Phase modulation atomic force microscope with true atomic resolution
NASA Astrophysics Data System (ADS)
Fukuma, Takeshi; Kilpatrick, Jason I.; Jarvis, Suzanne P.
2006-12-01
We have developed a dynamic force microscope (DFM) working in a novel operation mode which is referred to as phase modulation atomic force microscopy (PM-AFM). PM-AFM utilizes a fixed-frequency excitation signal to drive a cantilever, which ensures stable imaging even with occasional tip crash and adhesion to the surface. The tip-sample interaction force is detected as a change of the phase difference between the cantilever deflection and excitation signals and hence the time response is not influenced by the Q factor of the cantilever. These features make PM-AFM more suitable for high-speed imaging than existing DFM techniques such as amplitude modulation and frequency modulation atomic force microscopies. Here we present the basic principle of PM-AFM and the theoretical limit of its performance. The design of the developed PM-AFM is described and its theoretically limited noise performance is demonstrated. Finally, we demonstrate the true atomic resolution imaging capability of the developed PM-AFM by imaging atomic-scale features of mica in water.
NASA Astrophysics Data System (ADS)
Sader, John E.; Uchihashi, Takayuki; Higgins, Michael J.; Farrell, Alan; Nakayama, Yoshikazu; Jarvis, Suzanne P.
2005-03-01
Use of the atomic force microscope (AFM) in quantitative force measurements inherently requires a theoretical framework enabling conversion of the observed deflection properties of the cantilever to an interaction force. In this paper, the theoretical foundations of using frequency modulation atomic force microscopy (FM-AFM) in quantitative force measurements are examined and rigorously elucidated, with consideration being given to both 'conservative' and 'dissipative' interactions. This includes a detailed discussion of the underlying assumptions involved in such quantitative force measurements, the presentation of globally valid explicit formulae for evaluation of so-called 'conservative' and 'dissipative' forces, discussion of the origin of these forces, and analysis of the applicability of FM-AFM to quantitative force measurements in liquid.
Interpretation of frequency modulation atomic force microscopy in terms of fractional calculus
NASA Astrophysics Data System (ADS)
Sader, John E.; Jarvis, Suzanne P.
2004-07-01
It is widely recognized that small amplitude frequency modulation atomic force microscopy probes the derivative of the interaction force between tip and sample. For large amplitudes, however, such a physical connection is currently lacking, although it has been observed that the frequency shift presents a quantity intermediate to the interaction force and energy for certain force laws. Here we prove that these observations are a universal property of large amplitude frequency modulation atomic force microscopy, by establishing that the frequency shift is proportional to the half-fractional integral of the force, regardless of the force law. This finding indicates that frequency modulation atomic force microscopy can be interpreted as a fractional differential operator, where the order of the derivative/integral is dictated by the oscillation amplitude. We also establish that the measured frequency shift varies systematically from a probe of the force gradient for small oscillation amplitudes, through to the measurement of a quantity intermediate to the force and energy (the half-fractional integral of the force) for large oscillation amplitudes. This has significant implications to measurement sensitivity, since integrating the force will smooth its behavior, while differentiating it will enhance variations. This highlights the importance in choice of oscillation amplitude when wishing to optimize the sensitivity of force spectroscopy measurements to short-range interactions and consequently imaging with the highest possible resolution.
Atomic force microscopy captures length phenotypes in single proteins
Carrion-Vazquez, Mariano; Marszalek, Piotr E.; Oberhauser, Andres F.; Fernandez, Julio M.
1999-01-01
We use single-protein atomic force microscopy techniques to detect length phenotypes in an Ig module. To gain amino acid resolution, we amplify the mechanical features of a single module by engineering polyproteins composed of up to 12 identical repeats. We show that on mechanical unfolding, mutant polyproteins containing five extra glycine residues added to the folded core of the module extend 20 Å per module farther than the wild-type polyproteins. By contrast, similar insertions near the N or C termini have no effect. Hence, our atomic force microscopy measurements readily discriminate the location of the insert and measure its size with a resolution similar to that of NMR and x-ray crystallography. PMID:10500169
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Ryosuke; Okajima, Takaharu, E-mail: okajima@ist.hokudai.ac.jp
We present multi-frequency force modulation atomic force microscopy (AFM) for mapping the complex shear modulus G* of living cells as a function of frequency over the range of 50–500 Hz in the same measurement time as the single-frequency force modulation measurement. The AFM technique enables us to reconstruct image maps of rheological parameters, which exhibit a frequency-dependent power-law behavior with respect to G{sup *}. These quantitative rheological measurements reveal a large spatial variation in G* in this frequency range for single cells. Moreover, we find that the reconstructed images of the power-law rheological parameters are much different from those obtained inmore » force-curve or single-frequency force modulation measurements. This indicates that the former provide information about intracellular mechanical structures of the cells that are usually not resolved with the conventional force measurement methods.« less
Quantitative force measurements in liquid using frequency modulation atomic force microscopy
NASA Astrophysics Data System (ADS)
Uchihashi, Takayuki; Higgins, Michael J.; Yasuda, Satoshi; Jarvis, Suzanne P.; Akita, Seiji; Nakayama, Yoshikazu; Sader, John E.
2004-10-01
The measurement of short-range forces with the atomic force microscope (AFM) typically requires implementation of dynamic techniques to maintain sensitivity and stability. While frequency modulation atomic force microscopy (FM-AFM) is used widely for high-resolution imaging and quantitative force measurements in vacuum, quantitative force measurements using FM-AFM in liquids have proven elusive. Here we demonstrate that the formalism derived for operation in vacuum can also be used in liquids, provided certain modifications are implemented. To facilitate comparison with previous measurements taken using surface forces apparatus, we choose a model system (octamethylcyclotetrasiloxane) that is known to exhibit short-ranged structural ordering when confined between two surfaces. Force measurements obtained are found to be in excellent agreement with previously reported results. This study therefore establishes FM-AFM as a powerful tool for the quantitative measurement of forces in liquid.
NASA Astrophysics Data System (ADS)
Sweetman, A.; Jarvis, S.; Danza, R.; Bamidele, J.; Kantorovich, L.; Moriarty, P.
2011-08-01
We use small-amplitude qPlus frequency modulated atomic force microscopy (FM-AFM), at 5 K, to investigate the atomic-scale mechanical stability of the Si(100) surface. By operating at zero applied bias the effect of tunneling electrons is eliminated, demonstrating that surface manipulation can be performed by solely mechanical means. Striking differences in surface response are observed between different regions of the surface, most likely due to variations in strain associated with the presence of surface defects. We investigate the variation in local energy surface by ab initio simulation, and comment on the dynamics observed during force spectroscopy.
Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids
Jaafar, Miriam; Cuenca, Mariano; Melcher, John; Raman, Arvind
2012-01-01
Summary We introduce drive-amplitude-modulation atomic force microscopy as a dynamic mode with outstanding performance in all environments from vacuum to liquids. As with frequency modulation, the new mode follows a feedback scheme with two nested loops: The first keeps the cantilever oscillation amplitude constant by regulating the driving force, and the second uses the driving force as the feedback variable for topography. Additionally, a phase-locked loop can be used as a parallel feedback allowing separation of the conservative and nonconservative interactions. We describe the basis of this mode and present some examples of its performance in three different environments. Drive-amplutide modulation is a very stable, intuitive and easy to use mode that is free of the feedback instability associated with the noncontact-to-contact transition that occurs in the frequency-modulation mode. PMID:22563531
Beyer, Hannes; Wagner, Tino; Stemmer, Andreas
2016-01-01
Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions.
A review of demodulation techniques for amplitude-modulation atomic force microscopy
Harcombe, David M; Ragazzon, Michael R P; Moheimani, S O Reza; Fleming, Andrew J
2017-01-01
In this review paper, traditional and novel demodulation methods applicable to amplitude-modulation atomic force microscopy are implemented on a widely used digital processing system. As a crucial bandwidth-limiting component in the z-axis feedback loop of an atomic force microscope, the purpose of the demodulator is to obtain estimates of amplitude and phase of the cantilever deflection signal in the presence of sensor noise or additional distinct frequency components. Specifically for modern multifrequency techniques, where higher harmonic and/or higher eigenmode contributions are present in the oscillation signal, the fidelity of the estimates obtained from some demodulation techniques is not guaranteed. To enable a rigorous comparison, the performance metrics tracking bandwidth, implementation complexity and sensitivity to other frequency components are experimentally evaluated for each method. Finally, the significance of an adequate demodulator bandwidth is highlighted during high-speed tapping-mode atomic force microscopy experiments in constant-height mode. PMID:28900596
Q-controlled amplitude modulation atomic force microscopy in liquids: An analysis
NASA Astrophysics Data System (ADS)
Hölscher, H.; Schwarz, U. D.
2006-08-01
An analysis of amplitude modulation atomic force microscopy in liquids is presented with respect to the application of the Q-Control technique. The equation of motion is solved by numerical and analytic methods with and without Q-Control in the presence of a simple model interaction force adequate for many liquid environments. In addition, the authors give an explicit analytical formula for the tip-sample indentation showing that higher Q factors reduce the tip-sample force. It is found that Q-Control suppresses unwanted deformations of the sample surface, leading to the enhanced image quality reported in several experimental studies.
Frequency modulation atomic force microscopy: a dynamic measurement technique for biological systems
NASA Astrophysics Data System (ADS)
Higgins, Michael J.; Riener, Christian K.; Uchihashi, Takayuki; Sader, John E.; McKendry, Rachel; Jarvis, Suzanne P.
2005-03-01
Frequency modulation atomic force microscopy (FM-AFM) has been modified to operate in a liquid environment within an atomic force microscope specifically designed for investigating biological samples. We demonstrate the applicability of FM-AFM to biological samples using the spectroscopy mode to measure the unbinding forces of a single receptor-ligand (biotin-avidin) interaction. We show that quantitative adhesion force measurements can only be obtained provided certain modifications are made to the existing theory, which is used to convert the detected frequency shifts to an interaction force. Quantitative force measurements revealed that the unbinding forces for the biotin-avidin interaction were greater than those reported in previous studies. This finding was due to the use of high average tip velocities, which were calculated to be two orders of magnitude greater than those typically used in unbinding receptor-ligand experiments. This study therefore highlights the potential use of FM-AFM to study a range of biological systems, including living cells and/or single biomolecule interactions.
Note: Design of FPGA based system identification module with application to atomic force microscopy
NASA Astrophysics Data System (ADS)
Ghosal, Sayan; Pradhan, Sourav; Salapaka, Murti
2018-05-01
The science of system identification is widely utilized in modeling input-output relationships of diverse systems. In this article, we report field programmable gate array (FPGA) based implementation of a real-time system identification algorithm which employs forgetting factors and bias compensation techniques. The FPGA module is employed to estimate the mechanical properties of surfaces of materials at the nano-scale with an atomic force microscope (AFM). The FPGA module is user friendly which can be interfaced with commercially available AFMs. Extensive simulation and experimental results validate the design.
NASA Astrophysics Data System (ADS)
Shi, Shuai; Guo, Dan; Luo, Jianbin
2017-10-01
Active quality factor (Q) exhibits many promising properties in dynamic atomic force microscopy. Energy dissipation and image contrasts are investigated in the non-contact amplitude modulation atomic force microscopy (AM-AFM) with an active Q-control circuit in the ambient air environment. Dissipated power and virial were calculated to compare the highly nonlinear interaction of tip-sample and image contrasts with different Q gain values. Greater free amplitudes and lower effective Q values show better contrasts for the same setpoint ratio. Active quality factor also can be employed to change tip-sample interaction force in non-contact regime. It is meaningful that non-destructive and better contrast images can be realized in non-contact AM-AFM by applying an active Q-control to the dynamic system.
NASA Astrophysics Data System (ADS)
Farrell, Alan A.; Fukuma, Takeshi; Uchihashi, Takayuki; Kay, Euan R.; Bottari, Giovanni; Leigh, David A.; Yamada, Hirofumi; Jarvis, Suzanne P.
