender a Convivir", is divided into four modules by topic: rules and…

  9. The effects of dopamine receptor 1 and 2 agonists and antagonists on sexual and aggressive behaviors in male green anoles.

    PubMed

    Smith, Alexandra N; Kabelik, David

    2017-01-01

    The propensity to exhibit social behaviors during interactions with same-sex and opposite-sex conspecifics is modulated by various neurotransmitters, including dopamine. Dopamine is a conserved neurotransmitter among vertebrates and dopaminergic receptors are also highly conserved among taxa. Activation of D1 and D2 dopamine receptor subtypes has been shown to modulate social behaviors, especially in mammalian and avian studies. However, the specific behavioral functions of these receptors vary across taxa. In reptiles there have been few studies examining the relationship between dopaminergic receptors and social behaviors. We therefore examined the effects of D1 and D2 agonists and antagonists on sexual and aggressive behaviors in the male green anole lizard (Anolis carolinensis). Treatment with high doses of both D1 and D2 agonists was found to impair both sexual and aggressive behaviors. However, the D1 agonist treatment was also found to impair motor function, suggesting that those effects were likely nonspecific. Lower doses of both agonists and antagonists failed to affect social behaviors. These findings provide some evidence for D2 receptor regulation of social behaviors, but in contrast with previous research, these effects are all inhibitory and no effects were found for manipulations of D1 receptors. A potential reason for the lack of more widespread effects on social behaviors using moderate or low drug doses is that systemic injection of drugs resulted in effects throughout the whole brain, thus affecting counteracting circuits which negated one another, making measurable changes in behavioral output difficult to detect. Future studies should administer drugs directly into brain regions known to regulate sexual and aggressive behaviors.

  10. Interacting Cannabinoid and Opioid Receptors in the Nucleus Accumbens Core Control Adolescent Social Play

    PubMed Central

    Manduca, Antonia; Lassalle, Olivier; Sepers, Marja; Campolongo, Patrizia; Cuomo, Vincenzo; Marsicano, Giovanni; Kieffer, Brigitte; Vanderschuren, Louk J. M. J; Trezza, Viviana; Manzoni, Olivier J. J.

    2016-01-01

    Social play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play. Therefore, we combined behavioral, pharmacological, electrophysiological, and genetic approaches to elucidate the role of the endocannabinoid 2-arachidonoylglycerol (2-AG) in social play, and how cannabinoid and opioid neurotransmission interact to control social behavior in adolescent rodents. Systemic administration of the 2-AG hydrolysis inhibitor JZL184 or the opioid receptor agonist morphine increased social play behavior in adolescent rats. These effects were blocked by systemic pretreatment with either CB1 cannabinoid receptor (CB1R) or mu-opioid receptor (MOR) antagonists. The social play-enhancing effects of systemic morphine or JZL184 treatment were also prevented by direct infusion of the CB1R antagonist SR141716 and the MOR antagonist naloxone into the nucleus accumbens core (NAcC). Searching for synaptic correlates of these effects in adolescent NAcC excitatory synapses, we observed that CB1R antagonism blocked the effect of the MOR agonist DAMGO and, conversely, that naloxone reduced the effect of a cannabinoid agonist. These results were recapitulated in mice, and completely abolished in CB1R and MOR knockout mice, suggesting that the functional interaction between CB1R and MOR in the NAcC in the modulation of social behavior is widespread in rodents. The data shed new light on the mechanism by which endocannabinoid lipids and opioid peptides interact to orchestrate rodent socioemotional behaviors. PMID:27899885

  11. Oxytocin And Vasopressin Modulation Of The Neural Correlates Of Motivation And Emotion: Results From Functional MRI Studies In Awake Rats

    PubMed Central

    Febo, Marcelo; Ferris, Craig F.

    2014-01-01

    Oxytocin and vasopressin modulate a range of species typical behavioral functions that include social recognition, maternal-infant attachment, and modulation of memory, offensive aggression, defensive fear reactions, and reward seeking. We have employed novel functional magnetic resonance mapping techniques in awake rats to explore the roles of these neuropeptides in the maternal and non-maternal brain. Results from the functional neuroimaging studies that are summarized here have directly and indirectly confirmed and supported previous findings. Oxytocin is released within the lactating rat brain during suckling stimulation and activates specific subcortical networks in the maternal brain. Both vasopressin and oxytocin modulate brain regions involved unconditioned fear, processing of social stimuli and the expression of agonistic behaviors. Across studies there are relatively consistent brain networks associated with internal motivational drives and emotional states that are modulated by oxytocin and vasopressin. PMID:24486356

  12. Differential Responses of Brain, Gonad and Muscle Steroid Levels to Changes in Social Status and Sex in a Sequential and Bidirectional Hermaphroditic Fish

    PubMed Central

    Lorenzi, Varenka; Earley, Ryan L.; Grober, Matthew S.

    2012-01-01

    Sex steroids can both modulate and be modulated by behavior, and their actions are mediated by complex interactions among multiple hormone sources and targets. While gonadal steroids delivered via circulation can affect behavior, changes in local brain steroid synthesis also can modulate behavior. The relative steroid load across different tissues and the association of these levels with rates of behavior have not been well studied. The bluebanded goby (Lythrypnus dalli) is a sex changing fish in which social status determines sexual phenotype. We examined changes in steroid levels in brain, gonad and body muscle at either 24 hours or 6 days after social induction of protogynous sex change, and from individuals in stable social groups not undergoing sex change. For each tissue, we measured levels of estradiol (E2), testosterone (T) and 11-ketotestosterone (KT). Females had more T than males in the gonads, and more E2 in all tissues but there was no sex difference in KT. For both sexes, E2 was higher in the gonad than in other tissues while androgens were higher in the brain. During sex change, brain T levels dropped while brain KT increased, and brain E2 levels did not change. We found a positive relationship between androgens and aggression in the most dominant females but only when the male was removed from the social group. The results demonstrate that steroid levels are responsive to changes in the social environment, and that their concentrations vary in different tissues. Also, we suggest that rapid changes in brain androgen levels might be important in inducing behavioral and/or morphological changes associated with protogynous sex change. PMID:23251444

  13. Personality correlates (BAS-BIS), self-perception of social ranking, and cortical (alpha frequency band) modulation in peer-group comparison.

    PubMed

    Balconi, Michela; Pagani, Silvia

    2014-06-22

    The perception and interpretation of social hierarchies are a key part of our social life. In the present research we considered the activation of cortical areas, mainly the prefrontal cortex, related to social ranking perception in conjunction with some personality components (BAS - Behavioral Activation System - and BIS - Behavioral Inhibition System). In two experiments we manipulated the perceived superior/inferior status during a competitive cognitive task. Indeed, we created an explicit and strongly reinforced social hierarchy based on incidental rating in an attentional task. Specifically, a peer group comparison was undertaken and improved (Experiment 1) or decreased (Experiment 2) performance was artificially manipulated by the experimenter. For each experiment two groups were compared, based on a BAS and BIS dichotomy. Alpha band modulation in prefrontal cortex, behavioral measures (performance: error rate, ER; response times, RTs), and self-perceived ranking were considered. Repeated measures ANOVAs and regression analyses showed in Experiment 1 a significant improved cognitive performance (decreased ER and RTs) and higher self-perceived ranking in high-BAS participants. Moreover, their prefrontal activity was increased within the left side (alpha band decreasing). Conversely, in Experiment 2 a significant decreased cognitive performance (increased ER and RTs) and lower self-perceived ranking was observed in higher-BIS participants. Their prefrontal right activity was increased in comparison with higher BAS. The regression analyses confirmed the significant predictive role of alpha band modulation with respect of subjects' performance and self-perception of social ranking, differently for BAS/BIS components. The present results suggest that social status perception is directly modulated by cortical activity and personality correlates. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Social context differentially modulates activity of two interneuron populations in an avian basal ganglia nucleus

    PubMed Central

    2016-01-01

    Basal ganglia circuits are critical for the modulation of motor performance across behavioral states. In zebra finches, a cortical-basal ganglia circuit dedicated to singing is necessary for males to adjust their song performance and transition between spontaneous singing, when they are alone (“undirected” song), and a performance state, when they sing to a female (“female-directed” song). However, we know little about the role of different basal ganglia cell types in this behavioral transition or the degree to which behavioral context modulates the activity of different neuron classes. To investigate whether interneurons in the songbird basal ganglia encode information about behavioral state, I recorded from two interneuron types, fast-spiking interneurons (FSI) and external pallidal (GPe) neurons, in the songbird basal ganglia nucleus area X during both female-directed and undirected singing. Both cell types exhibited higher firing rates, more frequent bursting, and greater trial-by-trial variability in firing when male zebra finches produced undirected songs compared with when they produced female-directed songs. However, the magnitude and direction of changes to the firing rate, bursting, and variability of spiking between when birds sat silently and when they sang undirected and female-directed song varied between FSI and GPe neurons. These data indicate that social modulation of activity important for eliciting changes in behavioral state is present in multiple cell types within area X and suggests that social interactions may adjust circuit dynamics during singing at multiple points within the circuit. PMID:27628208

  15. Deliberate or unintended: Intentions modulate empathic responses to others' economic payoffs in social interactions.

    PubMed

    Ma, Qingguo; Meng, Liang; Shen, Qiang

    2017-12-01

    Previous studies examining empathy have revealed the neural substrates of how the physical pain of others is represented in the human brain. However, little is known about the empathic modulation of behavioral and neural responses to others' economic payoffs, especially in the social context. In the present study, we engaged participants in a revised Dictator Game as observers who observe the powerless players receiving varied offers proposed by the dominant players, establishing the link between empathy and fairness perception. Results showed that unfair division schemes elicited a more pronounced FRN than fair ones only if a human agent proposed the initial offer. In addition, observers sacrificed their own payments to adjust unfair proposals, especially when a human agent proposed the offer. Thus, results of the current study demonstrated that perceived intention modulates behavioral and neural responses to others' economic payoffs in social interactions.

  16. Activation of protein kinase A in the amygdala modulates anxiety-like behaviors in social defeat exposed mice.

    PubMed

    Yang, Liu; Shi, Li-Jun; Yu, Jin; Zhang, Yu-Qiu

    2016-01-08

    Social defeat (SD) stress induces social avoidance and anxiety-like phenotypes. Amygdala is recognized as an emotion-related brain region such as fear, aversion and anxiety. It is conceivable to hypothesize that activation of amygdala is involved in SD-dependent behavioral defects. SD model was established using C57BL/6J mice that were physically defeated by different CD-1 mice for 10 days. Stressed mice exhibited decreased social interaction level in social interaction test and significant anxiety-like behaviors in elevated plus maze and open field tests. Meanwhile, a higher phosphorylation of PKA and CREB with a mutually linear correlation, and increased Fos labeled cells in the basolateral amygdala (BLA) were observed. Activation of PKA in the BLA by 8-Br-cAMP, a PKA activitor, significantly upregulated pCREB and Fos expression. To address the role of PKA activation on SD stress-induced social avoidance and anxiety-like behaviors, 8-Br-cAMP or H-89, a PKA inhibitor, was continuously administered into the bilateral BLA by a micro-osmotic pump system during the 10-day SD period. Neither H-89 nor 8-Br-cAMP affected the social behavior. Differently, 8-Br-cAMP significantly relieved anxiety-like behaviors in both general and moderate SD protocols. H-89 per se did not have anxiogenic effect in naïve mice, but aggravated moderate SD stress-induced anxiety-like behaviors. The antidepressant clomipramine reduced SD-induced anxiety and up-regulated pPKA level in the BLA. These results suggest that SD-driven PKA activation in the basolateral amygdala is actually a compensatory rather than pathogenic response in the homeostasis, and modulating amygdaloid PKA may exhibit potency in the therapy of social derived disorders.

  17. Social Modulation of Learning in Rats

    ERIC Educational Resources Information Center

    Knapska, Ewelina; Mikosz, Marta; Werka, Tomasz; Maren, Stephen

    2010-01-01

    It is well known that emotions participate in the regulation of social behaviors and that the emotion displayed by a conspecific influences the behavior of other animals. In its simplest form, empathy can be characterized as the capacity to be affected by and/or share the emotional state of another. However, to date, relatively little is known…

  18. Promoting Interactions Between Humans and Robots Using Robotic Emotional Behavior.

    PubMed

    Ficocelli, Maurizio; Terao, Junichi; Nejat, Goldie

    2016-12-01

    The objective of a socially assistive robot is to create a close and effective interaction with a human user for the purpose of giving assistance. In particular, the social interaction, guidance, and support that a socially assistive robot can provide a person can be very beneficial to patient-centered care. However, there are a number of research issues that need to be addressed in order to design such robots. This paper focuses on developing effective emotion-based assistive behavior for a socially assistive robot intended for natural human-robot interaction (HRI) scenarios with explicit social and assistive task functionalities. In particular, in this paper, a unique emotional behavior module is presented and implemented in a learning-based control architecture for assistive HRI. The module is utilized to determine the appropriate emotions of the robot to display, as motivated by the well-being of the person, during assistive task-driven interactions in order to elicit suitable actions from users to accomplish a given person-centered assistive task. A novel online updating technique is used in order to allow the emotional model to adapt to new people and scenarios. Experiments presented show the effectiveness of utilizing robotic emotional assistive behavior during HRI scenarios.

  19. A gut feeling: Microbiome-brain-immune interactions modulate social and affective behaviors.

    PubMed

    Sylvia, Kristyn E; Demas, Gregory E

    2018-03-01

    The expression of a wide range of social and affective behaviors, including aggression and investigation, as well as anxiety- and depressive-like behaviors, involves interactions among many different physiological systems, including the neuroendocrine and immune systems. Recent work suggests that the gut microbiome may also play a critical role in modulating behavior and likely functions as an important integrator across physiological systems. Microbes within the gut may communicate with the brain via both neural and humoral pathways, providing numerous avenues of research in the area of the gut-brain axis. We are now just beginning to understand the intricate relationships among the brain, microbiome, and immune system and how they work in concert to influence behavior. The effects of different forms of experience (e.g., changes in diet, immune challenge, and psychological stress) on the brain, gut microbiome, and the immune system have often been studied independently. Though because these systems do not work in isolation, it is essential to shift our focus to the connections among them as we move forward in our investigations of the gut-brain axis, the shaping of behavioral phenotypes, and the possible clinical implications of these interactions. This review summarizes the recent progress the field has made in understanding the important role the gut microbiome plays in the modulation of social and affective behaviors, as well as some of the intricate mechanisms by which the microbiome may be communicating with the brain and immune system. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Endocannabinoids in amygdala and nucleus accumbens mediate social play reward in adolescent rats.

    PubMed

    Trezza, Viviana; Damsteegt, Ruth; Manduca, Antonia; Petrosino, Stefania; Van Kerkhof, Linda W M; Pasterkamp, R Jeroen; Zhou, Yeping; Campolongo, Patrizia; Cuomo, Vincenzo; Di Marzo, Vincenzo; Vanderschuren, Louk J M J

    2012-10-24

    The brain endocannabinoid system plays a crucial role in emotional processes. We have previously identified an important role for endocannabinoids in social play behavior, a highly rewarding form of social interaction in adolescent rats. Here, we tested the hypothesis that endocannabinoid modulation of social play behavior occurs in brain regions implicated in emotion and motivation. Social play increased levels of the endocannabinoid anandamide in the amygdala and nucleus accumbens (NAc), but not in prefrontal cortex or hippocampus of 4- to 5-week-old male Wistar rats. Furthermore, social play increased phosphorylation of CB1 cannabinoid receptors in the amygdala. Systemic administration of the anandamide hydrolysis inhibitor URB597 increased social play behavior, and augmented the associated elevation in anandamide levels in the amygdala, but not the NAc. Infusion of URB597 into the basolateral amygdala (BLA) increased social play behavior, and blockade of BLA CB1 cannabinoid receptors with the antagonist/inverse agonist SR141716A prevented the play-enhancing effects of systemic administration of URB597. Infusion of URB597 into the NAc also increased social play, but blockade of NAc CB1 cannabinoid receptors did not antagonize the play-enhancing effects of systemic URB597 treatment. Last, SR141716A did not affect social play after infusion into the core and shell subregions of the NAc, while it reduced social play when infused into the BLA. These data show that increased anandamide signaling in the amygdala and NAc augments social play, and identify the BLA as a prominent site of action for endocannabinoids to modulate the rewarding properties of social interactions in adolescent rats.

  1. Effects of tryptophan depletion on the performance of an iterated Prisoner's Dilemma game in healthy adults.

    PubMed

    Wood, Richard M; Rilling, James K; Sanfey, Alan G; Bhagwagar, Zubin; Rogers, Robert D

    2006-05-01

    Adaptive social behavior often necessitates choosing to cooperate with others for long-term gains at the expense of noncooperative behaviors giving larger immediate gains. Although little is know about the neural substrates that support cooperative over noncooperative behaviors, recent research has shown that mutually cooperative behavior in the context of a mixed-motive game, the Prisoner's Dilemma (PD), is associated with increased neural activity within reinforcement circuitry. Other research attests to a role for serotonin in the modulation of social behavior and in reward processing. In this study, we used a within-subject, crossover, double-blind design to investigate performance of an iterated, sequential PD game for monetary reward by healthy human adult participants following ingestion of an amino-acid drink that either did (T+) or did not (T-) contain l-tryptophan. Tryptophan depletion produced significant reductions in the level of cooperation shown by participants when playing the game on the first, but not the second, study days. This effect was accompanied by a significantly diminished probability of cooperative responding given previous mutually cooperative behavior. These data suggest that serotonin plays a significant role in the acquisition of socially cooperative behavior in human adult participants, and suggest novel hypotheses concerning the serotonergic modulation of reward information in socially cooperative behavior in both health and psychiatric illness.

  2. Involvement of estrogen receptor alpha, beta and oxytocin in social discrimination: A detailed behavioral analysis with knockout female mice.

    PubMed

    Choleris, E; Ogawa, S; Kavaliers, M; Gustafsson, J-A; Korach, K S; Muglia, L J; Pfaff, D W

    2006-10-01

    Social recognition, processing, and retaining information about conspecific individuals is crucial for the development of normal social relationships. The neuropeptide oxytocin (OT) is necessary for social recognition in male and female mice, with its effects being modulated by estrogens in females. In previous studies, mice whose genes for the estrogen receptor-alpha (alpha-ERKO) and estrogen receptor-beta (beta-ERKO) as well as OTKO were knocked out failed to habituate to a repeatedly presented conspecific and to dishabituate when the familiar mouse is replaced by a novel animal (Choleris et al. 2003, Proc Natl Acad Sci USA 100, 6192-6197). However, a binary social discrimination assay, where animals are given a simultaneous choice between a familiar and a previously unknown individual, offers a more direct test of social recognition. Here, we used alpha-ERKO, beta-ERKO, and OTKO female mice in the binary social discrimination paradigm. Differently from their wild-type controls, when given a choice, the KO mice showed either reduced (beta-ERKO) or completely impaired (OTKO and alpha-ERKO) social discrimination. Detailed behavioral analyses indicate that all of the KO mice have reduced anxiety-related stretched approaches to the social stimulus with no overall impairment in horizontal and vertical activity, non-social investigation, and various other behaviors such as, self-grooming, digging, and inactivity. Therefore, the OT, ER-alpha, and ER-beta genes are necessary, to different degrees, for social discrimination and, thus, for the modulation of social behavior (e.g. aggression, affiliation).

  3. Divergent Effects of Anandamide Transporter Inhibitors with Different Target Selectivity on Social Play Behavior in Adolescent Rats

    PubMed Central

    Trezza, Viviana; Vanderschuren, Louk J. M. J.

    2009-01-01

    The endocannabinoid system plays an important role in the modulation of affect, motivation, and emotion. Social play behavior is a natural reinforcer in adolescent rats, and we have recently shown that interacting endocannabinoid, opioid, and dopamine systems modulate social play. In the present study, we tested the hypothesis that, in contrast to administration of exogenous cannabinoid agonists, increasing local endocannabinoid signaling through anandamide transporter inhibition enhances social play. To this aim, we tested the effects of two anandamide transporter inhibitors with different target selectivity on social play behavior in adolescent rats. Interestingly, we found that the prototypical anandamide transporter inhibitor N-(4-hydroxyphenyl)-arachidonamide (AM404) reduced social play, whereas its more selective analog N-arachidonoyl-(2-methyl-4-hydroxyphenyl)amine (VDM11) enhanced it. The effects of AM404 were not mediated through its known pharmacological targets, since they were not blocked by the CB1 cannabinoid receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride (SR141716A), the CB2 cannabinoid receptor antagonist N-(1,3,3-trimethylbicyclo(2.2.1)heptan-2-yl)-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)pyrazole-3-carboxamide (SR144528), or by the transient receptor potential vanilloid 1 receptor antagonist capsazepine. In contrast, the increase in social play induced by VDM11 was dependent on cannabinoid, opioid, and dopaminergic neurotransmission, since it was blocked by the CB1 cannabinoid receptor antagonist SR141716A, the opioid receptor antagonist naloxone, and the dopamine receptor antagonist α-flupenthixol. These findings support the notion that anandamide plays an important role in the modulation of social interaction in adolescent rats, and they suggest that selective anandamide transporter inhibitors might be useful for the treatment of social dysfunctions. Furthermore, these results suggest that off-target effects may be responsible for some of the conflicting effects of anandamide transporter inhibitors on behavior. PMID:18948500

  4. Amygdala inputs to the ventral hippocampus bidirectionally modulate social behavior.

    PubMed

    Felix-Ortiz, Ada C; Tye, Kay M

    2014-01-08

    Impairments in social interaction represent a core symptom of a number of psychiatric disease states, including autism, schizophrenia, depression, and anxiety. Although the amygdala has long been linked to social interaction, little is known about the functional role of connections between the amygdala and downstream regions in noncompetitive social behavior. In the present study, we used optogenetic and pharmacological tools in mice to study the role of projections from the basolateral complex of the amygdala (BLA) to the ventral hippocampus (vHPC) in two social interaction tests: the resident-juvenile-intruder home-cage test and the three chamber sociability test. BLA pyramidal neurons were transduced using adeno-associated viral vectors (AAV5) carrying either channelrhodopsin-2 (ChR2) or halorhodopsin (NpHR), under the control of the CaMKIIα promoter to allow for optical excitation or inhibition of amygdala axon terminals. Optical fibers were chronically implanted to selectively manipulate BLA terminals in the vHPC. NpHR-mediated inhibition of BLA-vHPC projections significantly increased social interaction in the resident-juvenile intruder home-cage test as shown by increased intruder exploration. In contrast, ChR2-mediated activation of BLA-vHPC projections significantly reduced social behaviors as shown in the resident-juvenile intruder procedure as seen by decreased time exploring the intruder and in the three chamber sociability test by decreased time spent in the social zone. These results indicate that BLA inputs to the vHPC are capable of modulating social behaviors in a bidirectional manner.

  5. Genetic and epigenetic regulatory mechanisms of the oxytocin receptor gene (OXTR) and the (clinical) implications for social behavior.

    PubMed

    Tops, Sanne; Habel, Ute; Radke, Sina

    2018-03-12

    Oxytocin and the oxytocin receptor (OXTR) play an important role in a large variety of social behaviors. The oxytocinergic system interacts with environmental cues and is highly dependent on interindividual factors. Deficits in this system have been linked to mental disorders associated with social impairments, such as autism spectrum disorder (ASD). This review focuses on the modulation of social behavior by alterations in two domains of the oxytocinergic system. We discuss genetic and epigenetic regulatory mechanisms and alterations in these mechanisms that were found to have clinical implications for ASD. We propose possible explanations how these alterations affect the biological pathways underlying the aberrant social behavior and point out avenues for future research. We advocate the need for integration studies that combine multiple measures covering a broad range of social behaviors and link these to genetic and epigenetic profiles. Copyright © 2018. Published by Elsevier Inc.

  6. Natural neural projection dynamics underlying social behavior

    PubMed Central

    Gunaydin, Lisa A.; Grosenick, Logan; Finkelstein, Joel C.; Kauvar, Isaac V.; Fenno, Lief E.; Adhikari, Avishek; Lammel, Stephan; Mirzabekov, Julie J.; Airan, Raag D.; Zalocusky, Kelly A.; Tye, Kay M.; Anikeeva, Polina; Malenka, Robert C.; Deisseroth, Karl

    2014-01-01

    Social interaction is a complex behavior essential for many species, and is impaired in major neuropsychiatric disorders. Pharmacological studies have implicated certain neurotransmitter systems in social behavior, but circuit-level understanding of endogenous neural activity during social interaction is lacking. We therefore developed and applied a new methodology, termed fiber photometry, to optically record natural neural activity in genetically- and connectivity-defined projections to elucidate the real-time role of specified pathways in mammalian behavior. Fiber photometry revealed that activity dynamics of a ventral tegmental area (VTA)-to-nucleus accumbens (NAc) projection could encode and predict key features of social but not novel-object interaction. Consistent with this observation, optogenetic control of cells specifically contributing to this projection was sufficient to modulate social behavior, which was mediated by type-1 dopamine receptor signaling downstream in the NAc. Direct observation of projection-specific activity in this way captures a fundamental and previously inaccessible dimension of circuit dynamics. PMID:24949967

  7. The Unexpected Effects of Beneficial and Adverse Social Experiences during Adolescence on Anxiety and Aggression and Their Modulation by Genotype

    PubMed Central

    Meyer, Neele; Richter, S. Helene; Schreiber, Rebecca S.; Kloke, Vanessa; Kaiser, Sylvia; Lesch, Klaus-Peter; Sachser, Norbert

    2016-01-01

    Anxiety and aggression are part of the behavioral repertoire of humans and animals. However, in their exaggerated form both can become maladaptive and result in psychiatric disorders. On the one hand, genetic predisposition has been shown to play a crucial modulatory role in anxiety and aggression. On the other hand, social experiences have been implicated in the modulation of these traits. However, so far, mainly experiences in early life phases have been considered crucial for shaping anxiety-like and aggressive behavior, while the phase of adolescence has largely been neglected. Therefore, the aim of the present study was to elucidate how levels of anxiety-like and aggressive behavior are shaped by social experiences during adolescence and serotonin transporter (5-HTT) genotype. For this purpose, male mice of a 5-HTT knockout mouse model including all three genotypes (wildtype, heterozygous and homozygous 5-HTT knockout mice) were either exposed to an adverse social situation or a beneficial social environment during adolescence. This was accomplished in a custom-made cage system where mice experiencing the adverse environment were repeatedly introduced to the territory of a dominant opponent but had the possibility to escape to a refuge cage. Mice encountering beneficial social conditions had free access to a female mating partner. Afterwards, anxiety-like and aggressive behavior was assessed in a battery of tests. Surprisingly, unfavorable conditions during adolescence led to a decrease in anxiety-like behavior and an increase in exploratory locomotion. Additionally, aggressive behavior was augmented in animals that experienced social adversity. Concerning genotype, homozygous 5-HTT knockout mice were more anxious and less aggressive than heterozygous 5-HTT knockout and wildtype mice. In summary, adolescence is clearly an important phase in which anxiety-like and aggressive behavior can be shaped. Furthermore, it seems that having to cope with challenge during adolescence instead of experiencing throughout beneficial social conditions leads to reduced levels of anxiety-like behavior. PMID:27303275

  8. The Social Salience Hypothesis of Oxytocin.

    PubMed

    Shamay-Tsoory, Simone G; Abu-Akel, Ahmad

    2016-02-01

    Oxytocin is a nonapeptide that also serves as a neuromodulator in the human central nervous system. Over the last decade, a sizeable body of literature has examined its effects on social behavior in humans. These studies show that oxytocin modulates various aspects of social behaviors such as empathy, trust, in-group preference, and memory of socially relevant cues. Several theoretical formulations have attempted to explain the effects of oxytocin. The prosocial account argues that oxytocin mainly enhances affiliative prosocial behaviors; the fear/stress theory suggests that oxytocin affects social performance by attenuating stress; and the in-/out-group approach proposes that oxytocin regulates cooperation and conflict among humans in the context of intergroup relations. Nonetheless, accumulating evidence reveals that the effects of oxytocin are dependent on a variety of contextual aspects and the individual's characteristics and can induce antisocial effects including aggression and envy. In an attempt to reconcile these accounts, we suggest a theoretical framework that focuses on the overarching role of oxytocin in regulating the salience of social cues through its interaction with the dopaminergic system. Crucially, the salience effect modulates attention orienting responses to external contextual social cues (e.g., competitive vs. cooperative environment) but is dependent on baseline individual differences such as gender, personality traits, and degree of psychopathology. This view could have important implications for the therapeutic applications of oxytocin in conditions characterized with aberrant social behavior. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. Endocannabinoids in amygdala and nucleus accumbens mediate social play reward in adolescent rats

    PubMed Central

    Trezza, Viviana; Damsteegt, Ruth; Manduca, Antonia; Petrosino, Stefania; Van Kerkhof, Linda W.M.; Pasterkamp, R. Jeroen; Zhou, Yeping; Campolongo, Patrizia; Cuomo, Vincenzo; Di Marzo, Vincenzo; Vanderschuren, Louk J.M.J.

    2012-01-01

    The brain endocannabinoid system plays a crucial role in emotional processes. We have previously identified an important role for endocannabinoids in social play behavior, a highly rewarding form of social interaction in adolescent rats. Here, we tested the hypothesis that endocannabinoid modulation of social play behavior occurs in brain regions implicated in emotion and motivation. Social play increased levels of the endocannabinoid anandamide in the amygdala and nucleus accumbens (NAc), but not in prefrontal cortex or hippocampus of 4–5 week old male Wistar rats. Furthermore, social play increased phosphorylation of CB1 cannabinoid receptors in the amygdala. Systemic administration of the anandamide hydrolysis inhibitor URB597 increased social play behavior, and augmented the associated elevation in anandamide levels in the amygdala, but not the NAc. Infusion of URB597 into the basolateral amygdala (BLA) increased social play behavior, and blockade of BLA CB1 cannabinoid receptors with the antagonist/inverse agonist SR141716A prevented the play-enhancing effects of systemic administration of URB597. Infusion of URB597 into the NAc also increased social play, but blockade of NAc CB1 cannabinoid receptors did not antagonize the play-enhancing effects of systemic URB597 treatment. Last, SR141716A did not affect social play after infusion into the core and shell subregions of the NAc, while it reduced social play when infused into the BLA. These data show that increased anandamide signalling in the amygdala and NAc augments social play, and identify the BLA as a prominent site of action for endocannabinoids to modulate the rewarding properties of social interactions in adolescent rats. PMID:23100412

  10. Early life experience alters behavior during social defeat: focus on serotonergic systems.

    PubMed

    Gardner, K L; Thrivikraman, K V; Lightman, S L; Plotsky, P M; Lowry, C A

    2005-01-01

    Early life experience can have prolonged effects on neuroendocrine, autonomic, and behavioral responses to stress. The objective of this study was to investigate the effects of early life experience on behavior during social defeat, as well as on associated functional cellular responses in serotonergic and non-serotonergic neurons within the dorsal raphe nucleus, a structure which plays an important role in modulation of stress-related physiology and behavior. Male Long Evans rat pups were exposed to either normal animal facility rearing or 15 min or 180 min of maternal separation from postnatal days 2-14. As adults, these rats were exposed to a social defeat protocol. Differences in behavior were seen among the early life treatment groups during social defeat; rats exposed to 180 min of maternal separation from postnatal days 2-14 displayed more passive-submissive behaviors and less proactive coping behaviors. Analysis of the distribution of tryptophan hydroxylase and c-Fos-like immunoreactivity in control rats exposed to a novel cage and rats exposed to social defeat revealed that, independent of the early life experience, rats exposed to social defeat showed an increase in the number of c-Fos-like immunoreactive nuclei in serotonergic neurons in the middle and caudal parts of the dorsal dorsal raphe nucleus and caudal part of the ventral dorsal raphe nucleus, regions known to contain serotonergic neurons projecting to central autonomic and emotional motor control systems. This is the first study to show that the dorsomedial part of the mid-rostrocaudal dorsal raphe nucleus is engaged by a naturalistic stressor and supports the hypothesis that early life experience alters behavioral coping strategies during social conflict; furthermore, this study is consistent with the hypothesis that topographically organized subpopulations of serotonergic neurons principally within the mid-rostrocaudal and caudal part of the dorsal dorsal raphe nucleus modulate stress-related physiological and behavioral responses.

  11. Attention biases to threat and behavioral inhibition in early childhood shape adolescent social withdrawal.

    PubMed

    Pérez-Edgar, Koraly; Bar-Haim, Yair; McDermott, Jennifer Martin; Chronis-Tuscano, Andrea; Pine, Daniel S; Fox, Nathan A

    2010-06-01

    Behavioral inhibition (BI) is a temperament characterized in young children by a heightened sensitivity to novelty, social withdrawal, and anxious behaviors. For many children, these social difficulties dissipate over time. For others, patterns of social withdrawal continue into adolescence. Over time, attention biases to threat may influence the stability of BI and its association with social withdrawal, ultimately modulating the risk for anxiety disorders in BI children. However, we know relatively little about the cognitive processes that accompany BI and shape later socio-emotional functioning. We examined the relations among BI in childhood, attention biases to threat in adolescence, and adolescent social withdrawal in a longitudinal study (N = 126, Mean age = 15 years). As has been reported in anxious adults, adolescents who were behaviorally inhibited as toddlers and young children showed heightened attention bias to threat. In addition, attention bias to threat moderated the relation between childhood BI and adolescent social withdrawal.

  12. A Distributed Network for Social Cognition Enriched for Oxytocin Receptors

    PubMed Central

    Mitre, Mariela; Marlin, Bianca J.; Schiavo, Jennifer K.; Morina, Egzona; Norden, Samantha E.; Hackett, Troy A.; Aoki, Chiye J.

    2016-01-01

    Oxytocin is a neuropeptide important for social behaviors such as maternal care and parent–infant bonding. It is believed that oxytocin receptor signaling in the brain is critical for these behaviors, but it is unknown precisely when and where oxytocin receptors are expressed or which neural circuits are directly sensitive to oxytocin. To overcome this challenge, we generated specific antibodies to the mouse oxytocin receptor and examined receptor expression throughout the brain. We identified a distributed network of female mouse brain regions for maternal behaviors that are especially enriched for oxytocin receptors, including the piriform cortex, the left auditory cortex, and CA2 of the hippocampus. Electron microscopic analysis of the cerebral cortex revealed that oxytocin receptors were mainly expressed at synapses, as well as on axons and glial processes. Functionally, oxytocin transiently reduced synaptic inhibition in multiple brain regions and enabled long-term synaptic plasticity in the auditory cortex. Thus modulation of inhibition may be a general mechanism by which oxytocin can act throughout the brain to regulate parental behaviors and social cognition. SIGNIFICANCE STATEMENT Oxytocin is an important peptide hormone involved in maternal behavior and social cognition, but it has been unclear what elements of neural circuits express oxytocin receptors due to the paucity of suitable antibodies. Here, we developed new antibodies to the mouse oxytocin receptor. Oxytocin receptors were found in discrete brain regions and at cortical synapses for modulating excitatory-inhibitory balance and plasticity. These antibodies should be useful for future studies of oxytocin and social behavior. PMID:26911697

  13. Developmental Perspectives on Oxytocin and Vasopressin

    PubMed Central

    Hammock, Elizabeth A D

    2015-01-01

    The related neuropeptides oxytocin and vasopressin are involved in species-typical behavior, including social recognition behavior, maternal behavior, social bonding, communication, and aggression. A wealth of evidence from animal models demonstrates significant modulation of adult social behavior by both of these neuropeptides and their receptors. Over the last decade, there has been a flood of studies in humans also implicating a role for these neuropeptides in human social behavior. Despite popular assumptions that oxytocin is a molecule of social bonding in the infant brain, less mechanistic research emphasis has been placed on the potential role of these neuropeptides in the developmental emergence of the neural substrates of behavior. This review summarizes what is known and assumed about the developmental influence of these neuropeptides and outlines the important unanswered questions and testable hypotheses. There is tremendous translational need to understand the functions of these neuropeptides in mammalian experience-dependent development of the social brain. The activity of oxytocin and vasopressin during development should inform our understanding of individual, sex, and species differences in social behavior later in life. PMID:24863032

  14. Oxytocin reversed MK-801-induced social interaction and aggression deficits in zebrafish.

    PubMed

    Zimmermann, Fernanda Francine; Gaspary, Karina Vidarte; Siebel, Anna Maria; Bonan, Carla Denise

    2016-09-15

    Changes in social behavior occur in several neuropsychiatric disorders such as schizophrenia and autism. The interaction between individuals is an essential aspect and an adaptive response of several species, among them the zebrafish. Oxytocin is a neuroendocrine hormone associated with social behavior. The aim of the present study was to investigate the effects of MK-801, a non-competitive antagonist of glutamate NMDA receptors, on social interaction and aggression in zebrafish. We also examined the modulation of those effects by oxytocin, the oxytocin receptor agonist carbetocin and the oxytocin receptor antagonist L-368,899. Our results showed that MK-801 induced a decrease in the time spent in the segment closest to the conspecific school and in the time spent in the segment nearest to the mirror image, suggesting an effect on social behavior. The treatment with oxytocin after the exposure to MK-801 was able to reestablish the time spent in the segment closest to the conspecific school, as well as the time spent in the segment nearest to the mirror image. In addition, in support of the role of the oxytocin pathway in modulating those responses, we showed that the oxytocin receptor agonist carbetocin reestablished the social and aggressive behavioral deficits induced by MK-801. However, the oxytocin receptor antagonist L-368,899 was not able to reverse the behavioral changes induced by MK-801. This study supports the critical role for NMDA receptors and the oxytocinergic system in the regulation of social behavior and aggression which may be relevant for the mechanisms associated to autism and schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Abnormal Social Reward Responses in Anorexia Nervosa: An fMRI Study.

    PubMed

    Via, Esther; Soriano-Mas, Carles; Sánchez, Isabel; Forcano, Laura; Harrison, Ben J; Davey, Christopher G; Pujol, Jesús; Martínez-Zalacaín, Ignacio; Menchón, José M; Fernández-Aranda, Fernando; Cardoner, Narcís

    2015-01-01

    Patients with anorexia nervosa (AN) display impaired social interactions, implicated in the development and prognosis of the disorder. Importantly, social behavior is modulated by reward-based processes, and dysfunctional at-brain-level reward responses have been involved in AN neurobiological models. However, no prior evidence exists of whether these neural alterations would be equally present in social contexts. In this study, we conducted a cross-sectional social-judgment functional magnetic resonance imaging (fMRI) study of 20 restrictive-subtype AN patients and 20 matched healthy controls. Brain activity during acceptance and rejection was investigated and correlated with severity measures (Eating Disorder Inventory -EDI-2) and with personality traits of interest known to modulate social behavior (The Sensitivity to Punishment and Sensitivity to Reward Questionnaire). Patients showed hypoactivation of the dorsomedial prefrontal cortex (DMPFC) during social acceptance and hyperactivation of visual areas during social rejection. Ventral striatum activation during rejection was positively correlated in patients with clinical severity scores. During acceptance, activation of the frontal opercula-anterior insula and dorsomedial/dorsolateral prefrontal cortices was differentially associated with reward sensitivity between groups. These results suggest an abnormal motivational drive for social stimuli, and involve overlapping social cognition and reward systems leading to a disruption of adaptive responses in the processing of social reward. The specific association of reward-related regions with clinical and psychometric measures suggests the putative involvement of reward structures in the maintenance of pathological behaviors in AN.

  16. SHANK3 controls maturation of social reward circuits in the VTA

    PubMed Central

    Glangetas, Christelle; Prévost-Solié, Clément; Pucci, Luca; Viguié, Joanna; Bezzi, Paola; O’Connor, Eoin C.; Georges, François; Lüscher, Christian; Bellone, Camilla

    2016-01-01

    Summary Haploinsufficiency of SHANK3, encoding the synapse scaffolding protein SHANK3, leads to a highly penetrant form of Autism Spectrum Disorder (ASD). How SHANK3 insufficiency affects specific neural circuits and this is related to specific ASD symptoms remains elusive. Here we used shRNA to model Shank3 insufficiency in the Ventral Tegmental Area (VTA) of mice. We identified dopamine (DA) and GABA cell-type specific changes in excitatory synapse transmission that converge to reduce DA neuron activity and generate behavioral deficits, including impaired social preference. Administration of a positive allosteric modulator of the type 1 metabotropic glutamate receptors (mGluR1) during the first postnatal week restored DA neuron excitatory synapse transmission and rescued the social preference defects, while optogenetic DA neuron stimulation was sufficient to enhance social preference. Collectively, these data reveal the contribution of impaired VTA function to social behaviors and identify mGluR1 modulation during postnatal development as a potential treatment strategy. PMID:27273769

  17. Infant Smiling during Social Interaction: Arousal Modulation or Activation Indicator?

    ERIC Educational Resources Information Center

    Ewy, Richard

    In a study of infant smiling, 20 mother-infant dyads were videotaped in normal face-to-face interaction when the infants were 9 and 14 weeks of age. Videotapes were used to determine which of two classes of smiling behavior models, either arousal modulation or activation indicator, was most supported by empirical data. Arousal modulation models…

  18. Brain and Social Networks: Fundamental Building Blocks of Human Experience.

    PubMed

    Falk, Emily B; Bassett, Danielle S

    2017-09-01

    How do brains shape social networks, and how do social ties shape the brain? Social networks are complex webs by which ideas spread among people. Brains comprise webs by which information is processed and transmitted among neural units. While brain activity and structure offer biological mechanisms for human behaviors, social networks offer external inducers or modulators of those behaviors. Together, these two axes represent fundamental contributors to human experience. Integrating foundational knowledge from social and developmental psychology and sociology on how individuals function within dyads, groups, and societies with recent advances in network neuroscience can offer new insights into both domains. Here, we use the example of how ideas and behaviors spread to illustrate the potential of multilayer network models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Allosteric modulation of nicotinic and GABAA receptor subtypes differentially modify autism-like behaviors in the BTBR mouse model.

    PubMed

    Yoshimura, Ryan F; Tran, Minhtam B; Hogenkamp, Derk J; Ayala, Narielle L; Johnstone, Timothy; Dunnigan, Andrew J; Gee, Timothy K; Gee, Kelvin W

    2017-11-01

    Autism spectrum disorder (ASD) is associated with two core symptoms (social communication deficits and stereotyped repetitive behaviors) in addition to a number of comorbidities. There are no FDA-approved drugs for the core symptoms and the changes that underlie these behaviors are not fully understood. One hypothesis is an imbalance of the excitation (E)/inhibition (I) ratio with excessive E and diminished I occurring in specific neuronal circuits. Data suggests that both gamma-aminobutyric acid A (GABA A ) and α7 nicotinic acetylcholine receptors (nAChRs) significantly impact E/I. BTBR T + tf/J (BTBR) mice are a model that display an autism-like phenotype with impaired social interaction and stereotyped behavior. A β2/3-subunit containing GABA A receptor (GABA A R) subtype selective positive allosteric modulator (PAM), 2-261, and an α7 nAChR subtype selective PAM, AVL-3288, were tested in social approach and repetitive self-grooming paradigms. 2-261 was active in the social approach but not the self-grooming paradigm, whereas AVL-3288 was active in both. Neither compound impaired locomotor activity. Modulating α7 nAChRs alone may be sufficient to correct these behavioral and cognitive deficits. GABAergic and nicotinic compounds are already in various stages of clinical testing for treatment of the core symptoms and comorbidities associated with ASD. Our findings and those of others suggest that compounds that have selective activities at GABA A R subtypes and the α7 nAChR may address not only the core symptoms, but many of the associated comorbidities as well and warrant further investigation in other models of ASD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. How Oral Contraceptives Impact Social-Emotional Behavior and Brain Function.

    PubMed

    Montoya, Estrella R; Bos, Peter A

    2017-02-01

    Millions of women worldwide use oral contraceptives ('the pill'; OCs), often starting at a pubertal age when their brains are in a crucial developmental stage. Research into the social-emotional effects of OCs is of utmost importance. In this review, we provide an overview of studies that have emerged over the past decade investigating how OCs, and their main ingredients estradiol (E) and progesterone (P), influence social-emotional behaviors and underlying brain functions. Based on this overview, we present a heuristic model that postulates that OCs modulate core social-emotional behaviors and brain systems. Research domains and challenges for the future, as well as implications, are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Oxytocin modulation of neural circuits for social behavior.

    PubMed

    Marlin, Bianca J; Froemke, Robert C

    2017-02-01

    Oxytocin is a hypothalamic neuropeptide that has gained attention for the effects on social behavior. Recent findings shed new light on the mechanisms of oxytocin in synaptic plasticity and adaptively modifying neural circuits for social interactions such as conspecific recognition, pair bonding, and maternal care. Here, we review several of these newer studies on oxytocin in the context of previous findings, with an emphasis on social behavior and circuit plasticity in various brain regions shown to be enriched for oxytocin receptors. We provide a framework that highlights current circuit-level mechanisms underlying the widespread action of oxytocin. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 169-189, 2017. © 2016 Wiley Periodicals, Inc.

  2. Origins of Aminergic Regulation of Behavior in Complex Insect Social Systems

    PubMed Central

    Kamhi, J. Frances; Arganda, Sara; Moreau, Corrie S.; Traniello, James F. A.

    2017-01-01

    Neuromodulators are conserved across insect taxa, but how biogenic amines and their receptors in ancestral solitary forms have been co-opted to control behaviors in derived socially complex species is largely unknown. Here we explore patterns associated with the functions of octopamine (OA), serotonin (5-HT) and dopamine (DA) in solitary ancestral insects and their derived functions in eusocial ants, bees, wasps and termites. Synthesizing current findings that reveal potential ancestral roles of monoamines in insects, we identify physiological processes and conserved behaviors under aminergic control, consider how biogenic amines may have evolved to modulate complex social behavior, and present focal research areas that warrant further study. PMID:29066958

  3. Callous-unemotional traits modulate the neural response associated with punishing another individual during social exchange: a preliminary investigation.

    PubMed

    White, Stuart F; Brislin, Sarah J; Meffert, Harma; Sinclair, Stephen; Blair, R James R

    2013-02-01

    The current study examined whether Callous-Unemotional (CU) traits, a core component of psychopathy, modulate neural responses of participants engaged in a social exchange game. In this task, participants were offered an allocation of money and then given the chance to punish the offerer. Twenty youth participated and responses to both offers and the participant's punishment (or not) of these offers were examined. Increasingly unfair offers were associated with increased dorsal anterior cingulate cortex (dACC) activity but this responsiveness was not modulated by CU traits. Increasing punishment of unfair offers was associated with increased dACC and anterior insula activity and this activity was modulated by CU traits. Higher CU trait participants showed a weaker association between activity and punishment level. These data suggest that CU traits are associated with appropriate expectations of other individual's normative behavior but weaker representations of such information when guiding behavior of the self.

  4. The smell of "anxiety": Behavioral modulation by experimental anosmia in zebrafish.

    PubMed

    Abreu, Murilo S; Giacomini, Ana C V V; Kalueff, Allan V; Barcellos, Leonardo J G

    2016-04-01

    Olfaction is strongly involved in the regulation of fish behavior, including reproductive, defensive, social and migration behaviors. In fish, anosmia (the lack of olfaction) can be induced experimentally, impairing their ability to respond to various olfactory stimuli. Here, we examine the effects of experimental lidocaine-induced anosmia on anxiety-like behavior and whole-body cortisol levels in adult zebrafish (Danio rerio). We show that experimentally-induced anosmia reduces anxiolytic-like behavioral effects of fluoxetine and seems to interact with anxiogenic effect of stress also paralleling cortisol responses in zebrafish. These findings provide first experimental evidence that temporary anosmia modulates anxiety-like behaviors and physiology in adult zebrafish. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Sequential social experiences interact to modulate aggression but not brain gene expression in the honey bee (Apis mellifera).

    PubMed

    Rittschof, Clare C

    2017-01-01

    In highly structured societies, individuals behave flexibly and cooperatively in order to achieve a particular group-level outcome. However, even in social species, environmental inputs can have long lasting effects on individual behavior, and variable experiences can even result in consistent individual differences and constrained behavioral flexibility. Despite the fact that such constraints on behavior could have implications for behavioral optimization at the social group level, few studies have explored how social experiences accumulate over time, and the mechanistic basis of these effects. In the current study, I evaluate how sequential social experiences affect individual and group level aggressive phenotypes, and individual brain gene expression, in the highly social honey bee ( Apis mellifera ). To do this, I combine a whole colony chronic predator disturbance treatment with a lab-based manipulation of social group composition. Compared to the undisturbed control, chronically disturbed individuals show lower aggression levels overall, but also enhanced behavioral flexibility in the second, lab-based social context. Disturbed bees display aggression levels that decline with increasing numbers of more aggressive, undisturbed group members. However, group level aggressive phenotypes are similar regardless of the behavioral tendencies of the individuals that make up the group, suggesting a combination of underlying behavioral tendency and negative social feedback influences the aggressive behaviors displayed, particularly in the case of disturbed individuals. An analysis of brain gene expression showed that aggression related biomarker genes reflect an individual's disturbance history, but not subsequent social group experience or behavioral outcomes. In highly social animals with collective behavioral phenotypes, social context may mask underlying variation in individual behavioral tendencies. Moreover, gene expression patterns may reflect behavioral tendency, while behavioral outcomes are further regulated by social cues perceived in real-time.

  6. Investigating Measures of Social Context on 2 Population-Based Health Surveys, Hawaii, 2010-2012.

    PubMed

    Pobutsky, Ann M; Baker, Kathleen Kromer; Reyes-Salvail, Florentina

    2015-12-17

    Measures from the Social Context Module of the Centers for Disease Control and Prevention's Behavioral Risk Factor Surveillance System were used on 2 population-based health surveys in Hawaii to explicate the role of the nonmedical and social determinants of health; these measures were also compared with conventional socioeconomic status (SES) variables. Results showed that the self-reported SES vulnerabilities of food and housing insecurity are both linked to demographic factors and physical and mental health status and significant when controlling for the conventional measures of SES. The social context module indicators should be increasingly used so results can inform appropriate interventions for vulnerable populations.

  7. RNAi knockdown of oxytocin receptor in the nucleus accumbens inhibits social attachment and parental care in monogamous female prairie voles

    PubMed Central

    Keebaugh, Alaine C.; Barrett, Catherine E.; LaPrairie, Jamie L.; Jenkins, Jasmine J.; Young, Larry J.

    2015-01-01

    Oxytocin modulates many aspects of social cognition and behaviors, including maternal nurturing, social recognition and bonding. Natural variation in oxytocin receptor (OXTR) density in the nucleus accumbens (NAcc) is associated with variation in alloparental behavior, and artificially enhancing OXTR expression in the NAcc enhances alloparental behavior and pair bonding in socially monogamous prairie voles. Furthermore, infusion of an OXTR antagonist into the nucleus accumbens (NAcc) inhibits alloparental behavior and partner preference formation. However, antagonists can promiscuously interact with other neuropeptide receptors. To directly examine the role of OXTR signaling in social bonding, we used RNA interference to selectively knockdown, but not eliminate, OXTR in the NAcc of female prairie voles and examined the impact on social behaviors. Using an adeno-associated viral vector expressing a short hairpin RNA (shRNA) targeting Oxtr mRNA, we reduced accumbal OXTR density in female prairie voles from juvenile age through adulthood. Females receiving the shRNA vector displayed a significant reduction in alloparental behavior and disrupted partner preference formation. These are the first direct demonstrations that OXTR plays a critical role in alloparental behavior and adult social attachment, and suggest that natural variation in OXTR expression in this region alone can create variation in social behavior. PMID:25874849

  8. Effects of Direct Social Experience on Trust Decisions and Neural Reward Circuitry

    PubMed Central

    Fareri, Dominic S.; Chang, Luke J.; Delgado, Mauricio R.

    2012-01-01

    The human striatum is integral for reward-processing and supports learning by linking experienced outcomes with prior expectations. Recent endeavors implicate the striatum in processing outcomes of social interactions, such as social approval/rejection, as well as in learning reputations of others. Interestingly, social impressions often influence our behavior with others during interactions. Information about an interaction partner’s moral character acquired from biographical information hinders updating of expectations after interactions via top down modulation of reward circuitry. An outstanding question is whether initial impressions formed through experience similarly modulate the ability to update social impressions at the behavioral and neural level. We investigated the role of experienced social information on trust behavior and reward-related BOLD activity. Participants played a computerized ball-tossing game with three fictional partners manipulated to be perceived as good, bad, or neutral. Participants then played an iterated trust game as investors with these same partners while undergoing fMRI. Unbeknownst to participants, partner behavior in the trust game was random and unrelated to their ball-tossing behavior. Participants’ trust decisions were influenced by their prior experience in the ball-tossing game, investing less often with the bad partner compared to the good and neutral. Reinforcement learning models revealed that participants were more sensitive to updating their beliefs about good and bad partners when experiencing outcomes consistent with initial experience. Increased striatal and anterior cingulate BOLD activity for positive versus negative trust game outcomes emerged, which further correlated with model-derived prediction error learning signals. These results suggest that initial impressions formed from direct social experience can be continually shaped by consistent information through reward learning mechanisms. PMID:23087604

  9. Modulation of social deficits and repetitive behaviors in a mouse model of autism: the role of the nicotinic cholinergic system.

    PubMed

    Wang, Li; Almeida, Luis E F; Spornick, Nicholas A; Kenyon, Nicholas; Kamimura, Sayuri; Khaibullina, Alfia; Nouraie, Mehdi; Quezado, Zenaide M N

    2015-12-01

    Accumulating evidence implicates the nicotinic cholinergic system in autism spectrum disorder (ASD) pathobiology. Neuropathologic studies suggest that nicotinic acetylcholine (ACh) receptor (nAChR) subtypes are altered in brain of autistic individuals. In addition, strategies that increase ACh, the neurotransmitter for nicotinic and muscarinic receptors, appear to improve cognitive deficits in neuropsychiatric disorders and ASD. The aim of this study is to examine the role of the nicotinic cholinergic system on social and repetitive behavior abnormalities and exploratory physical activity in a well-studied model of autism, the BTBR T(+) Itpr3 (tf) /J (BTBR) mouse. Using a protocol known to up-regulate expression of brain nAChR subtypes, we measured behavior outcomes before and after BTBR and C57BL/6J (B6) mice were treated (4 weeks) with vehicle or nicotine (50, 100, 200, or 400 μg/ml). Increasing nicotine doses were associated with decreases in water intake, increases in plasma cotinine levels, and at the higher dose (400 μg/ml) with weight loss in BTBR mice. At lower (50, 100 μg/ml) but not higher (200, 400 μg/ml) doses, nicotine increased social interactions in BTBR and B6 mice and at higher, but not lower doses, it decreased repetitive behavior in BTBR. In the open-field test, nicotine at 200 and 400 μg/ml, but not 100 μg/ml compared with vehicle, decreased overall physical activity in BTBR mice. These findings support the hypotheses that the nicotinic cholinergic system modulates social and repetitive behaviors and may be a therapeutic target to treat behavior deficits in ASD. Further, the BTBR mouse may be valuable for investigations of the role of nAChRs in social deficits and repetitive behavior.

  10. Oxytocin promotes social bonding in dogs.

    PubMed

    Romero, Teresa; Nagasawa, Miho; Mogi, Kazutaka; Hasegawa, Toshikazu; Kikusui, Takefumi

    2014-06-24

    Recent evidence suggests that enduring social bonds have fitness benefits. However, very little is known about the neural circuitry and neurochemistry underlying the formation and maintenance of stable social bonds outside reproductive contexts. Oxytocin (OT), a neuropeptide synthetized by the hypothalamus in mammals, regulates many complex forms of social behavior and cognition in both human and nonhuman animals. Animal research, however, has concentrated on monogamous mammals, and it remains unknown whether OT also modulates social bonds in nonreproductive contexts. In this study we provide behavioral evidence that exogenous OT promotes positive social behaviors in the domestic dog toward not only conspecifics but also human partners. Specifically, when sprayed with OT, dogs showed higher social orientation and affiliation toward their owners and higher affiliation and approach behaviors toward dog partners than when sprayed with placebo. Additionally, the exchange of socio-positive behaviors with dog partners triggered the release of endogenous OT, highlighting the involvement of OT in the development of social relationships in the domestic dog. These data provide new insight into the mechanisms that facilitate the maintenance of close social bonds beyond immediate reproductive interest or genetic ties and complement a growing body of evidence that identifies OT as one of the neurochemical foundations of sociality in mammalian species.

  11. Social information use in threat perception: Social buffering, contagion and facilitation of alarm responses

    PubMed Central

    Oliveira, Rui F.; Faustino, Ana I.

    2017-01-01

    ABSTRACT Group living animals can use the behavior of others as cues for the presence of threat in the environment and adjust their behavior accordingly. Therefore, different social phenomena that modulate the response to threat, such as social buffering, social transmission (contagion), and facilitation of alarm responses can be seen as different manifestations of social information use in threat detection. Thus, social phenomena that are functionally antagonistic, such as social buffering and social transmission of fear, may rely on shared neurobehavioral mechanisms related to the use of social information in decision-making about the presence of threat in the environment. Here, we propose a unifying conceptual framework for the study of social information use in threat perception based on signal detection theory.

  12. Rhythmic syllable-related activity in a songbird motor thalamic nucleus necessary for learned vocalizations

    PubMed Central

    Danish, Husain H.; Aronov, Dmitriy; Fee, Michale S.

    2017-01-01

    Birdsong is a complex behavior that exhibits hierarchical organization. While the representation of singing behavior and its hierarchical organization has been studied in some detail in avian cortical premotor circuits, our understanding of the role of the thalamus in adult birdsong is incomplete. Using a combination of behavioral and electrophysiological studies, we seek to expand on earlier work showing that the thalamic nucleus Uvaeformis (Uva) is necessary for the production of stereotyped, adult song in zebra finch (Taeniopygia guttata). We confirm that complete bilateral lesions of Uva abolish singing in the ‘directed’ social context, but find that in the ‘undirected’ social context, such lesions result in highly variable vocalizations similar to early babbling song in juvenile birds. Recordings of neural activity in Uva reveal strong syllable-related modulation, maximally active prior to syllable onsets and minimally active prior to syllable offsets. Furthermore, both song and Uva activity exhibit a pronounced coherent modulation at 10Hz—a pattern observed in downstream premotor areas in adult and, even more prominently, in juvenile birds. These findings are broadly consistent with the idea that Uva is critical in the sequential activation of behavioral modules in HVC. PMID:28617829

  13. Neonatal oxytocin and vasopressin manipulation alter social behavior during the juvenile period in Mongolian gerbils.

    PubMed

    Taylor, Jack H; Cavanaugh, Jon; French, Jeffrey A

    2017-07-01

    Oxytocin and vasopressin are important modulators of a wide variety of social behaviors, and increasing evidence is showing that these neuropeptides are important organizational effectors of later-life behavior as well. We treated day-old gerbil pups with oxytocin, vasopressin, an oxytocin receptor antagonist, a vasopressin V1a receptor antagonist, or saline control, and then measured received parental responsiveness during the early postnatal period and juvenile social behavior during weaning. Neonatal vasopressin treatment enhanced sociality in males, but not females, at both developmental time points. When pups were individually placed outside the nest, parents were more responsive to male pups treated with vasopressin compared with littermates, and vasopressin treated male pups exhibited increased play with littermates as juveniles. These results show that vasopressin during very early life can enhance social interactions throughout early development. © 2017 Wiley Periodicals, Inc.

  14. Functional cortical network in alpha band correlates with social bargaining.

    PubMed

    Billeke, Pablo; Zamorano, Francisco; Chavez, Mario; Cosmelli, Diego; Aboitiz, Francisco

    2014-01-01

    Solving demanding tasks requires fast and flexible coordination among different brain areas. Everyday examples of this are the social dilemmas in which goals tend to clash, requiring one to weigh alternative courses of action in limited time. In spite of this fact, there are few studies that directly address the dynamics of flexible brain network integration during social interaction. To study the preceding, we carried out EEG recordings while subjects played a repeated version of the Ultimatum Game in both human (social) and computer (non-social) conditions. We found phase synchrony (inter-site-phase-clustering) modulation in alpha band that was specific to the human condition and independent of power modulation. The strength and patterns of the inter-site-phase-clustering of the cortical networks were also modulated, and these modulations were mainly in frontal and parietal regions. Moreover, changes in the individuals' alpha network structure correlated with the risk of the offers made only in social conditions. This correlation was independent of changes in power and inter-site-phase-clustering strength. Our results indicate that, when subjects believe they are participating in a social interaction, a specific modulation of functional cortical networks in alpha band takes place, suggesting that phase synchrony of alpha oscillations could serve as a mechanism by which different brain areas flexibly interact in order to adapt ongoing behavior in socially demanding contexts.

  15. Functional Cortical Network in Alpha Band Correlates with Social Bargaining

    PubMed Central

    Billeke, Pablo; Zamorano, Francisco; Chavez, Mario; Cosmelli, Diego; Aboitiz, Francisco

    2014-01-01

    Solving demanding tasks requires fast and flexible coordination among different brain areas. Everyday examples of this are the social dilemmas in which goals tend to clash, requiring one to weigh alternative courses of action in limited time. In spite of this fact, there are few studies that directly address the dynamics of flexible brain network integration during social interaction. To study the preceding, we carried out EEG recordings while subjects played a repeated version of the Ultimatum Game in both human (social) and computer (non-social) conditions. We found phase synchrony (inter-site-phase-clustering) modulation in alpha band that was specific to the human condition and independent of power modulation. The strength and patterns of the inter-site-phase-clustering of the cortical networks were also modulated, and these modulations were mainly in frontal and parietal regions. Moreover, changes in the individuals’ alpha network structure correlated with the risk of the offers made only in social conditions. This correlation was independent of changes in power and inter-site-phase-clustering strength. Our results indicate that, when subjects believe they are participating in a social interaction, a specific modulation of functional cortical networks in alpha band takes place, suggesting that phase synchrony of alpha oscillations could serve as a mechanism by which different brain areas flexibly interact in order to adapt ongoing behavior in socially demanding contexts. PMID:25286240

  16. Social value orientation modulates the FRN and P300 in the chicken game.

    PubMed

    Wang, Yiwen; Kuhlman, D Michael; Roberts, Kathryn; Yuan, Bo; Zhang, Zhen; Zhang, Wei; Simons, Robert F

    2017-07-01

    Social dilemmas pervade daily life, business, and politics. The manners in which these dilemmas are resolved depend in part on the personal characteristics of those involved. One such characteristic is Social Value Orientation (SVO), a trait-like predisposition to maximize cooperative (Pro-Social) or non-cooperative (Pro-Self) outcomes in social relationships. The present study investigated the role of SVO in modulating neural responses to outcomes in a type of social dilemma known as the Chicken Game. The Chicken Game models real-world situations involving two parties independently making a decision between cooperation and aggression. The EEG of Pro-Socials and Pro-Selfs was recorded while playing Chicken with a computer Opponent. Two ERP components were extracted: Feedback-Related Negativity (FRN) and the P300. Despite no behavioral differences in decision (i.e., cooperation, aggression), FRN results indicate that Pro-Socials experienced unreciprocated cooperation as the least desired outcome. Further, P300 results show a main effect for the Opponent's choice, such that the Opponent's cooperation was more salient than aggression. Additionally, an interaction between the Participant's and Opponent's choice showed that the effect for the Opponent's choice only occurred when the Participant chose cooperation. None of the results for P300 were moderated by SVO. For both ERP components, Pro-Selfs showed no differential responding to Chicken outcomes. In addition, FRN magnitude on trial n predicted choice on trial n+1 for Pro-Socials, but not for Pro-Selfs. P300 magnitude on trial n showed no relationship to choice on trial n+1. Results indicate that individual differences in SVO modulate FRN responses to Chicken outcomes, and that these neural reactions may have utility in predicting subsequent behaviors. For P300, there is no evidence of SVO modulation. Our general pattern of FRN responsiveness in Pro-Socials, but not in Pro-Selfs, is related to similar findings in fMRI and EEG research. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Corticotropin releasing factor influences aggression and monoamines: Modulation of attacks and retreats

    PubMed Central

    Carpenter, Russ E.; Korzan, Wayne J.; Bockholt, Craig; Watt, Michael J.; Forster, Gina L.; Renner, Kenneth J.; Summers, Cliff H.

    2009-01-01

    Salmonids establish social hierarchies as a result of aggressive social interactions. The establishment of dominant or subordinate status is strongly linked to neuroendocrine responses mediated through the stress axis. In this study, we tested the effects of icv CRF on the behavioral outcome, plasma cortisol and monoamine function in trout subjected to a socially aggressive encounter. Rainbow trout were treated with an icv injection of artificial cerebrospinal fluid (aCSF), 500 or 2000 ng ovine CRF, or not injected. Fish were allowed to interact with a similarly sized conspecific for 15 minutes. Following the behavioral interaction, plasma cortisol and central monoamine concentrations were analyzed. Trout treated with CRF were victorious in approximately 60% of the aggressive encounters against aCSF treated opponents. Trout injected with CRF exhibited a reduction in the total number of attacks and decreased latency to attack. When trout were divided winners and losers, only victorious CRF-treated fish exhibited a reduced latency to attack and fewer retreats. Social stress increased cortisol levels in both winners and losers of aggressive interaction. This effect was enhanced with the additional stress incurred from icv injection of aCSF. However, icv CRF in addition to social stress decreased plasma cortisol in both winners and losers. While aggression stimulated significant changes in serotonergic and dopaminergic activity, the magnitude and direction were dependent on limbic brain region, CRF dose, and outcome of social aggression. With broad effects on aggressive behavior, anxiety, stress responsiveness, and central monoaminergic activity, CRF plays an important role modulating the behavioral components of social interaction. PMID:18992791

  18. Alcohol and violence: neuropeptidergic modulation of monoamine systems

    PubMed Central

    Miczek, Klaus A.; DeBold, Joseph F.; Hwa, Lara S.; Newman, Emily L.; de Almeida, Rosa M. M.

    2015-01-01

    Neurobiological processes underlying the epidemiologically-established link between alcohol and several types of social, aggressive, and violent behavior remain poorly understood. Acute low doses of alcohol, as well as withdrawal from long-term alcohol use, may lead to escalated aggressive behavior in a subset of individuals. An urgent task will be to disentangle the host of interacting genetic and environmental risk factors in individuals that are predisposed to engage in escalated aggressive behavior. The modulation of 5-hydroxytryptamine impulse flow by gamma-aminobutyric acid (GABA) and glutamate, acting via distinct ionotropic and metabotropic receptor subtypes in the dorsal raphe nucleus during alcohol consumption, is of critical significance in the suppression and escalation of aggressive behavior. In anticipation and reaction to aggressive behavior, neuropeptides such as corticotropin-releasing factor, neuropeptide Y, opioid peptides, and vasopressin interact with monoamines, GABA, and glutamate to attenuate and amplify aggressive behavior in alcohol-consuming individuals. These neuromodulators represent novel molecular targets for intervention that await clinical validation. Intermittent episodes of brief social defeat during aggressive confrontations are sufficient to cause long-lasting neuroadaptations that can lead to the escalation of alcohol consumption. PMID:26285061

  19. Clothing and Textile Student Modules.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    Forty-seven performance-based instructional modules on six major topics are provided for the home economics content area of clothing and textiles. The six topics are (1) planning basics (psychological, physical, social, and behavioral aspects of clothing; elements of design; principles of design; and style and fashion in clothing), (2) buyership…

  20. A tailored Internet-delivered intervention for smoking cessation designed to encourage social support and treatment seeking: usability testing and user tracing.

    PubMed

    Houston, Tom K; Ford, Daniel E

    2008-03-01

    While Internet technologies show promise for changing behavior, new methods for engaging individuals are needed to maximize effectiveness. The aim of this study is to design and evaluate an Internet-delivered intervention for smoking cessation that encouraged seeking support from family and treatment from doctors. To evaluate different introductions to the Internet site. We conducted usability testing and analyzed server logs to trace user participation in the website. Two groups of users (current smokers) were recruited using Google advertisements. In Phase 1, 58% (75/126) of users accessed the self-management strategies, but few users accessed the social support (28%) and treatment-seeking modules (33%). Then, a brief motivational introduction was added, stating the proven effectiveness of content in the unused modules, low use of these modules, and recommendations by two doctors to use all modules. Compared with Phase 1, in Phase 2 the mean time spent on the website per session increased (8 to 18 min, p = 0.01) and use of the social support (50%) and treatment seeking modules (56%) increased (both p < 0.01). At 1-month follow-up, reports of talking to family about smoking cessation also increased from 84% to 100% (p = 0.038). Changing the rationale and context of Web-based health information using a motivational introduction can change user behavior.

  1. Rationale, design and methods of the HEALTHY study behavior intervention component

    PubMed Central

    Venditti, EM; Elliot, DL; Faith, MS; Firrell, LS; Giles, CM; Goldberg, L; Marcus, MD; Schneider, M; Solomon, S; Thompson, D; Yin, Z

    2009-01-01

    HEALTHY was a multi-center primary prevention trial designed to reduce risk factors for type 2 diabetes in adolescents. Seven centers each recruited six middle schools that were randomized to either intervention or control. The HEALTHY intervention integrated multiple components in nutrition, physical education, behavior change and communications and promotion. The conceptual rationale as well as the design and development of the behavior intervention component are described. Pilot study data informed the development of the behavior intervention component. Principles of social learning and health-related behavior change were incorporated. One element of the behavior intervention component was a sequence of peer-led, teacher-facilitated learning activities known as FLASH (Fun Learning Activities for Student Health). Five FLASH modules were implemented over five semesters of the HEALTHY study, with the first module delivered in the second semester of the sixth grade and the last module in the second semester of the eighth grade. Each module contained sessions that were designed to be delivered on a weekly basis to foster self-awareness, knowledge, decision-making skills and peer involvement for health behavior change. FLASH behavioral practice incorporated individual and group self-monitoring challenges for eating and activity. Another element of the behavior intervention component was the family outreach strategy for extending changes in physical activity and healthy eating beyond the school day and for supporting the student's lifestyle change choices. Family outreach strategies included the delivery of newsletters and supplemental packages with materials to promote healthy behavior in the home environment during school summer and winter holiday breaks. In conclusion, the HEALTHY behavior intervention component, when integrated with total school food and physical education environmental changes enhanced by communications and promotional campaigns, is a feasible and acceptable mechanism for delivering age-appropriate social learning for healthy eating and physical activity among an ethnically diverse group of middle school students across the United States. PMID:19623189

  2. Rationale, design and methods of the HEALTHY study behavior intervention component.

    PubMed

    Venditti, E M; Elliot, D L; Faith, M S; Firrell, L S; Giles, C M; Goldberg, L; Marcus, M D; Schneider, M; Solomon, S; Thompson, D; Yin, Z

    2009-08-01

    HEALTHY was a multi-center primary prevention trial designed to reduce risk factors for type 2 diabetes in adolescents. Seven centers each recruited six middle schools that were randomized to either intervention or control. The HEALTHY intervention integrated multiple components in nutrition, physical education, behavior change and communications and promotion. The conceptual rationale as well as the design and development of the behavior intervention component are described. Pilot study data informed the development of the behavior intervention component. Principles of social learning and health-related behavior change were incorporated. One element of the behavior intervention component was a sequence of peer-led, teacher-facilitated learning activities known as FLASH (Fun Learning Activities for Student Health). Five FLASH modules were implemented over five semesters of the HEALTHY study, with the first module delivered in the second semester of the sixth grade and the last module in the second semester of the eighth grade. Each module contained sessions that were designed to be delivered on a weekly basis to foster self-awareness, knowledge, decision-making skills and peer involvement for health behavior change. FLASH behavioral practice incorporated individual and group self-monitoring challenges for eating and activity. Another element of the behavior intervention component was the family outreach strategy for extending changes in physical activity and healthy eating beyond the school day and for supporting the student's lifestyle change choices. Family outreach strategies included the delivery of newsletters and supplemental packages with materials to promote healthy behavior in the home environment during school summer and winter holiday breaks. In conclusion, the HEALTHY behavior intervention component, when integrated with total school food and physical education environmental changes enhanced by communications and promotional campaigns, is a feasible and acceptable mechanism for delivering age-appropriate social learning for healthy eating and physical activity among an ethnically diverse group of middle school students across the United States.

  3. Rapid effects of estrogens on behavior: environmental modulation and molecular mechanisms.

    PubMed

    Laredo, Sarah A; Villalon Landeros, Rosalina; Trainor, Brian C

    2014-10-01

    Estradiol can modulate neural activity and behavior via both genomic and nongenomic mechanisms. Environmental cues have a major impact on the relative importance of these signaling pathways with significant consequences for behavior. First we consider how photoperiod modulates nongenomic estrogen signaling on behavior. Intriguingly, short days permit rapid effects of estrogens on aggression in both rodents and song sparrows. This highlights the importance of considering photoperiod as a variable in laboratory research. Next we review evidence for rapid effects of estradiol on ecologically-relevant behaviors including aggression, copulation, communication, and learning. We also address the impact of endocrine disruptors on estrogen signaling, such as those found in corncob bedding used in rodent research. Finally, we examine the biochemical mechanisms that may mediate rapid estrogen action on behavior in males and females. A common theme across these topics is that the effects of estrogens on social behaviors vary across different environmental conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Influence of long-term social interaction on chirping behavior, steroid levels and neurogenesis in weakly electric fish.

    PubMed

    Dunlap, Kent D; Chung, Michael; Castellano, James F

    2013-07-01

    Social interactions dramatically affect the brain and behavior of animals. Studies in birds and mammals indicate that socially induced changes in adult neurogenesis participate in the regulation of social behavior, but little is known about this relationship in fish. Here, we review studies in electric fish (Apteronotus leptorhychus) that link social stimulation, changes in electrocommunication behavior and adult neurogenesis in brain regions associated with electrocommunication. Compared with isolated fish, fish living in pairs have greater production of chirps, an electrocommunication signal, during dyadic interactions and in response to standardized artificial social stimuli. Social interaction also promotes neurogenesis in the periventricular zone, which contributes born cells to the prepacemaker nucleus, the brain region that regulates chirping. Both long-term chirp rate and periventricular cell addition depend on the signal dynamics (amplitude and waveform variation), modulations (chirps) and novelty of the stimuli from the partner fish. Socially elevated cortisol levels and cortisol binding to glucocorticoid receptors mediate, at least in part, the effect of social interaction on chirping behavior and brain cell addition. In a closely related electric fish (Brachyhypopomus gauderio), social interaction enhances cell proliferation specifically in brain regions for electrocommunication and only during the breeding season, when social signaling is most elaborate. Together, these studies demonstrate a consistent correlation between brain cell addition and environmentally regulated chirping behavior across many social and steroidal treatments and suggest a causal relationship.

  5. Social modulation of associative fear learning by pheromone communication

    PubMed Central

    Bredy, Timothy W.; Barad, Mark

    2009-01-01

    Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned familiar mouse and by the putative stress-related anxiogenic pheromone β-phenylethylamine (β-PEA). Together, these findings suggest social modulation of higher-order cognitive processing through pheromone communication and support the concurrent excitor hypothesis of extinction learning. PMID:19117912

  6. Social modulation of associative fear learning by pheromone communication.

    PubMed

    Bredy, Timothy W; Barad, Mark

    2009-01-01

    Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned familiar mouse and by the putative stress-related anxiogenic pheromone beta-phenylethylamine (beta-PEA). Together, these findings suggest social modulation of higher-order cognitive processing through pheromone communication and support the concurrent excitor hypothesis of extinction learning.

  7. Effects of Diets High in Unsaturated Fatty Acids on Socially Induced Stress Responses in Guinea Pigs

    PubMed Central

    Nemeth, Matthias; Millesi, Eva; Wagner, Karl-Heinz; Wallner, Bernard

    2014-01-01

    Unsaturated fatty acids (UFAs), such as omega-3 and omega-6 poly- and omega-9 monounsaturated fatty acids are important nutrients and major components of neuronal cell membranes. They play a major role in modulating brain functions and physiology and may therefore diminish behavioral and physiological stress reactions in corroboration with decreased cortisol concentrations. Functionally, cortisol itself can modulate several behaviors and also the fatty acid metabolism in the long term. But only little is known about the behavioral and physiological influences of dietary UFAs in a social group, where individuals are regularly exposed to stressful situations. Therefore, the aim of this study was to determine the effects of dietary UFAs on saliva cortisol concentrations and behavioral responses in socially confronted guinea pigs. Three groups of animals were additionally supplemented with 500 mg chia seeds (high in omega-3), walnuts (high in omega-6), or peanuts (high in omega-9) per kg bodyweight each day and compared to a control group. During social confrontation saliva cortisol concentrations significantly increased in all groups, which was accompanied by a loss in bodyweight. However, cortisol levels remained lower in the chia and walnut groups compared to controls. Additionally, the walnut group displayed significantly increased locomotion, while no differences between groups were detected in socio-positive, sexual, or aggressive behaviors. Total plasma omega-3, omega-6, and omega-9 fatty acids were significantly increased in the corresponding groups, due to the dietary supplementations. However, a significant decrease in plasma omega-3 and an increase in plasma n-6 fatty acids were detected in the chia group when comparing the measurements before and after social confrontation. We conclude that both omega-3 and omega-6 polyunsaturated fatty acids can diminish behavioral and physiological stress responses to the social environment, enabling individuals to cope with social stressors, but at the expense of plasma derived omega-3 fatty acids. PMID:25551380

  8. Common and distinct modulation of electrophysiological indices of feedback processing by autistic and psychopathic traits.