2005-09-01
We compare constant amplitude frequency modulation atomic force microscopy (FM-AFM) in ambient conditions to ultrahigh vacuum (UHV) experiments by analysis of thin films of rotaxane molecules. Working in ambient conditions is important for the development of real-world molecular devices. We show that the FM-AFM technique allows quantitative measurement of conservative and dissipative forces without instabilities caused by any native water layer. Molecular resolution is achieved despite the low Q-factor in the air. Furthermore, contrast in the energy dissipation is observed even at the molecular level. This should allow investigations into stimuli-induced sub-molecular motion of organic films.
Zhang, Suoxin; Qian, Jianqiang; Li, Yingzi; Zhang, Yingxu; Wang, Zhenyu
2018-06-04
Atomic force microscope (AFM) is an idealized tool to measure the physical and chemical properties of the sample surfaces by reconstructing the force curve, which is of great significance to materials science, biology, and medicine science. Frequency modulation atomic force microscope (FM-AFM) collects the frequency shift as feedback thus having high force sensitivity and it accomplishes a true noncontact mode, which means great potential in biological sample detection field. However, it is a challenge to establish the relationship between the cantilever properties observed in practice and the tip-sample interaction theoretically. Moreover, there is no existing method to reconstruct the force curve in FM-AFM combining the higher harmonics and the higher flexural modes. This paper proposes a novel method that a full force curve can be reconstructed by any order higher harmonics of the first two flexural modes under any vibration amplitude in FM-AFM. Moreover, in the small amplitude regime, short range forces are reconstructed more accurately by higher harmonics analysis compared with fundamental harmonics using the Sader-Jarvis formula.
NASA Astrophysics Data System (ADS)
Kageshima, Masami; Takeda, Seiji; Ptak, Arkadiusz; Nakamura, Chikashi; Jarvis, Suzanne P.; Tokumoto, Hiroshi; Miyake, Jun
2004-12-01
A method for measuring intramolecular energy dissipation as well as stiffness variation in a single biomolecule in situ by atomic force microscopy (AFM) is presented. An AFM cantilever is magnetically modulated at an off-resonance frequency while it elongates a single peptide molecule in buffer solution. The molecular stiffness and the energy dissipation are measured via the amplitude and phase lag in the response signal. Data showing a peculiar feature in both profiles of stiffness and dissipation is presented. This suggests that the present method is more sensitive to the state of the molecule than the conventional force-elongation measurement is.
Accurate formulas for interaction force and energy in frequency modulation force spectroscopy
NASA Astrophysics Data System (ADS)
Sader, John E.; Jarvis, Suzanne P.
2004-03-01
Frequency modulation atomic force microscopy utilizes the change in resonant frequency of a cantilever to detect variations in the interaction force between cantilever tip and sample. While a simple relation exists enabling the frequency shift to be determined for a given force law, the required complementary inverse relation does not exist for arbitrary oscillation amplitudes of the cantilever. In this letter we address this problem and present simple yet accurate formulas that enable the interaction force and energy to be determined directly from the measured frequency shift. These formulas are valid for any oscillation amplitude and interaction force, and are therefore of widespread applicability in frequency modulation dynamic force spectroscopy.
NASA Astrophysics Data System (ADS)
Ćelik, Ümit; Karcı, Özgür; Uysallı, Yiǧit; Özer, H. Özgür; Oral, Ahmet
2017-01-01
We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ˜500 μW, and ˜141.8 nmpp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.
Çelik, Ümit; Karcı, Özgür; Uysallı, Yiğit; Özer, H Özgür; Oral, Ahmet
2017-01-01
We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ∼500 μW, and ∼141.8 nm pp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.
NASA Astrophysics Data System (ADS)
Fukuma, Takeshi; Higgins, Michael J.; Jarvis, Suzanne P.
2007-03-01
Various metal cations in physiological solutions interact with lipid headgroups in biological membranes, having an impact on their structure and stability, yet little is known about the molecular-scale dynamics of the lipid-ion interactions. Here we directly investigate the extensive lipid-ion interaction networks and their transient formation between headgroups in a dipalmitoylphosphatidylcholine bilayer under physiological conditions. The spatial distribution of ion occupancy is imaged in real space by frequency modulation atomic force microscopy with sub-Ångstrom resolution.
Mitani, Yuji; Kubo, Mamoru; Muramoto, Ken-ichiro; Fukuma, Takeshi
2009-08-01
We have developed a wideband digital frequency detector for high-speed frequency modulation atomic force microscopy (FM-AFM). We used a subtraction-based phase comparator (PC) in a phase-locked loop circuit instead of a commonly used multiplication-based PC, which has enhanced the detection bandwidth to 100 kHz. The quantitative analysis of the noise performance revealed that the internal noise from the developed detector is small enough to provide the theoretically limited noise performance in FM-AFM experiments in liquid. FM-AFM imaging of mica in liquid was performed with the developed detector, showing its stability and applicability to true atomic-resolution imaging in liquid.
Atomic force microscopy reveals the mechanical design of a modular protein
Li, Hongbin; Oberhauser, Andres F.; Fowler, Susan B.; Clarke, Jane; Fernandez, Julio M.
2000-01-01
Tandem modular proteins underlie the elasticity of natural adhesives, cell adhesion proteins, and muscle proteins. The fundamental unit of elastic proteins is their individually folded modules. Here, we use protein engineering to construct multimodular proteins composed of Ig modules of different mechanical strength. We examine the mechanical properties of the resulting tandem modular proteins by using single protein atomic force microscopy. We show that by combining modules of known mechanical strength, we can generate proteins with novel elastic properties. Our experiments reveal the simple mechanical design of modular proteins and open the way for the engineering of elastic proteins with defined mechanical properties, which can be used in tissue and fiber engineering. PMID:10823913
Atomic force microscopy reveals the mechanical design of a modular protein.
Li, H; Oberhauser, A F; Fowler, S B; Clarke, J; Fernandez, J M
2000-06-06
Tandem modular proteins underlie the elasticity of natural adhesives, cell adhesion proteins, and muscle proteins. The fundamental unit of elastic proteins is their individually folded modules. Here, we use protein engineering to construct multimodular proteins composed of Ig modules of different mechanical strength. We examine the mechanical properties of the resulting tandem modular proteins by using single protein atomic force microscopy. We show that by combining modules of known mechanical strength, we can generate proteins with novel elastic properties. Our experiments reveal the simple mechanical design of modular proteins and open the way for the engineering of elastic proteins with defined mechanical properties, which can be used in tissue and fiber engineering.
NASA Astrophysics Data System (ADS)
Santos, Sergio; Barcons, Victor; Christenson, Hugo K.; Billingsley, Daniel J.; Bonass, William A.; Font, Josep; Thomson, Neil H.
2013-08-01
A way to operate fundamental mode amplitude modulation atomic force microscopy is introduced which optimizes stability and resolution for a given tip size and shows negligible tip wear over extended time periods (˜24 h). In small amplitude small set-point (SASS) imaging, the cantilever oscillates with sub-nanometer amplitudes in the proximity of the sample, without the requirement of using large drive forces, as the dynamics smoothly lead the tip to the surface through the water layer. SASS is demonstrated on single molecules of double-stranded DNA in ambient conditions where sharp silicon tips (R ˜ 2-5 nm) can resolve the right-handed double helix.
Quantitative measurement of solvation shells using frequency modulated atomic force microscopy
NASA Astrophysics Data System (ADS)
Uchihashi, T.; Higgins, M.; Nakayama, Y.; Sader, J. E.; Jarvis, S. P.
2005-03-01
The nanoscale specificity of interaction measurements and additional imaging capability of the atomic force microscope make it an ideal technique for measuring solvation shells in a variety of liquids next to a range of materials. Unfortunately, the widespread use of atomic force microscopy for the measurement of solvation shells has been limited by uncertainties over the dimensions, composition and durability of the tip during the measurements, and problems associated with quantitative force calibration of the most sensitive dynamic measurement techniques. We address both these issues by the combined use of carbon nanotube high aspect ratio probes and quantifying the highly sensitive frequency modulation (FM) detection technique using a recently developed analytical method. Due to the excellent reproducibility of the measurement technique, additional information regarding solvation shell size as a function of proximity to the surface has been obtained for two very different liquids. Further, it has been possible to identify differences between chemical and geometrical effects in the chosen systems.
NASA Astrophysics Data System (ADS)
An, Sangmin; Hong, Mun-heon; Kim, Jongwoo; Kwon, Soyoung; Lee, Kunyoung; Lee, Manhee; Jhe, Wonho
2012-11-01
We present a platform for the quartz tuning fork (QTF)-based, frequency modulation atomic force microscopy (FM-AFM) system for quantitative study of the mechanical or topographical properties of nanoscale materials, such as the nano-sized water bridge formed between the quartz tip (˜100 nm curvature) and the mica substrate. A thermally stable, all digital phase-locked loop is used to detect the small frequency shift of the QTF signal resulting from the nanomaterial-mediated interactions. The proposed and demonstrated novel FM-AFM technique provides high experimental sensitivity in the measurement of the viscoelastic forces associated with the confined nano-water meniscus, short response time, and insensitivity to amplitude noise, which are essential for precision dynamic force spectroscopy and microscopy.
An, Sangmin; Hong, Mun-heon; Kim, Jongwoo; Kwon, Soyoung; Lee, Kunyoung; Lee, Manhee; Jhe, Wonho
2012-11-01
We present a platform for the quartz tuning fork (QTF)-based, frequency modulation atomic force microscopy (FM-AFM) system for quantitative study of the mechanical or topographical properties of nanoscale materials, such as the nano-sized water bridge formed between the quartz tip (~100 nm curvature) and the mica substrate. A thermally stable, all digital phase-locked loop is used to detect the small frequency shift of the QTF signal resulting from the nanomaterial-mediated interactions. The proposed and demonstrated novel FM-AFM technique provides high experimental sensitivity in the measurement of the viscoelastic forces associated with the confined nano-water meniscus, short response time, and insensitivity to amplitude noise, which are essential for precision dynamic force spectroscopy and microscopy.
Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh
2013-05-08
We have imaged nanobubbles on highly ordered pyrolytic graphite (HOPG) surfaces in pure water with different atomic force microscopy (AFM) modes, including the frequency-modulation, the tapping, and the PeakForce techniques. We have compared the performance of these modes in obtaining the surface profiles of nanobubbles. The frequency-modulation mode yields a larger height value than the other two modes and can provide more accurate measurement of the surface profiles of nanobubbles. Imaging with PeakForce mode shows that a nanobubble appears smaller and shorter with increasing peak force and disappears above a certain peak force, but the size returns to the original value when the peak force is reduced. This indicates that imaging with high peak forces does not cause gas removal from the nanobubbles. Based on the presented findings and previous AFM observations, the existing models for nanobubbles are reviewed and discussed. The model of gas aggregate inside nanobubbles provides a better explanation for the puzzles of the high stability and the contact angle of surface nanobubbles.
Weber, Stefan A L; Kilpatrick, Jason I; Brosnan, Timothy M; Jarvis, Suzanne P; Rodriguez, Brian J
2014-05-02
Atomic force microscopy (AFM) is widely used in liquid environments, where true atomic resolution at the solid-liquid interface can now be routinely achieved. It is generally expected that AFM operation in more viscous environments results in an increased noise contribution from the thermal motion of the cantilever, thereby reducing the signal-to-noise ratio (SNR). Thus, viscous fluids such as ionic and organic liquids have been generally avoided for high-resolution AFM studies despite their relevance to, e.g. energy applications. Here, we investigate the thermal noise limitations of dynamic AFM operation in both low and high viscosity environments theoretically, deriving expressions for the amplitude, phase and frequency noise resulting from the thermal motion of the cantilever, thereby defining the performance limits of amplitude modulation, phase modulation and frequency modulation AFM. We show that the assumption of a reduced SNR in viscous environments is not inherent to the technique and demonstrate that SNR values comparable to ultra-high vacuum systems can be obtained in high viscosity environments under certain conditions. Finally, we have obtained true atomic resolution images of highly ordered pyrolytic graphite and mica surfaces, thus revealing the potential of high-resolution imaging in high viscosity environments.
NASA Astrophysics Data System (ADS)
Weber, Stefan A. L.; Kilpatrick, Jason I.; Brosnan, Timothy M.; Jarvis, Suzanne P.; Rodriguez, Brian J.
2014-05-01
Atomic force microscopy (AFM) is widely used in liquid environments, where true atomic resolution at the solid-liquid interface can now be routinely achieved. It is generally expected that AFM operation in more viscous environments results in an increased noise contribution from the thermal motion of the cantilever, thereby reducing the signal-to-noise ratio (SNR). Thus, viscous fluids such as ionic and organic liquids have been generally avoided for high-resolution AFM studies despite their relevance to, e.g. energy applications. Here, we investigate the thermal noise limitations of dynamic AFM operation in both low and high viscosity environments theoretically, deriving expressions for the amplitude, phase and frequency noise resulting from the thermal motion of the cantilever, thereby defining the performance limits of amplitude modulation, phase modulation and frequency modulation AFM. We show that the assumption of a reduced SNR in viscous environments is not inherent to the technique and demonstrate that SNR values comparable to ultra-high vacuum systems can be obtained in high viscosity environments under certain conditions. Finally, we have obtained true atomic resolution images of highly ordered pyrolytic graphite and mica surfaces, thus revealing the potential of high-resolution imaging in high viscosity environments.
Multiloop atom interferometer measurements of chameleon dark energy in microgravity
NASA Astrophysics Data System (ADS)
Chiow, Sheng-wey; Yu, Nan
2018-02-01
Chameleon field is one of the promising candidates of dark energy scalar fields. As in all viable candidate field theories, a screening mechanism is implemented to be consistent with all existing tests of general relativity. The screening effect in the chameleon theory manifests its influence limited only to the thin outer layer of a bulk object, thus producing extra forces orders of magnitude weaker than that of the gravitational force of the bulk. For pointlike particles such as atoms, the depth of screening is larger than the size of the particle, such that the screening mechanism is ineffective and the chameleon force is fully expressed on the atomic test particles. Extra force measurements using atom interferometry are thus much more sensitive than bulk mass based measurements, and indeed have placed the most stringent constraints on the parameters characterizing chameleon field. In this paper, we present a conceptual measurement approach for chameleon force detection using atom interferometry in microgravity, in which multiloop atom interferometers exploit specially designed periodic modulation of chameleon fields. We show that major systematics of the dark energy force measurements, i.e., effects of gravitational forces and their gradients, can be suppressed below all hypothetical chameleon signals in the parameter space of interest.
Note: Effect of the parasitic forced vibration in an atom gravimeter
NASA Astrophysics Data System (ADS)
Chen, Le-Le; Luo, Qin; Zhang, Heng; Duan, Xiao-Chun; Zhou, Min-Kang; Hu, Zhong-Kun
2018-06-01
The vibration isolator usually plays an important role in atom interferometry gravimeters to improve their sensitivity. We show that the parasitic forced vibration of the Raman mirror, which is induced by external forces acting on the vibration isolator, can cause a bias in atom gravimeters. The mechanism of how this effect induces an additional phase shift in our interferometer is analyzed. Moreover, modulation experiments are performed to measure the dominant part of this effect, which is caused by the magnetic force between the passive vibration isolator and the coil of the magneto-optic trap. In our current apparatus, this forced vibration contributes a systematic error of -2.3(2) × 10-7 m/s2 when the vibration isolator works in the passive isolation mode. Even suppressed with an active vibration isolator, this effect can still contribute -6(1) × 10-8 m/s2; thus, it should be carefully considered in precision atom gravimeters.
Challenges and complexities of multifrequency atomic force microscopy in liquid environments.
Solares, Santiago D
2014-01-01
This paper illustrates through numerical simulation the complexities encountered in high-damping AFM imaging, as in liquid enviroments, within the specific context of multifrequency atomic force microscopy (AFM). The focus is primarily on (i) the amplitude and phase relaxation of driven higher eigenmodes between successive tip-sample impacts, (ii) the momentary excitation of non-driven higher eigenmodes and (iii) base excitation artifacts. The results and discussion are mostly applicable to the cases where higher eigenmodes are driven in open loop and frequency modulation within bimodal schemes, but some concepts are also applicable to other types of multifrequency operations and to single-eigenmode amplitude and frequency modulation methods.
Ebeling, Daniel; Solares, Santiago D
2013-01-01
We present an overview of the bimodal amplitude-frequency-modulation (AM-FM) imaging mode of atomic force microscopy (AFM), whereby the fundamental eigenmode is driven by using the amplitude-modulation technique (AM-AFM) while a higher eigenmode is driven by using either the constant-excitation or the constant-amplitude variant of the frequency-modulation (FM-AFM) technique. We also offer a comparison to the original bimodal AFM method, in which the higher eigenmode is driven with constant frequency and constant excitation amplitude. General as well as particular characteristics of the different driving schemes are highlighted from theoretical and experimental points of view, revealing the advantages and disadvantages of each. This study provides information and guidelines that can be useful in selecting the most appropriate operation mode to characterize different samples in the most efficient and reliable way.
Frequency modulation detection atomic force microscopy in the liquid environment
NASA Astrophysics Data System (ADS)
Jarvis, S. P.; Ishida, T.; Uchihashi, T.; Nakayama, Y.; Tokumoto, H.
True atomic resolution imaging using frequency modulation detection is already well established in ultra-high vacuum. In this paper we demonstrate that it also has great potential in the liquid environment. Using a combination of magnetic activation and high-aspect-ratio carbon nanotube probes, we show that imaging can be readily combined with point spectroscopy, revealing both the tip-sample interaction and the structure of the intermediate liquid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babic, Bakir, E-mail: bakir.babic@measurement.gov.au; Lawn, Malcolm A.; Coleman, Victoria A.
The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation tomore » zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.« less
Gan, Tiansheng; Gong, Xiangjun; Schönherr, Holger; Zhang, Guangzhao
2016-12-01
Microrheology of growing biofilms provides insightful information about its structural evolution and properties. In this study, the authors have investigated the microrheology of Escherichia coli (strain HCB1) biofilms at different indentation depth (δ) by using magnetic force modulation atomic force microscopy as a function of disturbing frequency (f). As δ increases, the dynamic stiffness (k s ) for the biofilms in the early stage significantly increases. However, it levels off when the biofilms are matured. The facts indicate that the biofilms change from inhomogeneous to homogeneous in structure. Moreover, k s is scaled to f, which coincides with the rheology of soft glasses. The exponent increases with the incubation time, indicating the fluidization of biofilms. In contrast, the upper layer of the matured biofilms is solidlike in that the storage modulus is always larger than the loss modulus, and its viscoelasticity is slightly influenced by the shear stress.
Chemical bond imaging using higher eigenmodes of tuning fork sensors in atomic force microscopy
NASA Astrophysics Data System (ADS)
Ebeling, Daniel; Zhong, Qigang; Ahles, Sebastian; Chi, Lifeng; Wegner, Hermann A.; Schirmeisen, André
2017-05-01
We demonstrate the ability of resolving the chemical structure of single organic molecules using non-contact atomic force microscopy with higher normal eigenmodes of quartz tuning fork sensors. In order to achieve submolecular resolution, CO-functionalized tips at low temperatures are used. The tuning fork sensors are operated in ultrahigh vacuum in the frequency modulation mode by exciting either their first or second eigenmode. Despite the high effective spring constant of the second eigenmode (on the order of several tens of kN/m), the force sensitivity is sufficiently high to achieve atomic resolution above the organic molecules. This is observed for two different tuning fork sensors with different tip geometries (small tip vs. large tip). These results represent an important step towards resolving the chemical structure of single molecules with multifrequency atomic force microscopy techniques where two or more eigenmodes are driven simultaneously.
Challenges and complexities of multifrequency atomic force microscopy in liquid environments
2014-01-01
Summary This paper illustrates through numerical simulation the complexities encountered in high-damping AFM imaging, as in liquid enviroments, within the specific context of multifrequency atomic force microscopy (AFM). The focus is primarily on (i) the amplitude and phase relaxation of driven higher eigenmodes between successive tip–sample impacts, (ii) the momentary excitation of non-driven higher eigenmodes and (iii) base excitation artifacts. The results and discussion are mostly applicable to the cases where higher eigenmodes are driven in open loop and frequency modulation within bimodal schemes, but some concepts are also applicable to other types of multifrequency operations and to single-eigenmode amplitude and frequency modulation methods. PMID:24778952
DOE Office of Scientific and Technical Information (OSTI.GOV)
Söngen, Hagen, E-mail: soengen@uni-mainz.de; Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz; Nalbach, Martin
2016-06-15
We present the implementation of a three-dimensional mapping routine for probing solid-liquid interfaces using frequency modulation atomic force microscopy. Our implementation enables fast and flexible data acquisition of up to 20 channels simultaneously. The acquired data can be directly synchronized with commercial atomic force microscope controllers, making our routine easily extendable for related techniques that require additional data channels, e.g., Kelvin probe force microscopy. Moreover, the closest approach of the tip to the sample is limited by a user-defined threshold, providing the possibility to prevent potential damage to the tip. The performance of our setup is demonstrated by visualizing themore » hydration structure above the calcite (10.4) surface in water.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Naritaka, E-mail: naritaka@mail.saitama-u.ac.jp; Kawamura, Ryuzo; Yoshikawa, Hiroshi Y.
2016-06-07
In this study, we have directly observed nanoscale processes that occur on BaF{sub 2}(111) surfaces in various solutions using liquid-environment frequency modulation atomic force microscopy (FM-AFM) with a true atomic resolution. In addition, to investigate atomic-scale mechanisms of crystal growth process of BaF{sub 2}, we determined a suitable solution for atomic-resolution FM-AFM imaging of the BaF{sub 2}(111) surface. For undersaturated solutions, the surface is roughened by barium hydroxo complexes in the case of high pH, whereas by dissolution and proton or water molecule adsorption throughout the surface in the case of low pH. On the other hand, for supersaturated solutions,more » the surface shows two-dimensional nucleation and growth (σ = 0.1) and three-dimensional crystal growth with tetrahedral structures (σ = 1), where σ is the degree of supersaturation. The atomic-resolution imaging of the BaF{sub 2}(111) surface has been demonstrated in potassium fluoride (KF) and the supersaturated (σ = 0.1 and 1) solutions, wherein atomically flat terraces are shown at least for about 30 min.« less
Nikfarjam, Miead; López-Guerra, Enrique A; Solares, Santiago D; Eslami, Babak
2018-01-01
In this short paper we explore the use of higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy (AFM) for the small-indentation imaging of soft viscoelastic materials. In viscoelastic materials, whose response depends on the deformation rate, the tip-sample forces generated as a result of sample deformation increase as the tip velocity increases. Since the eigenfrequencies in a cantilever increase with eigenmode order, and since higher oscillation frequencies lead to higher tip velocities for a given amplitude (in viscoelastic materials), the sample indentation can in some cases be reduced by using higher eigenmodes of the cantilever. This effect competes with the lower sensitivity of higher eigenmodes, due to their larger force constant, which for elastic materials leads to greater indentation for similar amplitudes, compared with lower eigenmodes. We offer a short theoretical discussion of the key underlying concepts, along with numerical simulations and experiments to illustrate a simple recipe for imaging soft viscoelastic matter with reduced indentation.
NASA Astrophysics Data System (ADS)
Guan, Dongshi; Charlaix, Elisabeth; Qi, Robert Z.; Tong, Penger
2017-10-01
Imaging of surface topography and elasticity of living cells can provide insight into the roles played by the cells' volumetric and mechanical properties and their response to external forces in regulating the essential cellular events and functions. Here, we report a unique technique of noncontact viscoelastic imaging of live cells using atomic force microscopy (AFM) with a long-needle glass probe. Because only the probe tip is placed in a liquid medium near the cell surface, the AFM cantilever in air functions well under dual-frequency modulation, retaining its high-quality resonant modes. The probe tip interacts with the cell surface through a minute hydrodynamic flow in the nanometer-thin gap region between them without physical contact. Quantitative measurements of the cell height, volume, and Young's modulus are conducted simultaneously. The experiment demonstrates that the long-needle AFM has a wide range of applications in the study of cell mechanics.