    PubMed

    Carter Leno, Virginia; Naples, Adam; Cox, Anthony; Rutherford, Helena; McPartland, James C

    2016-01-01

    Both autism spectrum disorder (ASD) and psychopathy are primarily characterized by social dysfunction; overlapping phenotypic features may reflect altered function in common brain mechanisms. The current study examined the degree to which neural response to social and nonsocial feedback is modulated by autistic versus psychopathic traits in a sample of typically developing adults (N = 31, 11 males, 18-52 years). Event-related potentials were recorded whilst participants completed a behavioral task and received feedback on task performance. Both autistic and psychopathic traits were associated with alterations in the neural correlates of feedback processing. Sensitivity to specific forms of feedback (social, nonsocial, positively valenced, negatively valenced) differed between the two traits. Autistic traits were associated with decreased sensitivity to social feedback. In contrast, the antisocial domain of psychopathic traits was associated with an overall decrease in sensitivity to feedback, and the interpersonal manipulation domain was associated with preserved processing of positively valenced feedback. Results suggest distinct alterations within specific mechanisms of feedback processing may underlie similar difficulties in social behavior.

  9. Engaging men and women as allies: a workplace curriculum module to challenge gender norms about domestic violence, male bullying and workplace violence and encourage ally behavior.

    PubMed

    Wagner, K C; Yates, Diane; Walcott, Quentin

    2012-01-01

    This post-hoc analysis discusses a replicable workplace behavior change module called Men and Women As Allies, that was designed and implemented by a team of labor, management and community anti-violence educators at a private sector telecommunications employer. A job site-specific educational seminar linked issues of domestic violence to male bullying and workplace violence. It challenged social stereotypes about gender, taught skills to engage ally peer behavior and provided information on how to seek assistance from union, workplace and external community resources.

  10. Social Context Influences Aggressive and Courtship Behavior in a Cichlid Fish

    PubMed Central

    Desjardins, Julie K.; Hofmann, Hans A.; Fernald, Russell D.

    2012-01-01

    Social interactions require knowledge of the environment and status of others, which can be acquired indirectly by observing the behavior of others. When being observed, animals can also alter their signals based on who is watching. Here we observed how male cichlid fish (Astatotilapia burtoni) behave when being watched in two different contexts. In the first, we show that aggressive and courtship behaviors displayed by subordinate males depends critically on whether dominant males can see them, and in the second, we manipulated who was watching aggressive interactions and showed that dominant males will change their behavior depending on audience composition. In both cases, when a more dominant individual is out of view and the audience consists of more subordinate individuals, those males signal key social information to females by displaying courtship and dominant behaviors. In contrast, when a dominant male is present, males cease both aggression and courtship. These data suggest that males are keenly aware of their social environment and modulate their aggressive and courtship behaviors strategically for reproductive and social advantage. PMID:22807996

  11. Melatonin Regulates Daily Variations in Electric Behavior Arousal in Two Species of Weakly Electric Fish with Different Social Structures.

    PubMed

    Migliaro, Adriana; Silva, Ana

    2016-01-01

    Timing is crucial for social interactions. Animal behavior is synchronized with biotic and abiotic environment variables ensuring that the activity phase of conspecifics occurs during the same period of the day. As biological rhythms are embedded in the complex integrative control of the brain, it is fundamental to explore its interaction with environmental and social factors. This approach will unravel the link between external stimuli carrying information on environmental cycles and the neural commands for behavior, including social behavior, associated with precise phases of those cycles. Arousal in the solitary Gymnotus omarorum and in the gregarious Brachyhypopomus gauderio is characterized by a nocturnal increase in the basal discharge rate of electric behavior, which is mild and transient in G. omarorum and large and persistent in B. gauderio. In this study, we show that the major integrator of social behavior, AVT (arginine vasotocin), is not involved in the nocturnal increase of electric behavior basal rate in isolated animals of either species. On the other hand, endogenous melatonin, the major modulator of the circadian system, is responsible for the nocturnal increase in electric behavior in isolated individuals of both species. © 2016 S. Karger AG, Basel.

  12. Manipulation of colony environment modulates honey bee aggression and brain gene expression.

    PubMed

    Rittschof, C C; Robinson, G E

    2013-11-01

    The social environment plays an essential role in shaping behavior for most animals. Social effects on behavior are often linked to changes in brain gene expression. In the honey bee (Apis mellifera L.), social modulation of individual aggression allows colonies to adjust the intensity with which they defend their hive in response to predation threat. Previous research has showed social effects on both aggression and aggression-related brain gene expression in honey bees, caused by alarm pheromone and unknown factors related to colony genotype. For example, some bees from less aggressive genetic stock reared in colonies with genetic predispositions toward increased aggression show both increased aggression and more aggressive-like brain gene expression profiles. We tested the hypothesis that exposure to a colony environment influenced by high levels of predation threat results in increased aggression and aggressive-like gene expression patterns in individual bees. We assessed gene expression using four marker genes. Experimentally induced predation threats modified behavior, but the effect was opposite of our predictions: disturbed colonies showed decreased aggression. Disturbed colonies also decreased foraging activity, suggesting that they did not habituate to threats; other explanations for this finding are discussed. Bees in disturbed colonies also showed changes in brain gene expression, some of which paralleled behavioral findings. These results show that bee aggression and associated molecular processes are subject to complex social influences. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  13. Effects of Chronic Social Stress and Maternal Intranasal Oxytocin and Vasopressin on Offspring Interferon-γ and Behavior

    PubMed Central

    Murgatroyd, Christopher A.; Hicks-Nelson, Alexandria; Fink, Alexandria; Beamer, Gillian; Gurel, Kursat; Elnady, Fawzy; Pittet, Florent; Nephew, Benjamin C.

    2016-01-01

    Recent studies support the hypothesis that the adverse effects of early-life adversity and transgenerational stress on neural plasticity and behavior are mediated by inflammation. The objective of the present study was to investigate the immune and behavioral programing effects of intranasal (IN) vasopressin (AVP) and oxytocin (OXT) treatment of chronic social stress (CSS)-exposed F1 dams on F2 juvenile female offspring. It was hypothesized that maternal AVP and OXT treatment would have preventative effects on social stress-induced deficits in offspring anxiety and social behavior and that these effects would be associated with changes in interferon-γ (IFNγ). Control and CSS-exposed F1 dams were administered IN saline, AVP, or OXT during lactation and the F2 juvenile female offspring were assessed for basal plasma IFNγ and perseverative, anxiety, and social behavior. CSS F2 female juvenile offspring had elevated IFNγ levels and exhibited increased repetitive/perseverative and anxiety behaviors and deficits in social behavior. These effects were modulated by AVP and OXT in a context- and behavior-dependent manner, with OXT exhibiting preventative effects on repetitive and anxiety behaviors and AVP possessing preventative effects on social behavior deficits and anxiety. Basal IFNγ levels were elevated in the F2 offspring of OXT-treated F1 dams, but IFNγ was not correlated with the behavioral effects. These results support the hypothesis that maternal AVP and OXT treatment have context- and behavior-specific effects on peripheral IFNγ levels and perseverative, anxiety, and social behaviors in the female offspring of early-life social stress-exposed dams. Both maternal AVP and OXT are effective at preventing social stress-induced increases in self-directed measures of anxiety, and AVP is particularly effective at preventing impairments in overall social contact. OXT is specifically effective at preventing repetitive/perseverative behaviors, yet is ineffective at preventing deficits in overall social behavior. PMID:28018290

  14. Atypical Modulations of N170 Component during Emotional Processing and Their Links to Social Behaviors in Ex-combatants.

    PubMed

    Trujillo, Sandra P; Valencia, Stella; Trujillo, Natalia; Ugarriza, Juan E; Rodríguez, Mónica V; Rendón, Jorge; Pineda, David A; López, José D; Ibañez, Agustín; Parra, Mario A

    2017-01-01

    Emotional processing (EP) is crucial for the elaboration and implementation of adaptive social strategies. EP is also necessary for the expression of social cognition and behavior (SCB) patterns. It is well-known that war contexts induce socio-emotional atypical functioning, in particular for those who participate in combats. Thus, ex-combatants represent an ideal non-clinical population to explore EP modulation and to evaluate its relation with SCB. The aim of this study was to explore EP and its relation with SCB dimensions such as empathy, theory of mind and social skills in a sample of 50 subjects, of which 30 were ex-combatants from illegally armed groups in Colombia, and 20 controls without combat experience. We adapted an Emotional Recognition Task for faces and words and synchronized it with electroencephalographic recording. Ex-combatants presented with higher assertion skills and showed more pronounced brain responses to faces than Controls. They did not show the bias toward anger observed in control participants whereby the latter group was more likely to misclassify neutral faces as angry. However, ex-combatants showed an atypical word valence processing. That is, words with different emotions yielded no differences in N170 modulations. SCB variables were successfully predicted by neurocognitive variables. Our results suggest that in ex-combatants the links between EP and SCB functions are reorganized. This may reflect neurocognitive modulations associated to chronic exposure to war experiences.

  15. Atypical Modulations of N170 Component during Emotional Processing and Their Links to Social Behaviors in Ex-combatants

    PubMed Central

    Trujillo, Sandra P.; Valencia, Stella; Trujillo, Natalia; Ugarriza, Juan E.; Rodríguez, Mónica V.; Rendón, Jorge; Pineda, David A.; López, José D.; Ibañez, Agustín; Parra, Mario A.

    2017-01-01

    Emotional processing (EP) is crucial for the elaboration and implementation of adaptive social strategies. EP is also necessary for the expression of social cognition and behavior (SCB) patterns. It is well-known that war contexts induce socio-emotional atypical functioning, in particular for those who participate in combats. Thus, ex-combatants represent an ideal non-clinical population to explore EP modulation and to evaluate its relation with SCB. The aim of this study was to explore EP and its relation with SCB dimensions such as empathy, theory of mind and social skills in a sample of 50 subjects, of which 30 were ex-combatants from illegally armed groups in Colombia, and 20 controls without combat experience. We adapted an Emotional Recognition Task for faces and words and synchronized it with electroencephalographic recording. Ex-combatants presented with higher assertion skills and showed more pronounced brain responses to faces than Controls. They did not show the bias toward anger observed in control participants whereby the latter group was more likely to misclassify neutral faces as angry. However, ex-combatants showed an atypical word valence processing. That is, words with different emotions yielded no differences in N170 modulations. SCB variables were successfully predicted by neurocognitive variables. Our results suggest that in ex-combatants the links between EP and SCB functions are reorganized. This may reflect neurocognitive modulations associated to chronic exposure to war experiences. PMID:28588462

  16. Prenatally stressed piglets 'shut down' in response to separation, oxytocin modulates some effects

    USDA-ARS?s Scientific Manuscript database

    Prenatal stress (PNS) effects may enhance offspring’s survival traits. Yet, PNS could be maladaptive for captive animals, causing anxiety and abnormal social development. Oxytocin (OT) reduces anxiety while OT deficiency results in social behavior alteration. We hypothesized that PNS piglets would b...

  17. Design and Usability Evaluation of Social Mobile Diabetes Management System in the Gulf Region.

    PubMed

    Alanzi, Turki; Istepanian, Robert; Philip, Nada

    2016-09-26

    The prevalence of diabetes in the Gulf States is one of the highest globally. It is estimated that 20% of the population in the region has been diagnosed with diabetes and according to the International Diabetes Federation (IDF), five of the IDF's "top 10" countries for diabetes prevalence in 2011 and projected for 2030 are in this region. In recent years, there have been an increasing number of clinical studies advocating the use of mobile phone technology for diabetes self-management with improved clinical outcomes. However, there are few studies to date addressing the application of mobile diabetes management in the Gulf region, particularly in the Kingdom of Saudi Arabia (KSA), where there is exponential increase in mobile phone usage and access to social networking. The objective of this paper is to present the design and development of a new mobile health system for social behavioral change and management tailored for Saudi patients with diabetes called Saudi Arabia Networking for Aiding Diabetes (SANAD). A usability study for the SANAD system is presented to validate the acceptability of using mobile technologies among patients with diabetes in the KSA and the Gulf region. The SANAD system was developed using mobile phone technology with diabetes management and social networking modules. For the usability study the Questionnaire for User Interaction Satisfaction was used to evaluate the usability aspect of the SANAD system. A total of 33 users with type 2 diabetes participated in the study. The key modules of the SANAD system consist of (1) a mobile diabetes management module; (2) a social networking module; and (3) a cognitive behavioral therapy module for behavioral change issues. The preliminary results of the usability study indicated general acceptance of the patients in using the system with higher usability rating in patients with type 2 diabetes. We found that the acceptability of the system was high among Saudi patients with diabetes, and ongoing work in this research area is underway to conduct a clinical pilot study in the KSA for patients with type 2 diabetes. The wide deployment of such a system is timely and required in the Gulf region due to the wide use of mobile phones and social networking mediums.

  18. Design and Usability Evaluation of Social Mobile Diabetes Management System in the Gulf Region

    PubMed Central

    2016-01-01

    Background The prevalence of diabetes in the Gulf States is one of the highest globally. It is estimated that 20% of the population in the region has been diagnosed with diabetes and according to the International Diabetes Federation (IDF), five of the IDF’s “top 10” countries for diabetes prevalence in 2011 and projected for 2030 are in this region. In recent years, there have been an increasing number of clinical studies advocating the use of mobile phone technology for diabetes self-management with improved clinical outcomes. However, there are few studies to date addressing the application of mobile diabetes management in the Gulf region, particularly in the Kingdom of Saudi Arabia (KSA), where there is exponential increase in mobile phone usage and access to social networking. Objective The objective of this paper is to present the design and development of a new mobile health system for social behavioral change and management tailored for Saudi patients with diabetes called Saudi Arabia Networking for Aiding Diabetes (SANAD). A usability study for the SANAD system is presented to validate the acceptability of using mobile technologies among patients with diabetes in the KSA and the Gulf region. Methods The SANAD system was developed using mobile phone technology with diabetes management and social networking modules. For the usability study the Questionnaire for User Interaction Satisfaction was used to evaluate the usability aspect of the SANAD system. A total of 33 users with type 2 diabetes participated in the study. Results The key modules of the SANAD system consist of (1) a mobile diabetes management module; (2) a social networking module; and (3) a cognitive behavioral therapy module for behavioral change issues. The preliminary results of the usability study indicated general acceptance of the patients in using the system with higher usability rating in patients with type 2 diabetes. Conclusions We found that the acceptability of the system was high among Saudi patients with diabetes, and ongoing work in this research area is underway to conduct a clinical pilot study in the KSA for patients with type 2 diabetes. The wide deployment of such a system is timely and required in the Gulf region due to the wide use of mobile phones and social networking mediums. PMID:27670696

  19. Species, Sex and Individual Differences in the Vasotocin/Vasopressin System: Relationship to Neurochemical Signaling in the Social Behavior Neural Network

    PubMed Central

    Albers, H. Elliott

    2014-01-01

    Arginine-vasotocin(AVT)/arginine vasopressin (AVP) are members of the AVP/oxytocin (OT) superfamily of peptides that are involved in the regulation of social behavior, social cognition and emotion. Comparative studies have revealed that AVT/AVP and their receptors are found throughout the “Social Behavior Neural Network” and display the properties expected from a signaling system that controls social behavior (i.e., species, sex and individual differences and modulation by gonadal hormones and social factors). Neurochemical signaling within the SBNN likely involves a complex combination of synaptic mechanisms that co-release multiple chemical signals (e.g., classical neurotransmitters and AVT/AVP as well as other peptides) and non-synaptic mechanisms (i.e., volume transmission). Crosstalk between AVP/OT peptides and receptors within the SBNN is likely. A better understanding of the functional properties of neurochemical signaling in the SBNN will allow for a more refined examination of the relationships between this peptide system and species, sex and individual differences in sociality. PMID:25102443

  20. Oxytocin modulates hemodynamic responses to monetary incentives in humans

    PubMed Central

    Mickey, Brian J.; Heffernan, Joseph; Heisel, Curtis; Peciña, Marta; Hsu, David T.; Zubieta, Jon-Kar; Love, Tiffany M.

    2016-01-01

    Oxytocin is a neuropeptide widely recognized for its role in regulating social and reproductive behavior. Increasing evidence from animal models suggests that oxytocin also modulates reward circuitry in non-social contexts, but evidence in humans is lacking. Here we examined the effects of oxytocin administration on reward circuit function in 18 healthy men as they performed a monetary incentive task. The blood oxygenation level dependent (BOLD) signal was measured using functional magnetic resonance imaging in the context of a randomized, double-blind, placebo-controlled, crossover trial of intranasal oxytocin. We found that oxytocin increases the BOLD signal in the midbrain (substantia nigra and ventral tegmental area) during the late phase of the hemodynamic response to incentive stimuli. Oxytocin’s effects on midbrain responses correlated positively with its effects on positive emotional state. We did not detect an effect of oxytocin on responses in the nucleus accumbens. Whole-brain analyses revealed that oxytocin attenuated medial prefrontal cortical deactivation specifically during anticipation of loss. Our findings demonstrate that intranasal administration of oxytocin modulates human midbrain and medial prefrontal function during motivated behavior. These findings suggest that endogenous oxytocin is a neurochemical mediator of reward behaviors in humans – even in a non-social context – and that the oxytocinergic system is a potential target of pharmacotherapy for psychiatric disorders that involve dysfunction of reward circuitry. PMID:27614896

  1. Deficient behavioral inhibition and anomalous selective attention in a community sample of adolescents with psychopathic traits and low-anxiety traits.

    PubMed

    Vitale, Jennifer E; Newman, Joseph P; Bates, John E; Goodnight, Jackson; Dodge, Kenneth A; Pettit, Gregory S

    2005-08-01

    Socialization is the important process by which individuals learn and then effectively apply the rules of appropriate societal behavior. Response modulation is a psychobiological process theorized to aid in socialization by allowing individuals to utilize contextual information to modify ongoing behavior appropriately. Using Hare's (1991) Psychopathy Checklist and the Welsh (1956) anxiety scale, researchers have identified a relatively specific form of a response modulation deficit in low-anxious, Caucasian psychopaths. Preliminary evidence suggests that the Antisocial Process Screening Device (APSD; Frick & Hare, 2001) may be used to identify children with a similar vulnerability. Using a representative community sample of 308 16-year-olds from the Child Development Project (Dodge, Bates, & Pettit, 1990), we tested and corroborated the hypotheses that participants with relatively low anxiety and high APSD scores would display poorer passive avoidance learning and less interference on a spatially separated, picture-word Stroop task than controls. Consistent with hypotheses, the expected group differences in picture-word Stroop interference were found with male and female participants, whereas predicted differences in passive avoidance were specific to male participants. To the extent that response modulation deficits contributing to poor socialization among psychopathic adult offenders also characterize a subgroup of adolescents with mild conduct problems, clarification of the developmental processes that moderate the expression of this vulnerability could inform early interventions.

  2. Neuromolecular responses to social challenge: common mechanisms across mouse, stickleback fish, and honey bee.

    PubMed

    Rittschof, Clare C; Bukhari, Syed Abbas; Sloofman, Laura G; Troy, Joseph M; Caetano-Anollés, Derek; Cash-Ahmed, Amy; Kent, Molly; Lu, Xiaochen; Sanogo, Yibayiri O; Weisner, Patricia A; Zhang, Huimin; Bell, Alison M; Ma, Jian; Sinha, Saurabh; Robinson, Gene E; Stubbs, Lisa

    2014-12-16

    Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse (Mus musculus), stickleback fish (Gasterosteus aculeatus), and honey bee (Apis mellifera). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic "toolkits" that are used in independent evolutions of the response to social challenge in diverse taxa.

  3. Human Neuroimaging of Oxytocin and Vasopressin in Social Cognition

    PubMed Central

    Zink, Caroline F; Meyer-Lindenberg, Andreas

    2012-01-01

    The neuropeptides oxytocin and vasopressin have increasingly been identified as modulators of human social behaviors and associated with neuropsychiatric disorders characterized by social dysfunction, such as autism. Identifying the human brain regions that are impacted by oxytocin and vasopressin in a social context is essential to fully characterize the role of oxytocin and vasopressin in complex human social cognition. Advances in human non-invasive neuroimaging techniques and genetics have enabled scientists to begin to elucidate the neurobiological basis of the influence of oxytocin and vasopressin on human social behaviors. Here we review the findings to-date from investigations of the acute and chronic effects of oxytocin and vasopressin on neural activity underlying social cognitive processes using “pharmacological fMRI” and “imaging genetics”, respectively. PMID:22326707

  4. Executive Functions in Adolescence: Inferences from Brain and Behavior

    ERIC Educational Resources Information Center

    Crone, Eveline A.

    2009-01-01

    Despite the advances in understanding cognitive improvements in executive function in adolescence, much less is known about the influence of affective and social modulators on executive function and the biological underpinnings of these functions and sensitivities. Here, recent behavioral and neuroscientific studies are summarized that have used…

  5. Influence of long-term social interaction on chirping behavior, steroid levels and neurogenesis in weakly electric fish

    PubMed Central

    Dunlap, Kent D.; Chung, Michael; Castellano, James F.

    2013-01-01

    Summary Social interactions dramatically affect the brain and behavior of animals. Studies in birds and mammals indicate that socially induced changes in adult neurogenesis participate in the regulation of social behavior, but little is known about this relationship in fish. Here, we review studies in electric fish (Apteronotus leptorhychus) that link social stimulation, changes in electrocommunication behavior and adult neurogenesis in brain regions associated with electrocommunication. Compared with isolated fish, fish living in pairs have greater production of chirps, an electrocommunication signal, during dyadic interactions and in response to standardized artificial social stimuli. Social interaction also promotes neurogenesis in the periventricular zone, which contributes born cells to the prepacemaker nucleus, the brain region that regulates chirping. Both long-term chirp rate and periventricular cell addition depend on the signal dynamics (amplitude and waveform variation), modulations (chirps) and novelty of the stimuli from the partner fish. Socially elevated cortisol levels and cortisol binding to glucocorticoid receptors mediate, at least in part, the effect of social interaction on chirping behavior and brain cell addition. In a closely related electric fish (Brachyhypopomus gauderio), social interaction enhances cell proliferation specifically in brain regions for electrocommunication and only during the breeding season, when social signaling is most elaborate. Together, these studies demonstrate a consistent correlation between brain cell addition and environmentally regulated chirping behavior across many social and steroidal treatments and suggest a causal relationship. PMID:23761468

  6. Intranasal Oxytocin and Vasopressin Modulate Divergent Brainwide Functional Substrates.

    PubMed

    Galbusera, Alberto; De Felice, Alessia; Girardi, Stefano; Bassetto, Giacomo; Maschietto, Marta; Nishimori, Katsuhiko; Chini, Bice; Papaleo, Francesco; Vassanelli, Stefano; Gozzi, Alessandro

    2017-06-01

    The neuropeptides oxytocin (OXT) and vasopressin (AVP) have been identified as modulators of emotional social behaviors and associated with neuropsychiatric disorders characterized by social dysfunction. Experimental and therapeutic use of OXT and AVP via the intranasal route is the subject of extensive clinical research. However, the large-scale functional substrates directly engaged by these peptides and their functional dynamics remain elusive. By using cerebral blood volume (CBV) weighted fMRI in the mouse, we show that intranasal administration of OXT rapidly elicits the transient activation of cortical regions and a sustained activation of hippocampal and forebrain areas characterized by high oxytocin receptor density. By contrast, intranasal administration of AVP produced a robust and sustained deactivation in cortico-parietal, thalamic and mesolimbic regions. Importantly, intravenous administration of OXT and AVP did not recapitulate the patterns of modulation produced by intranasal dosing, supporting a central origin of the observed functional changes. In keeping with this notion, hippocampal local field potential recordings revealed multi-band power increases upon intranasal OXT administration. We also show that the selective OXT-derivative TGOT reproduced the pattern of activation elicited by OXT and that the deletion of OXT receptors does not affect AVP-mediated deactivation. Collectively, our data document divergent modulation of brainwide neural systems by intranasal administration of OXT and AVP, an effect that involves key substrates of social and emotional behavior. The observed divergence calls for a deeper investigation of the systems-level mechanisms by which exogenous OXT and AVP modulate brain function and exert their putative therapeutic effects.

  7. Estradiol effects on behavior and serum oxytocin are modified by social status and polymorphisms in the serotonin transporter gene in female rhesus monkeys.

    PubMed

    Michopoulos, Vasiliki; Checchi, Marta; Sharpe, Desiree; Wilson, Mark E

    2011-04-01

    Despite the well-documented relation between estradiol (E2) and behavior, exposure to stressors may modify sensitivity to E2. The effects of E2 on behavior are, in part, likely related to their modulation of the serotonin (5HT) and oxytocin systems. The short allele (s-variant) polymorphism found in the promoter region of the SLC6A4 gene that encodes the 5HT transporter (5HTT) modulates responsivity to stressors. The current study used ovariectomized adult female rhesus monkeys to evaluate how exposure to the psychosocial stressor of social subordination and polymorphisms in the gene encoding 5HTT influence the behavioral effects of E2 and immunoreactive serum oxytocin. Dominant females had higher levels of oxytocin than subordinate animals even though E2 increased immunoreactive serum oxytocin in all females. E2 increased affiliative behaviors in all animals, with even more of these prosocial behaviors directed at dominant females. S-variant females, regardless of social status, were more aggressive toward more subordinate cage mates and these behaviors too were increased by E2. Subordinate s-variant females are most often involved in agonistic behavior, less affiliative behavior, and were less responsive to the anxiolytic action of E2. The results show that the short allele of the 5HTT gene synergizes with psychosocial stress exposure to affect the behavioral efficacy of E2 while confirming the actions of E2 for producing generalized behavioral arousal in females. Whether differences in the central action of 5HT and/or oxytocin are responsible for this effect requires further study. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Mixed housing with DBA/2 mice induces stress in C57BL/6 mice: implications for interventions based on social enrichment

    PubMed Central

    Kulesskaya, Natalia; Karpova, Nina N.; Ma, Li; Tian, Li; Voikar, Vootele

    2014-01-01

    Several behavioral interventions, based on social enrichment and observational learning are applied in treatment of neuropsychiatric disorders. However, the mechanism of such modulatory effect and the safety of applied methods on individuals involved in social support need further investigation. We took advantage of known differences between inbred mouse strains to reveal the effect of social enrichment on behavior and neurobiology of animals with different behavioral phenotypes. C57BL/6 and DBA/2 female mice displaying multiple differences in cognitive, social, and emotional behavior were group-housed either in same-strain or in mixed-strain conditions. Comprehensive behavioral phenotyping and analysis of expression of several plasticity- and stress-related genes were done to measure the reciprocal effects of social interaction between the strains. Contrary to our expectation, mixed housing did not change the behavior of DBA/2 mice. Nevertheless, the level of serum corticosterone and the expression of glucocorticoid receptor Nr3c1 in the brain were increased in mixed housed DBA/2 as compared with those of separately housed DBA/2 mice. In contrast, socially active C57BL/6 animals were more sensitive to the mixed housing, displaying several signs of stress: alterations in learning, social, and anxiety-like behavior and anhedonia. These behavioral impairments were accompanied by the elevated serum corticosterone and the reduced expression of Nr3c1, as well as the elevated Bdnf levels in the cortex and hippocampus. Our results demonstrate the importance of social factors in modulation of both behavior and the underlying neurobiological mechanisms in stress response, and draw attention to the potential negative impact of social interventions for individuals involved in social support. PMID:25147512

  9. Modulating mimicry: Exploring the roles of inhibitory control and social understanding in 5-year-olds' behavioral mimicry.

    PubMed

    van Schaik, Johanna E; Hunnius, Sabine

    2018-01-01

    During adult interactions, behavioral mimicry, the implicit copying of an interaction partner's postures and mannerisms, communicates liking and affiliation. While this social behavior likely develops during early childhood, it is unclear which factors contribute to its emergence. Here, the roles of inhibitory control and social understanding on 5-year-olds' behavioral mimicry were investigated. Following a social manipulation in which one experimenter shared a sticker with the child and the other experimenter kept two stickers for herself, children watched a video in which these experimenters each told a story. During this story session, children in the experimental group (n = 28) observed the experimenters perform face and hand rubbing behaviors whereas the control group (n = 23) did not see these behaviors. Children's inhibitory control was assessed using the day-night task and their social understanding was measured through a parental questionnaire. Surprisingly, group-level analyses revealed that the experimental group performed the behaviors significantly less than the control group (i.e. a negative mimicry effect) for both the sticker-sharer and sticker-keeper. Yet, the hypothesized effects of inhibitory control and social understanding were found. Inhibitory control predicted children's selective mimicry of the sticker-keeper versus sticker-sharer and children's overall mimicry was correlated with social understanding. These results provide the first indications to suggest that factors of social and cognitive development dynamically influence the emergence and specificity of behavioral mimicry during early childhood.

  10. Modulating mimicry: Exploring the roles of inhibitory control and social understanding in 5-year-olds' behavioral mimicry

    PubMed Central

    Hunnius, Sabine

    2018-01-01

    During adult interactions, behavioral mimicry, the implicit copying of an interaction partner’s postures and mannerisms, communicates liking and affiliation. While this social behavior likely develops during early childhood, it is unclear which factors contribute to its emergence. Here, the roles of inhibitory control and social understanding on 5-year-olds’ behavioral mimicry were investigated. Following a social manipulation in which one experimenter shared a sticker with the child and the other experimenter kept two stickers for herself, children watched a video in which these experimenters each told a story. During this story session, children in the experimental group (n = 28) observed the experimenters perform face and hand rubbing behaviors whereas the control group (n = 23) did not see these behaviors. Children’s inhibitory control was assessed using the day-night task and their social understanding was measured through a parental questionnaire. Surprisingly, group-level analyses revealed that the experimental group performed the behaviors significantly less than the control group (i.e. a negative mimicry effect) for both the sticker-sharer and sticker-keeper. Yet, the hypothesized effects of inhibitory control and social understanding were found. Inhibitory control predicted children’s selective mimicry of the sticker-keeper versus sticker-sharer and children’s overall mimicry was correlated with social understanding. These results provide the first indications to suggest that factors of social and cognitive development dynamically influence the emergence and specificity of behavioral mimicry during early childhood. PMID:29513741

  11. IT and Activity Displacement: Behavioral Evidence from the U.S. General Social Survey (GSS)

    ERIC Educational Resources Information Center

    Robinson, John P.; Martin, Steven

    2009-01-01

    In order to track social change during a period of the rapid advances brought about by new information technologies (IT), a targeted module of IT-relevant and Internet questions was added to the 2000, 2002 and 2004 samples of the General Social Survey (GSS). The general issue inherent in and guiding the questions asked (as well as the analyses…

  12. Reward in the mirror neuron system, social context, and the implications on psychopathology.

    PubMed

    Brown, Elliot C; Brüne, Martin

    2014-04-01

    Positive and negative reinforcers guide our behaviors as we interact with others in our social environment. Here, we present evidence that highlights a central role for reward in the general functioning of the mirror neuron system (MNS). We also discuss the relevance of reward-related modulation on other previous findings revealing certain properties of the MNS, and on social context and psychopathology.

  13. Social interaction with a tutor modulates responsiveness of specific auditory neurons in juvenile zebra finches.

    PubMed

    Yanagihara, Shin; Yazaki-Sugiyama, Yoko

    2018-04-12

    Behavioral states of animals, such as observing the behavior of a conspecific, modify signal perception and/or sensations that influence state-dependent higher cognitive behavior, such as learning. Recent studies have shown that neuronal responsiveness to sensory signals is modified when animals are engaged in social interactions with others or in locomotor activities. However, how these changes produce state-dependent differences in higher cognitive function is still largely unknown. Zebra finches, which have served as the premier songbird model, learn to sing from early auditory experiences with tutors. They also learn from playback of recorded songs however, learning can be greatly improved when song models are provided through social communication with tutors (Eales, 1989; Chen et al., 2016). Recently we found a subset of neurons in the higher-level auditory cortex of juvenile zebra finches that exhibit highly selective auditory responses to the tutor song after song learning, suggesting an auditory memory trace of the tutor song (Yanagihara and Yazaki-Sugiyama, 2016). Here we show that auditory responses of these selective neurons became greater when juveniles were paired with their tutors, while responses of non-selective neurons did not change. These results suggest that social interaction modulates cortical activity and might function in state-dependent song learning. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Module Cluster: TTP-001.00 (GSC) Reinforcement Principles for Classroom Use.

    ERIC Educational Resources Information Center

    Brent, George

    The purpose of this module cluster is to enable students to define the basic operant terms, to state the basic operant principles, to read operant measurement charts, and to use operant principles in elementary classrooms with both social and academic behaviors. It is intended for use by teacher education students with the cooperation of an…

  15. Social context rather than behavioral output or winning modulates post-conflict testosterone responses in Japanese quail (Coturnix japonica).

    PubMed

    Hirschenhauser, K; Wittek, M; Johnston, P; Möstl, E

    2008-10-20

    Testosterone regulates the expression of sexual and aggressive behavior in male vertebrates and treatments with testosterone may promote territorial aggression and winning in dyadic contests. Conversely, individual testosterone levels respond to sexual or aggressive interactions and the social environment. Post-conflict testosterone in winner males though appears to be more complex than simply reflecting conflict outcome. Expression and degree of post-conflict testosterone responses may adapt to additional modulators such as repeated winning experience, audience presence, opponent's fighting ability, and self-assessment. We present simulated intrusion experiments with male Japanese quail using mirror-elicited aggression and fights with real opponents ('direct challenge'). We recorded agonistic behavior and measured immunoreactive testosterone metabolites (TM) non-invasively from individual droppings. Frequencies of initiated agonistic behavior were similar whether towards the mirror or in direct challenge tests, although some of the males were behaviorally non-responsive to the mirror ('mirror submissives'). However, there was no TM response to the mirror test in both, mirror fighters and mirror submissives, thus independently of behavioral output. After direct challenges TM levels were elevated in all males (focal males winning or conflict unresolved after 30 min), hence independently of conflict outcome. Thus, in male quail a combination of physical stimuli and the individual perception of own and opponent's fighting ability explained the expression of post-conflict TM responses rather than behavioral performance, conflict outcome, or any of these factors alone. In sum, our results emphasize that the degree of androgen responsiveness to agonistic behavior is fine-tuned by components related with social context and environment.

  16. The neural correlates of reciprocity are sensitive to prior experience of reciprocity.

    PubMed

    Cáceda, Ricardo; Prendes-Alvarez, Stefania; Hsu, Jung-Jiin; Tripathi, Shanti P; Kilts, Clint D; James, G Andrew

    2017-08-14

    Reciprocity is central to human relationships and is strongly influenced by multiple factors including the nature of social exchanges and their attendant emotional reactions. Despite recent advances in the field, the neural processes involved in this modulation of reciprocal behavior by ongoing social interaction are poorly understood. We hypothesized that activity within a discrete set of neural networks including a putative moral cognitive neural network is associated with reciprocity behavior. Nineteen healthy adults underwent functional magnetic resonance imaging scanning while playing the trustee role in the Trust Game. Personality traits and moral development were assessed. Independent component analysis was used to identify task-related functional brain networks and assess their relationship to behavior. The saliency network (insula and anterior cingulate) was positively correlated with reciprocity behavior. A consistent array of brain regions supports the engagement of emotional, self-referential and planning processes during social reciprocity behavior. Published by Elsevier B.V.

  17. When Bad Things Happen in Good Libraries: Staff Tools for the '90s and Beyond.

    ERIC Educational Resources Information Center

    Bangs, Patricia

    1998-01-01

    A Problem Task Force from the Fairfax County Public Library worked with other county agencies such as the police and social services to redesign a "Problem Behavior Manual" and present a training module for staff to better prepare them to deal with socially ill patrons. (Author/AEF)

  18. Ifenprodil infusion in agranular insular cortex alters social behavior and vocalizations in rats exposed to moderate levels of ethanol during prenatal development

    PubMed Central

    Bird, Clark W.; Barto, Daniel; Magcalas, Christy M.; Rodriguez, Carlos I.; Donaldson, Tia; Davies, Suzy; Savage, Daniel D.; Hamilton, Derek A.

    2016-01-01

    Moderate exposure to alcohol during development leads to subtle neurobiological and behavioral effects classified under the umbrella term fetal alcohol spectrum disorders (FASDs). Alterations in social behaviors are a frequently observed consequence of maternal drinking, as children with FASDs display inappropriate aggressive behaviors and altered responses to social cues. Rodent models of FASDs mimic the behavioral alterations seen in humans, with rats exposed to ethanol during development displaying increased aggressive behaviors, decreased social investigation, and altered play behavior. Work from our laboratory has observed increased wrestling behavior in adult male rats following prenatal alcohol exposure (PAE), and increased expression of GluN2B-containing NMDA receptors in the agranular insular cortex (AIC). This study was undertaken to determine if ifenprodil, a GluN2B preferring negative allosteric modulator, has a significant effect on social behaviors in PAE rats. Using a voluntary ethanol exposure paradigm, rat dams were allowed to drink a saccharin-sweetened solution of either 0% or 5% ethanol throughout gestation. Offspring at 6–8 months of age were implanted with cannulae into AIC. Animals were isolated for 24 hours before ifenprodil or vehicle was infused into AIC, and after 15 minutes they were recorded in a social interaction chamber. Ifenprodil treatment altered aspects of wrestling, social investigatory behaviors, and ultrasonic vocalizations in rats exposed to ethanol during development that were not observed in control animals. These data indicate that GluN2B-containing NMDA receptors in AIC play a role in social behaviors and may underlie alterations in behavior and vocalizations observed in PAE animals. PMID:27888019

  19. Dominance relationships in Syrian hamsters modulate neuroendocrine and behavioral responses to social stress.

    PubMed

    Dulka, Brooke N; Koul-Tiwari, Richa; Grizzell, J Alex; Harvey, Marquinta L; Datta, Subimal; Cooper, Matthew A

    2018-06-22

    Stress is a well-known risk factor for psychopathology and rodent models of social defeat have strong face, etiological, construct and predictive validity for these conditions. Syrian hamsters are highly aggressive and territorial, but after an acute social defeat experience they become submissive and no longer defend their home territory, even from a smaller, non-aggressive intruder. This defeat-induced change in social behavior is called conditioned defeat (CD). We have shown that dominant hamsters show increased neural activity in the ventromedial prefrontal cortex (vmPFC) following social defeat stress and exhibit a reduced CD response at social interaction testing compared to subordinates. Although the vmPFC can inhibit the neuroendocrine stress response, it is unknown whether dominants and subordinates differ in stress-induced activity of the extended hypothalamic-pituitary-adrenal (HPA) axis. Here, we show that, following acute social defeat, dominants exhibit decreased submissive and defensive behavior compared to subordinates but do not differ from subordinates or social status controls (SSCs) in defeat-induced cortisol concentrations. Furthermore, both dominants and SSCs show greater corticotropin-releasing hormone (CRH) mRNA expression in the basolateral/central amygdala compared to subordinates, while there was no effect of social status on CRH mRNA expression in the paraventricular nucleus of the hypothalamus or bed nucleus of the stria terminalis. Overall, status-dependent differences in the CD response do not appear linked to changes in stress-induced cortisol concentrations or CRH gene expression, which is consistent with the view that stress resilience is not a lack of a physiological stress response but the addition of stress coping mechanisms. Lay summary Dominant hamsters show resistance to the behavioral effects of acute social defeat compared to subordinates, but it is unclear whether social status modulates the neuroendocrine stress response in Syrian hamsters. This study indicates that dominant social status does not alter stress-induced activity of the extended hypothalamic-pituitary-adrenal (HPA) axis, which suggests that the ability of dominants to cope with social defeat stress is not associated with changes in their neuroendocrine stress response.

  20. The CRF system and social behavior: a review

    PubMed Central

    Hostetler, Caroline M.; Ryabinin, Andrey E.

    2013-01-01

    The corticotropin-releasing factor (CRF) system plays a key role in a diversity of behaviors accompanying stress, anxiety and depression. There is also substantial research on relationships between social behaviors and the CRF system in a variety of taxa including fish, birds, rodents, and primates. Some of these relationships are due to the broad role of CRF and urocortins in stress and anxiety, but these peptides also modulate social behavior specifically. For example, the social interaction (SI) test is often used to measure anxiety-like behavior. Many components of the CRF system including CRF, urocortin1, and the R1 receptor have been implicated in SI, via general effects on anxiety as well as specific effects depending on the brain region. The CRF system is also highly responsive to chronic social stressors such as social defeat and isolation. Animals exposed to these stressors display a number of anxiety- and stress-related behaviors, accompanied by changes in specific components the CRF system. Although the primary focus of CRF research on social behavior has been on the deleterious effects of social stress, there are also insights on a role for CRF and urocortins in prosocial and affiliative behaviors. The CRF system has been implicated in parental care, maternal defense, sexual behavior, and pair bonding. Species differences in the ligands and CRF receptors have been observed in vole and bird species differing in social behavior. Exogenous administration of CRF facilitates partner preference formation in monogamous male prairie voles, and these effects are dependent on both the CRF R1 and R2 receptors. These findings are particularly interesting as studies have also implicated the CRF and urocortins in social memory. With the rapid progress of social neuroscience and in understanding the complex structure of the CRF system, the next challenge is in parsing the exact contribution of individual components of this system to specific social behaviors. PMID:23754975

  1. The CRF system and social behavior: a review.

    PubMed

    Hostetler, Caroline M; Ryabinin, Andrey E

    2013-01-01

    The corticotropin-releasing factor (CRF) system plays a key role in a diversity of behaviors accompanying stress, anxiety and depression. There is also substantial research on relationships between social behaviors and the CRF system in a variety of taxa including fish, birds, rodents, and primates. Some of these relationships are due to the broad role of CRF and urocortins in stress and anxiety, but these peptides also modulate social behavior specifically. For example, the social interaction (SI) test is often used to measure anxiety-like behavior. Many components of the CRF system including CRF, urocortin1, and the R1 receptor have been implicated in SI, via general effects on anxiety as well as specific effects depending on the brain region. The CRF system is also highly responsive to chronic social stressors such as social defeat and isolation. Animals exposed to these stressors display a number of anxiety- and stress-related behaviors, accompanied by changes in specific components the CRF system. Although the primary focus of CRF research on social behavior has been on the deleterious effects of social stress, there are also insights on a role for CRF and urocortins in prosocial and affiliative behaviors. The CRF system has been implicated in parental care, maternal defense, sexual behavior, and pair bonding. Species differences in the ligands and CRF receptors have been observed in vole and bird species differing in social behavior. Exogenous administration of CRF facilitates partner preference formation in monogamous male prairie voles, and these effects are dependent on both the CRF R1 and R2 receptors. These findings are particularly interesting as studies have also implicated the CRF and urocortins in social memory. With the rapid progress of social neuroscience and in understanding the complex structure of the CRF system, the next challenge is in parsing the exact contribution of individual components of this system to specific social behaviors.

  2. Do marmosets care to share? Oxytocin treatment reduces prosocial behavior toward strangers.

    PubMed

    Mustoe, Aaryn C; Cavanaugh, Jon; Harnisch, April M; Thompson, Breanna E; French, Jeffrey A

    2015-05-01

    Cooperatively-breeding and socially-monogamous primates, like marmosets and humans, exhibit high levels of social tolerance and prosociality toward others. Oxytocin (OXT) generally facilitates prosocial behavior, but there is growing recognition that OXT modulation of prosocial behavior is shaped by the context of social interactions and by other motivational states such as arousal or anxiety. To determine whether prosociality varies based on social context, we evaluated whether marmoset donors (Callithrix penicillata) preferentially rewarded pairmates versus opposite-sex strangers in a prosocial food-sharing task. To examine potential links among OXT, stress systems, and prosociality, we evaluated whether pretrial cortisol levels in marmosets altered the impact of OXT on prosocial responses. Marmosets exhibited spontaneous prosociality toward others, but they did so preferentially toward strangers compared to their pairmates. When donor marmosets were treated with marmoset-specific Pro(8)-OXT, they exhibited reduced prosociality toward strangers compared to marmosets treated with saline or consensus-mammalian Leu(8)-OXT. When pretrial cortisol levels were lower, marmosets exhibited higher prosociality toward strangers. These findings demonstrate that while marmosets show spontaneous prosocial responses toward others, they do so preferentially toward opposite-sex strangers. Cooperative breeding may be associated with the expression of prosociality, but the existence of a pair-bond between marmoset partners appears to be neither necessary nor sufficient for the expression of spontaneous prosocial responses. Furthermore, high prosociality toward strangers is significantly reduced in marmosets treated with Pro(8)-OXT, suggesting that OXT does not universally enhance prosociality, but, rather OXT modulation of prosocial behavior varies depending on social context. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Do marmosets care to share? Oxytocin treatment reduces prosocial behavior toward strangers

    PubMed Central

    Mustoe, Aaryn C.; Cavanaugh, Jon; Harnisch, April M.; Thompson, Breanna E.; French, Jeffrey A.

    2015-01-01

    Cooperatively-breeding and socially-monogamous primates, like marmosets and humans, exhibit high levels of social tolerance and prosociality toward others. Oxytocin (OXT) generally facilitates prosocial behavior, but there is growing recognition that OXT modulation of prosocial behavior is shaped by the context of social interactions and by other motivational states such as arousal or anxiety. To determine whether prosociality varies based on social context, we evaluated whether marmoset donors (Callithrix penicillata) preferentially rewarded pairmates versus opposite-sex strangers in a prosocial food-sharing task. To examine potential links among OXT, stress systems, and prosociality, we evaluated whether pretrial cortisol levels in marmosets altered the impact of OXT on prosocial responses. Marmosets exhibited spontaneous prosociality toward others, but they did so preferentially toward strangers compared to their pairmates. When donor marmosets were treated with marmoset-specific Pro8-OXT, they exhibited reduced prosociality toward strangers compared to marmosets treated with saline or consensus-mammalian Leu8-OXT. When pretrial cortisol levels were lower, marmosets exhibited higher prosociality toward strangers. These findings demonstrate that while marmosets show spontaneous prosocial responses toward others, they do so preferentially toward opposite-sex strangers. Cooperative breeding may be associated with the expression of prosociality, but the existence of a pair-bond between marmoset partners appears to be neither necessary nor sufficient for the expression of spontaneous prosocial responses. Further, high prosociality toward strangers is significantly reduced in marmosets treated with Pro8-OXT, suggesting that OXT does not universally enhance prosociality, but, rather OXT modulation of prosocial behavior varies depending on social context. PMID:25934057

  4. Gender Differences in Behavioral and Neural Responses to Unfairness Under Social Pressure.

    PubMed

    Zheng, Li; Ning, Reipeng; Li, Lin; Wei, Chunli; Cheng, Xuemei; Zhou, Chu; Guo, Xiuyan

    2017-10-18

    Numerous studies have revealed the key role of social pressure on individuals' decision-making processes. However, the impact of social pressure on unfairness-related decision-making processes remains unclear. In the present study, we investigated how social pressure modulated men's and women's responses in an ultimatum game. Twenty women and eighteen men played the ultimatum game as responders in the scanner, where fair and unfair offers were tendered by proposers acting alone (low pressure) or by proposers endorsed by three supporters (high pressure). Results showed that men rejected more, whereas women accepted more unfair offers in the high versus low pressure context. Neurally, pregenual anterior cingulate cortex activation in women positively predicted their acceptance rate difference between contexts. In men, stronger right anterior insula activation and increased connectivity between right anterior insula and dorsal anterior cingulate cortex were observed when they receiving unfair offers in the high than low pressure context. Furthermore, more bilateral anterior insula and left dorsolateral prefrontal cortex activations were found when men rejected (relative to accepted) unfair offers in the high than low pressure context. These findings highlighted gender differences in the modulation of behavioral and neural responses to unfairness by social pressure.

  5. Oxytocin selectively modulates brain response to stimuli probing social synchrony.

    PubMed

    Levy, Jonathan; Goldstein, Abraham; Zagoory-Sharon, Orna; Weisman, Omri; Schneiderman, Inna; Eidelman-Rothman, Moranne; Feldman, Ruth

    2016-01-01

    The capacity to act collectively within groups has led to the survival and thriving of Homo sapiens. A central group collaboration mechanism is "social synchrony," the coordination of behavior during joint action among affiliative members, which intensifies under threat. Here, we tested brain response to vignettes depicting social synchrony among combat veterans trained for coordinated action and following life-threatening group experience, versus controls, as modulated by oxytocin (OT), a neuropeptide supporting social synchrony. Using a randomized, double-blind, within-subject design, 40 combat-trained and control male veterans underwent magnetoencephalography (MEG) twice following OT/placebo administration while viewing two social vignettes rated as highly synchronous: pleasant male social gathering and coordinated unit during combat. Both vignettes activated a wide response across the social brain in the alpha band; the combat scene triggered stronger activations. Importantly, OT effects were modulated by prior experience. Among combat veterans, OT attenuated the increased response to combat stimuli in the posterior superior temporal sulcus (pSTS) - a hub of social perception, action observation, and mentalizing - and enhanced activation in the inferior parietal lobule (IPL) to the pleasant social scene. Among controls, OT enhanced inferior frontal gyrus (IFG) response to combat cues, demonstrating selective OT effects on mirror-neuron and mentalizing networks. OT-enhanced mirror network activity was dampened in veterans reporting higher posttraumatic symptoms. Results demonstrate that the social brain responds online, via modulation of alpha rhythms, to stimuli probing social synchrony, particularly those involving threat to survival, and OT's enhancing versus anxiolytic effects are sensitive to salient experiences within social groups. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. The neuroanatomical distribution of oxytocin receptor binding and mRNA in the male rhesus macaque (Macaca mulatta).

    PubMed

    Freeman, Sara M; Inoue, Kiyoshi; Smith, Aaron L; Goodman, Mark M; Young, Larry J

    2014-07-01

    The rhesus macaque (Macaca mulatta) is an important primate model for social cognition, and recent studies have begun to explore the impact of oxytocin on social cognition and behavior. Macaques have great potential for elucidating the neural mechanisms by which oxytocin modulates social cognition, which has implications for oxytocin-based pharmacotherapies for psychiatric disorders such as autism and schizophrenia. Previous attempts to localize oxytocin receptors (OXTR) in the rhesus macaque brain have failed due to reduced selectivity of radioligands, which in primates bind to both OXTR and the structurally similar vasopressin 1a receptor (AVPR1A). We have developed a pharmacologically-informed competitive binding autoradiography protocol that selectively reveals OXTR and AVPR1A binding sites in primate brain sections. Using this protocol, we describe the neuroanatomical distribution of OXTR in the macaque. Finally, we use in situ hybridization to localize OXTR mRNA. Our results demonstrate that OXTR expression in the macaque brain is much more restricted than AVPR1A. OXTR is largely limited to the nucleus basalis of Meynert, pedunculopontine tegmental nucleus, the superficial gray layer of the superior colliculus, the trapezoid body, and the ventromedial hypothalamus. These regions are involved in a variety of functions relevant to social cognition, including modulating visual attention, processing auditory and multimodal sensory stimuli, and controlling orienting responses to visual stimuli. These results provide insights into the neural mechanisms by which oxytocin modulates social cognition and behavior in this species, which, like humans, uses vision and audition as the primary modalities for social communication. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The neuroanatomical distribution of oxytocin receptor binding and mRNA in the male rhesus macaque (Macaca mulatta)

    PubMed Central

    Freeman, Sara M.; Inoue, Kiyoshi; Smith, Aaron L.; Goodman, Mark M.; Young, Larry J.

    2014-01-01

    The rhesus macaque (Macaca mulatta) is an important primate model for social cognition, and recent studies have begun to explore the impact of oxytocin on social cognition and behavior. Macaques have great potential for elucidating the neural mechanisms by which oxytocin modulates social cognition, which has implications for oxytocin-based pharmacotherapies for psychiatric disorders such as autism and schizophrenia. Previous attempts to localize oxytocin receptors (OXTR) in the rhesus macaque brain have failed due to reduced selectivity of radioligands, which in primates bind to both OXTR and the structurally similar vasopressin 1a receptor (AVPR1A). We have developed a pharmacologically-informed competitive binding autoradiography protocol that selectively reveals OXTR and AVPR1A binding sites in primate brain sections. Using this protocol, we describe the neuroanatomical distribution of OXTR in the macaque. Finally, we use in situ hybridization to localize OXTR mRNA. Our results demonstrate that OXTR expression in the macaque brain is much more restricted than AVPR1A. OXTR is largely limited to the nucleus basalis of Meynert, pedunculopontine tegmental nucleus, the superficial gray layer of the superior colliculus, the trapezoid body, and the ventromedial hypothalamus. These regions are involved in a variety of functions relevant to social cognition, including modulating visual attention, processing auditory and multimodal sensory stimuli, and controlling orienting responses to visual stimuli. These results provide insights into the neural mechanisms by which oxytocin modulates social cognition and behavior in this species, which, like humans, uses vision and audition as the primary modalities for social communication. PMID:24845184

  8. Inhaled oxytocin increases positive social behaviors in newborn macaques

    PubMed Central

    Simpson, Elizabeth A.; Sclafani, Valentina; Paukner, Annika; Hamel, Amanda F.; Novak, Melinda A.; Meyer, Jerrold S.; Suomi, Stephen J.; Ferrari, Pier Francesco

    2014-01-01

    Early caregiver–infant interactions are critical for infants’ socioemotional and cognitive development. Several hormones and neuromodulators, including oxytocin, affect these interactions. Exogenous oxytocin promotes social behaviors in several species, including human and nonhuman primates. Although exogenous oxytocin increases social function in adults—including expression recognition and affiliation—it is unknown whether oxytocin can increase social interactions in infants. We hypothesized that nebulized oxytocin would increase affiliative social behaviors and such effects would be modulated by infants’ social skills, measured earlier in development. We also hypothesized that oxytocin’s effects on social behaviors may be due to its anxiolytic effects. We tested these hypotheses in a blind study by nebulizing 7- to 14-d-old macaques (n = 28) with oxytocin or saline. Following oxytocin administration, infants’ facial gesturing at a human caregiver increased, and infants’ salivary oxytocin was positively correlated with the time spent in close proximity to a caregiver. Infants’ imitative skill (measured earlier in development: 1–7 d of age) predicted oxytocin-associated increases in affiliative behaviors—lip smacking, visual attention to a caregiver, and time in close proximity to a caregiver—suggesting that infants with higher propensities for positive social interactions are more sensitive to exogenous oxytocin. Oxytocin also decreased salivary cortisol, but not stress-related behaviors (e.g., scratching), suggesting the possibility of some anxiolytic effects. To our knowledge, this study provides the first evidence that oxytocin increases positive social behaviors in newborns. This information is of critical importance for potential interventions aimed at ameliorating inadequate social behaviors in infants with higher likelihood of developing neurodevelopmental disorder. PMID:24778211

  9. Prior social experience affects the behavioral and neural responses to acute alcohol in juvenile crayfish.

    PubMed

    Swierzbinski, Matthew E; Lazarchik, Andrew R; Herberholz, Jens

    2017-04-15

    The effects of alcohol on society can be devastating, both as an immediate consequence of acute intoxication and as a powerful drug of abuse. However, the neurocellular mechanisms of alcohol intoxication are still elusive, partly because of the complex interactions between alcohol and nervous system function. We found that juvenile crayfish are behaviorally sensitive to acute alcohol exposure and progress through stages that are strikingly similar to those of most other intoxicated organisms. Most surprisingly, we found that the social history of the animals significantly modified the acute effects of alcohol. Crayfish taken from a rich social environment became intoxicated more rapidly than animals that were socially isolated before alcohol exposure. In addition, we found that the modulation of intoxicated behaviors by prior social experience was paralleled on the level of individual neurons. These results significantly improve our understanding of the mechanisms underlying the interplay between social experience, alcohol intoxication and nervous system function. © 2017. Published by The Company of Biologists Ltd.

  10. Subthalamic nucleus modulates social and anxogenic-like behaviors.

    PubMed

    Reymann, Jean-Michel; Naudet, Florian; Pihan, Morgane; Saïkali, Stephan; Laviolle, Bruno; Bentué-Ferrer, Danièle

    2013-09-01

    In Parkinson's disease, global social maladjustment and anxiety are frequent after subthalamic nucleus (STN) stimulation and are generally considered to be linked with sociofamilial alterations induced by the motor effects of stimulation. We hypothesized that the STN is per se involved in these changes and aimed to explore the role of STN in social and anxogenic-like behaviors using an animal model. Nineteen male Wistar rats with bilateral lesions of the STN were compared with 26 sham-lesioned rats by synchronizing an ethological approach based upon direct observation of social behaviors and a standardized approach, the elevated plus maze (EPM). Comparisons between groups were performed by a Mann-Whitney-Wilcoxon test. Lesioned rats showed impairments in their social (P=0.05) and aggressive behaviors with a diminution of attacking (P=0.04) and chasing (P=0.06). In the EPM, concerning the open arms, the percentage of distance, time, inactive time, and entry were significantly decreased in lesioned rats (P=0.02, P=0.01, P=0.04, and P=0.05). The time spent in non-protected head dips was also diminished in the lesioned rats (P=0.01). These results strongly implicate the STN in social behavior and anxogenic-like behavior. In human, as DBS induces changes in the underlying dynamics of the stimulated brain networks, it could create an abnormal brain state in which anxiety and social behavior are altered. These results highlight another level of complexity of the behavioral changes after stimulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Oxytocin and the Neural Mechanisms Regulating Social Cognition and Affiliative Behavior

    PubMed Central

    Ross, Heather E.; Young, Larry J.

    2009-01-01

    Oxytocin is produced in the hypothalamus and released into the circulation through the neurohypophyseal system. Peripherally released oxytocin facilitates parturition and milk ejection during nursing. Centrally released oxytocin coordinates the onset of maternal nurturing behavior at parturition and plays a role in mother-infant bonding. More recent studies have revealed a more general role for oxytocin in modulating affiliative behavior in both sexes. Oxytocin regulates alloparental care and pair bonding in female monogamous prairie voles. Social recognition in male and female mice is also modulated by oxytocin. In humans, oxytocin increases gaze to the eye region of human faces and enhances interpersonal trust and the ability to infer the emotions of others from facial cues. While the neurohypopheseal oxytocin system has been well characterized, less is known regarding the nature of oxytocin release within the brain. Here we review the role of oxytocin in the regulation prosocial interactions, and discuss the neuroanatomy of the central oxytocin system. PMID:19481567

  12. Modulation of value representation by social context in the primate orbitofrontal cortex.

    PubMed

    Azzi, João C B; Sirigu, Angela; Duhamel, Jean-René

    2012-02-07

    Primates depend for their survival on their ability to understand their social environment, and their behavior is often shaped by social circumstances. We report that the orbitofrontal cortex, a brain region involved in motivation and reward, is tuned to social information. Macaque monkeys worked to collect rewards for themselves and two monkey partners. Behaviorally, monkeys discriminated between cues signaling large and small [corrected] rewards, and between cues signaling rewards to self only and reward to both self and another monkey, with a preference for the former over the latter in both instances. Single neurons recorded during this task encoded the meaning of visual cues that predicted the magnitude of future rewards, as well as the motivational value of rewards obtained in a social context. Furthermore, neuronal activity was found to track momentary social preferences and partner's identity and social rank. The orbitofrontal cortex thus contains key neuronal mechanisms for the evaluation of social information.

  13. You Look Human, But Act Like a Machine: Agent Appearance and Behavior Modulate Different Aspects of Human-Robot Interaction.

    PubMed

    Abubshait, Abdulaziz; Wiese, Eva

    2017-01-01

    Gaze following occurs automatically in social interactions, but the degree to which gaze is followed depends on whether an agent is perceived to have a mind, making its behavior socially more relevant for the interaction. Mind perception also modulates the attitudes we have toward others, and determines the degree of empathy, prosociality, and morality invested in social interactions. Seeing mind in others is not exclusive to human agents, but mind can also be ascribed to non-human agents like robots, as long as their appearance and/or behavior allows them to be perceived as intentional beings. Previous studies have shown that human appearance and reliable behavior induce mind perception to robot agents, and positively affect attitudes and performance in human-robot interaction. What has not been investigated so far is whether different triggers of mind perception have an independent or interactive effect on attitudes and performance in human-robot interaction. We examine this question by manipulating agent appearance (human vs. robot) and behavior (reliable vs. random) within the same paradigm and examine how congruent (human/reliable vs. robot/random) versus incongruent (human/random vs. robot/reliable) combinations of these triggers affect performance (i.e., gaze following) and attitudes (i.e., agent ratings) in human-robot interaction. The results show that both appearance and behavior affect human-robot interaction but that the two triggers seem to operate in isolation, with appearance more strongly impacting attitudes, and behavior more strongly affecting performance. The implications of these findings for human-robot interaction are discussed.

  14. Effects of gendered behavior on testosterone in women and men.

    PubMed

    van Anders, Sari M; Steiger, Jeffrey; Goldey, Katherine L

    2015-11-10

    Testosterone is typically understood to contribute to maleness and masculinity, although it also responds to behaviors such as competition. Competition is crucial to evolution and may increase testosterone but also is selectively discouraged for women and encouraged for men via gender norms. We conducted an experiment to test how gender norms might modulate testosterone as mediated by two possible gender→testosterone pathways. Using a novel experimental design, participants (trained actors) performed a specific type of competition (wielding power) in stereotypically masculine vs. feminine ways. We hypothesized in H1 (stereotyped behavior) that wielding power increases testosterone regardless of how it is performed, vs. H2 (stereotyped performance), that wielding power performed in masculine but not feminine ways increases testosterone. We found that wielding power increased testosterone in women compared with a control, regardless of whether it was performed in gender-stereotyped masculine or feminine ways. Results supported H1 over H2: stereotyped behavior but not performance modulated testosterone. These results also supported theory that competition modulates testosterone over masculinity. Our findings thus support a gender→testosterone pathway mediated by competitive behavior. Accordingly, cultural pushes for men to wield power and women to avoid doing so may partially explain, in addition to heritable factors, why testosterone levels tend to be higher in men than in women: A lifetime of gender socialization could contribute to "sex differences" in testosterone. Our experiment opens up new questions of gender→testosterone pathways, highlighting the potential of examining nature/nurture interactions and effects of socialization on human biology.

  15. Octopamine modulates honey bee dance behavior.

    PubMed

    Barron, Andrew B; Maleszka, Ryszard; Vander Meer, Robert K; Robinson, Gene E

    2007-01-30

    Honey bees communicate the location and desirability of valuable forage sites to their nestmates through an elaborate, symbolic "dance language." The dance language is a uniquely complex communication system in invertebrates, and the neural mechanisms that generate dances are largely unknown. Here we show that treatments with controlled doses of the biogenic amine neuromodulator octopamine selectively increased the reporting of resource value in dances by forager bees. Oral and topical octopamine treatments modulated aspects of dances related to resource profitability in a dose-dependent manner. Dances for pollen and sucrose responded similarly to octopamine treatment, and these effects were eliminated by treatment with the octopamine antagonist mianserin. We propose that octopamine modulates the representation of floral rewards in dances by changing the processing of reward in the honey bee brain. Octopamine is known to modulate appetitive behavior in a range of solitary insects; the role of octopamine in dance provides an example of how neural substrates can be adapted for new behavioral innovations in the process of social evolution.

  16. Octopamine modulates honey bee dance behavior

    PubMed Central

    Barron, Andrew B.; Maleszka, Ryszard; Vander Meer, Robert K.; Robinson, Gene E.

    2007-01-01

    Honey bees communicate the location and desirability of valuable forage sites to their nestmates through an elaborate, symbolic “dance language.” The dance language is a uniquely complex communication system in invertebrates, and the neural mechanisms that generate dances are largely unknown. Here we show that treatments with controlled doses of the biogenic amine neuromodulator octopamine selectively increased the reporting of resource value in dances by forager bees. Oral and topical octopamine treatments modulated aspects of dances related to resource profitability in a dose-dependent manner. Dances for pollen and sucrose responded similarly to octopamine treatment, and these effects were eliminated by treatment with the octopamine antagonist mianserin. We propose that octopamine modulates the representation of floral rewards in dances by changing the processing of reward in the honey bee brain. Octopamine is known to modulate appetitive behavior in a range of solitary insects; the role of octopamine in dance provides an example of how neural substrates can be adapted for new behavioral innovations in the process of social evolution. PMID:17237217

  17. Development of Functional Connectivity during Adolescence: A Longitudinal Study Using an Action-Observation Paradigm

    ERIC Educational Resources Information Center

    Shaw, Daniel J.; Grosbras, Marie-Helene; Leonard, Gabriel; Pike, G. Bruce; Paus, Tomas

    2011-01-01

    Successful interpersonal interactions rely on an ability to read the emotional states of others and to modulate one's own behavior in response. The actions of others serve as valuable social stimuli in this respect, offering the observer an insight into the actor's emotional state. Social cognition continues to mature throughout adolescence. Here…

  18. Intranasal Oxytocin and Vasopressin Modulate Divergent Brainwide Functional Substrates

    PubMed Central

    Galbusera, Alberto; De Felice, Alessia; Girardi, Stefano; Bassetto, Giacomo; Maschietto, Marta; Nishimori, Katsuhiko; Chini, Bice; Papaleo, Francesco; Vassanelli, Stefano; Gozzi, Alessandro

    2017-01-01

    The neuropeptides oxytocin (OXT) and vasopressin (AVP) have been identified as modulators of emotional social behaviors and associated with neuropsychiatric disorders characterized by social dysfunction. Experimental and therapeutic use of OXT and AVP via the intranasal route is the subject of extensive clinical research. However, the large-scale functional substrates directly engaged by these peptides and their functional dynamics remain elusive. By using cerebral blood volume (CBV) weighted fMRI in the mouse, we show that intranasal administration of OXT rapidly elicits the transient activation of cortical regions and a sustained activation of hippocampal and forebrain areas characterized by high oxytocin receptor density. By contrast, intranasal administration of AVP produced a robust and sustained deactivation in cortico-parietal, thalamic and mesolimbic regions. Importantly, intravenous administration of OXT and AVP did not recapitulate the patterns of modulation produced by intranasal dosing, supporting a central origin of the observed functional changes. In keeping with this notion, hippocampal local field potential recordings revealed multi-band power increases upon intranasal OXT administration. We also show that the selective OXT-derivative TGOT reproduced the pattern of activation elicited by OXT and that the deletion of OXT receptors does not affect AVP-mediated deactivation. Collectively, our data document divergent modulation of brainwide neural systems by intranasal administration of OXT and AVP, an effect that involves key substrates of social and emotional behavior. The observed divergence calls for a deeper investigation of the systems-level mechanisms by which exogenous OXT and AVP modulate brain function and exert their putative therapeutic effects. PMID:27995932

  19. The oxytocin system in drug discovery for autism: Animal models and novel therapeutic strategies

    PubMed Central

    Modi, Meera E.; Young, Larry J.

    2012-01-01

    Animal models and behavioral paradigms are critical for elucidating the neural mechanism involved in complex behaviors, including social cognition. Both genotype and phenotype based models have implicated the neuropeptide oxytocin (OT) in the regulation of social behavior. Based on the findings in animal models, alteration of the OT system has been hypothesized to play a role in the social deficits associated with autism and other neuropsychiatric disorders. While the evidence linking the peptide to the etiology of the disorder is not yet conclusive, evidence from multiple animal models suggest modulation of the OT system may be a viable strategy for the pharmacological treatment of social deficits. In this review, we will discuss how animal models have been utilized to understand the role of OT in social cognition and how those findings can be applied to the conceptualization and treatment of the social impairments in ASD. Animal models with genetic alterations of the OT system, like the OT, OT receptor and CD38 knock-out mice, and those with phenotypic variation in social behavior, like BTBR inbred mice and prairie voles, coupled with behavioral paradigms with face and construct validity may prove to have predictive validity for identifying the most efficacious methods of stimulating the OT system to enhance social cognition in humans. The widespread use of strong animal models of social cognition has the potential yield pharmacological, interventions for the treatment social impairments psychiatric disorders. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior. PMID:22206823

  20. Vasotocin increases dominance in the weakly electric fish Brachyhypopomus gauderio.

    PubMed

    Perrone, Rossana; Silva, Ana

    2016-10-01

    Animals establish social hierarchies through agonistic behavior. The recognition of the own and others social ranks is crucial for animals that live in groups to avoid costly constant conflicts. Weakly electric fish are valuable model systems for the study of agonistic behavior and its neuromodulation, given that they display conspicuous electrocommunication signals that are generated by a very well-known electromotor circuit. Brachyhypopomus gauderio is a gregarious electric fish, presents a polygynous breeding system, morphological and electrophysiological sexual dimorphism during the breeding season, and displays a typical intrasexual reproduction-related aggression. Dominants signal their social status by increasing their electric organ discharge (EOD) rate after an agonistic encounter (electric dominance). Subordinates only occasionally produce transient electric signals (chirps and offs). The hypothalamic neuropeptide arginine-vasotocin (AVT) and its mammalian homologue, arginine- vasopressin (AVP) are key modulators of social behavior across vertebrates. In this study, we focus on the role of AVT on dominance establishment in Brachyhypopomus gauderio by analyzing the effects of pharmacological manipulations of the AVT system in potential dominants. AVT exerts a very specific direct effect restricted only to EOD rate, and is responsible for the electric dominance. Unexpectedly, AVT did not affect the intensity of aggression in either contender. Nor was the time structure affected by AVT administration. We also present two interesting examples of the interplay between contenders by evaluating how AVT modulations, even when directed to one individual, affect the behavior of the dyad as a unit. First, we found that V1a AVT receptor antagonist Manning Compound (MC) induces a reversion in the positive correlation between dominants' and subordinates' attack rates, observed in both control and AVT treated dyads, suggesting that an endogenous AVT tone modulates aggressive interactions. Second, we confirmed that AVT administered to dominants induces an increase in the submissive transient electric signals in subordinates. Copyright © 2016. Published by Elsevier Ltd.

  1. A mental retardation gene, motopsin/neurotrypsin/prss12, modulates hippocampal function and social interaction

    PubMed Central

    Mitsui, Shinichi; Osako, Yoji; Yokoi, Fumiaki; Dang, Mai T.; Yuri, Kazunari; Li, Yuqing; Yamaguchi, Nozomi

    2010-01-01

    Motopsin is a mosaic serine protease secreted from neuronal cells in various brain regions including the hippocampus. The loss of motopsin function causes nonsyndromic mental retardation in humans and impairs long-term memory formation in Drosophila. To understand motopsin’s function in the mammalian brain, motopsin knockout mice were generated. Motopsin knockout mice did not have significant deficit in memory formation, as was tested using in the Morris water maze, passive avoidance, and Y-maze tests. A social recognition test showed that the motopsin knockout mice had the ability to recognize two stimulator mice, suggesting normal social memory. In a social novelty test, motopsin knockout mice spent a longer time investigating a familiar mouse than wild-type mice did. In a resident-intruder test, motopsin knockout mice showed prolonged social interaction compared to wild-type mice. Consistent with the behavioral deficit, spine density was significantly decreased on apical dendrites, but not on basal dendrites, of hippocampal pyramidal neurons of motopsin knockout mice. In contrast, pyramidal neurons at the cingulate cortex showed normal spine density. Spatial learning and social interaction induced the phosphorylation of cAMP responsive element binding protein (CREB) in hippocampal neurons of wild-type mice, whereas the phosphorylation of CREB was markedly decreased in mutant mouse brains. Our results indicate that an extracellular protease, motopsin, preferentially affects social behaviors, and modulates the functions of hippocampal neurons. PMID:20092579

  2. A mental retardation gene, motopsin/neurotrypsin/prss12, modulates hippocampal function and social interaction.

    PubMed

    Mitsui, Shinichi; Osako, Yoji; Yokoi, Fumiaki; Dang, Mai T; Yuri, Kazunari; Li, Yuqing; Yamaguchi, Nozomi

    2009-12-01

    Motopsin is a mosaic serine protease secreted from neuronal cells in various brain regions, including the hippocampus. The loss of motopsin function causes nonsyndromic mental retardation in humans and impairs long-term memory formation in Drosophila. To understand motopsin's function in the mammalian brain, motopsin knockout (KO) mice were generated. Motopsin KO mice did not have significant deficits in memory formation, as tested using the Morris water maze, passive avoidance and Y-maze tests. A social recognition test showed that the motopsin KO mice had the ability to recognize two stimulator mice, suggesting normal social memory. In a social novelty test, motopsin KO mice spent a longer time investigating a familiar mouse than wild-type (WT) mice did. In a resident-intruder test, motopsin KO mice showed prolonged social interaction as compared with WT mice. Consistent with the behavioral deficit, spine density was significantly decreased on apical dendrites, but not on basal dendrites, of hippocampal pyramidal neurons of motopsin KO mice. In contrast, pyramidal neurons at the cingulate cortex showed normal spine density. Spatial learning and social interaction induced the phosphorylation of cAMP-responsive element-binding protein (CREB) in hippocampal neurons of WT mice, whereas the phosphorylation of CREB was markedly decreased in mutant mouse brains. Our results indicate that an extracellular protease, motopsin, preferentially affects social behaviors, and modulates the functions of hippocampal neurons.

  3. Oxytocin Enables Maternal Behavior by Balancing Cortical Inhibition

    PubMed Central

    Marlin, Bianca J.; Mitre, Mariela; D’amour, James A.; Chao, Moses V.; Froemke, Robert C.

    2015-01-01

    Oxytocin is important for social interactions and maternal behavior. However, little is known about when, where, and how oxytocin modulates neural circuits to improve social cognition. Here we show how oxytocin enables pup retrieval behavior in female mice by enhancing auditory cortical pup call responses. Retrieval behavior required left but not right auditory cortex, was accelerated by oxytocin in left auditory cortex, and oxytocin receptors were preferentially expressed in left auditory cortex. Neural responses to pup calls were lateralized, with co-tuned and temporally-precise excitatory and inhibitory responses in left cortex of maternal but not pup-naive adults. Finally, pairing calls with oxytocin enhanced responses by balancing the magnitude and timing of inhibition with excitation. Our results describe fundamental synaptic mechanisms by which oxytocin increases the salience of acoustic social stimuli. Furthermore, oxytocin-induced plasticity provides a biological basis for lateralization of auditory cortical processing. PMID:25874674

  4. Sex-specific modulation of juvenile social play by vasopressin.

    PubMed

    Veenema, Alexa H; Bredewold, Remco; De Vries, Geert J

    2013-11-01

    Social play activities among juveniles are thought to contribute to the development of social and emotional skills in humans and animals. Conversely, social play deficits are observed in developmental neuropsychiatric disorders. Importantly, many of these disorders show sex differences in incidence, course of the disease, and severity of symptoms. We hypothesized that sex differences in the neural systems controlling social behavior can contribute to these differences. We therefore studied the involvement of the sexually dimorphic vasopressin and oxytocin systems, which have been implicated in these disorders, in juvenile social play behavior. Single-housed 5-week-old juvenile male and female rats were exposed in their home cage to an age-and sex-matched novel conspecific for 10 min, and social play behaviors were recorded. We found no consistent sex differences in duration or elements of social play in vehicle-treated rats. However, intracerebroventricular injection of the specific vasopressin 1a receptor (V1aR) antagonist (CH2)5Tyr(Me(2))AVP significantly reduced social play behaviors in males while increasing them in females. Intracerebroventricular injection of the specific oxytocin receptor antagonist des-Gly-NH2,d(CH2)5[Tyr(Me)(2),Thr(4)]OVT did not alter social play in either sex. To locate the effects of V1aR blockade on social play, we targeted the lateral septum, a sexually dimorphic brain region showing denser vasopressin fibers in males than in females and an abundant expression of V1aR in both sexes. Surprisingly, blockade of V1aR in the lateral septum increased social play behaviors in males, but decreased them in females. These findings suggest sex- and brain region-specific roles for vasopressin in the regulation of social play behavior in juvenile rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Sex-specific modulation of juvenile social play by vasopressin

    PubMed Central

    Veenema, Alexa H.; Bredewold, Remco; De Vries, Geert J.

    2013-01-01

    SUMMARY Social play activities among juveniles are thought to contribute to the development of social and emotional skills in humans and animals. Conversely, social play deficits are observed in developmental neuropsychiatric disorders. Importantly, many of these disorders show sex differences in incidence, course of the disease, and severity of symptoms. We hypothesized that sex differences in the neural systems controlling social behavior can contribute to these differences. We therefore studied the involvement of the sexually dimorphic vasopressin and oxytocin systems, which have been implicated in these disorders, in juvenile social play behavior. Single-housed 5-week-old juvenile male and female rats were exposed to an unknown age-and sex-matched conspecific for 10 min in their home cage and social play behaviors were recorded. We found no consistent sex differences in level or elements of social play in vehicle-treated rats. However, intracerebroventricular injection of the specific vasopressin 1a receptor (V1aR) antagonist (CH2)5Tyr(Me2) AVP significantly reduced social play behaviors in males, while increasing them in females. Intracerebroventricular injection of the specific oxytocin receptor antagonist des-Gly-NH2,d(CH2)5[Tyr(Me)2,Thr4]OVT did not alter social play in either sex. To locate the effects of V1aR blockade on social play, we targeted the lateral septum, a sexually dimorphic brain region showing denser vasopressin fibers in males than in females and abundant expression of V1aR in both sexes. Surprisingly, blockade of V1aR in the lateral septum increased social play behaviors in males, but decreased them in females. These findings suggest sex- and brain region-specific roles for vasopressin in the regulation of social play behavior in juvenile rats. PMID:23838102

  6. Evidence of Rapid Modulation by Social Information of Subjective, Physiological, and Neural Responses to Emotional Expressions

    PubMed Central

    Mermillod, Martial; Grynberg, Delphine; Pio-Lopez, Léo; Rychlowska, Magdalena; Beffara, Brice; Harquel, Sylvain; Vermeulen, Nicolas; Niedenthal, Paula M.; Dutheil, Frédéric; Droit-Volet, Sylvie

    2018-01-01

    Recent research suggests that conceptual or emotional factors could influence the perceptual processing of stimuli. In this article, we aimed to evaluate the effect of social information (positive, negative, or no information related to the character of the target) on subjective (perceived and felt valence and arousal), physiological (facial mimicry) as well as on neural (P100 and N170) responses to dynamic emotional facial expressions (EFE) that varied from neutral to one of the six basic emotions. Across three studies, the results showed reduced ratings of valence and arousal of EFE associated with incongruent social information (Study 1), increased electromyographical responses (Study 2), and significant modulation of P100 and N170 components (Study 3) when EFE were associated with social (positive and negative) information (vs. no information). These studies revealed that positive or negative social information reduces subjective responses to incongruent EFE and produces a similar neural and physiological boost of the early perceptual processing of EFE irrespective of their congruency. In conclusion, the article suggests that the presence of positive or negative social context modulates early physiological and neural activity preceding subsequent behavior. PMID:29375330

  7. Testosterone Modulates Altered Prefrontal Control of Emotional Actions in Psychopathic Offenders(1,2,3).

    PubMed

    Volman, Inge; von Borries, Anna Katinka Louise; Bulten, Berend Hendrik; Verkes, Robbert Jan; Toni, Ivan; Roelofs, Karin

    2016-01-01

    Psychopathic individuals are notorious for their controlled goal-directed aggressive behavior. Yet, during social challenges, they often show uncontrolled emotional behavior. Healthy individuals can control their social emotional behavior through anterior prefrontal cortex (aPFC) downregulation of neural activity in the amygdala, with testosterone modulating aPFC-amygdala coupling. This study tests whether individual differences in this neuroendocrine system relate to the paradoxical lack of emotional control observed in human psychopathic offenders. Emotional control was operationalized with an fMRI-adapted approach-avoidance task requiring rule-driven control over rapid emotional responses. Fifteen psychopathic offenders and 19 matched healthy control subjects made approaching and avoiding movements in response to emotional faces. Control of social emotional behavior was required during affect-incongruent trials, when participants had to override affect-congruent, automatic action tendencies and select the opposite response. Psychopathic offenders showed less control-related aPFC activity and aPFC-amygdala coupling during trials requiring control of emotional actions, when compared with healthy control subjects. This pattern was particularly pronounced in psychopathic individuals with high endogenous testosterone levels. These findings suggest that reduced prefrontal coordination underlies reduced behavioral control in psychopathic offenders during emotionally provoking situations. Even though the modest sample size warrants replication, the modulatory role of endogenous testosterone on the aPFC-amygdala circuit suggests a neurobiological substrate of individual differences that is relevant for the advancement of treatment and the reduction of recidivism.