Accurate formula for dissipative interaction in frequency modulation atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Kazuhiro; Matsushige, Kazumi; Yamada, Hirofumi
2014-12-08
Much interest has recently focused on the viscosity of nano-confined liquids. Frequency modulation atomic force microscopy (FM-AFM) is a powerful technique that can detect variations in the conservative and dissipative forces between a nanometer-scale tip and a sample surface. We now present an accurate formula to convert the dissipation power of the cantilever measured during the experiment to damping of the tip-sample system. We demonstrated the conversion of the dissipation power versus tip-sample separation curve measured using a colloidal probe cantilever on a mica surface in water to the damping curve, which showed a good agreement with the theoretical curve.more » Moreover, we obtained the damping curve from the dissipation power curve measured on the hydration layers on the mica surface using a nanometer-scale tip, demonstrating that the formula allows us to quantitatively measure the viscosity of a nano-confined liquid using FM-AFM.« less
Synchronization of a self-sustained cold-atom oscillator
NASA Astrophysics Data System (ADS)
Heimonen, H.; Kwek, L. C.; Kaiser, R.; Labeyrie, G.
2018-04-01
Nonlinear oscillations and synchronization phenomena are ubiquitous in nature. We study the synchronization of self-oscillating magneto-optically trapped cold atoms to a weak external driving. The oscillations arise from a dynamical instability due the competition between the screened magneto-optical trapping force and the interatomic repulsion due to multiple scattering of light. A weak modulation of the trapping force allows the oscillations of the cloud to synchronize to the driving. The synchronization frequency range increases with the forcing amplitude. The corresponding Arnold tongue is experimentally measured and compared to theoretical predictions. Phase locking between the oscillator and drive is also observed.
Li, Jie-Ren; Lewandowski, Brian R; Xu, Song; Garno, Jayne C
2009-06-15
A new imaging strategy using atomic force microscopy (AFM) is demonstrated for mapping magnetic domains at size regimes below 100 nm. The AFM-based imaging mode is referred to as magnetic sample modulation (MSM), since the flux of an AC-generated electromagnetic field is used to induce physical movement of magnetic nanomaterials on surfaces during imaging. The AFM is operated in contact mode using a soft, nonmagnetic tip to detect the physical motion of the sample. By slowly scanning an AFM probe across a vibrating area of the sample, the frequency and amplitude of vibration induced by the magnetic field is tracked by changes in tip deflection. Thus, the AFM tip serves as a force and motion sensor for mapping the vibrational response of magnetic nanomaterials. Essentially, MSM is a hybrid of contact mode AFM combined with selective modulation of magnetic domains. The positional feedback loop for MSM imaging is the same as that used for force modulation and contact mode AFM; however, the vibration of the sample is analyzed using channels of a lock-in amplifier. The investigations are facilitated by nanofabrication methods combining particle lithography with organic vapor deposition and electroless deposition of iron oxide, to prepare designed test platforms of magnetic materials at nanometer length scales. Custom test platforms furnished suitable surfaces for MSM characterizations at the level of individual metal nanostructures.
NASA Astrophysics Data System (ADS)
Wang, Kesheng; Cheng, Jia; Yao, Shiji; Lu, Yijia; Ji, Linhong; Xu, Dengfeng
2016-12-01
Electrostatic force measurement at the micro/nano scale is of great significance in science and engineering. In this paper, a reasonable way of applying voltage is put forward by taking an electrostatic chuck in a real integrated circuit manufacturing process as a sample, applying voltage in the probe and the sample electrode, respectively, and comparing the measurement effect of the probe oscillation phase difference by amplitude modulation atomic force microscopy. Based on the phase difference obtained from the experiment, the quantitative dependence of the absolute magnitude of the electrostatic force on the tip-sample distance and applied voltage is established by means of theoretical analysis and numerical simulation. The results show that the varying characteristics of the electrostatic force with the distance and voltage at the micro/nano scale are similar to those at the macroscopic scale. Electrostatic force gradually decays with increasing distance. Electrostatic force is basically proportional to the square of applied voltage. Meanwhile, the applicable conditions of the above laws are discussed. In addition, a comparison of the results in this paper with the results of the energy dissipation method shows the two are consistent in general. The error decreases with increasing distance, and the effect of voltage on the error is small.
NASA Technical Reports Server (NTRS)
Cantrell, John H., Jr.; Cantrell, Sean A.
2008-01-01
A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.
Atomic force microscope based on vertical silicon probes
NASA Astrophysics Data System (ADS)
Walter, Benjamin; Mairiaux, Estelle; Faucher, Marc
2017-06-01
A family of silicon micro-sensors for Atomic Force Microscope (AFM) is presented that allows to operate with integrated transducers from medium to high frequencies together with moderate stiffness constants. The sensors are based on Micro-Electro-Mechanical-Systems technology. The vertical design specifically enables a long tip to oscillate perpendicularly to the surface to be imaged. The tip is part of a resonator including quasi-flexural composite beams, and symmetrical transducers that can be used as piezoresistive detector and/or electro-thermal actuator. Two vertical probes (Vprobes) were operated up to 4.3 MHz with stiffness constants 150 N/m to 500 N/m and the capability to oscillate from 10 pm to 90 nm. AFM images of several samples both in amplitude modulation (tapping-mode) and in frequency modulation were obtained.
NASA Astrophysics Data System (ADS)
Kaggwa, G. B.; Kilpatrick, J. I.; Sader, J. E.; Jarvis, S. P.
2008-07-01
We present definitive interaction measurements of a simple confined liquid (octamethylcyclotetrasiloxane) using artifact-free frequency modulation atomic force microscopy. We use existing theory to decouple the conservative and dissipative components of the interaction, for a known phase offset from resonance (90° phase shift), that has been deliberately introduced into the experiment. Further we show the qualitative influence on the conservative and dissipative components of the interaction of a phase error deliberately introduced into the measurement, highlighting that artifacts, such as oscillatory dissipation, can be readily observed when the phase error is not compensated for in the force analysis.
NASA Astrophysics Data System (ADS)
Karci, Ozgur; Celik, Umit; Oral, Ahmet; NanoMagnetics Instruments Ltd. Team; Middle East Tech Univ Team
2015-03-01
We describe a novel method for excitation of Atomic Force Microscope (AFM) cantilevers by means of radiation pressure for imaging in an AFM for the first time. Piezo excitation is the most common method for cantilever excitation, but it may cause spurious resonance peaks. A fiber optic interferometer with 1310 nm laser was used both to measure the deflection of cantilever and apply a force to the cantilever in a LT-AFM/MFM from NanoMagnetics Instruments. The laser power was modulated at the cantilever`s resonance frequency by a digital Phase Lock Loop (PLL). The force exerted by the radiation pressure on a perfectly reflecting surface by a laser beam of power P is F = 2P/c. We typically modulate the laser beam by ~ 800 μW and obtain 10nm oscillation amplitude with Q ~ 8,000 at 2.5x10-4 mbar. The cantilever's stiffness can be accurately calibrated by using the radiation pressure. We have demonstrated performance of the radiation pressure excitation in AFM/MFM by imaging a hard disk sample between 4-300K and Abrikosov vortex lattice in BSCCO single crystal at 4K to for the first time.
Modulation of electrical potential and conductivity in an atomic-layer semiconductor heterojunction
Kobayashi, Yu; Yoshida, Shoji; Sakurada, Ryuji; Takashima, Kengo; Yamamoto, Takahiro; Saito, Tetsuki; Konabe, Satoru; Taniguchi, Takashi; Watanabe, Kenji; Maniwa, Yutaka; Takeuchi, Osamu; Shigekawa, Hidemi; Miyata, Yasumitsu
2016-01-01
Semiconductor heterojunction interfaces have been an important topic, both in modern solid state physics and in electronics and optoelectronics applications. Recently, the heterojunctions of atomically-thin transition metal dichalcogenides (TMDCs) are expected to realize one-dimensional (1D) electronic systems at their heterointerfaces due to their tunable electronic properties. Herein, we report unique conductivity enhancement and electrical potential modulation of heterojunction interfaces based on TMDC bilayers consisted of MoS2 and WS2. Scanning tunneling microscopy/spectroscopy analyses showed the formation of 1D confining potential (potential barrier) in the valence (conduction) band, as well as bandgap narrowing around the heterointerface. The modulation of electronic properties were also probed as the increase of current in conducting atomic force microscopy. Notably, the observed band bending can be explained by the presence of 1D fixed charges around the heterointerface. The present findings indicate that the atomic layer heterojunctions provide a novel approach to realizing tunable 1D electrical potential for embedded quantum wires and ultrashort barriers of electrical transport. PMID:27515115
de la Torre, B; Ellner, M; Pou, P; Nicoara, N; Pérez, Rubén; Gómez-Rodríguez, J M
2016-06-17
We show that noncontact atomic force microscopy (AFM) is sensitive to the local stiffness in the atomic-scale limit on weakly coupled 2D materials, as graphene on metals. Our large amplitude AFM topography and dissipation images under ultrahigh vacuum and low temperature resolve the atomic and moiré patterns in graphene on Pt(111), despite its extremely low geometric corrugation. The imaging mechanisms are identified with a multiscale model based on density-functional theory calculations, where the energy cost of global and local deformations of graphene competes with short-range chemical and long-range van der Waals interactions. Atomic contrast is related with short-range tip-sample interactions, while the dissipation can be understood in terms of global deformations in the weakly coupled graphene layer. Remarkably, the observed moiré modulation is linked with the subtle variations of the local interplanar graphene-substrate interaction, opening a new route to explore the local mechanical properties of 2D materials at the atomic scale.
Automated force controller for amplitude modulation atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyagi, Atsushi, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr; Scheuring, Simon, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr
Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollablemore » drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.« less
Coupling of conservative and dissipative forces in frequency-modulation atomic force microscopy
NASA Astrophysics Data System (ADS)
Sader, John E.; Jarvis, Suzanne P.
2006-11-01
Frequency modulation atomic force microscopy (FM-AFM) utilizes the principle of self-excitation to ensure the cantilever probe vibrates at its resonant frequency, regardless of the tip-sample interaction. Practically, this is achieved by fixing the phase difference between tip deflection and driving force at precisely 90° . This, in turn, decouples the frequency shift and excitation amplitude signals, enabling quantitative interpretation in terms of conservative and dissipative tip-sample interaction forces. In this article, we theoretically investigate the effect of phase detuning in the self-excitation mechanism on the coupling between conservative and dissipative forces in FM-AFM. We find that this coupling depends only on the relative difference in the drive and resonant frequencies far from the surface, and is thus very weakly dependent on the actual phase error particularly for high quality factors. This establishes that FM-AFM is highly robust with respect to phase detuning, and enables quantitative interpretation of the measured frequency shift and excitation amplitude, even while operating away from the resonant frequency with the use of appropriate replacements in the existing formalism. We also examine the calibration of phase shifts in FM-AFM measurements and demonstrate that the commonly used approach of minimizing the excitation amplitude can lead to significant phase detuning, particularly in liquid environments.
Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy
NASA Technical Reports Server (NTRS)
Cantrell, John H.; Cantrell, Sean A.
2010-01-01
The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omar, Yamila M.; Al Ghaferi, Amal, E-mail: aalghaferi@masdar.ac.ae, E-mail: mchiesa@masdar.ac.ae; Chiesa, Matteo, E-mail: aalghaferi@masdar.ac.ae, E-mail: mchiesa@masdar.ac.ae
2015-07-20
Extensive work has been done in order to determine the bulk elastic modulus of isotropic samples from force curves acquired with atomic force microscopy. However, new challenges are encountered given the development of new materials constructed of one-dimensional anisotropic building blocks, such as carbon nanostructured paper. In the present work, we establish a reliable framework to correlate the elastic modulus values obtained by amplitude modulation atomic force microscope force curves, a nanoscopic technique, with that determined by traditional macroscopic tensile testing. In order to do so, several techniques involving image processing, statistical analysis, and simulations are used to find themore » appropriate path to understand how macroscopic properties arise from anisotropic nanoscale components, and ultimately, being able to calculate the value of bulk elastic modulus.« less
NASA Astrophysics Data System (ADS)
Fukuma, Takeshi; Jarvis, Suzanne P.