  8. An immunohistochemical study on the distribution of vasotocin neurons in the brain of two weakly electric fish, Gymnotus omarorum and Brachyhypopomus gauderio.

    PubMed

    Pouso, Paula; Radmilovich, Milka; Silva, Ana

    2017-04-01

    Hypothalamic nonapeptides (arginin vasotocin-vasopressin, oxytocin-isotocin) are known to modulate social behaviors across vertebrates. The neuroanatomical conservation of nonapeptide systems enables the use of novel vertebrate model species to identify general strategies of their functional mechanisms. We present a detailed immunohistochemical description of vasotocin (AVT) cell populations and their projections in two species of weakly electric fish with different social structure, Gymnotus omarorum and Brachyhypopomus gauderio. Strong behavioral, pharmacological, and electrophysiological evidence support that AVT modulation of electric behavior differs between the gregarious B. gauderio and the solitary G. omarorum. This functional diversity does not necessarily depend on anatomical differences of AVT neurons. To test this, we focus on interspecific comparisons of the AVT system in basal non-breeding males along the brain. G. omarorum and B. gauderio showed similar AVT somata sizes and comparable distributions of AVT somata and fibers. Interestingly, AVT fibers project to areas related to the control of social behavior and electromotor displays in both species. We found that no gross anatomical differences in the organization of the AVT system account for functional differences between species, which rather shall depend on the pattern of activation of neurons embedded in the same basic anatomical organization of the AVT system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Game Theory Paradigm: A New Tool for Investigating Social Dysfunction in Major Depressive Disorders

    PubMed Central

    Wang, Yun; Yang, Liu-Qing; Li, Shu; Zhou, Yuan

    2015-01-01

    Social dysfunction is a prominent source of distress and disability in patients with major depressive disorder (MDD) but is commonly omitted from current clinical studies, although some researchers propose an evolutionary strategy to understand these negative outcomes. Limited knowledge about the neural basis of social dysfunction in MDD results from traditional paradigms, which lack insights into social interactions. Game theoretical modeling offers a new tool for investigating social-interaction impairments in neuropsychiatric disorders. This review first introduces three widely used games from game theory and the major behavioral and neuroimaging findings obtained using these games in healthy populations. We also address the factors that modulate behaviors in games and their neural bases. We then summarize the current findings obtained by using these games in depressed patients and discuss the clinical implications of these abnormal game behaviors. Finally, we briefly discuss future prospects that may further elucidate the clinical use of a game theory paradigm in MDD. PMID:26441689

  10. Game Theory Paradigm: A New Tool for Investigating Social Dysfunction in Major Depressive Disorders.

    PubMed

    Wang, Yun; Yang, Liu-Qing; Li, Shu; Zhou, Yuan

    2015-01-01

    Social dysfunction is a prominent source of distress and disability in patients with major depressive disorder (MDD) but is commonly omitted from current clinical studies, although some researchers propose an evolutionary strategy to understand these negative outcomes. Limited knowledge about the neural basis of social dysfunction in MDD results from traditional paradigms, which lack insights into social interactions. Game theoretical modeling offers a new tool for investigating social-interaction impairments in neuropsychiatric disorders. This review first introduces three widely used games from game theory and the major behavioral and neuroimaging findings obtained using these games in healthy populations. We also address the factors that modulate behaviors in games and their neural bases. We then summarize the current findings obtained by using these games in depressed patients and discuss the clinical implications of these abnormal game behaviors. Finally, we briefly discuss future prospects that may further elucidate the clinical use of a game theory paradigm in MDD.

  11. Social Influences on Neurobiology and Behavior: Epigenetic Effects During Development

    PubMed Central

    Curley, JP; Jensen, CL; Mashoodh, R; Champagne, FA

    2010-01-01

    The quality of the social environment can have profound influences on the development and activity of neural systems with implications for numerous behavioral and physiological responses, including the expression of emotionality. Though social experiences occurring early in development may be particularly influential on the developing brain, there is continued plasticity within these neural circuits amongst juveniles and into early adulthood. In this review, we explore the evidence derived from studies in rodents which illustrates the social modulation during development of neural systems, with a particular emphasis on those systems in which a long-term effect is observed. One possible explanation for the persistence of dynamic changes in these systems in response to the environment is the involvement of epigenetic mechanisms, and here we discuss recent studies which support the role of these mechanisms in mediating the link between social experiences, gene expression, neurobiological changes, and behavioral variation. This literature raises critical questions about the interaction between neural systems, the concordance between neural and behavioral changes, sexual dimorphism in effects, the importance of considering individual differences in response to the social environment, and the potential of an epigenetic perspective in advancing our understanding of the pathways leading to variations in mental health. PMID:20650569

  12. Moderate social sensitivity in a risky context supports adaptive decision making in adolescence: evidence from brain and behavior.

    PubMed

    van Hoorn, Jorien; McCormick, Ethan M; Telzer, Eva H

    2018-05-01

    Adolescence is a time of increased social-affective sensitivity, which is often related to heightened health-risk behaviors. However, moderate levels of social sensitivity, relative to either low (social vacuum) or high levels (exceptionally attuned), may confer benefits as it facilitates effective navigation of the social world. The present fMRI study tested a curvilinear relationship between social sensitivity and adaptive decision-making. Participants (ages 12-16; N = 35) played the Social Analogue Risk Task, which measures participants' willingness to knock on doors in order to earn points. With each knock, the facial expression of the house's resident shifted from happy to somewhat angrier. If the resident became too angry, the door slammed and participants lost points. Social sensitivity was defined as the extent to which adolescents adjusted their risky choices based on shifting facial expressions. Results confirmed a curvilinear relationship between social sensitivity and self-reported adaptive decision-making at the behavioral and neural level. Moderate adolescent social sensitivity was modulated via heightened tracking of social cues in the temporoparietal junction, insula and dorsolateral prefrontal cortex and related to adaptive decision-making. These findings suggest that social-affective sensitivity may positively impact outcomes in adolescence and have implications for interventions to help adolescents reach mature social goals into adulthood.

  13. An oxytocin receptor polymorphism predicts amygdala reactivity and antisocial behavior in men

    PubMed Central

    Waller, Rebecca; Corral-Frías, Nadia S.; Vannucci, Bianca; Bogdan, Ryan; Knodt, Annchen R.; Hariri, Ahmad R.

    2016-01-01

    Variability in oxytocin (OXT) signaling is associated with individual differences in sex-specific social behavior across species. The effects of OXT signaling on social behavior are, in part, mediated through its modulation of amygdala function. Here, we use imaging genetics to examine sex-specific effects of three single-nucleotide polymorphisms in the human oxytocin receptor gene (OXTR; rs1042778, rs53576 and rs2254298) on threat-related amygdala reactivity and social behavior in 406 Caucasians. Analyses revealed that among men but not women, OXTR rs1042778 TT genotype was associated with increased right amygdala reactivity to angry facial expressions, which was uniquely related to higher levels of antisocial behavior among men. Moderated meditation analysis suggested a trending indirect effect of OXTR rs1042778 TT genotype on higher antisocial behavior via increased right amygdala reactivity to angry facial expressions in men. Our results provide evidence linking genetic variation in OXT signaling to individual differences in amygdala function. The results further suggest that these pathways may be uniquely important in shaping antisocial behavior in men. PMID:27036876

  14. Arginine vasopressin and oxytocin modulate human social behavior.

    PubMed

    Ebstein, Richard P; Israel, Salomon; Lerer, Elad; Uzefovsky, Florina; Shalev, Idan; Gritsenko, Inga; Riebold, Mathias; Salomon, Shahaf; Yirmiya, Nurit

    2009-06-01

    Increasing evidence suggests that two nonapeptides, arginine vasopressin and oxytocin, shape human social behavior in both nonclinical and clinical subjects. Evidence is discussed that in autism spectrum disorders genetic polymorphisms in the vasopressin-oxytocin pathway, notably the arginine vasopressin receptor 1a (AVPR1a), the oxytocin receptor (OXTR), neurophysin I and II, and CD38 (recently shown to be critical for social behavior by mediating oxytocin secretion) contribute to deficits in socialization skills in this group of patients. We also present first evidence that CD38 expression in lymphoblastoid cells derived from subjects diagnosed with autism is correlated with social skill phenotype inventoried by the Vineland Adaptive Behavioral Scales. Additionally, we discuss molecular genetic evidence that in nonclinical subjects both AVPR1a and OXTR genes contribute to prosocial or altruistic behavior inventoried by two experimental paradigms, the dictator game and social values orientation. The role of the AVPR1a is also analyzed in prepulse inhibition. Prepulse inhibition of the startle response to auditory stimuli is a largely autonomic response that resonates with social cognition in both animal models and humans. First results are presented showing that intranasal administration of arginine vasopressin increases salivary cortisol levels in the Trier Social Stress test. To summarize, accumulating studies employing a broad array of cutting-edge tools in psychology, neuroeconomics, molecular genetics, pharmacology, electrophysiology, and brain imaging are beginning to elaborate the intriguing role of oxytocin and arginine vasopressin in human social behavior. We expect that future studies will continue this advance and deepen our understanding of these complex events.

  15. Memantine ameliorates autistic behavior, biochemistry & blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-06-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder, commonly characterized by altered social behavior, communication, biochemistry and pathological conditions. One percent of the worldwide population suffers from autism and males suffer more than females. NMDA receptors have the important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. This study has been designed to investigate the role of memantine, a NMDA receptor modulator, in prenatal valproic acid-induced autism in rats. Animals with prenatal valproic acid have shown the reduction in social interaction (three-chamber social behavior apparatus), spontaneous alternation (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complex I, II, IV). Furthermore, prenatal valproic acid-treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood-brain barrier permeability. Treatment with memantine has significantly attenuated prenatal valproic acid-induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, memantine has also attenuated the prenatal valproic acid-induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood-brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behavior, biochemistry and blood-brain barrier impairment in animals, which were significantly attenuated by memantine. NMDA receptor modulators like memantine should be explored further for the therapeutic benefits in autism. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Social networks and social support for healthy eating among Latina breast cancer survivors: implications for social and behavioral interventions.

    PubMed

    Crookes, Danielle M; Shelton, Rachel C; Tehranifar, Parisa; Aycinena, Corina; Gaffney, Ann Ogden; Koch, Pam; Contento, Isobel R; Greenlee, Heather

    2016-04-01

    Little is known about Latina breast cancer survivors' social networks or their perceived social support to achieve and maintain a healthy diet. This paper describes the social networks and perceived support for healthy eating in a sample of breast cancer survivors of predominantly Dominican descent living in New York City. Spanish-speaking Latina breast cancer survivors enrolled in a randomized controlled trial of a culturally tailored dietary intervention. Social networks were assessed using Cohen's Social Network Index and a modified General Social Survey Social Networks Module that included assessments of shared health promoting behaviors. Perceived social support from family and friends for healthy, food-related behaviors was assessed. Participants' networks consisted predominantly of family and friends. Family members were more likely than other individuals to be identified as close network members. Participants were more likely to share food-related activities than exercise activities with close network members. Perceived social support for healthy eating was high, although perceived support from spouses and children was higher than support from friends. Despite high levels of perceived support, family was also identified as a barrier to eating healthy foods by nearly half of women. Although friends are part of Latina breast cancer survivors' social networks, spouses and children may provide greater support for healthy eating than friends. Involving family members in dietary interventions for Latina breast cancer survivors may tap into positive sources of support for women, which could facilitate uptake and maintenance of healthy eating behaviors.

  17. Different impressions of other agents obtained through social interaction uniquely modulate dorsal and ventral pathway activities in the social human brain.

    PubMed

    Takahashi, Hideyuki; Terada, Kazunori; Morita, Tomoyo; Suzuki, Shinsuke; Haji, Tomoki; Kozima, Hideki; Yoshikawa, Masahiro; Matsumoto, Yoshio; Omori, Takashi; Asada, Minoru; Naito, Eiichi

    2014-09-01

    Internal (neuronal) representations in the brain are modified by our experiences, and this phenomenon is not unique to sensory and motor systems. Here, we show that different impressions obtained through social interaction with a variety of agents uniquely modulate activity of dorsal and ventral pathways of the brain network that mediates human social behavior. We scanned brain activity with functional magnetic resonance imaging (fMRI) in 16 healthy volunteers when they performed a simple matching-pennies game with a human, human-like android, mechanical robot, interactive robot, and a computer. Before playing this game in the scanner, participants experienced social interactions with each opponent separately and scored their initial impressions using two questionnaires. We found that the participants perceived opponents in two mental dimensions: one represented "mind-holderness" in which participants attributed anthropomorphic impressions to some of the opponents that had mental functions, while the other dimension represented "mind-readerness" in which participants characterized opponents as intelligent. Interestingly, this "mind-readerness" dimension correlated to participants frequently changing their game tactic to prevent opponents from envisioning their strategy, and this was corroborated by increased entropy during the game. We also found that the two factors separately modulated activity in distinct social brain regions. Specifically, mind-holderness modulated activity in the dorsal aspect of the temporoparietal junction (TPJ) and medial prefrontal and posterior paracingulate cortices, while mind-readerness modulated activity in the ventral aspect of TPJ and the temporal pole. These results clearly demonstrate that activity in social brain networks is modulated through pre-scanning experiences of social interaction with a variety of agents. Furthermore, our findings elucidated the existence of two distinct functional networks in the social human brain. Social interaction with anthropomorphic or intelligent-looking agents may distinctly shape the internal representation of our social brain, which may in turn determine how we behave for various agents that we encounter in our society. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. A New Perspective on the Pathophysiology of Borderline Personality Disorder: A Model of the Role of Oxytocin.

    PubMed

    Herpertz, Sabine C; Bertsch, Katja

    2015-09-01

    Borderline personality disorder is characterized by three domains of dysfunction: affect dysregulation, behavioral dyscontrol, and interpersonal hypersensitivity. Interpersonal hypersensitivity is associated with a (pre)attentive bias toward negative social information and, on the level of the brain, enhanced bottom-up emotion generation, while affect dysregulation results from abnormal top-down processes. Additionally, the problems of patients with borderline personality disorder in interpersonal functioning appear to be related to alterations in the (social) reward and empathy networks. There is increasing evidence that the oxytocinergic system may be involved in these domains of dysfunction and may thus contribute to borderline psychopathology and even open new avenues for targeted pharmacotherapeutic approaches. From studies in healthy and clinical subjects (including first studies with borderline personality disorder patients), the authors provide a conceptual framework for future research in borderline personality disorder that is based on oxytocinergic modulation of the following biobehavioral mechanisms: 1) the brain salience network favoring adaptive social approach behavior, 2) the affect regulation circuit normalizing top-down processes, 3) the mesolimbic circuit improving social reward experiences, and 4) modulating brain regions involved in cognitive and emotional empathy. In addition, preliminary data point to interactions between the oxytocin and cannabinoid system, with implications for pain processing. These mechanisms, which the authors believe to be modulated by oxytocin, may not be specific for borderline personality disorder but rather may be common to a host of psychiatric disorders in which disturbed parent-infant attachment is a major etiological factor.

  19. Social status modulates the neural response to unfairness

    PubMed Central

    Hu, Jie; Blue, Philip R.; Yu, Hongbo; Gong, Xiaoliang; Xiang, Yang; Jiang, Changjun

    2016-01-01

    In human society, which is organized by social hierarchies, resources are usually allocated unequally and based on social status. In this study, we analyze how being endowed with different social statuses in a math competition affects the perception of fairness during asset allocation in a subsequent Ultimatum Game (UG). Behavioral data showed that when participants were in high status, they were more likely to reject unfair UG offers than in low status. This effect of social status correlated with activity in the right anterior insula (rAI) and with the functional connectivity between the rAI and a region in the anterior middle cingulate cortex, indicating that these two brain regions are crucial for integrating contextual factors and social norms during fairness perception. Additionally, there was an interaction between social status and UG offer fairness in the amygdala and thalamus, implicating the role of these regions in the modulation of social status on fairness perception. These results demonstrate the effect of social status on fairness perception and the potential neural underpinnings for this effect. PMID:26141925

  20. Behavioral effects of hindbrain vasotocin in goldfish are seasonally variable but not sexually dimorphic

    PubMed Central

    Walton, James C.; Waxman, Brandon; Hoffbuhr, Kristen; Kennedy, Meaghan; Beth, Ellen; Scangos, Jennifer; Thompson, Richmond R.

    2013-01-01

    We have previously demonstrated that centrally administered vasotocin (VT) inhibits social approach toward same-sex conspecifics in male and female goldfish, and that this behavioral effect is dependent upon VT projections to the hindbrain. We now show that there are no sex differences in sensitivity to the behavioral effects of VT, though differences do exist in responsiveness across seasons in both sexes. A central dose of 1 µg, but not 200 ng, inhibited social approach in goldfish in non-reproductive condition, whereas a dose as low as 40 ng inhibited social approach in fish in full reproductive condition. In males and females in full reproductive condition, social approach behavior was facilitated by central administration of 500 ng of a V1A specific antagonist. In addition, the behavioral effects of exogenously administered central VT were blocked by central administration of 1 µg of a V1A antagonist. These results demonstrate that the propensity to approach a conspecific, a simple behavior underlying many social interactions, is controlled by a V1A-like receptor, and that VT’s behavioral effects depend on reproductive context. Quantitative real-time PCR showed that the seasonal changes in behavioral responsiveness to VT are associated with changes in the expression of a V1A-like receptor in the hindbrain, but not the mid- or forebrain, indicating that the seasonal regulation of social approach behavior likely depends on the local modulation of the expression of this receptor within a primitive peptide circuit in this species. PMID:19616564

  1. Social Modulation during Songbird Courtship Potentiates Midbrain Dopaminergic Neurons

    PubMed Central

    Huang, Ya-Chun; Hessler, Neal A.

    2008-01-01

    Synaptic transmission onto dopaminergic neurons of the mammalian ventral tegmental area (VTA) can be potentiated by acute or chronic exposure to addictive drugs. Because rewarding behavior, such as social affiliation, can activate the same neural circuitry as addictive drugs, we tested whether the intense social interaction of songbird courtship may also potentiate VTA synaptic function. We recorded glutamatergic synaptic currents from VTA of male zebra finches who had experienced distinct social and behavioral conditions during the previous hour. The level of synaptic transmission to VTA neurons, as assayed by the ratio of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) to N-methyl-D-aspartic acid (NMDA) glutamate receptor mediated synaptic currents, was increased after males sang to females, and also after they saw females without singing, but not after they sang while alone. Potentiation after female exposure alone did not appear to result from stress, as it was not blocked by inhibition of glucocorticoid receptors. This potentiation was restricted to synapses of dopaminergic projection neurons, and appeared to be expressed postsynaptically. This study supports a model in which VTA dopaminergic neurons are more strongly activated during singing used for courtship than during non-courtship singing, and thus can provide social context-dependent modulation to forebrain areas. More generally, these results demonstrate that an intense social encounter can trigger the same pathways of neuronal plasticity as addictive drugs. PMID:18827927

  2. Competition in the Brain. The Contribution of EEG and fNIRS Modulation and Personality Effects in Social Ranking.

    PubMed

    Balconi, Michela; Vanutelli, Maria E

    2016-01-01

    In the present study, the social ranking perception in competition was explored. Brain response (alpha band oscillations, EEG; hemodynamic activity, O2Hb), as well as self-perception of social ranking, cognitive performance, and personality trait (Behavioral Activation System, BAS) were considered during a competitive joint-action. Subjects were required to develop a strategy to obtain a better outcome than a competitor (C) (in term of error rate, and response time, RT). A pre-feedback (without a specific feedback on the performance) and a post-feedback condition (which reinforced the improved performance) were provided. It was found that higher-BAS participants responded in greater measure to perceived higher cognitive performance (post-feedback condition), with increased left prefrontal activity, higher ranking perception, and a better real performance (reduced RTs). These results were explained in term of increased sense of self-efficacy and social position, probably based on higher-BAS sensitivity to reinforcing conditions. In addition, the hemispheric effect in favor of the left side characterized the competitive behavior, showing an imbalance for high-BAS in comparison to low-BAS in the case of a rewarding (post-feedback) context. Therefore, the present results confirmed the significance of BAS in modulating brain responsiveness, self-perceived social position, and real performance during an interpersonal competitive action which is considered highly relevant for social status.

  3. Effects of gendered behavior on testosterone in women and men

    PubMed Central

    van Anders, Sari M.; Steiger, Jeffrey; Goldey, Katherine L.

    2015-01-01

    Testosterone is typically understood to contribute to maleness and masculinity, although it also responds to behaviors such as competition. Competition is crucial to evolution and may increase testosterone but also is selectively discouraged for women and encouraged for men via gender norms. We conducted an experiment to test how gender norms might modulate testosterone as mediated by two possible gender→testosterone pathways. Using a novel experimental design, participants (trained actors) performed a specific type of competition (wielding power) in stereotypically masculine vs. feminine ways. We hypothesized in H1 (stereotyped behavior) that wielding power increases testosterone regardless of how it is performed, vs. H2 (stereotyped performance), that wielding power performed in masculine but not feminine ways increases testosterone. We found that wielding power increased testosterone in women compared with a control, regardless of whether it was performed in gender-stereotyped masculine or feminine ways. Results supported H1 over H2: stereotyped behavior but not performance modulated testosterone. These results also supported theory that competition modulates testosterone over masculinity. Our findings thus support a gender→testosterone pathway mediated by competitive behavior. Accordingly, cultural pushes for men to wield power and women to avoid doing so may partially explain, in addition to heritable factors, why testosterone levels tend to be higher in men than in women: A lifetime of gender socialization could contribute to “sex differences” in testosterone. Our experiment opens up new questions of gender→testosterone pathways, highlighting the potential of examining nature/nurture interactions and effects of socialization on human biology. PMID:26504229

  4. BTBR T+tf/J MICE: AUTISM-RELEVANT BEHAVIORS AND REDUCED FRACTONE-ASSOCIATED HEPARAN SULFATE

    PubMed Central

    Blanchard, D. Caroline; Defensor, Erwin B.; Meyza, Ksenia Z.; Pobbe, Roger L.H.; Pearson, Brandon L.; Bolivar, Valerie J.; Blanchard, Robert J.

    2011-01-01

    BTBR T+tf/J (BTBR) mice have emerged as strong candidates to serve as models of a range of autism-relevant behaviors, showing deficiencies in social behaviors; reduced or unusual ultrasonic vocalizations in conspecific situations; and enhanced, repetitive self grooming. Recent studies have described their behaviors in a seminatural Visible Burrow System (VBS); a social proximity test in which avoidance of a conspecific is impossible; and in an object approach and investigation test evaluating attention to specific objects and potential stereotypies in the order of approaching/investigating objects. VBS results confirmed strong BTBR avoidance of conspecifics and in the social proximity test, BTBR showed dramatic differences in several close-in behaviors, including specific avoidance of a nose-to-nose contact that may potentially be related to gaze-avoidance. Diazepam normalized social avoidance by BTBRs in a three-chamber test, and some additional behaviors –but not nose to nose avoidance- in the social proximity test. BTBR also showed higher levels of preference for particular objects, and higher levels of sequences investigating 3- or 4- objects in the same order. Heparan sulfate (HS) associated with fractal structures in the subventricular zone of the lateral ventricles was severely reduced in BTBR. HS may modulate the functions of a range of growth and guidance factors during development, and HS abnormalities are associated with relevant brain (callosal agenesis) and behavioral (reductions in sociality) changes; suggesting the value of examination of the dynamics of the HS system in the context of autism. PMID:21741402

  5. Neuroscience of human social interactions and adult attachment style

    PubMed Central

    Vrtička, Pascal; Vuilleumier, Patrik

    2012-01-01

    Since its first description four decades ago, attachment theory (AT) has become one of the principal developmental psychological frameworks for describing the role of individual differences in the establishment and maintenance of social bonds between people. Yet, still little is known about the neurobiological underpinnings of attachment orientations and their well-established impact on a range of social and affective behaviors. In the present review, we summarize data from recent studies using cognitive and imaging approaches to characterize attachment styles and their effect on emotion and social cognition. We propose a functional neuroanatomical framework to integrate the key brain mechanisms involved in the perception and regulation of social emotional information, and their modulation by individual differences in terms of secure versus insecure (more specifically avoidant, anxious, or resolved versus unresolved) attachment traits. This framework describes how each individual's attachment style (built through interactions between personal relationship history and predispositions) may influence the encoding of approach versus aversion tendencies (safety versus threat) in social encounters, implicating the activation of a network of subcortical (amygdala, hippocampus, striatum) and cortical (insula, cingulate) limbic areas. These basic and automatic affective evaluation mechanisms are in turn modulated by more elaborate and voluntary cognitive control processes, subserving mental state attribution and emotion regulation capacities, implicating a distinct network in medial prefrontal cortex (mPFC), superior temporal sulcus (STS), and temporo-parietal junction (TPJ), among others. Recent neuroimaging data suggest that affective evaluation is decreased in avoidantly but increased in anxiously attached individuals. In turn, although data on cognitive control is still scarce, it points toward a possible enhancement of mental state representations associated with attachment insecurity and particularly anxiety. Emotion regulation strategies such as reappraisal or suppression of social emotions are also differentially modulated by attachment style. This research does not only help better understand the neural underpinnings of human social behavior, but also provides important insights on psychopathological conditions where attachment dysregulation is likely to play an important (causal) role. PMID:22822396

  6. Living Emotions, Avoiding Emotions: Behavioral Investigation of the Regulation of Socially Driven Emotions

    PubMed Central

    Grecucci, Alessandro; Giorgetta, Cinzia; Bonini, Nicolao; Sanfey, Alan G.

    2013-01-01

    Emotion regulation is important for psychological well-being. Although it is known that alternative regulation strategies may have different emotional consequences, the effectiveness of such strategies for socially driven emotions remains unclear. In this study we investigated the efficacy of different forms of reappraisal on responses to the selfish and altruistic behavior of others in the Dictator Game. In Experiment 1, subjects mentalized the intentions of the other player in one condition, and took distance from the situation in the other. Emotion ratings were recorded after each offer. Compared with a baseline condition, mentalizing led subjects to experience their emotions more positively when receiving both selfish and altruistic proposals, whereas distancing decreased the valence when receiving altruistic offers, but did not affect the perception of selfish behavior. In Experiment 2, subjects played with both computer and human partners while reappraising the meaning of the player’s intentions (with a human partner) or the meaning of the situation (with a computer partner). Results showed that both contexts were effectively modulated by reappraisal, however a stronger effect was observed when the donor was a human partner, as compared to a computer partner. Taken together, these results demonstrate that socially driven emotions can be successfully modulated by reappraisal strategies that focus on the reinterpretation of others’ intentions. PMID:23349645

  7. Transcranial direct current stimulation of the medial prefrontal cortex modulates the propensity to help in costly helping behavior.

    PubMed

    Liao, Chong; Wu, Song; Luo, Yue-Jia; Guan, Qing; Cui, Fang

    2018-05-01

    Social decision-making engages traditional decision-making processes (e.g. valuation), as well as social cognition processes (e.g. inferring the affective and mental states of another person). Neuroimaging and neuro-stimulation studies have suggested the involvement of the medial prefrontal cortex (mPFC) in a variety of social decision-making tasks. Yet no study has investigated the effect of the cortical excitability of mPFC in the decision-making of costly helping behavior. Here, we used tDCS to demonstrate the causal relationship between the cortical excitability of mPFC and costly helping decision-making. Subjects assigned to the anodal, cathodal and sham groups were required to decide whether they would like to cost their own money to relieve another subject (a confederate actually) from painful electrical shocks with a certain probability of success. Results showed that the subjects receiving anodal stimulation acted more prosaically than the subjects receiving cathodal stimulation. And this effect was only significant when the probability of success was high. We proposed that tDCS induced modulation of the cortical excitability, targeting the mPFC, can affect the prosocial propensity in costly helping behavior, and the possible underlying mechanisms were discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Social modulation of cognition: Lessons from rhesus macaques relevant to education.

    PubMed

    Monfardini, Elisabetta; Reynaud, Amélie J; Prado, Jérôme; Meunier, Martine

    2017-11-01

    Any animal, human or non-human, lives in a world where there are others like itself. Individuals' behaviors are thus inevitably influenced by others, and cognition is no exception. Long acknowledged in psychology, social modulations of cognition have been neglected in cognitive neuroscience. Yet, infusing this classic topic in psychology with brain science methodologies could yield valuable educational insights. In recent studies, we used a non-human primate model, the rhesus macaque, to identify social influences representing ancient biases rooted in evolution, and neuroimaging to shed light on underlying mechanisms. The behavioral and neural data garnered in humans and macaques are summarized, with a focus on two findings relevant to human education. First, peers' mistakes stand out as exceptional professors and seem to have devoted areas and neurons in the primates' brain. Second, peers' mere presence suffices to enhance performance in well-learned tasks, possibly by boosting activity in the brain network involved in the task at hand. These findings could be translated into concrete pedagogical interventions in the classroom. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Interoception and Autonomic Correlates during Social Interactions. Implications for Anorexia

    PubMed Central

    Ambrosecchia, Marianna; Ardizzi, Martina; Russo, Elisa; Ditaranto, Francesca; Speciale, Maurizio; Vinai, Piergiuseppe; Todisco, Patrizia; Maestro, Sandra; Gallese, Vittorio

    2017-01-01

    The aim of this study is to investigate the bodily-self in Restrictive Anorexia, focusing on two basic aspects related to the bodily self: autonomic strategies in social behavior, in which others' social desirability features, and social cues (e.g., gaze) are modulated, and interoception (i.e., the sensitivity to stimuli originating inside the body). Furthermore, since previous studies carried out on healthy individuals found that interoception seems to contribute to the autonomic regulation of social behavior, as measured by Respiratory Sinus Arrhythmia (RSA), we aimed to explore this link in anorexia patients, whose ability to perceive their bodily signal seems to be impaired. To this purpose, we compared a group of anorexia patients (ANg; restrictive type) with a group of Healthy Controls (HCg) for RSA responses during both a resting state and a social proxemics task, for their explicit judgments of comfort in social distances during a behavioral proxemics task, and for their Interoceptive Accuracy (IA). The results showed that ANg displayed significantly lower social disposition and a flattened autonomic reactivity during the proxemics task, irrespective of the presence of others' socially desirable features or social cues. Moreover, unlike HCg, the autonomic arousal of ANg did not guide behavioral judgments of social distances. Finally, IA was strictly related to social disposition in both groups, but with opposite trends in ANg. We conclude that autonomic imbalance and its altered relationship with interoception might have a crucial role in anorexia disturbances. PMID:28567008

  10. Ingroup favoritism or the black sheep effect: Perceived intentions modulate subjective responses to aggressive interactions.

    PubMed

    Wang, Lei; Zheng, Jiehui; Meng, Liang; Lu, Qiang; Ma, Qingguo

    2016-07-01

    Social categorization plays an important role in provoking the victim's responses to aggressive interactions. Pioneering studies suggested that uncertainty in the perpetrator's hostile intention influences whether ingroup favoritism or the black sheep effect (ingroup strictness) will be manifested to a greater extent. However, when the hostile intention is ambiguous, subjective perception of the perpetrator's intention may still be quite different due to the inherent information gap between participants, and this discrepancy in perceived intentions may further modulate subjective responses to social aggression. In the present study, subjects played as responders of the Ultimatum Game, and received varied offers proposed by either ingroup or outgroup members. Electrophysiological results showed that, when proposers were perceived to be intentional, unfair offers from ingroups elicited significantly larger Feedback-related Negativity (FRN) than those from outgroups, potentially providing neural evidence for the black sheep effect. The opposite FRN pattern was observed when proposers were perceived to be unintentional, which might suggest ingroup favoritism. Interestingly, despite contrary neural patterns, perceived intentions did not modulate behavioral response to aggressive interactions. Thus, converging results suggested that, when the perpetrator's hostile intention remained ambiguous, perceived intentions modulated the victim's electrophysiological response while not the rational behavioral response to aggressive interactions. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  11. State-dependent μ-opioid modulation of social motivation

    PubMed Central

    Loseth, Guro E.; Ellingsen, Dan-Mikael; Leknes, Siri

    2014-01-01

    Social mammals engage in affiliative interactions both when seeking relief from negative affect and when searching for pleasure and joy. These two motivational states are both modulated by μ-opioid transmission. The μ-opioid receptor (MOR) system in the brain mediates pain relief and reward behaviors, and is implicated in social reward processing and affiliative bonding across mammalian species. However, pharmacological manipulation of the μ-opioid system has yielded opposite effects on rodents and primates: in rodents, social motivation is generally increased by MOR agonists and reduced by antagonists, whereas the opposite pattern has been shown in primates. Here, we address this paradox by taking into account differences in motivational state. We first review evidence for μ-opioid mediation of reward processing, emotion regulation, and affiliation in humans, non-human primates, rodents and other species. Based on the consistent cross-species similarities in opioid functioning, we propose a unified, state-dependent model for μ-opioid modulation of affiliation across the mammalian species. Finally, we show that this state-dependent model is supported by evidence from both rodent and primate studies, when species and age differences in social separation response are taken into account. PMID:25565999

  12. Social hierarchy modulates neural responses of empathy for pain

    PubMed Central

    Feng, Chunliang; Li, Zhihao; Feng, Xue; Wang, Lili; Tian, Tengxiang

    2016-01-01

    Recent evidence indicates that empathic responses to others’ pain are modulated by various situational and individual factors. However, few studies have examined how empathy and underlying brain functions are modulated by social hierarchies, which permeate human society with an enormous impact on social behavior and cognition. In this study, social hierarchies were established based on incidental skill in a perceptual task in which all participants were mediumly ranked. Afterwards, participants were scanned with functional magnetic resonance imaging while watching inferior-status or superior-status targets receiving painful or non-painful stimulation. The results revealed that painful stimulation applied to inferior-status targets induced higher activations in the anterior insula (AI) and anterior medial cingulate cortex (aMCC), whereas these empathic brain activations were significantly attenuated in response to superior-status targets’ pain. Further, this neural empathic bias to inferior-status targets was accompanied by stronger functional couplings of AI with brain regions important in emotional processing (i.e. thalamus) and cognitive control (i.e. middle frontal gyrus). Our findings indicate that emotional sharing with others’ pain is shaped by relative positions in a social hierarchy such that underlying empathic neural responses are biased toward inferior-status compared with superior-status individuals. PMID:26516169

  13. The neurobiology of the emotional adolescent: From the inside out

    PubMed Central

    Guyer, Amanda E.; Silk, Jennifer S.; Nelson, Eric E.

    2016-01-01

    Adolescents are commonly portrayed as highly emotional, with their behaviors often hijacked by their emotions. Research on the neural substrates of adolescent affective behavior is beginning to paint a more nuanced picture of how neurodevelopmental changes in brain function influence affective behavior, and how these influences are modulated by external factors in the environment. Recent neurodevelopmental models suggest that the brain is designed to promote emotion regulation, learning, and affiliation across development, and that affective behavior reciprocally interacts with age-specific social demands and different social contexts. In this review, we discuss current findings on neurobiological mechanisms of adolescents’ affective behavior and highlight individual differences in and social-contextual influences on adolescents’ emotionality. Neurobiological mechanisms of affective processes related to anxiety and depression are also discussed as examples. As the field progresses, it will be critical to test new hypotheses generated from the foundational empirical and conceptual work and to focus on identifying more precisely how and when neural networks change in ways that promote or thwart adaptive affective behavior during adolescence. PMID:27506384

  14. Navigating Monogamy: Nonapeptide Sensitivity in a Memory Neural Circuit May Shape Social Behavior and Mating Decisions.

    PubMed

    Ophir, Alexander G

    2017-01-01

    The role of memory in mating systems is often neglected despite the fact that most mating systems are defined in part by how animals use space. Monogamy, for example, is usually characterized by affiliative (e.g., pairbonding) and defensive (e.g., mate guarding) behaviors, but a high degree of spatial overlap in home range use is the easiest defining feature of monogamous animals in the wild. The nonapeptides vasopressin and oxytocin have been the focus of much attention for their importance in modulating social behavior, however this work has largely overshadowed their roles in learning and memory. To date, the understanding of memory systems and mechanisms governing social behavior have progressed relatively independently. Bridging these two areas will provide a deeper appreciation for understanding behavior, and in particular the mechanisms that mediate reproductive decision-making. Here, I argue that the ability to mate effectively as monogamous individuals is linked to the ability to track conspecifics in space. I discuss the connectivity across some well-known social and spatial memory nuclei, and propose that the nonapeptide receptors within these structures form a putative "socio-spatial memory neural circuit." This purported circuit may function to integrate social and spatial information to shape mating decisions in a context-dependent fashion. The lateral septum and/or the nucleus accumbens, and neuromodulation therein, may act as an intermediary to relate socio-spatial information with social behavior. Identifying mechanisms responsible for relating information about the social world with mechanisms mediating mating tactics is crucial to fully appreciate the suite of factors driving reproductive decisions and social decision-making.

  15. Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior

    PubMed Central

    Gacias, Mar; Gaspari, Sevasti; Santos, Patricia-Mae G; Tamburini, Sabrina; Andrade, Monica; Zhang, Fan; Shen, Nan; Tolstikov, Vladimir; Kiebish, Michael A; Dupree, Jeffrey L; Zachariou, Venetia; Clemente, Jose C; Casaccia, Patrizia

    2016-01-01

    Gene-environment interactions impact the development of neuropsychiatric disorders, but the relative contributions are unclear. Here, we identify gut microbiota as sufficient to induce depressive-like behaviors in genetically distinct mouse strains. Daily gavage of vehicle (dH2O) in nonobese diabetic (NOD) mice induced a social avoidance behavior that was not observed in C57BL/6 mice. This was not observed in NOD animals with depleted microbiota via oral administration of antibiotics. Transfer of intestinal microbiota, including members of the Clostridiales, Lachnospiraceae and Ruminococcaceae, from vehicle-gavaged NOD donors to microbiota-depleted C57BL/6 recipients was sufficient to induce social avoidance and change gene expression and myelination in the prefrontal cortex. Metabolomic analysis identified increased cresol levels in these mice, and exposure of cultured oligodendrocytes to this metabolite prevented myelin gene expression and differentiation. Our results thus demonstrate that the gut microbiota modifies the synthesis of key metabolites affecting gene expression in the prefrontal cortex, thereby modulating social behavior. DOI: http://dx.doi.org/10.7554/eLife.13442.001 PMID:27097105

  16. The neural basis of responsibility attribution in decision-making.

    PubMed

    Li, Peng; Shen, Yue; Sui, Xue; Chen, Changming; Feng, Tingyong; Li, Hong; Holroyd, Clay

    2013-01-01

    Social responsibility links personal behavior with societal expectations and plays a key role in affecting an agent's emotional state following a decision. However, the neural basis of responsibility attribution remains unclear. In two previous event-related brain potential (ERP) studies we found that personal responsibility modulated outcome evaluation in gambling tasks. Here we conducted a functional magnetic resonance imaging (fMRI) study to identify particular brain regions that mediate responsibility attribution. In a context involving team cooperation, participants completed a task with their teammates and on each trial received feedback about team success and individual success sequentially. We found that brain activity differed between conditions involving team success vs. team failure. Further, different brain regions were associated with reinforcement of behavior by social praise vs. monetary reward. Specifically, right temporoparietal junction (RTPJ) was associated with social pride whereas dorsal striatum and dorsal anterior cingulate cortex (ACC) were related to reinforcement of behaviors leading to personal gain. The present study provides evidence that the RTPJ is an important region for determining whether self-generated behaviors are deserving of praise in a social context.

  17. The Neural Basis of Responsibility Attribution in Decision-Making

    PubMed Central

    Li, Peng; Shen, Yue; Sui, Xue; Chen, Changming; Feng, Tingyong; Li, Hong; Holroyd, Clay

    2013-01-01

    Social responsibility links personal behavior with societal expectations and plays a key role in affecting an agent’s emotional state following a decision. However, the neural basis of responsibility attribution remains unclear. In two previous event-related brain potential (ERP) studies we found that personal responsibility modulated outcome evaluation in gambling tasks. Here we conducted a functional magnetic resonance imaging (fMRI) study to identify particular brain regions that mediate responsibility attribution. In a context involving team cooperation, participants completed a task with their teammates and on each trial received feedback about team success and individual success sequentially. We found that brain activity differed between conditions involving team success vs. team failure. Further, different brain regions were associated with reinforcement of behavior by social praise vs. monetary reward. Specifically, right temporoparietal junction (RTPJ) was associated with social pride whereas dorsal striatum and dorsal anterior cingulate cortex (ACC) were related to reinforcement of behaviors leading to personal gain. The present study provides evidence that the RTPJ is an important region for determining whether self-generated behaviors are deserving of praise in a social context. PMID:24224053

  18. The contribution of oxytocin and vasopressin to mammalian social behavior: potential role in autism spectrum disorder.

    PubMed

    Harony, Hala; Wagner, Shlomo

    2010-01-01

    Oxytocin (OT) and arginine-vasopressin (AVP) are 2 peptides that are produced in the brain and released via the pituitary gland to the peripheral blood, where they have diverse physiological functions. In the last 2 decades it has become clear that these peptides also play a central role in the modulation of mammalian social behavior by their actions within the brain. Several lines of evidence suggest their involvement in autism spectrum disorder (ASD), which is known to be associated with impaired social cognition and behavior. Recent clinical trials using OT administration to autistic patients have reported promising results. Here, we aim to describe the main data that suggest a connection between these peptides and ASD. Following a short illustration of several major topics in ASD biology we will (a) briefly describe the oxytocinergic and vasopressinergic systems in the brain, (b) discuss a few compelling cases manifesting the involvement of OT and AVP in mammalian social behavior, (c) describe data supporting the role of these peptides in human social cognition and behavior, and (d) discuss the possibility of the involvement of OT and AVP in ASD etiology, as well as the prospect of using these peptides as a treatment for ASD patients. Copyright © 2010 S. Karger AG, Basel.

  19. An imaging genetics approach to understanding social influence

    PubMed Central

    Falk, Emily B.; Way, Baldwin M.; Jasinska, Agnes J.

    2012-01-01

    Normative social influences shape nearly every aspect of our lives, yet the biological processes mediating the impact of these social influences on behavior remain incompletely understood. In this Hypothesis, we outline a theoretical framework and an integrative research approach to the study of social influences on the brain and genetic moderators of such effects. First, we review neuroimaging evidence linking social influence and conformity to the brain's reward system. We next review neuroimaging evidence linking social punishment (exclusion) to brain systems involved in the experience of pain, as well as evidence linking exclusion to conformity. We suggest that genetic variants that increase sensitivity to social cues may predispose individuals to be more sensitive to either social rewards or punishments (or potentially both), which in turn increases conformity and susceptibility to normative social influences more broadly. To this end, we review evidence for genetic moderators of neurochemical responses in the brain, and suggest ways in which genes and pharmacology may modulate sensitivity to social influences. We conclude by proposing an integrative imaging genetics approach to the study of brain mediators and genetic modulators of a variety of social influences on human attitudes, beliefs, and actions. PMID:22701416

  20. Activation of Both CB1 and CB2 Endocannabinoid Receptors Is Critical for Masculinization of the Developing Medial Amygdala and Juvenile Social Play Behavior

    PubMed Central

    Falvo, David J; Whitaker, Allison R

    2017-01-01

    Abstract Juvenile social play behavior is a shared trait across a wide variety of mammalian species. When play is characterized by the frequency or duration of physical contact, males usually display more play relative to females. The endocannabinoid system contributes to the development of the sex difference in social play behavior in rats. Treating newborn pups with a nonspecific endocannabinoid agonist, WIN55,212-2, masculinizes subsequent juvenile rough-and-tumble play behavior by females. Here we use specific drugs to target signaling through either the CB1 or CB2 endocannabinoid receptor (CB1R or CB2R) to determine which modulates the development of sex differences in play. Our data reveal that signaling through both CB1R and CB2R must be altered neonatally to modify development of neural circuitry regulating sex differences in play. Neonatal co-agonism of CB1R and CB2R masculinized play by females, whereas co-antagonism of these receptors feminized rates of male play. Because of a known role for the medial amygdala in the sexual differentiation of play, we reconstructed Golgi-impregnated neurons in the juvenile medial amygdala and used factor analysis to identify morphological parameters that were sexually differentiated and responsive to dual agonism of CB1R and CB2R during the early postnatal period. Our results suggest that sex differences in the medial amygdala are modulated by the endocannabinoid system during early development. Sex differences in play behavior are loosely correlated with differences in neuronal morphology. PMID:28144625

  1. Activation of Both CB1 and CB2 Endocannabinoid Receptors Is Critical for Masculinization of the Developing Medial Amygdala and Juvenile Social Play Behavior.

    PubMed

    Argue, Kathryn J; VanRyzin, Jonathan W; Falvo, David J; Whitaker, Allison R; Yu, Stacey J; McCarthy, Margaret M

    2017-01-01

    Juvenile social play behavior is a shared trait across a wide variety of mammalian species. When play is characterized by the frequency or duration of physical contact, males usually display more play relative to females. The endocannabinoid system contributes to the development of the sex difference in social play behavior in rats. Treating newborn pups with a nonspecific endocannabinoid agonist, WIN55,212-2, masculinizes subsequent juvenile rough-and-tumble play behavior by females. Here we use specific drugs to target signaling through either the CB1 or CB2 endocannabinoid receptor (CB1R or CB2R) to determine which modulates the development of sex differences in play. Our data reveal that signaling through both CB1R and CB2R must be altered neonatally to modify development of neural circuitry regulating sex differences in play. Neonatal co-agonism of CB1R and CB2R masculinized play by females, whereas co-antagonism of these receptors feminized rates of male play. Because of a known role for the medial amygdala in the sexual differentiation of play, we reconstructed Golgi-impregnated neurons in the juvenile medial amygdala and used factor analysis to identify morphological parameters that were sexually differentiated and responsive to dual agonism of CB1R and CB2R during the early postnatal period. Our results suggest that sex differences in the medial amygdala are modulated by the endocannabinoid system during early development. Sex differences in play behavior are loosely correlated with differences in neuronal morphology.

  2. An Avian Basal Ganglia-Forebrain Circuit Contributes Differentially to Syllable Versus Sequence Variability of Adult Bengalese Finch Song

    PubMed Central

    Hampton, Cara M.; Sakata, Jon T.; Brainard, Michael S.

    2009-01-01

    Behavioral variability is important for motor skill learning but continues to be present and actively regulated even in well-learned behaviors. In adult songbirds, two types of song variability can persist and are modulated by social context: variability in syllable structure and variability in syllable sequencing. The degree to which the control of both types of adult variability is shared or distinct remains unknown. The output of a basal ganglia-forebrain circuit, LMAN (the lateral magnocellular nucleus of the anterior nidopallium), has been implicated in song variability. For example, in adult zebra finches, neurons in LMAN actively control the variability of syllable structure. It is unclear, however, whether LMAN contributes to variability in adult syllable sequencing because sequence variability in adult zebra finch song is minimal. In contrast, Bengalese finches retain variability in both syllable structure and syllable sequencing into adulthood. We analyzed the effects of LMAN lesions on the variability of syllable structure and sequencing and on the social modulation of these forms of variability in adult Bengalese finches. We found that lesions of LMAN significantly reduced the variability of syllable structure but not of syllable sequencing. We also found that LMAN lesions eliminated the social modulation of the variability of syllable structure but did not detect significant effects on the modulation of sequence variability. These results show that LMAN contributes differentially to syllable versus sequence variability of adult song and suggest that these forms of variability are regulated by distinct neural pathways. PMID:19357331

  3. Progesterone Impairs Social Recognition in Male Rats

    PubMed Central

    Auger, Catherine J.

    2012-01-01

    The influence of progesterone in the brain and on the behavior of females is fairly well understood. However, less is known about the effect of progesterone in the male system. In male rats, receptors for progesterone are present in virtually all vasopressin (AVP) immunoreactive cells in the bed nucleus of the stria terminalis (BST) and the medial amygdala (MeA). This colocalization functions to regulate AVP expression, as progesterone and/or progestin receptors (PR)s suppresses AVP expression in these same extrahypothalamic regions in the brain. These data suggest that progesterone may influence AVP-dependant behavior. While AVP is implicated in numerous behavioral and physiological functions in rodents, AVP appears essential for social recognition of conspecifics. Therefore, we examined the effects of progesterone on social recognition. We report that progesterone plays an important role in modulating social recognition in the male brain, as progesterone treatment lead to a significant impairment of social recognition in male rats. Moreover, progesterone appears to act on PRs to impair social recognition, as progesterone impairment of social recognition is blocked by a PR antagonist, RU-486. Social recognition is also impaired by a specific progestin agonist, R5020. Interestingly, we show that progesterone does not interfere with either general memory or olfactory processes, suggesting that progesterone seems critically important to social recognition memory. These data provide strong evidence that physiological levels of progesterone can have an important impact on social behavior in male rats. PMID:22366506

  4. Progesterone impairs social recognition in male rats.

    PubMed

    Bychowski, Meaghan E; Auger, Catherine J

    2012-04-01

    The influence of progesterone in the brain and on the behavior of females is fairly well understood. However, less is known about the effect of progesterone in the male system. In male rats, receptors for progesterone are present in virtually all vasopressin (AVP) immunoreactive cells in the bed nucleus of the stria terminalis (BST) and the medial amygdala (MeA). This colocalization functions to regulate AVP expression, as progesterone and/or progestin receptors (PR)s suppress AVP expression in these same extrahypothalamic regions in the brain. These data suggest that progesterone may influence AVP-dependent behavior. While AVP is implicated in numerous behavioral and physiological functions in rodents, AVP appears essential for social recognition of conspecifics. Therefore, we examined the effects of progesterone on social recognition. We report that progesterone plays an important role in modulating social recognition in the male brain, as progesterone treatment leads to a significant impairment of social recognition in male rats. Moreover, progesterone appears to act on PRs to impair social recognition, as progesterone impairment of social recognition is blocked by a PR antagonist, RU-486. Social recognition is also impaired by a specific progestin agonist, R5020. Interestingly, we show that progesterone does not interfere with either general memory or olfactory processes, suggesting that progesterone seems critically important to social recognition memory. These data provide strong evidence that physiological levels of progesterone can have an important impact on social behavior in male rats. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. The Social Context Network Model in Psychiatric and Neurological Diseases.

    PubMed

    Baez, Sandra; García, Adolfo M; Ibanez, Agustín

    2017-01-01

    The role of contextual modulations has been extensively studied in basic sensory and cognitive processes. However, little is known about their impact on social cognition, let alone their disruption in disorders compromising such a domain. In this chapter, we flesh out the social context network model (SCNM), a neuroscientific proposal devised to address the issue. In SCNM terms, social context effects rely on a fronto-temporo-insular network in charge of (a) updating context cues to make predictions, (b) consolidating context-target associative learning, and (c) coordinating internal and external milieus. First, we characterize various social cognition domains as context-dependent phenomena. Then, we review behavioral and neural evidence of social context impairments in behavioral variant frontotemporal dementia (bvFTD) and autism spectrum disorder (ASD), highlighting their relation with key SCNM hubs. Next, we show that other psychiatric and neurological conditions involve context-processing impairments following damage to the brain regions included in the model. Finally, we call for an ecological approach to social cognition assessment, moving beyond widespread abstract and decontextualized methods.

  6. Prosocial effects of nicotine and ethanol in adolescent rats through partially dissociable neurobehavioral mechanisms

    PubMed Central

    Trezza, Viviana; Baarendse, Petra J.J.; Vanderschuren, Louk J.M.J.

    2009-01-01

    The widespread use of tobacco and alcohol among adolescents might be related to the ability of nicotine and ethanol to facilitate social interactions. To investigate the neurobehavioral mechanisms underlying the prosocial effects of nicotine and ethanol, we focused on social play behavior, the most characteristic social activity in adolescent rats. Social play behavior is rewarding, and it is modulated through opioid, cannabinoid and dopaminergic neurotransmission, which are also involved in the reinforcing properties of nicotine and ethanol. We found that nicotine and ethanol increased social play, without affecting locomotion or social exploration. Their effects depended on the level of social activity of the partner, and were comparable in familiar and unfamiliar environments. At doses that increased social play, nicotine and ethanol had no anxiolytic effects in the elevated plus-maze. By contrast, the prototypical anxiolytic drug diazepam reduced social play at doses that reduced anxiety. The effects of nicotine on social play were blocked by the opioid receptor antagonist naloxone, the CB1 cannabinoid receptor antagonist SR141716A, and the dopamine receptor antagonist alpha-flupenthixol. The effects of ethanol were blocked by SR141716A and alpha-flupenthixol, but not by naloxone. Combined administration of subeffective doses of nicotine and ethanol only modestly enhanced social play. These results show that the facilitatory effects of nicotine and ethanol on social play are behaviorally specific and mediated through neurotransmitter systems involved in positive emotions and motivation, through partially dissociable mechanisms. Furthermore, the stimulating effects of nicotine and ethanol on social play behavior are independent of their anxiolytic-like properties. PMID:19657330

  7. Social networks and social support for healthy eating among Latina breast cancer survivors: Implications for social and behavioral interventions

    PubMed Central

    Crookes, Danielle M.; Shelton, Rachel C.; Tehranifar, Parisa; Aycinena, Corina; Gaffney, Ann Ogden; Koch, Pam; Contento, Isobel R.; Greenlee, Heather

    2015-01-01

    Purpose Little is known about Latina breast cancer survivors' social networks or their perceived social support to achieve and maintain a healthy diet. This paper describes the social networks and perceived support for healthy eating in a sample of breast cancer survivors of predominantly Dominican descent living in New York City. Methods Spanish-speaking Latina breast cancer survivors enrolled in a randomized controlled trial of a culturally-tailored dietary intervention. Social networks were assessed using Cohen's Social Network Index and a modified General Social Survey Social Networks Module that included assessments of shared health promoting behaviors. Perceived social support from family and friends for healthy, food-related behaviors was assessed. Results Participants' networks consisted predominantly of family and friends. Family members were more likely than other individuals to be identified as close network members. Participants were more likely to share food-related activities than exercise activities with close network members. Perceived social support for healthy eating was high, although perceived support from spouses and children was higher than support from friends. Despite high levels of perceived support, family was also identified as a barrier to eating healthy foods by nearly half of women. Conclusions Although friends are part of Latina breast cancer survivors' social networks, spouses and children may provide greater support for healthy eating than friends. Implications for Cancer Survivors Involving family members in dietary interventions for Latina breast cancer survivors may tap into positive sources of support for women, which could facilitate uptake and maintenance of healthy eating behaviors. PMID:26202538

  8. Prosocial effects of nicotine and ethanol in adolescent rats through partially dissociable neurobehavioral mechanisms.

    PubMed

    Trezza, Viviana; Baarendse, Petra J J; Vanderschuren, Louk J M J

    2009-11-01

    The widespread use of tobacco and alcohol among adolescents might be related to the ability of nicotine and ethanol to facilitate social interactions. To investigate the neurobehavioral mechanisms underlying the prosocial effects of nicotine and ethanol, we focused on social play behavior, the most characteristic social activity in adolescent rats. Social play behavior is rewarding, and it is modulated through opioid, cannabinoid and dopaminergic neurotransmission, which are also involved in the reinforcing properties of nicotine and ethanol. We found that nicotine and ethanol increased social play, without affecting locomotion or social exploration. Their effects depended on the level of social activity of the partner, and were comparable in familiar and unfamiliar environments. At doses that increased social play, nicotine and ethanol had no anxiolytic effects in the elevated plus-maze. By contrast, the prototypical anxiolytic drug diazepam reduced social play at doses that reduced anxiety. The effects of nicotine on social play were blocked by the opioid receptor antagonist naloxone, the CB(1) cannabinoid receptor antagonist SR141716A, and the dopamine receptor antagonist alpha-flupenthixol. The effects of ethanol were blocked by SR141716A and alpha-flupenthixol, but not by naloxone. Combined administration of subeffective doses of nicotine and ethanol only modestly enhanced social play. These results show that the facilitatory effects of nicotine and ethanol on social play are behaviorally specific and mediated through neurotransmitter systems involved in positive emotions and motivation, through partially dissociable mechanisms. Furthermore, the stimulating effects of nicotine and ethanol on social play behavior are independent of their anxiolytic-like properties.

  9. Medial prefrontal cortex and the emergence of self-conscious emotion in adolescence

    PubMed Central

    Somerville, Leah H.; Jones, Rebecca M.; Ruberry, Erika J.; Dyke, Jonathan P.; Glover, Gary; Casey, BJ

    2013-01-01

    In the present study, we examined the relationship between developmental modulation of socioaffective brain systems and adolescents’ preoccupation with social evaluation. Child, adolescent, and adult participants viewed cues indicating that a camera was alternately off, warming up, or projecting their image to a peer during the acquisition of behavioral-, autonomic-, and neural-response (functional MRI) data. Believing that a peer was actively watching them was sufficient to induce self-conscious emotion that was stronger in adolescents than in children and adults. Autonomic arousal was uniquely heightened in adolescents. These behavioral patterns were paralleled by emergent engagement of the medial prefrontal cortex (MPFC) and striatum-MPFC connectivity during adolescence, which are thought to promote adolescent-motivated social behavior. These findings demonstrate that adolescents’ self-consciousness is related to age-dependent sensitivity of brain systems critical to socioaffective processes. Further, unique interactions between the MPFC and striatum may provide a mechanism by which social-evaluation contexts influence adolescent behavior. PMID:23804962

  10. Exogenous testosterone in women enhances and inhibits competitive decision-making depending on victory-defeat experience and trait dominance.

    PubMed

    Mehta, Pranjal H; van Son, Veerle; Welker, Keith M; Prasad, Smrithi; Sanfey, Alan G; Smidts, Ale; Roelofs, Karin

    2015-10-01

    The present experiment tested the causal impact of testosterone on human competitive decision-making. According to prevailing theories about testosterone's role in social behavior, testosterone should directly boost competitive decisions. But recent correlational evidence suggests that testosterone's behavioral effects may depend on specific aspects of the context and person relevant to social status (win-lose context and trait dominance). We tested the causal influence of testosterone on competitive decisions by combining hormone administration with measures of trait dominance and a newly developed social competition task in which the victory-defeat context was experimentally manipulated, in a sample of 54 female participants. Consistent with the hypothesis that testosterone has context- and person-dependent effects on competitive behavior, testosterone increased competitive decisions after victory only among high-dominant individuals but testosterone decreased competitive decisions after defeat across all participants. These results suggest that testosterone flexibly modulates competitive decision-making depending on prior social experience and dominance motivation in the service of enhancing social status. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Autistic behavior in Scn1a+/− mice and rescue by enhanced GABAergic transmission

    PubMed Central

    Han, Sung; Tai, Chao; Westenbroek, Ruth E.; Yu, Frank H.; Cheah, Christine S.; Potter, Gregory B.; Rubenstein, John L.; Scheuer, Todd; de la Iglesia, Horacio O; Catterall, William A

    2012-01-01

    Haploinsufficiency of the SCN1A gene encoding voltage-gated sodium channel NaV1.1 causes Dravet Syndrome (DS), a childhood neuropsychiatric disorder including recurrent intractable seizures, cognitive deficit, and autism-spectrum behaviors. The neural mechanisms responsible for cognitive deficit and autism-spectrum behaviors in DS are poorly understood. Here we show that mice with Scn1a haploinsufficiency display hyperactivity, stereotyped behaviors, social interaction deficits, and impaired context-dependent spatial memory. Olfactory sensitivity is retained, but novel food odors and social odors are aversive to Scn1a+/− mice. GABAergic neurotransmission is specifically impaired by this mutation, and selective deletion of NaV1.1 channels in forebrain interneurons is sufficient to cause these behavioral and cognitive impairments. Remarkably, treatment with low-dose clonazepam, a positive allosteric modulator of GABAA receptors, completely rescued the abnormal social behaviors and deficits in fear memory in DS mice, demonstrating that they are caused by impaired GABAergic neurotransmission and not by neuronal damage from recurrent seizures. These results demonstrate a critical role for NaV1.1 channels in neuropsychiatric functions and provide a potential therapeutic strategy for cognitive deficit and autism-spectrum behaviors in DS. PMID:22914087

  12. An oxytocin receptor polymorphism predicts amygdala reactivity and antisocial behavior in men.

    PubMed

    Waller, Rebecca; Corral-Frías, Nadia S; Vannucci, Bianca; Bogdan, Ryan; Knodt, Annchen R; Hariri, Ahmad R; Hyde, Luke W

    2016-08-01

    Variability in oxytocin (OXT) signaling is associated with individual differences in sex-specific social behavior across species. The effects of OXT signaling on social behavior are, in part, mediated through its modulation of amygdala function. Here, we use imaging genetics to examine sex-specific effects of three single-nucleotide polymorphisms in the human oxytocin receptor gene (OXTR; rs1042778, rs53576 and rs2254298) on threat-related amygdala reactivity and social behavior in 406 Caucasians. Analyses revealed that among men but not women, OXTR rs1042778 TT genotype was associated with increased right amygdala reactivity to angry facial expressions, which was uniquely related to higher levels of antisocial behavior among men. Moderated meditation analysis suggested a trending indirect effect of OXTR rs1042778 TT genotype on higher antisocial behavior via increased right amygdala reactivity to angry facial expressions in men. Our results provide evidence linking genetic variation in OXT signaling to individual differences in amygdala function. The results further suggest that these pathways may be uniquely important in shaping antisocial behavior in men. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. Do attachment patterns predict aggression in a context of social rejection? An executive functioning account.

    PubMed

    Ma, Yuanxiao; Ma, Haijing; Chen, Xu; Ran, Guangming; Zhang, Xing

    2017-07-01

    People tend to respond to rejection and attack with aggression. The present research examined the modulation role of attachment patterns on provoked aggression following punishment and proposed an executive functioning account of attachment patterns' modulating influence based on the General Aggression Model. Attachment style was measured using the Experiences in Close Relationships inventory. Experiments 1a and b and 2 adopted a social rejection task and assessed subsequent unprovoked and provoked aggression with different attachment patterns. Moreover, Experiment 1b and 2 used a Stroop task to examine whether differences in provoked aggression by attachment patterns are due to the amount of executive functioning following social rejection, or after unprovoked punishment, or even before social rejection. Anxiously attached participants displayed significant more provoked aggression than securely and avoidantly attached participants in provoked aggression following unprovoked punishment in Experiments 1 and 2. Meanwhile, subsequent Stroop tests indicated anxiously attached participants experienced more executive functioning depletion after social rejection and unprovoked aggression. The present findings support the General Aggression Model and suggest that provoked aggression is predicted by attachment patterns in the context of social rejection; different provoked aggression may depend on the degree of executive functioning that individuals preserved in aggressive situations. The current study contributes to our understanding of the importance of the role of attachment patterns in modulating aggressive behavior accompanying unfair social encounters. © 2017 Wiley Periodicals, Inc.

  14. Enhanced old-new recognition and source memory for faces of cooperators and defectors in a social-dilemma game.

    PubMed

    Bell, Raoul; Buchner, Axel; Musch, Jochen

    2010-12-01

    A popular assumption in evolutionary psychology is that the human mind comprises specialized cognitive modules for social exchange, including a module that serves to enhance memory for faces of cheaters. In the present study, participants played a trust game with computerized opponents, who either defected or cooperated. In a control condition, no interaction took place. In a surprise memory test, old-new recognition for faces and source memory for the associated cooperative or non-cooperative behavior were assessed. A multinomial model was used to measure old-new discrimination, source memory, and guessing biases separately. Inconsistent with the assumption of a memory mechanism that focuses exclusively on cheating, the present study showed enhanced old-new discrimination and source memory for both cooperators and defectors. Rarity of the behavior strategies within the experiment modulated source memory, but only when the differences in base rates were extreme. The findings can be attributed to a mechanism that focuses on exchange-relevant information and flexibly adapts to take into account the relative significance of this information in the encoding context, which may be more beneficial than focusing exclusively on cheaters. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Distinct roles of the endocannabinoids anandamide and 2-arachidonoylglycerol in social behavior and emotionality at different developmental ages in rats.

    PubMed

    Manduca, Antonia; Morena, Maria; Campolongo, Patrizia; Servadio, Michela; Palmery, Maura; Trabace, Luigia; Hill, Matthew N; Vanderschuren, Louk J M J; Cuomo, Vincenzo; Trezza, Viviana

    2015-08-01

    To date, our understanding of the relative contribution and potential overlapping roles of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in the regulation of brain function and behavior is still limited. To address this issue, we investigated the effects of systemic administration of JZL195, that simultaneously increases AEA and 2-AG signaling by inhibiting their hydrolysis, in the regulation of socio-emotional behavior in adolescent and adult rats. JZL195, administered at the dose of 0.01mg/kg, increased social play behavior, that is the most characteristic social activity displayed by adolescent rats, and increased social interaction in adult animals. At both ages, these behavioral effects were antagonized by the CB1 cannabinoid receptor antagonist SR141716A and were associated with increased brain levels of 2-AG, but not AEA. Conversely, at the dose of 1mg/kg, JZL195 decreased general social exploration in adolescent rats without affecting social play behavior, and induced anxiogenic-like effects in the elevated plus-maze test both in adolescent and adult animals. These effects, mediated by activation of CB1 cannabinoid receptors, were paralleled by simultaneous increase in AEA and 2-AG levels in adolescent rats, and by an increase of only 2-AG levels in adult animals. These findings provide the first evidence for a role of 2-AG in social behavior, highlight the different contributions of AEA and 2-AG in the modulation of emotionality at different developmental ages and suggest that pharmacological inhibition of AEA and 2-AG hydrolysis is a useful approach to investigate the role of these endocannabinoids in neurobehavioral processes. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  16. Variation in social relationships relates to song preferences and EGR1 expression in a female songbird.

    PubMed

    Schubloom, Hannah E; Woolley, Sarah C

    2016-09-01

    Social experiences can profoundly shape social behavior and the underlying neural circuits. Across species, the formation of enduring social relationships is associated with both neural and behavioral changes. However, it remains unclear how longer-term relationships between individuals influence brain and behavior. Here, we investigated how variation in social relationships relates to variation in female preferences for and neural responses to song in a pair-bonding songbird. We assessed variation in the interactions between individuals in male-female zebra finch pairs and found that female preferences for their mate's song were correlated with the degree of affiliation and amount of socially modulated singing, but not with the frequency of aggressive interactions. Moreover, variation in measures of pair quality and preference correlated with variation in the song-induced expression of EGR1, an immediate early gene related to neural activity and plasticity, in brain regions important for auditory processing and social behavior. For example, females with weaker preferences for their mate's song had greater EGR1 expression in the nucleus Taeniae, the avian homologue of the mammalian medial amygdala, in response to playback of their mate's courtship song. Our data indicate that the quality of social interactions within pairs relates to variation in song preferences and neural responses to ethologically relevant stimuli and lend insight into neural circuits sensitive to social information. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1029-1040, 2016. © 2016 Wiley Periodicals, Inc.

  17. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  18. Navigating Monogamy: Nonapeptide Sensitivity in a Memory Neural Circuit May Shape Social Behavior and Mating Decisions

    PubMed Central

    Ophir, Alexander G.

    2017-01-01

    The role of memory in mating systems is often neglected despite the fact that most mating systems are defined in part by how animals use space. Monogamy, for example, is usually characterized by affiliative (e.g., pairbonding) and defensive (e.g., mate guarding) behaviors, but a high degree of spatial overlap in home range use is the easiest defining feature of monogamous animals in the wild. The nonapeptides vasopressin and oxytocin have been the focus of much attention for their importance in modulating social behavior, however this work has largely overshadowed their roles in learning and memory. To date, the understanding of memory systems and mechanisms governing social behavior have progressed relatively independently. Bridging these two areas will provide a deeper appreciation for understanding behavior, and in particular the mechanisms that mediate reproductive decision-making. Here, I argue that the ability to mate effectively as monogamous individuals is linked to the ability to track conspecifics in space. I discuss the connectivity across some well-known social and spatial memory nuclei, and propose that the nonapeptide receptors within these structures form a putative “socio-spatial memory neural circuit.” This purported circuit may function to integrate social and spatial information to shape mating decisions in a context-dependent fashion. The lateral septum and/or the nucleus accumbens, and neuromodulation therein, may act as an intermediary to relate socio-spatial information with social behavior. Identifying mechanisms responsible for relating information about the social world with mechanisms mediating mating tactics is crucial to fully appreciate the suite of factors driving reproductive decisions and social decision-making. PMID:28744194

  19. Recovery of stress-impaired social behavior by an antagonist of the CRF binding protein, CRF6-33, in the bed nucleus of the stria terminalis of male rats.

    PubMed

    Vasconcelos, Mailton; Stein, Dirson J; Albrechet-Souza, Lucas; Miczek, Klaus A; de Almeida, Rosa Maria M

    2018-01-09

    Social stress is recognized to promote the development of neuropsychiatric and mood disorders. Corticotropin releasing factor (CRF) is an important neuropeptide activated by social stress, and it contributes to neural and behavioral adaptations, as indicated by impaired social interactions and anhedonic effects. Few studies have focused on the role of the CRF binding protein (CRFBP), a component of the CRF system, and its activity in the bed nucleus of stria terminalis (BNST), a limbic structure connecting amygdala and hypothalamus. In this study, animals' preference for sweet solutions was examined as an index of stress-induced anhedonic responses in Wistar rats subjected to four brief intermittent episodes of social defeat. Next, social approach was assessed after local infusions of the CRFBP antagonist, CRF fragment 6-33 (CRF 6-33 ) into the BNST. The experience of brief episodes of social defeat impaired social approach behaviors in male rats. However, intra-BNST CRF 6-33 infusions restored social approach in stressed animals to the levels of non-stressed rats. CRF 6-33 acted selectively on social interaction and did not alter general exploration in nether stressed nor non-stressed rats. These findings suggest that BNST CRFBP is involved in the modulation of anxiety-like responses induced by social stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Social environment elicits lateralized behaviors in gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes).

    PubMed

    Quaresmini, Caterina; Forrester, Gillian S; Spiezio, Caterina; Vallortigara, Giorgio

    2014-08-01

    The influence of the social environment on lateralized behaviors has now been investigated across a wide variety of animal species. New evidence suggests that the social environment can modulate behavior. Currently, there is a paucity of data relating to how primates navigate their environmental space, and investigations that consider the naturalistic context of the individual are few and fragmented. Moreover, there are competing theories about whether only the right or rather both cerebral hemispheres are involved in the processing of social stimuli, especially in emotion processing. Here we provide the first report of lateralized social behaviors elicited by great apes. We employed a continuous focal animal sampling method to record the spontaneous interactions of a captive zoo-living colony of chimpanzees (Pan troglodytes) and a biological family group of peer-reared western lowland gorillas (Gorilla gorilla gorilla). We specifically focused on which side of the body (i.e., front, rear, left, right) the focal individual preferred to keep conspecifics. Utilizing a newly developed quantitative corpus-coding scheme, analysis revealed both chimpanzees and gorillas demonstrated a significant group-level preference for focal individuals to keep conspecifics positioned to the front of them compared with behind them. More interestingly, both groups also manifested a population-level bias to keep conspecifics on their left side compared with their right side. Our findings suggest a social processing dominance of the right hemisphere for context-specific social environments. Results are discussed in light of the evolutionary adaptive value of social stimulus as a triggering factor for the manifestation of group-level lateralized behaviors.

  1. Odorant binding protein 69a connects social interaction to modulation of social responsiveness in Drosophila.

    PubMed

    Bentzur, Assa; Shmueli, Anat; Omesi, Liora; Ryvkin, Julia; Knapp, Jon-Michael; Parnas, Moshe; Davis, Fred P; Shohat-Ophir, Galit

    2018-04-01

    Living in a social environment requires the ability to respond to specific social stimuli and to incorporate information obtained from prior interactions into future ones. One of the mechanisms that facilitates social interaction is pheromone-based communication. In Drosophila melanogaster, the male-specific pheromone cis-vaccenyl acetate (cVA) elicits different responses in male and female flies, and functions to modulate behavior in a context and experience-dependent manner. Although it is the most studied pheromone in flies, the mechanisms that determine the complexity of the response, its intensity and final output with respect to social context, sex and prior interaction, are still not well understood. Here we explored the functional link between social interaction and pheromone-based communication and discovered an odorant binding protein that links social interaction to sex specific changes in cVA related responses. Odorant binding protein 69a (Obp69a) is expressed in auxiliary cells and secreted into the olfactory sensilla. Its expression is inversely regulated in male and female flies by social interactions: cVA exposure reduces its levels in male flies and increases its levels in female flies. Increasing or decreasing Obp69a levels by genetic means establishes a functional link between Obp69a levels and the extent of male aggression and female receptivity. We show that activation of cVA-sensing neurons is sufficeint to regulate Obp69a levels in the absence of cVA, and requires active neurotransmission between the sensory neuron to the second order olfactory neuron. The cross-talk between sensory neurons and non-neuronal auxiliary cells at the olfactory sensilla, represents an additional component in the machinery that promotes behavioral plasticity to the same sensory stimuli in male and female flies.

  2. The busy social brain: evidence for automaticity and control in the neural systems supporting social cognition and action understanding.

    PubMed

    Spunt, Robert P; Lieberman, Matthew D

    2013-01-01

    Much social-cognitive processing is believed to occur automatically; however, the relative automaticity of the brain systems underlying social cognition remains largely undetermined. We used functional MRI to test for automaticity in the functioning of two brain systems that research has indicated are important for understanding other people's behavior: the mirror neuron system and the mentalizing system. Participants remembered either easy phone numbers (low cognitive load) or difficult phone numbers (high cognitive load) while observing actions after adopting one of four comprehension goals. For all four goals, mirror neuron system activation showed relatively little evidence of modulation by load; in contrast, the association of mentalizing system activation with the goal of inferring the actor's mental state was extinguished by increased cognitive load. These results support a dual-process model of the brain systems underlying action understanding and social cognition; the mirror neuron system supports automatic behavior identification, and the mentalizing system supports controlled social causal attribution.

  3. Sex-dependent effects of stress on brain correlates to empathy for pain.

    PubMed

    Gonzalez-Liencres, Cristina; Breidenstein, Anja; Wolf, Oliver T; Brüne, Martin

    2016-07-01

    Empathy is a fundamental attribute required for appropriate social functioning. The extent to which we empathize with others in pain is influenced by numerous factors. Being highly social species, humans face social stress on a regular basis, which undoubtedly affects how we react to our environment. It is not yet known how social stress may modulate our neural mechanisms when we empathize with others in painful circumstances, and its effects on empathic behavior are still unclear. For this reason, we recorded the electroencephalography (EEG) of healthy men and women, half of which were previously exposed to psychosocial stress, while they observed photographs of hands in painful and neutral situations. At the behavioral level, stress induced higher unpleasantness ratings to painful stimuli, and lower ratings to neutral pictures, independent of sex. At the neurophysiological level, we found that early (N110 over fronto-central sites) event-related potentials (ERPs) were not affected by stress, while late (P3 over centro-parietal regions) components showed a sex-dependent differential effect of stress. Correlation analyses further indicated a strong association between N110 with trait markers of empathy in all participants, while P3 was associated with the change in cortisol in stressed males. Our findings suggest that sex-dependent effects of social stress on the neural responses to empathy for pain give rise to comparable behaviors in men and women in the paradigm we employed, implying that each sex may engage in distinct mechanisms to cope with stress. Moreover, stress seems to modulate late neural mechanisms of empathy but not our early perception. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Facing two faces: Defense activation varies as a function of personal relevance.

    PubMed

    Bublatzky, Florian; Alpers, Georg W

    2017-04-01

    It can be unsettling to be watched by a group of people, and when they express anger or hostility, this can prime defensive behavior. In contrast, when others smile at us, this may be comforting. This study tested to which degree the impact of facial expressions (happy, neutral, and angry) varies with the personal relevance of a social situation. Modelling a triadic situation, two faces looked either directly at the participant, faced each other, or they were back to back. Results confirmed that this variation constitutes a gradient of personal relevance (directed frontally > towards > away), as reflected by corresponding defensive startle modulation and autonomic nervous system activity. This gradient was particularly pronounced for angry faces and it was steeper in participants with higher levels of social anxiety. Thus, sender-recipient constellations modulate the processing of facial emotions in favor of adequate behavioral responding (e.g., avoidance) in group settings. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The Autism Diagnostic Observation Schedule, Toddler Module: Standardized Severity Scores

    PubMed Central

    Esler, Amy N.; Bal, Vanessa Hus; Guthrie, Whitney; Wetherby, Amy; Weismer, Susan Ellis; Lord, Catherine

    2016-01-01

    Standardized calibrated severity scores (CSS) have been created for Autism Diagnostic Observation Schedule, 2nd edition (ADOS-2) Modules 1–4 as a metric of the relative severity of autism-specific behaviors. Total and domain CSS were created for the Toddler Module to facilitate comparison to other modules. Analyses included 388 children with ASD age 12 to 30 months and were replicated on 435 repeated assessments from 127 children with ASD. Compared to raw scores, associations between total and domain CSS and participant characteristics were reduced in the original sample. Verbal IQ effects on Social Affect-CSS were not reduced in the replication sample. Toddler Module CSS increases comparability of ADOS-2 scores across modules and allows studies of symptom trajectories to extend to earlier ages. PMID:25832801

  6. Social hierarchy modulates neural responses of empathy for pain.

    PubMed

    Feng, Chunliang; Li, Zhihao; Feng, Xue; Wang, Lili; Tian, Tengxiang; Luo, Yue-Jia

    2016-03-01

    Recent evidence indicates that empathic responses to others' pain are modulated by various situational and individual factors. However, few studies have examined how empathy and underlying brain functions are modulated by social hierarchies, which permeate human society with an enormous impact on social behavior and cognition. In this study, social hierarchies were established based on incidental skill in a perceptual task in which all participants were mediumly ranked. Afterwards, participants were scanned with functional magnetic resonance imaging while watching inferior-status or superior-status targets receiving painful or non-painful stimulation. The results revealed that painful stimulation applied to inferior-status targets induced higher activations in the anterior insula (AI) and anterior medial cingulate cortex (aMCC), whereas these empathic brain activations were significantly attenuated in response to superior-status targets' pain. Further, this neural empathic bias to inferior-status targets was accompanied by stronger functional couplings of AI with brain regions important in emotional processing (i.e. thalamus) and cognitive control (i.e. middle frontal gyrus). Our findings indicate that emotional sharing with others' pain is shaped by relative positions in a social hierarchy such that underlying empathic neural responses are biased toward inferior-status compared with superior-status individuals. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. Beyond arousal and valence: the importance of the biological versus social relevance of emotional stimuli.

    PubMed

    Sakaki, Michiko; Niki, Kazuhisa; Mather, Mara

    2012-03-01

    The present study addressed the hypothesis that emotional stimuli relevant to survival or reproduction (biologically emotional stimuli) automatically affect cognitive processing (e.g., attention, memory), while those relevant to social life (socially emotional stimuli) require elaborative processing to modulate attention and memory. Results of our behavioral studies showed that (1) biologically emotional images hold attention more strongly than do socially emotional images, (2) memory for biologically emotional images was enhanced even with limited cognitive resources, but (3) memory for socially emotional images was enhanced only when people had sufficient cognitive resources at encoding. Neither images' subjective arousal nor their valence modulated these patterns. A subsequent functional magnetic resonance imaging study revealed that biologically emotional images induced stronger activity in the visual cortex and greater functional connectivity between the amygdala and visual cortex than did socially emotional images. These results suggest that the interconnection between the amygdala and visual cortex supports enhanced attention allocation to biological stimuli. In contrast, socially emotional images evoked greater activity in the medial prefrontal cortex (MPFC) and yielded stronger functional connectivity between the amygdala and MPFC than did biological images. Thus, it appears that emotional processing of social stimuli involves elaborative processing requiring frontal lobe activity.

  8. Beyond arousal and valence: The importance of the biological versus social relevance of emotional stimuli

    PubMed Central

    Sakaki, Michiko; Niki, Kazuhisa; Mather, Mara

    2012-01-01

    The present study addressed the hypothesis that emotional stimuli relevant to survival or reproduction (biologically emotional stimuli) automatically affect cognitive processing (e.g., attention; memory), while those relevant to social life (socially emotional stimuli) require elaborative processing to modulate attention and memory. Results of our behavioral studies showed that: a) biologically emotional images hold attention more strongly than socially emotional images, b) memory for biologically emotional images was enhanced even with limited cognitive resources, but c) memory for socially emotional images was enhanced only when people had sufficient cognitive resources at encoding. Neither images’ subjective arousal nor their valence modulated these patterns. A subsequent functional magnetic resonance imaging study revealed that biologically emotional images induced stronger activity in visual cortex and greater functional connectivity between amygdala and visual cortex than did socially emotional images. These results suggest that the interconnection between the amygdala and visual cortex supports enhanced attention allocation to biological stimuli. In contrast, socially emotional images evoked greater activity in medial prefrontal cortex (MPFC) and yielded stronger functional connectivity between amygdala and MPFC than biological images. Thus, it appears that emotional processing of social stimuli involves elaborative processing requiring frontal lobe activity. PMID:21964552

  9. GAL3 receptor KO mice exhibit an anxiety-like phenotype

    PubMed Central

    Brunner, Susanne M.; Farzi, Aitak; Locker, Felix; Holub, Barbara S.; Drexel, Meinrad; Reichmann, Florian; Lang, Andreas A.; Mayr, Johannes A.; Vilches, Jorge J.; Navarro, Xavier; Lang, Roland; Sperk, Günther; Holzer, Peter; Kofler, Barbara

    2014-01-01

    The neuropeptide galanin (GAL) is widely distributed in the central and peripheral nervous systems. It is a modulator of various physiological and pathological processes, and it mediates its effects via three G protein-coupled receptors (GAL1–3 receptors). A role for GAL as a modulator of mood and anxiety was suggested, because GAL and its receptors are highly expressed in limbic brain structures of rodents. In recent years, numerous studies of animal models have suggested an involvement of GAL and GAL1 and GAL2 receptors in anxiety- and depression-related behavior. However, to date, there is sparse literature implicating GAL3 receptors in behavioral functions. Therefore, we studied the behavior of GAL3 receptor-deficient (GAL3-KO) mice to elucidate whether GAL3 receptors are involved in mediating behavior-associated actions of GAL. The GAL3-KO mouse line exhibited normal breeding and physical development. In addition to behavioral tests, phenotypic characterization included analysis of hematology, amino acid profiles, metabolism, and sudomotor function. In contrast to WT littermates, male GAL3-KO mice exhibited an anxiety-like phenotype in the elevated plus maze, open field, and light/dark box tests, and they were less socially affiliated than WT animals to a stranger mouse in a social interaction test. In conclusion, our data suggest involvement of GAL3 receptors in GAL-mediated effects on mood, anxiety, and behavior, making it a possible target for alternative treatment strategies for mood disorders. PMID:24782539

  10. Parvalbumin Cell Ablation of NMDA-R1 Causes Increased Resting Network Excitability with Associated Social and Self-Care Deficits

    PubMed Central

    Billingslea, Eddie N; Tatard-Leitman, Valerie M; Anguiano, Jaynie; Jutzeler, Catherine R; Suh, Jimmy; Saunders, John A; Morita, Susumu; Featherstone, Robert E; Ortinski, Pavel I; Gandal, Michael J; Lin, Robert; Liang, Yuling; Gur, Raquel E; Carlson, Gregory C; Hahn, Chang-Gyu; Siegel, Steven J

    2014-01-01

    NMDA-receptor (NMDAR) hypofunction is strongly implicated in the pathophysiology of schizophrenia. Several convergent lines of evidence suggest that net excitation propagated by impaired NMDAR signaling on GABAergic interneurons may be of particular interest in mediating several aspects of schizophrenia. However, it is unclear which behavioral domains are governed by a net increase of excitation and whether modulating downstream GABAergic signaling can reverse neural and thus behavioral deficits. The current study determines the selective contributions of NMDAR dysfunction on PV-containing interneurons to electrophysiological, cognitive, and negative-symptom-related behavioral phenotypes of schizophrenia using mice with a PVcre-NR1flox-driven ablation of NR1 on PV-containing interneurons. In addition, we assessed the efficacy of one agent that directly modulates GABAergic signaling (baclofen) and one agent that indirectly modifies NMDAR-mediated signaling through antagonism of mGluR5 receptors (2-methyl-6-(phenylethynyl) pyridine (MPEP)). The data indicate that loss of NMDAR function on PV interneurons impairs self-care and sociability while increasing N1 latency and baseline gamma power, and reducing induction and maintenance of long-term potentiation. Baclofen normalized baseline gamma power without corresponding effects on behavior. MPEP further increased N1 latency and reduced social behavior in PVcre/NR1+/+ mice. These two indices were negatively correlated before and following MPEP such that as N1 latency increases, sociability decreases. This finding suggests a predictive role for N1 latency with respect to social function. Although previous data suggest that MPEP may be beneficial for core features of autism spectrum disorders, current data suggest that such effects require intact function of NMDAR on PV interneurons. PMID:24525709

  11. Diffusion of responsibility attenuates altruistic punishment: A functional magnetic resonance imaging effective connectivity study.

    PubMed

    Feng, Chunliang; Deshpande, Gopikrishna; Liu, Chao; Gu, Ruolei; Luo, Yue-Jia; Krueger, Frank

    2016-02-01

    Humans altruistically punish violators of social norms to enforce cooperation and pro-social behaviors. However, such altruistic behaviors diminish when others are present, due to a diffusion of responsibility. We investigated the neural signatures underlying the modulations of diffusion of responsibility on altruistic punishment, conjoining a third-party punishment task with event-related functional magnetic resonance imaging and multivariate Granger causality mapping. In our study, participants acted as impartial third-party decision-makers and decided how to punish norm violations under two different social contexts: alone (i.e., full responsibility) or in the presence of putative other third-party decision makers (i.e., diffused responsibility). Our behavioral results demonstrated that the diffusion of responsibility served as a mediator of context-dependent punishment. In the presence of putative others, participants who felt less responsible also punished less severely in response to norm violations. Our neural results revealed that underlying this behavioral effect was a network of interconnected brain regions. For unfair relative to fair splits, the presence of others led to attenuated responses in brain regions implicated in signaling norm violations (e.g., AI) and to increased responses in brain regions implicated in calculating values of norm violations (e.g., vmPFC, precuneus) and mentalizing about others (dmPFC). The dmPFC acted as the driver of the punishment network, modulating target regions, such as AI, vmPFC, and precuneus, to adjust altruistic punishment behavior. Our results uncovered the neural basis of the influence of diffusion of responsibility on altruistic punishment and highlighted the role of the mentalizing network in this important phenomenon. Hum Brain Mapp 37:663-677, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  12. Supporting health care professionals to improve the processes of shared decision making and self-management in a web-based intervention: randomized controlled trial.

    PubMed

    Sassen, Barbara; Kok, Gerjo; Schepers, Jan; Vanhees, Luc

    2014-10-21

    Research to assess the effect of interventions to improve the processes of shared decision making and self-management directed at health care professionals is limited. Using the protocol of Intervention Mapping, a Web-based intervention directed at health care professionals was developed to complement and optimize health services in patient-centered care. The objective of the Web-based intervention was to increase health care professionals' intention and encouraging behavior toward patient self-management, following cardiovascular risk management guidelines. A randomized controlled trial was used to assess the effect of a theory-based intervention, using a pre-test and post-test design. The intervention website consisted of a module to help improve professionals' behavior, a module to increase patients' intention and risk-reduction behavior toward cardiovascular risk, and a parallel module with a support system for the health care professionals. Health care professionals (n=69) were recruited online and randomly allocated to the intervention group (n=26) or (waiting list) control group (n=43), and invited their patients to participate. The outcome was improved professional behavior toward health education, and was self-assessed through questionnaires based on the Theory of Planned Behavior. Social-cognitive determinants, intention and behavior were measured pre-intervention and at 1-year follow-up. The module to improve professionals' behavior was used by 45% (19/42) of the health care professionals in the intervention group. The module to support the health professional in encouraging behavior toward patients was used by 48% (20/42). The module to improve patients' risk-reduction behavior was provided to 44% (24/54) of patients. In 1 of every 5 patients, the guideline for cardiovascular risk management was used. The Web-based intervention was poorly used. In the intervention group, no differences in social-cognitive determinants, intention and behavior were found for health care professionals, compared with the control group. We narrowed the intervention group and no significant differences were found in intention and behavior, except for barriers. Results showed a significant overall difference in barriers between the intervention and the control group (F1=4.128, P=.02). The intervention was used by less than half of the participants and did not improve health care professionals' and patients' cardiovascular risk-reduction behavior. The website was not used intensively because of time and organizational constraints. Professionals in the intervention group experienced higher levels of barriers to encouraging patients, than professionals in the control group. No improvements were detected in the processes of shared decision making and patient self-management. Although participant education level was relatively high and the intervention was pre-tested, it is possible that the way the information was presented could be the reason for low participation and high dropout. Further research embedded in professionals' regular consultations with patients is required with specific emphasis on the processes of dissemination and implementation of innovations in patient-centered care. Netherlands Trial Register Number (NTR): NTR2584; http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2584 (Archived by WebCite at http://www.webcitation.org/6STirC66r).

  13. Extending Hypothesis Testing of Edge Organizations Using Functional Magnetic Resonance Imaging (fMRI) During ELICIT

    DTIC Science & Technology

    2010-06-01

    task difficulty and response correctness on neural systems supporting fluid reasoning. Cognitive Neurodynamics 1 (1): 71-84. Kaplan, J.T., Iacoboni...dynamic influences on decision-making and trust during social interaction. ELICITing Behavior ELICIT is designed to explore social and cognitive ...a person’s own self-awareness in the game experience, (2) their cognitive processes of reasoning, and (3) the modulation of uncertainty that primes

  14. Arginine Vasopressin selectively enhances recognition of sexual cues in male humans.

    PubMed

    Guastella, Adam J; Kenyon, Amanda R; Unkelbach, Christian; Alvares, Gail A; Hickie, Ian B

    2011-02-01

    Arginine Vasopressin modulates complex social and sexual behavior by enhancing social recognition, pair bonding, and aggression in non-human mammals. The influence of Arginine Vasopressin in human social and sexual behavior is, however, yet to be fully understood. We evaluated whether Arginine Vasopressin nasal spray facilitated recognition of positive and negative social and sexual stimuli over non-social stimuli. We used a recognition task that has already been shown to be sensitive to the influence of Oxytocin nasal spray (Unkelbach et al., 2008). In a double-blind, randomized, placebo-controlled, between-subjects design, 41 healthy male volunteers were administered Arginine Vasopressin (20 IU) or a placebo nasal spray after a 45 min wait period and then completed the recognition task. Results showed that the participants administered Arginine Vasopressin nasal spray were faster to detect sexual words over other types of words. This effect appeared for both positively and negatively valenced words. Results demonstrate for the first time that Arginine Vasopressin selectively enhances human cognition for sexual stimuli, regardless of valence. They further extend animal and human genetic studies linking Arginine Vasopressin to sexual behavior in males. Findings suggest an important cognitive mechanism that could enhance sexual behaviors in humans. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  15. Neural Correlates of Dynamically Evolving Interpersonal Ties Predict Prosocial Behavior

    PubMed Central

    Fahrenfort, Johannes J.; van Winden, Frans; Pelloux, Benjamin; Stallen, Mirre; Ridderinkhof, K. Richard

    2011-01-01

    There is a growing interest for the determinants of human choice behavior in social settings. Upon initial contact, investment choices in social settings can be inherently risky, as the degree to which the other person will reciprocate is unknown. Nevertheless, people have been shown to exhibit prosocial behavior even in one-shot laboratory settings where all interaction has been taken away. A logical step has been to link such behavior to trait empathy-related neurobiological networks. However, as a social interaction unfolds, the degree of uncertainty with respect to the expected payoff of choice behavior may change as a function of the interaction. Here we attempt to capture this factor. We show that the interpersonal tie one develops with another person during interaction – rather than trait empathy – motivates investment in a public good that is shared with an anonymous interaction partner. We examined how individual differences in trait empathy and interpersonal ties modulate neural responses to imposed monetary sharing. After, but not before interaction in a public good game, sharing prompted activation of neural systems associated with reward (striatum), empathy (anterior insular cortex and anterior cingulate cortex) as well as altruism, and social significance [posterior superior temporal sulcus (pSTS)]. Although these activations could be linked to both empathy and interpersonal ties, only tie-related pSTS activation predicted prosocial behavior during subsequent interaction, suggesting a neural substrate for keeping track of social relevance. PMID:22403524

  16. Prairie Voles as a Model for Understanding the Genetic and Epigenetic Regulation of Attachment Behaviors.

    PubMed

    Sadino, Julie M; Donaldson, Zoe R

    2018-04-06

    Over a lifetime, humans build relationships with family, friends, and partners that are critically important for our mental and physical health. Unlike commonly used laboratory mice and rats, Microtine rodents provide a unique model to study the neurobiology underlying pair bonding and the selective attachments that form between adults. Comparisons between monogamous prairie voles and the closely related but nonmonogamous meadow and montane voles have revealed that brain-region-specific neuropeptide receptor patterning modulates social behavior between and within species. In particular, diversity in vasopressin 1a receptor (V1aR) distribution has been linked to individual and species differences in monogamy-related behaviors such as partner preference, mate guarding, and space use. Given the importance of differential receptor expression for regulating social behavior, a critical question has emerged: What are the genetic and epigenetic mechanisms that underlie brain-region-specific receptor patterns? This review will summarize what is known about how the vasopressin (AVP)-V1aR axis regulates social behaviors via signaling in discrete brain regions. From this work, we propose that brain-region-specific regulatory mechanisms facilitate robust evolvability of V1aR expression to generate diverse sociobehavioral traits. Translationally, we provide a perspective on how these studies have contributed to our understanding of human social behaviors and how brain-region-specific regulatory mechanisms might be harnessed for targeted therapies to treat social deficits in psychiatric disorders such as depression, complicated grief, and autism spectrum disorder.

  17. Functional significance of men's testosterone reactivity to social stimuli.

    PubMed

    Zilioli, Samuele; Bird, Brian M

    2017-10-01

    Rapid testosterone fluctuations in response to social stimuli are observed across a wide range of species, and the highly conserved nature of these fluctuations suggests an adaptive function. This paper reviews the current literature on testosterone reactivity, primarily in human males, and illustrates how life-history theory provides an adequate theoretical framework to interpret findings. The review is structured around supporting evidence suggesting that situations implicated in mating effort either directly (e.g., interactions with a mate) or indirectly (e.g., intrasexual competition) are generally associated with a brief elevation of testosterone, while situations implicated in parenting effort (e.g., nurturant interactions with offspring) are generally associated with a decline in testosterone. Further, we discuss how these fluctuations in testosterone have been linked to future behaviors, and how situational, motivational, and physiological variables moderate the interplay between social stimuli, testosterone reactivity, and behavior. Supporting the notion that testosterone can play a causal role in modulating behavior in response to social stimuli, we also summarize recent single administration studies examining the effects of testosterone on physiology, neurobiology, and behavior. A conceptual model provides links between supported findings, and hypothesized pathways requiring future testing. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Neuropeptide diversity and the regulation of social behavior in New World primates

    PubMed Central

    French, Jeffrey A.; Taylor, Jack H.; Mustoe, Aaryn C.; Cavanaugh, Jon

    2016-01-01

    Oxytocin (OT) and vasopressin (AVP) are important hypothalamic neuropeptides that regulate peripheral physiology, and have emerged as important modulators of brain function, particularly in the social realm. OT structure and the genes that ultimately determine structure are highly conserved among diverse eutherian mammals, but recent discoveries have identified surprising variability in OT and peptide structure in New World monkeys (NWM), with five new OT variants identified to date. This review explores these new findings in light of comparative OT/AVP ligand evolution, documents coevolutionary changes in the oxytocin and vasopressin receptors (OTR and V1aR), and highlights the distribution of neuropeptidergic neurons and receptors in the primate brain. Finally, the behavioral consequences of OT and AVP in regulating NWM sociality are summarized, demonstrating important neuromodulatory effects of these compounds and OT ligand-specific influences in certain social domains. PMID:27020799

  19. Learning to match auditory and visual speech cues: social influences on acquisition of phonological categories.

    PubMed

    Altvater-Mackensen, Nicole; Grossmann, Tobias

    2015-01-01

    Infants' language exposure largely involves face-to-face interactions providing acoustic and visual speech cues but also social cues that might foster language learning. Yet, both audiovisual speech information and social information have so far received little attention in research on infants' early language development. Using a preferential looking paradigm, 44 German 6-month olds' ability to detect mismatches between concurrently presented auditory and visual native vowels was tested. Outcomes were related to mothers' speech style and interactive behavior assessed during free play with their infant, and to infant-specific factors assessed through a questionnaire. Results show that mothers' and infants' social behavior modulated infants' preference for matching audiovisual speech. Moreover, infants' audiovisual speech perception correlated with later vocabulary size, suggesting a lasting effect on language development. © 2014 The Authors. Child Development © 2014 Society for Research in Child Development, Inc.

  20. Mindfulness Meditation Training and Self-Referential Processing in Social Anxiety Disorder: Behavioral and Neural Effects

    PubMed Central

    Goldin, Philippe; Ramel, Wiveka; Gross, James

    2014-01-01

    This study examined the effects of mindfulness-based stress reduction (MBSR) on the brain-behavior mechanisms of self-referential processing in patients with social anxiety disorder (SAD). Sixteen patients underwent functional magnetic resonance imaging while encoding self-referential, valence, and orthographic features of social trait adjectives. Post-MBSR, 14 patients completed neuroimaging. Compared to baseline, MBSR completers showed (a) increased self-esteem and decreased anxiety, (b) increased positive and decreased negative self-endorsement, (c) increased activity in a brain network related to attention regulation, and (d) reduced activity in brain systems implicated in conceptual-linguistic self-view. MBSR-related changes in maladaptive or distorted social self-view in adults diagnosed with SAD may be related to modulation of conceptual self-processing and attention regulation. Self-referential processing may serve as a functional biobehavioral target to measure the effects of mindfulness training. PMID:25568592

  1. Pheromone-modulated behavioral suites influence colony growth in the honey bee (Apis mellifera)

    NASA Astrophysics Data System (ADS)

    Pankiw, Tanya; Roman, Roman; Sagili, Ramesh R.; Zhu-Salzman, Keyan

    2004-12-01

    The success of a species depends on its ability to assess its environment and to decide accordingly which behaviors are most appropriate. Many animal species, from bacteria to mammals, are able to communicate using interspecies chemicals called pheromones. In addition to exerting physiological effects on individuals, for social species, pheromones communicate group social structure. Communication of social structure is important to social insects for the allocation of its working members into coordinated suites of behaviors. We tested effects of long-term treatment with brood pheromone on suites of honey bee brood rearing and foraging behaviors. Pheromone-treated colonies reared significantly greater brood areas and more adults than controls, while amounts of stored pollen and honey remained statistically similar. Brood pheromone increased the number of pollen foragers and the pollen load weights they returned. It appeared that the pheromone-induced increase in pollen intake was directly canalized into more brood rearing. A two-way pheromone priming effect was observed, such that some workers from the same age cohorts showed an increased and extended capacity to rear larvae, while others were recruited at significantly younger ages into pollen-specific foraging. Brood pheromone affected suites of nursing and foraging behaviors allocating worker and pollen resources associated with an important fitness trait, colony growth.

  2. Pheromone-modulated behavioral suites influence colony growth in the honey bee (Apis mellifera).

    PubMed

    Pankiw, Tanya; Roman, Roman; Sagili, Ramesh R; Zhu-Salzman, Keyan

    2004-12-01

    The success of a species depends on its ability to assess its environment and to decide accordingly which behaviors are most appropriate. Many animal species, from bacteria to mammals, are able to communicate using interspecies chemicals called pheromones. In addition to exerting physiological effects on individuals, for social species, pheromones communicate group social structure. Communication of social structure is important to social insects for the allocation of its working members into coordinated suites of behaviors. We tested effects of long-term treatment with brood pheromone on suites of honey bee brood rearing and foraging behaviors. Pheromone-treated colonies reared significantly greater brood areas and more adults than controls, while amounts of stored pollen and honey remained statistically similar. Brood pheromone increased the number of pollen foragers and the pollen load weights they returned. It appeared that the pheromone-induced increase in pollen intake was directly canalized into more brood rearing. A two-way pheromone priming effect was observed, such that some workers from the same age cohorts showed an increased and extended capacity to rear larvae, while others were recruited at significantly younger ages into pollen-specific foraging. Brood pheromone affected suites of nursing and foraging behaviors allocating worker and pollen resources associated with an important fitness trait, colony growth.

  3. 5-HT1A-receptor agonist modified amygdala activity and amygdala-associated social behavior in a valproate-induced rat autism model.

    PubMed

    Wang, Chao-Chuan; Lin, Hui-Ching; Chan, Yun-Han; Gean, Po-Wu; Yang, Yen Kung; Chen, Po See

    2013-10-01

    Accumulating evidence suggests that dysfunction of the amygdala is related to abnormal fear processing, anxiety, and social behaviors noted in autistic spectrum disorders (ASDs). In addition, studies have shown that disrupted brain serotonin homeostasis is linked to ASD. With a valproate (VPA)-induced rat ASD model, we investigated the possible role of amygdala serotonin homeostasis in autistic phenotypes and further explored the underlying mechanism. We first discovered that the distribution of tryptophan hydroxylase immunoreactivity in the caudal raphe system was modulated on postnatal day (PD) 28 of the VPA-exposed offspring. Then, we found a significantly higher serotonin transporter availability in the amygdala of the VPA-exposed offspring on PD 56 by using single photon emission computed tomography and computed tomography co-registration following injection of (123)I-labeled 2-((2-(dimethylamino)methyl)phenyl)thio)-5-iodophenylamine((123)I[ADAM]). Furthermore, treatment with 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT1A receptor agonist, increased social interaction and improved fear memory extinction in the VPA-exposed offspring. 8-OH-DPAT treatment also reversed the characteristics of miniature excitatory post-synaptic currents as well as paired pulse facilitation observed in lateral amygdala slices. These results provided further evidence to support the role of the amygdala in characteristic behavioral changes in the rat ASD model. The serotonergic projections that modulate the amygdala function might play a certain role in the development and treatment of behavioral symptoms exhibited in individuals with ASD.

  4. Intranasal administration of oxytocin increases envy and schadenfreude (gloating).

    PubMed

    Shamay-Tsoory, Simone G; Fischer, Meytal; Dvash, Jonathan; Harari, Hagai; Perach-Bloom, Nufar; Levkovitz, Yechiel

    2009-11-01

    Humans have a strong social tendency to compare themselves with others. We tend to feel envious when we receive less valuable rewards and may rejoice when our payoffs are more advantageous. Envy and schadenfreude (gloating over the other's misfortune) are social emotions widely agreed to be a symptom of the human social tendency to compare one's payoffs with those of others. Given the important social components of envy and gloating, we speculated that oxytocin may have a modulating effect on the intensity of these emotions. Fifty-six participants participated in this double-blind, placebo-controlled, within-subject study. Following the administration of oxytocin or a placebo, participants played a game of chance with another (fake) participant who either won more money (envy manipulation), lost more money (schadenfreude manipulation), or won/lost equal amounts of money. In comparison with the placebo, oxytocin increased the envy ratings during unequal monetary gain conditions involving relative loss (when the participant gained less money than another player). Oxytocin also increased the ratings of gloating during relative gain conditions (when the participant gained more money than the other player). By contrast, oxytocin had no effect on the emotional ratings following equal monetary gains nor did it affect general mood ratings. These results suggest that the oxytocinergic system is involved in modulating envy and gloating. Thus, contrary to the prevailing belief that this system is involved solely in positive prosocial behaviors, it probably plays a key role in a wider range of social emotion-related behaviors.

  5. A Neuropsychological Profile for Agenesis of the Corpus Callosum? Cognitive, Academic, Executive, Social, and Behavioral Functioning in School-Age Children.

    PubMed

    Siffredi, Vanessa; Anderson, Vicki; McIlroy, Alissandra; Wood, Amanda G; Leventer, Richard J; Spencer-Smith, Megan M

    2018-05-01

    Agenesis of the corpus callosum (AgCC), characterized by developmental absence of the corpus callosum, is one of the most common congenital brain malformations. To date, there are limited data on the neuropsychological consequences of AgCC and factors that modulate different outcomes, especially in children. This study aimed to describe general intellectual, academic, executive, social and behavioral functioning in a cohort of school-aged children presenting for clinical services to a hospital and diagnosed with AgCC. The influences of age, social risk and neurological factors were examined. Twenty-eight school-aged children (8 to 17 years) diagnosed with AgCC completed tests of general intelligence (IQ) and academic functioning. Executive, social and behavioral functioning in daily life, and social risk, were estimated from parent and teacher rated questionnaires. MRI findings reviewed by a pediatric neurologist confirmed diagnosis and identified brain characteristics. Clinical details including the presence of epilepsy and diagnosed genetic condition were obtained from medical records. In our cohort, ~50% of children experienced general intellectual, academic, executive, social and/or behavioral difficulties and ~20% were functioning at a level comparable to typically developing children. Social risk was important for understanding variability in neuropsychological outcomes. Brain anomalies and complete AgCC were associated with lower mathematics performance and poorer executive functioning. This is the first comprehensive report of general intellectual, academic, executive social and behavioral consequences of AgCC in school-aged children. The findings have important clinical implications, suggesting that support to families and targeted intervention could promote positive neuropsychological functioning in children with AgCC who come to clinical attention. (JINS, 2018, 24, 445-455).

  6. Differential effects of oxytocin on social sensitivity in two distinct breeds of dogs (Canis familiaris).

    PubMed

    Kovács, Krisztina; Kis, Anna; Pogány, Ákos; Koller, Dóra; Topál, József

    2016-12-01

    Dogs have been proven to show several human-analogue social behaviors, and recent research raises the possibility that the oxytocin system is related to these. However, despite dogs' general tendency to excel in the domain of social cognition, there is increasing evidence that dogs' ability to utilize human signals may vary with breed. Moreover, breeds may show differences not only in their 'inborn' communicative abilities, but also in their learning skills related to these. The aim of the present study was to explore breed differences and breed-specific effects of oxytocin administration on different aspects of social responsiveness. Dogs from two markedly different breeds, Border Collies (cooperative workers) and Siberian Huskies (independent workers) were tested. After having received intranasal administration of oxytocin or placebo, subjects participated in three behavioral tests measuring social responsiveness. Our results show that there are several behavioral differences between the two breeds and also that there are differential effects of the oxytocin treatment. Border Collies were in general more susceptible to the 'social' effects of oxytocin compared to Siberian Huskies: after oxytocin administration they (1) looked more at the experimenter in the 'Unreachable food' situation, (2) looked more at the owner and shifted their gaze more between the sound source and the owner in a potentially dangerous situation, and (3) looked longer at the experimenter's eyes in the 'Tolerance of prolonged eye contact' test. These findings suggest that selection for enhanced cooperative abilities, possibly complemented by the effect of different social environments the two breeds experience, affects dogs' performance in several behavioral tests and that the neurohormonal background differently modulates social behavior in different working breeds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Social Modulation of Associative Fear Learning by Pheromone Communication

    ERIC Educational Resources Information Center

    Bredy, Timothy W.; Barad, Mark

    2009-01-01

    Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned…

  8. Effortful Control, Explicit Processing, and the Regulation of Human Evolved Predispositions

    ERIC Educational Resources Information Center

    MacDonald, Kevin B.

    2008-01-01

    This article analyzes the effortful control of automatic processing related to social and emotional behavior, including control over evolved modules designed to solve problems of survival and reproduction that were recurrent over evolutionary time. The inputs to effortful control mechanisms include a wide range of nonrecurrent…

  9. Social defeat in adolescent mice increases vulnerability to alcohol consumption.

    PubMed

    Rodriguez-Arias, Marta; Navarrete, Francisco; Blanco-Gandia, Maria Carmen; Arenas, Maria Carmen; Bartoll-Andrés, Adrián; Aguilar, Maria A; Rubio, Gabriel; Miñarro, José; Manzanares, Jorge

    2016-01-01

    This study employs an oral operant conditioning paradigm to evaluate the effects of repeated social defeat during adolescence on the reinforcing and motivational actions of ethanol in adult OF1 mice. Social interaction, emotional and cognitive behavioral aspects were also analyzed, and real-time polymerase chain reaction (PCR) experiments were performed to study gene expression changes in the mesocorticolimbic and hypothalamus-hypophysis-adrenal (HHA) axis. Social defeat did not alter anxiety-like behavior in the elevated plus maze or cognitive performance in the passive avoidance and Hebb-Williams tests. A social interaction test revealed depression-like symptoms and social subordination behavior in defeated OF1 mice. Interestingly, social defeat in adolescence significantly increased the number of effective responses, ethanol consumption values and motivation to drink. Finally, real-time PCR analyses revealed that social defeat significantly increased tyrosine hydroxylase and corticotropin-releasing hormone in the ventral tegmental area and paraventricular nucleus, respectively. In contrast, mu-opioid receptor gene expression was decreased in the nucleus accumbens of socially defeated mice. In summary, these findings suggest that exposure to social defeat during adolescence increases vulnerability to the rewarding effects of ethanol without affecting emotional or cognitive performance. The gene expression alterations we have observed in the mesocorticolimbic and HHA axis systems of defeated mice could be related with their increased ethanol consumption. These results endorse future research into pharmacological strategies that modulate these systems for the treatment of social stress-related alcohol consumption problems. © 2014 Society for the Study of Addiction.

  10. Neural mechanisms of social dominance

    PubMed Central

    Watanabe, Noriya; Yamamoto, Miyuki

    2015-01-01

    In a group setting, individuals' perceptions of their own level of dominance or of the dominance level of others, and the ability to adequately control their behavior based on these perceptions are crucial for living within a social environment. Recent advances in neural imaging and molecular technology have enabled researchers to investigate the neural substrates that support the perception of social dominance and the formation of a social hierarchy in humans. At the systems' level, recent studies showed that dominance perception is represented in broad brain regions which include the amygdala, hippocampus, striatum, and various cortical networks such as the prefrontal, and parietal cortices. Additionally, neurotransmitter systems such as the dopaminergic and serotonergic systems, modulate and are modulated by the formation of the social hierarchy in a group. While these monoamine systems have a wide distribution and multiple functions, it was recently found that the Neuropeptide B/W contributes to the perception of dominance and is present in neurons that have a limited projection primarily to the amygdala. The present review discusses the specific roles of these neural regions and neurotransmitter systems in the perception of dominance and in hierarchy formation. PMID:26136644

  11. Interplay of oxytocin, vasopressin, and sex hormones in the regulation of social recognition.

    PubMed

    Gabor, Christopher S; Phan, Anna; Clipperton-Allen, Amy E; Kavaliers, Martin; Choleris, Elena

    2012-02-01

    Social Recognition is a fundamental skill that forms the basis of behaviors essential to the proper functioning of pair or group living in most social species. We review here various neurobiological and genetic studies that point to an interplay of oxytocin (OT), arginine-vasopressin (AVP), and the gonadal hormones, estrogens and testosterone, in the mediation of social recognition. Results of a number of studies have shown that OT and its actions at the medial amygdala seem to be essential for social recognition in both sexes. Estrogens facilitate social recognition, possibly by regulating OT production in the hypothalamus and the OT receptors at the medial amygdala. Estrogens also affect social recognition on a rapid time scale, likely through nongenomic actions. The mechanisms of these rapid effects are currently unknown but available evidence points at the hippocampus as the possible site of action. Male rodents seem to be more dependent on AVP acting at the level of the lateral septum for social recognition than female rodents. Results of various studies suggest that testosterone and its metabolites (including estradiol) influence social recognition in males primarily through the AVP V1a receptor. Overall, it appears that gonadal hormone modulation of OT and AVP regulates and fine tunes social recognition and those behaviors that depend upon it (e.g., social bonds, social hierarchies) in a sex specific manner. This points at an important role for these neuroendocrine systems in the regulation of the sex differences that are evident in social behavior and of sociality as a whole.

  12. Social evolution. Oxytocin-gaze positive loop and the coevolution of human-dog bonds.

    PubMed

    Nagasawa, Miho; Mitsui, Shouhei; En, Shiori; Ohtani, Nobuyo; Ohta, Mitsuaki; Sakuma, Yasuo; Onaka, Tatsushi; Mogi, Kazutaka; Kikusui, Takefumi

    2015-04-17

    Human-like modes of communication, including mutual gaze, in dogs may have been acquired during domestication with humans. We show that gazing behavior from dogs, but not wolves, increased urinary oxytocin concentrations in owners, which consequently facilitated owners' affiliation and increased oxytocin concentration in dogs. Further, nasally administered oxytocin increased gazing behavior in dogs, which in turn increased urinary oxytocin concentrations in owners. These findings support the existence of an interspecies oxytocin-mediated positive loop facilitated and modulated by gazing, which may have supported the coevolution of human-dog bonding by engaging common modes of communicating social attachment. Copyright © 2015, American Association for the Advancement of Science.

  13. Decrease in endogenous brain allopregnanolone induces autism spectrum disorder (ASD)-like behavior in mice: A novel animal model of ASD.

    PubMed

    Ebihara, Ken; Fujiwara, Hironori; Awale, Suresh; Dibwe, Dya Fita; Araki, Ryota; Yabe, Takeshi; Matsumoto, Kinzo

    2017-09-15

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder with core symptoms of social impairments and restrictive repetitive behaviors. Recent evidence has implicated a dysfunction in the GABAergic system in the pathophysiology of ASD. We investigated the role of endogenous allopregnanolone (ALLO), a neurosteroidal positive allosteric modulator of GABA A receptors, in the regulation of ASD-like behavior in male mice using SKF105111 (SKF), an inhibitor of type I and type II 5α-reductase, a rate-limiting enzyme of ALLO biosynthesis. SKF impaired sociability-related performance, as analyzed by three different tests; i.e., the 3-chamber test and social interaction in the open field and resident-intruder tests, without affecting olfactory function elucidated by the buried food test. SKF also induced repetitive grooming behavior without affecting anxiety-like behavior. SKF had no effect on short-term spatial working memory or long-term fear memory, but enhanced latent learning ability in male mice. SKF-induced ASD-like behavior in male mice was abolished by the systemic administration of ALLO (1mg/kg, i.p.) and methylphenidate (MPH: 2.5mg/kg, i.p.), a dopamine transporter inhibitor. The effects of SKF on brain ALLO contents in male mice were reversed by ALLO, but not MPH. On the other hand, SKF failed to induce ASD-like behavior or a decline in brain ALLO contents in female mice. These results suggest that ALLO regulates episodes of ASD-like behavior by positively modulating the function of GABA A receptors linked to the dopaminergic system. Moreover, a sex-dependently induced decrease in brain ALLO contents may provide an animal model to study the main features of ASD. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Attention modulations on the perception of social hierarchy at distinct temporal stages: an electrophysiological investigation.

    PubMed

    Feng, Chunliang; Tian, Tengxiang; Feng, Xue; Luo, Yue-Jia

    2015-04-01

    Recent behavioral and neuroscientific studies have revealed the preferential processing of superior-hierarchy cues. However, it remains poorly understood whether top-down controlled mechanisms modulate temporal dynamics of neurocognitive substrates underlying the preferential processing of these biologically and socially relevant cues. This was investigated in the current study by recording event-related potentials from participants who were presented with superior or inferior social hierarchy. Participants performed a hierarchy-judgment task that required attention to hierarchy cues or a gender-judgment task that withdrew their attention from these cues. Superior-hierarchy cues evoked stronger neural responses than inferior-hierarchy cues at both early (N170/N200) and late (late positive potential, LPP) temporal stages. Notably, the modulations of top-down attention were identified on the LPP component, such that superior-hierarchy cues evoked larger LPP amplitudes than inferior-hierarchy cues only in the attended condition; whereas the modulations of the N170/N200 component by hierarchy cues were evident in both attended and unattended conditions. These findings suggest that the preferential perception of superior-hierarchy cues involves both relatively automatic attentional bias at the early temporal stage as well as flexible and voluntary cognitive evaluation at the late temporal stage. Finally, these hierarchy-related effects were absent when participants were shown the same stimuli which, however, were not associated with social-hierarchy information in a non-hierarchy task (Experiment 2), suggesting that effects of social hierarchy at early and late temporal stages could not be accounted for by differences in physical attributes between these social cues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Social modulation of learned behavior by dopamine in the basal ganglia: insights from songbirds.

    PubMed

    Leblois, Arthur

    2013-06-01

    Dysfunction of the dopaminergic system leads to motor, cognitive, and motivational symptoms in brain disorders such as Parkinson's disease. The basal ganglia (BG) are involved in sensorimotor learning and receive a strong dopaminergic signal, shown to play an important role in social interactions. The function of the dopaminergic input to the BG in the integration of social cues during sensorimotor learning remains however largely unexplored. Songbirds use learned vocalizations to communicate during courtship and aggressive behaviors. Like language learning in humans, song learning strongly depends on social interactions. In songbirds, a specialized BG-thalamo-cortical loop devoted to song is particularly tractable for elucidating the signals carried by dopamine in the BG, and the function of dopamine signaling in mediating social cues during skill learning and execution. Here, I review experimental findings uncovering the physiological effects and function of the dopaminergic signal in the songbird BG, in light of our knowledge of the BG-dopamine interactions in mammals. Interestingly, the compact nature of the striato-pallidal circuits in birds led to new insight on the physiological effects of the dopaminergic input on the BG network as a whole. In singing birds, D1-like receptor agonist and antagonist can modulate the spectral variability of syllables bi-directionally, suggesting that social context-dependent changes in spectral variability are triggered by dopaminergic input through D1-like receptors. As variability is crucial for exploration during motor learning, but must be reduced after learning to optimize performance, I propose that, the dopaminergic input to the BG could be responsible for the social-dependent regulation of the exploration/exploitation balance in birdsong, and possibly in learned skills in other vertebrates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Characterization of human-dog social interaction using owner report.

    PubMed

    Lit, Lisa; Schweitzer, Julie B; Oberbauer, Anita M

    2010-07-01

    Dog owners were surveyed for observations of social behaviors in their dogs, using questions adapted from the human Autism Diagnostic Observation Schedule (ADOS) pre-verbal module. Using 939 responses for purebred and mixed-breed dogs, three factors were identified: initiation of reciprocal social behaviors (INIT), response to social interactions (RSPNS), and communication (COMM). There were small or no effects of sex, age, breed group or training. For six breeds with more than 35 responses (Border Collie, Rough Collie, German Shepherd, Golden Retriever, Labrador Retriever, Standard Poodle), the behaviors eye contact with humans, enjoyment in interactions with human interaction, and name recognition demonstrated little variability across breeds, while asking for objects, giving/showing objects to humans, and attempts to direct humans' attention showed higher variability across these breeds. Breeds with genetically similar backgrounds had similar response distributions for owner reports of dog response to pointing. When considering these breeds according to the broad categories of "herders" and "retrievers," owners reported that the "herders" used more eye contact and vocalization, while the "retrievers" used more body contact. Information regarding social cognitive abilities in dogs provided by owner report suggest that there is variability across many social cognitive abilities in dogs and offers direction for further experimental investigations. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  17. Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism.

    PubMed

    Kim, Ji-Woon; Seung, Hana; Kim, Ki Chan; Gonzales, Edson Luck T; Oh, Hyun Ah; Yang, Sung Min; Ko, Mee Jung; Han, Seol-Heui; Banerjee, Sourav; Shin, Chan Young

    2017-02-01

    Autism spectrum disorder (ASD) is an immensely challenging developmental disorder characterized primarily by two core behavioral symptoms of social communication deficits and restricted/repetitive behaviors. Investigating the etiological process and identifying an appropriate therapeutic target remain as formidable challenges to overcome ASD due to numerous risk factors and complex symptoms associated with the disorder. Among the various mechanisms that contribute to ASD, the maintenance of excitation and inhibition balance emerged as a key factor to regulate proper functioning of neuronal circuitry. Interestingly, our previous study involving the valproic acid animal model of autism (VPA animal model) has demonstrated excitatory-inhibitory imbalance (E/I imbalance) due to enhanced differentiation of glutamatergic neurons and reduced GABAergic neurons. Here, we investigated the potential of agmatine, an endogenous NMDA receptor antagonist, as a novel therapeutic candidate in ameliorating ASD symptoms by modulating E/I imbalance using the VPA animal model. We observed that a single treatment of agmatine rescued the impaired social behaviors as well as hyperactive and repetitive behaviors in the VPA animal model. We also observed that agmatine treatment rescued the overly activated ERK1/2 signaling in the prefrontal cortex and hippocampus of VPA animal models, possibly, by modulating over-excitability due to enhanced excitatory neural circuit. Taken together, our results have provided experimental evidence suggesting a possible therapeutic role of agmatine in ameliorating ASD-like symptoms in the VPA animal model of ASD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Is it all the X: familial learning dysfunction and the impact of behavioral aspects of the phenotypic presentation of XXY?

    PubMed

    Samango-Sprouse, Carole A; Stapleton, Emily; Sadeghin, Teresa; Gropman, Andrea L

    2013-02-15

    The behavioral phenotype of children with XXY has not been extensively studied until recently and this research has been confounded by insufficient study populations and ascertainment biases. The aim of the study was to expand the behavioral aspect of the XXY phenotype as well as investigate the role of existing familial learning disabilities (FLD) on behavioral problems. Behavioral phenotype of XXY includes social anxiety, ADHD, social communication, and atypical peer interactions. The Child Behavior Checklist (CBCL), Social Responsiveness Scale (SRS), and Gilliam Autism Rating Scale (GARS) were completed by the parents of 54 boys with XXY who had not received hormonal replacement prior to participation. Our findings suggest fewer behavioral deficits and lower severity in the general 47,XXY population than previously published and found significant differences between the groups with a positive FLD on the behavioral assessments. Findings demonstrate that boys with FLD exhibit an increased incidence and severity of behavioral problems. Our study expands on the findings of Samango-Sprouse et al. [Samango-Sprouse et al. (2012b) J Intellect Disabil Res] and the significant influence that FLD has on not only neurodevelopment, but also behavioral deficits. Our study suggests that part of the XXY phenotypic profile may be modulated by FLD. Further study is underway to examine the interaction between the many salient factors effecting behavioral and neurodevelopmental progression in XXY and variant forms. © 2013 Wiley Periodicals, Inc. Copyright © 2013 Wiley Periodicals, Inc.

  19. Breeding chronology and social interactions affect ungulate foraging behavior at a concentrated food resource

    PubMed Central

    Cohen, Bradley S.; Miller, Karl V.

    2017-01-01

    Prey species must balance predator avoidance behavior with other essential activities including foraging, breeding, and social interactions. Anti-predator behaviors such as vigilance can impede resource acquisition rates by altering foraging behavior. However, in addition to predation risk, foraging behavior may also be affected by socio-sexual factors including breeding chronology and social interactions. Therefore, we investigated how time-of-day, distance-to-forest, group size, social interactions (presence of different sex-age class), and breeding chronology (pre-breeding, breeding, post-breeding seasons) affected probability of feeding (hereafter: feeding) for different sex and age-classes (mature males, immature males, adult females, and juveniles) of white-tailed deer at feed sites. We developed a set of candidate models consisting of social, habitat, reproductive, and abiotic factors and combinations of these factors. We then used generalized linear mixed models (GLMMs) to estimate the probability of feeding and used model averaging of competing models for multimodel inference. Each adult sex-age class’ feeding was influenced by breeding chronology. Juveniles were more likely to be feeding than adults in all seasons. Feeding increased with group size for all sex-age classes. The presence of a mature male negatively influenced the feeding of immature males and juveniles were more likely to be feeding when an adult female was present. Feeding decreased with increasing distance-to-forest for mature males but not for other sex-age classes. Our results indicate that each sex-age class modulates vigilance levels in response to socio-sexual factors according to the unique pressures placed upon them by their reproductive status and social rank. PMID:28591136

  20. Genetic imaging of the association of oxytocin receptor gene (OXTR) polymorphisms with positive maternal parenting

    PubMed Central

    Michalska, Kalina J.; Decety, Jean; Liu, Chunyu; Chen, Qi; Martz, Meghan E.; Jacob, Suma; Hipwell, Alison E.; Lee, Steve S.; Chronis-Tuscano, Andrea; Waldman, Irwin D.; Lahey, Benjamin B.

    2013-01-01

    Background: Well-validated models of maternal behavior in small-brain mammals posit a central role of oxytocin in parenting, by reducing stress and enhancing the reward value of social interactions with offspring. In contrast, human studies are only beginning to gain insights into how oxytocin modulates maternal behavior and affiliation. Methods: To explore associations between oxytocin receptor genes and maternal parenting behavior in humans, we conducted a genetic imaging study of women selected to exhibit a wide range of observed parenting when their children were 4–6 years old. Results: In response to child stimuli during functional magnetic resonance imaging (fMRI), hemodynamic responses in brain regions that mediate affect, reward, and social behavior were significantly correlated with observed positive parenting. Furthermore, single nucleotide polymorphisms (SNPs) (rs53576 and rs1042778) in the gene encoding the oxytocin receptor were significantly associated with both positive parenting and hemodynamic responses to child stimuli in orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and hippocampus. Conclusions: These findings contribute to the emerging literature on the role of oxytocin in human social behavior and support the feasibility of tracing biological pathways from genes to neural regions to positive maternal parenting behaviors in humans using genetic imaging methods. PMID:24550797

  1. Work-related social support modulates effects of early life stress on limbic reactivity during stress.

    PubMed

    Leicht-Deobald, Ulrich; Bruch, Heike; Bönke, Luisa; Stevense, Amie; Fan, Yan; Bajbouj, Malek; Grimm, Simone

    2017-12-15

    Early life stress (ELS) affects stress- reactivity via limbic brain regions implicated such as hippocampus and amygdala. Social support is a major protective factor against ELS effects, while subjects with ELS experience reportedly perceive less of it in their daily life. The workplace, where most adults spend a substantial amount of time in their daily lives, might serve as a major resource for social support. Since previous data demonstrated that social support attenuates stress reactivity, we here used a psychosocial stress task to test the hypothesis that work-related social support modulates the effects of ELS. Results show decreased amygdala reactivity during stress in ELS subjects who report high levels of work- related social support, thereby indicating a signature for reduced stress reactivity. However, this effect was only observable on the neural, but not on the behavioral level, since social support had no buffering effect regarding the subjective experience of stress in daily life as well as regarding feelings of uncontrollability induced by the stress task. Accordingly, our data suggest that subjects with ELS experiences might benefit from interventions targeted at lowering their subjective stress levels by helping them to better perceive the availability of social support in their daily lives.

  2. Automatic imitation of pro- and antisocial gestures: Is implicit social behavior censored?

    PubMed

    Cracco, Emiel; Genschow, Oliver; Radkova, Ina; Brass, Marcel

    2018-01-01

    According to social reward theories, automatic imitation can be understood as a means to obtain positive social consequences. In line with this view, it has been shown that automatic imitation is modulated by contextual variables that constrain the positive outcomes of imitation. However, this work has largely neglected that many gestures have an inherent pro- or antisocial meaning. As a result of their meaning, antisocial gestures are considered taboo and should not be used in public. In three experiments, we show that automatic imitation of symbolic gestures is modulated by the social intent of these gestures. Experiment 1 (N=37) revealed reduced automatic imitation of antisocial compared with prosocial gestures. Experiment 2 (N=118) and Experiment 3 (N=118) used a social priming procedure to show that this effect was stronger in a prosocial context than in an antisocial context. These findings were supported in a within-study meta-analysis using both frequentist and Bayesian statistics. Together, our results indicate that automatic imitation is regulated by internalized social norms that act as a stop signal when inappropriate actions are triggered. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Contextual modulation of biases in face recognition.

    PubMed

    Felisberti, Fatima Maria; Pavey, Louisa

    2010-09-23

    The ability to recognize the faces of potential cooperators and cheaters is fundamental to social exchanges, given that cooperation for mutual benefit is expected. Studies addressing biases in face recognition have so far proved inconclusive, with reports of biases towards faces of cheaters, biases towards faces of cooperators, or no biases at all. This study attempts to uncover possible causes underlying such discrepancies. Four experiments were designed to investigate biases in face recognition during social exchanges when behavioral descriptors (prosocial, antisocial or neutral) embedded in different scenarios were tagged to faces during memorization. Face recognition, measured as accuracy and response latency, was tested with modified yes-no, forced-choice and recall tasks (N = 174). An enhanced recognition of faces tagged with prosocial descriptors was observed when the encoding scenario involved financial transactions and the rules of the social contract were not explicit (experiments 1 and 2). Such bias was eliminated or attenuated by making participants explicitly aware of "cooperative", "cheating" and "neutral/indifferent" behaviors via a pre-test questionnaire and then adding such tags to behavioral descriptors (experiment 3). Further, in a social judgment scenario with descriptors of salient moral behaviors, recognition of antisocial and prosocial faces was similar, but significantly better than neutral faces (experiment 4). The results highlight the relevance of descriptors and scenarios of social exchange in face recognition, when the frequency of prosocial and antisocial individuals in a group is similar. Recognition biases towards prosocial faces emerged when descriptors did not state the rules of a social contract or the moral status of a behavior, and they point to the existence of broad and flexible cognitive abilities finely tuned to minor changes in social context.

  4. Nucleus accumbens medium spiny neuron subtypes mediate depression-related outcomes to social defeat stress.

    PubMed

    Francis, T Chase; Chandra, Ramesh; Friend, Danielle M; Finkel, Eric; Dayrit, Genesis; Miranda, Jorge; Brooks, Julie M; Iñiguez, Sergio D; O'Donnell, Patricio; Kravitz, Alexxai; Lobo, Mary Kay

    2015-02-01

    The nucleus accumbens is a critical mediator of depression-related outcomes to social defeat stress. Previous studies demonstrate distinct neuroplasticity adaptations in the two medium spiny neuron (MSN) subtypes, those enriched in dopamine receptor D1 versus dopamine receptor D2, in reward and reinforcement leading to opposing roles for these MSNs in these behaviors. However, the distinct roles of nucleus accumbens MSN subtypes, in depression, remain poorly understood. Using whole-cell patch clamp electrophysiology, we examined excitatory input to MSN subtypes and intrinsic excitability measures in D1-green fluorescent protein and D2-green fluorescent protein bacterial artificial chromosome transgenic mice that underwent chronic social defeat stress (CSDS). Optogenetic and pharmacogenetic approaches were used to bidirectionally alter firing of D1-MSNs or D2-MSNs after CSDS or before a subthreshold social defeat stress in D1-Cre or D2-Cre bacterial artificial chromosome transgenic mice. We demonstrate that the frequency of excitatory synaptic input is decreased in D1-MSNs and increased in D2-MSNs in mice displaying depression-like behaviors after CSDS. Enhancing activity in D1-MSNs results in resilient behavioral outcomes, while inhibition of these MSNs induces depression-like outcomes after CSDS. Bidirectional modulation of D2-MSNs does not alter behavioral responses to CSDS; however, repeated activation of D2-MSNs in stress naïve mice induces social avoidance following subthreshold social defeat stress. Our studies uncover novel functions of MSN subtypes in depression-like outcomes. Notably, bidirectional alteration of D1-MSN activity promotes opposite behavioral outcomes to chronic social stress. Therefore, targeting D1-MSN activity may provide novel treatment strategies for depression or other affective disorders. Copyright © 2015 Society of Biological Psychiatry. All rights reserved.

  5. Oxytocin in the socioemotional brain: implications for psychiatric disorders.

    PubMed

    Kirsch, Peter

    2015-12-01

    The neuropeptide oxytocin (OXT), highly conserved during evolution, is an important modulator of social and emotional processes across many species. During the last decade, a large body of literature has revealed its effects on different aspects of social behavior, including social stress and anxiety, social memory, affiliation and bonding, emotion recognition, mentalizing, empathy, and interpersonal trust. In addition, as impairments in these social domains can be observed in a number of neuropsychiatric disorders, such as autism, social anxiety disorder, depression, schizophrenia, and borderline personality disorder, the role of OXT in mental disorders and their treatment has been intensively studied. The present paper gives a short overview of these lines of research and shows how OXT has become a promising target for novel treatment approaches for mental disorders characterized by social impairments.

  6. Oxytocin in the socioemotional brain: implications for psychiatric disorders

    PubMed Central

    Kirsch, Peter

    2015-01-01

    The neuropeptide oxytocin (OXT), highly conserved during evolution, is an important modulator of social and emotional processes across many species. During the last decade, a large body of literature has revealed its effects on different aspects of social behavior, including social stress and anxiety, social memory, affiliation and bonding, emotion recognition, mentalizing, empathy, and interpersonal trust. In addition, as impairments in these social domains can be observed in a number of neuropsychiatric disorders, such as autism, social anxiety disorder, depression, schizophrenia, and borderline personality disorder, the role of OXT in mental disorders and their treatment has been intensively studied. The present paper gives a short overview of these lines of research and shows how OXT has become a promising target for novel treatment approaches for mental disorders characterized by social impairments. PMID:26869847

  7. Money talks: neural substrate of modulation of fairness by monetary incentives

    PubMed Central

    Zhou, Yuan; Wang, Yun; Rao, Li-Lin; Yang, Liu-Qing; Li, Shu

    2014-01-01

    A unique feature of the human species is compliance with social norms, e.g., fairness, even though this normative decision means curbing self-interest. However, sometimes people prefer to pursue wealth at the expense of moral goodness. Specifically, deviations from a fairness-related normative choice have been observed in the presence of a high monetary incentive. The neural mechanism underlying this deviation from the fairness-related normative choice has yet to be determined. In order to address this issue, using functional magnetic resonance imaging we employed an ultimatum game (UG) paradigm in which fairness and a proposed monetary amount were orthogonally varied. We found evidence for a significant modulation by the proposed amount on fairness in the right lateral prefrontal cortex (PFC) and the bilateral insular cortices. Additionally, the insular subregions showed dissociable modulation patterns. Inter-individual differences in the modulation effects in the left inferior frontal gyrus (IFG) accounted for inter-individual differences in the behavioral modulation effect as measured by the rejection rate, supporting the concept that the PFC plays a critical role in making fairness-related normative decisions in a social interaction condition. Our findings provide neural evidence for the modulation of fairness by monetary incentives as well as accounting for inter-individual differences. PMID:24834034

  8. Whether Modulating the Activity of the Temporalparietal Junction Alters Distribution Decisions within Different Contexts: Evidence from a tDCS Study

    PubMed Central

    Luo, Jun; Chen, Shu; Huang, Daqiang; Ye, Hang; Zheng, Haoli

    2017-01-01

    Distributive justice concerns how individuals and societies distribute income in a just or equal manner. We aimed to test the roles of social preference in behavioral distributive justice. We thus provide evidence of a causal link between the neural and behavioral results through the application of bilateral transcranial direct current stimulation (tDCS) over the temporoparietal junction (TPJ) of our participants. The participants were found to make fairer distributions within the known position after receiving right anodal/left cathodal tDCS and receiving right cathodal/left anodal tDCS over the TPJ than the participants who received the sham stimulation. Simultaneously, we elicited the participants’ advantage inequity aversion and found that the participants who received right anodal/left cathodal tDCS and who received right cathodal/left anodal tDCS over the TPJ were more averse to advantage inequity. Additionally, the participants’ distributive proportions to the lowest income stratum within the known position were strongly related to their social preference of advantage inequity aversion. Therefore, the present study demonstrated that the modulation of the excitability of the TPJ using tDCS altered the distributive decisions of the participants within the known position, and this effect might be attributable to a change in the individuals’ social preferences. PMID:28270785

  9. Assessment of social behavior directed toward sick partners and its relation to central cytokine expression in rats.

    PubMed

    Hamasato, Eduardo Kenji; Lovelock, Dennis; Palermo-Neto, João; Deak, Terrence

    2017-12-01

    Acute illness not only reduces the expression of social behavior by sick rodents, but can also lead to avoidance responses when detected by healthy, would-be social partners. When healthy animals interact with a sick partner, an intriguing question arises: does exposure to a sick conspecific elicit an anticipatory immune response that would facilitate defense against future infection? To address this question, healthy adult male Sprague-Dawley rats (N=64) were given a brief social interaction (30min) with a partner that was either sick (250μg/kg injection with lipopolysaccharide [LPS] 3h prior to test) or healthy (sterile saline injection). During this exposure, social behavior directed toward the healthy or sick conspecific was measured. Additionally, the impact of housing condition was assessed, with rats group- or isolate-housed. Immediately after social interaction, brains were harvested for cytokine assessments within socially-relevant brain structures (olfactory bulb, amygdala, hippocampus and PVN). As expected, behavioral results demonstrated that (i) there was a robust suppression of social interaction directed against sick conspecifics; and (ii) isolate-housing generally increased social behavior. Furthermore, examination of central cytokine expression in healthy experimental subjects revealed a modest increase in TNF-α in rats that interacted with a sick social partner, but only in the olfactory bulb. Among the LPS-injected partners, expected increases in IL-1β, IL-6, and TNF-α expression were observed across all brain sites. Moreover, IL-1β and IL-6 expression was exacerbated in LPS-injected partners that interacted with isolate-housed experimental subjects. Together, these data replicate and extend our prior work showing that healthy rats avoid sick conspecifics, and provide preliminary evidence for an anticipatory cytokine response when rats are exposed to a sick partner. These data also provide new evidence to suggest that recent housing history potently modulates cytokine responses evoked by LPS. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Social defeat alters the acquisition of cocaine self-administration in rats: role of individual differences in cocaine-taking behavior.

    PubMed

    Kabbaj, M; Norton, C S; Kollack-Walker, S; Watson, S J; Robinson, T E; Akil, H

    2001-12-01

    It is known that social defeat can modulate cocaine self-administration. However, it is unclear whether this psychosocial stressor affects drug-taking behavior to the same extent across all individual animals, particularly those with differing propensities to self-administer psychostimulants. This study examined the effect of social defeat on cocaine self-administration in animals that differ in novelty-seeking behavior that predicts differences in drug self-administration. Male Sprague-Dawley rats were first classified into high-responder (HR) and low-responder (LR) groups. HR and LR rats were categorized based on their locomotor activity in a novel environment, with HR rats exhibiting higher locomotor activity than LR rats. Then, male rats were exposed on four occasions to an aggressive Long Evans male rat over the course of 4 days. Control rats were not exposed to the social defeat. All rats were subsequently implanted with jugular catheters and 3 days later placed into the self-administration box to study the acquisition of cocaine self-administration (0.25 mg per infusion). HR non-defeated animals self-administered more cocaine than the LR non-defeated animals. Following social defeat, the acquisition of cocaine self-administration is significantly delayed in HR rats and enhanced in LR rats. CONCLUSION The unique patterns of responsiveness in the HR and LR animals suggest that social defeat plays a role of equalizer of individual differences in drug-taking behavior.

  11. Social Behavior of Pet Dogs Is Associated with Peripheral OXTR Methylation.

    PubMed

    Cimarelli, Giulia; Virányi, Zsófia; Turcsán, Borbála; Rónai, Zsolt; Sasvári-Székely, Mária; Bánlaki, Zsófia

    2017-01-01

    Oxytocin is a key modulator of emotional processing and social cognitive function. In line with this, polymorphisms of genes involved in oxytocin signaling, like the oxytocin receptor ( OXTR ) gene, are known to influence social behavior in various species. However, to date, no study has investigated environmental factors possibly influencing the epigenetic variation of the OXTR gene and its behavioral effects in dogs. Pet dogs form individualized and strong relationships with their owners who are central figures in the social environment of their dogs and therefore might influence the methylation levels of their OXTR gene. Here we set out to investigate whether DNA methylation within the OXTR promoter region of pet dogs is linked to their owner's interaction style and to the social behavior of the dogs. To be able to do so, we collected buccal epithelial cells and, in Study 1, we used pyrosequencing techniques to look for differentially methylated CpG sites in the canine OXTR promoter region on a heterogeneous sample of dogs and wolves of different ages and keeping conditions. Four identified sites (at positions -727, -751, -1371, and -1383 from transcription start site) showing more than 10% methylation variation were then, in Study 2, measured in triplicate in 217 pet Border Collies previously tested for reactions to an adverse social situation (i.e., approach by a threatening human) and with available data on their owners' interaction styles. We found that CpG methylation was significantly associated with the behavior of the dogs, in particular with the likelihood that dogs would hide behind their owner or remain passive when approached by a threatening human. On the other hand, CpG methylation was not related to the owners' behavior but to dog sex (at position -1371). Our findings underpin the complex relationship between epigenetics and behavior and highlight the importance of including epigenetic methods in the analysis of dog behavioral development. Further research is needed to investigate which environmental factors influence the epigenetic variation of the OXTR gene.

  12. Social modulation of decision-making: a cross-species review

    PubMed Central

    van den Bos, Ruud; Jolles, Jolle W.; Homberg, Judith R.

    2013-01-01

    Taking decisions plays a pivotal role in daily life and comprises a complex process of assessing and weighing short-term and long-term costs and benefits of competing actions. Decision-making has been shown to be affected by factors such as sex, age, genotype, and personality. Importantly, also the social environment affects decisions, both via social interactions (e.g., social learning, cooperation and competition) and social stress effects. Although everyone is aware of this social modulating role on daily life decisions, this has thus far only scarcely been investigated in human and animal studies. Furthermore, neuroscientific studies rarely discuss social influence on decision-making from a functional perspective such as done in behavioral ecology studies. Therefore, the first aim of this article is to review the available data of the influence of the social context on decision-making both from a causal and functional perspective, drawing on animal and human studies. Also, there is currently still a gap between decision-making in real life where influences of the social environment are extensive, and decision-making as measured in the laboratory, which is often done without any (deliberate) social influences. However, methods are being developed to bridge this gap. Therefore, the second aim of this review is to discuss these methods and ways in which this gap can be increasingly narrowed. We end this review by formulating future research questions. PMID:23805092

  13. Social Plasticity Relies on Different Neuroplasticity Mechanisms across the Brain Social Decision-Making Network in Zebrafish.

    PubMed

    Teles, Magda C; Cardoso, Sara D; Oliveira, Rui F

    2016-01-01

    Social living animals need to adjust the expression of their behavior to their status within the group and to changes in social context and this ability (social plasticity) has an impact on their Darwinian fitness. At the proximate level social plasticity must rely on neuroplasticity in the brain social decision-making network (SDMN) that underlies the expression of social behavior, such that the same neural circuit may underlie the expression of different behaviors depending on social context. Here we tested this hypothesis in zebrafish by characterizing the gene expression response in the SDMN to changes in social status of a set of genes involved in different types of neural plasticity: bdnf, involved in changes in synaptic strength; npas4, involved in contextual learning and dependent establishment of GABAergic synapses; neuroligins (nlgn1 and nlgn2) as synaptogenesis markers; and genes involved in adult neurogenesis (wnt3 and neurod). Four social phenotypes were experimentally induced: Winners and Losers of a real-opponent interaction; Mirror-fighters, that fight their own image in a mirror and thus do not experience a change in social status despite the expression of aggressive behavior; and non-interacting fish, which were used as a reference group. Our results show that each social phenotype (i.e., Winners, Losers, and Mirror-fighters) present specific patterns of gene expression across the SDMN, and that different neuroplasticity genes are differentially expressed in different nodes of the network (e.g., BDNF in the dorsolateral telencephalon, which is a putative teleost homolog of the mammalian hippocampus). Winners expressed unique patterns of gene co-expression across the SDMN, whereas in Losers and Mirror-fighters the co-expression patterns were similar in the dorsal regions of the telencephalon and in the supracommissural nucleus of the ventral telencephalic area, but differents in the remaining regions of the ventral telencephalon. These results indicate that social plasticity relies on multiple neuroplasticity mechanisms across the SDMN, and that there is not a single neuromolecular module underlying this type of behavioral flexibility.

  14. Social Plasticity Relies on Different Neuroplasticity Mechanisms across the Brain Social Decision-Making Network in Zebrafish

    PubMed Central

    Teles, Magda C.; Cardoso, Sara D.; Oliveira, Rui F.

    2016-01-01

    Social living animals need to adjust the expression of their behavior to their status within the group and to changes in social context and this ability (social plasticity) has an impact on their Darwinian fitness. At the proximate level social plasticity must rely on neuroplasticity in the brain social decision-making network (SDMN) that underlies the expression of social behavior, such that the same neural circuit may underlie the expression of different behaviors depending on social context. Here we tested this hypothesis in zebrafish by characterizing the gene expression response in the SDMN to changes in social status of a set of genes involved in different types of neural plasticity: bdnf, involved in changes in synaptic strength; npas4, involved in contextual learning and dependent establishment of GABAergic synapses; neuroligins (nlgn1 and nlgn2) as synaptogenesis markers; and genes involved in adult neurogenesis (wnt3 and neurod). Four social phenotypes were experimentally induced: Winners and Losers of a real-opponent interaction; Mirror-fighters, that fight their own image in a mirror and thus do not experience a change in social status despite the expression of aggressive behavior; and non-interacting fish, which were used as a reference group. Our results show that each social phenotype (i.e., Winners, Losers, and Mirror-fighters) present specific patterns of gene expression across the SDMN, and that different neuroplasticity genes are differentially expressed in different nodes of the network (e.g., BDNF in the dorsolateral telencephalon, which is a putative teleost homolog of the mammalian hippocampus). Winners expressed unique patterns of gene co-expression across the SDMN, whereas in Losers and Mirror-fighters the co-expression patterns were similar in the dorsal regions of the telencephalon and in the supracommissural nucleus of the ventral telencephalic area, but differents in the remaining regions of the ventral telencephalon. These results indicate that social plasticity relies on multiple neuroplasticity mechanisms across the SDMN, and that there is not a single neuromolecular module underlying this type of behavioral flexibility. PMID:26909029

  15. Sociability and gazing toward humans in dogs and wolves: Simple behaviors with broad implications.

    PubMed

    Bentosela, Mariana; Wynne, C D L; D'Orazio, M; Elgier, A; Udell, M A R

    2016-01-01

    Sociability, defined as the tendency to approach and interact with unfamiliar people, has been found to modulate some communicative responses in domestic dogs, including gaze behavior toward the human face. The objective of this study was to compare sociability and gaze behavior in pet domestic dogs and in human-socialized captive wolves in order to identify the relative influence of domestication and learning in the development of the dog-human bond. In Experiment 1, we assessed the approach behavior and social tendencies of dogs and wolves to a familiar and an unfamiliar person. In Experiment 2, we compared the animal's duration of gaze toward a person's face in the presence of food, which the animals could see but not access. Dogs showed higher levels of interspecific sociability than wolves in all conditions, including those where attention was unavailable. In addition, dogs gazed longer at the person's face than wolves in the presence of out-of-reach food. The potential contributions of domestication, associative learning, and experiences during ontogeny to prosocial behavior toward humans are discussed. © 2016 Society for the Experimental Analysis of Behavior.

  16. Neuroanatomical Evidence for Catecholamines as Modulators of Audition and Acoustic Behavior in a Vocal Teleost.

    PubMed

    Forlano, Paul M; Sisneros, Joseph A

    2016-01-01

    The plainfin midshipman fish (Porichthys notatus) is a well-studied model to understand the neural and endocrine mechanisms underlying vocal-acoustic communication across vertebrates. It is well established that steroid hormones such as estrogen drive seasonal peripheral auditory plasticity in female Porichthys in order to better encode the male's advertisement call. However, little is known of the neural substrates that underlie the motivation and coordinated behavioral response to auditory social signals. Catecholamines, which include dopamine and noradrenaline, are good candidates for this function, as they are thought to modulate the salience of and reinforce appropriate behavior to socially relevant stimuli. This chapter summarizes our recent studies which aimed to characterize catecholamine innervation in the central and peripheral auditory system of Porichthys as well as test the hypotheses that innervation of the auditory system is seasonally plastic and catecholaminergic neurons are activated in response to conspecific vocalizations. Of particular significance is the discovery of direct dopaminergic innervation of the saccule, the main hearing end organ, by neurons in the diencephalon, which also robustly innervate the cholinergic auditory efferent nucleus in the hindbrain. Seasonal changes in dopamine innervation in both these areas appear dependent on reproductive state in females and may ultimately function to modulate the sensitivity of the peripheral auditory system as an adaptation to the seasonally changing soundscape. Diencephalic dopaminergic neurons are indeed active in response to exposure to midshipman vocalizations and are in a perfect position to integrate the detection and appropriate motor response to conspecific acoustic signals for successful reproduction.

  17. Deconstructing sociality, social evolution and relevant nonapeptide functions.

    PubMed

    Goodson, James L

    2013-04-01

    Although behavioral neuroendocrinologists often discuss "sociality" as a unitary variable, the term encompasses a wide diversity of behaviors that do not evolve in a linked fashion across species. Thus grouping, monogamy, paternal care, cooperative breeding/alloparental care, and various other forms of social contact are evolutionarily labile and evolve in an almost cafeteria-like fashion, indicating that relevant neural mechanisms are at least partially dissociable. This poses a challenge for the study of the nonapeptides (vasopressin, oxytocin, and homologous neuropeptides), because nonapeptides are known to modulate all of these aspects of sociality in one species or another. Hence, we may expect substantial diversity in the behavioral functions of nonapeptides across species, and indeed this is the case. Further compounding this complexity is the fact that the pleiotropic contributions of nonapeptides to social behavior are matched by pleiotropic contributions to physiology. Given these considerations, single "model systems" approaches to nonapeptide function will likely not have strong predictive validity for humans or other species. Rather, if we are to achieve predictive validity, we must sample a wide diversity of species in an attempt to derive general principles. In the present review, I discuss what is known about functional evolution of nonapeptide systems, and critically evaluate general assumptions about bonding and other functions that are based on the model systems approach. From this analysis I attempt to summarize what can and cannot be generalized across species, and highlight critical gaps in our knowledge about the functional evolution of nonapeptide systems as it relates to dimensions of sociality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Sexual behaviors in male sex workers in Spain: modulating factors.

    PubMed

    Ballester, Rafael; Salmerón, Pedro; Gil, María D; Giménez, Cristina

    2014-02-01

    This study analyzed how the culture of origin, educational level, sexual orientation, and experience of male sex workers may mediate their commercial sexual behaviors. A total of 100 Spanish agency male sex workers were interviewed. Most of them were young men, Latin American, homosexual, and had middle-level education. Our results showed that cultural differences and sexual orientation could influence male sex workers when engaging in sexual behaviors with their clients. Social and health projects with male sex workers may have to take into account sexual myths and taboos related to sexual orientation and cultural differences.

  19. Progestin Concentrations Are Increased following Paced Mating in Midbrain, Hippocampus, Diencephalon, and Cortex of Rats in Behavioral Estrus, but Only in Midbrain of Diestrous Rats

    PubMed Central

    Frye, Cheryl A.; Rhodes, Madeline E.

    2013-01-01

    Background The progesterone (P4 ) metabolite, 5α-pregnan-3α-ol-20-one (3α,5α-THP), acts in the midbrain ventral tegmental area (VTA) to modulate the intensity and duration of lordosis. 3α,5α-THP can also have anti-anxiety and anti-stress effects in part through actions in the hippocampus. Separate reports indicate that manipulating 3α,5α-THP levels in the VTA or hippocampus respectively can influence lordosis and affective behavior. 3α,5α-THP levels can also be altered by behavioral experiences, such as mating or swim stress. Whether endogenous levels of 3α,5α-THP modulate and/or are increased in response to affective and/or reproductively-relevant behaviors was investigated. Methods In Experiment 1, rats in behavioral estrus or diestrus were individually tested sequentially in the open field, elevated plus maze, partner preference, social interaction, and paced mating tasks and levels of 17 β-estradiol (E2), P4, dihydroprogesterone (DHP), and 3α,5α-THP in serum, midbrain, hippocampus, diencephalon, and cortex were examined. In Experiments 2 and 3, rats in behavioral estrus or diestrus, were individually tested in the battery indicated above, with, or without, paced mating and tissues were collected immediately after testing for later assessment of endocrine measures. Results In Experiment 1, behavioral estrous, compared to diestrous, rats demonstrated more exploratory, anti-anxiety, social, and reproductive behaviors, and had higher levels of E2 and progestins in serum, midbrain, hippocampus, diencephalon, and cortex. In Experiment 2, in midbrain and hippocampus, levels of 3α,5α-THP and its precursor DHP were increased among rats in behavioral estrus that were mated. In diencephalon, and cortex, DHP levels were increased by mating. In Experiment 3, in midbrain, levels of 3α,5α-THP and its precursor DHP were increased among diestrous rats that were tested in the behavioral battery with mating as compared to those tested in the behavioral battery without mating. Conclusions Increased levels of 3α,5α-THP in behavioral estrus versus diestrous rats are associated with enhanced exploratory, anti-anxiety, social, and reproductive behaviors. Rats in behavioral estrus that are mated have further increases in 3α,5α-THP and/or DHP levels in midbrain, hippocampus, diencephalon, and cortex than do non-mated rats in behavioral estrus, whereas diestrous rats only show 3α,5α-THP increases in midbrain in response to behavioral testing that included mating. PMID:17028418

  20. Behavioral and neural properties of social reinforcement learning

    PubMed Central

    Jones, Rebecca M.; Somerville, Leah H.; Li, Jian; Ruberry, Erika J.; Libby, Victoria; Glover, Gary; Voss, Henning U.; Ballon, Douglas J.; Casey, BJ

    2011-01-01

    Social learning is critical for engaging in complex interactions with other individuals. Learning from positive social exchanges, such as acceptance from peers, may be similar to basic reinforcement learning. We formally test this hypothesis by developing a novel paradigm that is based upon work in non-human primates and human imaging studies of reinforcement learning. The probability of receiving positive social reinforcement from three distinct peers was parametrically manipulated while brain activity was recorded in healthy adults using event-related functional magnetic resonance imaging (fMRI). Over the course of the experiment, participants responded more quickly to faces of peers who provided more frequent positive social reinforcement, and rated them as more likeable. Modeling trial-by-trial learning showed ventral striatum and orbital frontal cortex activity correlated positively with forming expectations about receiving social reinforcement. Rostral anterior cingulate cortex activity tracked positively with modulations of expected value of the cues (peers). Together, the findings across three levels of analysis - social preferences, response latencies and modeling neural responses – are consistent with reinforcement learning theory and non-human primate electrophysiological studies of reward. This work highlights the fundamental influence of acceptance by one’s peers in altering subsequent behavior. PMID:21917787

  1. Differential serotonergic innervation of the amygdala in bonobos and chimpanzees

    PubMed Central

    Barger, Nicole; Taglialatela, Jared P.; Gendron-Fitzpatrick, Annette; Hof, Patrick R.; Hopkins, William D.; Sherwood, Chet C.