2006-04-01
We have developed a liquid-environment frequency modulation atomic force microscope (FM-AFM) with a low noise deflection sensor for a wide range of cantilevers with different dimensions. A simple yet accurate equation describing the theoretical limit of the optical beam deflection method in air and liquid is presented. Based on the equation, we have designed a low noise deflection sensor. Replaceable microscope objective lenses are utilized for providing a high magnification optical view (resolution: <3μm) as well as for focusing a laser beam (laser spot size: ˜10μm). Even for a broad range of cantilevers with lengths from 35to125μm, the sensor provides deflection noise densities of less than 11fm/√Hz in air and 16fm/√Hz in water. In particular, a cantilever with a length of 50μm gives the minimum deflection noise density of 5.7fm/√Hz in air and 7.3fm/√Hz in water. True atomic resolution of the developed FM-AFM is demonstrated by imaging mica in water.
van Spengen, W Merlijn; Turq, Viviane; Frenken, Joost W M
2010-01-01
We have replaced the periodic Prandtl-Tomlinson model with an atomic-scale friction model with a random roughness term describing the surface roughness of micro-electromechanical systems (MEMS) devices with sliding surfaces. This new model is shown to exhibit the same features as previously reported experimental MEMS friction loop data. The correlation function of the surface roughness is shown to play a critical role in the modelling. It is experimentally obtained by probing the sidewall surfaces of a MEMS device flipped upright in on-chip hinges with an AFM (atomic force microscope). The addition of a modulation term to the model allows us to also simulate the effect of vibration-induced friction reduction (normal-force modulation), as a function of both vibration amplitude and frequency. The results obtained agree very well with measurement data reported previously.
NASA Astrophysics Data System (ADS)
Amanokura, Jin; Ono, Hiroshi; Hombo, Kyoko
2011-05-01
In order to obtain a high-speed copper chemical mechanical polishing (CMP) process for through silicon vias (TSV) application, we developed a new Cu CMP slurry through friction analysis of Cu reaction layer by an atomic force microscope (AFM) technique. A lateral modulation friction force microscope (LM-FFM) is able to measure the friction value properly giving a vibration to the layer. We evaluated the torsional displacement between the probe of the LM-FFM and the Cu reaction layer under a 5 nm vibration to cancel the shape effect of the Cu reaction layer. The developed Cu CMP slurry forms a frictionally easy-removable Cu reaction layer.
Eslami, Babak; Ebeling, Daniel
2014-01-01
Summary This paper presents experiments on Nafion® proton exchange membranes and numerical simulations illustrating the trade-offs between the optimization of compositional contrast and the modulation of tip indentation depth in bimodal atomic force microscopy (AFM). We focus on the original bimodal AFM method, which uses amplitude modulation to acquire the topography through the first cantilever eigenmode, and drives a higher eigenmode in open-loop to perform compositional mapping. This method is attractive due to its relative simplicity, robustness and commercial availability. We show that this technique offers the capability to modulate tip indentation depth, in addition to providing sample topography and material property contrast, although there are important competing effects between the optimization of sensitivity and the control of indentation depth, both of which strongly influence the contrast quality. Furthermore, we demonstrate that the two eigenmodes can be highly coupled in practice, especially when highly repulsive imaging conditions are used. Finally, we also offer a comparison with a previously reported trimodal AFM method, where the above competing effects are minimized. PMID:25161847
NASA Astrophysics Data System (ADS)
Sah, Si Mohamed; Forchheimer, Daniel; Borgani, Riccardo; Haviland, David
2018-02-01
We present a polynomial force reconstruction of the tip-sample interaction force in Atomic Force Microscopy. The method uses analytical expressions for the slow-time amplitude and phase evolution, obtained from time-averaging over the rapidly oscillating part of the cantilever dynamics. The slow-time behavior can be easily obtained in either the numerical simulations or the experiment in which a high-Q resonator is perturbed by a weak nonlinearity and a periodic driving force. A direct fit of the theoretical expressions to the simulated and experimental data gives the best-fit parameters for the force model. The method combines and complements previous works (Platz et al., 2013; Forchheimer et al., 2012 [2]) and it allows for computationally more efficient parameter mapping with AFM. Results for the simulated asymmetric piecewise linear force and VdW-DMT force models are compared with the reconstructed polynomial force and show a good agreement. It is also shown that the analytical amplitude and phase modulation equations fit well with the experimental data.
Parametric Cooling of Ultracold Atoms
NASA Astrophysics Data System (ADS)
Boguslawski, Matthew; Bharath, H. M.; Barrios, Maryrose; Chapman, Michael
2017-04-01
An oscillator is characterized by a restoring force which determines the natural frequency at which oscillations occur. The amplitude and phase-noise of these oscillations can be amplified or squeezed by modulating the magnitude of this force (e.g. the stiffness of the spring) at twice the natural frequency. This is parametric excitation; a long-studied phenomena in both the classical and quantum regimes. Parametric cooling, or the parametric squeezing of thermo-mechanical noise in oscillators has been studied in micro-mechanical oscillators and trapped ions. We study parametric cooling in ultracold atoms. This method shows a modest reduction of the variance of atomic momenta, and can be easily employed with pre-existing controls in many experiments. Parametric cooling is comparable to delta-kicked cooling, sharing similar limitations. We expect this cooling to find utility in microgravity experiments where the experiment duration is limited by atomic free expansion.
NASA Astrophysics Data System (ADS)
Araki, Yuki; Satoh, Hisao; Okumura, Masahiko; Onishi, Hiroshi
2017-11-01
Cation exchange of clay mineral is typically analyzed without microscopic study of the clay surfaces. In order to reveal the distribution of exchangeable cations at the clay surface, we performed in situ atomic-scale observations of the surface changes in Na-rich montmorillonite due to exchange with Cs cations using frequency modulation atomic force microscopy (FM-AFM). Lines of protrusion were observed on the surface in aqueous CsCl solution. The amount of Cs of the montmorillonite particles analyzed by energy dispersive X-ray spectrometry was consistent with the ratio of the number of linear protrusions to all protrusions in the FM-AFM images. The results showed that the protrusions represent adsorbed Cs cations. The images indicated that Cs cations at the surface were immobile, and their occupancy remained constant at 10% of the cation sites at the surface with different immersion times in the CsCl solution. This suggests that the mobility and the number of Cs cations at the surface are controlled by the permanent charge of montmorillonite; however, the Cs distribution at the surface is independent of the charge distribution of the inner silicate layer. Our atomic-scale observations demonstrate that surface cations are distributed in different ways in montmorillonite and mica.
The atomic simulation environment-a Python library for working with atoms.
Hjorth Larsen, Ask; Jørgen Mortensen, Jens; Blomqvist, Jakob; Castelli, Ivano E; Christensen, Rune; Dułak, Marcin; Friis, Jesper; Groves, Michael N; Hammer, Bjørk; Hargus, Cory; Hermes, Eric D; Jennings, Paul C; Bjerre Jensen, Peter; Kermode, James; Kitchin, John R; Leonhard Kolsbjerg, Esben; Kubal, Joseph; Kaasbjerg, Kristen; Lysgaard, Steen; Bergmann Maronsson, Jón; Maxson, Tristan; Olsen, Thomas; Pastewka, Lars; Peterson, Andrew; Rostgaard, Carsten; Schiøtz, Jakob; Schütt, Ole; Strange, Mikkel; Thygesen, Kristian S; Vegge, Tejs; Vilhelmsen, Lasse; Walter, Michael; Zeng, Zhenhua; Jacobsen, Karsten W
2017-07-12
The atomic simulation environment (ASE) is a software package written in the Python programming language with the aim of setting up, steering, and analyzing atomistic simulations. In ASE, tasks are fully scripted in Python. The powerful syntax of Python combined with the NumPy array library make it possible to perform very complex simulation tasks. For example, a sequence of calculations may be performed with the use of a simple 'for-loop' construction. Calculations of energy, forces, stresses and other quantities are performed through interfaces to many external electronic structure codes or force fields using a uniform interface. On top of this calculator interface, ASE provides modules for performing many standard simulation tasks such as structure optimization, molecular dynamics, handling of constraints and performing nudged elastic band calculations.
The atomic simulation environment—a Python library for working with atoms
NASA Astrophysics Data System (ADS)
Hjorth Larsen, Ask; Jørgen Mortensen, Jens; Blomqvist, Jakob; Castelli, Ivano E.; Christensen, Rune; Dułak, Marcin; Friis, Jesper; Groves, Michael N.; Hammer, Bjørk; Hargus, Cory; Hermes, Eric D.; Jennings, Paul C.; Bjerre Jensen, Peter; Kermode, James; Kitchin, John R.; Leonhard Kolsbjerg, Esben; Kubal, Joseph; Kaasbjerg, Kristen; Lysgaard, Steen; Bergmann Maronsson, Jón; Maxson, Tristan; Olsen, Thomas; Pastewka, Lars; Peterson, Andrew; Rostgaard, Carsten; Schiøtz, Jakob; Schütt, Ole; Strange, Mikkel; Thygesen, Kristian S.; Vegge, Tejs; Vilhelmsen, Lasse; Walter, Michael; Zeng, Zhenhua; Jacobsen, Karsten W.
2017-07-01
The atomic simulation environment (ASE) is a software package written in the Python programming language with the aim of setting up, steering, and analyzing atomistic simulations. In ASE, tasks are fully scripted in Python. The powerful syntax of Python combined with the NumPy array library make it possible to perform very complex simulation tasks. For example, a sequence of calculations may be performed with the use of a simple ‘for-loop’ construction. Calculations of energy, forces, stresses and other quantities are performed through interfaces to many external electronic structure codes or force fields using a uniform interface. On top of this calculator interface, ASE provides modules for performing many standard simulation tasks such as structure optimization, molecular dynamics, handling of constraints and performing nudged elastic band calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Torres, C.; Streppa, L.; Arneodo, A.
2016-01-18
Compared to active microrheology where a known force or modulation is periodically imposed to a soft material, passive microrheology relies on the spectral analysis of the spontaneous motion of tracers inherent or external to the material. Passive microrheology studies of soft or living materials with atomic force microscopy (AFM) cantilever tips are rather rare because, in the spectral densities, the rheological response of the materials is hardly distinguishable from other sources of random or periodic perturbations. To circumvent this difficulty, we propose here a wavelet-based decomposition of AFM cantilever tip fluctuations and we show that when applying this multi-scale methodmore » to soft polymer layers and to living myoblasts, the structural damping exponents of these soft materials can be retrieved.« less
Miyata, Kazuki; Tracey, John; Miyazawa, Keisuke; Haapasilta, Ville; Spijker, Peter; Kawagoe, Yuta; Foster, Adam S; Tsukamoto, Katsuo; Fukuma, Takeshi
2017-07-12
The microscopic understanding of the crystal growth and dissolution processes have been greatly advanced by the direct imaging of nanoscale step flows by atomic force microscopy (AFM), optical interferometry, and X-ray microscopy. However, one of the most fundamental events that govern their kinetics, namely, atomistic events at the step edges, have not been well understood. In this study, we have developed high-speed frequency modulation AFM (FM-AFM) and enabled true atomic-resolution imaging in liquid at ∼1 s/frame, which is ∼50 times faster than the conventional FM-AFM. With the developed AFM, we have directly imaged subnanometer-scale surface structures around the moving step edges of calcite during its dissolution in water. The obtained images reveal that the transition region with typical width of a few nanometers is formed along the step edges. Building upon insight in previous studies, our simulations suggest that the transition region is most likely to be a Ca(OH) 2 monolayer formed as an intermediate state in the dissolution process. On the basis of this finding, we improve our understanding of the atomistic dissolution model of calcite in water. These results open up a wide range of future applications of the high-speed FM-AFM to the studies on various dynamic processes at solid-liquid interfaces with true atomic resolution.