    2016-01-01

    Humans’ closest living relatives are bonobos (Pan paniscus) and chimpanzees (Pan troglodytes), yet these great ape species differ considerably from each other in terms of social behavior. Bonobos are more tolerant of conspecifics in competitive contexts and often use sexual behavior to mediate social interactions. Chimpanzees more frequently employ aggression during conflicts and actively patrol territories between communities. Regulation of emotional responses is facilitated by the amygdala, which also modulates social decision-making, memory and attention. Amygdala responsiveness is further regulated by the neurotransmitter serotonin. We hypothesized that the amygdala of bonobos and chimpanzees would differ in its neuroanatomical organization and serotonergic innervation. We measured volumes of regions and the length density of serotonin transporter-containing axons in the whole amygdala and its lateral, basal, accessory basal and central nuclei. Results showed that accessory basal nucleus volume was larger in chimpanzees than in bonobos. Of particular note, the amygdala of bonobos had more than twice the density of serotonergic axons than chimpanzees, with the most pronounced differences in the basal and central nuclei. These findings suggest that variation in serotonergic innervation of the amygdala may contribute to mediating the remarkable differences in social behavior exhibited by bonobos and chimpanzees. PMID:26475872

  2. ALE meta-analysis on facial judgments of trustworthiness and attractiveness.

    PubMed

    Bzdok, D; Langner, R; Caspers, S; Kurth, F; Habel, U; Zilles, K; Laird, A; Eickhoff, Simon B

    2011-01-01

    Faces convey a multitude of information in social interaction, among which are trustworthiness and attractiveness. Humans process and evaluate these two dimensions very quickly due to their great adaptive importance. Trustworthiness evaluation is crucial for modulating behavior toward strangers; attractiveness evaluation is a crucial factor for mate selection, possibly providing cues for reproductive success. As both dimensions rapidly guide social behavior, this study tests the hypothesis that both judgments may be subserved by overlapping brain networks. To this end, we conducted an activation likelihood estimation meta-analysis on 16 functional magnetic resonance imaging studies pertaining to facial judgments of trustworthiness and attractiveness. Throughout combined, individual, and conjunction analyses on those two facial judgments, we observed consistent maxima in the amygdala which corroborates our initial hypothesis. This finding supports the contemporary paradigm shift extending the amygdala's role from dominantly processing negative emotional stimuli to processing socially relevant ones. We speculate that the amygdala filters sensory information with evolutionarily conserved relevance. Our data suggest that such a role includes not only "fight-or-flight" decisions but also social behaviors with longer term pay-off schedules, e.g., trustworthiness and attractiveness evaluation. © Springer-Verlag 2010

  3. Neural activity during emotion recognition after combined cognitive plus social cognitive training in schizophrenia.

    PubMed

    Hooker, Christine I; Bruce, Lori; Fisher, Melissa; Verosky, Sara C; Miyakawa, Asako; Vinogradov, Sophia

    2012-08-01

    Cognitive remediation training has been shown to improve both cognitive and social cognitive deficits in people with schizophrenia, but the mechanisms that support this behavioral improvement are largely unknown. One hypothesis is that intensive behavioral training in cognition and/or social cognition restores the underlying neural mechanisms that support targeted skills. However, there is little research on the neural effects of cognitive remediation training. This study investigated whether a 50 h (10-week) remediation intervention which included both cognitive and social cognitive training would influence neural function in regions that support social cognition. Twenty-two stable, outpatient schizophrenia participants were randomized to a treatment condition consisting of auditory-based cognitive training (AT) [Brain Fitness Program/auditory module ~60 min/day] plus social cognition training (SCT) which was focused on emotion recognition [~5-15 min per day] or a placebo condition of non-specific computer games (CG) for an equal amount of time. Pre and post intervention assessments included an fMRI task of positive and negative facial emotion recognition, and standard behavioral assessments of cognition, emotion processing, and functional outcome. There were no significant intervention-related improvements in general cognition or functional outcome. fMRI results showed the predicted group-by-time interaction. Specifically, in comparison to CG, AT+SCT participants had a greater pre-to-post intervention increase in postcentral gyrus activity during emotion recognition of both positive and negative emotions. Furthermore, among all participants, the increase in postcentral gyrus activity predicted behavioral improvement on a standardized test of emotion processing (MSCEIT: Perceiving Emotions). Results indicate that combined cognition and social cognition training impacts neural mechanisms that support social cognition skills. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Neural activity during emotion recognition after combined cognitive plus social-cognitive training in schizophrenia

    PubMed Central

    Hooker, Christine I.; Bruce, Lori; Fisher, Melissa; Verosky, Sara C.; Miyakawa, Asako; Vinogradov, Sophia

    2012-01-01

    Cognitive remediation training has been shown to improve both cognitive and social-cognitive deficits in people with schizophrenia, but the mechanisms that support this behavioral improvement are largely unknown. One hypothesis is that intensive behavioral training in cognition and/or social-cognition restores the underlying neural mechanisms that support targeted skills. However, there is little research on the neural effects of cognitive remediation training. This study investigated whether a 50 hour (10-week) remediation intervention which included both cognitive and social-cognitive training would influence neural function in regions that support social-cognition. Twenty-two stable, outpatient schizophrenia participants were randomized to a treatment condition consisting of auditory-based cognitive training (AT) [Brain Fitness Program/auditory module ~60 minutes/day] plus social-cognition training (SCT) which was focused on emotion recognition [~5–15 minutes per day] or a placebo condition of non-specific computer games (CG) for an equal amount of time. Pre and post intervention assessments included an fMRI task of positive and negative facial emotion recognition, and standard behavioral assessments of cognition, emotion processing, and functional outcome. There were no significant intervention-related improvements in general cognition or functional outcome. FMRI results showed the predicted group-by-time interaction. Specifically, in comparison to CG, AT+SCT participants had a greater pre-to-post intervention increase in postcentral gyrus activity during emotion recognition of both positive and negative emotions. Furthermore, among all participants, the increase in postcentral gyrus activity predicted behavioral improvement on a standardized test of emotion processing (MSCEIT: Perceiving Emotions). Results indicate that combined cognition and social-cognition training impacts neural mechanisms that support social-cognition skills. PMID:22695257

  5. Impact of Short Social Training on Prosocial Behaviors: An fMRI Study.

    PubMed

    Lukinova, Evgeniya; Myagkov, Mikhail

    2016-01-01

    Efficient brain-computer interfaces (BCIs) are in need of knowledge about the human brain and how it interacts, plays games, and socializes with other brains. A breakthrough can be achieved by revealing the microfoundations of sociality, an additional component of the utility function reflecting the value of contributing to group success derived from social identity. Building upon our previous behavioral work, we conduct a series of functional magnetic resonance imaging (fMRI) experiments (N = 10 in the Pilot Study and N = 15 in the Main Study) to measure whether and how sociality alters the functional activation of and connectivity between specific systems in the brain. The overarching hypothesis of this study is that sociality, even in a minimal form, serves as a natural mechanism of sustainable cooperation by fostering interaction between brain regions associated with social cognition and those related to value calculation. We use group-based manipulations to induce varying levels of sociality and compare behavior in two social dilemmas: Prisoner's Dilemma and variations of Ultimatum Game. We find that activation of the right inferior frontal gyrus, a region previously associated with cognitive control and modulation of the valuation system, is correlated with activity in the medial prefrontal cortex (mPFC) to a greater degree when participants make economic decisions in a game with an acquaintance, high sociality condition, compared to a game with a random individual, low sociality condition. These initial results suggest a specific biological mechanism through which sociality facilitates cooperation, fairness and provision of public goods at the cost of individual gain. Future research should examine neural dynamics in the brain during the computation of utility in the context of strategic games that involve social interaction for a larger sample of subjects.

  6. Impact of Short Social Training on Prosocial Behaviors: An fMRI Study

    PubMed Central

    Lukinova, Evgeniya; Myagkov, Mikhail

    2016-01-01

    Efficient brain–computer interfaces (BCIs) are in need of knowledge about the human brain and how it interacts, plays games, and socializes with other brains. A breakthrough can be achieved by revealing the microfoundations of sociality, an additional component of the utility function reflecting the value of contributing to group success derived from social identity. Building upon our previous behavioral work, we conduct a series of functional magnetic resonance imaging (fMRI) experiments (N = 10 in the Pilot Study and N = 15 in the Main Study) to measure whether and how sociality alters the functional activation of and connectivity between specific systems in the brain. The overarching hypothesis of this study is that sociality, even in a minimal form, serves as a natural mechanism of sustainable cooperation by fostering interaction between brain regions associated with social cognition and those related to value calculation. We use group-based manipulations to induce varying levels of sociality and compare behavior in two social dilemmas: Prisoner’s Dilemma and variations of Ultimatum Game. We find that activation of the right inferior frontal gyrus, a region previously associated with cognitive control and modulation of the valuation system, is correlated with activity in the medial prefrontal cortex (mPFC) to a greater degree when participants make economic decisions in a game with an acquaintance, high sociality condition, compared to a game with a random individual, low sociality condition. These initial results suggest a specific biological mechanism through which sociality facilitates cooperation, fairness and provision of public goods at the cost of individual gain. Future research should examine neural dynamics in the brain during the computation of utility in the context of strategic games that involve social interaction for a larger sample of subjects. PMID:27458349

  7. Brain State Differentiation and Behavioral Inflexibility in Autism†

    PubMed Central

    Uddin, Lucina Q.; Supekar, Kaustubh; Lynch, Charles J.; Cheng, Katherine M.; Odriozola, Paola; Barth, Maria E.; Phillips, Jennifer; Feinstein, Carl; Abrams, Daniel A.; Menon, Vinod

    2015-01-01

    Autism spectrum disorders (ASDs) are characterized by social impairments alongside cognitive and behavioral inflexibility. While social deficits in ASDs have extensively been characterized, the neurobiological basis of inflexibility and its relation to core clinical symptoms of the disorder are unknown. We acquired functional neuroimaging data from 2 cohorts, each consisting of 17 children with ASDs and 17 age- and IQ-matched typically developing (TD) children, during stimulus-evoked brain states involving performance of social attention and numerical problem solving tasks, as well as during intrinsic, resting brain states. Effective connectivity between key nodes of the salience network, default mode network, and central executive network was used to obtain indices of functional organization across evoked and intrinsic brain states. In both cohorts examined, a machine learning algorithm was able to discriminate intrinsic (resting) and evoked (task) functional brain network configurations more accurately in TD children than in children with ASD. Brain state discriminability was related to severity of restricted and repetitive behaviors, indicating that weak modulation of brain states may contribute to behavioral inflexibility in ASD. These findings provide novel evidence for a potential link between neurophysiological inflexibility and core symptoms of this complex neurodevelopmental disorder. PMID:25073720

  8. Group Membership Modulates the Neural Circuitry Underlying Third Party Punishment

    PubMed Central

    Sambataro, Fabio; Perussia, Felice; Valentini, Maria Consuelo; Bara, Bruno G.; Bosco, Francesca M.

    2016-01-01

    This research aims to explore the neural correlates involved in altruistic punishment, parochial altruism and anti-social punishment, using the Third-Party Punishment (TPP) game. In particular, this study considered these punishment behaviors in in-group vs. out-group game settings, to compare how people behave with members of their own national group and with members of another national group. The results showed that participants act altruistically to protect in-group members. This study indicates that norm violation in in-group (but not in out-group) settings results in increased activity in the medial prefrontal cortex and temporo-parietal junction, brain regions involved in the mentalizing network, as the third-party attempts to understand or justify in-group members’ behavior. Finally, exploratory analysis during anti-social punishment behavior showed brain activation recruitment of the ventromedial prefrontal cortex, an area associated with altered regulation of emotions. PMID:27835675

  9. Group Membership Modulates the Neural Circuitry Underlying Third Party Punishment.

    PubMed

    Morese, Rosalba; Rabellino, Daniela; Sambataro, Fabio; Perussia, Felice; Valentini, Maria Consuelo; Bara, Bruno G; Bosco, Francesca M

    2016-01-01

    This research aims to explore the neural correlates involved in altruistic punishment, parochial altruism and anti-social punishment, using the Third-Party Punishment (TPP) game. In particular, this study considered these punishment behaviors in in-group vs. out-group game settings, to compare how people behave with members of their own national group and with members of another national group. The results showed that participants act altruistically to protect in-group members. This study indicates that norm violation in in-group (but not in out-group) settings results in increased activity in the medial prefrontal cortex and temporo-parietal junction, brain regions involved in the mentalizing network, as the third-party attempts to understand or justify in-group members' behavior. Finally, exploratory analysis during anti-social punishment behavior showed brain activation recruitment of the ventromedial prefrontal cortex, an area associated with altered regulation of emotions.

  10. Amygdala-cingulate intrinsic connectivity is associated with degree of social inhibition

    PubMed Central

    Blackford, Jennifer Urbano; Clauss, Jacqueline A.; Avery, Suzanne N.; Cowan, Ronald L.; Benningfield, Margaret M.; VanDerKlok, Ross M.

    2014-01-01

    The tendency to approach or avoid novel people is a fundamental human behavior and is a core dimension of social anxiety. Resting state fMRI was used to test for an association between social inhibition and intrinsic connectivity in 40 young adults ranging from low to high in social inhibition. Higher levels of social inhibition were associated with specific patterns of reduced amygdala-cingulate cortex connectivity. Connectivity was reduced between the superficial amygdala and the rostral cingulate cortex and between the centromedial amygdala and the dorsal anterior cingulate cortex. Social inhibition also modulated connectivity in several well-established intrinsic networks; higher social inhibition correlated with reduced connectivity with default mode and dorsal attention networks and enhanced connectivity in salience and executive control networks. These findings provide important preliminary evidence that social inhibition reflects differences in the underlying intrinsic connectivity of the brain in the absence of social stimuli or stressors. PMID:24534162

  11. Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation

    PubMed Central

    Matthews, Gillian A.; Nieh, Edward H.; Vander Weele, Caitlin M.; Halbert, Sarah A.; Pradhan, Roma V.; Yosafat, Ariella S.; Glober, Gordon F.; Izadmehr, Ehsan M.; Thomas, Rain E.; Lacy, Gabrielle D.; Wildes, Craig P.; Ungless, Mark A.; Tye, Kay M.

    2016-01-01

    Summary The motivation to seek social contact may arise from either positive or negative emotional states, as social interaction can be rewarding and social isolation can be aversive. While ventral tegmental area (VTA) dopamine (DA) neurons may mediate social reward, a cellular substrate for the negative affective state of loneliness has remained elusive. Here, we identify a functional role for DA neurons in the dorsal raphe nucleus (DRN), in which we observe synaptic changes following acute social isolation. DRN DA neurons show increased activity upon social contact following isolation, revealed by in vivo calcium imaging. Optogenetic activation of DRN DA neurons increases social preference but causes place avoidance. Furthermore, these neurons are necessary for promoting rebound sociability following an acute period of isolation. Finally, the degree to which these neurons modulate behavior is predicted by social rank, together supporting a role for DRN dopamine neurons in mediating a loneliness-like state. PaperClip PMID:26871628

  12. Evaluation of the neuroactive steroid ganaxolone on social and repetitive behaviors in the BTBR mouse model of autism.

    PubMed

    Kazdoba, Tatiana M; Hagerman, Randi J; Zolkowska, Dorota; Rogawski, Michael A; Crawley, Jacqueline N

    2016-01-01

    Abnormalities in excitatory/inhibitory neurotransmission are hypothesized to contribute to autism spectrum disorder (ASD) etiology. BTBR T (+) Itpr3 (tf) /J (BTBR), an inbred mouse strain, displays social deficits and repetitive self-grooming, offering face validity to ASD diagnostic symptoms. Reduced GABAergic neurotransmission in BTBR suggests that GABAA receptor positive allosteric modulators (PAMs) could improve ASD-relevant BTBR phenotypes. The neuroactive steroid ganaxolone acts as a PAM, displaying anticonvulsant properties in rodent epilepsy models and an anxiolytic-like profile in the elevated plus-maze. We evaluated ganaxolone in BTBR and C57BL/6J mice in standardized assays for sociability and repetitive behaviors. Open field and anxiety-related behaviors were tested as internal controls and for comparison with the existing neuroactive steroid literature. Ganaxolone improved aspects of social approach and reciprocal social interactions in BTBR, with no effect on repetitive self-grooming, and no detrimental effects in C57BL/6J. Ganaxolone increased overall exploratory activity in BTBR and C57BL/6J in the open field, social approach, and elevated plus-maze, introducing a confound for the interpretation of social improvements. Allopregnanolone and diazepam similarly increased total entries in the elevated plus-maze, indicating that behavioral activation may be a general property of GABAA receptor PAMs in these strains. Ganaxolone shows promise for improving sociability. In addition, ganaxolone, as well as other GABAA receptor PAMs, enhanced overall BTBR activity. The translational implications of specific sociability improvements and nonspecific behavioral activation by ganaxolone in the BTBR model remain to be determined. Future studies to explore whether PAMs provide a novel profile with unique benefits for ASD treatment will be worthwhile.

  13. Evaluation of the neuroactive steroid ganaxolone on social and repetitive behaviors in the BTBR mouse model of autism

    PubMed Central

    Kazdoba, Tatiana M.; Hagerman, Randi J.; Zolkowska, Dorota; Rogawski, Michael A.; Crawley, Jacqueline N.

    2015-01-01

    Rationale Abnormalities in excitatory/inhibitory neurotransmission are hypothesized to contribute to autism spectrum disorder (ASD) etiology. BTBR, an inbred mouse strain, displays social deficits and repetitive self-grooming, offering face validity to ASD diagnostic symptoms. Reduced GABAergic neurotransmission in BTBR suggests that GABAA receptor positive allosteric modulators (PAMs) could improve ASD-relevant BTBR phenotypes. The neuroactive steroid ganaxolone acts as a PAM, displaying anticonvulsant properties in rodent epilepsy models and an anxiolytic-like profile in the elevated plus-maze. Objectives We evaluated ganaxolone in BTBR and C57BL/6J mice in standardized assays for sociability and repetitive behaviors. Open field and anxiety-related behaviors were tested as internal controls and for comparison with the existing neuroactive steroid literature. Results Ganaxolone improved aspects of social approach and reciprocal social interactions in BTBR, with no effect on repetitive self-grooming, and no detrimental effects in C57BL/6J. Ganaxolone increased overall exploratory activity in BTBR and C57BL/6J in the open field, social approach, and elevated plus-maze, introducing a confound for the interpretation of social improvements. Allopregnanolone and diazepam similarly increased total entries in the elevated plus-maze, indicating that behavioral activation may be a general property of GABAA receptor PAMs in these strains. Conclusions Ganaxolone shows promise for improving sociability. In addition, ganaxolone, as well as other GABAA receptor PAMs, enhanced overall BTBR activity. The translational implications of specific sociability improvements and non-specific behavioral activation by ganaxolone in the BTBR model remains to be determined. Future studies to explore whether PAMs provide a novel profile with unique benefits for ASD treatment will be worthwhile. PMID:26525567

  14. Oxytocin receptors (OXTR) and early parental care: An interaction that modulates psychiatric disorders.

    PubMed

    Cataldo, Ilaria; Azhari, Atiqah; Lepri, Bruno; Esposito, Gianluca

    2017-10-21

    Oxytocin plays an important role in the modulation of social behavior in both typical and atypical contexts. Also, the quality of early parental care sets the foundation for long-term psychosocial development. Here, we review studies that investigated how oxytocin receptor (OXTR) interacts with early parental care experiences to influence the development of psychiatric disorders. Using Pubmed, Scopus and PsycInfo databases, we utilized the keyword "OXTR" before subsequently searching for specific OXTR single nucleotide polymorphisms (SNPs), generating a list of 598 studies in total. The papers were catalogued in a database and filtered for gene-environment interaction, psychiatric disorders and involvement of parental care. In particular, rs53576 and rs2254298 were found to be significantly involved in gene-environment interactions that modulated risk for psychopathology and the following psychiatric disorders: disruptive behavior, depression, anxiety, eating disorder and borderline personality disorder. These results illustrate the importance of OXTR in mediating the impact of parental care on the emergence of psychopathology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Get them before they get you: trust, trustworthiness, and social cognition in boys with and without externalizing behavior problems.

    PubMed

    Sharp, Carla; Ha, Carolyn; Fonagy, Peter

    2011-05-01

    Economic exchange games have rarely been applied to examine psychopathology in youth. In the current study we adapted a trust game to investigate the relations between externalizing behavior problems, trust, and trustworthiness. We were particularly interested in the differential modulating impact of "known identity" (vs. anonymous) condition of the task. Second, we examined whether anomalies in trust behavior would correspond to social cognition manifested in children with externalizing problems. A total of 171 (79 age-matched pairs) boys (mean age = 12.84; SD = 1.80) were recruited from community groups where social networks and relationships amongst peers have been established. A trust game was played under two conditions: an anonymous version where the identity of the trust game partner was not known and a "known identity" version where identities were revealed. Results supported the conclusion that boys with externalizing behavior problems are generally less trustworthy, but not less trusting and that this was true especially for the known identity version of the game. Moreover, anomalies in trust behavior were associated with hostile intentions, but not reflective of a general theory of mind deficit. This study contributes to an emerging literature using economic exchange games to investigate real-time, real-life exchanges in relation to psychopathology.

  16. Estrogenic encounters: How interactions between aromatase and the environment modulate aggression

    PubMed Central

    Trainor, Brian C.; Kyomen, Helen H.; Marler, Catherine A.

    2007-01-01

    Initial investigations into the mechanistic basis of aggression focused on the role of testosterone (T) and a variety of studies on non-human animals found that elevated T levels promote aggression. However, many correlational studies have not detected a significant association between aggression and peripheral T levels. One reason for this inconsistency may be due to differential metabolism of T within the brain, in particular, the conversion of T to estrogen by aromatase. Thus, differences in aromatase enzyme activity, estrogen receptor expression, and related cofactors may have important effects on how steroids affect aggressive behavior. Hormone manipulation studies conducted in a wide variety of species indicate that estrogens modulate aggression. There is also growing evidence that social experience has important effects on the production of estrogen within the brain, and some cases can not be explained by androgenic regulation of aromatase. Such changes in central aromatase activity may play an important role in determining how social experiences affect the probability of whether an individual engages in aggressive behavior. Although studies have been conducted in many taxa, there has been relatively little integration between literatures examining aggression in different species. In this review, we compare and contrast studies examining aggression in birds, mammals, and humans. By taking an integrative approach to our review, we consider mechanisms that could explain species differences in how estrogen modulates aggression. PMID:16376420

  17. Engaging in paced mating, but neither exploratory, anti-anxiety, nor social behavior, increases 5α-reduced progestin concentrations in midbrain, hippocampus, striatum, and cortex

    PubMed Central

    Frye, Cheryl A; Paris, Jason J; Rhodes, Madeline E

    2010-01-01

    Sequential actions of 17β-estradiol (E2) and progesterone (P4) in the hypothalamus and the P4 metabolite, 5α-pregnan-3α-ol-20-one (3α,5α-THP), in the midbrain ventral tegmental area (VTA) respectively mediate the initiation and intensity of lordosis of female rats and mayalso modulate anxiety and social behaviors, through actions in these, and/or other brain regions. Biosynthesis of E2, P4, and 3α,5α-THP can also occur in brain, independent of peripheral gland secretion, in response to environmental/behavioral stimuli. The extent to which engaging in tasks related to reproductive behaviors and/or mating increased E2 or progestin concentrations in brain was investigated. In Experiment 1, proestrous rats were randomly assigned to be tested in individual tasks, including the open field, elevated plus maze, partner preference, social interaction, or no test control, in conjunction with paced mating or no mating. Engaging in paced mating, but not other behaviors, significantly increased dihydroprogesterone (DHP) and 3α,5α-THP levels in midbrain, hippocampus, striatum, and cortex. In Experiment 2, proestrous rats were tested in the combinations of the above tasks (open field and elevated plus maze, partner preference, and social interaction) with or without paced mating. As in Experiment 1, only engaging in paced mating increased DHP and 3α,5α-THP concentrations in midbrain, hippocampus, striatum, and cortex. Thus, paced mating enhances concentrations of 5α-reduced progestins in brain areas associated with reproduction (midbrain), as well as exploration/anxiety (hippocampus and striatum) and social behavior (cortex). PMID:17379660

  18. Conditional deletion of Cadherin 13 perturbs Golgi cells and disrupts social and cognitive behaviors.

    PubMed

    Tantra, M; Guo, L; Kim, J; Zainolabidin, N; Eulenburg, V; Augustine, G J; Chen, A I

    2018-02-15

    Inhibitory interneurons mediate the gating of synaptic transmission and modulate the activities of neural circuits. Disruption of the function of inhibitory networks in the forebrain is linked to impairment of social and cognitive behaviors, but the involvement of inhibitory interneurons in the cerebellum has not been assessed. We found that Cadherin 13 (Cdh13), a gene implicated in autism spectrum disorder and attention-deficit hyperactivity disorder, is specifically expressed in Golgi cells within the cerebellar cortex. To assess the function of Cdh13 and utilize the manipulation of Cdh13 expression in Golgi cells as an entry point to examine cerebellar-mediated function, we generated mice carrying Cdh13-floxed alleles and conditionally deleted Cdh13 with GlyT2::Cre mice. Loss of Cdh13 results in a decrease in the expression/localization of GAD67 and reduces spontaneous inhibitory postsynaptic current (IPSC) in cerebellar Golgi cells without disrupting spontaneous excitatory postsynaptic current (EPSC). At the behavioral level, loss of Cdh13 in the cerebellum, piriform cortex and endopiriform claustrum have no impact on gross motor coordination or general locomotor behaviors, but leads to deficits in cognitive and social abilities. Mice lacking Cdh13 exhibit reduced cognitive flexibility and loss of preference for contact region concomitant with increased reciprocal social interactions. Together, our findings show that Cdh13 is critical for inhibitory function of Golgi cells, and that GlyT2::Cre-mediated deletion of Cdh13 in non-executive centers of the brain, such as the cerebellum, may contribute to cognitive and social behavioral deficits linked to neurological disorders. © 2018 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  19. [Cognitive behavioral therapy for psychosis to promote social recovery].

    PubMed

    Yamasaki, Syudo

    2013-01-01

    When conducting cognitive behavioral therapy for psychosis (CBTp), it is essential that therapists aim for the recovery of patients with psychosis. During the sessions, the therapist helps a person with psychosis understand their symptoms, manages his/her residual positive symptoms, and helps them to cope with distress from the positive symptoms by themselves. Such CBTp should be designed to achieve the goals of the patient's social life. Recently, the effect of CBTp on residual positive symptoms of drug resistance has been reported repeatedly. Manifestation, cognitive bias, and activaters of residual positive symptoms differ considerably between individuals with psychosis. In the psychiatric rehabilitation field in Japan today, the symptom self-management module is being used. The symptom self-management module is derived from the techniques of group social skills training. However, there are needs for individual cognitive behavioral therapy for psychosis to meet the marked variation in individual needs. The effect of CBTp by itself on an individual with the initial episode of psychosis is limited. Many individuals with their first episode are teenagers or adolescents. Those patients are usually confronted with the problems of education and employment, which are key developmental tasks in adolescence. In order to meet those needs, a case manager should be assigned to an individual with first-episode psychosis, and CBTp should be implemented within the case management process. The CBTp has been introduced in various forms for the purpose of recovery support of individuals with psychosis. For the future, not only the accumulation of evidence but also the development of a dissemination system of CBTp are required to meet the individual needs of patients.

  20. Effects of pre-reproductive maternal enrichment on maternal care, offspring's play behavior and oxytocinergic neurons.

    PubMed

    Cutuli, Debora; Berretta, Erica; Caporali, Paola; Sampedro-Piquero, Patricia; De Bartolo, Paola; Laricchiuta, Daniela; Gelfo, Francesca; Pesoli, Matteo; Foti, Francesca; Farioli Vecchioli, Stefano; Petrosini, Laura

    2018-02-17

    Potentiating social, cognitive, and sensorimotor stimulations the Environmental Enrichment (EE) increases levels of novelty and complexity experienced by individuals. Growing evidence demonstrates that parental EE experience, even occurring in the pre-reproductive phase, affects behavioral and neural developmental trajectories of the offspring. To discover how the accumulation of early maternal complex experiences may inform and shape the social behavior of the following generation, we examined the effects of pre-reproductive enrichment of dams (post-natal days 21-72) on the play performances of their male and female adolescent offspring. Furthermore, we examined the effects of pre-reproductive enrichment on maternal behavior (during post-partum days 1-10) and male intruder aggression (on post-partum day 11). Since oxytocin modulates maternal care, social bonding, and agonistic behavior, the number of oxytocinergic neurons of the paraventricular (PVN) and supraoptic (SON) nuclei was examined in both dams and offspring. Results revealed that enriched females exhibited higher levels of pup-oriented behaviors, especially Crouching, and initiated pup-retrieval more quickly than standard females after the maternal aggression test. Such behavioral peculiarities were accompanied by increased levels of oxytocinergic neurons in PVN and SON. Moreover, pre-reproductive maternal EE cross-generationally influenced the offspring according to sex. Indeed, male pups born to enriched females exhibited a reduced play fighting associated with a higher number of oxytocinergic neurons in SON in comparison to male pups born to standard-housed females. In conclusion, pre-reproductive EE to the mothers affects their maternal care and has a cross-generational impact on the social behavior of their offspring that do not directly experiences EE. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Neurotensin neural mRNA expression correlates with vocal communication and other highly-motivated social behaviors in male European starlings.

    PubMed

    Merullo, Devin P; Cordes, Melissa A; Susan DeVries, M; Stevenson, Sharon A; Riters, Lauren V

    2015-11-01

    Vocalizations coordinate social interactions in many species and often are important for behaviors such as mate attraction or territorial defense. Although the neural circuitry underlying vocal communication is well-known for some animal groups, such as songbirds, the motivational processes that regulate vocal signals are not as clearly understood. Neurotensin (NT) is a neuropeptide implicated in motivation that can modulate the activity of dopaminergic neurons. Dopaminergic projections from the ventral tegmental area (VTA) are key to mediating highly motivated, goal-directed behaviors, including sexually-motivated birdsong. However, the role of NT in modifying vocal communication or other social behaviors has not been well-studied. Here in European starlings (Sturnus vulgaris) we analyzed relationships between sexually-motivated song and NT and NT1 receptor (NTSR1) expression in VTA. Additionally, we examined NT and NTSR1 expression in four regions that receive dopaminergic projections from VTA and are involved in courtship song: the medial preoptic nucleus (POM), the lateral septum (LS), Area X, and HVC. Relationships between NT and NTSR1 expression and non-vocal courtship and agonistic behaviors were also examined. NT expression in Area X positively related to sexually-motivated song production. NT expression in POM positively correlated with non-vocal courtship behavior and agonistic behavior. NT expression in POM was greatest in males owning nesting sites, and the opposite pattern was observed for NTSR1 expression in LS. These results are the first to implicate NT in Area X in birdsong, and further highlight NT as a potential neuromodulator for the control of vocal communication and other social behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Status-Dependent Vasotocin Modulation of Dominance and Subordination in the Weakly Electric Fish Gymnotus omarorum.

    PubMed

    Perrone, Rossana; Silva, Ana C

    2018-01-01

    Dominant-subordinate status emerges from agonistic encounters. The weakly electric fish, Gymnotus omarorum , displays a clear-cut example of non-breeding territorial aggression. The asymmetry in the behavior of dominants and subordinates is outstanding. Dominants are highly aggressive and subordinates signal submission in a precise sequence of locomotor and electric traits: retreating, decreasing their electric organ discharge rate, and emitting transient electric signals. The hypothalamic neuropeptide arginine-vasotocin (AVT) and its mammalian homolog arginine-vasopressin, are key modulators of social behavior, known to adapt their actions to different contexts. By analyzing the effects of pharmacological manipulations of the AVT system in both dominants and subordinates, we show evidence of distinct status-dependent actions of AVT. We demonstrate an endogenous effect of AVT on dominants' aggression levels: blocking the V1a AVT receptor induced a significant decrease in dominants' attack rate. AVT administered to subordinates enhanced the expression of the electric signals of submission, without affecting subordinates' locomotor displays. This study contributes a clear example of status-dependent AVT modulation of agonistic behavior in teleosts, and reveals distinctive activation patterns of the AVT system between dominants and subordinates.

  3. Diets and Health: How Food Decisions Are Shaped by Biology, Economics, Geography, and Social Interactions.

    PubMed

    Drewnowski, Adam; Kawachi, Ichiro

    2015-09-01

    Health is shaped by both personal choices and features of the food environment. Food-choice decisions depend on complex interactions between biology and behavior, and are further modulated by the built environment and community structure. That lower-income families have lower-quality diets is well established. Yet, diet quality also varies across small geographic neighborhoods and can be influenced by transportation, retail, and ease of access to healthy foods, as well as by attitudes, beliefs, and social interactions. The learnings from the Seattle Obesity Study (SOS II) can be usefully applied to the much larger, more complex, and far more socially and ethnically diverse urban environment of New York City. The Kavli HUMAN Project (KHP) is ideally positioned to advance the understanding of health disparities by exploring the multiple underpinnings of food decision making. By combining geo-localized food shopping and consumption data with health behaviors, diet quality measures, and biomarkers, also coded by geographic location, the KHP will create the first-of-its-kind bio-behavioral, economic, and cultural atlas of diet quality and health for New York City.

  4. Reaching low-income families: Focus group results provide direction for a behavioral approach to WIC services.

    PubMed

    Birkett, Diana; Johnson, Donna; Thompson, John R; Oberg, Donna

    2004-08-01

    Supplemental Nutrition Program for Women, Infants, and Children (WIC) families were asked to identify motivators and barriers to health behavior change and preferred approaches to nutrition education in WIC. Six focus groups involved a total of 41 English-speaking WIC participants and addressed parenting, family meals, food preparation, and physical activity. The discussions were audiotaped, transcribed, and analyzed using NUD*IST software (Non-Numerical Unstructured Data Indexing, Searching, and Theorizing, version 4.0. Thousand Oaks, CA: Sage Publications Software, 1997). Key barriers to behavior change included inadequate parenting skills, lack of knowledge, unhealthy social environments, lack of time, and lack of social or financial support. Key motivators included feelings of responsibility, concern for child health and development, and positive social support. Participants identified facilitated discussions, support groups, cooking classes, and a WIC Web site as preferred methods of nutrition education. Results provided the foundation for the Healthy Habits nutrition education modules implemented in the Washington State WIC program and can be used to improve future nutrition education in WIC.

  5. Behavior and neural correlates of empathy in adolescents.

    PubMed

    Overgaauw, Sandy; Güroğlu, Berna; Rieffe, Carolien; Crone, Eveline A

    2014-01-01

    This study examined neural correlates of empathy in adolescence while observing harmful acts. A total of 32 participants (aged 12-19 years) viewed pictures depicting negative (offenders inflicting intentional harm) and positive (friends socializing) social situations. After viewing each picture, participants could allocate hypothetical points to either the offender or the victim in a dictator game. Behaviorally, participants of all ages acted prosocially towards victims, fairly towards positive individuals and punishingly towards offenders. Brain imaging analyses showed that viewing negative situations was associated with more activation in the bilateral intraparietal lobule and the superior temporal sulcus (STS), whereas viewing positive situations was associated with more medial prefrontal cortex and left temporal parietal junction activity. Analyses testing for associations between brain activity and self-reported empathy showed that the STS was correlated negatively with reports of understanding others' distress and the willingness to help others. Together, the findings suggest that adolescents show similar prosocial behavior, as previously reported in adults with greater STS activity, when observing negative social acts that is modulated by an individual's empathy for others. © 2014 S. Karger AG, Basel.

  6. Emotional contagion and trait empathy in prosocial behavior in young people: the contribution of autonomic (facial feedback) and balanced emotional empathy scale (BEES) measures.

    PubMed

    Balconi, Michela; Canavesio, Ylenia

    2013-01-01

    The present research investigated first the facial feedback measured by EMG (electromyography) during decisions to engage in prosocial-helping behaviors and secondly the relation between this psychophysiological correlate and emotional empathy trait in young people. Thirty young subjects were invited to choose to adopt or not a prosocial behavior in response to social interactions. An increased zygomatic and corrugator muscle activity was found in response to prosocial interventions. Moreover, a significant positive correlation was found between empathic profile and the EMG modulation. These results highlight the role of emotions and empathy in prosocial behavior, induced by an "emotional contagion effect."

  7. Effects of Intranasal Oxytocin on Aggressive Responding in Antisocial Personality Disorder.

    PubMed

    Alcorn, Joseph L; Rathnayaka, Nuvan; Swann, Alan C; Moeller, F Gerard; Lane, Scott D

    2015-12-01

    The oxytocin receptor is important in several domains of social behavior, and administration of oxytocin modulates social responding in several mammalian species, including humans. Oxytocin has both therapeutic and scientific potential for elucidating the neural and behavioral mechanisms governing social behavior. In the present study, operationally-defined aggressive behavior of six males with Antisocial Personality Disorder (ASPD) was measured following acute intranasal oxytocin dosing (12, 24, and 48 international units) and placebo, using a well-validated laboratory task of human aggression (Point-Subtraction Aggression Paradigm, or PSAP). The PSAP provides participants with concurrently available monetary-earning and operationally-defined aggressive response options, maintained by fixed ratio schedules of consequences. Shifts in response rates and inter-response time (IRT) distributions were observed on the aggressive response option following oxytocin doses, relative to placebo. Few changes were observed in monetary-reinforced responding. However, across participants the direction and magnitude of changes in aggressive responding were not systematically related to dose. No trends were observed between psychometric or physiological data and oxytocin dosing or aggressive behavior. While this report is to our knowledge the first to examine the acute effects of oxytocin in this population at high risk for violence and other forms of antisocial behavior, several limitations in the experimental design and the results cast the study as a preliminary report. Strategies for more extensive future projects are discussed.

  8. Preferential amygdala reactivity to the negative assessment of neutral faces.

    PubMed

    Blasi, Giuseppe; Hariri, Ahmad R; Alce, Guilna; Taurisano, Paolo; Sambataro, Fabio; Das, Saumitra; Bertolino, Alessandro; Weinberger, Daniel R; Mattay, Venkata S

    2009-11-01

    Prior studies suggest that the amygdala shapes complex behavioral responses to socially ambiguous cues. We explored human amygdala function during explicit behavioral decision making about discrete emotional facial expressions that can represent socially unambiguous and ambiguous cues. During functional magnetic resonance imaging, 43 healthy adults were required to make complex social decisions (i.e., approach or avoid) about either relatively unambiguous (i.e., angry, fearful, happy) or ambiguous (i.e., neutral) facial expressions. Amygdala activation during this task was compared with that elicited by simple, perceptual decisions (sex discrimination) about the identical facial stimuli. Angry and fearful expressions were more frequently judged as avoidable and happy expressions most often as approachable. Neutral expressions were equally judged as avoidable and approachable. Reaction times to neutral expressions were longer than those to angry, fearful, and happy expressions during social judgment only. Imaging data on stimuli judged to be avoided revealed a significant task by emotion interaction in the amygdala. Here, only neutral facial expressions elicited greater activity during social judgment than during sex discrimination. Furthermore, during social judgment only, neutral faces judged to be avoided were associated with greater amygdala activity relative to neutral faces that were judged as approachable. Moreover, functional coupling between the amygdala and both dorsolateral prefrontal (social judgment > sex discrimination) and cingulate (sex discrimination > social judgment) cortices was differentially modulated by task during processing of neutral faces. Our results suggest that increased amygdala reactivity and differential functional coupling with prefrontal circuitries may shape complex decisions and behavioral responses to socially ambiguous cues.

  9. Preferential Amygdala Reactivity to the Negative Assessment of Neutral Faces

    PubMed Central

    Blasi, Giuseppe; Hariri, Ahmad R.; Alce, Guilna; Taurisano, Paolo; Sambataro, Fabio; Das, Saumitra; Bertolino, Alessandro; Weinberger, Daniel R.; Mattay, Venkata S.

    2010-01-01

    Background Prior studies suggest that the amygdala shapes complex behavioral responses to socially ambiguous cues. We explored human amygdala function during explicit behavioral decision making about discrete emotional facial expressions that can represent socially unambiguous and ambiguous cues. Methods During functional magnetic resonance imaging, 43 healthy adults were required to make complex social decisions (i.e., approach or avoid) about either relatively unambiguous (i.e., angry, fearful, happy) or ambiguous (i.e., neutral) facial expressions. Amygdala activation during this task was compared with that elicited by simple, perceptual decisions (sex discrimination) about the identical facial stimuli. Results Angry and fearful expressions were more frequently judged as avoidable and happy expressions most often as approachable. Neutral expressions were equally judged as avoidable and approachable. Reaction times to neutral expressions were longer than those to angry, fearful, and happy expressions during social judgment only. Imaging data on stimuli judged to be avoided revealed a significant task by emotion interaction in the amygdala. Here, only neutral facial expressions elicited greater activity during social judgment than during sex discrimination. Furthermore, during social judgment only, neutral faces judged to be avoided were associated with greater amygdala activity relative to neutral faces that were judged as approachable. Moreover, functional coupling between the amygdala and both dorsolateral prefrontal (social judgment > sex discrimination) and cingulate (sex discrimination > social judgment) cortices was differentially modulated by task during processing of neutral faces. Conclusions Our results suggest that increased amygdala reactivity and differential functional coupling with prefrontal circuitries may shape complex decisions and behavioral responses to socially ambiguous cues. PMID:19709644

  10. Monoaminergic integration of diet and social signals in the brains of juvenile spadefoot toads.

    PubMed

    Burmeister, Sabrina S; Rodriguez Moncalvo, Verónica G; Pfennig, Karin S

    2017-09-01

    Social behavior often includes the production of species-specific signals (e.g. mating calls or visual displays) that evoke context-dependent behavioral responses from conspecifics. Monoamines are important neuromodulators that have been implicated in context-dependent social behavior, yet we know little about the development of monoaminergic systems and whether they mediate the effects of early life experiences on adult behavior. We examined the effects of diet and social signals on monoamines early in development in the plains spadefoot toad ( Spea bombifrons ), a species in which diet affects the developmental emergence of species recognition and body condition affects the expression of adult mating preferences. To do so, we manipulated the diet of juveniles for 6 weeks following metamorphosis and collected their brains 40 min following the presentation of either a conspecific or a heterospecific call. We measured levels of monoamines and their metabolites using high pressure liquid chromatography from tissue punches of the auditory midbrain (i.e. torus semicircularis), hypothalamus and preoptic area. We found that call type affected dopamine and noradrenaline signaling in the auditory midbrain and that diet affected dopamine and serotonin in the hypothalamus. In the preoptic area, we detected an interaction between diet and call type, indicating that diet modulates how the preoptic area integrates social information. Our results suggest that the responsiveness of monoamine systems varies across the brain and highlight preoptic dopamine and noradrenaline as candidates for mediating effects of early diet experience on later expression of social preferences. © 2017. Published by The Company of Biologists Ltd.

  11. Revealing the Hidden Relationship by Sparse Modules in Complex Networks with a Large-Scale Analysis

    PubMed Central

    Jiao, Qing-Ju; Huang, Yan; Liu, Wei; Wang, Xiao-Fan; Chen, Xiao-Shuang; Shen, Hong-Bin

    2013-01-01

    One of the remarkable features of networks is module that can provide useful insights into not only network organizations but also functional behaviors between their components. Comprehensive efforts have been devoted to investigating cohesive modules in the past decade. However, it is still not clear whether there are important structural characteristics of the nodes that do not belong to any cohesive module. In order to answer this question, we performed a large-scale analysis on 25 complex networks with different types and scales using our recently developed BTS (bintree seeking) algorithm, which is able to detect both cohesive and sparse modules in the network. Our results reveal that the sparse modules composed by the cohesively isolated nodes widely co-exist with the cohesive modules. Detailed analysis shows that both types of modules provide better characterization for the division of a network into functional units than merely cohesive modules, because the sparse modules possibly re-organize the nodes in the so-called cohesive modules, which lack obvious modular significance, into meaningful groups. Compared with cohesive modules, the sizes of sparse ones are generally smaller. Sparse modules are also found to have preferences in social and biological networks than others. PMID:23762457

  12. Social Stress Engages Opioid Regulation of Locus Coeruleus Norepinephrine Neurons and Induces a State of Cellular and Physical Opiate Dependence

    PubMed Central

    Chaijale, Nayla N; Curtis, Andre L; Wood, Susan K; Zhang, Xiao-Yan; Bhatnagar, Seema; Reyes, Beverly AS; Van Bockstaele, Elisabeth J; Valentino, Rita J

    2013-01-01

    Stress is implicated in diverse psychiatric disorders including substance abuse. The locus coeruleus–norepinephrine (LC–NE) system is a major stress response system that is also a point of intersection between stress neuromediators and endogenous opioids and so may be a site at which stress can influence drug-taking behaviors. As social stress is a common stressor for humans, this study characterized the enduring impact of repeated social stress on LC neuronal activity. Rats were exposed to five daily consecutive sessions of social stress using the resident-intruder model or control manipulation. LC discharge rate recorded 2 days after the last manipulation was decreased in stressed rats compared with controls. By 10 days after the last manipulation, LC rates were comparable between groups. Systemic administration of the opiate antagonist, naloxone, robustly increased LC discharge rate in a manner suggestive of opiate withdrawal, selectively in stressed rats when administered 2 or 10 days after the last manipulation. This was accompanied by behavioral signs of mild opiate withdrawal. Western blot and electron microscopic studies indicated that repeated social stress decreased corticotropin-releasing factor type 1 receptor and increased μ-opioid receptor levels in the LC. Together, the results suggest that repeated social stress engages endogenous opioid modulation of LC activity and induces signs of cellular and physical opiate dependence that endure after the stress. These cellular effects may predispose individuals with a history of repeated social stress to substance abuse behaviors. PMID:23660707

  13. Social stress engages opioid regulation of locus coeruleus norepinephrine neurons and induces a state of cellular and physical opiate dependence.

    PubMed

    Chaijale, Nayla N; Curtis, Andre L; Wood, Susan K; Zhang, Xiao-Yan; Bhatnagar, Seema; Reyes, Beverly As; Van Bockstaele, Elisabeth J; Valentino, Rita J

    2013-09-01

    Stress is implicated in diverse psychiatric disorders including substance abuse. The locus coeruleus-norepinephrine (LC-NE) system is a major stress response system that is also a point of intersection between stress neuromediators and endogenous opioids and so may be a site at which stress can influence drug-taking behaviors. As social stress is a common stressor for humans, this study characterized the enduring impact of repeated social stress on LC neuronal activity. Rats were exposed to five daily consecutive sessions of social stress using the resident-intruder model or control manipulation. LC discharge rate recorded 2 days after the last manipulation was decreased in stressed rats compared with controls. By 10 days after the last manipulation, LC rates were comparable between groups. Systemic administration of the opiate antagonist, naloxone, robustly increased LC discharge rate in a manner suggestive of opiate withdrawal, selectively in stressed rats when administered 2 or 10 days after the last manipulation. This was accompanied by behavioral signs of mild opiate withdrawal. Western blot and electron microscopic studies indicated that repeated social stress decreased corticotropin-releasing factor type 1 receptor and increased μ-opioid receptor levels in the LC. Together, the results suggest that repeated social stress engages endogenous opioid modulation of LC activity and induces signs of cellular and physical opiate dependence that endure after the stress. These cellular effects may predispose individuals with a history of repeated social stress to substance abuse behaviors.

  14. Social regulation of plasma estradiol concentration in a female anuran

    PubMed Central

    Lynch, Kathleen S.; Wilczynski, Walter

    2008-01-01

    The behavior of an individual within a social aggregation profoundly influences behavior and physiology of other animals within the aggregation in such a way that these social interactions can enhance reproductive success, survival and fitness. This phenomenon is particularly important during the breeding season when males and female must synchronize their reproductive efforts. We examined whether exposure to conspecific social cues can elevate sex steroid levels, specifically estradiol and androgens, in female túngara frogs (Physalaemus pustulosus). We compared plasma estradiol and androgen concentrations in wild-caught females before and after exposure to either natural mate choruses or random tones. After exposure to mate choruses for 10 consecutive nights, estradiol concentrations were significantly elevated whereas there was no significant elevation in estradiol concentrations in the group of females exposed to random tones for 10 nights. Plasma androgen concentrations were not significantly changed after exposure to either natural mate choruses or random tones for 10 consecutive nights. Social modulation of estradiol concentrations may be important in maintaining a female’s reproductive state while males are chorusing. To our knowledge, this is the first study to demonstrate social regulation of estradiol concentration in female anurans. PMID:16545384

  15. The Interplay between Emotion and Cognition in Autism Spectrum Disorder: Implications for Developmental Theory

    PubMed Central

    Gaigg, Sebastian B.

    2012-01-01

    Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that is clinically defined by abnormalities in reciprocal social and communicative behaviors and an inflexible adherence to routinised patterns of thought and behavior. Laboratory studies repeatedly demonstrate that autistic individuals experience difficulties in recognizing and understanding the emotional expressions of others and naturalistic observations show that they use such expressions infrequently and inappropriately to regulate social exchanges. Dominant theories attribute this facet of the ASD phenotype to abnormalities in a social brain network that mediates social-motivational and social-cognitive processes such as face processing, mental state understanding, and empathy. Such theories imply that only emotion related processes relevant to social cognition are compromised in ASD but accumulating evidence suggests that the disorder may be characterized by more widespread anomalies in the domain of emotions. In this review I summarize the relevant literature and argue that the social-emotional characteristics of ASD may be better understood in terms of a disruption in the domain-general interplay between emotion and cognition. More specifically I will suggest that ASD is the developmental consequence of early emerging anomalies in how emotional responses to the environment modulate a wide range of cognitive processes including those that are relevant to navigating the social world. PMID:23316143

  16. Early-life experience affects honey bee aggression and resilience to immune challenge

    PubMed Central

    Rittschof, Clare C.; Coombs, Chelsey B.; Frazier, Maryann; Grozinger, Christina M.; Robinson, Gene E.

    2015-01-01

    Early-life social experiences cause lasting changes in behavior and health for a variety of animals including humans, but it is not well understood how social information ‘‘gets under the skin’’ resulting in these effects. Adult honey bees (Apis mellifera) exhibit socially coordinated collective nest defense, providing a model for social modulation of aggressive behavior. Here we report for the first time that a honey bee’s early-life social environment has lasting effects on individual aggression: bees that experienced high-aggression environments during pre-adult stages showed increased aggression when they reached adulthood relative to siblings that experienced low-aggression environments, even though all bees were kept in a common environment during adulthood. Unlike other animals including humans however, high-aggression honey bees were more, rather than less, resilient to immune challenge, assessed as neonicotinoid pesticide susceptibility. Moreover, aggression was negatively correlated with ectoparasitic mite presence. In honey bees, early-life social experience has broad effects, but increased aggression is decoupled from negative health outcomes. Because honey bees and humans share aspects of their physiological response to aggressive social encounters, our findings represent a step towards identifying ways to improve individual resiliency. Pre-adult social experience may be crucial to the health of the ecologically threatened honey bee. PMID:26493190

  17. The Interplay between Emotion and Cognition in Autism Spectrum Disorder: Implications for Developmental Theory.

    PubMed

    Gaigg, Sebastian B

    2012-01-01

    Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that is clinically defined by abnormalities in reciprocal social and communicative behaviors and an inflexible adherence to routinised patterns of thought and behavior. Laboratory studies repeatedly demonstrate that autistic individuals experience difficulties in recognizing and understanding the emotional expressions of others and naturalistic observations show that they use such expressions infrequently and inappropriately to regulate social exchanges. Dominant theories attribute this facet of the ASD phenotype to abnormalities in a social brain network that mediates social-motivational and social-cognitive processes such as face processing, mental state understanding, and empathy. Such theories imply that only emotion related processes relevant to social cognition are compromised in ASD but accumulating evidence suggests that the disorder may be characterized by more widespread anomalies in the domain of emotions. In this review I summarize the relevant literature and argue that the social-emotional characteristics of ASD may be better understood in terms of a disruption in the domain-general interplay between emotion and cognition. More specifically I will suggest that ASD is the developmental consequence of early emerging anomalies in how emotional responses to the environment modulate a wide range of cognitive processes including those that are relevant to navigating the social world.

  18. Social influences on microglial reactivity and neuronal damage after cardiac arrest/cardiopulmonary resuscitation.

    PubMed

    Gaudier-Diaz, Monica M; Haines, Adam H; Zhang, Ning; Courtney DeVries, A

    2018-06-19

    Social isolation presents a risk factor and worsens outcome to cerebrovascular diseases; however, the underlying mechanisms remain underspecified. This study examines the effect of social environment on microglial reactivity after global cerebral ischemia, to test the hypothesis that social isolation leads to greater microglial responses. Adult female and male mice were pair-housed or socially isolated for one week prior to cardiac arrest/cardiopulmonary resuscitation (CA/CPR) or the sham procedure, and following either 2 or 24 h of reperfusion, microglia samples were enriched and analyzed for gene expression. At the 2-hour time point, microglia from both females and males exhibited ischemia-induced inflammation, characterized by the gene expression increase of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β) and interleukin 6 (IL-6), regardless of the housing conditions. However, at 24 h post-ischemia, social housing attenuated microglial pro-inflammatory gene expression in a sex-specific manner. At this time point, the ischemia-induced increased expression of IL-1β and IL-6 was attenuated by social interaction in microglia from male mice, while among female mice social attenuation of the inflammatory response was observed in the microglial expression of cell surface protein major histocompatibility complex II (MHC II). A second study examined behavioral and physiological measures 96 h after ischemic injury. At this time point, female and male mice displayed increased locomotion and exploratory behavior following CA/CPR relative to controls. Regardless of sex, ischemia also elicited neuroinflammation and neurodegeneration, both of which were modulated by the social environment. Hippocampal nitric oxide (iNOS), cortical TNF-α, and counts of Fluoro-Jade C positive stained cells in the CA1 region of the hippocampus, were increased in the isolated CA/CPR group relative to sham controls and the pair-housed CA/CPR groups. Together, these data indicate that female and male mice exhibit similar outcome measures and social modulation at 96 h post-ischemic injury, nonetheless, that social environment influences microglial reactivity to global cerebral ischemia in a sex-specific manner. Copyright © 2017. Published by Elsevier Inc.

  19. Do we care about the powerless third? An ERP study of the three-person ultimatum game

    PubMed Central

    Alexopoulos, Johanna; Pfabigan, Daniela M.; Lamm, Claus; Bauer, Herbert; Fischmeister, Florian Ph. S.

    2012-01-01

    Recent years have provided increasing insights into the factors affecting economic decision-making. Little is known about how these factors influence decisions that also bear consequences for other people. We examined whether decisions that also affected a third, passive player modulate the behavioral and neural responses to monetary offers in a modified version of the three-person ultimatum game. We aimed to elucidate to what extent social preferences affect early neuronal processing when subjects were evaluating offers that were fair or unfair to themselves, to the third player, or to both. As an event-related potential (ERP) index for early evaluation processes in economic decision-making, we recorded the medial frontal negativity (MFN) component in response to such offers. Unfair offers were rejected more often than equitable ones, in particular when negatively affecting the subject. While the MFN amplitude was higher following unfair as compared to fair offers to the subject, MFN amplitude was not modulated by the shares assigned to the third, passive player. Furthermore, rejection rates and MFN amplitudes following fair offers were positively correlated, as subjects showing lower MFN amplitudes following fair offers tended to reject unfair offers more often—but only if those offers negatively affected their own payoff. Altogether, the rejection behavior suggests that humans mainly care about a powerless third when they are confronted with inequality as well. The correlation between rejection rates and the MFN amplitude supports the notion that this ERP component is also modulated by positive events and highlights how our expectations concerning other humans' behavior guide our own decisions. However, social preferences like inequality aversion and concern for the well-being of others are not reflected in this early neuronal response, but seem to result from later, deliberate and higher-order cognitive processes. PMID:22470328

  20. Do we care about the powerless third? An ERP study of the three-person ultimatum game.

    PubMed

    Alexopoulos, Johanna; Pfabigan, Daniela M; Lamm, Claus; Bauer, Herbert; Fischmeister, Florian Ph S

    2012-01-01

    Recent years have provided increasing insights into the factors affecting economic decision-making. Little is known about how these factors influence decisions that also bear consequences for other people. We examined whether decisions that also affected a third, passive player modulate the behavioral and neural responses to monetary offers in a modified version of the three-person ultimatum game. We aimed to elucidate to what extent social preferences affect early neuronal processing when subjects were evaluating offers that were fair or unfair to themselves, to the third player, or to both. As an event-related potential (ERP) index for early evaluation processes in economic decision-making, we recorded the medial frontal negativity (MFN) component in response to such offers. Unfair offers were rejected more often than equitable ones, in particular when negatively affecting the subject. While the MFN amplitude was higher following unfair as compared to fair offers to the subject, MFN amplitude was not modulated by the shares assigned to the third, passive player. Furthermore, rejection rates and MFN amplitudes following fair offers were positively correlated, as subjects showing lower MFN amplitudes following fair offers tended to reject unfair offers more often-but only if those offers negatively affected their own payoff. Altogether, the rejection behavior suggests that humans mainly care about a powerless third when they are confronted with inequality as well. The correlation between rejection rates and the MFN amplitude supports the notion that this ERP component is also modulated by positive events and highlights how our expectations concerning other humans' behavior guide our own decisions. However, social preferences like inequality aversion and concern for the well-being of others are not reflected in this early neuronal response, but seem to result from later, deliberate and higher-order cognitive processes.

  1. Hygienic behavior of the honey bee (Apis mellifera) is independent of sucrose responsiveness and foraging ontogeny.

    PubMed

    Goode, Katarzyna; Huber, Zachary; Mesce, Karen A; Spivak, Marla

    2006-03-01

    Hygienic behavior in honey bees is a behavioral mechanism of disease resistance. Bees bred for hygienic behavior exhibit an increased olfactory sensitivity to odors of diseased brood, which is most likely differentially enhanced in the hygienic line by the modulatory effects of octopamine (OA), a noradrenaline-like neuromodulator. Here, we addressed whether the hygienic behavioral state is linked to other behavioral activities known to be modulated by OA. We specifically asked if, during learning trials, bees from hygienic colonies discriminate better between odors of diseased and healthy brood because of differences in sucrose (reward) response thresholds. This determination had to be tested because sucrose response thresholds are susceptible to OA modulation and may have influenced the honey bee's association of the conditioned stimulus (odor) with the unconditioned stimulus (i.e., the sucrose reward). Because the onset of first foraging is also modulated by OA, we also examined whether bees from hygienic colonies differentially forage at an earlier age compared to bees from non-hygienic colonies. Our study revealed that 1-day- and 15- to 20-day-old bees from the hygienic line do not have lower sucrose response thresholds compared to bees from the non-hygienic lines. In addition, hygienic bees did not forage at an earlier age or forage preferentially for pollen as compared to non-hygienic bees. These results support the idea that OA does not function in honey bees simply to enhance the detection of all chemical cues non-selectively or control related behaviors regardless of their environmental milieu. Our results indicate that the behavioral profile of the hygienic bee is sculpted by multiple factors including genetic, neural, social and environmental systems.

  2. Insulin-like peptide genes in honey bee fat body respond differently to manipulation of social behavioral physiology.

    PubMed

    Nilsen, Kari-Anne; Ihle, Kate E; Frederick, Katy; Fondrk, M Kim; Smedal, Bente; Hartfelder, Klaus; Amdam, Gro V

    2011-05-01

    Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee's ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain.

  3. Insulin-like peptide genes in honey bee fat body respond differently to manipulation of social behavioral physiology

    PubMed Central

    Nilsen, Kari-Anne; Ihle, Kate E.; Frederick, Katy; Fondrk, M. Kim; Smedal, Bente; Hartfelder, Klaus; Amdam, Gro V.

    2011-01-01

    SUMMARY Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee's ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain. PMID:21490257

  4. Genetics of regular exercise and sedentary behaviors.

    PubMed

    de Geus, Eco J C; Bartels, Meike; Kaprio, Jaakko; Lightfoot, J Timothy; Thomis, Martine

    2014-08-01

    Studies on the determinants of physical activity have traditionally focused on social factors and environmental barriers, but recent research has shown the additional importance of biological factors, including genetic variation. Here we review the major tenets of this research to arrive at three major conclusions: First, individual differences in physical activity traits are significantly influenced by genetic factors, but genetic contribution varies strongly over age, with heritability of leisure time exercise behavior ranging from 27% to 84% and heritability of sedentary behaviors ranging from 9% to 48%. Second, candidate gene approaches based on animal or human QTLs or on biological relevance (e.g., dopaminergic or cannabinoid activity in the brain, or exercise performance influencing muscle physiology) have not yet yielded the necessary evidence to specify the genetic mechanisms underlying the heritability of physical activity traits. Third, there is significant genetic modulation of the beneficial effects of daily physical activity patterns on strength and endurance improvements and on health-related parameters like body mass index. Further increases in our understanding of the genetic determinants of sedentary and exercise behaviors as well as the genetic modulation of their effects on fitness and health will be key to meaningful future intervention on these behaviors.

  5. Relationship Reciprocation Modulates Resource Allocation in Adolescent Social Networks: Developmental Effects.

    PubMed

    Burnett Heyes, Stephanie; Jih, Yeou-Rong; Block, Per; Hiu, Chii-Fen; Holmes, Emily A; Lau, Jennifer Y F

    2015-01-01

    Adolescence is characterized as a period of social reorientation toward peer relationships, entailing the emergence of sophisticated social abilities. Two studies (Study 1: N = 42, ages 13-17; Study 2: N = 81, ages 13-16) investigated age group differences in the impact of relationship reciprocation within school-based social networks on an experimental measure of cooperation behavior. Results suggest development between mid- and late adolescence in the extent to which reciprocation of social ties predicted resource allocation. With increasing age group, investment decisions increasingly reflected the degree to which peers reciprocated feelings of friendship. This result may reflect social-cognitive development, which could facilitate the ability to navigate an increasingly complex social world in adolescence and promote positive and enduring relationships into adulthood. © 2015 The Authors. Child Development published by Wiley Periodicals, Inc. on behalf of Society for Research in Child Development.

  6. Preparation and Evaluation of Children's Rights Education Curriculum: An Action Research Regarding on Protection Rights Module

    ERIC Educational Resources Information Center

    Uçus, Sükran; Dedeoglu, Hakan

    2016-01-01

    Children's rights education is to enable children to gain the necessary social behaviors and essential knowledge for creating a democratic society that is based on respecting human rights. The purpose of this study was to investigate the preparation, application and assessment of a curriculum for teaching children's rights in elementary education.…

  7. Variation in the Oxytocin Receptor Gene Predicts Brain Region Specific Expression and Social Attachment

    PubMed Central

    King, Lanikea B.; Walum, Hasse; Inoue, Kiyoshi; Eyrich, Nicholas W.; Young, Larry J.

    2015-01-01

    Background Oxytocin (OXT) modulates several aspects of social behavior. Intranasal OXT is a leading candidate for treating social deficits in autism spectrum disorder (ASD) and common genetic variants in the human oxytocin receptor (OXTR) are associated with emotion recognition, relationship quality and ASD. Animal models have revealed that individual differences in Oxtr expression in the brain drive social behavior variation. Our understanding of how genetic variation contributes to brain OXTR expression is very limited. Methods We investigated Oxtr expression in monogamous prairie voles, which have a well characterized OXT system. We quantified brain region-specific levels of Oxtr mRNA and OXTR protein with established neuroanatomical methods. We used pyrosequencing to investigate allelic imbalance of Oxtr mRNA, a molecular signature of polymorphic genetic regulatory elements. We performed next-generation sequencing to discover variants in and near the Oxtr gene. We investigated social attachment using the partner preference test. Results Our allelic imbalance data demonstrates that genetic variants contribute to individual differences in Oxtr expression, but only in particular brain regions, including the nucleus accumbens (NAcc), where OXTR signaling facilitates social attachment. Next-generation sequencing identified one polymorphism in the Oxtr intron, near a putative cis-regulatory element, explaining 74% of the variance in striatal Oxtr expression specifically. Males homozygous for the high expressing allele display enhanced social attachment. Discussion Taken together, these findings provide convincing evidence for robust genetic influence on Oxtr expression and provide novel insights into how non-coding polymorphisms in the OXTR might influence individual differences in human social cognition and behavior PMID:26893121

  8. Modulation of ethanol withdrawal-induced anxiety-like behavior during later withdrawals by treatment of early withdrawals with benzodiazepine/gamma-aminobutyric acid ligands.

    PubMed

    Knapp, Darin J; Overstreet, David H; Breese, George R

    2005-04-01

    Anxiety states, including those arising during acute or protracted withdrawal periods, may be precipitating factors in alcoholic relapse. Given the cyclical nature of ethanol withdrawal associated with repeated cycles of ethanol intake and abstinence in a pattern that often spans years, meaningful attempts to model ethanol withdrawal-associated anxiety should incorporate cycled ethanol treatments. The studies reported herein examined the effects of gamma-aminobutyric acid-modulating drugs on social interaction behavior-an established model of anxiety-in rats exposed to repeated cycles of ethanol treatment and withdrawal. Rats were exposed to 8 to 12 g/kg/day ethanol during three 7-day dietary cycles (5 days on ethanol diet followed by 2 days on control diet). Ethanol was administered either at hour 4 of withdrawal after cessation of each of the first 2 ethanol cycles or during the final withdrawal only. In other groups, the early withdrawals were treated with alphaxalone, diazepam, PK11159, or flumazenil to block anxiety-like behavior during an untreated later (third) withdrawal. The benzodiazepine inverse agonist DMCM (methyl-6, 7-dymerhoxy-4-ethyl-beta-carboline-3-carboxylate) was also given repeatedly to determine whether it would sensitize anxiety-like behavior during a future withdrawal. Finally, the effects of all drugs on deficits in locomotor behavior were assessed. Pretreatment of earlier withdrawals with alphaxalone, diazepam, ethanol, or flumazenil reduced social interaction deficits during a later withdrawal, but pretreatment with PK11195 did not. In contrast, DMCM administered in lieu of early withdrawals increased social interaction deficits during an untreated later withdrawal. Locomotor deficits were significantly reversed only by the acute ethanol and diazepam treatment during the final withdrawal. Single-dose administration of drugs that enhance or diminish activity at benzodiazepine-gamma-aminobutyric acid- receptors during earlier withdrawals reduced or potentiated, respectively, anxiety-like behavior during later, drug-free withdrawals. These results support the potential of the novel strategy of using prophylactic therapy administered during early withdrawals to ameliorate symptoms of later withdrawals.

  9. Sex differences in social modulation of learning in rats.

    PubMed

    Mikosz, Marta; Nowak, Aleksandra; Werka, Tomasz; Knapska, Ewelina

    2015-12-14

    In its simplest form, empathy can be characterized as the capacity to share the emotional experiences among individuals, a phenomenon known as emotional contagion. Recent research shows that emotional contagion and its adaptive role can be studied in rodents. However, it is not known whether sex differences observed in human empathy extend to its more primitive forms. In the present study, we used a rat model of emotional contagion to compare the behavioral consequences of social transfer of information about threat, and the subsequent neural activation patterns in male and female rats. We found that: (1) males and females display a similar behavioral pattern during the interaction with either a fear-conditioned or a control rat; (2) interaction with a fear-conditioned conspecific positively modulates two-way avoidance learning in male and diestral female rats but not in estral females; and (3) such interaction results in increased c-Fos expression in the central and lateral nuclei of the amygdala and the prelimbic and infralimbic cortex in males, whereas in females no such changes were observed. Collectively, our results point to the occurrence of sex and estrus cycle phase differences in susceptibility to emotional contagion and underlying neuronal activation in rodents.

  10. Sex differences in social modulation of learning in rats

    PubMed Central

    Mikosz, Marta; Nowak, Aleksandra; Werka, Tomasz; Knapska, Ewelina

    2015-01-01

    In its simplest form, empathy can be characterized as the capacity to share the emotional experiences among individuals, a phenomenon known as emotional contagion. Recent research shows that emotional contagion and its adaptive role can be studied in rodents. However, it is not known whether sex differences observed in human empathy extend to its more primitive forms. In the present study, we used a rat model of emotional contagion to compare the behavioral consequences of social transfer of information about threat, and the subsequent neural activation patterns in male and female rats. We found that: (1) males and females display a similar behavioral pattern during the interaction with either a fear-conditioned or a control rat; (2) interaction with a fear-conditioned conspecific positively modulates two-way avoidance learning in male and diestral female rats but not in estral females; and (3) such interaction results in increased c-Fos expression in the central and lateral nuclei of the amygdala and the prelimbic and infralimbic cortex in males, whereas in females no such changes were observed. Collectively, our results point to the occurrence of sex and estrus cycle phase differences in susceptibility to emotional contagion and underlying neuronal activation in rodents. PMID:26655917

  11. Using an Automated 3D-tracking System to Record Individual and Shoals of Adult Zebrafish

    PubMed Central

    Maaswinkel, Hans; Zhu, Liqun; Weng, Wei

    2013-01-01

    Like many aquatic animals, zebrafish (Danio rerio) moves in a 3D space. It is thus preferable to use a 3D recording system to study its behavior. The presented automatic video tracking system accomplishes this by using a mirror system and a calibration procedure that corrects for the considerable error introduced by the transition of light from water to air. With this system it is possible to record both single and groups of adult zebrafish. Before use, the system has to be calibrated. The system consists of three modules: Recording, Path Reconstruction, and Data Processing. The step-by-step protocols for calibration and using the three modules are presented. Depending on the experimental setup, the system can be used for testing neophobia, white aversion, social cohesion, motor impairments, novel object exploration etc. It is especially promising as a first-step tool to study the effects of drugs or mutations on basic behavioral patterns. The system provides information about vertical and horizontal distribution of the zebrafish, about the xyz-components of kinematic parameters (such as locomotion, velocity, acceleration, and turning angle) and it provides the data necessary to calculate parameters for social cohesions when testing shoals. PMID:24336189

  12. Interactions of sex and early life social experiences at two developmental stages shape nonapeptide receptor profiles.

    PubMed

    Hiura, Lisa C; Ophir, Alexander G

    2018-05-31

    Early life social experiences are critical to behavioral and cognitive development, and can have a tremendous influence on developing social phenotypes. Most work has focused on outcomes of experiences at a single stage of development (e.g., perinatal, or post-weaning). Few studies have assessed the impact of social experience at multiple developmental stages and across sex. Oxytocin and vasopressin are profoundly important for modulating social behavior and these nonapeptide systems are highly sensitive to developmental social experience, particularly in brain areas important for social behavior. We investigated whether oxytocin receptor (OTR) and vasopressin receptor (V1aR) distributions of prairie voles (Microtus ochrogaster) change as a function of parental composition within the natal nest or social composition after weaning. We raised pups either in the presence or absence of their fathers. At weaning, offspring were housed either individually or with a same-sex sibling. We also examined whether changes in receptor distributions are sexually dimorphic because the impact of the developmental environment on the nonapeptide system could be sex-dependent. We found that differences in nonapeptide receptor expression were region-, sex-, and rearing condition-specific, indicating a high level of complexity in the ways that early life experiences shape the social brain. We found many more differences in V1aR density compared to OTR density, indicating that nonapeptide receptors demonstrate differential levels of neural plasticity and sensitivity to environmental and biological variables. Our data highlight that critical factors including biological sex and multiple experiences across the developmental continuum interact in complex ways to shape the social brain. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Improvement of dizocilpine-induced social recognition deficits in mice by brexpiprazole, a novel serotonin-dopamine activity modulator.

    PubMed

    Yoshimi, Noriko; Futamura, Takashi; Hashimoto, Kenji

    2015-03-01

    Cognitive impairment, including impaired social cognition, is largely responsible for the deterioration in social life suffered by patients with psychiatric disorders, such as schizophrenia and major depressive disorder (MDD). Brexpiprazole (7-{4-[4-(1-benzothiophen-4-yl)piperazin-1-yl]butoxy}quinolin-2(1H)-one), a novel serotonin-dopamine activity modulator, was developed to offer efficacious and tolerable therapy for different psychiatric disorders, including schizophrenia and adjunctive treatment of MDD. In this study, we investigated whether brexpiprazole could improve social recognition deficits (one of social cognition deficits) in mice, after administration of the N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 (dizocilpine). Dosing with dizocilpine (0.1mg/kg) induced significant impairment of social recognition in mice. Brexpiprazole (0.01, 0.03, 0.1mg/kg, p.o.) significantly ameliorated dizocilpine-induced social recognition deficits, without sedation or a reduction of exploratory behavior. In addition, brexpiprazole alone had no effect on social recognition in untreated control mice. By contrast, neither risperidone (0.03mg/kg, p.o.) nor olanzapine (0.03mg/kg, p.o.) altered dizocilpine-induced social recognition deficits. Finally, the effect of brexpiprazole on dizocilpine-induced social recognition deficits was antagonized by WAY-100,635, a selective serotonin 5-HT1A antagonist. These results suggest that brexpiprazole could improve dizocilpine-induced social recognition deficits via 5-HT1A receptor activation in mice. Therefore, brexpiprazole may confer a beneficial effect on social cognition deficits in patients with psychiatric disorders. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  14. Social Behavior of Pet Dogs Is Associated with Peripheral OXTR Methylation

    PubMed Central

    Cimarelli, Giulia; Virányi, Zsófia; Turcsán, Borbála; Rónai, Zsolt; Sasvári-Székely, Mária; Bánlaki, Zsófia

    2017-01-01

    Oxytocin is a key modulator of emotional processing and social cognitive function. In line with this, polymorphisms of genes involved in oxytocin signaling, like the oxytocin receptor (OXTR) gene, are known to influence social behavior in various species. However, to date, no study has investigated environmental factors possibly influencing the epigenetic variation of the OXTR gene and its behavioral effects in dogs. Pet dogs form individualized and strong relationships with their owners who are central figures in the social environment of their dogs and therefore might influence the methylation levels of their OXTR gene. Here we set out to investigate whether DNA methylation within the OXTR promoter region of pet dogs is linked to their owner’s interaction style and to the social behavior of the dogs. To be able to do so, we collected buccal epithelial cells and, in Study 1, we used pyrosequencing techniques to look for differentially methylated CpG sites in the canine OXTR promoter region on a heterogeneous sample of dogs and wolves of different ages and keeping conditions. Four identified sites (at positions -727, -751, -1371, and -1383 from transcription start site) showing more than 10% methylation variation were then, in Study 2, measured in triplicate in 217 pet Border Collies previously tested for reactions to an adverse social situation (i.e., approach by a threatening human) and with available data on their owners’ interaction styles. We found that CpG methylation was significantly associated with the behavior of the dogs, in particular with the likelihood that dogs would hide behind their owner or remain passive when approached by a threatening human. On the other hand, CpG methylation was not related to the owners’ behavior but to dog sex (at position -1371). Our findings underpin the complex relationship between epigenetics and behavior and highlight the importance of including epigenetic methods in the analysis of dog behavioral development. Further research is needed to investigate which environmental factors influence the epigenetic variation of the OXTR gene. PMID:28443051

  15. Look who's judging-Feedback source modulates brain activation to performance feedback in social anxiety.

    PubMed

    Peterburs, Jutta; Sandrock, Carolin; Miltner, Wolfgang H R; Straube, Thomas

    2016-06-01

    It is as yet unknown if behavioral and neural correlates of performance monitoring in socially anxious individuals are affected by whether feedback is provided by a person or a computer. This fMRI study investigated modulation of feedback processing by feedback source (person vs. computer) in participants with high (HSA) (N=16) and low social anxiety (LSA) (N=16). Subjects performed a choice task in which they were informed that they would receive positive or negative feedback from a person or the computer. Subjective ratings indicated increased arousal and anxiety in HSA versus LSA, most pronounced for social and negative feedback. FMRI analyses yielded hyperactivation in ventral medial prefrontal cortex (vmPFC)/anterior cingulate cortex (ACC) and insula for social relative to computer feedback, and in mPFC/ventral ACC for positive relative to negative feedback in HSA as compared to LSA. These activation patterns are consistent with increased interoception and self-referential processing in social anxiety, especially during processing of positive feedback. Increased ACC activation in HSA to positive feedback may link to unexpectedness of (social) praise as posited in social anxiety disorder (SAD) psychopathology. Activation in rostral ACC showed a reversed pattern, with decreased activation to positive feedback in HSA, possibly indicating altered action values depending on feedback source and valence. The present findings corroborate a crucial role of mPFC for performance monitoring in social anxiety. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Sex-specific modulation of the gut microbiome and behavior in Siberian hamsters.