Salmon, Loïc; Giambaşu, George M; Nikolova, Evgenia N; Petzold, Katja; Bhattacharya, Akash; Case, David A; Al-Hashimi, Hashim M
2015-10-14
Approaches that combine experimental data and computational molecular dynamics (MD) to determine atomic resolution ensembles of biomolecules require the measurement of abundant experimental data. NMR residual dipolar couplings (RDCs) carry rich dynamics information, however, difficulties in modulating overall alignment of nucleic acids have limited the ability to fully extract this information. We present a strategy for modulating RNA alignment that is based on introducing variable dynamic kinks in terminal helices. With this strategy, we measured seven sets of RDCs in a cUUCGg apical loop and used this rich data set to test the accuracy of an 0.8 μs MD simulation computed using the Amber ff10 force field as well as to determine an atomic resolution ensemble. The MD-generated ensemble quantitatively reproduces the measured RDCs, but selection of a sub-ensemble was required to satisfy the RDCs within error. The largest discrepancies between the RDC-selected and MD-generated ensembles are observed for the most flexible loop residues and backbone angles connecting the loop to the helix, with the RDC-selected ensemble resulting in more uniform dynamics. Comparison of the RDC-selected ensemble with NMR spin relaxation data suggests that the dynamics occurs on the ps-ns time scales as verified by measurements of R(1ρ) relaxation-dispersion data. The RDC-satisfying ensemble samples many conformations adopted by the hairpin in crystal structures indicating that intrinsic plasticity may play important roles in conformational adaptation. The approach presented here can be applied to test nucleic acid force fields and to characterize dynamics in diverse RNA motifs at atomic resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazmerski, Lawrence L.; Diniz, Antonia Sonia A. C.; Maia, Cristiana Brasil
Photovoltaic (PV) module soiling is a growing area of concern for performance and reliability. This paper provides evaluations of the fundamental interactions of dust/soiling particles with several PV module surfaces. The purpose is to investigate the basic mechanisms involving the chemistry, morphology, and resulting particle adhesion to the first photon-incident surface. The evaluation and mapping of the chemistry and composition of single dust particles collected from operating PV module surfaces are presented. The first correlated direct measurements of the adhesive force of individual grains from field-operating collectors on identical PV module glass are reported, including correlations with specific compositions. Specialmore » microscale atomic force microscopy techniques are adapted to determine the force between the particle and the module glass surface. Results are presented for samples under dry and moisture-exposed conditions, confirming the effects of cementation for surfaces having soluble mineral and/or organic concentrations. Additionally, the effects of hydrocarbon fuels on the enhanced bonding of soiling particles to surfaces are determined for samples from urban and highly trafficked regions. Comparisons between glass and dust-mitigating superhydrophobic and superhydrophilic coatings are presented. Potential limitations of this proximal probe technique are discussed in terms of results and initial proof-of-concept experiments.« less
Exploratory Study of RNA Polymerase II Using Dynamic Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Rhodin, Thor; Umemura, Kazuo; Gad, Mohammed; Jarvis, Suzanne; Ishikawa, Mitsuru; Fu, Jianhua
2002-03-01
An exploratory study of the microtopological dimensions and shape features of yeast RNA polymerase II (y-poly II) on freshly cleaved mica was made in phosphate aqueous buffer solution at room temperature following previous work by Hansma and others. The molecules were imaged by stabilization on freshly cleaved mica at a limiting resolution of 10 Å and scanned using dynamical atomic force microscopy with a 10 nm multi-wall carbon nanotube in the resonance frequency modulation mode. They indicated microtopological shape and dimensional features similar to those predicted by electron density plots derived from the X-ray crystallographic model. It is concluded that this is considered primarily a feasibility study with definitive conclusions subject to more detailed systematic measurements of the 3D microtopology. These measurements appear to establish validity of the noncontact atomic force microscopy (nc-AFM) approach into defining the primary microtopology and biochemical functionality of RNA polymerase II. Further nc-AFM studies at higher resolution using dynamical nc-AFM will be required to clearly define the detailed 3D microtopology of RNA polymerase II in anaerobic aqueous environments for both static and dynamic conditions.
Marutschke, Christoph; Walters, Deron; Walters, Deron; Hermes, Ilka; Bechstein, Ralf; Kühnle, Angelika
2014-08-22
Calcite, the most stable modification of calcium carbonate, is a major mineral in nature. It is, therefore, highly relevant in a broad range of fields such as biomineralization, sea water desalination and oil production. Knowledge of the surface structure and reactivity of the most stable cleavage plane, calcite (10.4), is pivotal for understanding the role of calcite in these diverse areas. Given the fact that most biological processes and technical applications take place in an aqueous environment, perhaps the most basic - yet decisive - question addresses the interaction of water molecules with the calcite (10.4) surface. In this work, amplitude modulation atomic force microscopy is used for three-dimensional (3D) mapping of the surface structure and the hydration layers above the surface. An easy-to-use scanning protocol is implemented for collecting reliable 3D data. We carefully discuss a comprehensible criterion for identifying the solid-liquid interface within our data. In our data three hydration layers form a characteristic pattern that is commensurate with the underlying calcite surface.
NASA Astrophysics Data System (ADS)
Fukuma, Takeshi; Mostaert, Anika S.; Serpell, Louise C.; Jarvis, Suzanne P.
2008-09-01
We have investigated the surface structure of islet amyloid polypeptide (IAPP) fibrils and α-synuclein protofibrils in liquid by means of frequency modulation atomic force microscopy (FM-AFM). Ångström-resolution FM-AFM imaging of isolated macromolecules in liquid is demonstrated for the first time. Individual β-strands aligned perpendicular to the fibril axis with a spacing of 0.5 nm are resolved in FM-AFM images, which confirms cross-β structure of IAPP fibrils in real space. FM-AFM images also reveal the existence of 4 nm periodic domains along the axis of IAPP fibrils. Stripe features with 0.5 nm spacing are also found in images of α-synuclein protofibrils. However, in contrast to the case for IAPP fibrils, the stripes are oriented 30° from the axis, suggesting the possibility of β-strand alignment in protofibrils different from that in mature fibrils or the regular arrangement of thioflavin T molecules present during the fibril preparation aligned at the surface of the protofibrils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morawski, Ireneusz; Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław; Spiegelberg, Richard
A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. Themore » high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.« less
Does Bohm's Quantum Force Have a Classical Origin?
NASA Astrophysics Data System (ADS)
Lush, David C.
2016-08-01
In the de Broglie-Bohm formulation of quantum mechanics, the electron is stationary in the ground state of hydrogenic atoms, because the quantum force exactly cancels the Coulomb attraction of the electron to the nucleus. In this paper it is shown that classical electrodynamics similarly predicts the Coulomb force can be effectively canceled by part of the magnetic force that occurs between two similar particles each consisting of a point charge moving with circulatory motion at the speed of light. Supposition of such motion is the basis of the Zitterbewegung interpretation of quantum mechanics. The magnetic force between two luminally-circulating charges for separation large compared to their circulatory motions contains a radial inverse square law part with magnitude equal to the Coulomb force, sinusoidally modulated by the phase difference between the circulatory motions. When the particles have equal mass and their circulatory motions are aligned but out of phase, part of the magnetic force is equal but opposite the Coulomb force. This raises a possibility that the quantum force of Bohmian mechanics may be attributable to the magnetic force of classical electrodynamics. It is further shown that relative motion between the particles leads to modulation of the magnetic force with spatial period equal to the de Broglie wavelength.
Atomic-scale friction modulated by potential corrugation in multi-layered graphene materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, Chunqiang, E-mail: chunqiang.zhuang@bjut.edu.cn; Liu, Lei
2015-03-21
Friction is an important issue that has to be carefully treated for the fabrication of graphene-based nano-scale devices. So far, the friction mechanism of graphene materials on the atomic scale has not yet been clearly presented. Here, first-principles calculations were employed to unveil the friction behaviors and their atomic-scale mechanism. We found that potential corrugations on sliding surfaces dominate the friction force and the friction anisotropy of graphene materials. Higher friction forces correspond to larger corrugations of potential energy, which are tuned by the number of graphene layers. The friction anisotropy is determined by the regular distributions of potential energy.more » The sliding along a fold-line path (hollow-atop-hollow) has a relatively small potential energy barrier. Thus, the linear sliding observed in macroscopic friction experiments may probably be attributed to the fold-line sliding mode on the atomic scale. These findings can also be extended to other layer-structure materials, such as molybdenum disulfide (MoS{sub 2}) and graphene-like BN sheets.« less
Langasite as a piezoelectric material for near-field microscopy resonant cantilevers.
Douchet, Gabrielle; Sthal, Fabrice; Leblois, Thérèse; Bigler, Emmanuel
2010-11-01
Quartz length-extension resonators have already been used to obtain atomically-resolved images by frequency-modulation atomic force microscopy. Other piezoelectric materials such as gallium orthophosphate (GaPO(4)), langatate (LGT), and langasite (LGS) could be appropriate for this application. In this paper, the advantages of langasite crystal are presented and the fabrication of similar microsensors in langasite temperature-compensated cuts by chemical etching is proved. A monolithic length extension resonator, with a tip at its end, is obtained which constitutes a real advantage in regard to the existing quartz devices.
NASA Astrophysics Data System (ADS)
Kim, Uk Su; Morita, Noboru; Lee, Deug Woo; Jun, Martin; Park, Jeong Woo
2017-05-01
Pulse electrochemical nanopatterning, a non-contact scanning probe lithography process using ultrashort voltage pulses, is based primarily on an electrochemical machining process using localized electrochemical oxidation between a sharp tool tip and the sample surface. In this study, nanoscale oxide patterns were formed on silicon Si (100) wafer surfaces via electrochemical surface nanopatterning, by supplying external pulsed currents through non-contact atomic force microscopy. Nanoscale oxide width and height were controlled by modulating the applied pulse duration. Additionally, protruding nanoscale oxides were removed completely by simple chemical etching, showing a depressed pattern on the sample substrate surface. Nanoscale two-dimensional oxides, prepared by a localized electrochemical reaction, can be defined easily by controlling physical and electrical variables, before proceeding further to a layer-by-layer nanofabrication process.
NASA Astrophysics Data System (ADS)
Kiracofe, Daniel; Melcher, John; Raman, Arvind
2012-01-01
Dynamic atomic force microscopy (dAFM) continues to grow in popularity among scientists in many different fields, and research on new methods and operating modes continues to expand the resolution, capabilities, and types of samples that can be studied. But many promising increases in capability are accompanied by increases in complexity. Indeed, interpreting modern dAFM data can be challenging, especially on complicated material systems, or in liquid environments where the behavior is often contrary to what is known in air or vacuum environments. Mathematical simulations have proven to be an effective tool in providing physical insight into these non-intuitive systems. In this article we describe recent developments in the VEDA (virtual environment for dynamic AFM) simulator, which is a suite of freely available, open-source simulation tools that are delivered through the cloud computing cyber-infrastructure of nanoHUB (www.nanohub.org). Here we describe three major developments. First, simulations in liquid environments are improved by enhancements in the modeling of cantilever dynamics, excitation methods, and solvation shell forces. Second, VEDA is now able to simulate many new advanced modes of operation (bimodal, phase-modulation, frequency-modulation, etc.). Finally, nineteen different tip-sample models are available to simulate the surface physics of a wide variety different material systems including capillary, specific adhesion, van der Waals, electrostatic, viscoelasticity, and hydration forces. These features are demonstrated through example simulations and validated against experimental data, in order to provide insight into practical problems in dynamic AFM.
Kiracofe, Daniel; Melcher, John; Raman, Arvind
2012-01-01
Dynamic atomic force microscopy (dAFM) continues to grow in popularity among scientists in many different fields, and research on new methods and operating modes continues to expand the resolution, capabilities, and types of samples that can be studied. But many promising increases in capability are accompanied by increases in complexity. Indeed, interpreting modern dAFM data can be challenging, especially on complicated material systems, or in liquid environments where the behavior is often contrary to what is known in air or vacuum environments. Mathematical simulations have proven to be an effective tool in providing physical insight into these non-intuitive systems. In this article we describe recent developments in the VEDA (virtual environment for dynamic AFM) simulator, which is a suite of freely available, open-source simulation tools that are delivered through the cloud computing cyber-infrastructure of nanoHUB (www.nanohub.org). Here we describe three major developments. First, simulations in liquid environments are improved by enhancements in the modeling of cantilever dynamics, excitation methods, and solvation shell forces. Second, VEDA is now able to simulate many new advanced modes of operation (bimodal, phase-modulation, frequency-modulation, etc.). Finally, nineteen different tip-sample models are available to simulate the surface physics of a wide variety different material systems including capillary, specific adhesion, van der Waals, electrostatic, viscoelasticity, and hydration forces. These features are demonstrated through example simulations and validated against experimental data, in order to provide insight into practical problems in dynamic AFM.
Sub-nanometer Resolution Imaging with Amplitude-modulation Atomic Force Microscopy in Liquid
Farokh Payam, Amir; Piantanida, Luca; Cafolla, Clodomiro; Voïtchovsky, Kislon
2016-01-01
Atomic force microscopy (AFM) has become a well-established technique for nanoscale imaging of samples in air and in liquid. Recent studies have shown that when operated in amplitude-modulation (tapping) mode, atomic or molecular-level resolution images can be achieved over a wide range of soft and hard samples in liquid. In these situations, small oscillation amplitudes (SAM-AFM) enhance the resolution by exploiting the solvated liquid at the surface of the sample. Although the technique has been successfully applied across fields as diverse as materials science, biology and biophysics and surface chemistry, obtaining high-resolution images in liquid can still remain challenging for novice users. This is partly due to the large number of variables to control and optimize such as the choice of cantilever, the sample preparation, and the correct manipulation of the imaging parameters. Here, we present a protocol for achieving high-resolution images of hard and soft samples in fluid using SAM-AFM on a commercial instrument. Our goal is to provide a step-by-step practical guide to achieving high-resolution images, including the cleaning and preparation of the apparatus and the sample, the choice of cantilever and optimization of the imaging parameters. For each step, we explain the scientific rationale behind our choices to facilitate the adaptation of the methodology to every user's specific system. PMID:28060262
Xiao, Chuanxiao; Jiang, Chun-Sheng; Johnston, Steve; ...
2017-10-18
Reliability has become an increasingly important issue as photovoltaic technologies mature. However, researching reliability at the nanometer scale is in its infancy; in particular, in-situ studies have not been reported to date. Here, to investigate potential-induced degradation (PID) of solar cell modules, we have developed an in-situ stressing capability with applied high voltage (HV) and high temperature (HT) on an atomic force microscopy (AFM) platform. We designed a sample holder to simultaneously accommodate 1000-V HV and 200 degrees C HT stressing. Three technical challenges have been overcome along with the development: thermal drift at HT, HV interference with measurement, andmore » arc discharge caused by HV. We demonstrated no observable measurement artifact under the stress conditions. Based on our in-situ stressing AFM, Kelvin probe force microscopy potential imaging revealed the evolution of electrical potential across the junction along with the PID stressing time, which provides vital information to further study the PID mechanism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Chuanxiao; Jiang, Chun-Sheng; Johnston, Steve
Reliability has become an increasingly important issue as photovoltaic technologies mature. However, researching reliability at the nanometer scale is in its infancy; in particular, in-situ studies have not been reported to date. Here, to investigate potential-induced degradation (PID) of solar cell modules, we have developed an in-situ stressing capability with applied high voltage (HV) and high temperature (HT) on an atomic force microscopy (AFM) platform. We designed a sample holder to simultaneously accommodate 1000-V HV and 200 degrees C HT stressing. Three technical challenges have been overcome along with the development: thermal drift at HT, HV interference with measurement, andmore » arc discharge caused by HV. We demonstrated no observable measurement artifact under the stress conditions. Based on our in-situ stressing AFM, Kelvin probe force microscopy potential imaging revealed the evolution of electrical potential across the junction along with the PID stressing time, which provides vital information to further study the PID mechanism.« less
Stretching of Single Polymer Chains Using the Atomic Force Microscope
NASA Astrophysics Data System (ADS)
Ortiz, C.; van der Vegte, E. W.; van Swieten, E.; Robillard, G. T.; Hadziioannou, G.
1998-03-01
A variety of macroscopic phenomenon involve "nanoscale" polymer deformation including rubber elasticity, shear yielding, strain hardening, stress relaxation, fracture, and flow. With the advent of new and improved experimental techniques, such as the atomic force microscope (AFM), the probing of physical properties of polymers has reached finer and finer scales. The development of mixed self-assembling monolayer techniques and the chemical functionalization of AFM probe tips has allowed for mechanical experiments on single polymer chains of molecular dimensions. In our experiments, mixed monolayers are prepared in which end-functionalized, flexible polymer chains of thiol-terminated poly(methacrylic acid) are covalently bonded, isolated, and randomly distributed on gold substrates. The coils are then imaged, tethered to a gold-coated AFM tip, and stretched between the tip and the substrate in a conventional force / distance experiment. An increase in the attractive force due to entropic, elastic resistance to stretching, as well as fracture of the polymer chain is observed. The effect of chain stiffness, topological constraints, strain rate, mechanical hysteresis, and stress relaxation were investigated. Force modulation techniques were also employed in order to image the viscoelastic character of the polymer chains. Parallel work includes similar studies of biological systems such as wheat gluten proteins and polypeptides.
Test surfaces useful for calibration of surface profilometers
Yashchuk, Valeriy V; McKinney, Wayne R; Takacs, Peter Z
2013-12-31
The present invention provides for test surfaces and methods for calibration of surface profilometers, including interferometric and atomic force microscopes. Calibration is performed using a specially designed test surface, or the Binary Pseudo-random (BPR) grating (array). Utilizing the BPR grating (array) to measure the power spectral density (PSD) spectrum, the profilometer is calibrated by determining the instrumental modulation transfer.
Wang, Feifei; Li, Pan; Wang, Dong; Li, Longhai; Xie, Shuangxi; Liu, Lianqing; Wang, Yuechao; Li, Wen Jung
2014-10-06
Organizing a material into well-defined patterns during the dewetting process provides an attractive micro-/nano-fabrication method without using a conventional lithographic process, and hence, offers potential applications in organic electronics, optics systems, and memory devices. We report here how the mechanical modification of polymer surface by an Atomic Force Microscope (AFM) can be used to guide thin film dewetting evolution and break the intrinsic spatial correlation of spontaneous instability. An AFM is used to implement the mechanical modification of progressively narrow grids to investigate the influence of pattern size on the modulation of ultrathin polystyrene films dewetting evolution. For films with different initial thicknesses, when grid size is close to or below the characteristic wavelength of instability, the spinodal dewetting is suppressed, and film rupture is restricted to the cutting trench. We will show in this paper it is possible to generate only one droplet per gridded area on a thin film subsequent to nucleation dominated dewetting on a non-patterned substrate. Furthermore, when the grid periodicity exceeds the spinodal length, the number of droplets in predefined areas gradually approaches that associated with unconfined dewetting.
Wang, Feifei; Li, Pan; Wang, Dong; Li, Longhai; Xie, Shuangxi; Liu, Lianqing; Wang, Yuechao; Li, Wen Jung
2014-01-01
Organizing a material into well-defined patterns during the dewetting process provides an attractive micro-/nano-fabrication method without using a conventional lithographic process, and hence, offers potential applications in organic electronics, optics systems, and memory devices. We report here how the mechanical modification of polymer surface by an Atomic Force Microscope (AFM) can be used to guide thin film dewetting evolution and break the intrinsic spatial correlation of spontaneous instability. An AFM is used to implement the mechanical modification of progressively narrow grids to investigate the influence of pattern size on the modulation of ultrathin polystyrene films dewetting evolution. For films with different initial thicknesses, when grid size is close to or below the characteristic wavelength of instability, the spinodal dewetting is suppressed, and film rupture is restricted to the cutting trench. We will show in this paper it is possible to generate only one droplet per gridded area on a thin film subsequent to nucleation dominated dewetting on a non-patterned substrate. Furthermore, when the grid periodicity exceeds the spinodal length, the number of droplets in predefined areas gradually approaches that associated with unconfined dewetting. PMID:25283744
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jinkins, K.; Farina, L.; Wu, Y., E-mail: wuy@uwplatt.edu
2015-12-14
The properties of Few-Layer Graphene (FLG) change with the number of layers and Amplitude Modulation (AM) Atomic Force Microscopy (AFM) is commonly used to determine the thickness of FLG. However, AFM measurements have been shown to be sensitive to environmental conditions such as relative humidity (RH). In the present study, AM-AFM is used to measure the thickness and loss tangent of exfoliated graphene on silicon dioxide (SiO{sub 2}) as RH is increased from 10% to 80%. We show that the measured thickness of graphene is dependent on RH. The loss tangent values of the graphene and oxide regions are bothmore » affected by humidity, with generally higher loss tangent for graphene than SiO{sub 2}. As RH increases, we observe the loss tangent of both materials approaches the same value. We hypothesize that there is a layer of water trapped between the graphene and SiO{sub 2} substrate to explain this observation. Using this interpretation, the loss tangent images also indicate movement and change in this trapped water layer as RH increases, which impacts the measured thickness of graphene using AM-AFM.« less
Thompson, Hank T; Barroso-Bujans, Fabienne; Herrero, Julio Gomez; Reifenberger, Ron; Raman, Arvind
2013-04-05
The characterization of dispersion and connectivity of carbon nanotube (CNT) networks inside polymers is of great interest in polymer nanocomposites in new material systems, organic photovoltaics, and in electrodes for batteries and supercapacitors. We focus on a technique using amplitude modulation atomic force microscopy (AM-AFM) in the attractive regime of operation, using both single and dual mode excitation, which upon the application of a DC tip bias voltage allows, via the phase channel, the in situ, nanoscale, subsurface imaging of CNT networks dispersed in a polymer matrix at depths of 10-100 nm. We present an in-depth study of the origins of phase contrast in this technique and demonstrate that an electrical energy dissipation mechanism in the Coulomb attractive regime is key to the formation of the phase contrast which maps the spatial variations in the local capacitance and resistance due to the CNT network. We also note that dual frequency excitation can, under some conditions, improve the contrast for such samples. These methods open up the possibility for DC-biased amplitude modulation AFM to be used for mapping the variations in local capacitance and resistance in nanocomposites with conducting networks.
Atomically resolved scanning force studies of vicinal Si(111)
NASA Astrophysics Data System (ADS)
Pérez León, Carmen; Drees, Holger; Wippermann, Stefan Martin; Marz, Michael; Hoffmann-Vogel, Regina
2017-06-01
Well-ordered stepped semiconductor surfaces attract intense attention owing to the regular arrangements of their atomic steps that makes them perfect templates for the growth of one-dimensional systems, e.g., nanowires. Here, we report on the atomic structure of the vicinal Si (111 ) surface with 10∘ miscut investigated by a joint frequency-modulation scanning force microscopy (FM-SFM) and ab initio approach. This popular stepped surface contains 7 ×7 -reconstructed terraces oriented along the Si (111 ) direction, separated by a stepped region. Recently, the atomic structure of this triple step based on scanning tunneling microscopy (STM) images has been subject of debate. Unlike STM, SFM atomic resolution capability arises from chemical bonding of the tip apex with the surface atoms. Thus, for surfaces with a corrugated density of states such as semiconductors, SFM provides complementary information to STM and partially removes the dependency of the topography on the electronic structure. Our FM-SFM images with unprecedented spatial resolution on steps coincide with the model based on a (7 7 10 ) orientation of the surface and reveal structural details of this surface. Two different FM-SFM contrasts together with density functional theory calculations explain the presence of defects, buckling, and filling asymmetries on the surface. Our results evidence the important role of charge transfers between adatoms, restatoms, and dimers in the stabilisation of the structure of the vicinal surface.
Yong, Chin W
2016-08-22
DL_F Notation is an easy-to-understand, standardized atom typesetting expression for molecular simulations for a range of organic force field (FF) schemes such as OPLSAA, PCFF, and CVFF. It is implemented within DL_FIELD, a software program that facilitates the setting up of molecular FF models for DL_POLY molecular dynamics simulation software. By making use of the Notation, a single core conversion module (the DL_F conversion Engine) implemented within DL_FIELD can be used to analyze a molecular structure and determine the types of atoms for a given FF scheme. Users only need to provide the molecular input structure in a simple xyz format and DL_FIELD can produce the necessary force field file for DL_POLY automatically. In commensurate with the development concept of DL_FIELD, which placed emphasis on robustness and user friendliness, the Engine provides a single-step solution to setup complex FF models. This allows users to switch from one of the above-mentioned FF seamlessly to another while at the same time provides a consistent atom typing that is expressed in a natural chemical sense.