    PubMed

    Sylvia, Kristyn E; Jewell, Cathleen P; Rendon, Nikki M; St John, Emma A; Demas, Gregory E

    2017-02-01

    The gut microbiome is a diverse, host-specific, and symbiotic bacterial environment that is critical for mammalian survival and exerts a surprising yet powerful influence on brain and behavior. Gut dysbiosis has been linked to a wide range of physical and psychological disorders, including autism spectrum disorders and anxiety, as well as autoimmune and inflammatory disorders. A wealth of information on the effects of dysbiosis on anxiety and depression has been reported in laboratory model systems (e.g., germ-free mice); however, the effects of microbiome disruption on social behaviors (e.g., aggression) of non-model species that may be particularly important in understanding many aspects of physiology and behavior have yet to be fully explored. Here we assessed the sex-specific effects of a broad-spectrum antibiotic on the gut microbiome and its effects on social behaviors in male and female Siberian hamsters (Phodopus sungorus). In Experiment 1, we administered a broad-spectrum antibiotic on a short-term basis and found that antibiotic treatment altered the microbial communities in the gut in male and female hamsters. In Experiment 2, we tested the effects of single versus repeated antibiotic treatment (including a recovery phase) on behavior, and found that two, but not one, treatments caused marked decreases in aggressive behavior, but not other social behaviors, in males; aggression returned to normal levels following recovery. Antibiotic-treated females, in contrast, showed decreased aggression after a single treatment, with all other social behaviors unaffected. Unlike males, female aggression did not return to normal during either recovery period. The present findings demonstrate that modest antibiotic treatment results in marked disruption of the gut microbiome in hamsters, akin to research done in other rodent species and humans. Further, we show that treatment with a broad-spectrum antibiotic, which has dysbiotic effects, also has robust, sex-specific effects on aggression, a critical behavior in the survival and reproductive success of many rodent species. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Social Crowding during Development Causes Changes in GnRH1 DNA Methylation.

    PubMed

    Alvarado, Sebastian G; Lenkov, Kapa; Williams, Blake; Fernald, Russell D

    2015-01-01

    Gestational and developmental cues have important consequences for long-term health, behavior and adaptation to the environment. In addition, social stressors cause plastic molecular changes in the brain that underlie unique behavioral phenotypes that also modulate fitness. In the adult African cichlid, Astatotilapia burtoni, growth and social status of males are both directly regulated by social interactions in a dynamic social environment, which causes a suite of plastic changes in circuits, cells and gene transcription in the brain. We hypothesized that a possible mechanism underlying some molecular changes might be DNA methylation, a reversible modification made to cytosine nucleotides that is known to regulate gene function. Here we asked whether changes in DNA methylation of the GnRH1 gene, the central regulator of the reproductive axis, were altered during development of A. burtoni. We measured changes in methylation state of the GnRH1 gene during normal development and following the gestational and developmental stress of social crowding. We found differential DNA methylation within developing juveniles between 14-, 28- and 42-day-old. Following gestational crowding of mouth brooding mothers, we saw differential methylation and transcription of GnRH1 in their offspring. Taken together, our data provides evidence for social control of GnRH1 developmental responses to gestational cues through DNA methylation.

  18. Sex-specific effects of docosahexaenoic acid (DHA) on the microbiome and behavior of socially-isolated mice.

    PubMed

    Davis, Daniel J; Hecht, Patrick M; Jasarevic, Eldin; Beversdorf, David Q; Will, Matthew J; Fritsche, Kevin; Gillespie, Catherine H

    2017-01-01

    Dietary supplementation with the long-chain omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) has been shown to have a beneficial effect on reducing the symptoms associated with several neuropsychiatric conditions including anxiety and depression. However, the mechanisms underlying this effect remain largely unknown. Increasing evidence suggests that the vast repertoire of commensal bacteria within the gut plays a critical role in regulating various biological processes in the brain and may contribute to neuropsychiatric disease risk. The present study determined the contribution of DHA on anxiety and depressive-like behaviors through modulation of the gut microbiota in a paradigm of social isolation. Adult male and female mice were subjected to social isolation for 28days and then placed either on a control diet or a diet supplemented with 0.1% or 1.0% DHA. Fecal pellets were collected both 24h and 7days following the introduction of the new diets. Behavioral testing revealed that male mice fed a DHA diet, regardless of dose, exhibited reduced anxiety and depressive-like behaviors compared to control fed mice while no differences were observed in female mice. As the microbiota-brain-axis has been recently implicated in behavior, composition of microbial communities were analyzed to examine if these sex-specific effects of DHA may be associated with changes in the gut microbiota (GM). Clear sex differences were observed with males and females showing distinct microbial compositions prior to DHA supplementation. The introduction of DHA into the diet also induced sex-specific interactions on the GM with the fatty acid producing a significant effect on the microbial profiles in males but not in females. Interestingly, levels of Allobaculum and Ruminococcus were found to significantly correlate with the behavioral changes observed in the male mice. Predictive metagenome analysis using PICRUSt was performed on the fecal samples collected from males and identified enrichment in functional KEGG pathway terms relevant to processes such as the biosynthesis of unsaturated fatty acids and antioxidant metabolism. These results indicate that DHA alters commensal community composition and produces beneficial effects on anxiety and depressive-like behaviors in a sex-specific manner. The present study provides insight into the mechanistic role that gut microbes may play in the regulation of anxiety and depressive-like behaviors and how dietary intervention can modulate these effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The secretogranin-II derived peptide secretoneurin modulates electric behavior in the weakly pulse type electric fish, Brachyhypopomus gauderio.

    PubMed

    Pouso, Paula; Quintana, Laura; López, Gabriela C; Somoza, Gustavo M; Silva, Ana C; Trudeau, Vance L

    2015-10-01

    Secretoneurin (SN) in the preoptic area and pituitary of mammals and fish has a conserved close association with the vasopressin and oxytocin systems, members of a peptide family that are key in the modulation of sexual and social behaviors. Here we show the presence of SN-immunoreactive cells and projections in the brain of the electric fish, Brachyhypopomus gauderio. Secretoneurin colocalized with vasotocin (AVT) and isotocin in cells and fibers of the preoptic area. In the rostral pars distalis of the pituitary, many cells were both SN and prolactin-positive. In the hindbrain, at the level of the command nucleus of the electric behavior (pacemaker nucleus; PN), some of SN-positive fibers colocalized with AVT. We also explored the potential neuromodulatory role of SN on electric behavior, specifically on the rate of the electric organ discharge (EOD) that signals arousal, dominance and subordinate status. Each EOD is triggered by the command discharge of the PN, ultimately responsible for the basal EOD rate. SN modulated diurnal basal EOD rate in freely swimming fish in a context-dependent manner; determined by the initial value of EOD rate. In brainstem slices, SN partially mimicked the in vivo behavioral effects acting on PN firing rate. Taken together, our results suggest that SN may regulate electric behavior, and that its effect on EOD rate may be explained by direct action of SN at the PN level through either neuroendocrine and/or endocrine mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Song environment affects singing effort and vasotocin immunoreactivity in the forebrain of male Lincoln’s sparrows

    PubMed Central

    Sewall, Kendra B.; Dankoski, Elyse C.; Sockman, Keith W.

    2010-01-01

    Male songbirds often establish territories and attract mates by singing, and some song features can reflect the singer’s condition or quality. The quality of the song environment can change, so male songbirds should benefit from assessing the competitiveness of the song environment and appropriately adjusting their own singing behavior and the neural substrates by which song is controlled. In a wide range of taxa social modulation of behavior is partly mediated by the arginine vasopressin or vasotocin (AVP/AVT) systems. To examine the modulation of singing behavior in response to the quality of the song environment we compared the song output of laboratory-housed male Lincoln’s sparrows (Melospiza lincolnii) exposed to one week of chronic playback of songs categorized as either high or low quality, based on song length, complexity and trill performance. To explore the neural basis of any facultative shifts in behavior, we also quantified the subjects’ AVT immunoreactivity (AVT-IR) in three forebrain regions that regulate socio-sexual behavior: the medial bed nucleus of the stria terminalis (BSTm), the lateral septum (LS) and the preoptic area. We found that high quality songs increased singing effort and reduced AVT-IR in the BSTm and LS, relative to low quality songs. The effect of the quality of the song environment on both singing effort and forebrain AVT-IR raises the hypothesis that AVT within these brain regions plays a role in the modulation of behavior in response to competition that individual males may assess from the prevailing song environment. PMID:20399213

  1. Youth health risk behavior assessment in Fiji: The reliability of Global School-based Health Survey content adapted for ethnic Fijian girls

    PubMed Central

    Becker, Anne E.; Roberts, Andrea L.; Perloe, Alexandra; Bainivualiku, Asenaca; Richards, Lauren K.; Gilman, Stephen E.; Striegel-Moore, Ruth H.

    2010-01-01

    Objective The Global School-based Student Health Survey (GSHS) is an assessment for adolescent health risk behaviors and exposures, supported by the World Health Organization. Although already widely implemented—and intended for youth assessment across diverse ethnic and national contexts—no reliability data have yet been reported for GSHS-based assessment in any ethnicity or country-specific population. This study reports test-retest reliability for GSHS content adapted for a female adolescent ethnic Fijian study sample in Fiji. Design We adapted and translated GSHS content to assess health risk behaviors as part of a larger study investigating the impact of social transition on ethnic Fijian secondary schoolgirls in Fiji. In order to evaluate the performance of this measure for our ethnic Fijian study sample (n=523), we examined its test-retest reliability with kappa coefficients, % agreement, and prevalence estimates in a sub-sample (n=81). Reliability among strata defined by topic, age, and language was also examined. Results Average agreement between test and retest was 77%, and average Cohen's kappa was 0.47. Mean kappas for questions from core modules about alcohol use, tobacco use, and sexual behavior were substantial, and higher than those for modules relating to other risk behaviors. Conclusions Although test-retest reliability of responses within this country-specific version of GSHS content was substantial in several topical domains for this ethnic Fijian sample, only fair reliability for the module assessing dietary behaviors and other individual items suggests that population-specific psychometric evaluation is essential to interpreting language and country-specific GSHS data. PMID:20234961

  2. Social and behavioral predictors of insufficient sleep among African Americans and Caucasians.

    PubMed

    Williams, Natasha J; Grandner, Michael A; Wallace, Douglas M; Cuffee, Yendelela; Airhihenbuwa, Collins; Okuyemi, Kolawole; Ogedegbe, Gbenga; Jean-Louis, Girardin

    2016-02-01

    Few studies have examined the social and behavioral predictors of insufficient sleep. To assess the social and behavioral predictors of insufficient sleep in the U.S. Data from the 2009 Behavioral Risk Factor Surveillance System (BRFSS) were analyzed. Telephone interviews were conducted in six representative states that completed the optional sleep module. A total of 31,059 respondents were included in the present analysis. BRFSS-provided weights were applied to analyses to adjust for the use of complex design. The mean age for the sample was 56 ± 16 years, with 63% of the sample being female; 88% identified as non-Hispanic white and 12% identified as non-Hispanic black; 42% were not married and 8% did not have a high school degree. The prevalence of insufficient sleep (<7 hours) was 37%. Multivariate-adjusted logistic regression revealed associations of four important factors with insufficient sleep, which were: working more than 40 hours per week [OR = 1.65, p < 0.001, 95% CI = 1.65-1.66], black race/ethnicity [OR = 1.37, p < 0.001, 95% CI = 1.37-1.38], history of heart disease [OR = 1.26, p < 0.001, 95% CI = 1.25-1.28], care-giving to family/friends [OR = 1.50, p < 0.001, 95% CI = 1.49-1.51], and lack of social and emotional support [OR = 1.24, p < 0.001, 95% CI = 1. 23-1.25]. Social and behavioral predictors of health uniquely contribute to the report of insufficient sleep and should be considered when developing programs to increase awareness of the adverse effects of insufficient sleep. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Breaking the loop: oxytocin as a potential treatment for drug addiction.

    PubMed

    McGregor, Iain S; Bowen, Michael T

    2012-03-01

    Drug use typically occurs within a social context, and social factors play an important role in the initiation, maintenance and recovery from addictions. There is now accumulating evidence of an interaction between the neural substrates of affiliative behavior and those of drug reward, with a role for brain oxytocin systems in modulating acute and long-term drug effects. Early research in this field indicated that exogenous oxytocin administration can prevent development of tolerance to ethanol and opiates, the induction of stereotyped, hyperactive behavior by stimulants, and the withdrawal symptoms associated with sudden abstinence from drugs and alcohol. Additionally, stimulation of endogenous oxytocin systems is a key neurochemical substrate underlying the prosocial and empathogenic effects of party drugs such as MDMA (Ecstasy) and GHB (Fantasy). Brain oxytocin systems exhibit profound neuroplasticity and undergo major neuroadaptations as a result of drug exposure. Many drugs, including cocaine, opiates, alcohol, cannabis, MDMA and GHB cause long-term changes in markers of oxytocin function and this may be linked to enduring deficits in social behavior that are commonly observed in laboratory animals repeatedly exposed to these drugs. Very recent preclinical studies have illustrated a remarkable ability of exogenously delivered oxytocin to inhibit stimulant and alcohol self-administration, to alter associated drug-induced changes in dopamine, glutamate and Fos expression in cortical and basal ganglia sites, and to prevent stress and priming-induced relapse to drug seeking. Oxytocin therefore has fascinating potential to reverse the corrosive effects of long-term drugs abuse on social behavior and to perhaps inoculate against future vulnerability to addictive disorders. The results of clinical studies examining intranasal oxytocin effects in humans with drug use disorders are eagerly awaited. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Attachment avoidance predicts inflammatory responses to marital conflict

    PubMed Central

    Gouin, Jean-Philippe; Glaser, Ronald; Loving, Timothy J.; Malarkey, William B.; Stowell, Jeffrey; Houts, Carrie; Kiecolt-Glaser, Janice K.

    2009-01-01

    Marital stress has been associated with immune dysregulation, including increased production of interleukin-6 (IL-6). Attachment style, one’s expectations about the availability and responsiveness of others in intimate relationships, appears to influence physiological stress reactivity and thus could influence inflammatory responses to marital conflict. Thirty-five couples were invited for two 24-hour admissions to a hospital research unit. The first visit included a structured social support interaction, while the second visit comprised the discussion of a marital disagreement. A mixed effect within-subject repeated measure model indicated that attachment avoidance significantly influenced IL-6 production during the conflict visit but not during the social support visit. Individuals with higher attachment avoidance had on average an 11% increase in total IL-6 production during the conflict visit as compared to the social support visit, while individuals with lower attachment avoidance had, on average, a 6% decrease in IL-6 production during the conflict visit as compared to the social support visit. Furthermore, greater attachment avoidance was associated with a higher frequency of negative behaviors and a lower frequency of positive behaviors during the marital interaction, providing a mechanism by which attachment avoidance may influence inflammatory responses to marital conflict. In sum, these results suggest that attachment avoidance modulates marital behavior and stress-induced immune dysregulation. PMID:18952163

  5. Pilot test of an emotional education intervention component for sexual risk reduction.

    PubMed

    Ferrer, Rebecca A; Fisher, Jeffrey D; Buck, Ross; Amico, K Rivet

    2011-09-01

    Emotions are key predictors of sexual risk behavior but have been largely ignored in theory-based intervention development. The present study aims to evaluate whether the addition of an emotional education intervention component to a traditional social-cognitive safer sex intervention increases intervention efficacy, compared with both a social-cognitive only intervention and a no intervention control condition. Young adults were randomized in small groups to receive the social-cognitive-emotional (SCE) intervention, the social-cognitive (SC) intervention, or standard of care. Analyses of data from 176 participants indicated that intervention arms reported similar increased condom use compared with the no intervention control arm at 3 months' postintervention (β = .06, p = .41, d = 0.08). However, at 6 months' postintervention, individuals in the SCE intervention arm reported increased condom use compared with both the SC intervention (β = .27, p = .04, d = 0.38) and control arms (β = .37, p < .01; d = 0.56), demonstrating preliminary evidence that the addition of an emotional education component may facilitate sustained behavior change. An emotional education intervention module has the potential to facilitate sustained behavior change at delayed follow-up. Additional research is necessary to replicate findings in a larger sample and to determine the mediators of emotional education intervention efficacy.

  6. Differential serotonergic innervation of the amygdala in bonobos and chimpanzees.

    PubMed

    Stimpson, Cheryl D; Barger, Nicole; Taglialatela, Jared P; Gendron-Fitzpatrick, Annette; Hof, Patrick R; Hopkins, William D; Sherwood, Chet C

    2016-03-01

    Humans' closest living relatives are bonobos (Pan paniscus) and chimpanzees (Pan troglodytes), yet these great ape species differ considerably from each other in terms of social behavior. Bonobos are more tolerant of conspecifics in competitive contexts and often use sexual behavior to mediate social interactions. Chimpanzees more frequently employ aggression during conflicts and actively patrol territories between communities. Regulation of emotional responses is facilitated by the amygdala, which also modulates social decision-making, memory and attention. Amygdala responsiveness is further regulated by the neurotransmitter serotonin. We hypothesized that the amygdala of bonobos and chimpanzees would differ in its neuroanatomical organization and serotonergic innervation. We measured volumes of regions and the length density of serotonin transporter-containing axons in the whole amygdala and its lateral, basal, accessory basal and central nuclei. Results showed that accessory basal nucleus volume was larger in chimpanzees than in bonobos. Of particular note, the amygdala of bonobos had more than twice the density of serotonergic axons than chimpanzees, with the most pronounced differences in the basal and central nuclei. These findings suggest that variation in serotonergic innervation of the amygdala may contribute to mediating the remarkable differences in social behavior exhibited by bonobos and chimpanzees. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. Stress, self-regulation, and context: Evidence from the Health and Retirement Survey.

    PubMed

    Mezuk, Briana; Ratliff, Scott; Concha, Jeannie B; Abdou, Cleopatra M; Rafferty, Jane; Lee, Hedwig; Jackson, James S

    2017-12-01

    Health-related behaviors, such as smoking, alcohol use, exercise, and diet, are major determinants of physical health and health disparities. However, a growing body of experimental research in humans and animals also suggests these behaviors can impact the ways our bodies respond to stress, such that they modulate (that is, serve as a means to self-regulate or cope with) the deleterious impact of stressful experiences on mental health. A handful of epidemiologic studies have investigated the intersection between stress and health behaviors on health disparities (both mental and physical), with mixed results. In this study we use a novel instrument designed to explicitly measure the self-regulatory motivations and perceived effectiveness of eight health-related self-regulatory behaviors (smoking, alcohol, drug use, overeating, prayer, exercise, social support, talking with a councilor) in a subset of the Health and Retirement Study (N=1,354, Mean age=67, 54% female). We find that these behaviors are commonly endorsed as self-regulatory stress-coping strategies, with prayer, social support, exercise, and overeating used most frequently. The likelihood of using particular behaviors as self-regulatory strategies varied significantly by sex, but not by race/ethnicity, education, or wealth. We also find that greater stress exposure is associated with higher likelihood of using these behaviors to self-regulate feelings of emotional distress, particularly health-harming behaviors like smoking, alcohol, and overeating. These findings provide an important link between sociological and psychological theoretical models on stress and empirical epidemiological research on social determinants of health and health disparities.

  8. Dynamic corticostriatal activity biases social bonding in monogamous female prairie voles

    PubMed Central

    Amadei, Elizabeth A.; Johnson, Zachary V.; Kwon, Yong Jun; Shpiner, Aaron C.; Saravanan, Varun; Mays, Wittney D.; Ryan, Steven J.; Walum, Hasse; Rainnie, Donald G.; Young, Larry J.; Liu, Robert C.

    2017-01-01

    Summary paragraph Adult pair bonding involves dramatic changes in the perception and valuation of another individual1. One key change is that partners come to reliably activate the brain's reward system2-6, though the precise neural mechanisms by which partners become rewarding during sociosexual interactions leading to a bond remain unclear. Using a prairie vole model of social bonding7, we show how a functional circuit from medial prefrontal cortex (mPFC) to nucleus accumbens (NAcc) is dynamically modulated to enhance females' affiliative behavior towards a partner. Individual variation in the strength of this functional connectivity, particularly after the first mating encounter, predicts how quickly animals begin affiliative huddling with their partner. Rhythmically activating this circuit in a social context without mating biases later preference towards a partner, indicating that this circuit's activity is not just correlated with how quickly animals become affiliative but causally accelerates it. These results provide the first dynamic view of corticostriatal activity during bond formation, revealing how social interactions can recruit brain reward systems to drive changes in affiliative behavior. PMID:28562592

  9. Hemispheric differences in recognizing upper and lower facial displays of emotion.

    PubMed

    Prodan, C I; Orbelo, D M; Testa, J A; Ross, E D

    2001-01-01

    To determine if there are hemispheric differences in processing upper versus lower facial displays of emotion. Recent evidence suggests that there are two broad classes of emotions with differential hemispheric lateralization. Primary emotions (e.g. anger, fear) and associated displays are innate, are recognized across all cultures, and are thought to be modulated by the right hemisphere. Social emotions (e.g., guilt, jealousy) and associated "display rules" are learned during early child development, vary across cultures, and are thought to be modulated by the left hemisphere. Display rules are used by persons to alter, suppress or enhance primary emotional displays for social purposes. During deceitful behaviors, a subject's true emotional state is often leaked through upper rather than lower facial displays, giving rise to facial blends of emotion. We hypothesized that upper facial displays are processed preferentially by the right hemisphere, as part of the primary emotional system, while lower facial displays are processed preferentially by the left hemisphere, as part of the social emotional system. 30 strongly right-handed adult volunteers were tested tachistoscopically by randomly flashing facial displays of emotion to the right and left visual fields. The stimuli were line drawings of facial blends with different emotions displayed on the upper versus lower face. The subjects were tested under two conditions: 1) without instructions and 2) with instructions to attend to the upper face. Without instructions, the subjects robustly identified the emotion displayed on the lower face, regardless of visual field presentation. With instructions to attend to the upper face, for the left visual field they robustly identified the emotion displayed on the upper face. For the right visual field, they continued to identify the emotion displayed on the lower face, but to a lesser degree. Our results support the hypothesis that hemispheric differences exist in the ability to process upper versus lower facial displays of emotion. Attention appears to enhance the ability to explore these hemispheric differences under experimental conditions. Our data also support the recent observation that the right hemisphere has a greater ability to recognize deceitful behaviors compared with the left hemisphere. This may be attributable to the different roles the hemispheres play in modulating social versus primary emotions and related behaviors.

  10. Intranasal administration of oxytocin increases human aggressive behavior.

    PubMed

    Ne'eman, R; Perach-Barzilay, N; Fischer-Shofty, M; Atias, A; Shamay-Tsoory, S G

    2016-04-01

    Considering its role in prosocial behaviors, oxytocin (OT) has been suggested to diminish levels of aggression. Nevertheless, recent findings indicate that oxytocin may have a broader influence on increasing the salience of social stimuli and may therefore, under certain circumstances, increase antisocial behaviors such as aggression. This controversy led to the following speculations: If indeed oxytocin promotes primarily prosocial behavior, administration of OT is expected to diminish levels of aggression. However, if oxytocin mainly acts to increase the salience of social stimuli, it is expected to elevate levels of aggression following provocation. In order to test this assumption we used the Social Orientation Paradigm (SOP), a monetary game played against a fictitious partner that allows measuring three types of responses in the context of provocation: an aggressive response - reducing a point from the fictitious partner, an individualistic response - adding a point to oneself, and a collaborative response - adding half a point to the partner and half a point to oneself. In the current double-blind, placebo-controlled, within-subject study design, 45 participants completed the SOP task following the administration of oxytocin or placebo. The results indicated that among subjects naïve to the procedure oxytocin increased aggressive responses in comparison with placebo. These results support the saliency hypothesis of oxytocin and suggest that oxytocin plays a complex role in the modulation of human behavior. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Steroid 5α-reductase 2 deficiency leads to reduced dominance-related and impulse-control behaviors.

    PubMed

    Mosher, Laura J; Godar, Sean C; Morissette, Marc; McFarlin, Kenneth M; Scheggi, Simona; Gambarana, Carla; Fowler, Stephen C; Di Paolo, Thérèse; Bortolato, Marco

    2018-05-01

    The enzyme steroid 5α-reductase 2 (5αR2) catalyzes the conversion of testosterone into the potent androgen 5α-dihydrotestosterone. Previous investigations showed that 5αR2 is expressed in key brain areas for emotional and socio-affective reactivity, yet the role of this enzyme in behavioral regulation remains mostly unknown. Here, we profiled the behavioral characteristics of 5αR2 heterozygous (HZ) and knockout (KO) mice, as compared with their wild-type (WT) littermates. While male 5αR2 KO mice displayed no overt alterations in motoric, sensory, information-processing and anxiety-related behaviors, they exhibited deficits in neurobehavioral correlates of dominance (including aggression against intruders, mating, and tube dominance) as well as novelty-seeking and risk-taking responses. Furthermore, male 5αR2 KO mice exhibited reduced D 2 -like dopamine receptor binding in the shell of the nucleus accumbens - a well-recognized molecular signature of social dominance. Collectively, these results suggest that 5αR2 is involved in the establishment of social dominance and its behavioral manifestations. Further studies are warranted to understand how the metabolic actions of 5αR2 on steroid profile may be implicated in social ranking, impulse control, and the modulation of dopamine receptor expression in the nucleus accumbens. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Involvement of the lateral septum and the ventral Hippocampus in the emotional sequelae induced by social defeat: role of glucocorticoid receptors.

    PubMed

    Calfa, Gastón; Bussolino, Daniela; Molina, Victor A

    2007-07-19

    An important area of the brain aversive circuitry is the lateral septum (LS), together with its principal connections to diverse Hippocampal regions. The aim of this work was to evaluate whether the LS-Hippocampus network participates in the increased anxiety-like behavior produced by a previous defeat experience. The neural activation of different regions of the Hippocampus was assessed by the number of Fos positive cells in animals previously defeated. A notable elevation in the expression of this protein was observed in CA1, CA2, CA3, and Dentate Gyrus, for both dorsal and ventral Hippocampus. The local administration of a glucocorticoid receptor (GR or type II) antagonist, but not of a mineralcorticoid receptor (MR or type II) antagonist, into the LS before the stressful stimuli prevented a rise in the number of Fos positive cells, especially in the ventral portion of the Hippocampus. Furthermore, to evaluate the role of these hippocampal portions in the modulation of the emotional sequelae induced by defeat, the dorsal or the ventral Hippocampus were inactivated by lidocaine at different times following the social confrontation, with the anxiety-like behavior being assessed in the elevated plus maze the next day. Only the inactivation of the ventral region attenuated the excessive anxiety exhibited by defeated animals. The infusion of lidocaine, 1h after the confrontation, did not affect this behavioral response. These data suggest a preferential participation of the LS and its connections to the ventral Hippocampus in the emotional sequelae induced by the social defeat. Moreover, the GR localized within the LS played an essential role in the modulation of this emotional state.

  13. Lower light intensity reduces larval aggression in matrinxã, Brycon amazonicus.

    PubMed

    Lopes, Ana Caroliny C; Villacorta-Correa, Marle Angélica; Carvalho, Thaís B

    2018-06-01

    Brycon amazonicus shows a high frequency of aggressive behavior, which can be a limiting factor in intensive farming systems. Environmental changes can modulate the social interactions of fish and reduce aggression during the different stages of production. Groups of three larvae at 12 h after hatching (HAH) were subjected to different levels of light intensity: low (17 ± 3 lx), intermediate (204 ± 12.17 lx) and high (1,613.33 ± 499.03 lx), with eight replicates for each level. The lower light intensity reduced the frequency of aggressive interactions and locomotor activity exhibited by the animals. Based on these results, light intensity modulates aggression in B. amazonicus larvae. Manipulation of this factor could improve the social conditions of this species during farming and contribute to the development of new production technologies. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Psychopathic traits affect the visual exploration of facial expressions.

    PubMed

    Boll, Sabrina; Gamer, Matthias

    2016-05-01

    Deficits in emotional reactivity and recognition have been reported in psychopathy. Impaired attention to the eyes along with amygdala malfunctions may underlie these problems. Here, we investigated how different facets of psychopathy modulate the visual exploration of facial expressions by assessing personality traits in a sample of healthy young adults using an eye-tracking based face perception task. Fearless Dominance (the interpersonal-emotional facet of psychopathy) and Coldheartedness scores predicted reduced face exploration consistent with findings on lowered emotional reactivity in psychopathy. Moreover, participants high on the social deviance facet of psychopathy ('Self-Centered Impulsivity') showed a reduced bias to shift attention towards the eyes. Our data suggest that facets of psychopathy modulate face processing in healthy individuals and reveal possible attentional mechanisms which might be responsible for the severe impairments of social perception and behavior observed in psychopathy. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. When action meets emotions: how facial displays of emotion influence goal-related behavior.

    PubMed

    Ferri, Francesca; Stoianov, Ivilin Peev; Gianelli, Claudia; D'Amico, Luigi; Borghi, Anna M; Gallese, Vittorio

    2010-10-01

    Many authors have proposed that facial expressions, by conveying emotional states of the person we are interacting with, influence the interaction behavior. We aimed at verifying how specific the effect is of the facial expressions of emotions of an individual (both their valence and relevance/specificity for the purpose of the action) with respect to how the action aimed at the same individual is executed. In addition, we investigated whether and how the effects of emotions on action execution are modulated by participants' empathic attitudes. We used a kinematic approach to analyze the simulation of feeding others, which consisted of recording the "feeding trajectory" by using a computer mouse. Actors could express different highly arousing emotions, namely happiness, disgust, anger, or a neutral expression. Response time was sensitive to the interaction between valence and relevance/specificity of emotion: disgust caused faster response. In addition, happiness induced slower feeding time and longer time to peak velocity, but only in blocks where it alternated with expressions of disgust. The kinematic profiles described how the effect of the specificity of the emotional context for feeding, namely a modulation of accuracy requirements, occurs. An early acceleration in kinematic relative-to-neutral feeding profiles occurred when actors expressed positive emotions (happiness) in blocks with specific-to-feeding negative emotions (disgust). On the other hand, the end-part of the action was slower when feeding happy with respect to neutral faces, confirming the increase of accuracy requirements and motor control. These kinematic effects were modulated by participants' empathic attitudes. In conclusion, the social dimension of emotions, that is, their ability to modulate others' action planning/execution, strictly depends on their relevance and specificity to the purpose of the action. This finding argues against a strict distinction between social and nonsocial emotions.

  16. Reduced locomotor activity and exploratory behavior in CC chemokine receptor 4 deficient mice.

    PubMed

    Ambrée, Oliver; Klassen, Irene; Förster, Irmgard; Arolt, Volker; Scheu, Stefanie; Alferink, Judith

    2016-11-01

    Chemokines and their receptors are key regulators of immune cell trafficking and activation. Recent findings suggest that they may also play pathophysiological roles in psychiatric diseases like depression and anxiety disorders. The CC chemokine receptor 4 (CCR4) and its two ligands, CCL17 and CCL22, are functionally involved in neuroinflammation as well as anti-infectious and autoimmune responses. However, their influence on behavior remains unknown. Here we characterized the functional role of the CCR4-CCL17 chemokine-receptor axis in the modulation of anxiety-related behavior, locomotor activity, and object exploration and recognition. Additionally, we investigated social exploration of CCR4 and CCL17 knockout mice and wild type (WT) controls. CCR4 knockout (CCR4(-/-)) mice exhibited fewer anxiety-related behaviors in the elevated plus-maze, diminished locomotor activity, exploratory behavior, and social exploration, while their recognition memory was not affected. In contrast, CCL17 deficient mice did not show an altered behavior compared to WT mice regarding locomotor activity, anxiety-related behavior, social exploration, and object recognition memory. In the dark-light and object recognition tests, CCL17(-/-) mice even covered longer distances than WT mice. These data demonstrate a mechanistic or developmental role of CCR4 in the regulation of locomotor and exploratory behaviors, whereas the ligand CCL17 appears not to be involved in the behaviors measured here. Thus, either CCL17 and the alternative ligand CCL22 may be redundant, or CCL22 is the main activator of CCR4 in these processes. Taken together, these findings contribute to the growing evidence regarding the involvement of chemokines and their receptors in the regulation of behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Scent marking behavior as an odorant communication in mice

    PubMed Central

    Arakawa, Hiroyuki; Blanchard, D. Caroline; Arakawa, Keiko; Dunlap, Christopher; Blanchard, Robert J.

    2008-01-01

    In rodents, where chemical signals play a particularly important role in determining intraspecies interactions including social dominance and intersexual relationships, various studies have shown that behavior is sensitive to conspecific odor cues. Mice use urinary scent marks for communication with individual conspecifics in many social contexts. Urinary scent involves genetic information about individuals such as species, sex, and individual identity as well as metabolic information such as social dominance, and reproductive and health status, which are mediated by chemical proteins in scent marks including the major histocompatibility complex and the major urinary proteins. The odor of the predator which can be considered to be a threatening signal for the prey also modulate mouse behavior in which scent marking is suppressed in response to the cat odor exposure in mice. These odorant chemicals are detected and recognized through two olfactory bulbs, the role of which in detection of chemosignals with biological relevant appears to be differential, but partly overlapped. Mice deposit scent marks toward conspecifics to maintain their social relationships, and inhibit scent marking in a context where natural predator, cat odor is contained. This suppression of scent marking is long-lasting (for at least 7 days) and context-dependent, while the odorant signaling to conspecifics tends to appear frequently (over 24 hrs but less than 7 days intervals) depending on the familiarity of each signal-recipient. It has been discussed that scent marking is a communicative behavior associated with territoriality toward conspecifics, indicating that the social signaling within species are sensitive to predator odor cues in terms of vulnerability to predation risk. PMID:18565582

  18. Association of oxytocin receptor (OXTR) gene variants with multiple phenotype domains of autism spectrum disorder.

    PubMed

    Campbell, Daniel B; Datta, Dibyadeep; Jones, Shaine T; Batey Lee, Evon; Sutcliffe, James S; Hammock, Elizabeth A D; Levitt, Pat

    2011-06-01

    Autism spectrum disorder (ASD) is characterized by core deficits in social behavior, communication, and behavioral flexibility. Several lines of evidence indicate that oxytocin, signaling through its receptor (OXTR), is important in a wide range of social behaviors. In attempts to determine whether genetic variations in the oxytocin signaling system contribute to ASD susceptibility, seven recent reports indicated association of common genetic polymorphisms in the OXTR gene with ASD. Each involved relatively small sample sizes (57 to 436 families) and, where it was examined, failed to identify association of OXTR polymorphisms with measures of social behavior in individuals with ASD. We report genetic association analysis of 25 markers spanning the OXTR locus in 1,238 pedigrees including 2,333 individuals with ASD. Association of three markers previously implicated in ASD susceptibility, rs2268493 (P = 0.043), rs1042778 (P = 0.037), and rs7632287 (P = 0.016), was observed. Further, these genetic markers were associated with multiple core ASD phenotypes, including social domain dysfunction, measured by standardized instruments used to diagnose and describe ASD. The data suggest association of OXTR genetic polymorphisms with ASD, although the results should be interpreted with caution because none of the significant associations would survive appropriate correction for multiple comparisons. However, the current findings of association in a large independent cohort are consistent with previous results, and the biological plausibility of participation of the oxytocin signaling system in modulating social disruptions characteristic of ASD, suggest that functional polymorphisms of OXTR may contribute to ASD risk in a subset of families.

  19. The Social Environment and Neurogenesis in the Adult Mammalian Brain

    PubMed Central

    Lieberwirth, Claudia; Wang, Zuoxin

    2012-01-01

    Adult neurogenesis – the formation of new neurons in adulthood – has been shown to be modulated by a variety of endogenous (e.g., trophic factors, neurotransmitters, and hormones) as well as exogenous (e.g., physical activity and environmental complexity) factors. Research on exogenous regulators of adult neurogenesis has focused primarily on the non-social environment. More recently, however, evidence has emerged suggesting that the social environment can also affect adult neurogenesis. The present review details the effects of adult–adult (e.g., mating and chemosensory interactions) and adult–offspring (e.g., gestation, parenthood, and exposure to offspring) interactions on adult neurogenesis. In addition, the effects of a stressful social environment (e.g., lack of social support and dominant–subordinate interactions) on adult neurogenesis are reviewed. The underlying hormonal mechanisms and potential functional significance of adult-generated neurons in mediating social behaviors are also discussed. PMID:22586385

  20. Social dysfunction after pediatric traumatic brain injury: a translational perspective

    PubMed Central

    Ryan, Nicholas P.; Catroppa, Cathy; Godfrey, Celia; Noble-Haeusslein, Linda J.; Shultz, Sandy R.; O'Brien, Terence J.; Anderson, Vicki; Semple, Bridgette D.

    2016-01-01

    Social dysfunction is common after traumatic brain injury (TBI), contributing to reduced quality of life for survivors. Factors which influence the emergence, development or persistence of social deficits after injury remain poorly understood, particularly in the context of ongoing brain maturation during childhood. Aberrant social interactions have recently been modeled in adult and juvenile rodents after experimental TBI, providing an opportunity to gain new insights into the underlying neurobiology of these behaviors. Here, we review our current understanding of social dysfunction in both humans and rodent models of TBI, with a focus on brain injuries acquired during early development. Modulators of social outcomes are discussed, including injury-related and environmental risk and resilience factors. Disruption of social brain network connectivity and aberrant neuroendocrine function are identified as potential mechanisms of social impairments after pediatric TBI. Throughout, we highlight the overlap and disparities between outcome measures and findings from clinical and experimental approaches, and explore the translational potential of future research to prevent or ameliorate social dysfunction after childhood TBI. PMID:26949224

  1. Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation.

    PubMed

    Matthews, Gillian A; Nieh, Edward H; Vander Weele, Caitlin M; Halbert, Sarah A; Pradhan, Roma V; Yosafat, Ariella S; Glober, Gordon F; Izadmehr, Ehsan M; Thomas, Rain E; Lacy, Gabrielle D; Wildes, Craig P; Ungless, Mark A; Tye, Kay M

    2016-02-11

    The motivation to seek social contact may arise from either positive or negative emotional states, as social interaction can be rewarding and social isolation can be aversive. While ventral tegmental area (VTA) dopamine (DA) neurons may mediate social reward, a cellular substrate for the negative affective state of loneliness has remained elusive. Here, we identify a functional role for DA neurons in the dorsal raphe nucleus (DRN), in which we observe synaptic changes following acute social isolation. DRN DA neurons show increased activity upon social contact following isolation, revealed by in vivo calcium imaging. Optogenetic activation of DRN DA neurons increases social preference but causes place avoidance. Furthermore, these neurons are necessary for promoting rebound sociability following an acute period of isolation. Finally, the degree to which these neurons modulate behavior is predicted by social rank, together supporting a role for DRN dopamine neurons in mediating a loneliness-like state. PAPERCLIP. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Oxytocin attenuates social and non-social avoidance: Re-thinking the social specificity of Oxytocin.

    PubMed

    Harari-Dahan, Osnat; Bernstein, Amit

    2017-07-01

    Re-examining decades of the social construal of Oxytocin, the General Approach-Avoidance Hypothesis of Oxytocin (GAAO) predicts that Oxytocin will modulate responding to emotionally-evocative and personally-relevant social and non-social stimuli due to its action on the neural substrate of approach and avoidance motivation. We report the first critical experimental test of GAAO predictions by means of a double-blind intra-nasal administration of Oxytocin vs. placebo in 90 healthy adults (N=90, 50% women). As predicted, we found that among men and women for whom negative emotion (anxious arousal) is motivationally-relevant, intra-nasal administration of Oxytocin reduced behavioral avoidance of emotionally-evocative negatively-valenced social and non-social stimuli, but not closely matched emotionally-neutral stimuli. Findings cannot be explained by extant social theories of Oxytocin. We discuss the implications of the present findings for basic and translational clinical Oxytocin research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The role of the medial prefrontal cortex in the play fighting of rats.

    PubMed

    Bell, Heather C; McCaffrey, David R; Forgie, Margaret L; Kolb, Bryan; Pellis, Sergio M

    2009-12-01

    Although decorticated rats are able to engage in play, their play is abnormal in three ways. First, decorticates do not display the normal, age-related shifts in defensive strategies during development. Second, decorticates do not modify their defensive tactics in response to the social identity of their partners. Third, decorticates display a global shift in defensive tactics from more complex to less complex strategies. It has been shown that lesions of the motor cortex (MC) selectively produce the abnormal developmental effects on play, and that lesions of the orbitofrontal cortex (OFC) selectively produce the deficits in behavioral discrimination between social partners. In the current set of experiments, we demonstrate that lesions of the medial prefrontal cortex (mPFC) produce the shift from more complex to less complex defensive tactics, while leaving intact the age-related and partner-related modulation of defensive strategies. Thus, we have evidence for a triple dissociation of function between the MC, the OFC, and the mPFC with respect to social play behavior.

  4. Using smart mobile devices in social-network-based health education practice: a learning behavior analysis.

    PubMed

    Wu, Ting-Ting

    2014-06-01

    Virtual communities provide numerous resources, immediate feedback, and information sharing, enabling people to rapidly acquire information and knowledge and supporting diverse applications that facilitate interpersonal interactions, communication, and sharing. Moreover, incorporating highly mobile and convenient devices into practice-based courses can be advantageous in learning situations. Therefore, in this study, a tablet PC and Google+ were introduced to a health education practice course to elucidate satisfaction of learning module and conditions and analyze the sequence and frequency of learning behaviors during the social-network-based learning process. According to the analytical results, social networks can improve interaction among peers and between educators and students, particularly when these networks are used to search for data, post articles, engage in discussions, and communicate. In addition, most nursing students and nursing educators expressed a positive attitude and satisfaction toward these innovative teaching methods, and looked forward to continuing the use of this learning approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Migration of cells in a social context

    PubMed Central

    Vedel, Søren; Tay, Savaş; Johnston, Darius M.; Bruus, Henrik; Quake, Stephen R.

    2013-01-01

    In multicellular organisms and complex ecosystems, cells migrate in a social context. Whereas this is essential for the basic processes of life, the influence of neighboring cells on the individual remains poorly understood. Previous work on isolated cells has observed a stereotypical migratory behavior characterized by short-time directional persistence with long-time random movement. We discovered a much richer dynamic in the social context, with significant variations in directionality, displacement, and speed, which are all modulated by local cell density. We developed a mathematical model based on the experimentally identified “cellular traffic rules” and basic physics that revealed that these emergent behaviors are caused by the interplay of single-cell properties and intercellular interactions, the latter being dominated by a pseudopod formation bias mediated by secreted chemicals and pseudopod collapse following collisions. The model demonstrates how aspects of complex biology can be explained by simple rules of physics and constitutes a rapid test bed for future studies of collective migration of individual cells. PMID:23251032

  6. Migration of cells in a social context.

    PubMed

    Vedel, Søren; Tay, Savaş; Johnston, Darius M; Bruus, Henrik; Quake, Stephen R

    2013-01-02

    In multicellular organisms and complex ecosystems, cells migrate in a social context. Whereas this is essential for the basic processes of life, the influence of neighboring cells on the individual remains poorly understood. Previous work on isolated cells has observed a stereotypical migratory behavior characterized by short-time directional persistence with long-time random movement. We discovered a much richer dynamic in the social context, with significant variations in directionality, displacement, and speed, which are all modulated by local cell density. We developed a mathematical model based on the experimentally identified "cellular traffic rules" and basic physics that revealed that these emergent behaviors are caused by the interplay of single-cell properties and intercellular interactions, the latter being dominated by a pseudopod formation bias mediated by secreted chemicals and pseudopod collapse following collisions. The model demonstrates how aspects of complex biology can be explained by simple rules of physics and constitutes a rapid test bed for future studies of collective migration of individual cells.

  7. Neurotensin inversely modulates maternal aggression

    PubMed Central

    Gammie, Stephen C.; D’Anna, Kimberly L.; Gerstein, Hilary; Stevenson, Sharon A.

    2008-01-01

    Neurotensin (NT) is a versatile neuropeptide involved in analgesia, hypothermia, and schizophrenia. Although NT is released from and acts upon brain regions involved in social behaviors, it has not been linked to a social behavior. We previously selected mice for high maternal aggression (maternal defense), an important social behavior that protects offspring, and found significantly lower NT expression in the CNS of highly protective females. Our current study directly tested NT’s role in maternal defense. Intracerebroventricular (icv) injections of NT significantly impaired defense in terms of time aggressive and number of attacks at all doses tested (0.05, 0.1, 1.0, and 3.0 μg). Other maternal behaviors, including pup retrieval, were unaltered following NT injections (0.05 μg) relative to vehicle, suggesting specificity of NT action on defense. Further, icv injections of the NT receptor 1 (NT1) antagonist, SR 48692 (30 μg), significantly elevated maternal aggression in terms of time aggressive and attack number. To understand where NT may regulate aggression, we examined Fos following injection of either 0.1 μg NT or vehicle. 13 of 26 brain regions examined exhibited significant Fos increases with NT, including regions expressing NT1 and previously implicated in maternal aggression, such as lateral septum, bed nucleus of stria terminalis, paraventricular nucleus, and central amygdala. Together, our results indicate that NT inversely regulates maternal aggression and provide the first direct evidence that lowering of NT signaling can be a mechanism for maternal aggression. To our knowledge, this is the first study to directly link NT to a social behavior. PMID:19118604

  8. Interest in online interprofessional elective mind-body skills (MBS) training.

    PubMed

    Gupta, Suman J; Kemper, Kathi J; Lynn, Joanne

    2018-02-01

    There is growing interest in mind-body skills (MBS) education and online interprofessional elective MBS training for health professionals. We conducted this study to understand a) the demand among different health professionals for an online MBS course; b) engagement with different MBS topics; and c) planned behavior changes. We examined registrations from May 1 through August 31, 2014 for a new online MBS elective, analyzing the percentage of registrants who engaged with one or more of 12 modules by September 30, 2014. We also reviewed written comments about planned behavior change. The 693 registrants included physicians, nurses, social workers, dietitians, psychologists, and others. The two most popular topics were "Introduction: to Stress, Resilience, and Relaxation Response" and "Autogenic Training". Half of registrants (57%) engaged with at least one module and 9% completed all 12 modules within the study period. Nearly all (90%) of those who completed evaluations planned to use the technique they learned for themselves, introduce it to patients, or both. Online elective MBS training attracts diverse health professionals and leads to plans for personal and professional behavior change. Additional research is necessary to understand the impact of different amounts and kinds of MBS training on professionals' resilience, burnout, and quality of care. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The Impact of Emotions and Empathy-Related Traits on Punishment Behavior: Introduction and Validation of the Inequality Game.

    PubMed

    Klimecki, Olga M; Vuilleumier, Patrik; Sander, David

    2016-01-01

    In the prevention and resolution of conflicts in social contexts, an important step is to understand how different emotions and empathic traits are linked to punishment behaviors. Unfortunately, few paradigms exist to study these phenomena. Here, we developed the Inequality Game (IG) as an economic and verbal interaction paradigm in which participants are faced with an "unfair other" as opposed to a "fair other" and subsequently have the opportunity to engage in a range of social behaviors. These social behaviors include cooperative or competitive economic choices and nice or derogatory verbal behavior toward the unfair and fair other. Participants could thus engage in punishment or forgiveness behavior toward the unfair other as well as in cooperative or aggressive behavior toward the fair other. We validated the IG through multimodal measures comprising the assessment of personality traits, emotions (by means of facial expressions and self-reports), arousal (by means of skin conductance responses), physical effort (force exertion), and behavioral reactions. Second, we examined the influence of emotions and empathy-related traits on punishment behavior. With regard to emotions, we observed a positive relation between malicious joy and punishment behavior. This result highlights the role of reward-related mechanisms in favoring punishment behavior. In addition, different empathic traits had opposing effects on antisocial behavior. Whereas personal distress predicted aggressive verbal behavior, perspective taking and empathic concern predicted a reduction in punishment behavior. Empathic traits also modulated emotional experience and person evaluations, such that perspective taking was related to more positive affect (less frowning and more smiling) and a more favorable evaluation of the unfair other. The current data validate the IG, reveal that malicious joy is positively related to punishment behavior, and show that different types of empathic traits can have opposing effects on antisocial behavior as well as on related emotions and person evaluations.

  10. The Impact of Emotions and Empathy-Related Traits on Punishment Behavior: Introduction and Validation of the Inequality Game

    PubMed Central

    Klimecki, Olga M.; Vuilleumier, Patrik; Sander, David

    2016-01-01

    In the prevention and resolution of conflicts in social contexts, an important step is to understand how different emotions and empathic traits are linked to punishment behaviors. Unfortunately, few paradigms exist to study these phenomena. Here, we developed the Inequality Game (IG) as an economic and verbal interaction paradigm in which participants are faced with an “unfair other” as opposed to a “fair other” and subsequently have the opportunity to engage in a range of social behaviors. These social behaviors include cooperative or competitive economic choices and nice or derogatory verbal behavior toward the unfair and fair other. Participants could thus engage in punishment or forgiveness behavior toward the unfair other as well as in cooperative or aggressive behavior toward the fair other. We validated the IG through multimodal measures comprising the assessment of personality traits, emotions (by means of facial expressions and self-reports), arousal (by means of skin conductance responses), physical effort (force exertion), and behavioral reactions. Second, we examined the influence of emotions and empathy-related traits on punishment behavior. With regard to emotions, we observed a positive relation between malicious joy and punishment behavior. This result highlights the role of reward-related mechanisms in favoring punishment behavior. In addition, different empathic traits had opposing effects on antisocial behavior. Whereas personal distress predicted aggressive verbal behavior, perspective taking and empathic concern predicted a reduction in punishment behavior. Empathic traits also modulated emotional experience and person evaluations, such that perspective taking was related to more positive affect (less frowning and more smiling) and a more favorable evaluation of the unfair other. The current data validate the IG, reveal that malicious joy is positively related to punishment behavior, and show that different types of empathic traits can have opposing effects on antisocial behavior as well as on related emotions and person evaluations. PMID:26978065

  11. [New insights into the neuroscience of human altruism].

    PubMed

    Hurlemann, R; Marsh, N

    2016-11-01

    Numerous honorary initiatives for humanitarian aid towards refugees illustrate the high prevalence of altruistic behavior in the population. In medicine, an exquisite example of a human propensity for altruism is organ donation. Current perspectives on the neurobiology of altruism suggest that it is deeply rooted in the motivational architecture of the social brain. This is reflected by the social evolution of cooperation and parochialism, both of which are modulated by the evolutionarily conserved peptide hormone oxytocin. From a psychiatric perspective, altruism varies along a dimensional spectrum, with pathological hyperaltruism resulting in unexpected harm for oneself and others.

  12. Ethanol and Caffeine Effects on Social Interaction and Recognition in Mice: Involvement of Adenosine A2A and A1 Receptors.

    PubMed

    López-Cruz, Laura; San-Miguel, Noemí; Bayarri, Pilar; Baqi, Younis; Müller, Christa E; Salamone, John D; Correa, Mercé

    2016-01-01

    Ethanol and caffeine are frequently consumed in combination and have opposite effects on the adenosine system: ethanol metabolism leads to an increase in adenosine levels, while caffeine is a non-selective adenosine A 1 /A 2A receptor antagonist. These receptors are highly expressed in striatum and olfactory tubercle, brain areas involved in exploration and social interaction in rodents. Ethanol modulates social interaction processes, but the role of adenosine in social behavior is still poorly understood. The present work was undertaken to study the impact of ethanol, caffeine and their combination on social behavior, and to explore the involvement of A 1 and A 2A receptors on those actions. Male CD1 mice were evaluated in a social interaction three-chamber paradigm, for preference of conspecific vs. object, and also for long-term recognition memory of familiar vs. novel conspecific. Ethanol showed a biphasic effect, with low doses (0.25 g/kg) increasing social contact and higher doses (1.0-1.5 g/kg) reducing social interaction. However, no dose changed social preference; mice always spent more time sniffing the conspecific than the object, independently of the ethanol dose. Ethanol, even at doses that did not change social exploration, produced amnestic effects on social recognition the following day. Caffeine reduced social contact (15.0-60.0 mg/kg), and even blocked social preference at higher doses (30.0-60.0 mg/kg). The A 1 antagonist Cyclopentyltheophylline (CPT; 3-9 mg/kg) did not modify social contact or preference on its own, and the A 2A antagonist MSX-3 (1.5-6 mg/kg) increased social interaction at all doses. Ethanol at intermediate doses (0.5-1.0 g/kg) was able to reverse the reduction in social exploration induced by caffeine (15.0-30.0 mg/kg). Although there was no interaction between ethanol and CPT or MSX-3 on social exploration in the first day, MSX-3 blocked the amnestic effects of ethanol observed on the following day. Thus, ethanol impairs the formation of social memories, and A 2A adenosine antagonists can prevent the amnestic effects of ethanol, so that animals can recognize familiar conspecifics. On the other hand, ethanol can counteract the social withdrawal induced by caffeine, a non-selective adenosine A 1 /A 2A receptor antagonist. These results show the complex set of interactions between ethanol and caffeine, some of which could be the result of the opposing effects they have in modulating the adenosine system.

  13. Adaptive coding of the value of social cues with oxytocin, an fMRI study in autism spectrum disorder.

    PubMed

    Andari, Elissar; Richard, Nathalie; Leboyer, Marion; Sirigu, Angela

    2016-03-01

    The neuropeptide oxytocin (OT) is one of the major targets of research in neuroscience, with respect to social functioning. Oxytocin promotes social skills and improves the quality of face processing in individuals with social dysfunctions such as autism spectrum disorder (ASD). Although one of OT's key functions is to promote social behavior during dynamic social interactions, the neural correlates of this function remain unknown. Here, we combined acute intranasal OT (IN-OT) administration (24 IU) and fMRI with an interactive ball game and a face-matching task in individuals with ASD (N = 20). We found that IN-OT selectively enhanced the brain activity of early visual areas in response to faces as compared to non-social stimuli. OT inhalation modulated the BOLD activity of amygdala and hippocampus in a context-dependent manner. Interestingly, IN-OT intake enhanced the activity of mid-orbitofrontal cortex in response to a fair partner, and insula region in response to an unfair partner. These OT-induced neural responses were accompanied by behavioral improvements in terms of allocating appropriate feelings of trust toward different partners' profiles. Our findings suggest that OT impacts the brain activity of key areas implicated in attention and emotion regulation in an adaptive manner, based on the value of social cues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Genes Related to Oxytocin and Arginine-Vasopressin Pathways: Associations with Autism Spectrum Disorders.

    PubMed

    Zhang, Rong; Zhang, Hong-Feng; Han, Ji-Sheng; Han, Song-Ping

    2017-04-01

    Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorders characterized by impaired social interactions, communication deficits, and repetitive behavior. Although the mechanisms underlying its etiology and manifestations are poorly understood, several lines of evidence from rodent and human studies suggest involvement of the evolutionarily highly-conserved oxytocin (OXT) and arginine-vasopressin (AVP), as these neuropeptides modulate various aspects of mammalian social behavior. As far as we know, there is no comprehensive review of the roles of the OXT and AVP systems in the development of ASD from the genetic aspect. In this review, we summarize the current knowledge regarding associations between ASD and single-nucleotide variants of the human OXT-AVP pathway genes OXT, AVP, AVP receptor 1a (AVPR1a), OXT receptor (OXTR), the oxytocinase/vasopressinase (LNPEP), and ADP-ribosyl cyclase (CD38).

  15. Effect of Psilocybin on Empathy and Moral Decision-Making

    PubMed Central

    Preller, Katrin H; Kometer, Michael; Dziobek, Isabel; Vollenweider, Franz X

    2017-01-01

    Abstract Background Impaired empathic abilities lead to severe negative social consequences and influence the development and treatment of several psychiatric disorders. Furthermore, empathy has been shown to play a crucial role in moral and prosocial behavior. Although the serotonin system has been implicated in modulating empathy and moral behavior, the relative contribution of the various serotonin receptor subtypes is still unknown. Methods We investigated the acute effect of psilocybin (0.215 mg/kg p.o.) in healthy human subjects on different facets of empathy and hypothetical moral decision-making using the multifaceted empathy test (n=32) and the moral dilemma task (n=24). Results Psilocybin significantly increased emotional, but not cognitive empathy compared with placebo, and the increase in implicit emotional empathy was significantly associated with psilocybin-induced changed meaning of percepts. In contrast, moral decision-making remained unaffected by psilocybin. Conclusions These findings provide first evidence that psilocybin has distinct effects on social cognition by enhancing emotional empathy but not moral behavior. Furthermore, together with previous findings, psilocybin appears to promote emotional empathy presumably via activation of serotonin 2A/1A receptors, suggesting that targeting serotonin 2A/1A receptors has implications for potential treatment of dysfunctional social cognition. PMID:28637246

  16. Near or far? It depends on my impression: moral information and spatial behavior in virtual interactions.

    PubMed

    Iachini, Tina; Pagliaro, Stefano; Ruggiero, Gennaro

    2015-10-01

    Near body distance is a key component of action and social interaction. Recent research has shown that peripersonal space (reachability-distance for acting with objects) and interpersonal space (comfort-distance for interacting with people) share common mechanisms and reflect the social valence of stimuli. The social psychological literature has demonstrated that information about morality is crucial because it affects impression formation and the intention to approach-avoid others. Here we explore whether peripersonal/interpersonal spaces are modulated by moral information. Thirty-six participants interacted with male/female virtual confederates described by moral/immoral/neutral sentences. The modulation of body space was measured by reachability-distance and comfort-distance while participants stood still or walked toward virtual confederates. Results showed that distance expanded with immorally described confederates and contracted with morally described confederates. This pattern was present in both spaces, although it was stronger in comfort-distance. Consistent with an embodied cognition approach, the findings suggest that high-level socio-cognitive processes are linked to sensorimotor-spatial processes. Copyright © 2015. Published by Elsevier B.V.

  17. Central pattern generators for social vocalization: Androgen-dependent neurophysiological mechanisms

    PubMed Central

    Bass, Andrew H.; Remage-Healey, Luke

    2008-01-01

    Historically, most studies of vertebrate central pattern generators (CPGs) have focused on mechanisms for locomotion and respiration. Here, we highlight new results for ectothermic vertebrates, namely teleost fish and amphibians, showing how androgenic steroids can influence the temporal patterning of CPGs for social vocalization. Investigations of vocalizing teleosts show how androgens can rapidly (within minutes) modulate the neurophysiological output of the vocal CPG (fictive vocalizations that mimic the temporal properties of natural vocalizations) inclusive of their divergent actions between species, as well as intraspecific differences between male reproductive morphs. Studies of anuran amphibians (frogs) demonstrate that long-term steroid treatments (wks) can masculinize the fictive vocalizations of females, inclusive of its sensitivity to rapid modulation by serotonin. Given the conserved organization of vocal control systems across vertebrate groups, the vocal CPGs of fish and amphibians provide tractable models for identifying androgen-dependent events that are fundamental to the mechanisms of vocal motor patterning. These basic mechanisms can also inform our understanding of the more complex CPGs for vocalization, and social behaviors in general, that have evolved among birds and mammals. PMID:18262186

  18. Neural basis of individualistic and collectivistic views of self.

    PubMed

    Chiao, Joan Y; Harada, Tokiko; Komeda, Hidetsugu; Li, Zhang; Mano, Yoko; Saito, Daisuke; Parrish, Todd B; Sadato, Norihiro; Iidaka, Tetsuya

    2009-09-01

    Individualism and collectivism refer to cultural values that influence how people construe themselves and their relation to the world. Individualists perceive themselves as stable entities, autonomous from other people and their environment, while collectivists view themselves as dynamic entities, continually defined by their social context and relationships. Despite rich understanding of how individualism and collectivism influence social cognition at a behavioral level, little is known about how these cultural values modulate neural representations underlying social cognition. Using cross-cultural functional magnetic resonance imaging (fMRI), we examined whether the cultural values of individualism and collectivism modulate neural activity within medial prefrontal cortex (MPFC) during processing of general and contextual self judgments. Here, we show that neural activity within the anterior rostral portion of the MPFC during processing of general and contextual self judgments positively predicts how individualistic or collectivistic a person is across cultures. These results reveal two kinds of neural representations of self (eg, a general self and a contextual self) within MPFC and demonstrate how cultural values of individualism and collectivism shape these neural representations. 2008 Wiley-Liss, Inc.

  19. Social Context–Induced Song Variation Affects Female Behavior and Gene Expression

    PubMed Central

    Woolley, Sarah C; Doupe, Allison J

    2008-01-01

    Social cues modulate the performance of communicative behaviors in a range of species, including humans, and such changes can make the communication signal more salient. In songbirds, males use song to attract females, and song organization can differ depending on the audience to which a male sings. For example, male zebra finches (Taeniopygia guttata) change their songs in subtle ways when singing to a female (directed song) compared with when they sing in isolation (undirected song), and some of these changes depend on altered neural activity from a specialized forebrain-basal ganglia circuit, the anterior forebrain pathway (AFP). In particular, variable activity in the AFP during undirected song is thought to actively enable syllable variability, whereas the lower and less-variable AFP firing during directed singing is associated with more stereotyped song. Consequently, directed song has been suggested to reflect a “performance” state, and undirected song a form of vocal motor “exploration.” However, this hypothesis predicts that directed–undirected song differences, despite their subtlety, should matter to female zebra finches, which is a question that has not been investigated. We tested female preferences for this natural variation in song in a behavioral approach assay, and we found that both mated and socially naive females could discriminate between directed and undirected song—and strongly preferred directed song. These preferences, which appeared to reflect attention especially to aspects of song variability controlled by the AFP, were enhanced by experience, as they were strongest for mated females responding to their mate's directed songs. We then measured neural activity using expression of the immediate early gene product ZENK, and found that social context and song familiarity differentially modulated the number of ZENK-expressing cells in telencephalic auditory areas. Specifically, the number of ZENK-expressing cells in the caudomedial mesopallium (CMM) was most affected by whether a song was directed or undirected, whereas the caudomedial nidopallium (NCM) was most affected by whether a song was familiar or unfamiliar. Together these data demonstrate that females detect and prefer the features of directed song and suggest that high-level auditory areas including the CMM are involved in this social perception. PMID:18351801

  20. Contextual and social influences on valuation and choice.

    PubMed

    Engelmann, Jan B; Hein, Grit

    2013-01-01

    To survive in our complex environment, we have to adapt to changing contexts. Prior research that investigated how contextual changes are processed in the human brain has demonstrated important modulatory influences on multiple cognitive processes underlying decision-making, including perceptual judgments, working memory, as well as cognitive and attentional control. However, in everyday life, the importance of context is even more obvious during economic and social interactions, which often have implicit rule sets that need to be recognized by a decision-maker. Here, we review recent evidence from an increasing number of studies in the fields of Neuroeconomics and Social Neuroscience that investigate the neurobiological basis of contextual effects on valuation and social choice. Contrary to the assumptions of rational choice theory, multiple contextual factors, such as the availability of alternative choice options, shifts in reference point, and social context, have been shown to modulate behavior, as well as signals in task-relevant neural networks. A consistent picture that emerges from neurobiological results is that valuation-related activity in striatum and ventromedial prefrontal cortex is highly context dependent during both social and nonsocial choice. Alternative approaches to model and explain choice behavior, such as comparison-based choice models, as well as implications for future research are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Perceived live interaction modulates the developing social brain.

    PubMed

    Rice, Katherine; Moraczewski, Dustin; Redcay, Elizabeth

    2016-09-01

    Although children's social development is embedded in social interaction, most developmental neuroscience studies have examined responses to non-interactive social stimuli (e.g. photographs of faces). The neural mechanisms of real-world social behavior are of special interest during middle childhood (roughly ages 7-13), a time of increased social complexity and competence coinciding with structural and functional social brain development. Evidence from adult neuroscience studies suggests that social interaction may alter neural processing, but no neuroimaging studies in children have directly examined the effects of live social-interactive context on social cognition. In the current study of middle childhood, we compare the processing of two types of speech: speech that children believed was presented over a real-time audio-feed by a social partner and speech that they believed was recorded. Although in reality all speech was prerecorded, perceived live speech resulted in significantly greater neural activation in regions associated with social cognitive processing. These findings underscore the importance of using ecologically-valid and interactive methods to understand the developing social brain. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Different types of theta rhythmicity are induced by social and fearful stimuli in a network associated with social memory.

    PubMed

    Tendler, Alex; Wagner, Shlomo

    2015-02-16

    Rhythmic activity in the theta range is thought to promote neuronal communication between brain regions. In this study, we performed chronic telemetric recordings in socially behaving rats to monitor electrophysiological activity in limbic brain regions linked to social behavior. Social encounters were associated with increased rhythmicity in the high theta range (7-10 Hz) that was proportional to the stimulus degree of novelty. This modulation of theta rhythmicity, which was specific for social stimuli, appeared to reflect a brain-state of social arousal. In contrast, the same network responded to a fearful stimulus by enhancement of rhythmicity in the low theta range (3-7 Hz). Moreover, theta rhythmicity showed different pattern of coherence between the distinct brain regions in response to social and fearful stimuli. We suggest that the two types of stimuli induce distinct arousal states that elicit different patterns of theta rhythmicity, which cause the same brain areas to communicate in different modes.

  3. A Modular Library of Small Molecule Signals Regulates Social Behaviors in Caenorhabditis elegans

    PubMed Central

    Bose, Neelanjan; Zaslaver, Alon; Mahanti, Parag; Ho, Margaret C.; O'Doherty, Oran G.; Edison, Arthur S.; Sternberg, Paul W.; Schroeder, Frank C.

    2012-01-01

    The nematode C. elegans is an important model for the study of social behaviors. Recent investigations have shown that a family of small molecule signals, the ascarosides, controls population density sensing and mating behavior. However, despite extensive studies of C. elegans aggregation behaviors, no intraspecific signals promoting attraction or aggregation of wild-type hermaphrodites have been identified. Using comparative metabolomics, we show that the known ascarosides are accompanied by a series of derivatives featuring a tryptophan-derived indole moiety. Behavioral assays demonstrate that these indole ascarosides serve as potent intraspecific attraction and aggregation signals for hermaphrodites, in contrast to ascarosides lacking the indole group, which are repulsive. Hermaphrodite attraction to indole ascarosides depends on the ASK amphid sensory neurons. Downstream of the ASK sensory neuron, the interneuron AIA is required for mediating attraction to indole ascarosides instead of the RMG interneurons, which previous studies have shown to integrate attraction and aggregation signals from ASK and other sensory neurons. The role of the RMG interneuron in mediating aggregation and attraction is thought to depend on the neuropeptide Y-like receptor NPR-1, because solitary and social C. elegans strains are distinguished by different npr-1 variants. We show that indole ascarosides promote attraction and aggregation in both solitary and social C. elegans strains. The identification of indole ascarosides as aggregation signals reveals unexpected complexity of social signaling in C. elegans, which appears to be based on a modular library of ascarosides integrating building blocks derived from lipid β-oxidation and amino-acid metabolism. Variation of modules results in strongly altered signaling content, as addition of a tryptophan-derived indole unit to repellent ascarosides produces strongly attractive indole ascarosides. Our findings show that the library of ascarosides represents a highly developed chemical language integrating different neurophysiological pathways to mediate social communication in C. elegans. PMID:22253572

  4. Vagal Flexibility: A Physiological Predictor of Social Sensitivity

    PubMed Central

    Muhtadie, Luma; Akinola, Modupe; Koslov, Katrina; Mendes, Wendy Berry

    2015-01-01

    This research explores vagal flexibility— dynamic modulation of cardiac vagal control—as an individual-level physiological index of social sensitivity. In 4 studies, we test the hypothesis that individuals with greater cardiac vagal flexibility, operationalized as higher cardiac vagal tone at rest and greater cardiac vagal withdrawal (indexed by a decrease in respiratory sinus arrhythmia) during cognitive or attentional demand, perceive social-emotional information more accurately and show greater sensitivity to their social context. Study 1 sets the foundation for this investigation by establishing that vagal flexibility can be elicited consistently in the laboratory and reliably over time. Study 2 demonstrates that vagal flexibility has different associations with psychological characteristics than does vagal tone, and that these characteristics are primarily social in nature. Study 3 links individual differences in vagal flexibility with accurate detection of social and emotional cues depicted in still facial images. Study 4 demonstrates that individuals with greater vagal flexibility respond to dynamic social feedback in a more context-sensitive manner than do individuals with less vagal flexibility. Specifically, compared with their less flexible counterparts, individuals with greater vagal flexibility, when assigned to receive negative social feedback, report more shame, show more pronounced blood pressure responses, and display less sociable behavior, but when receiving positive social feedback display more sociable behavior. Taken together, these findings suggest that vagal flexibility is a useful individual difference physiological predictor of social sensitivity, which may have implications for clinical, developmental, and health psychologists. PMID:25545841

  5. Exogenous Testosterone Rapidly Increases Aggressive Behavior in Dominant and Impulsive Men.

    PubMed

    Carré, Justin M; Geniole, Shawn N; Ortiz, Triana L; Bird, Brian M; Videto, Amber; Bonin, Pierre L

    2017-08-15

    Although traditional wisdom suggests that baseline levels of testosterone (T) promote aggressive behavior, decades of research have produced findings that have been largely weak and inconsistent. However, more recent experimental work suggests that exogenous administration of T rapidly potentiates amygdala and hypothalamus responses to angry facial expressions. Notably, these brain regions are rich in androgen receptors and play a key role in modulating aggressive behavior in animal models. The present experiment extends this work by examining whether acutely increasing T potentiates aggressive behavior in men. In a double-blind, placebo-controlled, between-subject design, healthy adult men (n = 121) were administered either T or placebo, and subsequently engaged in a well-validated decision-making game that measures aggressive behavior in response to social provocation. In light of prior correlational research, we also assessed the extent to which T's effects on aggressive behavior would depend on variability in trait dominance and/or trait self-control. Exogenous T on its own did not modulate aggressive behavior. However, T's effects on aggression were strongly influenced by variation in trait dominance and trait self-control. Specifically, T caused an increase in aggressive behavior, but only among men scoring relatively high in trait dominance or low in trait self-control. These findings are the first to demonstrate that T can rapidly (within 60 minutes) potentiate aggressive behavior, but only among men with dominant or impulsive personality styles. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Modulation of Ethanol Withdrawal–Induced Anxiety-Like Behavior During Later Withdrawals by Treatment of Early Withdrawals With Benzodiazepine/γ-Aminobutyric Acid Ligands

    PubMed Central

    Knapp, Darin J.; Overstreet, David H.; Breese, George R.

    2010-01-01

    Background Anxiety states, including those arising during acute or protracted withdrawal periods, may be precipitating factors in alcoholic relapse. Given the cyclical nature of ethanol withdrawal associated with repeated cycles of ethanol intake and abstinence in a pattern that often spans years, meaningful attempts to model ethanol withdrawal–associated anxiety should incorporate cycled ethanol treatments. The studies reported herein examined the effects of γ-aminobutyric acid–modulating drugs on social interaction behavior—an established model of anxiety—in rats exposed to repeated cycles of ethanol treatment and withdrawal. Methods Rats were exposed to 8 to 12 g/kg/day ethanol during three 7-day dietary cycles (5 days on ethanol diet followed by 2 days on control diet). Ethanol was administered either at hour 4 of withdrawal after cessation of each of the first 2 ethanol cycles or during the final withdrawal only. In other groups, the early withdrawals were treated with alphaxalone, diazepam, PK11159, or flumazenil to block anxiety-like behavior during an untreated later (third) withdrawal. The benzodiazepine inverse agonist DMCM (methyl–6, 7–dymerhoxy–4–ethyl–beta–carboline–3–carboxylate) was also given repeatedly to determine whether it would sensitize anxiety-like behavior during a future withdrawal. Finally, the effects of all drugs on deficits in locomotor behavior were assessed. Results Pretreatment of earlier withdrawals with alphaxalone, diazepam, ethanol, or flumazenil reduced social interaction deficits during a later withdrawal, but pretreatment with PK11195 did not. In contrast, DMCM administered in lieu of early withdrawals increased social interaction deficits during an untreated later withdrawal. Locomotor deficits were significantly reversed only by the acute ethanol and diazepam treatment during the final withdrawal. Conclusions Single-dose administration of drugs that enhance or diminish activity at benzodiazepine–γ-aminobutyric acid- receptors during earlier withdrawals reduced or potentiated, respectively, anxiety-like behavior during later, drug-free withdrawals. These results support the potential of the novel strategy of using prophylactic therapy administered during early withdrawals to ameliorate symptoms of later withdrawals. PMID:15834220

  7. Serotonin 5-HTTLPR Genotype Modulates Reactive Visual Scanning of Social and Non-social Affective Stimuli in Young Children

    PubMed Central

    Christou, Antonios I.; Wallis, Yvonne; Bair, Hayley; Zeegers, Maurice; McCleery, Joseph P.

    2017-01-01

    Previous studies have documented the 5-HTTLPR polymorphisms as genetic variants that are involved in serotonin availability and also associated with emotion regulation and facial emotion processing. In particular, neuroimaging and behavioral studies of healthy populations have produced evidence to suggest that carriers of the Short allele exhibit heightened neurophysiological and behavioral reactivity when processing aversive stimuli, particularly in brain regions involved in fear. However, an additional distinction has emerged in the field, which highlights particular types of fearful information, i.e., aversive information which involves a social component versus non-social aversive stimuli. Although processing of each of these stimulus types (social and non-social) is believed to involve a subcortical neural system which includes the amygdala, evidence also suggests that the amygdala itself may be particularly responsive to socially significant environmental information, potentially due to the critical relevance of social information for humans. Examining individual differences in neurotransmitter systems which operate within this subcortical network, and in particular the serotonin system, may be critically informative for furthering our understanding of the neurobiological mechanisms underlying responses to emotional and affective stimuli. In the present study we examine visual scanning patterns in response to both aversive and positive images of a social or non-social nature in relation to 5-HTTLPR genotypes, in 49 children aged 4–7 years. Results indicate that children with at least one Short 5-HTTLPR allele spent less time fixating the threat-related non-social stimuli, compared with participants with two copies of the Long allele. Interestingly, a separate set of analyses suggests that carriers of two copies of the short 5-HTTLPR allele also spent less time fixating both the negative and positive non-social stimuli. Together, these findings support the hypothesis that genetically mediated differences in serotonin availability mediate behavioral responses to different types of emotional stimuli in young children. PMID:28690502

  8. Sex-dependent role of the amygdala in the development of emotional and neuroendocrine reactivity to threatening stimuli in infant and juvenile rhesus monkeys

    PubMed Central

    Raper, Jessica; Wallen, Kim; Sanchez, Mar M.; Stephens, Shannon B. Z.; Henry, Amy; Villareal, Trina; Bachevalier, Jocelyne

    2013-01-01

    Amygdala dysfunction and abnormal fear and stress reactivity are common features of several developmental neuropsychiatric disorders. Yet, little is known about the exact role the amygdala plays in the development of threat detection and emotional modulation. The current study examined the effects of neonatal amygdala lesions on defensive, emotional, and neuroendocrine reactivity of infant rhesus monkeys reared with their mothers in large species-typical social groups. Monkeys received either bilateral MRI-guided ibotenic acid amygdala (Neo-A; n = 16) or sham (Neo-C; n = 12) lesions at 24.8 ± 1.2 days of age, or served as behavioral control (Neo-BC; n = 3). Defensive and emotional responses were assessed using the Human Intruder Paradigm as infants and as juveniles (2.5 and 12 months of age, respectively), whereas neuroendocrine reactivity was only examined during the juvenile period. As infants, Neo-A animals expressed similar levels of freezing and hostile behaviors as compared to controls, whereas during the juvenile period Neo-A animals expressed significantly less freezing compared to controls. Interestingly, the sex of the infant modulated the behavioral effects of neonatal amygdalectomy, leading to different patterns of behavior depending on the sex and lesion status of the infant. Unlike controls, Neo-A infants did not modulate their behavioral responses based on the salience of the threat. The impact of neonatal amygdalectomy increased with age, such that Neo-A juveniles exhibited fewer emotional behaviors and increased cortisol response to the stressor as compared to controls. These data indicate that the amygdala plays a critical role in the development of both emotional and neuroendocrine reactivity as well as the expression of sexually dimorphic emotional expression. PMID:23380162

  9. Sleep deprivation suppresses aggression in Drosophila

    PubMed Central

    Kayser, Matthew S; Mainwaring, Benjamin; Yue, Zhifeng; Sehgal, Amita

    2015-01-01

    Sleep disturbances negatively impact numerous functions and have been linked to aggression and violence. However, a clear effect of sleep deprivation on aggressive behaviors remains unclear. We find that acute sleep deprivation profoundly suppresses aggressive behaviors in the fruit fly, while other social behaviors are unaffected. This suppression is recovered following post-deprivation sleep rebound, and occurs regardless of the approach to achieve sleep loss. Genetic and pharmacologic approaches suggest octopamine signaling transmits changes in aggression upon sleep deprivation, and reduced aggression places sleep-deprived flies at a competitive disadvantage for obtaining a reproductive partner. These findings demonstrate an interaction between two phylogenetically conserved behaviors, and suggest that previous sleep experiences strongly modulate aggression with consequences for reproductive fitness. DOI: http://dx.doi.org/10.7554/eLife.07643.001 PMID:26216041

  10. Subgenual anterior cingulate cortex controls sadness-induced modulations of cognitive and emotional network hubs.

    PubMed

    Ramirez-Mahaluf, Juan P; Perramon, Joan; Otal, Begonya; Villoslada, Pablo; Compte, Albert

    2018-06-04

    The regulation of cognitive and emotional processes is critical for proper executive functions and social behavior, but its specific mechanisms remain unknown. Here, we addressed this issue by studying with functional magnetic resonance imaging the changes in network topology that underlie competitive interactions between emotional and cognitive networks in healthy participants. Our behavioral paradigm contrasted periods with high emotional and cognitive demands by including a sadness provocation task followed by a spatial working memory task. The sharp contrast between successive tasks was designed to enhance the separability of emotional and cognitive networks and reveal areas that regulate the flow of information between them (hubs). By applying graph analysis methods on functional connectivity between 20 regions of interest in 22 participants we identified two main brain network modules, one dorsal and one ventral, and their hub areas: the left dorsolateral prefrontal cortex (dlPFC) and the left medial frontal pole (mFP). These hub areas did not modulate their mutual functional connectivity following sadness but they did so through an interposed area, the subgenual anterior cingulate cortex (sACC). Our results identify dlPFC and mFP as areas regulating interactions between emotional and cognitive networks, and suggest that their modulation by sadness experience is mediated by sACC.

  11. Introduction of the human AVPR1A gene substantially alters brain receptor expression patterns and enhances aspects of social behavior in transgenic mice

    PubMed Central

    Charles, Rhonda; Sakurai, Takeshi; Takahashi, Nagahide; Elder, Gregory A.; Gama Sosa, Miguel A.; Young, Larry J.; Buxbaum, Joseph D.

    2014-01-01

    Central arginine vasopressin receptor 1A (AVPR1A) modulates a wide range of behaviors, including stress management and territorial aggression, as well as social bonding and recognition. Inter- and intra-species variations in the expression pattern of AVPR1A in the brain and downstream differential behavioral phenotypes have been attributed to differences in the non-coding regions of the AVPR1A gene, including polymorphic elements within upstream regulatory areas. Gene association studies have suggested a link between AVPR1A polymorphisms and autism, and AVPR1A has emerged as a potential pharmacological target for treatment of social cognitive impairments and mood and anxiety disorders. To further investigate the genetic mechanism giving rise to species differences in AVPR1A expression patterns and associated social behaviors, and to create a preclinical mouse model useful for screening drugs targeting AVPR1A, we engineered and extensively characterized bacterial artificial chromosome (BAC) transgenic mice harboring the entire human AVPR1A locus with the surrounding regulatory elements. Compared with wild-type animals, the humanized mice displayed a more widely distributed ligand-AVPR1A binding pattern, which overlapped with that of primates. Furthermore, humanized AVPR1A mice displayed increased reciprocal social interactions compared with wild-type animals, but no differences in social approach and preference for social novelty were observed. Aspects of learning and memory, specifically novel object recognition and spatial relocation recognition, were unaffected. The biological alterations in humanized AVPR1A mice resulted in the rescue of the prepulse inhibition impairments that were observed in knockout mice, indicating conserved functionality. Although further behavioral paradigms and additional cohorts need to be examined in humanized AVPR1A mice, the results demonstrate that species-specific variations in the genomic content of regulatory regions surrounding the AVPR1A locus are responsible for differential receptor protein expression patterns across species and that they are likely to contribute to species-specific behavioral variation. The humanized AVPR1A mouse is a potential preclinical model for further understanding the regulation of receptor gene expression and the impact of variation in receptor expression on behaviors, and should be useful for screening drugs targeting human AVPR1A, taking advantage of the expression of human AVPR1A in human-relevant brain regions. PMID:24924430

  12. Vasopressin modulates social recognition-related activity in the left temporoparietal junction in humans.

    PubMed

    Zink, C F; Kempf, L; Hakimi, S; Rainey, C A; Stein, J L; Meyer-Lindenberg, A

    2011-04-04

    The neuropeptide vasopressin is a key molecular mediator of social behavior in animals and humans, implicated in anxiety and autism. Social recognition, the ability to assess the familiarity of others, is essential for appropriate social interactions and enhanced by vasopressin; however, the neural mechanisms mediating this effect in humans are unknown. Using functional magnetic resonance imaging (fMRI) and an implicit social recognition matching task, we employed a double-blinded procedure in which 20 healthy male volunteers self-administered 40 UI of vasopressin or placebo intranasally, 45 min before performing the matching task in the scanner. In a random-effects fMRI analysis, we show that vasopressin induces a regionally specific alteration in a key node of the theory of mind network, the left temporoparietal junction, identifying a neurobiological mechanism for prosocial neuropeptide effects in humans that suggests novel treatment strategies.

  13. Aversive pavlovian responses affect human instrumental motor performance.

    PubMed

    Rigoli, Francesco; Pavone, Enea Francesco; Pezzulo, Giovanni

    2012-01-01

    IN NEUROSCIENCE AND PSYCHOLOGY, AN INFLUENTIAL PERSPECTIVE DISTINGUISHES BETWEEN TWO KINDS OF BEHAVIORAL CONTROL: instrumental (habitual and goal-directed) and Pavlovian. Understanding the instrumental-Pavlovian interaction is fundamental for the comprehension of decision-making. Animal studies (as those using the negative auto-maintenance paradigm), have demonstrated that Pavlovian mechanisms can have maladaptive effects on instrumental performance. However, evidence for a similar effect in humans is scarce. In addition, the mechanisms modulating the impact of Pavlovian responses on instrumental performance are largely unknown, both in human and non-human animals. The present paper describes a behavioral experiment investigating the effects of Pavlovian conditioned responses on performance in humans, focusing on the aversive domain. Results showed that Pavlovian responses influenced human performance, and, similar to animal studies, could have maladaptive effects. In particular, Pavlovian responses either impaired or increased performance depending on modulator variables such as threat distance, task controllability, punishment history, amount of training, and explicit punishment expectancy. Overall, these findings help elucidating the computational mechanisms underlying the instrumental-Pavlovian interaction, which might be at the base of apparently irrational phenomena in economics, social behavior, and psychopathology.

  14. Aversive Pavlovian Responses Affect Human Instrumental Motor Performance

    PubMed Central

    Rigoli, Francesco; Pavone, Enea Francesco; Pezzulo, Giovanni

    2012-01-01

    In neuroscience and psychology, an influential perspective distinguishes between two kinds of behavioral control: instrumental (habitual and goal-directed) and Pavlovian. Understanding the instrumental-Pavlovian interaction is fundamental for the comprehension of decision-making. Animal studies (as those using the negative auto-maintenance paradigm), have demonstrated that Pavlovian mechanisms can have maladaptive effects on instrumental performance. However, evidence for a similar effect in humans is scarce. In addition, the mechanisms modulating the impact of Pavlovian responses on instrumental performance are largely unknown, both in human and non-human animals. The present paper describes a behavioral experiment investigating the effects of Pavlovian conditioned responses on performance in humans, focusing on the aversive domain. Results showed that Pavlovian responses influenced human performance, and, similar to animal studies, could have maladaptive effects. In particular, Pavlovian responses either impaired or increased performance depending on modulator variables such as threat distance, task controllability, punishment history, amount of training, and explicit punishment expectancy. Overall, these findings help elucidating the computational mechanisms underlying the instrumental-Pavlovian interaction, which might be at the base of apparently irrational phenomena in economics, social behavior, and psychopathology. PMID:23060738

  15. Studying primate learning in group contexts: Tests of social foraging, response to novelty, and cooperative problem solving.

    PubMed

    Drea, Christine M

    2006-03-01

    Learning commonly refers to the modification of behavior through experience, whereby an animal gains information about stimulus-response contingencies from interacting with its physical environment. Social learning, on the other hand, occurs when the same information originates, not from the animal's personal experience, but from the actions of others. Socially biased learning is the 'collective outcome of interacting physical, social, and individual factors' [D. Fragaszy, E. Visalberghi, Learn. Behav. 32 (2004) 24-35.] (see p. 24). Mounting interest in animal social learning has brought with it certain innovations in animal testing procedures. Variants of the observer-demonstrator and cooperation paradigms, for instance, have been used widely in captive settings to examine the transmission or coordination of behavior, respectively, between two animals. Relatively few studies, however, have examined social learning in more complex group settings and even fewer have manipulated the social environment to empirically test the effect of group dynamics on problem solving. The present paper outlines procedures for group testing captive non-human primates, in spacious arenas, to evaluate the social modulation of learning and performance. These methods are illustrated in the context of (1) naturalistic social foraging problems, modeled after traditional visual discrimination paradigms, (2) response to novel objects and novel extractive foraging tasks, and (3) cooperative problem solving. Each example showcases the benefits of experimentally manipulating social context to compare an animal's performance in intact groups (or even pairs) against its performance under different social circumstances. Broader application of group testing procedures and manipulation of group composition promise to provide meaningful insight into socially biased learning.

  16. Precursors to morality in development as a complex interplay between neural, socioenvironmental, and behavioral facets

    PubMed Central

    Cowell, Jason M.; Decety, Jean

    2015-01-01

    The nature and underpinnings of infants’ seemingly complex, third-party, social evaluations remain highly contentious. Theoretical perspectives oscillate between rich and lean interpretations of the same expressed preferences. Although some argue that infants and toddlers possess a “moral sense” based on core knowledge of the social world, others suggest that social evaluations are hierarchical in nature and the product of an integration of rudimentary general processes such as attention allocation and approach and avoidance. Moreover, these biologically prepared minds interact in social environments that include significant variation, which are likely to impact early social evaluations and behavior. The present study examined the neural underpinnings of and precursors to moral sensitivity in infants and toddlers (n = 73, ages 12–24 mo) through a series of interwoven measures, combining multiple levels of analysis including electrophysiological, eye-tracking, behavioral, and socioenvironmental. Continuous EEG and time-locked event-related potentials (ERPs) and gaze fixation were recorded while children watched characters engaging in prosocial and antisocial actions in two different tasks. All children demonstrated a neural differentiation in both spectral EEG power density modulations and time-locked ERPs when perceiving prosocial or antisocial agents. Time-locked neural differences predicted children’s preference for prosocial characters and were influenced by parental values regarding justice and fairness. Overall, this investigation casts light on the fundamental nature of moral cognition, including its underpinnings in general processes such as attention and approach–withdrawal, providing plausible mechanisms of early change and a foundation for forward movement in the field of developmental social neuroscience. PMID:26324885

  17. Transcutaneous Electrical Acupoint Stimulation in Children with Autism and Its Impact on Plasma Levels of Arginine-Vasopressin and Oxytocin: A Prospective Single-Blinded Controlled Study

    ERIC Educational Resources Information Center

    Zhang, Rong; Jia, Mei-Xiang; Zhang, Ji-Sui; Xu, Xin-Jie; Shou, Xiao-Jing; Zhang, Xiu-Ting; Li, Li; Li, Ning; Han, Song-Ping; Han, Ji-Sheng

    2012-01-01

    Acupuncture increases brain levels of arginine-vasopressin (AVP) and oxytocin (OXT), which are known to be involved in the modulation of mammalian social behavior. Transcutaneous electrical acupoint stimulation (TEAS) is often used clinically to produce a similar stimulation to that of acupuncture on the acupoints. In the present study, TEAS was…

  18. A standalone Internet cognitive behavior therapy treatment for social anxiety in adults who stutter: CBTpsych.

    PubMed

    Helgadóttir, Fjóla Dögg; Menzies, Ross G; Onslow, Mark; Packman, Ann; O'Brian, Sue

    2014-09-01

    Social anxiety is common for those who stutter and efficacious cognitive behavior therapy (CBT) for them appears viable. However, there are difficulties with provision of CBT services for anxiety among those who stutter. Standalone Internet CBT treatment is a potential solution to those problems. CBTpsych is a fully automated, online social anxiety intervention for those who stutter. This report is a Phase I trial of CBTpsych. Fourteen participants were allowed 5 months to complete seven sections of CBTpsych. Pre-treatment and post-treatment assessments tested for social anxiety, common unhelpful thoughts related to stuttering, quality of life and stuttering frequency. Significant post-treatment improvements in social anxiety, unhelpful thoughts, and quality of life were reported. Five of seven participants diagnosed with social anxiety lost those diagnoses at post-treatment. The two participants who did not lose social anxiety diagnoses did not complete all the CBTpsych modules. CBTpsych did not improve stuttering frequency. Eleven of the fourteen participants who began treatment completed Section 4 or more of the CBTpsych intervention. CBTpsych provides a potential means to provide CBT treatment for social anxiety associated with stuttering, to any client without cost, regardless of location. Further clinical trials are warranted. At the end of this activity the reader will be able to: (a) describe that social anxiety is common in those who stutter; (b) discuss the origin of social anxiety and the associated link with bullying; (c) summarize the problems in provision of effective evidence based cognitive behavior therapy for adults who stutter; (d) describe a scalable computerized treatment designed to tackle the service provision gap; (e) describe the unhelpful thoughts associated with stuttering that this fully automated computer program was able to tackle; (f) list the positive outcomes for individuals who stuttered that participated in this trial such as the reduction of social anxiety symptoms and improvement in the quality of life for individuals who stuttered and participated in this trial. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Empathy and contextual social cognition.

    PubMed

    Melloni, Margherita; Lopez, Vladimir; Ibanez, Agustin

    2014-03-01

    Empathy is a highly flexible and adaptive process that allows for the interplay of prosocial behavior in many different social contexts. Empathy appears to be a very situated cognitive process, embedded with specific contextual cues that trigger different automatic and controlled responses. In this review, we summarize relevant evidence regarding social context modulation of empathy for pain. Several contextual factors, such as stimulus reality and personal experience, affectively link with other factors, emotional cues, threat information, group membership, and attitudes toward others to influence the affective, sensorimotor, and cognitive processing of empathy. Thus, we propose that the frontoinsular-temporal network, the so-called social context network model (SCNM), is recruited during the contextual processing of empathy. This network would (1) update the contextual cues and use them to construct fast predictions (frontal regions), (2) coordinate the internal (body) and external milieus (insula), and (3) consolidate the context-target associative learning of empathic processes (temporal sites). Furthermore, we propose these context-dependent effects of empathy in the framework of the frontoinsular-temporal network and examine the behavioral and neural evidence of three neuropsychiatric conditions (Asperger syndrome, schizophrenia, and the behavioral variant of frontotemporal dementia), which simultaneously present with empathy and contextual integration impairments. We suggest potential advantages of a situated approach to empathy in the assessment of these neuropsychiatric disorders, as well as their relationship with the SCNM.

  20. Facebook behaviors associated with diurnal cortisol in adolescents: Is befriending stressful?

    PubMed

    Morin-Major, Julie Katia; Marin, Marie-France; Durand, Nadia; Wan, Nathalie; Juster, Robert-Paul; Lupien, Sonia J

    2016-01-01

    Facebook(©) is changing the way people interact and socialize. Despite great interest in psychology and sociology, little is known about Facebook behaviors in relation to physiological markers of stress. Given that the brain undergoes important development during adolescence and that glucocorticoids--a major class of stress hormones-are known to modulate its development, it is important to study psychosocial factors that may influence secretion of stress hormones during adolescence. The goal of the present study was to explore the associations between Facebook behaviors (use frequency, network size, self-presentation and peer-interaction) and basal levels of cortisol among adolescent boys and girls. Eighty-eight adolescents (41 boys, 47 girls) aged between 12 and 17 (14.5 ± 1.8) were recruited. Participants provided four cortisol samples per day for two non-consecutive weekdays. Facebook behaviors were assessed in accordance with the existing literature. Well-validated measures of perceived stress, perceived social support, self-esteem, and depressive symptoms were also included. A hierarchical regression showed that after controlling for sex, age, time of awakening, perceived stress, and perceived social support, cortisol systemic output (area under the curve with respect to ground) was positively associated with the number of Facebook friends and negatively associated with Facebook peer-interaction. No associations were found among depressive symptoms, self-esteem, and cortisol. These results provide preliminary evidence that Facebook behaviors are associated with diurnal cortisol concentrations in adolescents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. When do people cooperate? The neuroeconomics of prosocial decision making.

    PubMed

    Declerck, Carolyn H; Boone, Christophe; Emonds, Griet

    2013-02-01

    Understanding the roots of prosocial behavior is an interdisciplinary research endeavor that has generated an abundance of empirical data across many disciplines. This review integrates research findings from different fields into a novel theoretical framework that can account for when prosocial behavior is likely to occur. Specifically, we propose that the motivation to cooperate (or not), generated by the reward system in the brain (extending from the striatum to the ventromedial prefrontal cortex), is modulated by two neural networks: a cognitive control system (centered on the lateral prefrontal cortex) that processes extrinsic cooperative incentives, and/or a social cognition system (including the temporo-parietal junction, the medial prefrontal cortex and the amygdala) that processes trust and/or threat signals. The independent modulatory influence of incentives and trust on the decision to cooperate is substantiated by a growing body of neuroimaging data and reconciles the apparent paradox between economic versus social rationality in the literature, suggesting that we are in fact wired for both. Furthermore, the theoretical framework can account for substantial behavioral heterogeneity in prosocial behavior. Based on the existing data, we postulate that self-regarding individuals (who are more likely to adopt an economically rational strategy) are more responsive to extrinsic cooperative incentives and therefore rely relatively more on cognitive control to make (un)cooperative decisions, whereas other-regarding individuals (who are more likely to adopt a socially rational strategy) are more sensitive to trust signals to avoid betrayal and recruit relatively more brain activity in the social cognition system. Several additional hypotheses with respect to the neural roots of social preferences are derived from the model and suggested for future research. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Fluoxetine reverses behavior changes in socially isolated rats: role of the hippocampal GSH-dependent defense system and proinflammatory cytokines.

    PubMed

    Perić, Ivana; Stanisavljević, Andrijana; Gass, Peter; Filipović, Dragana

    2017-12-01

    Exposure of an organism to chronic social isolation (CSIS) has been shown to have an important role in depression. Fluoxetine (Flx) is a first-line treatment for depression; however, its downstream mechanisms of action beyond serotonergic signaling remain ill-defined. We investigated the effect of 3 weeks of Flx (15 mg/kg/day) treatment on behavioral changes and protein expression/activity of the GSH-dependent defense system, including reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GLR), and glutathione S-transferase (GST), as well as catalase (CAT), in the hippocampus of rats exposed to 6 weeks of CSIS. The subcellular distributions of nuclear factor-κB (NF-κB), as well as, cytosolic IL-1β and IL-6 protein expression, were also determined. CSIS induced depressive- and anxiety-like behaviors, evidenced by a decrease in sucrose preference and an increase in the number of buried marbles. Moreover, CSIS compromised redox homeostasis, targeting enzymes such as GPx, CAT, GST, and caused NF-κB nuclear translocation with a concomitant increase in IL-6 protein expression, without an effect on IL-1β. Flx treatment reversed CSIS-induced depressive- and anxiety-like behaviors, modulated GSH-dependent defense by increasing GLR and GST activity, and suppressed NF-κB activation and cytosolic IL-6 protein expression in socially isolated rats. The present study suggests that changes in the GSH-dependent defense system, NF-κB activation and increased IL-6 protein expression may have a role in social isolation-induced changes in a rat model of depression and anxiety, and contributes to our understanding of the mechanisms that underlie the antidepressant and anti-inflammatory activity of Flx in socially isolated rats.

  3. Escalated cocaine "binges" in rats: enduring effects of social defeat stress or intra-VTA CRF.

    PubMed

    Leonard, Michael Z; DeBold, Joseph F; Miczek, Klaus A

    2017-09-01

    Exposure to intermittent social defeat stress elicits corticotropin releasing factor (CRF) release into the VTA and induces long-term modulation of mesocorticolimbic dopamine activity in rats. These adaptations are associated with an intense cocaine-taking phenotype, which is prevented by CRF receptor antagonists. The present studies examine whether infusion of CRF into the VTA is sufficient to escalate cocaine-taking behavior, in the absence of social defeat experience. Additionally, we aimed to characterize changes in cocaine valuation that may promote binge-like cocaine intake. Male Long-Evans rats were microinjected into the VTA with CRF (50 or 500 ng/side), vehicle, or subjected to social defeat stress, intermittently over 10 days. Animals were then trained to self-administer IV cocaine (FR5). Economic demand for cocaine was evaluated using a within-session behavioral-economics threshold procedure, which was followed by a 24-h extended access "binge." Rats that experienced social defeat or received intra-VTA CRF microinfusions (50 ng) both took significantly more cocaine than controls over the 24-h binge but showed distinct patterns of intake. Behavioral economic analysis revealed that individual demand for cocaine strongly predicts binge-like consumption, and demand elasticity (i.e. α) is augmented by intra-VTA CRF, but not by social defeat. The effects of CRF on cocaine-taking were also prevented by intra-VTA pretreatment with CP376395, but not Astressin-2B. Repeated infusion of CRF into the VTA persistently alters cocaine valuation and intensifies binge-like drug intake in a CRF-R1-dependent manner. Conversely, the persistent pattern of cocaine bingeing induced by social defeat stress may suggest impaired inhibitory control, independent of reward valuation.

  4. Adolescence Education: Physical Aspect, Module One; Social Aspects, Module Two; Sex Roles, Module Three; Sexually Transmitted Diseases, Module Four.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific and Cultural Organization, Bangkok (Thailand). Principal Regional Office for Asia and the Pacific.

    Adolescence Education is a family life education training program designed to assist young people in their physical, social, emotional, and moral development as they prepare for adulthood, marriage, parenthood, aging, and social relationships in the context of family and society. This package consists of four individually bound modules: (1)…

  5. Threatening social context facilitates pain-related fear learning.

    PubMed

    Karos, Kai; Meulders, Ann; Vlaeyen, Johan W S

    2015-03-01

    This study investigated the effects of a threatening and a safe social context on learning pain-related fear, a key factor in the development and maintenance of chronic pain. We measured self-reported pain intensity, pain expectancy, pain-related fear (verbal ratings and eyeblink startle responses), and behavioral measures of avoidance (movement-onset latency and duration) using an established differential voluntary movement fear conditioning paradigm. Participants (N = 42) performed different movements with a joystick: during fear acquisition, movement in one direction (CS+) was followed by a painful stimulus (pain-US) whereas movement in another direction (CS-) was not. For participants in the threat group, an angry face was continuously presented in the background during the task, whereas in the safe group, a happy face was presented. During the extinction phase the pain-US was omitted. As compared to the safe social context, a threatening social context led to increased contextual fear and facilitated differentiation between CS+ and CS- movements regarding self-reported pain expectancy, fear of pain, eyeblink startle responses, and movement-onset latency. In contrast, self-reported pain intensity was not affected by social context. These data support the modulation of pain-related fear by social context. A threatening social context leads to stronger acquisition of (pain-related) fear and simultaneous contextual fear but does not affect pain intensity ratings. This knowledge may aid in the prevention of chronic pain and anxiety disorders and shows that social context might modulate pain-related fear without immediately affecting pain intensity itself. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  6. Housing environment modulates physiological and behavioral responses to anxiogenic stimuli in trait anxiety male rats

    PubMed Central

    Ravenelle, Rebecca; Santolucito, Hayley B.; Byrnes, Elizabeth M.; Byrnes, John J.; Tiffany Donaldson, S.

    2014-01-01

    Environmental enrichment can modulate mild and chronic stress, responses to anxiogenic stimuli as well as drug vulnerability in a number of animal models. The current study was designed to examine the impact of postnatal environmental enrichment on selectively bred 4th generation high (HAn) and low anxiety (LAn) male rats. After weaning, animals were placed in isolated, social and enriched environments (e.g., toys, wheels, ropes, changed weekly). We measured anxiety-like behavior (ALB) on the elevated plus maze (EPM; trial 1 at PND 46, trial 2 at PND 63), amphetamine (0.5 mg/kg, IP)-induced locomotor behavior, basal and post anxiogenic stimuli changes in (1) plasma corticosterone, (2) blood pressure and (3) core body temperature. Initially, animals showed consistent trait differences on EPM with HAn showing more ALB but after 40 days in select housing, HAn rats reared in an enriched environment (EE) showed less ALB and diminished AMPH-induced activity compared to HAn animals housed in isolated (IE) and social environments (SE). In the physiological tests, animals housed in EE showed elevated adrenocortical responses to forced novel object exposure but decreased body temperature and blood pressure changes after an air puff stressor. All animals reared in EE and SE had elevated BDNF-positive cells in the central amygdala (CeA), CA1 and CA2 hippocampal regions and the caudate putamen, but these differences were most pronounced in HAn rats for CeA, CA1 and CA2. Overall, these findings suggest that environmental enrichment offers benefits for trait anxiety rats including a reduction in behavioral and physiological responses to anxiogenic stimuli and amphetamine sensitivity, and these responses correlate with changes in BDNF expression in the central amygdala, hippocampus and the caudate putamen. PMID:24713371

  7. Stress coping style does not determine social status, but influences the consequences of social subordination stress.

    PubMed

    Boersma, Gretha J; Smeltzer, Michael D; Scott, Karen A; Scheurink, Anton J; Tamashiro, Kellie L; Sakai, Randall R

    2017-09-01

    Chronic stress exposure may have negative consequences for health. One of the most common sources of chronic stress is stress associated with social interaction. In rodents, the effects of social stress can be studied in a naturalistic way using the visual burrow system (VBS). The way an individual copes with stress, their "stress coping style", may influence the consequences of social stress. In the current study we tested the hypothesis that stress coping style may modulate social status and influence the consequences of having a lower social status. We formed 7 VBS colonies, with 1 proactive coping male, 1 passive coping male, and 4 female rats per colony to assess whether a rat's coping style prior to colony formation could predict whether that individual is more likely to become socially dominant. The rats remained in their respective colonies for 14days and the physiological and behavioral consequences of social stress were assessed. Our study shows that stress coping style does not predict social status. However, stress coping style may influence the consequences of having a lower social status. Subordinate passive and proactive rats had distinctly different wound patterns; proactive rats had more wounds on the front of their bodies. Behavioral analysis confirmed that proactive subordinate rats engaged in more offensive interactions. Furthermore, subordinate rats with a proactive stress coping style had larger adrenals, and increased stress responsivity to a novel acute stressor (restraint stress) compared to passive subordinate rats or dominant rats, suggesting that the allostatic load may have been larger in this group. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Disgust and biological descriptions bias logical reasoning during legal decision-making.

    PubMed

    Capestany, Beatrice H; Harris, Lasana T

    2014-01-01

    Legal decisions often require logical reasoning about the mental states of people who perform gruesome behaviors. We use functional magnetic resonance imaging (fMRI) to examine how brain regions implicated in logical reasoning are modulated by emotion and social cognition during legal decision-making. Participants read vignettes describing crimes that elicit strong or weak disgust matched on punishment severity using the US Federal Sentencing Guidelines. An extraneous sentence at the end of each vignette described the perpetrator's personality using traits or biological language, mimicking the increased use of scientific evidence presented in courts. Behavioral results indicate that crimes weak in disgust receive significantly less punishment than the guidelines recommend. Neuroimaging results indicate that brain regions active during logical reasoning respond less to crimes weak in disgust and biological descriptions of personality, demonstrating the impact of emotion and social cognition on logical reasoning mechanisms necessary for legal decision-making.

  9. The role of emotion and emotion regulation in social anxiety disorder.

    PubMed

    Jazaieri, Hooria; Morrison, Amanda S; Goldin, Philippe R; Gross, James J

    2015-01-01

    Many psychiatric disorders involve problematic patterns of emotional reactivity and regulation. In this review, we consider recent findings regarding emotion and emotion regulation in the context of social anxiety disorder (SAD). We first describe key features of SAD which suggest altered emotional and self-related processing difficulties. Next, we lay the conceptual foundation for a discussion of emotion and emotion regulation and present a common framework for understanding emotion regulation, the process model of emotion regulation. Using the process model, we evaluate the recent empirical literature spanning self-report, observational, behavioral, and physiological methods across five specific families of emotion regulation processes-situation selection, situation modification, attentional deployment, cognitive change, and response modulation. Next, we examine the empirical evidence behind two psychosocial interventions for SAD: cognitive behavioral therapy (CBT) and mindfulness-based stress reduction (MBSR). Throughout, we present suggestions for future directions in the continued examination of emotion and emotion regulation in SAD.

  10. Attachment Figure's Regulation of Infant Brain and Behavior.

    PubMed

    Sullivan, Regina M

    2017-01-01

    Altricial infants (i.e., requiring parental care for survival), such as humans and rats, form an attachment to their caregiver and receive the nurturing and protections needed for survival. Learning has a strong role in attachment, as is illustrated by strong attachment formed to non-biological caregivers of either sex. Here we summarize and integrate results from animal and human infant attachment research that highlights the important role of social buffering (social presence) of the stress response by the attachment figure and its effect on infant processing of threat and fear through modulation of the amygdala. Indeed, this work suggests the caregiver switches off amygdala function in rodents, although recent human research suggests a similar process in humans and nonhuman primates. This cross-species analysis helps provide insight and unique understanding of attachment and its role in the neurobiology of infant behavior within attachment.

  11. Aberrant reward center response to partner reputation during a social exchange game in generalized social phobia.

    PubMed

    Sripada, Chandra; Angstadt, Michael; Liberzon, Israel; McCabe, Kevin; Phan, K Luan

    2013-04-01

    Generalized social anxiety disorder (GSAD) is characterized by excessive fear of public scrutiny and reticence in social engagement. Previous studies have probed the neural basis of GSAD often using static, noninteractive stimuli (e.g., face photographs) and have identified dysfunction in fear circuitry. We sought to investigate brain-based dysfunction in GSAD during more real-world, dynamic social interactions, focusing on the role of reward-related regions that are implicated in social decision-making. Thirty-six healthy individuals (healthy control [HC]) and 36 individuals with GSAD underwent functional magnetic resonance imaging (fMRI) scanning while participating in a behavioral economic game ("Trust Game") involving iterative exchanges with fictive partners who acquire differential reputations for reciprocity. We investigated brain responses to reciprocation of trust in one's social partner, and how these brain responses are modulated by partner reputation for repayment. In both HC and GSAD, receipt of reciprocity robustly engaged ventral striatum, a region implicated in reward. In HC, striatal responses to reciprocity were specific to partners who have consistently returned the investment ("cooperative partners"), and were absent for partners who lack a cooperative reputation. In GSAD, modulation of striatal responses by partner reputation was absent. Social anxiety severity predicted diminished responses to cooperative partners. These results suggest abnormalities in GSAD in reward-related striatal mechanisms that may be important for the initiation, valuation, and maintenance of cooperative social relationships. Moreover, this study demonstrates that dynamic, interactive task paradigms derived from economics can help illuminate novel mechanisms of pathology in psychiatric illnesses in which social dysfunction is a cardinal feature. © 2013 Wiley Periodicals, Inc.

  12. Experience Modulates Vicarious Freezing in Rats: A Model for Empathy

    PubMed Central

    Atsak, Piray; Orre, Marie; Bakker, Petra; Cerliani, Leonardo; Roozendaal, Benno

    2011-01-01

    The study of the neural basis of emotional empathy has received a surge of interest in recent years but mostly employing human neuroimaging. A simpler animal model would pave the way for systematic single cell recordings and invasive manipulations of the brain regions implicated in empathy. Recent evidence has been put forward for the existence of empathy in rodents. In this study, we describe a potential model of empathy in female rats, in which we studied interactions between two rats: a witness observes a demonstrator experiencing a series of footshocks. By comparing the reaction of witnesses with or without previous footshock experience, we examine the role of prior experience as a modulator of empathy. We show that witnesses having previously experienced footshocks, but not naïve ones, display vicarious freezing behavior upon witnessing a cage-mate experiencing footshocks. Strikingly, the demonstrator's behavior was in turn modulated by the behavior of the witness: demonstrators froze more following footshocks if their witness froze more. Previous experiments have shown that rats emit ultrasonic vocalizations (USVs) when receiving footshocks. Thus, the role of USV in triggering vicarious freezing in our paradigm is examined. We found that experienced witness-demonstrator pairs emitted more USVs than naïve witness-demonstrator pairs, but the number of USVs was correlated with freezing in demonstrators, not in witnesses. Furthermore, playing back the USVs, recorded from witness-demonstrator pairs during the empathy test, did not induce vicarious freezing behavior in experienced witnesses. Thus, our findings confirm that vicarious freezing can be triggered in rats, and moreover it can be modulated by prior experience. Additionally, our result suggests that vicarious freezing is not triggered by USVs per se and it influences back onto the behavior of the demonstrator that had elicited the vicarious freezing in witnesses, introducing a paradigm to study empathy as a social loop. PMID:21765921

  13. A common oxytocin receptor gene (OXTR) polymorphism modulates intranasal oxytocin effects on the neural response to social cooperation in humans.

    PubMed

    Feng, C; Lori, A; Waldman, I D; Binder, E B; Haroon, E; Rilling, J K

    2015-09-01

    Intranasal oxytocin (OT) can modulate social-emotional functioning and related brain activity in humans. Consequently, OT has been discussed as a potential treatment for psychiatric disorders involving social behavioral deficits. However, OT effects are often heterogeneous across individuals. Here we explore individual differences in OT effects on the neural response to social cooperation as a function of the rs53576 polymorphism of the oxytocin receptor gene (OXTR). Previously, we conducted a double-blind, placebo-controlled study in which healthy men and women were randomized to treatment with intranasal OT or placebo. Afterwards, they were imaged with functional magnetic resonance imaging while playing an iterated Prisoner's Dilemma Game with same-sex partners. Within the left ventral caudate nucleus, intranasal OT treatment increased activation to reciprocated cooperation in men, but tended to decrease activation in women. Here, we show that these sex differences in OT effects are specific to individuals with the rs53576 GG genotype, and are not found for other genotypes (rs53576 AA/AG). Thus, OT may increase the reward or salience of positive social interactions for male GG homozygotes, while decreasing those processes for female GG homozygotes. These results suggest that rs53576 genotype is an important variable to consider in future investigations of the clinical efficacy of intranasal OT treatment. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  14. Serotonin and the neural processing of facial emotions in adults with autism: an fMRI study using acute tryptophan depletion.

    PubMed

    Daly, Eileen M; Deeley, Quinton; Ecker, Christine; Craig, Michael; Hallahan, Brian; Murphy, Clodagh; Johnston, Patrick; Spain, Debbie; Gillan, Nicola; Brammer, Michael; Giampietro, Vincent; Lamar, Melissa; Page, Lisa; Toal, Fiona; Cleare, Anthony; Surguladze, Simon; Murphy, Declan G M

    2012-10-01

    People with autism spectrum disorders (ASDs) have lifelong deficits in social behavior and differences in behavioral as well as neural responses to facial expressions of emotion. The biological basis to this is incompletely understood, but it may include differences in the role of neurotransmitters such as serotonin, which modulate facial emotion processing in health. While some individuals with ASD have significant differences in the serotonin system, to our knowledge, no one has investigated its role during facial emotion processing in adults with ASD and control subjects using acute tryptophan depletion (ATD) and functional magnetic resonance imaging. To compare the effects of ATD on brain responses to primary facial expressions of emotion in men with ASD and healthy control subjects. Double-blind, placebo-controlled, crossover trial of ATD and functional magnetic resonance imaging to measure brain activity during incidental processing of disgust, fearful, happy, and sad facial expressions. Institute of Psychiatry, King's College London, and South London and Maudsley National Health Service Foundation Trust, England. Fourteen men of normal intelligence with autism and 14 control subjects who did not significantly differ in sex, age, or overall intelligence. Blood oxygenation level-dependent response to facial expressions of emotion. Brain activation was differentially modulated by ATD depending on diagnostic group and emotion type within regions of the social brain network. For example, processing of disgust faces was associated with interactions in medial frontal and lingual gyri, whereas processing of happy faces was associated with interactions in middle frontal gyrus and putamen. Modulation of the processing of facial expressions of emotion by serotonin significantly differs in people with ASD compared with control subjects. The differences vary with emotion type and occur in social brain regions that have been shown to be associated with group differences in serotonin synthesis/receptor or transporter density.

  15. Genetic modulation of oxytocin sensitivity: a pharmacogenetic approach.

    PubMed

    Chen, F S; Kumsta, R; Dvorak, F; Domes, G; Yim, O S; Ebstein, R P; Heinrichs, M

    2015-10-27

    Intranasal administration of the neuropeptide oxytocin has been shown to influence a range of complex social cognitions and social behaviors, and it holds therapeutic potential for the treatment of mental disorders characterized by social functioning deficits such as autism, social phobia and borderline personality disorder. However, considerable variability exists in individual responses to oxytocin administration. Here, we undertook a study to investigate the role of genetic variation in sensitivity to exogenous oxytocin using a socioemotional task. In a randomized, double-blind, placebo-controlled experiment with a repeated-measures (crossover) design, we assessed the performance of 203 men on an emotion recognition task under oxytocin and placebo. We took a haplotype-based approach to investigate the association between oxytocin receptor gene variation and oxytocin sensitivity. We identified a six-marker haplotype block spanning the promoter region and intron 3 that was significantly associated with our measure of oxytocin sensitivity. Specifically, the TTCGGG haplotype comprising single-nucleotide polymorphisms rs237917-rs2268498-rs4564970-rs237897-rs2268495-rs53576 is associated with increased emotion recognition performance under oxytocin versus placebo, and the CCGAGA haplotype with the opposite pattern. These results on the genetic modulation of sensitivity to oxytocin document a significant source of individual differences with implications for personalized treatment approaches using oxytocin administration.

  16. Genetic modulation of oxytocin sensitivity: a pharmacogenetic approach

    PubMed Central

    Chen, F S; Kumsta, R; Dvorak, F; Domes, G; Yim, O S; Ebstein, R P; Heinrichs, M

    2015-01-01

    Intranasal administration of the neuropeptide oxytocin has been shown to influence a range of complex social cognitions and social behaviors, and it holds therapeutic potential for the treatment of mental disorders characterized by social functioning deficits such as autism, social phobia and borderline personality disorder. However, considerable variability exists in individual responses to oxytocin administration. Here, we undertook a study to investigate the role of genetic variation in sensitivity to exogenous oxytocin using a socioemotional task. In a randomized, double-blind, placebo-controlled experiment with a repeated-measures (crossover) design, we assessed the performance of 203 men on an emotion recognition task under oxytocin and placebo. We took a haplotype-based approach to investigate the association between oxytocin receptor gene variation and oxytocin sensitivity. We identified a six-marker haplotype block spanning the promoter region and intron 3 that was significantly associated with our measure of oxytocin sensitivity. Specifically, the TTCGGG haplotype comprising single-nucleotide polymorphisms rs237917–rs2268498–rs4564970–rs237897–rs2268495–rs53576 is associated with increased emotion recognition performance under oxytocin versus placebo, and the CCGAGA haplotype with the opposite pattern. These results on the genetic modulation of sensitivity to oxytocin document a significant source of individual differences with implications for personalized treatment approaches using oxytocin administration. PMID:26506050

  17. Growth: How Much is Too Much? Student Book. Social Studies Module (9th-10th Grade Social Studies). Revised Edition.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Coll. of Education.

    This learning module is designed to integrate environmental education into ninth- and tenth-grade social studies courses. The module and a parallel module designed for chemistry classes were pilot tested in Gwinnett County, Georgia in 1975-76. The module is divided into four parts. The first part alerts students to the serious problems that growth…

  18. How Do Acquired Political Identities Influence Our Neural Processing toward Others within the Context of a Trust Game?

    PubMed

    Wu, Chien-Te; Fan, Yang-Teng; Du, Ye-Rong; Yang, Tien-Tun; Liu, Ho-Ling; Yen, Nai-Shing; Chen, Shu-Heng; Hsung, Ray-May

    2018-01-01

    Trust is essential for mutually beneficial human interactions in economic exchange and politics and people's social identities notably have dramatic effects on trust behaviors toward others. Previous literature concerning social identities generally suggests that people tend to show in-group favoritism toward members who share the same identity. However, how our brains process signals of identity while facing uncertain situations in interpersonal interactions remains largely unclear. To address this issue, we performed an fMRI experiment with 54 healthy adults who belonged to two identity groups of opposing political orientations. The identity information of participants was extracted from a large-scale social survey on the 2012 Taiwan presidential election. Accordingly, participants were categorized as either the Kuomintang (KMT) or the Democratic Progressive Party (DPP) supporters. During the experiment, participants played trust games with computer agents with labels of the same or the opposing political identity. Interestingly, our results suggest that the behaviors of the two groups cannot be equally attributed to in-group favoritism. Behaviorally, only the DPP supporter group showed a significant trust preference toward in-group members, which did not hold for the KMT supporter group. Consistently, neurophysiological findings further revealed that only the DPP supporter group showed neuronal responses to both unexpected negative feedback from in-group members in anterior insula, temporoparietal junction, and dorsal lateral prefrontal cortex, as well as to unexpected rewards from out-group members in caudate. These findings therefore suggest that acquired identities play a more complex role in modulating people's social expectation in interpersonal trust behaviors under identity-relevant contexts.

  19. Mu-opioid blockade reduces ethanol effects on intake and behavior of the infant rat during short-term but not long-term social isolation

    PubMed Central

    Kozlov, Andrey P.; Nizhnikov, Michael E.; Kramskaya, Tatiana. A.; Varlinskaya, Elena I.; Spear, Norman E.

    2013-01-01

    Numerous findings in adult and infant rats have shown that the endogenous opioid system is involved in control of ethanol consumption and its reinforcing effects. Opioid systems are also involved in reactivity to social isolation with several factors (age, duration, and type of isolation) affecting this modulation. The present study investigated the effects of a selective mu – opioid antagonist CTOP (0, 0.1, 0.5 mg/kg), ethanol (0, 0.5 g/kg), and the interaction of the two drugs on the behavioral consequences of two types of social isolation given to preweanling rats: 1) short–term social isolation from littermates (STSI, duration 8 minutes) and 2) relatively long-term (5 hours) isolation (LTSI) from the dam and littermates. Voluntary intake of saccharin, locomotion, rearing activity, paw licking, and grooming were assessed during an 8 – min. intake test. Thermal nociceptive reactivity was also measured before and after the testing session with normalized differences in pre- and post-test latencies of paw withdrawal from a hot plate (49 °C) used as an index of isolation-induced analgesia (IIA). The results indicate that pharmacological blockade of mu-opioid receptors by CTOP substantially attenuated ethanol’s anxiolytic effects on the developing rat’s reactions to social isolation. Some of these stress-attenuating effects of CTOP were observed only in animals exposed to short-term isolation (STSI) but not in pups isolated for 5 hours (LTSI). Ethanol selectively increased saccharin intake during STSI in females and CTOP blocked this effect. Ethanol decreased the magnitude of analgesia associated with STSI but had no effect on pain reactivity during LTSI. CTOP by itself did not affect IIA or saccharin intake in sober animals. The findings of the present experiments indicate that the anxiolytic effects of 0.5 g/kg ethanol on pups exposed to STSI are modulated by endogenous opioid activity. PMID:23182856

  20. Palmitoylethanolamide Modulates GPR55 Receptor Signaling in the Ventral Hippocampus to Regulate Mesolimbic Dopamine Activity, Social Interaction, and Memory Processing.

    PubMed

    Kramar, Cecilia; Loureiro, Michael; Renard, Justine; Laviolette, Steven R

    2017-01-01

    Introduction: The GPR55 receptor has been identified as an atypical cannabinoid receptor and is implicated in various physiological processes. However, its functional role in the central nervous system is not currently understood. The presence of GPR55 receptor in neural regions such as the ventral hippocampus (vHipp), which is critical for cognition, recognition memory, and affective processing, led us to hypothesize that intra-vHipp GPR55 transmission may modulate mesolimbic activity states and related behavioral phenomena. The vHipp is involved in contextual memory and affective regulation through functional interactions with the mesolimbic dopamine system. Materials and Methods: Using a combination of in vivo electrophysiology and behavioral pharmacological assays in rats, we tested whether intra-vHipp activation of GPR55 receptor transmission with the fatty acid amide, palmitoylethanolamide (PEA), a lipid neuromodulator with agonist actions at the GPR55 receptor, may modulate mesolimbic dopaminergic activity states. We further examined the potential effects of intra-vHipp PEA in affective, cognitive and contextual memory tasks. Discussion: We report that intra-vHipp PEA produces a hyper-dopaminergic state in the mesolimbic system characterized by increased firing and bursting activity of ventral tegmental area dopaminergic neuron populations. Furthermore, while PEA-induced activation of GPR55 transmission had no effects on opiate-related reward-related memory formation, we observed strong disruptions in social interaction and recognition memory, spatial location memory, and context-independent associative fear memory formation. Finally, the effects of intra-vHipp PEA were blocked by a selective GPR55 receptor antagonist, CID160 and were dependent upon NMDA receptor transmission, directly in the vHipp. Conclusions: The present results add to a growing body of evidence demonstrating important functional roles for GPR55 signaling in cannabinoid-related neuronal and behavioral phenomena and underscore the potential for GPR55 signaling in the mediation of cannabinoid-related effects independently of the CB1/CB2 receptor systems.

  1. Family matters: Intergenerational and interpersonal processes of executive function and attentive behavior

    PubMed Central

    Deater-Deckard, Kirby

    2014-01-01

    Individual differences in self-regulation include executive function (EF) components that serve self-regulation of attentive behavior by modulating reactive responses to the environment. These factors “run in families”. The purpose of this review is to summarize a program of research that addresses familial inter-generational transmission and inter-personal processes in development. Self-regulation of attentive behavior involves inter-related aspects of executive function (EF) including attention, inhibitory control, and working memory. Individual differences in EF skills develop in systematic ways over childhood, resulting in moderately stable differences between people by early adolescence. Through complex gene-environment transactions, EF is transmitted across generations within parent-child relationships that provide powerful socialization and experiential contexts in which EF and related attentive behavior are forged and practiced. Families matter as parents regulate home environments and themselves as best they can while also supporting cognitive self-regulation of attentive behavior in their children. PMID:25197171

  2. Neuronal Representation of Social Information in the Medial Amygdala of Awake Behaving Mice.

    PubMed

    Li, Ying; Mathis, Alexander; Grewe, Benjamin F; Osterhout, Jessica A; Ahanonu, Biafra; Schnitzer, Mark J; Murthy, Venkatesh N; Dulac, Catherine

    2017-11-16

    The medial amygdala (MeA) plays a critical role in processing species- and sex-specific signals that trigger social and defensive behaviors. However, the principles by which this deep brain structure encodes social information is poorly understood. We used a miniature microscope to image the Ca 2+ dynamics of large neural ensembles in awake behaving mice and tracked the responses of MeA neurons over several months. These recordings revealed spatially intermingled subsets of MeA neurons with distinct temporal dynamics. The encoding of social information in the MeA differed between males and females and relied on information from both individual cells and neuronal populations. By performing long-term Ca 2+ imaging across different social contexts, we found that sexual experience triggers lasting and sex-specific changes in MeA activity, which, in males, involve signaling by oxytocin. These findings reveal basic principles underlying the brain's representation of social information and its modulation by intrinsic and extrinsic factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Social Involvement Modulates the Response to Novel and Adverse Life Events in Mice.

    PubMed

    Colnaghi, Luca; Clemenza, Kelly; Groleau, Sarah E; Weiss, Shira; Snyder, Anna M; Lopez-Rosas, Mariana; Levine, Amir A

    2016-01-01

    Epidemiological findings suggest that social involvement plays a major role in establishing resilience to adversity, however, the neurobiology by which social involvement confers protection is not well understood. Hypothesizing that social involvement confers resilience by changing the way adverse life events are encoded, we designed a series of behavioral tests in mice that utilize the presence or absence of conspecific cage mates in measuring response to novel and adverse events. We found that the presence of cage mates increased movement after exposure to a novel environment, increased time spent in the open arms of the elevated plus maze, and decreased freezing time after a foot shock as well as expedited fear extinction, therefore significantly changing the response to adversity. This is a first description of a mouse model for the effects of social involvement on adverse life events. Understanding how social involvement provides resilience to adversity may contribute to the future treatment and prevention of mental and physical illness.

  4. Rats selectively bred for low levels of play-induced 50 kHz vocalizations as a model for autism spectrum disorders: a role for NMDA receptors.

    PubMed

    Burgdorf, Jeffrey; Moskal, Joseph R; Brudzynski, Stefan M; Panksepp, Jaak

    2013-08-15

    Early childhood autism is characterized by deficits in social approach and play behaviors, socio-emotional relatedness, and communication/speech abnormalities, as well as repetitive behaviors. These core neuropsychological features of autism can be modeled in laboratory rats, and the results may be useful for drug discovery and therapeutic development. We review data that show that rats selectively bred for low rates of play-related pro-social ultrasonic vocalizations (USVs) can be used to model social deficit symptoms of autism. Low-line animals engage in less social contact time with conspecifics, show lower rates of play induced pro-social USVs, and show an increased proportion of non-frequency modulated (i.e. monotonous) ultrasonic vocalizations compared to non-selectively bred random-line animals. Gene expression patterns in the low-line animals show significant enrichment in autism-associated genes, and the NMDA receptor family was identified as a significant hub. Treatment of low-line animals with the NMDAR functional glycine site partial agonist, GLYX-13, rescued the deficits in play-induced pro-social 50-kHz USVs and reduced monotonous USVs. Since the NMDA receptor has been implicated in the genesis of autistic symptoms, it is possible that GLYX-13 may be of therapeutic value in the treatment of autism. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Effect of self-esteem on social interactions during the Ultimatum Game.

    PubMed

    Paz, V; Nicolaisen-Sobesky, E; Collado, E; Horta, S; Rey, C; Rivero, M; Berriolo, P; Díaz, M; Otón, M; Pérez, A; Fernández-Theoduloz, G; Cabana, Á; Gradin, V B

    2017-06-01

    Self-esteem is an attitude formed by self-evaluation based on positive and negative aspects of oneself. Low self-esteem is a risk factor for psychiatric disorders and is especially associated with social difficulties. Recently, behavioral economics has allowed the quantitative study of social interactions. We investigated the association between self-esteem and interpersonal problems and whether self-esteem modulates behavior and emotions during an economic task, the Ultimatum Game (UG). In this task participants accept or reject fair/unfair monetary offers from others. Low (LSE, n=40) and high (HSE, n=45) self-esteem participants were assessed in their interpersonal problems and psychiatric symptoms using self-reported questionnaires, and were compared on their decision making and emotional response during the UG. LSE was associated with depression and anxiety symptoms. In addition, LSE was associated with interpersonal problems, especially in the domains of socially inhibited, nonassertive, overly accommodating, self-sacrificing and cold/distant. During the UG, LSE women reported more anger towards unfair offers than HSE women. Our findings suggest that low self-esteem individuals experience high distress by interpersonal problems in several domains. Importantly, low self-esteem in women seems to be associated with an accentuated emotional response to unfair social exchanges. These results may contribute to treat social difficulties in this population. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  6. Rats selectively bred for low levels of play-induced 50 kHz vocalizations as a model for Autism Spectrum Disorders: a role for NMDA receptors

    PubMed Central

    Burgdorf, Jeffrey; Moskal, Joseph R.; Brudzynski, Stefan M.; Panksepp, Jaak

    2016-01-01

    Early childhood autism is characterized by deficits in social approach and play behaviors, socio-emotional relatedness, and communication/speech abnormalities, as well as repetitive behaviors. These core neuropsychological features of autism can be modeled in laboratory rats, and the results may be useful for drug discovery and therapeutic development. We review data that show that rats selectively bred for low rates of play-related pro-social ultrasonic vocalizations (USVs) can be used to model social deficit symptoms of autism. Low-line animals engage in less social contact time with conspecifics, show lower rates of play induced pro-social USVs, and show an increased proportion of non-frequency modulated (i.e. monotonous) ultrasonic vocalizations compared to non-selectively bred random-line animals. Gene expression patterns in the low-line animals show significant enrichment in autism-associated genes, and the NMDA receptor family was identified as a significant hub. Treatment of low-line animals with the NMDAR functional glycine site partial agonist, GLYX-13, rescued the deficits in play-induced pro-social 50-kHz USVs and reduced monotonous USVs. Since the NMDA receptor has been implicated in the genesis of autistic symptoms, it is possible that GLYX-13 may be of therapeutic value in the treatment of autism. PMID:23623884

  7. Design and development of biomimetic quadruped robot for behavior studies of rats and mice.

    PubMed

    Ishii, Hiroyuki; Masuda, Yuichi; Miyagishima, Syunsuke; Fumino, Shogo; Takanishi, Atsuo; Laschi, Cecilia; Mazzolai, Barbara; Mattoli, Virgilio; Dario, Paolo

    2009-01-01

    This paper presents the design and development of a novel biomimetic quadruped robot for behavior studies of rats and mice. Many studies have been performed using these animals for the purpose of understanding human mind in psychology, pharmacology and brain science. In these fields, several experiments on social interactions have been performed using rats as basic studies of mental disorders or social learning. However, some researchers mention that the experiments on social interactions using animals are poorly-reproducible. Therefore, we consider that reproducibility of these experiments can be improved by using a robotic agent that interacts with an animal subject. Thus, we developed a small quadruped robot WR-2 (Waseda Rat No. 2) that behaves like a real rat. Proportion and DOF arrangement of WR-2 are designed based on those of a mature rat. This robot has four 3-DOF legs, a 2-DOF waist and a 1-DOF neck. A microcontroller and a wireless communication module are implemented on it. A battery is also implemented. Thus, it can walk, rear by limbs and groom its body.

  8. Effect of Psilocybin on Empathy and Moral Decision-Making.

    PubMed

    Pokorny, Thomas; Preller, Katrin H; Kometer, Michael; Dziobek, Isabel; Vollenweider, Franz X

    2017-09-01

    Impaired empathic abilities lead to severe negative social consequences and influence the development and treatment of several psychiatric disorders. Furthermore, empathy has been shown to play a crucial role in moral and prosocial behavior. Although the serotonin system has been implicated in modulating empathy and moral behavior, the relative contribution of the various serotonin receptor subtypes is still unknown. We investigated the acute effect of psilocybin (0.215 mg/kg p.o.) in healthy human subjects on different facets of empathy and hypothetical moral decision-making using the multifaceted empathy test (n=32) and the moral dilemma task (n=24). Psilocybin significantly increased emotional, but not cognitive empathy compared with placebo, and the increase in implicit emotional empathy was significantly associated with psilocybin-induced changed meaning of percepts. In contrast, moral decision-making remained unaffected by psilocybin. These findings provide first evidence that psilocybin has distinct effects on social cognition by enhancing emotional empathy but not moral behavior. Furthermore, together with previous findings, psilocybin appears to promote emotional empathy presumably via activation of serotonin 2A/1A receptors, suggesting that targeting serotonin 2A/1A receptors has implications for potential treatment of dysfunctional social cognition. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  9. Oxytocin enhances inter-brain synchrony during social coordination in male adults

    PubMed Central

    Mu, Yan; Guo, Chunyan

    2016-01-01

    Recent brain imaging research has revealed oxytocin (OT) effects on an individual's brain activity during social interaction but tells little about whether and how OT modulates the coherence of inter-brain activity related to two individuals' coordination behavior. We developed a new real-time coordination game that required two individuals of a dyad to synchronize with a partner (coordination task) or with a computer (control task) by counting in mind rhythmically. Electroencephalography (EEG) was recorded simultaneously from a dyad to examine OT effects on inter-brain synchrony of neural activity during interpersonal coordination. Experiment 1 found that dyads showed smaller interpersonal time lags of counting and greater inter-brain synchrony of alpha-band neural oscillations during the coordination (vs control) task and these effects were reliably observed in female but not male dyads. Moreover, the increased alpha-band inter-brain synchrony predicted better interpersonal behavioral synchrony across all participants. Experiment 2, using a double blind, placebo-controlled between-subjects design, revealed that intranasal OT vs placebo administration in male dyads improved interpersonal behavioral synchrony in both the coordination and control tasks but specifically enhanced alpha-band inter-brain neural oscillations during the coordination task. Our findings provide first evidence that OT enhances inter-brain synchrony in male adults to facilitate social coordination. PMID:27510498

  10. Endogenous testosterone is associated with lower amygdala reactivity to angry faces and reduced aggressive behavior in healthy young women

    PubMed Central

    Buades-Rotger, Macià; Engelke, Christin; Beyer, Frederike; Keevil, Brian G.; Brabant, Georg; Krämer, Ulrike M.

    2016-01-01

    Testosterone and cortisol have been proposed to influence aggressive behavior by altering the neural processing of facial threat signals. However, this has not been investigated in direct social interactions. Here, we explored the joint impact of testosterone, cortisol, and brain reactivity to anger expressions on women’s reactive aggression in the Social Threat Aggression Paradigm (STAP). The STAP is a competitive reaction time task in which the purported opponent displays either an angry or a neutral facial expression at the beginning of each trial and delivers increasingly loud sound blasts to the participants, successfully provoking them. Strikingly, salivary testosterone at scan-time was negatively related to both aggression and basolateral amygdala (BLA) reactivity to angry faces, whereas cortisol had no effect. When the opponent looked angry, BLA-orbitofrontal coupling was reduced, and BLA reactivity was positively related to aggression. The latter relationship was fully mediated by bilateral superior temporal gyrus (STG) activation. Our results thus support previous neurobiological models of aggression, and extend them by demonstrating that fast amygdala responses to threat modulate STG activity in order to favor aggressive retaliation. Furthermore, our study agrees with recent evidence underscoring a fear-reducing and strategically prosocial effect of testosterone on human social behavior. PMID:27924836

  11. Bacterial Quorum Sensing and Microbial Community Interactions

    PubMed Central

    2018-01-01

    ABSTRACT Many bacteria use a cell-cell communication system called quorum sensing to coordinate population density-dependent changes in behavior. Quorum sensing involves production of and response to diffusible or secreted signals, which can vary substantially across different types of bacteria. In many species, quorum sensing modulates virulence functions and is important for pathogenesis. Over the past half-century, there has been a significant accumulation of knowledge of the molecular mechanisms, signal structures, gene regulons, and behavioral responses associated with quorum-sensing systems in diverse bacteria. More recent studies have focused on understanding quorum sensing in the context of bacterial sociality. Studies of the role of quorum sensing in cooperative and competitive microbial interactions have revealed how quorum sensing coordinates interactions both within a species and between species. Such studies of quorum sensing as a social behavior have relied on the development of “synthetic ecological” models that use nonclonal bacterial populations. In this review, we discuss some of these models and recent advances in understanding how microbes might interact with one another using quorum sensing. The knowledge gained from these lines of investigation has the potential to guide studies of microbial sociality in natural settings and the design of new medicines and therapies to treat bacterial infections. PMID:29789364

  12. Mild expression differences of MECP2 influencing aggressive social behavior

    PubMed Central

    Tantra, Martesa; Hammer, Christian; Kästner, Anne; Dahm, Liane; Begemann, Martin; Bodda, Chiranjeevi; Hammerschmidt, Kurt; Giegling, Ina; Stepniak, Beata; Castillo Venzor, Aracely; Konte, Bettina; Erbaba, Begun; Hartmann, Annette; Tarami, Asieh; Schulz-Schaeffer, Walter; Rujescu, Dan; Mannan, Ashraf U; Ehrenreich, Hannelore

    2014-01-01

    The X-chromosomal MECP2/Mecp2 gene encodes methyl-CpG-binding protein 2, a transcriptional activator and repressor regulating many other genes. We discovered in male FVB/N mice that mild (∼50%) transgenic overexpression of Mecp2 enhances aggression. Surprisingly, when the same transgene was expressed in C57BL/6N mice, transgenics showed reduced aggression and social interaction. This suggests that Mecp2 modulates aggressive social behavior. To test this hypothesis in humans, we performed a phenotype-based genetic association study (PGAS) in >1000 schizophrenic individuals. We found MECP2 SNPs rs2239464 (G/A) and rs2734647 (C/T; 3′UTR) associated with aggression, with the G and C carriers, respectively, being more aggressive. This finding was replicated in an independent schizophrenia cohort. Allele-specific MECP2mRNA expression differs in peripheral blood mononuclear cells by ∼50% (rs2734647: C > T). Notably, the brain-expressed, species-conserved miR-511 binds to MECP2 3′UTR only in T carriers, thereby suppressing gene expression. To conclude, subtle MECP2/Mecp2 expression alterations impact aggression. While the mouse data provides evidence of an interaction between genetic background and mild Mecp2 overexpression, the human data convey means by which genetic variation affects MECP2 expression and behavior. PMID:24648499

  13. Mild expression differences of MECP2 influencing aggressive social behavior.

    PubMed

    Tantra, Martesa; Hammer, Christian; Kästner, Anne; Dahm, Liane; Begemann, Martin; Bodda, Chiranjeevi; Hammerschmidt, Kurt; Giegling, Ina; Stepniak, Beata; Castillo Venzor, Aracely; Konte, Bettina; Erbaba, Begun; Hartmann, Annette; Tarami, Asieh; Schulz-Schaeffer, Walter; Rujescu, Dan; Mannan, Ashraf U; Ehrenreich, Hannelore

    2014-05-01

    The X-chromosomal MECP2/Mecp2 gene encodes methyl-CpG-binding protein 2, a transcriptional activator and repressor regulating many other genes. We discovered in male FVB/N mice that mild (~50%) transgenic overexpression of Mecp2 enhances aggression. Surprisingly, when the same transgene was expressed in C57BL/6N mice, transgenics showed reduced aggression and social interaction. This suggests that Mecp2 modulates aggressive social behavior. To test this hypothesis in humans, we performed a phenotype-based genetic association study (PGAS) in >1000 schizophrenic individuals. We found MECP2 SNPs rs2239464 (G/A) and rs2734647 (C/T; 3'UTR) associated with aggression, with the G and C carriers, respectively, being more aggressive. This finding was replicated in an independent schizophrenia cohort. Allele-specific MECP2 mRNA expression differs in peripheral blood mononuclear cells by ~50% (rs2734647: C > T). Notably, the brain-expressed, species-conserved miR-511 binds to MECP2 3'UTR only in T carriers, thereby suppressing gene expression. To conclude, subtle MECP2/Mecp2 expression alterations impact aggression. While the mouse data provides evidence of an interaction between genetic background and mild Mecp2 overexpression, the human data convey means by which genetic variation affects MECP2 expression and behavior.

  14. Scientific perspectives on music therapy.

    PubMed

    Hillecke, Thomas; Nickel, Anne; Bolay, Hans Volker

    2005-12-01

    What needs to be done on the long road to evidence-based music therapy? First of all, an adequate research strategy is required. For this purpose the general methodology for therapy research should be adopted. Additionally, music therapy needs a variety of methods of allied fields to contribute scientific findings, including mathematics, natural sciences, behavioral and social sciences, as well as the arts. Pluralism seems necessary as well as inevitable. At least two major research problems can be identified, however, that make the path stony: the problem of specificity and the problem of eclecticism. Neuroscientific research in music is giving rise to new ideas, perspectives, and methods; they seem to be promising prospects for a possible contribution to a theoretical and empirical scientific foundation for music therapy. Despite the huge heterogeneity of theoretical approaches in music therapy, an integrative model of working ingredients in music therapy is useful as a starting point for empirical studies in order to question what specifically works in music therapy. For this purpose, a heuristic model, consisting of five music therapy working factors (attention modulation, emotion modulation, cognition modulation, behavior modulation, and communication modulation) has been developed by the Center for Music Therapy Research (Viktor Dulger Institute) in Heidelberg. Evidence shows the effectiveness of music therapy for treating certain diseases, but the question of what it is in music therapy that works remains largely unanswered. The authors conclude with some questions to neuroscientists, which we hope may help elucidate relevant aspects of a possible link between the two disciplines.

  15. Social Media Use and HIV-Related Risk Behaviors in Young Black and Latino Gay and Bi Men and Transgender Individuals in New York City: Implications for Online Interventions.

    PubMed

    Patel, Viraj V; Masyukova, Mariya; Sutton, Desmond; Horvath, Keith J

    2016-04-01

    Urban young men who have sex with men (YMSM) and transgender women continue to experience high rates of new HIV infections in the USA, yet most of this population is not reached by current prevention interventions. The rate of Internet and social media use among youth is high. However, continually updated understanding of the associations between social media access and use and HIV risk behaviors is needed to reach and tailor technology-delivered interventions for those most vulnerable to HIV-racially and ethnically diverse urban YMSM and transgender persons. Thus, we conducted an in-person, venue-based cross-sectional survey among young gay, bisexual, and transgender individuals at locations primarily visited by Black and Latino gay and bisexual and transgender individuals in New York City to understand social media use and how it may relate to HIV risk behaviors to inform social media-based interventions. Among 102 primarily Black and Latino gay and bisexual men (75.5 %) and transgender women (19.6 %), over 90 % were under 30 years of age, 18.6 % reported homelessness in the past 6 months, and 10.8 % reported having HIV. All participants used social media, most accessed these platforms most often via a mobile device (67.6 %) and most logged on multiple times per day (87.3 %). Participants used social media to seek sex partners (56.7 %), exchange sex for money or clothes (19.6 %), and exchange sex for drugs (9.8 %). These results confirm prior studies demonstrating the feasibility of using social media platforms to reach at-risk, urban youth. Of particular concern is the association between recent STI and exchanging sex for money/clothes and drugs. Interventions using social media for young, urban minority MSM and transgender populations should incorporate risk reduction modules addressing exchange partners and promote frequent and regular HIV/STI testing.

  16. Behavioral genomics of honeybee foraging and nest defense

    NASA Astrophysics Data System (ADS)

    Hunt, Greg J.; Amdam, Gro V.; Schlipalius, David; Emore, Christine; Sardesai, Nagesh; Williams, Christie E.; Rueppell, Olav; Guzmán-Novoa, Ernesto; Arechavaleta-Velasco, Miguel; Chandra, Sathees; Fondrk, M. Kim; Beye, Martin; Page, Robert E.

    2007-04-01

    The honeybee has been the most important insect species for study of social behavior. The recently released draft genomic sequence for the bee will accelerate honeybee behavioral genetics. Although we lack sufficient tools to manipulate this genome easily, quantitative trait loci (QTLs) that influence natural variation in behavior have been identified and tested for their effects on correlated behavioral traits. We review what is known about the genetics and physiology of two behavioral traits in honeybees, foraging specialization (pollen versus nectar), and defensive behavior, and present evidence that map-based cloning of genes is more feasible in the bee than in other metazoans. We also present bioinformatic analyses of candidate genes within QTL confidence intervals (CIs). The high recombination rate of the bee made it possible to narrow the search to regions containing only 17-61 predicted peptides for each QTL, although CIs covered large genetic distances. Knowledge of correlated behavioral traits, comparative bioinformatics, and expression assays facilitated evaluation of candidate genes. An overrepresentation of genes involved in ovarian development and insulin-like signaling components within pollen foraging QTL regions suggests that an ancestral reproductive gene network was co-opted during the evolution of foraging specialization. The major QTL influencing defensive/aggressive behavior contains orthologs of genes involved in central nervous system activity and neurogenesis. Candidates at the other two defensive-behavior QTLs include modulators of sensory signaling ( Am5HT 7 serotonin receptor, AmArr4 arrestin, and GABA-B-R1 receptor). These studies are the first step in linking natural variation in honeybee social behavior to the identification of underlying genes.

  17. Early Social Enrichment Improves Social Motivation and Skills in a Monogenic Mouse Model of Autism, the Oprm1 (-/-) Mouse.

    PubMed

    Garbugino, Luciana; Centofante, Eleonora; D'Amato, Francesca R

    2016-01-01

    Environmental enrichment has been proven to have positive effects on both behavioral and physiological phenotypes in rodent models of mental and neurodevelopmental disorders. In this study, we used mice lacking the µ-opioid receptor gene (Oprm1 (-/-)), which has been shown to have deficits in social competence and communication, to assess the hypothesis that early enrichment can ameliorate sociability during development and adulthood. Due to the immaturity of sensory-motor capabilities of young pups, we chose as environmental stimulation a second lactating female, who provided extra maternal care and stimulation from birth. The results show that double mothering normalized the abnormal response to maternal separation in Oprm1 (-/-) pups and increased social motivation in juveniles and adult knockout mice. Additionally, we observed that Oprm1 (-/-) mice act as less attractive social partners than wild types, which suggests that social motivation can be modulated by the stimulus employed. This experiment supports previous findings suggesting that early social environmental stimulation has profound and long-term beneficial effects, encouraging the use of nonpharmacological interventions for the treatment of social defects in neurodevelopmental diseases.

  18. Effects of intranasal and peripheral oxytocin or gastrin-releasing peptide administration on social interaction and corticosterone levels in rats.

    PubMed

    Kent, Pamela; Awadia, Alisha; Zhao, Leah; Ensan, Donna; Silva, Dinuka; Cayer, Christian; James, Jonathan S; Anisman, Hymie; Merali, Zul

    2016-02-01

    The intranasal route of drug administration has gained increased popularity as it is thought to allow large molecules, such as peptide hormones, more direct access to the brain, while limiting systemic exposure. Several studies have investigated the effects of intranasal oxytocin administration in humans as this peptide is associated with prosocial behavior. There are, however, few preclinical studies investigating the effects of intranasal oxytocin administration in rodents. Oxytocin modulates hypothalamic-pituitary-adrenal (HPA) axis functioning and it has been suggested that oxytocin's ability to increase sociability may occur through a reduction in stress reactivity. Another peptide that appears to influence both social behavior and HPA axis activity is gastrin-releasing peptide (GRP), but it is not known if these GRP-induced effects are related. With this in mind, in the present study, we assessed the effects of intranasal and intraperitoneal oxytocin and GRP administration on social interaction and release of corticosterone in rats. Intranasal and intraperitoneal administration of 20, but not 5 μg, of oxytocin significantly increased social interaction, whereas intranasal and peripheral administration of GRP (20 but not 5 μg) significantly decreased levels of social interaction. In addition, while intranasal oxytocin (20 μg) had no effect on blood corticosterone levels, a marked increase in blood corticosterone levels was observed following intraperitoneal oxytocin administration. With GRP, intranasal (20 μg) but not peripheral administration increased corticosterone levels. These findings provide further evidence that intranasal peptide delivery can induce behavioral alterations in rodents which is consistent with findings from human studies. In addition, the peptide-induced changes in social interaction were not linked to fluctuations in corticosterone levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A randomized controlled pilot study of the effectiveness of occupational therapy for children with sensory modulation disorder.

    PubMed

    Miller, Lucy Jane; Coll, Joseph R; Schoen, Sarah A

    2007-01-01

    A pilot randomized controlled trial (RCT) of the effectiveness of occupational therapy using a sensory integration approach (OT-SI) was conducted with children who had sensory modulation disorders (SMDs). This study evaluated the effectiveness of three treatment groups. In addition, sample size estimates for a large scale, multisite RCT were calculated. Twenty-four children with SMD were randomly assigned to one of three treatment conditions; OT-SI, Activity Protocol, and No Treatment. Pretest and posttest measures of behavior, sensory and adaptive functioning, and physiology were administered. The OT-SI group, compared to the other two groups, made significant gains on goal attainment scaling and on the Attention subtest and the Cognitive/Social composite of the Leiter International Performance Scale-Revised. Compared to the control groups, OT-SI improvement trends on the Short Sensory Profile, Child Behavior Checklist, and electrodermal reactivity were in the hypothesized direction. Findings suggest that OT-SI may be effective in ameliorating difficulties of children with SMD.

  20. Social hierarchies and emotions: cortical prefrontal activity, facial feedback (EMG), and cognitive performance in a dynamic interaction.

    PubMed

    Balconi, Michela; Pagani, Silvia

    2015-04-01

    In the present research, we manipulated the perceived superior/inferior status during a competitive cognitive task. In two experiments, we created an explicit and strongly reinforced social hierarchy based on incidental rating on an attentional task. Based on our hypotheses, social rank may influence nonverbal cues (such as facial mimic related to emotional response), cortical lateralized activity in frontal areas (brain oscillations), and cognitive outcomes in response to rank modulation. Thus, the facial mimic (corrugators vs. zygomatic muscle activity), frequency bands (delta, theta, alpha, beta), and real cognitive performance [(error rate (ER); response times (RTs)] were considered. Specifically, a peer-group comparison was enrolled and an improved (experiment 1, N = 29) or decreased (experiment 2, N = 31) performance was artificially manipulated by the experimenter. Results showed a significant improved cognitive performance (decreased ER and RTs), an increased zygomatic activity (positive emotions), and a more prefrontal left-lateralized cortical response in the case of a perceived increased social ranking. On the contrary, a significant decreased cognitive performance (increased ER and RTs), an increased corrugators activity (negative emotions), and a less left-lateralized cortical response were observed as a consequence of a perceived decreased social ranking. Moreover, the correlational values revealed a consistent trend between behavioral (RTs) and EMG and EEG measures for both experiments. The present results suggest that social status not only guides social behavior, but it also influences cognitive processes and subjects' performance.

  1. Social Defeat: Impact on Fear Extinction and Amygdala-Prefrontal Cortical Theta Synchrony in 5-HTT Deficient Mice

    PubMed Central

    Narayanan, Venu; Heiming, Rebecca S.; Jansen, Friederike; Lesting, Jörg; Sachser, Norbert; Pape, Hans-Christian; Seidenbecher, Thomas

    2011-01-01

    Emotions, such as fear and anxiety, can be modulated by both environmental and genetic factors. One genetic factor is for example the genetically encoded variation of the serotonin transporter (5-HTT) expression. In this context, the 5-HTT plays a key role in the regulation of central 5-HT neurotransmission, which is critically involved in the physiological regulation of emotions including fear and anxiety. However, a systematic study which examines the combined influence of environmental and genetic factors on fear-related behavior and the underlying neurophysiological basis is missing. Therefore, in this study we used the 5-HTT-deficient mouse model for studying emotional dysregulation to evaluate consequences of genotype specific disruption of 5-HTT function and repeated social defeat for fear-related behaviors and corresponding neurophysiological activities in the lateral amygdala (LA) and infralimbic region of the medial prefrontal cortex (mPFC) in male 5-HTT wild-type (+/+), homo- (−/−) and heterozygous (+/−) mice. Naive males and experienced losers (generated in a resident-intruder paradigm) of all three genotypes, unilaterally equipped with recording electrodes in LA and mPFC, underwent a Pavlovian fear conditioning. Fear memory and extinction of conditioned fear was examined while recording neuronal activity simultaneously with fear-related behavior. Compared to naive 5-HTT+/+ and +/− mice, 5-HTT−/− mice showed impaired recall of extinction. In addition, 5-HTT−/− and +/− experienced losers showed delayed extinction learning and impaired recall of extinction. Impaired behavioral responses were accompanied by increased theta synchronization between the LA and mPFC during extinction learning in 5-HTT-/− and +/− losers. Furthermore, impaired extinction recall was accompanied with increased theta synchronization in 5-HTT−/− naive and in 5-HTT−/− and +/− loser mice. In conclusion, extinction learning and memory of conditioned fear can be modulated by both the 5-HTT gene activity and social experiences in adulthood, accompanied by corresponding alterations of the theta activity in the amygdala-prefrontal cortex network. PMID:21818344

  2. Histone deacetylase 5 modulates the effects of social adversity in early life on cocaine-induced behavior.

    PubMed

    Valzania, Alessandro; Catale, Clarissa; Viscomi, Maria Teresa; Puglisi-Allegra, Stefano; Carola, Valeria

    2017-03-15

    Psychostimulants induce stable changes in neural plasticity and behavior in a transcription-dependent manner. Further, stable cellular changes require transcription that is regulated by epigenetic mechanisms that alter chromatin structure, such as histone acetylation. This mechanism is typically catalyzed by enzymes with histone acetyltransferase or histone deacetylase (HDAC) activity. Class IIa HDACs are notable for their high expression in important regions of the brain reward circuitry and their neural activity-dependent shuttling in and out of the cell nucleus. In particular, HDAC5 has an important modulatory function in cocaine-induced behaviors and social defeat stress-induced effects. Although a mutation in HDAC5 has been shown to cause hypersensitive responses to chronic cocaine use whether this response worsens during chronic early life stress has not been examined yet. In this study, we exposed mouse pups to two different early life stress paradigms (social isolation, ESI, and social threat, EST) to determine whether the heterozygous null mutation in HDAC5 (HDAC5+/-) moderated the effects of exposure to stress in early life on adult cocaine-induced conditioned place preference (CPP). Notably, HDAC5+/- mice that had been exposed to ESI were more susceptible to developing cocaine-induced CPP and more resistant to extinguishing this behavior. The same effect was not observed for HDAC5+/- mice experiencing EST, suggesting that only ESI induces behavioral changes by acting precisely through HDAC5-related biological pathways. Finally, an analysis of c-Fos expression performed to discover the neurobiological substrates that mediated this phenotype, identified the dorsolateral striatum as an important structure that mediates the interaction between HDAC5 mutation and ESI. Our data demonstrate that decreased HDAC5 function is able to exacerbate the long-term behavioral effects of adverse rearing environment in mouse. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Exposure to advertisement calls of reproductive competitors activates vocal-acoustic and catecholaminergic neurons in the plainfin midshipman fish, Porichthys notatus.

    PubMed

    Petersen, Christopher L; Timothy, Miky; Kim, D Spencer; Bhandiwad, Ashwin A; Mohr, Robert A; Sisneros, Joseph A; Forlano, Paul M

    2013-01-01

    While the neural circuitry and physiology of the auditory system is well studied among vertebrates, far less is known about how the auditory system interacts with other neural substrates to mediate behavioral responses to social acoustic signals. One species that has been the subject of intensive neuroethological investigation with regard to the production and perception of social acoustic signals is the plainfin midshipman fish, Porichthys notatus, in part because acoustic communication is essential to their reproductive behavior. Nesting male midshipman vocally court females by producing a long duration advertisement call. Females localize males by their advertisement call, spawn and deposit all their eggs in their mate's nest. As multiple courting males establish nests in close proximity to one another, the perception of another male's call may modulate individual calling behavior in competition for females. We tested the hypothesis that nesting males exposed to advertisement calls of other males would show elevated neural activity in auditory and vocal-acoustic brain centers as well as differential activation of catecholaminergic neurons compared to males exposed only to ambient noise. Experimental brains were then double labeled by immunofluorescence (-ir) for tyrosine hydroxylase (TH), an enzyme necessary for catecholamine synthesis, and cFos, an immediate-early gene product used as a marker for neural activation. Males exposed to other advertisement calls showed a significantly greater percentage of TH-ir cells colocalized with cFos-ir in the noradrenergic locus coeruleus and the dopaminergic periventricular posterior tuberculum, as well as increased numbers of cFos-ir neurons in several levels of the auditory and vocal-acoustic pathway. Increased activation of catecholaminergic neurons may serve to coordinate appropriate behavioral responses to male competitors. Additionally, these results implicate a role for specific catecholaminergic neuronal groups in auditory-driven social behavior in fishes, consistent with a conserved function in social acoustic behavior across vertebrates.

  4. Exposure to Advertisement Calls of Reproductive Competitors Activates Vocal-Acoustic and Catecholaminergic Neurons in the Plainfin Midshipman Fish, Porichthys notatus

    PubMed Central

    Petersen, Christopher L.; Timothy, Miky; Kim, D. Spencer; Bhandiwad, Ashwin A.; Mohr, Robert A.; Sisneros, Joseph A.; Forlano, Paul M.

    2013-01-01

    While the neural circuitry and physiology of the auditory system is well studied among vertebrates, far less is known about how the auditory system interacts with other neural substrates to mediate behavioral responses to social acoustic signals. One species that has been the subject of intensive neuroethological investigation with regard to the production and perception of social acoustic signals is the plainfin midshipman fish, Porichthys notatus, in part because acoustic communication is essential to their reproductive behavior. Nesting male midshipman vocally court females by producing a long duration advertisement call. Females localize males by their advertisement call, spawn and deposit all their eggs in their mate’s nest. As multiple courting males establish nests in close proximity to one another, the perception of another male’s call may modulate individual calling behavior in competition for females. We tested the hypothesis that nesting males exposed to advertisement calls of other males would show elevated neural activity in auditory and vocal-acoustic brain centers as well as differential activation of catecholaminergic neurons compared to males exposed only to ambient noise. Experimental brains were then double labeled by immunofluorescence (-ir) for tyrosine hydroxylase (TH), an enzyme necessary for catecholamine synthesis, and cFos, an immediate-early gene product used as a marker for neural activation. Males exposed to other advertisement calls showed a significantly greater percentage of TH-ir cells colocalized with cFos-ir in the noradrenergic locus coeruleus and the dopaminergic periventricular posterior tuberculum, as well as increased numbers of cFos-ir neurons in several levels of the auditory and vocal-acoustic pathway. Increased activation of catecholaminergic neurons may serve to coordinate appropriate behavioral responses to male competitors. Additionally, these results implicate a role for specific catecholaminergic neuronal groups in auditory-driven social behavior in fishes, consistent with a conserved function in social acoustic behavior across vertebrates. PMID:23936438

  5. Phasic dopamine release in the nucleus accumbens in response to pro-social 50 kHz ultrasonic vocalizations in rats.

    PubMed

    Willuhn, Ingo; Tose, Amanda; Wanat, Matthew J; Hart, Andrew S; Hollon, Nick G; Phillips, Paul E M; Schwarting, Rainer K W; Wöhr, Markus

    2014-08-06

    Rats emit ultrasonic vocalizations (USVs) that are thought to serve as situation-dependent affective signals and accomplish important communicative functions. In appetitive situations, rats produce 50 kHz USVs, whereas 22 kHz USVs occur in aversive situations. Reception of 50 kHz USVs induces social approach behavior, while 22 kHz USVs lead to freezing behavior. These opposite behavioral responses are paralleled by distinct brain activation patterns, with 50 kHz USVs, but not 22 kHz USVs, activating neurons in the nucleus accumbens (NAcc). The NAcc mediates appetitive behavior and is critically modulated by dopaminergic afferents that are known to encode the value of reward. Therefore, we hypothesized that 50 kHz USVs, but not 22 kHz USVs, elicit NAcc dopamine release. While recording dopamine signaling with fast-scan cyclic voltammetry, freely moving rats were exposed to playback of four acoustic stimuli via an ultrasonic speaker in random order: (1) 50 kHz USVs, (2) 22 kHz USVs, (3) time- and amplitude-matched white noise, and (4) background noise. Only presentation of 50 kHz USVs induced phasic dopamine release and elicited approach behavior toward the speaker. Both of these effects, neurochemical and behavioral, were most pronounced during initial playback, but then declined rapidly with subsequent presentations, indicating a close temporal relationship between the two measures. Moreover, the magnitudes of these effects during initial playback were significantly correlated. Collectively, our findings show that NAcc dopamine release encodes pro-social 50 kHz USVs, but not alarming 22 kHz USVs. Thus, our results support the hypothesis that these call types are processed in distinct neuroanatomical regions and establish a functional link between pro-social communicative signals and reward-related neurotransmission. Copyright © 2014 the authors 0270-6474/14/3410616-08$15.00/0.

  6. Propagation of maternal behavior across generations is associated with changes in non-maternal cognitive and behavioral processes.

    PubMed

    Lovic, Vedran; Fleming, Alison S

    2015-08-01

    Over a number of years we have studied the phenomenology of maternal behavior from endocrine, neural, experiential, and ontogenetic perspectives. Here, we focus on the effects of early life experiences with and without the mother on subsequent maternal and non-maternal behaviors of the offspring. We have used an artificial rearing procedure, which entails removing rat pups from their mother and raising them in isolation, while controlling and manipulating several aspects of their upbringing. As adults, mother-reared (MR) and artificially-reared (AR) rats are assessed on their own maternal behavior, as well several other behaviors. While both AR and MR rats nurse and successfully wean their young, the AR rats spend less time licking, grooming, and crouching over their young. Hence, being raised in social isolation does not seem to affect primary maternal motivational dynamics. Instead, isolation rearing produces alterations in the ongoing execution of the behavior and its effective organization. Here, we present evidence that changes in maternal behavior, as a result of social isolation from mother and siblings, are due to changes in top-down (e.g., sustained attention, flexibility) and bottom-up process (e.g., increased stimulus-driven behavior). These changes are likely due to alterations in brain dopamine systems, which are sensitive to early life manipulations and are modulators of bottom-up and top-down processes. Finally, we draw parallels between the rat and human maternal behavior. This article is part of a Special Issue entitled: In Honor of Jerry Hogan. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Looking for prosocial genes: ITRAQ analysis of proteins involved in MDMA-induced sociability in mice.

    PubMed

    Kuteykin-Teplyakov, Konstantin; Maldonado, Rafael

    2014-11-01

    Social behavior plays a fundamental role in life of many animal species, allowing the interaction between individuals and sharing of experiences, needs, and goals across them. In humans, some neuropsychiatric diseases, including anxiety, posttraumatic stress disorder and autism spectrum disorders, are often characterized by impaired sociability. Here we report that N-Methyl-3,4-methylenedioxyamphetamine (MDMA, "Ecstasy") at low dose (3mg/kg) has differential effects on mouse social behavior. In some animals, MDMA promotes sociability without hyperlocomotion, whereas in other mice it elevates locomotor activity without affecting sociability. Both WAY-100635, a selective antagonist of 5-HT1A receptor, and L-368899, a selective oxytocin receptor antagonist, abolish prosocial effects of MDMA. Differential quantitative analysis of brain proteome by isobaric tag for relative and absolute quantification technology (iTRAQ) revealed 21 specific proteins that were highly correlated with sociability, and allowed to distinguish between entactogenic prosocial and hyperlocomotor effects of MDMA on proteome level. Our data suggest particular relevance of neurotransmission mediated by GABA B receptor, as well as proteins involved in energy maintenance for MDMA-induced sociability. Functional association network for differentially expressed proteins in cerebral cortex, hippocampus and amygdala were identified. These results provide new information for understanding the neurobiological substrate of sociability and may help to discover new therapeutic approaches to modulate social behavior in patients suffering from social fear and low sociability. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  8. Difference in neural response to social exclusion observation and subsequent altruism between adolescents and adults.

    PubMed

    Tousignant, Béatrice; Eugène, Fanny; Sirois, Katia; Jackson, Philip L

    2017-04-13

    Empathy and prosocial behaviors toward peers promote successful social development and creation of significant long-term relationships, but surprisingly little is known about the maturation of these skills during the period of adolescence. As the majority of studies have used questionnaires or pain observation paradigms, it remains unknown whether the empathic response of adolescents differs from that of adults in a paradigm that is closer to everyday life. In the current study, fMRI was used to examine the neural correlates of social exclusion observation and subsequent prosocial behavior in 20 adolescents (aged 12-17 years) and 20 adults (aged 22-30 years) while playing a ball-tossing game with what they believed to be real individuals. Observing someone being excluded compared to observing equal inclusion of all players elicited a significantly higher activation of the IFG (pars triangularis) in adults compared to adolescents. When given the opportunity to directly help the excluded player during the game, adolescents showed significantly less prosocial behavior than adults, which was underpinned by a significantly lower activity in the right temporoparietal junction, medial/dorsomedial prefrontal cortex and fusiform face area. These findings might indicate that adolescents have a lower propensity to take the victim's perspective and share his or her distress when witnessing social exclusion, which leads to a lower altruistic motivation to help. The factors that could generate what can be interpreted as a downward modulation of empathy during adolescence are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Introduction of the human AVPR1A gene substantially alters brain receptor expression patterns and enhances aspects of social behavior in transgenic mice.

    PubMed

    Charles, Rhonda; Sakurai, Takeshi; Takahashi, Nagahide; Elder, Gregory A; Gama Sosa, Miguel A; Young, Larry J; Buxbaum, Joseph D

    2014-08-01

    Central arginine vasopressin receptor 1A (AVPR1A) modulates a wide range of behaviors, including stress management and territorial aggression, as well as social bonding and recognition. Inter- and intra-species variations in the expression pattern of AVPR1A in the brain and downstream differential behavioral phenotypes have been attributed to differences in the non-coding regions of the AVPR1A gene, including polymorphic elements within upstream regulatory areas. Gene association studies have suggested a link between AVPR1A polymorphisms and autism, and AVPR1A has emerged as a potential pharmacological target for treatment of social cognitive impairments and mood and anxiety disorders. To further investigate the genetic mechanism giving rise to species differences in AVPR1A expression patterns and associated social behaviors, and to create a preclinical mouse model useful for screening drugs targeting AVPR1A, we engineered and extensively characterized bacterial artificial chromosome (BAC) transgenic mice harboring the entire human AVPR1A locus with the surrounding regulatory elements. Compared with wild-type animals, the humanized mice displayed a more widely distributed ligand-AVPR1A binding pattern, which overlapped with that of primates. Furthermore, humanized AVPR1A mice displayed increased reciprocal social interactions compared with wild-type animals, but no differences in social approach and preference for social novelty were observed. Aspects of learning and memory, specifically novel object recognition and spatial relocation recognition, were unaffected. The biological alterations in humanized AVPR1A mice resulted in the rescue of the prepulse inhibition impairments that were observed in knockout mice, indicating conserved functionality. Although further behavioral paradigms and additional cohorts need to be examined in humanized AVPR1A mice, the results demonstrate that species-specific variations in the genomic content of regulatory regions surrounding the AVPR1A locus are responsible for differential receptor protein expression patterns across species and that they are likely to contribute to species-specific behavioral variation. The humanized AVPR1A mouse is a potential preclinical model for further understanding the regulation of receptor gene expression and the impact of variation in receptor expression on behaviors, and should be useful for screening drugs targeting human AVPR1A, taking advantage of the expression of human AVPR1A in human-relevant brain regions. © 2014. Published by The Company of Biologists Ltd.

  10. Economic Education in the Social Studies Methods Course. A 12-Hour Instructional Module for Elementary Methods Professors.

    ERIC Educational Resources Information Center

    Williams, Elmer; Dalton, Don

    This 12-hour module of instruction is designed to help undergraduates in social studies methods courses integrate economics education into the elementary school social studies curriculum. The major purposes of the module are to (1) demonstrate how economics concepts can be integrated into social studies instruction, (2) reinforce or extend teacher…

  11. Dopamine Modulates Egalitarian Behavior In Humans

    PubMed Central

    Sáez, Ignacio; Zhu, Lusha; Set, Eric; Kayser, Andrew; Hsu, Ming

    2015-01-01

    SUMMARY Egalitarian motives form a powerful force in promoting prosocial behavior and enabling large-scale cooperation in the human species [1]. At the neural level, there is substantial, albeit correlational, evidence suggesting a link between dopamine and such behavior [2, 3]. However, important questions remain about the specific role of dopamine in setting or modulating behavioral sensitivity to prosocial concerns. Here, using a combination of pharmacological tools and economic games, we provide critical evidence for a causal involvement of dopamine in human egalitarian tendencies. Specifically, using the brain-penetrant catechol-O-methyl transferase (COMT) inhibitor tolcapone [4, 5], we investigated the causal relationship between dopaminergic mechanisms and two prosocial concerns at the core of a number of widely used economic games: (i) the extent to which individuals directly value the material payoffs of others, i.e., generosity, and (ii) the extent to which they are averse to differences between their own payoffs and those of others, i.e., inequity. We found that dopaminergic augmentation via COMT inhibition increased egalitarian tendencies in participants who played an extended version of the dictator game [6]. Strikingly, computational modeling of choice behavior [7] revealed that tolcapone exerted selective effects on inequity aversion, and not on other computational components such as the extent to which individuals directly value the material payoffs of others. Together, these data shed light on the causal relationship between neurochemical systems and human prosocial behavior, and have potential implications for our understanding of the complex array of social impairments accompanying neuropsychiatric disorders involving dopaminergic dysregulation. PMID:25802148

  12. OXTR polymorphism predicts social relationships through its effects on social temperament

    PubMed Central

    Wright, Aidan G. C.; Troxel, Wendy M.; Ferrell, Robert E.; Flory, Janine D.; Manuck, Stephen B.

    2015-01-01

    Humans have a fundamental need for strong interpersonal bonds, yet individuals differ appreciably in their degree of social integration. That these differences are also substantially heritable has spurred interest in biological mechanisms underlying the quality and quantity of individuals’ social relationships. We propose that polymorphic variation in the oxytocin receptor gene (OXTR) associates with complex social behaviors and social network composition through intermediate effects on negative affectivity and the psychological processing of socially relevant information. We tested a hypothesized social cascade from the molecular level (OXTR variation) to the social environment, through negative affectivity and inhibited sociality, in a sample of 1295 men and women of European American (N = 1081) and African American (N = 214) ancestry. Compared to European Americans having any T allele of rs1042778, individuals homozygous for the alternate G allele reported significantly lower levels of negative affectivity and inhibited sociality, which in turn predicted significantly higher levels of social support and a larger/more diverse social network. Moreover, the effect of rs1042778 variation on social support was fully accounted for by associated differences in negative affectivity and inhibited sociality. Results replicated in the African American sample. Findings suggest that OXTR variation modulates levels of social support via proximal impacts on individual temperament. PMID:25326040

  13. Serotonin rebalances cortical tuning and behavior linked to autism symptoms in 15q11-13 CNV mice

    PubMed Central

    Nakai, Nobuhiro; Nagano, Masatoshi; Saitow, Fumihito; Watanabe, Yasuhito; Kawamura, Yoshinobu; Kawamoto, Akiko; Tamada, Kota; Mizuma, Hiroshi; Onoe, Hirotaka; Watanabe, Yasuyoshi; Monai, Hiromu; Hirase, Hajime; Nakatani, Jin; Inagaki, Hirofumi; Kawada, Tomoyuki; Miyazaki, Taisuke; Watanabe, Masahiko; Sato, Yuka; Okabe, Shigeo; Kitamura, Kazuo; Kano, Masanobu; Hashimoto, Kouichi; Suzuki, Hidenori; Takumi, Toru

    2017-01-01

    Serotonin is a critical modulator of cortical function, and its metabolism is defective in autism spectrum disorder (ASD) brain. How serotonin metabolism regulates cortical physiology and contributes to the pathological and behavioral symptoms of ASD remains unknown. We show that normal serotonin levels are essential for the maintenance of neocortical excitation/inhibition balance, correct sensory stimulus tuning, and social behavior. Conversely, low serotonin levels in 15q dup mice (a model for ASD with the human 15q11-13 duplication) result in impairment of the same phenotypes. Restoration of normal serotonin levels in 15q dup mice revealed the reversibility of a subset of ASD-related symptoms in the adult. These findings suggest that serotonin may have therapeutic potential for discrete ASD symptoms. PMID:28691086

  14. Oxytocin modulates third-party sanctioning of selfish and generous behavior within and between groups.

    PubMed

    Daughters, Katie; Manstead, Antony S R; Ten Velden, Femke S; De Dreu, Carsten K W

    2017-03-01

    Human groups function because members trust each other and reciprocate cooperative contributions, and reward others' cooperation and punish their non-cooperation. Here we examined the possibility that such third-party punishment and reward of others' trust and reciprocation is modulated by oxytocin, a neuropeptide generally involved in social bonding and in-group (but not out-group) serving behavior. Healthy males and females (N=100) self-administered a placebo or 24 IU of oxytocin in a randomized, double-blind, between-subjects design. Participants were asked to indicate (incentivized, costly) their level of reward or punishment for in-group (outgroup) investors donating generously or fairly to in-group (outgroup) trustees, who back-transferred generously, fairly or selfishly. Punishment (reward) was higher for selfish (generous) investments and back-transfers when (i) investors were in-group rather than outgroup, and (ii) trustees were in-group rather than outgroup, especially when (iii) participants received oxytocin rather than placebo. It follows, first, that oxytocin leads individuals to ignore out-groups as long as out-group behavior is not relevant to the in-group and, second, that oxytocin contributes to creating and enforcing in-group norms of cooperation and trust. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Using Community-Based Participatory Research (CBPR) to Develop a Community-Level HIV Prevention Intervention for Latinas: A Local Response to a Global Challenge

    PubMed Central

    Rhodes, Scott D.; Kelley, Casey; Simán, Florence; Cashman, Rebecca; Alonzo, Jorge; McGuire, Jamie; Wellendorf, Teresa; Hinshaw, Kathy; Allen, Alex Boeving; Downs, Mario; Brown, Monica; Martínez, Omar; Duck, Stacy; Reboussin, Beth

    2013-01-01

    Introduction and Background The arsenal of interventions to reduce the disproportionate rates of HIV and sexually transmitted disease (STD) infection among Latinos in the United States lags behind what is available for other populations. The purpose of this project was to develop an intervention that builds on existing community strengths to promote sexual health among immigrant Latinas. Methods Our community-based participatory research (CBPR) partnership engaged in a multistep intervention development process. The steps were to (1) increase Latina participation in the existing partnership, (2) establish an intervention team, (3) review the existing sexual health literature, (4) explore health-related needs and priorities of Latinas, (5) narrow priorities based on what is important and changeable, (6) blend health behavior theory with Latinas’ lived experiences, (7) design an intervention conceptual model, (8) develop training modules and (9) resource materials, and (10) pretest and (11) revise the intervention. Results The MuJEReS intervention contains five modules to train Latinas to serve as lay health advisors (LHAs) known as “Comadres.” These modules synthesize locally collected data with other local and national data, blend health behavior theory with the lived experiences of immigrant Latinas, and harness a powerful existing community asset, namely, the informal social support Latinas provide one another. Conclusion This promising intervention is designed to meet the sexual health priorities of Latinas. It extends beyond HIV and STDs and frames disease prevention within a sexual health promotion framework. It builds on the strong, preexisting social networks of Latinas and the preexisting, culturally congruent roles of LHAs. PMID:22483581

  16. Game Theory, Conditional Preferences, and Social Influence

    PubMed Central

    Stirling, Wynn C.; Felin, Teppo

    2013-01-01

    Neoclassical noncooperative game theory is based on a simple, yet powerful synthesis of mathematical and logical concepts: unconditional and immutable preference orderings and individual rationality. Although this structure has proven useful for characterizing competitive multi-player behavior, its applicability to scenarios involving complex social relationships is problematic. In this paper we directly address this limitation by the introduction of a conditional preference structure that permits players to modulate their preference orderings as functions of the preferences of other players. Embedding this expanded preference structure in a formal and graphical framework provides a systematic approach for characterizing a complex society. The result is an influence network that allows conditional preferences to propagate through the community, resulting in an emergent social model which characterizes all of the social relationships that exist and which leads to solution concepts that account for both group and individual interests. The Ultimatum game is presented as an example of how social influence can be modeled with conditional preferences. PMID:23451078

  17. Game theory, conditional preferences, and social influence.

    PubMed

    Stirling, Wynn C; Felin, Teppo

    2013-01-01

    Neoclassical noncooperative game theory is based on a simple, yet powerful synthesis of mathematical and logical concepts: unconditional and immutable preference orderings and individual rationality. Although this structure has proven useful for characterizing competitive multi-player behavior, its applicability to scenarios involving complex social relationships is problematic. In this paper we directly address this limitation by the introduction of a conditional preference structure that permits players to modulate their preference orderings as functions of the preferences of other players. Embedding this expanded preference structure in a formal and graphical framework provides a systematic approach for characterizing a complex society. The result is an influence network that allows conditional preferences to propagate through the community, resulting in an emergent social model which characterizes all of the social relationships that exist and which leads to solution concepts that account for both group and individual interests. The Ultimatum game is presented as an example of how social influence can be modeled with conditional preferences.

  18. Oxytocin promotes altruistic punishment.

    PubMed

    Aydogan, Gökhan; Furtner, Nadja C; Kern, Bianca; Jobst, Andrea; Müller, Norbert; Kocher, Martin G

    2017-11-01

    The role of neuromodulators in the enforcement of cooperation is still not well understood. Here, we provide evidence that intranasal applied oxytocin, an important hormone for modulating social behavior, enhances the inclination to sanction free-riders in a social dilemma situation. Contrary to the notion of oxytocin being a pro-social hormone, we found that participants treated with oxytocin exhibited an amplification of self-reported negative social emotions such as anger towards free-riders, ultimately resulting in higher magnitude and frequency of punishment of free-riders compared to placebo. Furthermore, we found initial evidence that oxytocin contributes to the positive effects of a punishment institution by rendering cooperation preferable in the oxytocin condition for even the most selfish players when punishment was available. Together, these findings imply that the neural circuits underlying altruistic punishment are partly targeted by the oxytonergic system and highlight the importance of neuromodulators in group cohesion and norm enforcement within social groups. © The Author (2017). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. Catecholaminergic contributions to vocal communication signals.

    PubMed

    Matheson, Laura E; Sakata, Jon T

    2015-05-01

    Social context affects behavioral displays across a variety of species. For example, social context acutely influences the acoustic and temporal structure of vocal communication signals such as speech and birdsong. Despite the prevalence and importance of such social influences, little is known about the neural mechanisms underlying the social modulation of communication. Catecholamines are implicated in the regulation of social behavior and motor control, but the degree to which catecholamines influence vocal communication signals remains largely unknown. Using a songbird, the Bengalese finch, we examined the extent to which the social context in which song is produced affected immediate early gene expression (EGR-1) in catecholamine-synthesising neurons in the midbrain. Further, we assessed the degree to which administration of amphetamine, which increases catecholamine concentrations in the brain, mimicked the effect of social context on vocal signals. We found that significantly more catecholaminergic neurons in the ventral tegmental area and substantia nigra (but not the central grey, locus coeruleus or subcoeruleus) expressed EGR-1 in birds that were exposed to females and produced courtship song than in birds that produced non-courtship song in isolation. Furthermore, we found that amphetamine administration mimicked the effects of social context and caused many aspects of non-courtship song to resemble courtship song. Specifically, amphetamine increased the stereotypy of syllable structure and sequencing, the repetition of vocal elements and the degree of sequence completions. Taken together, these data highlight the conserved role of catecholamines in vocal communication across species, including songbirds and humans. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Putting it in Context: Linking Auditory Processing with Social Behavior Circuits in the Vertebrate Brain.

    PubMed

    Petersen, Christopher L; Hurley, Laura M

    2017-10-01

    Context is critical to the adaptive value of communication. Sensory systems such as the auditory system represent an important juncture at which information on physiological state or social valence can be added to communicative information. However, the neural pathways that convey context to the auditory system are not well understood. The serotonergic system offers an excellent model to address these types of questions. Serotonin fluctuates in the mouse inferior colliculus (IC), an auditory midbrain region important for species-specific vocalizations, during specific social and non-social contexts. Furthermore, serotonin is an indicator of the valence of event-based changes within individual social interactions. We propose a model in which the brain's social behavior network serves as an afferent effector of the serotonergic dorsal raphe nucleus in order to gate contextual release of serotonin in the IC. Specifically, discrete vasopressinergic nuclei within the hypothalamus and extended amygdala that project to the dorsal raphe are functionally engaged during contexts in which serotonin fluctuates in the IC. Since serotonin strongly influences the responses of IC neurons to social vocalizations, this pathway could serve as a feedback loop whereby integrative social centers modulate their own sources of input. The end result of this feedback would be to produce a process that is geared, from sensory input to motor output, toward responding appropriately to a dynamic external world. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  1. How Do Acquired Political Identities Influence Our Neural Processing toward Others within the Context of a Trust Game?

    PubMed Central

    Wu, Chien-Te; Fan, Yang-Teng; Du, Ye-Rong; Yang, Tien-Tun; Liu, Ho-Ling; Yen, Nai-Shing; Chen, Shu-Heng; Hsung, Ray-May

    2018-01-01

    Trust is essential for mutually beneficial human interactions in economic exchange and politics and people’s social identities notably have dramatic effects on trust behaviors toward others. Previous literature concerning social identities generally suggests that people tend to show in-group favoritism toward members who share the same identity. However, how our brains process signals of identity while facing uncertain situations in interpersonal interactions remains largely unclear. To address this issue, we performed an fMRI experiment with 54 healthy adults who belonged to two identity groups of opposing political orientations. The identity information of participants was extracted from a large-scale social survey on the 2012 Taiwan presidential election. Accordingly, participants were categorized as either the Kuomintang (KMT) or the Democratic Progressive Party (DPP) supporters. During the experiment, participants played trust games with computer agents with labels of the same or the opposing political identity. Interestingly, our results suggest that the behaviors of the two groups cannot be equally attributed to in-group favoritism. Behaviorally, only the DPP supporter group showed a significant trust preference toward in-group members, which did not hold for the KMT supporter group. Consistently, neurophysiological findings further revealed that only the DPP supporter group showed neuronal responses to both unexpected negative feedback from in-group members in anterior insula, temporoparietal junction, and dorsal lateral prefrontal cortex, as well as to unexpected rewards from out-group members in caudate. These findings therefore suggest that acquired identities play a more complex role in modulating people’s social expectation in interpersonal trust behaviors under identity-relevant contexts. PMID:29456496

  2. C-fos down-regulation inhibits testosterone-dependent male sexual behavior and the associated learning

    PubMed Central

    Niessen, Neville-Andrew; Balthazart, Jacques; Ball, Gregory F.; Charlier, Thierry D.

    2013-01-01

    Environmental stimulation results in an increased expression of transcription factors called immediate early genes (IEG) in specific neuronal populations. In male Japanese quail, copulation with a female increases the expression of the IEGs zenk and c-fos in the medial preoptic nucleus (POM), a key nucleus controlling male sexual behavior. The functional significance of this increased IEG expression that follows performance of copulatory behavior is unknown. We addressed this question by repeatedly quantifying the performance of appetitive (learned social proximity response) and consummatory (actual copulation) sexual behavior in castrated, testosterone-treated males that received daily intracerebroventricular injection of an antisense oligodeoxynucleotide targeting c-fos or control vehicle. Daily antisense injections significantly inhibited expression of copulatory behavior as well as acquisition of the learned social proximity response. A strong reduction of the proximity response was still observed in antisense-treated birds that copulated with a female, ruling out the indirect effect of the absence of interactions with females on the learning process. After a two-day interruption of behavioral testing but not of antisense injections, birds were submitted to a final copulatory test that confirmed the behavioral inhibition in antisense-injected birds. Brains were collected 90 min after the behavioral testing for quantification of c-fos immunoreactive cells. A significant reduction of the number of c-fos-positive cells in POM but not in other brain regions was observed following antisense injection. Together, data suggest that c-fos expression in POM modulates copulatory behavior and sexual learning in male quail. PMID:23895306

  3. Do Parents and Clinicians Agree on Ratings of Autism-Related Behaviors at 12 Months of Age? A Study of Infants at High and Low Risk for ASD.

    PubMed

    Macari, Suzanne L; Wu, Grace C; Powell, Kelly K; Fontenelle, Scuddy; Macris, Deanna M; Chawarska, Katarzyna

    2018-04-01

    Given the emphasis on early screening for ASD, it is crucial to examine the concordance between parent report and clinician observation of autism-related behaviors. Similar items were compared from the First Year Inventory (Baranek et al. First-Year Inventory (FYI) 2.0. University of North Carolina, Chapel Hill, 2003), a parent screener for ASD, and the ADOS-2 Toddler Module (Lord et al. 2013), a standardized ASD diagnostic tool. Measures were administered concurrently to 12-month-olds at high and low risk for ASD. Results suggest that clinicians and parents rated behaviors similarly. In addition, both informants rated high-risk infants as more impaired in several social-communication behaviors. Furthermore, the format of questions impacted agreement across observers. These findings have implications for the development of a new generation of screening instruments for ASD.

  4. Cortisol modulates men's affiliative responses to acute social stress.

    PubMed

    Berger, Justus; Heinrichs, Markus; von Dawans, Bernadette; Way, Baldwin M; Chen, Frances S

    2016-01-01

    The dominant characterization of the physiological and behavioral human stress reaction is the fight-or-flight response. On the other hand, it has been suggested that social affiliation during stressful times ("tend-and-befriend") also represents a common adaptive response to stress, particularly for women. In the current study, we investigate the extent to which men may also show affiliative responses following acute stress. In addition, we examine a potential neuroendocrine modulator of the hypothesized affiliative response. Eighty male students (forty dyads) were recruited to undergo either the Trier Social Stress Test for Groups (TSST-G) or a non-stressful control situation. Subsequently, participants completed a dyadic interaction task and were then asked to report their feelings of psychological closeness to their interaction partner. Although participants assigned to the stress condition did not differ overall on psychological closeness from participants assigned to the control condition, participants with high cortisol responses to the stressor showed significantly higher ratings of psychological closeness to their interaction partner than participants with low cortisol responses. Our findings suggest that men may form closer temporary bonds following stressful situations that are accompanied by a significant cortisol response. We suggest that the traditional characterization of the male stress response in terms of "fight-or-flight" may be incomplete, and that social affiliation may in fact represent a common, adaptive response to stress in men. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Specifying Software Behavior for Requirements and Design

    DTIC Science & Technology

    2013-01-01

    e.g., Behavior Hiding is comprised of the Function Driver and Shared Services modules. Blacked-out modules, which are concerned with mechanisms for...and Shared Services modules. “The Func- tion Driver Module consists of a set of modules called Func- tion Drivers; each Function Driver is the sole...system environment. Functions that capture the rules determining these output values specify that behavior. The Shared Services module concerns aspects of

  6. Brain mitochondrial bioenergetics change with rapid and prolonged shifts in aggression in the honey bee, Apis mellifera.

    PubMed

    Rittschof, Clare C; Vekaria, Hemendra J; Palmer, Joseph H; Sullivan, Patrick G

    2018-04-25

    Neuronal function demands high-level energy production, and as such, a decline in mitochondrial respiration characterizes brain injury and disease. A growing number of studies, however, link brain mitochondrial function to behavioral modulation in non-diseased contexts. In the honey bee, we show for the first time that an acute social interaction, which invokes an aggressive response, may also cause a rapid decline in brain mitochondrial bioenergetics. The degree and speed of this decline has only been previously observed in the context of brain injury. Furthermore, in the honey bee, age-related increases in aggressive tendency are associated with increased baseline brain mitochondrial respiration, as well as increased plasticity in response to metabolic fuel type in vitro Similarly, diet restriction and ketone body feeding, which commonly enhance mammalian brain mitochondrial function in vivo , cause increased aggression. Thus, even in normal behavioral contexts, brain mitochondria show a surprising degree of variation in function over both rapid and prolonged time scales, with age predicting both baseline function and plasticity in function. These results suggest that mitochondrial function is integral to modulating aggression-related neuronal signaling. We hypothesize that variation in function reflects mitochondrial calcium buffering activity, and that shifts in mitochondrial function signal to the neuronal soma to regulate gene expression and neural energetic state. Modulating brain energetic state is emerging as a critical component of the regulation of behavior in non-diseased contexts. © 2018. Published by The Company of Biologists Ltd.

  7. Negative emotional outcomes attenuate sense of agency over voluntary actions.

    PubMed

    Yoshie, Michiko; Haggard, Patrick

    2013-10-21

    Sense of agency (SoA) refers to the feeling that one's voluntary actions produce external sensory events [1, 2]. Several psychological theories hypothesized links between SoA and affective evaluation [3-6]. For example, people tend to attribute positive outcomes to their own actions, perhaps reflecting high-level narrative processes that enhance self-esteem [3]. Here we provide the first evidence that such emotional modulations also involve changes in the low-level sensorimotor basis of agency. The intentional binding paradigm [1] was used to quantify the subjective temporal compression between a voluntary action and its sensory consequences, providing an implicit measure of SoA. Emotional valence of action outcomes was manipulated by following participants' key-press actions with negative or positive emotional vocalizations [7], or neutral sounds. We found that intentional binding was reduced for negative compared to positive or neutral outcomes. Discriminant analyses identified a change in time perception of both actions and their negative outcomes, demonstrating that the experience of action itself is subject to affective modulation. A small binding benefit was also found for positive action outcomes. Emotional modulation of SoA may contribute to regulating social behavior. Correctly tracking the valenced effects of one's voluntary actions on other people could underlie successful social interactions. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Towards a Holistic Framework for the Evaluation of Emergency Plans in Indoor Environments

    PubMed Central

    Serrano, Emilio; Poveda, Geovanny; Garijo, Mercedes

    2014-01-01

    One of the most promising fields for ambient intelligence is the implementation of intelligent emergency plans. Because the use of drills and living labs cannot reproduce social behaviors, such as panic attacks, that strongly affect these plans, the use of agent-based social simulation provides an approach to evaluate these plans more thoroughly. (1) The hypothesis presented in this paper is that there has been little interest in describing the key modules that these simulators must include, such as formally represented knowledge and a realistic simulated sensor model, and especially in providing researchers with tools to reuse, extend and interconnect modules from different works. This lack of interest hinders researchers from achieving a holistic framework for evaluating emergency plans and forces them to reconsider and to implement the same components from scratch over and over. In addition to supporting this hypothesis by considering over 150 simulators, this paper: (2) defines the main modules identified and proposes the use of semantic web technologies as a cornerstone for the aforementioned holistic framework; (3) provides a basic methodology to achieve the framework; (4) identifies the main challenges; and (5) presents an open and free software tool to hint at the potential of such a holistic view of emergency plan evaluation in indoor environments. PMID:24662453

  9. The Social Neuroscience of Interpersonal Emotions.

    PubMed

    Müller-Pinzler, Laura; Krach, Sören; Krämer, Ulrike M; Paulus, Frieder M

    In our daily lives, we constantly engage in reciprocal interactions with other individuals and represent ourselves in the context of our surrounding social world. Within social interactions, humans often experience interpersonal emotions such as embarrassment, shame, guilt, or pride. How interpersonal emotions are processed on the neural systems level is of major interest for social neuroscience research. While the configuration of laboratory settings in general is constraining for emotion research, recent neuroimaging investigations came up with new approaches to implement socially interactive and immersive scenarios for the real-life investigation of interpersonal emotions. These studies could show that among other brain regions the so-called mentalizing network, which is typically involved when we represent and make sense of others' states of mind, is associated with interpersonal emotions. The anterior insula/anterior cingulate cortex network at the same time processes one's own bodily arousal during such interpersonal emotional experiences. Current research aimed to explore how we make sense of others' emotional states during social interactions and investigates the modulating factors of our emotional experiences during social interactions. Understanding how interpersonal emotions are processed on the neural systems level may yield significant implications for neuropsychiatric disorders that affect social behavior such as social anxiety disorders or autism.

  10. Design of an Agent-Based Model to Examine Population-Environment Interactions in Nang Rong District, Thailand.

    PubMed

    Walsh, Stephen J; Malanson, George P; Entwisle, Barbara; Rindfuss, Ronald R; Mucha, Peter J; Heumann, Benjamin W; McDaniel, Philip M; Frizzelle, Brian G; Verdery, Ashton M; Williams, Nathalie; Xiaozheng, Yao; Ding, Deng

    2013-05-01

    The design of an Agent-Based Model (ABM) is described that integrates Social and Land Use Modules to examine population-environment interactions in a former agricultural frontier in Northeastern Thailand. The ABM is used to assess household income and wealth derived from agricultural production of lowland, rain-fed paddy rice and upland field crops in Nang Rong District as well as remittances returned to the household from family migrants who are engaged in off-farm employment in urban destinations. The ABM is supported by a longitudinal social survey of nearly 10,000 households, a deep satellite image time-series of land use change trajectories, multi-thematic social and ecological data organized within a GIS, and a suite of software modules that integrate data derived from an agricultural cropping system model (DSSAT - Decision Support for Agrotechnology Transfer) and a land suitability model (MAXENT - Maximum Entropy), in addition to multi-dimensional demographic survey data of individuals and households. The primary modules of the ABM are the Initialization Module, Migration Module, Assets Module, Land Suitability Module, Crop Yield Module, Fertilizer Module, and the Land Use Change Decision Module. The architecture of the ABM is described relative to module function and connectivity through uni-directional or bi-directional links. In general, the Social Modules simulate changes in human population and social networks, as well as changes in population migration and household assets, whereas the Land Use Modules simulate changes in land use types, land suitability, and crop yields. We emphasize the description of the Land Use Modules - the algorithms and interactions between the modules are described relative to the project goals of assessing household income and wealth relative to shifts in land use patterns, household demographics, population migration, social networks, and agricultural activities that collectively occur within a marginalized environment that is subjected to a suite of endogenous and exogenous dynamics.

  11. Design of an Agent-Based Model to Examine Population-Environment Interactions in Nang Rong District, Thailand

    PubMed Central

    Walsh, Stephen J.; Malanson, George P.; Entwisle, Barbara; Rindfuss, Ronald R.; Mucha, Peter J.; Heumann, Benjamin W.; McDaniel, Philip M.; Frizzelle, Brian G.; Verdery, Ashton M.; Williams, Nathalie; Xiaozheng, Yao; Ding, Deng

    2013-01-01

    The design of an Agent-Based Model (ABM) is described that integrates Social and Land Use Modules to examine population-environment interactions in a former agricultural frontier in Northeastern Thailand. The ABM is used to assess household income and wealth derived from agricultural production of lowland, rain-fed paddy rice and upland field crops in Nang Rong District as well as remittances returned to the household from family migrants who are engaged in off-farm employment in urban destinations. The ABM is supported by a longitudinal social survey of nearly 10,000 households, a deep satellite image time-series of land use change trajectories, multi-thematic social and ecological data organized within a GIS, and a suite of software modules that integrate data derived from an agricultural cropping system model (DSSAT – Decision Support for Agrotechnology Transfer) and a land suitability model (MAXENT – Maximum Entropy), in addition to multi-dimensional demographic survey data of individuals and households. The primary modules of the ABM are the Initialization Module, Migration Module, Assets Module, Land Suitability Module, Crop Yield Module, Fertilizer Module, and the Land Use Change Decision Module. The architecture of the ABM is described relative to module function and connectivity through uni-directional or bi-directional links. In general, the Social Modules simulate changes in human population and social networks, as well as changes in population migration and household assets, whereas the Land Use Modules simulate changes in land use types, land suitability, and crop yields. We emphasize the description of the Land Use Modules – the algorithms and interactions between the modules are described relative to the project goals of assessing household income and wealth relative to shifts in land use patterns, household demographics, population migration, social networks, and agricultural activities that collectively occur within a marginalized environment that is subjected to a suite of endogenous and exogenous dynamics. PMID:24277975

  12. Evaluation of an open-access CBT-based Internet program for social anxiety: Patterns of use, retention, and outcomes.

    PubMed

    Dryman, M Taylor; McTeague, Lisa M; Olino, Thomas M; Heimberg, Richard G

    2017-10-01

    Internet-delivered cognitive-behavioral therapy (ICBT) has been established as both efficacious and effective in reducing symptoms of social anxiety. However, most research has been conducted in controlled settings, and little is known regarding the utility of such programs in an open-access format. The present study examined the use, adherence, and effectiveness of Joyable, an open-access, Internet-delivered, coach-supported CBT-based intervention for social anxiety. Participants were 3,384 registered users (Mage [SD] = 29.82 [7.89]; 54% male) that created an account between 2014 and 2016. Characteristics of use, factors related to attrition and adherence, and within-group outcomes were examined. The primary outcome measure was the Social Phobia Inventory. On average, participants remained in the program for 81.02 days (SD = 60.50), during which they completed 12.14 activities (SD = 11.09) and 1.53 exposures (SD = 3.18). About half (57%) had contact with a coach. Full adherence to the program was achieved by 16% of participants, a rate higher than previously published open-access studies of ICBT. Social anxiety symptoms were significantly reduced for participants that engaged in the program, with medium within-group effects from baseline through the cognitive restructuring module (d = 0.63-0.76) and large effects from baseline through the exposure module (d = 1.40-1.83). Response rates were high (72%). Exposures and coach contact were significant predictors of retention and outcome. This open-access online CBT-based program is effective in reducing social anxiety symptoms and has the potential to extend Internet-based mental health services to socially anxious individuals unwilling or unable to seek face-to-face evidence-based therapy. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Social Laughter Triggers Endogenous Opioid Release in Humans.

    PubMed

    Manninen, Sandra; Tuominen, Lauri; Dunbar, Robin I; Karjalainen, Tomi; Hirvonen, Jussi; Arponen, Eveliina; Hari, Riitta; Jääskeläinen, Iiro P; Sams, Mikko; Nummenmaa, Lauri

    2017-06-21

    The size of human social networks significantly exceeds the network that can be maintained by social grooming or touching in other primates. It has been proposed that endogenous opioid release after social laughter would provide a neurochemical pathway supporting long-term relationships in humans (Dunbar, 2012), yet this hypothesis currently lacks direct neurophysiological support. We used PET and the μ-opioid-receptor (MOR)-specific ligand [ 11 C]carfentanil to quantify laughter-induced endogenous opioid release in 12 healthy males. Before the social laughter scan, the subjects watched laughter-inducing comedy clips with their close friends for 30 min. Before the baseline scan, subjects spent 30 min alone in the testing room. Social laughter increased pleasurable sensations and triggered endogenous opioid release in thalamus, caudate nucleus, and anterior insula. In addition, baseline MOR availability in the cingulate and orbitofrontal cortices was associated with the rate of social laughter. In a behavioral control experiment, pain threshold-a proxy of endogenous opioidergic activation-was elevated significantly more in both male and female volunteers after watching laughter-inducing comedy versus non-laughter-inducing drama in groups. Modulation of the opioidergic activity by social laughter may be an important neurochemical pathway that supports the formation, reinforcement, and maintenance of human social bonds. SIGNIFICANCE STATEMENT Social contacts are vital to humans. The size of human social networks significantly exceeds the network that can be maintained by social grooming in other primates. Here, we used PET to show that endogenous opioid release after social laughter may provide a neurochemical mechanism supporting long-term relationships in humans. Participants were scanned twice: after a 30 min social laughter session and after spending 30 min alone in the testing room (baseline). Endogenous opioid release was stronger after laughter versus the baseline scan. Opioid receptor density in the frontal cortex predicted social laughter rates. Modulation of the opioidergic activity by social laughter may be an important neurochemical mechanism reinforcing and maintaining social bonds between humans. Copyright © 2017 the authors 0270-6474/17/376125-07$15.00/0.

  14. Autistic Traits Moderate the Impact of Reward Learning on Social Behaviour.

    PubMed

    Panasiti, Maria Serena; Puzzo, Ignazio; Chakrabarti, Bhismadev

    2016-04-01

    A deficit in empathy has been suggested to underlie social behavioural atypicalities in autism. A parallel theoretical account proposes that reduced social motivation (i.e., low responsivity to social rewards) can account for the said atypicalities. Recent evidence suggests that autistic traits modulate the link between reward and proxy metrics related to empathy. Using an evaluative conditioning paradigm to associate high and low rewards with faces, a previous study has shown that individuals high in autistic traits show reduced spontaneous facial mimicry of faces associated with high vs. low reward. This observation raises the possibility that autistic traits modulate the magnitude of evaluative conditioning. To test this, we investigated (a) if autistic traits could modulate the ability to implicitly associate a reward value to a social stimulus (reward learning/conditioning, using the Implicit Association Task, IAT); (b) if the learned association could modulate participants' prosocial behaviour (i.e., social reciprocity, measured using the cyberball task); (c) if the strength of this modulation was influenced by autistic traits. In 43 neurotypical participants, we found that autistic traits moderated the relationship of social reward learning on prosocial behaviour but not reward learning itself. This evidence suggests that while autistic traits do not directly influence social reward learning, they modulate the relationship of social rewards with prosocial behaviour. © 2015 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research.

  15. Follow My Eyes: The Gaze of Politicians Reflexively Captures the Gaze of Ingroup Voters

    PubMed Central

    Liuzza, Marco Tullio; Cazzato, Valentina; Vecchione, Michele; Crostella, Filippo; Caprara, Gian Vittorio; Aglioti, Salvatore Maria

    2011-01-01

    Studies in human and non-human primates indicate that basic socio-cognitive operations are inherently linked to the power of gaze in capturing reflexively the attention of an observer. Although monkey studies indicate that the automatic tendency to follow the gaze of a conspecific is modulated by the leader-follower social status, evidence for such effects in humans is meager. Here, we used a gaze following paradigm where the directional gaze of right- or left-wing Italian political characters could influence the oculomotor behavior of ingroup or outgroup voters. We show that the gaze of Berlusconi, the right-wing leader currently dominating the Italian political landscape, potentiates and inhibits gaze following behavior in ingroup and outgroup voters, respectively. Importantly, the higher the perceived similarity in personality traits between voters and Berlusconi, the stronger the gaze interference effect. Thus, higher-order social variables such as political leadership and affiliation prepotently affect reflexive shifts of attention. PMID:21957479

  16. Can you change my preferences? Effect of social influence on intertemporal choice behavior.

    PubMed

    Calluso, Cinzia; Tosoni, Annalisa; Fortunato, Gianfranco; Committeri, Giorgia

    2017-07-14

    The present study presents a novel social observation paradigm to examine whether temporal discounting (TD) can be modulated in a specific direction. In particular, after estimating a baseline discount rate, we exposed subjects to a pattern of choice that was opposite to their baseline preferences, i.e., subjects preferring immediate over delayed rewards were exposed to a farsighted pattern of behavior and vice-versa. The results showed a significant decrease of the discount rate in the discounter group and an increase in the farsighted group. The effect was mainly guided by a modification of the subjective values at short time delays and was stronger in subjects with extreme, compared to mild, baseline preferences. Importantly, the magnitude and direction of the effect predicted the baseline preferences. These findings have potentially very relevant implications for the prevention and treatment of clinical conditions, such as addition-related disorders, characterized by severe impairments of decision-making mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effects of emotion regulation strategy on brain responses to the valence and social content of visual scenes.

    PubMed

    Vrtička, Pascal; Sander, David; Vuilleumier, Patrik

    2011-04-01

    Emotion Regulation (ER) includes different mechanisms aiming at volitionally modulating emotional responses, including cognitive re-evaluation (re-appraisal; REAP) or inhibition of emotion expression and behavior (expressive suppression; ESUP). However, despite the importance of these ER strategies, previous functional magnetic resonance imaging (fMRI) studies have not sufficiently disentangled the specific neural impact of REAP versus ESUP on brain responses to different kinds of emotion-eliciting events. Moreover, although different effects have been reported for stimulus valence (positive vs. negative), no study has systematically investigated how ER may change emotional processing as a function of particular stimulus content variables (i.e., social vs. nonsocial). Our fMRI study directly compared brain activation to visual scenes during the use of different ER strategies, relative to a "natural" viewing condition, but also examined the effects of ER as a function of the social versus nonsocial content of scenes, in addition to their negative versus positive valence (by manipulating these factors orthogonally in a 2×2 factorial design). Our data revealed that several prefrontal cortical areas were differentially recruited during either REAP or ESUP, independent of the valence and content of images. In addition, selective modulations by either REAP or ESUP were found depending on the negative valence of scenes (medial fusiform gyrus, anterior insula, dmPFC), and on their nonsocial (middle insula) or social (bilateral amygdala, mPFC, posterior cingulate) significance. Furthermore, we observed a significant lateralization in the amygdala for the effect of the two different ER strategies, with a predominant modulation by REAP on the left side but by ESUP on the right side. Taken together, these results do not only highlight the distributed nature of neural changes induced by ER, but also reveal the specific impact of different strategies (REAP or ESUP), and the specific sites implicated by different dimensions of emotional information (social or negative). Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Oxytocin enhances inter-brain synchrony during social coordination in male adults.

    PubMed

    Mu, Yan; Guo, Chunyan; Han, Shihui

    2016-12-01

    Recent brain imaging research has revealed oxytocin (OT) effects on an individual's brain activity during social interaction but tells little about whether and how OT modulates the coherence of inter-brain activity related to two individuals' coordination behavior. We developed a new real-time coordination game that required two individuals of a dyad to synchronize with a partner (coordination task) or with a computer (control task) by counting in mind rhythmically. Electroencephalography (EEG) was recorded simultaneously from a dyad to examine OT effects on inter-brain synchrony of neural activity during interpersonal coordination. Experiment 1 found that dyads showed smaller interpersonal time lags of counting and greater inter-brain synchrony of alpha-band neural oscillations during the coordination (vs control) task and these effects were reliably observed in female but not male dyads. Moreover, the increased alpha-band inter-brain synchrony predicted better interpersonal behavioral synchrony across all participants. Experiment 2, using a double blind, placebo-controlled between-subjects design, revealed that intranasal OT vs placebo administration in male dyads improved interpersonal behavioral synchrony in both the coordination and control tasks but specifically enhanced alpha-band inter-brain neural oscillations during the coordination task. Our findings provide first evidence that OT enhances inter-brain synchrony in male adults to facilitate social coordination. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. The personality trait of behavioral inhibition modulates perceptions of moral character and performance during the trust game: behavioral results and computational modeling

    PubMed Central

    Sanchez, Rosanna; Weinflash, Noah; Myers, Catherine E.

    2016-01-01

    Decisions based on trust are critical for human social interaction. We judge the trustworthiness of partners in social interactions based on a number of partner characteristics as well as experiences with those partners. These decisions are also influenced by personality. The current study examined how the personality trait of behavioral inhibition, which involves the tendency to avoid or withdraw from novelty in both social and non-social situations, is related to explicit ratings of trustworthiness as well as decisions made in the trust game. In the game, healthy young adults interacted with three fictional partners who were portrayed as trustworthy, untrustworthy or neutral through biographical information. Participants could choose to keep $1 or send $3 of virtual money to a partner. The partner could then choose to send $1.5 back to the participant or to keep the entire amount. On any trial in which the participant chose to send, the partner always reciprocated with 50% probability, irrespective of how that partner was portrayed in the biography. Behavioral inhibition was assessed through a self-report questionnaire. Finally, a reinforcement learning computational model was fit to the behavior of each participant. Self-reported ratings of trust confirmed that all participants, irrespective of behavioral inhibition, perceived differences in the moral character of the three partners (trustworthiness of good > neutral > bad partner). Decisions made in the game showed that inhibited participants tended to trust the neutral partner less than uninhibited participants. In contrast, this was not reflected in the ratings of the neutral partner (either pre- or post-game), indicating a dissociation between ratings of trustworthiness and decisions made by inhibited participants. Computational modeling showed that this was due to lower initial trust of the neutral partner rather than a higher learning rate associated with loss, suggesting an implicit bias against the neutral partner. Overall, the results suggest inhibited individuals may be predisposed to interpret neutral or ambiguous information more negatively which could, at least in part, account for the tendency to avoid unfamiliar people characteristic of behaviorally inhibited temperament, as well as its relationship to anxiety disorders. PMID:27004148

  20. Por Que Mami No Puede Cambiar una Goma? Tercer Modulo de una Serie para Maestros de Escuela Elemental. (Why Can't Mommy Change a Flat Tire? Third Module of a Series for Elementary School Teachers).

    ERIC Educational Resources Information Center

    Molina, Carmen Eneida, Ed.; And Others

    This guide for teachers, in English and Spanish, examines the role parents play in the socialization of sex roles. A pre-test and post test are included to measure the user's awareness of sexual stereotyping. Five object lessons cover the following topics: (1) stereotypes which exist prior to a baby's birth; (2) behavioral standards on which…

  1. Sex differences in the neural and behavioral response to intranasal oxytocin and vasopressin during human social interaction.

    PubMed

    Rilling, James K; Demarco, Ashley C; Hackett, Patrick D; Chen, Xu; Gautam, Pritam; Stair, Sabrina; Haroon, Ebrahim; Thompson, Richmond; Ditzen, Beate; Patel, Rajan; Pagnoni, Giuseppe

    2014-01-01

    Both oxytocin (OT) and vasopressin (AVP) are known to modulate social behavior, and dysfunction in both systems has been postulated as a potential cause of certain psychiatric disorders that involve social behavioral deficits. In particular, there is growing interest in intranasal OT as a potential treatment for certain psychiatric disorders, and preliminary pre-clinical and clinical studies suggest efficacy in alleviating some of the associated symptoms. However, the vast majority of research participants in these studies have been male, and there is evidence for sexually differentiated effects of nonapeptides in both humans and non-human animals. To date, no study has investigated the effect of intranasal OT on brain function in human males and females within the same paradigm. Previously, in a randomized, placebo-controlled, double-blind fMRI study, we reported effects of intranasal OT and AVP on behavior and brain activity of human males as they played an interactive social game known as the Prisoner's Dilemma Game. Here, we present findings from an identical study in human females, and compare these with our findings from males. Overall, we find that both behavioral and neural responses to intranasal OT and AVP are highly sexually differentiated. In women, AVP increased conciliatory behavior, and both OT and AVP caused women to treat computer partners more like humans. In men, AVP increased reciprocation of cooperation from both human and computer partners. However, no specific drug effects on behavior were shared between men and women. During cooperative interactions, both OT and AVP increased brain activity in men within areas rich in OT and AVP receptors and in areas playing a key role in reward, social bonding, arousal and memory (e.g., the striatum, basal forebrain, insula, amygdala and hippocampus), whereas OT and AVP either had no effect or in some cases actually decreased brain activity in these regions in women. OT treatment rendered neural responses of males more similar to responses of females in the placebo group and vice versa, raising the prospect of an inverted u-shaped dose response to central OT levels. These findings emphasize the need to fully characterize the effects of intranasal OT and AVP in both males and females and at multiple doses before widespread clinical application will be warranted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Beta adrenergic blockade decreases the immunomodulatory effects of social disruption stress☆

    PubMed Central

    Hanke, M.L.; Powell, N.D.; Stiner, L.M.; Bailey, M.T.; Sheridan, J.F.

    2012-01-01

    During physiological or psychological stress, catecholamines produced by the sympathetic nervous system (SNS) regulate the immune system. Previous studies report that the activation of β-adrenergic receptors (βARs) mediates the actions of catecholamines and increases pro-inflammatory cytokine production in a number of different cell types. The impact of the SNS on the immune modulation of social defeat has not been examined. The following studies were designed to determine whether SNS activation during social disruption stress (SDR) influences anxiety-like behavior as well as the activation, priming, and glucocorticoid resistance of splenocytes after social stress. CD-1 mice were exposed to one, three, or six cycles of SDR and HPLC analysis of the plasma and spleen revealed an increase in catecholamines. After six cycles of SDR the open field test was used to measure behaviors characteristic of anxiety and indicated that the social defeat induced increase in anxiety-like behavior was blocked by pre-treatment with the β-adrenergic antagonist propranolol. Pre-treatment with the β-adrenergic antagonist propranolol did not significantly alter corticosterone levels indicating no difference in activation of the hypothalamic–pituitary–adrenal axis. In addition to anxiety-like behavior the SDR induced splenomegaly and increase in plasma IL-6, TNFα, and MCP-1 were each reversed by pre-treatment with propranolol. Furthermore, flow cytometric analysis of cells from propranolol pretreated mice reduced the SDR-induced increase in the percentage of CD11b+ splenic macrophages and significantly decreased the expression of TLR2, TLR4, and CD86 on the surface of these cells. In addition, supernatants from 18 h LPS-stimulated ex vivo cultures of splenocytes from propranolol-treated SDR mice contained less IL-6. Likewise propranolol pre-treatment abrogated the glucocorticoid insensitivity of CD11b+ cells ex vivo when compared to splenocytes from SDR vehicle-treated mice. Together, this study demonstrates that the immune activation and priming effects of SDR result, in part, as a consequence of SNS activation. PMID:22841997

  3. Oxytocin- and arginine vasopressin-containing fibers in the cortex of humans, chimpanzees, and rhesus macaques.

    PubMed

    Rogers, Christina N; Ross, Amy P; Sahu, Shweta P; Siegel, Ethan R; Dooyema, Jeromy M; Cree, Mary Ann; Stopa, Edward G; Young, Larry J; Rilling, James K; Albers, H Elliott; Preuss, Todd M

    2018-05-24

    Oxytocin (OT) and arginine-vasopressin (AVP) are involved in the regulation of complex social behaviors across a wide range of taxa. Despite this, little is known about the neuroanatomy of the OT and AVP systems in most non-human primates, and less in humans. The effects of OT and AVP on social behavior, including aggression, mating, and parental behavior, may be mediated primarily by the extensive connections of OT- and AVP-producing neurons located in the hypothalamus with the basal forebrain and amygdala, as well as with the hypothalamus itself. However, OT and AVP also influence social cognition, including effects on social recognition, cooperation, communication, and in-group altruism, which suggests connectivity with cortical structures. While OT and AVP V1a receptors have been demonstrated in the cortex of rodents and primates, and intranasal administration of OT and AVP has been shown to modulate cortical activity, there is to date little evidence that OT-and AVP-containing neurons project into the cortex. Here, we demonstrate the existence of OT- and AVP-containing fibers in cortical regions relevant to social cognition using immunohistochemistry in humans, chimpanzees, and rhesus macaques. OT-immunoreactive fibers were found in the straight gyrus of the orbitofrontal cortex as well as the anterior cingulate gyrus in human and chimpanzee brains, while no OT-immunoreactive fibers were found in macaque cortex. AVP-immunoreactive fibers were observed in the anterior cingulate gyrus in all species, as well as in the insular cortex in humans, and in a more restricted distribution in chimpanzees. This is the first report of OT and AVP fibers in the cortex in human and non-human primates. Our findings provide a potential mechanism by which OT and AVP might exert effects on brain regions far from their production site in the hypothalamus, as well as potential species differences in the behavioral functions of these target regions. © 2018 Wiley Periodicals, Inc.

  4. A Dopamine Hypothesis of Autism Spectrum Disorder.

    PubMed

    Pavăl, Denis

    2017-01-01

    Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders characterized by social deficits and stereotyped behaviors. While several theories have emerged, the pathogenesis of ASD remains unknown. Although studies report dopamine signaling abnormalities in autistic patients, a coherent dopamine hypothesis which could link neurobiology to behavior in ASD is currently lacking. In this paper, we present such a hypothesis by proposing that autistic behavior arises from dysfunctions in the midbrain dopaminergic system. We hypothesize that a dysfunction of the mesocorticolimbic circuit leads to social deficits, while a dysfunction of the nigrostriatal circuit leads to stereotyped behaviors. Furthermore, we discuss 2 key predictions of our hypothesis, with emphasis on clinical and therapeutic aspects. First, we argue that dopaminergic dysfunctions in the same circuits should associate with autistic-like behavior in nonautistic subjects. Concerning this, we discuss the case of PANDAS (pediatric autoimmune neuropsychiatric disorder associated with streptococcal infections) which displays behaviors similar to those of ASD, presumed to arise from dopaminergic dysfunctions. Second, we argue that providing dopamine modulators to autistic subjects should lead to a behavioral improvement. Regarding this, we present clinical studies of dopamine antagonists which seem to have improving effects on autistic behavior. Furthermore, we explore the means of testing our hypothesis by using neuroreceptor imaging, which could provide comprehensive evidence for dopamine signaling dysfunctions in autistic subjects. Lastly, we discuss the limitations of our hypothesis. Along these lines, we aim to provide a dopaminergic model of ASD which might lead to a better understanding of the ASD pathogenesis. © 2017 S. Karger AG, Basel.

  5. Nicotine Modulation of Fear Memories and Anxiety: Implications for Learning and Anxiety Disorders

    PubMed Central

    Kutlu, Munir Gunes; Gould, Thomas J.

    2015-01-01

    Anxiety disorders are a group of crippling mental diseases affecting millions of Americans with a 30% lifetime prevalence and costs associated with healthcare of $42.3 billion. While anxiety disorders show high levels of co-morbidity with smoking (45.3% vs. 22.5% in healthy individuals), anxiety disorders are also more common among the smoking population (22% vs. 11.1% in the non-smoking population). Moreover, there is clear evidence that smoking modulates symptom severity in patients with anxiety disorders. In order to better understand this relationship, several animal paradigms are used to model several key symptoms of anxiety disorders; these include fear conditioning and measures of anxiety. Studies clearly demonstrate that nicotine mediates acquisition and extinction of fear as well as anxiety through the modulation of specific subtypes of nicotinic acetylcholine receptors (nAChRs) in brain regions involved in emotion processing such as the hippocampus. However, the direction of nicotine’s effects on these behaviors is determined by several factors that include the length of administration, hippocampus-dependency of the fear learning task, and source of anxiety (novelty-driven vs. social anxiety). Overall, the studies reviewed here suggest that nicotine alters behaviors related to fear and anxiety and that nicotine contributes to the development, maintenance, and reoccurrence of anxiety disorders. PMID:26231942

  6. A systematic community-based participatory approach to refining an evidence-based community-level intervention: The HOLA intervention for Latino men who have sex with men

    PubMed Central

    Rhodes, Scott D.; Daniel, Jason; Alonzo, Jorge; Duck, Stacy; Garcia, Manuel; Downs, Mario; Hergenrather, Kenneth C.; Alegria-Ortega, Jose; Miller, AAS, Cindy; Boeving Allen, Alex; Gilbert, Paul A.; Marsiglia, Flavio F.

    2014-01-01

    Our community-based participatory research (CBPR) partnership engaged in a multi-step process to refine a culturally congruent intervention that builds on existing community strengths to promote sexual health among immigrant Latino men who have sex with men (MSM). The steps were: (1) increase Latino MSM participation in the existing partnership; (2) establish an Intervention Team; (3) review the existing sexual health literature; (4) explore needs and priorities of Latino MSM; (5) narrow priorities based on what is important and changeable; (6) blend health behavior theory with Latino MSM’s lived experiences; (7) design an intervention conceptual model; (8) develop training modules and (9) resource materials; and (10) pretest and (11) revise the intervention. The developed intervention contains four modules to train Latino MSM to serve as lay health advisors (LHAs) known as “Navegantes”. These modules synthesize locally collected data with other local and national data; blend health behavior theory, the lived experiences, and cultural values of immigrant Latino MSM; and harness the informal social support Latino MSM provide one another. This community-level intervention is designed to meet the expressed sexual health priorities of Latino MSM. It frames disease prevention within sexual health promotion. PMID:23075504

  7. A systematic community-based participatory approach to refining an evidence-based community-level intervention: the HOLA intervention for Latino men who have sex with men.

    PubMed

    Rhodes, Scott D; Daniel, Jason; Alonzo, Jorge; Duck, Stacy; García, Manuel; Downs, Mario; Hergenrather, Kenneth C; Alegría-Ortega, José; Miller, Cindy; Boeving Allen, Alex; Gilbert, Paul A; Marsiglia, Flavio F

    2013-07-01

    Our community-based participatory research partnership engaged in a multistep process to refine a culturally congruent intervention that builds on existing community strengths to promote sexual health among immigrant Latino men who have sex with men (MSM). The steps were the following: (1) increase Latino MSM participation in the existing partnership, (2) establish an Intervention Team, (3) review the existing sexual health literature, (4) explore needs and priorities of Latino MSM, (5) narrow priorities based on what is important and changeable, (6) blend health behavior theory with Latino MSM's lived experiences, (7) design an intervention conceptual model, (8) develop training modules and (9) resource materials, and (10) pretest and (11) revise the intervention. The developed intervention contains four modules to train Latino MSM to serve as lay health advisors known as Navegantes. These modules synthesize locally collected data with other local and national data; blend health behavior theory, the lived experiences, and cultural values of immigrant Latino MSM; and harness the informal social support Latino MSM provide one another. This community-level intervention is designed to meet the expressed sexual health priorities of Latino MSM. It frames disease prevention within sexual health promotion.

  8. Oxytocin receptor gene polymorphism modulates the effects of social support on heart rate variability

    PubMed Central

    Kanthak, Magdalena K.; Chen, Frances S.; Kumsta, Robert; Hill, LaBarron K.; Thayer, Julian F.; Heinrichs, Markus

    2017-01-01

    A large body of empirical research has demonstrated stress-buffering effects of social support. However, recent studies suggest that genetic variation of the oxytocin system (specifically, a common single nucleotide polymorphism, rs53576, of the oxytocin receptor gene) modulates the efficacy of social support. The timing and neurobiological basis of this genetic modulation were investigated using a standardized, laboratory-based psychological stress procedure (Trier Social Stress Test for Groups, TSST-G). To index potential stress buffering effects of social support mediated by the oxytocin system, heart rate variability (HRV) was obtained before and during the TSST-G from 40 healthy participants. Results indicate that social support is associated with higher HRV only in G allele carriers. Specifically, social support increased heart rate variability during direct social interaction and only in individuals with at least one copy of the G allele of rs53576. These findings support the idea that the stress-attenuating effects of social support are modulated by genetic variation of the oxytocin system. PMID:26903384

  9. A Motion Capture Study to Measure the Feeling of Synchrony in Romantic Couples and in Professional Musicians

    PubMed Central

    Preissmann, Delphine; Charbonnier, Caecilia; Chagué, Sylvain; Antonietti, Jean-Philippe; Llobera, Joan; Ansermet, Francois; Magistretti, Pierre J.

    2016-01-01

    The feeling of synchrony is fundamental for most social activities and prosocial behaviors. However, little is known about the behavioral correlates of this feeling and its modulation by intergroup differences. We previously showed that the subjective feeling of synchrony in subjects involved in a mirror imitation task was modulated by objective behavioral measures, as well as contextual factors such as task difficulty and duration of the task performance. In the present study, we extended our methodology to investigate possible interindividual differences. We hypothesized that being in a romantic relationship or being a professional musician can modulate both implicit and explicit synchronization and the feeling of synchrony as well as the ability to detect synchrony from a third person perspective. Contrary to our hypothesis, we did not find significant differences between people in a romantic relationship and control subjects. However, we observed differences between musicians and control subjects. For the implicit synchrony (spontaneous synchronization during walking), the results revealed that musicians that had never met before spontaneously synchronized their movements earlier among themselves than control subjects, but not better than people sharing a romantic relationship. Moreover, in explicit behavioral synchronization tasks (mirror game), musicians reported earlier feeling of synchrony and had less speed errors than control subjects. This was in interaction with tasks difficulty as these differences appeared only in tasks with intermediate difficulty. Finally, when subjects had to judge synchrony from a third person perspective, musicians had a better performance to identify if they were present or not in the videos. Taken together, our results suggest that being a professional musician can play a role in the feeling of synchrony and its underlying mechanisms. PMID:27833580

  10. Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees.

    PubMed

    Wang, Ying; Brent, Colin S; Fennern, Erin; Amdam, Gro V

    2012-06-01

    Honey bees (Apis mellifera) provide a system for studying social and food-related behavior. A caste of workers performs age-related tasks: young bees (nurses) usually feed the brood and other adult bees inside the nest, while older bees (foragers) forage outside for pollen, a protein/lipid source, or nectar, a carbohydrate source. The workers' transition from nursing to foraging and their foraging preferences correlate with differences in gustatory perception, metabolic gene expression, and endocrine physiology including the endocrine factors vitellogenin (Vg) and juvenile hormone (JH). However, the understanding of connections among social behavior, energy metabolism, and endocrine factors is incomplete. We used RNA interference (RNAi) to perturb the gene network of Vg and JH to learn more about these connections through effects on gustation, gene transcripts, and physiology. The RNAi perturbation was achieved by single and double knockdown of the genes ultraspiracle (usp) and vg, which encode a putative JH receptor and Vg, respectively. The double knockdown enhanced gustatory perception and elevated hemolymph glucose, trehalose, and JH. We also observed transcriptional responses in insulin like peptide 1 (ilp1), the adipokinetic hormone receptor (AKHR), and cGMP-dependent protein kinase (PKG, or "foraging gene" Amfor). Our study demonstrates that the Vg-JH regulatory module controls changes in carbohydrate metabolism, but not lipid metabolism, when worker bees shift from nursing to foraging. The module is also placed upstream of ilp1, AKHR, and PKG for the first time. As insulin, adipokinetic hormone (AKH), and PKG pathways influence metabolism and gustation in many animals, we propose that honey bees have conserved pathways in carbohydrate metabolism and conserved connections between energy metabolism and gustatory perception. Thus, perhaps the bee can make general contributions to the understanding of food-related behavior and metabolic disorders.

  11. Economic Education in the Social Studies Methods Course. A 12-Hour Instructional Module for Secondary Methods Professors.

    ERIC Educational Resources Information Center

    Williams, Elmer; Dalton, Don

    This 12-hour module of instruction is designed to help undergraduates in social studies methods courses integrate economics education into the secondary school social studies curriculum. The major purposes of the module are to (1) reinforce or extend teacher education students' understanding of selected basic economic concepts, (2) develop an…

  12. Parent Skill Training (Trainer Modules). LEAP Outreach Project.

    ERIC Educational Resources Information Center

    Colorado Univ., Denver. Center for Collaborative Educational Leadership.

    This training manual, designed for teaching parents of young children with autism, contains nine modules on behavior modification techniques. The modules address: (1) the ABC's of behavior, which discusses discriminating among words that describe feelings and words that describe behaviors, identifying examples of learned behavior, and defining and…

  13. Parent Skill Training (Self-Study Modules). LEAP Outreach Project.

    ERIC Educational Resources Information Center

    Colorado Univ., Denver. Center for Collaborative Educational Leadership.

    This self-study training manual for parents of children with autism contains nine modules on behavior modification techniques. The modules address: (1) the ABC's of behavior, which discusses discriminating among words that describe feelings and words that describe behaviors, identifying examples of learned behavior, and defining and identifying…

  14. Neural substrates of social facilitation effects on incentive-based performance

    PubMed Central

    Chib, Vikram S; Adachi, Ryo; O’Doherty, John P

    2018-01-01

    Abstract Throughout our lives we must perform tasks while being observed by others. Previous studies have shown that the presence of an audience can cause increases in an individual’s performance as compared to when they are not being observed—a phenomenon called ‘social facilitation’. However, the neural mechanisms underlying this effect, in the context of skilled-task performance for monetary incentives, are not well understood. We used functional magnetic resonance imaging to monitor brain activity while healthy human participants performed a skilled-task during conditions in which they were paid based on their performance and observed and not observed by an audience. We found that during social facilitation, social signals represented in the dorsomedial prefrontal cortex (dmPFC) enhanced reward value computations in ventromedial prefrontal cortex (vmPFC). We also found that functional connectivity between dmPFC and ventral striatum was enhanced when participants exhibited social facilitation effects, indicative of a means by which social signals serve to modulate brain regions involved in regulating behavioral motivation. These findings illustrate how neural processing of social judgments gives rise to the enhanced motivational state that results in social facilitation of incentive-based performance. PMID:29648653

  15. Estimating peer effects in networks with peer encouragement designs.

    PubMed

    Eckles, Dean; Kizilcec, René F; Bakshy, Eytan

    2016-07-05

    Peer effects, in which the behavior of an individual is affected by the behavior of their peers, are central to social science. Because peer effects are often confounded with homophily and common external causes, recent work has used randomized experiments to estimate effects of specific peer behaviors. These experiments have often relied on the experimenter being able to randomly modulate mechanisms by which peer behavior is transmitted to a focal individual. We describe experimental designs that instead randomly assign individuals' peers to encouragements to behaviors that directly affect those individuals. We illustrate this method with a large peer encouragement design on Facebook for estimating the effects of receiving feedback from peers on posts shared by focal individuals. We find evidence for substantial effects of receiving marginal feedback on multiple behaviors, including giving feedback to others and continued posting. These findings provide experimental evidence for the role of behaviors directed at specific individuals in the adoption and continued use of communication technologies. In comparison, observational estimates differ substantially, both underestimating and overestimating effects, suggesting that researchers and policy makers should be cautious in relying on them.

  16. Estimating peer effects in networks with peer encouragement designs

    PubMed Central

    Eckles, Dean; Kizilcec, René F.; Bakshy, Eytan

    2016-01-01

    Peer effects, in which the behavior of an individual is affected by the behavior of their peers, are central to social science. Because peer effects are often confounded with homophily and common external causes, recent work has used randomized experiments to estimate effects of specific peer behaviors. These experiments have often relied on the experimenter being able to randomly modulate mechanisms by which peer behavior is transmitted to a focal individual. We describe experimental designs that instead randomly assign individuals’ peers to encouragements to behaviors that directly affect those individuals. We illustrate this method with a large peer encouragement design on Facebook for estimating the effects of receiving feedback from peers on posts shared by focal individuals. We find evidence for substantial effects of receiving marginal feedback on multiple behaviors, including giving feedback to others and continued posting. These findings provide experimental evidence for the role of behaviors directed at specific individuals in the adoption and continued use of communication technologies. In comparison, observational estimates differ substantially, both underestimating and overestimating effects, suggesting that researchers and policy makers should be cautious in relying on them. PMID:27382145

  17. Irony comprehension: social conceptual knowledge and emotional response.

    PubMed

    Akimoto, Yoritaka; Sugiura, Motoaki; Yomogida, Yukihito; Miyauchi, Carlos Makoto; Miyazawa, Shiho; Kawashima, Ryuta

    2014-04-01

    Verbal irony conveys various emotional messages, from criticism to humor, that differ from the meaning of the actual words. To understand irony, we need conceptual knowledge of irony in addition to an understanding of context. We investigated the neural mechanism of irony comprehension, focusing on two overlooked issues: conceptual knowledge and emotional response. We studied 35 healthy subjects who underwent functional MRI. During the scan, the subject examined first-person-view stories describing verbal interactions, some of which included irony directed toward the subject. After MRI, the subject viewed the stories again and rated the degree of irony, humor, and negative emotion evoked by the statements. We identified several key findings about irony comprehension: (1) the right anterior superior temporal gyrus may be responsible for representing social conceptual knowledge of irony, (2) activation in the medial prefrontal cortex and the right anterior inferior temporal gyrus might underlie the understanding of context, (3) modulation of activity in the right amygdala, hippocampus, and parahippocampal gyrus is associated with the degree of irony perceived, and (4) modulation of activity in the right dorsolateral prefrontal cortex varies with the degree of humor perceived. Our results clarified the differential contributions of the neural loci of irony comprehension, enriching our understanding of pragmatic language communication from a social behavior point of view. Copyright © 2013 Wiley Periodicals, Inc.

  18. Darwin revisited: The vagus nerve is a causal element in controlling recognition of other's emotions.

    PubMed

    Colzato, Lorenza S; Sellaro, Roberta; Beste, Christian

    2017-07-01

    Charles Darwin proposed that via the vagus nerve, the tenth cranial nerve, emotional facial expressions are evolved, adaptive and serve a crucial communicative function. In line with this idea, the later-developed polyvagal theory assumes that the vagus nerve is the key phylogenetic substrate that regulates emotional and social behavior. The polyvagal theory assumes that optimal social interaction, which includes the recognition of emotion in faces, is modulated by the vagus nerve. So far, in humans, it has not yet been demonstrated that the vagus plays a causal role in emotion recognition. To investigate this we employed transcutaneous vagus nerve stimulation (tVNS), a novel non-invasive brain stimulation technique that modulates brain activity via bottom-up mechanisms. A sham/placebo-controlled, randomized cross-over within-subjects design was used to infer a causal relation between the stimulated vagus nerve and the related ability to recognize emotions as indexed by the Reading the Mind in the Eyes Test in 38 healthy young volunteers. Active tVNS, compared to sham stimulation, enhanced emotion recognition for easy items, suggesting that it promoted the ability to decode salient social cues. Our results confirm that the vagus nerve is causally involved in emotion recognition, supporting Darwin's argumentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior.

    PubMed

    Aizawa, Fuka; Nishinaka, Takashi; Yamashita, Takuya; Nakamoto, Kazuo; Kurihara, Takashi; Hirasawa, Akira; Kasuya, Fumiyo; Miyata, Atsuro; Tokuyama, Shogo

    2016-12-01

    The free fatty acid receptor 1 (GPR40/FFAR1) is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO) mice. The emotional behavior in wild and KO male mice was evaluated at 9-10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC-MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  20. The Double Meaning of Online Social Space: Three-Way Interactions Among Social Anxiety, Online Social Behavior, and Offline Social Behavior.

    PubMed

    Koo, Hoon Jung; Woo, Sungbum; Yang, Eunjoo; Kwon, Jung Hye

    2015-09-01

    The present study aimed to investigate how online and offline social behavior interact with each other ultimately to affect the well-being of socially anxious adolescents. Based on previous studies, it was assumed that there might be three-way interactive effects among online social behavior, offline social behavior, and social anxiety regarding the relationship with well-being. To measure social anxiety, online and offline social behavior, and mental well-being, self-report questionnaires such as the Korean-Social Avoidance and Distress Scale, Korean version of the Relational Maintenance Behavior Questionnaire, and Korean version of Mental Health Continuum Short Form were administered to 656 Korean adolescents. Hierarchical regression analysis revealed that the three-way interaction of online social behavior, offline social behavior, and social anxiety was indeed significant. First, online social behavior was associated with lower well-being of adolescents with higher social anxiety under conditions of low engagement in offline social behavior. In contrast, a higher level of online social behavior predicted greater well-being for individuals with high social anxiety under conditions of more engagement in offline social behavior. Second, online social behavior was not significantly related to well-being in youths with low social anxiety under conditions of both high and low engagement in offline social behavior. Implications and limitations of this study were discussed.

Top