Optical imaging module for astigmatic detection system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei-Min; Cheng, Chung-Hsiang; Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
2016-05-15
In this paper, an optical imaging module design for an astigmatic detection system (ADS) is presented. The module is based on a commercial optical pickup unit (OPU) and it contains a coaxial illuminant for illuminating a specimen. Furthermore, the imaging module facilitates viewing the specimen and the detection laser spot of the ADS with a lateral resolution of approximately 1 μm without requiring the removal of an element of the OPU. Two polarizers and one infrared filter are used to eliminate stray laser light in the OPU and stray light produced by the illuminant. Imaging modules designed for digital versatilemore » disks (DVDs) and Blu-ray DVDs were demonstrated. Furthermore, the module can be used for imaging a small cantilever with approximate dimensions of 2 μm (width) × 5 μm (length), and therefore, it has the potential to be used in high-speed atomic force microscopy.« less
Dynamic Optical Tuning of Interlayer Interactions in the Transition Metal Dichalcogenides
Mannebach, Ehren M.; Nyby, Clara; Ernst, Friederike; ...
2017-11-09
Modulation of weak interlayer interactions between quasi-two-dimensional atomic planes in the transition metal dichalcogenides (TMDCs) provides avenues for tuning their functional properties. Here we show that above-gap optical excitation in the TMDCs leads to an unexpected large-amplitude, ultrafast compressive force between the two-dimensional layers, as probed by in situ measurements of the atomic layer spacing at femtosecond time resolution. We show that this compressive response arises from a dynamic modulation of the interlayer van der Waals interaction and that this represents the dominant light-induced stress at low excitation densities. A simple analytic model predicts the magnitude and carrier density dependencemore » of the measured strains. Furthermore, this work establishes a new method for dynamic, nonequilibrium tuning of correlation-driven dispersive interactions and of the optomechanical functionality of TMDC quasi-two-dimensional materials.« less
Papandrew, A B; Li, Q; Okatan, M B; Jesse, S; Hartnett, C; Kalinin, S V; Vasudevan, R K
2015-12-21
Variable temperature band-excitation atomic force microscopy in conjunction with I-V spectroscopy was used to investigate the crystalline superionic proton conductor CsHSO4 during proton exchange induced by a Pt-coated conductive scanning probe. At a sample temperature of 150 °C and under an applied bias <1 V, reduction currents of up to 1 nA were observed. Simultaneously, we show that the electrochemical reactions are accompanied by a reversible decrease in the elastic modulus of CsHSO4, as seen by a contact resonance shift, and find evidence for superplasticity during scanning. These effects were not observed in the room-temperature phase of CsHSO4 or in the case of catalytically inactive conductive probes, proving the utility of this technique for monitoring electrochemical processes on the nanoscale, as well as the use of local contact stiffness as a sensitive indicator of electrochemical reactions.
Gumí-Audenis, Berta; Costa, Luca; Carlá, Francesco; Comin, Fabio; Sanz, Fausto; Giannotti, Marina I
2016-12-19
Biological membranes mediate several biological processes that are directly associated with their physical properties but sometimes difficult to evaluate. Supported lipid bilayers (SLBs) are model systems widely used to characterize the structure of biological membranes. Cholesterol (Chol) plays an essential role in the modulation of membrane physical properties. It directly influences the order and mechanical stability of the lipid bilayers, and it is known to laterally segregate in rafts in the outer leaflet of the membrane together with sphingolipids (SLs). Atomic force microscope (AFM) is a powerful tool as it is capable to sense and apply forces with high accuracy, with distance and force resolution at the nanoscale, and in a controlled environment. AFM-based force spectroscopy (AFM-FS) has become a crucial technique to study the nanomechanical stability of SLBs by controlling the liquid media and the temperature variations. In this contribution, we review recent AFM and AFM-FS studies on the effect of Chol on the morphology and mechanical properties of model SLBs, including complex bilayers containing SLs. We also introduce a promising combination of AFM and X-ray (XR) techniques that allows for in situ characterization of dynamic processes, providing structural, morphological, and nanomechanical information.
Gumí-Audenis, Berta; Costa, Luca; Carlá, Francesco; Comin, Fabio; Sanz, Fausto; Giannotti, Marina I.
2016-01-01
Biological membranes mediate several biological processes that are directly associated with their physical properties but sometimes difficult to evaluate. Supported lipid bilayers (SLBs) are model systems widely used to characterize the structure of biological membranes. Cholesterol (Chol) plays an essential role in the modulation of membrane physical properties. It directly influences the order and mechanical stability of the lipid bilayers, and it is known to laterally segregate in rafts in the outer leaflet of the membrane together with sphingolipids (SLs). Atomic force microscope (AFM) is a powerful tool as it is capable to sense and apply forces with high accuracy, with distance and force resolution at the nanoscale, and in a controlled environment. AFM-based force spectroscopy (AFM-FS) has become a crucial technique to study the nanomechanical stability of SLBs by controlling the liquid media and the temperature variations. In this contribution, we review recent AFM and AFM-FS studies on the effect of Chol on the morphology and mechanical properties of model SLBs, including complex bilayers containing SLs. We also introduce a promising combination of AFM and X-ray (XR) techniques that allows for in situ characterization of dynamic processes, providing structural, morphological, and nanomechanical information. PMID:27999368
Multiple heteroatom substitution to graphene nanoribbon
Meyer, Ernst
2018-01-01
Substituting heteroatoms into nanostructured graphene elements, such as graphene nanoribbons, offers the possibility for atomic engineering of electronic properties. To characterize these substitutions, functionalized atomic force microscopy (AFM)—a tool to directly resolve chemical structures—is one of the most promising tools, yet the chemical analysis of heteroatoms has been rarely performed. We synthesized multiple heteroatom-substituted graphene nanoribbons and showed that AFM can directly resolve elemental differences and can be correlated to the van der Waals radii, as well as the modulated local electron density caused by the substitution. This elemental-sensitive measurement takes an important step in the analysis of functionalized two-dimensional carbon materials. PMID:29662955
Systematic optimization of laser cooling of dysprosium
NASA Astrophysics Data System (ADS)
Mühlbauer, Florian; Petersen, Niels; Baumgärtner, Carina; Maske, Lena; Windpassinger, Patrick
2018-06-01
We report on an apparatus for cooling and trapping of neutral dysprosium. We characterize and optimize the performance of our Zeeman slower and 2D molasses cooling of the atomic beam by means of Doppler spectroscopy on a 136 kHz broad transition at 626 nm. Furthermore, we demonstrate the characterization and optimization procedure for the loading phase of a magneto-optical trap (MOT) by increasing the effective laser linewidth by sideband modulation. After optimization of the MOT compression phase, we cool and trap up to 10^9 atoms within 3 seconds in the MOT at temperatures of 9 μK and phase space densities of 1.7 \\cdot 10^{-5}, which constitutes an ideal starting point for loading the atoms into an optical dipole trap and for subsequent forced evaporative cooling.
Bindi, Luca; Petříček, Václav; Biagioni, Cristian; Plášil, Jakub; Moëlo, Yves
2017-06-01
The structure of meneghinite (CuPb 13 Sb 7 S 24 ), from the Bottino mine in the Apuan Alps (Italy), has been solved and refined as an incommensurate structure in four-dimensional superspace. The structure is orthorhombic, superspace group Pnma(0β0)00s, cell parameters a = 24.0549 (3), b = 4.1291 (6), c = 11.3361 (16) Å, modulation vector q = 0.5433 (4)b*. The structure was refined from 6604 reflections to a final R = 0.0479. The model includes modulation of both atomic positions and displacement parameters, as well as occupational waves. The driving forces stabilizing the modulated structure of meneghinite are linked to the occupation modulation of Cu and some of the Pb atoms. As a consequence of the Cu/[] and Pb/Sb modulations, three- to sevenfold coordinations of the M cations (Pb/Sb) occur in different parts of the structure. The almost bimodal distribution of the occupation of Cu/[] and Pb/Sb at M5 conforms with the coupled substitution Sb 3+ + [] → Pb 2+ + Cu + , thus corroborating the hypothesis deduced previously for the incorporation of copper in the meneghinite structure. The very small departure (∼0.54 versus 0.50) from the commensurate value of the modulation raises the question of whether other sulfosalts considered superstructures have been properly described, and, in this light, if incommensurate modulation in sulfosalts could be much more common than thought.
Interactions of the anticancer drug tamoxifen with lipid membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khadka, Nawal K.; Cheng, Xiaolin; Ho, Chian Sing
Interactions of the hydrophobic anticancer drug tamoxifen (TAM) with lipid model membranes were studied using calcein-encapsulated vesicle leakage, attenuated total reflection Fourier transform infrared (FTIR) spectroscopy, small-angle neutron scattering (SANS), atomic force microscopy (AFM) based force spectroscopy, and all-atom molecular dynamics (MD) simulations. The addition of TAM enhances membrane permeability, inducing calcein to translocate from the interior to the exterior of lipid vesicles. A large decrease in the FTIR absorption band’s magnitude was observed in the hydrocarbon chain region, suggesting suppressed bond vibrational dynamics. Bilayer thickening was determined from SANS data. Force spectroscopy measurements indicate that the lipid bilayer areamore » compressibility modulus KA is increased by a large amount after the incorporation of TAM. MD simulations show that TAM decreases the lipid area and increases chain order parameters. Moreover, orientational and positional analyses show that TAM exhibits a highly dynamic conformation within the lipid bilayer. Lastly, our detailed experimental and computational studies of TAM interacting with model lipid membranes shed new light on membrane modulation by TAM.« less
Interactions of the anticancer drug tamoxifen with lipid membranes
Khadka, Nawal K.; Cheng, Xiaolin; Ho, Chian Sing; ...
2015-05-19
Interactions of the hydrophobic anticancer drug tamoxifen (TAM) with lipid model membranes were studied using calcein-encapsulated vesicle leakage, attenuated total reflection Fourier transform infrared (FTIR) spectroscopy, small-angle neutron scattering (SANS), atomic force microscopy (AFM) based force spectroscopy, and all-atom molecular dynamics (MD) simulations. The addition of TAM enhances membrane permeability, inducing calcein to translocate from the interior to the exterior of lipid vesicles. A large decrease in the FTIR absorption band’s magnitude was observed in the hydrocarbon chain region, suggesting suppressed bond vibrational dynamics. Bilayer thickening was determined from SANS data. Force spectroscopy measurements indicate that the lipid bilayer areamore » compressibility modulus KA is increased by a large amount after the incorporation of TAM. MD simulations show that TAM decreases the lipid area and increases chain order parameters. Moreover, orientational and positional analyses show that TAM exhibits a highly dynamic conformation within the lipid bilayer. Lastly, our detailed experimental and computational studies of TAM interacting with model lipid membranes shed new light on membrane modulation by TAM.« less
Actuation of atomic force microscopy microcantilevers using contact acoustic nonlinearities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torello, D.; Degertekin, F. Levent, E-mail: levent.degertekin@me.gatech.edu
2013-11-15
A new method of actuating atomic force microscopy (AFM) cantilevers is proposed in which a high frequency (>5 MHz) wave modulated by a lower frequency (∼300 kHz) wave passes through a contact acoustic nonlinearity at the contact interface between the actuator and the cantilever chip. The nonlinearity converts the high frequency, modulated signal to a low frequency drive signal suitable for actuation of tapping-mode AFM probes. The higher harmonic content of this signal is filtered out mechanically by the cantilever transfer function, providing for clean output. A custom probe holder was designed and constructed using rapid prototyping technologies and off-the-shelfmore » components and was interfaced with an Asylum Research MFP-3D AFM, which was then used to evaluate the performance characteristics with respect to standard hardware and linear actuation techniques. Using a carrier frequency of 14.19 MHz, it was observed that the cantilever output was cleaner with this actuation technique and added no significant noise to the system. This setup, without any optimization, was determined to have an actuation bandwidth on the order of 10 MHz, suitable for high speed imaging applications. Using this method, an image was taken that demonstrates the viability of the technique and is compared favorably to images taken with a standard AFM setup.« less
Guo, Tong; Wang, Siming; Dorantes-Gonzalez, Dante J.; Chen, Jinping; Fu, Xing; Hu, Xiaotang
2012-01-01
A hybrid atomic force microscopic (AFM) measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system’s dynamic response, the frequency modulation (FM) mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system’s good measurement performance and feasibility of the hybrid measurement method. PMID:22368463
Guo, Tong; Wang, Siming; Dorantes-Gonzalez, Dante J; Chen, Jinping; Fu, Xing; Hu, Xiaotang
2012-01-01
A hybrid atomic force microscopic (AFM) measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system's dynamic response, the frequency modulation (FM) mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system's good measurement performance and feasibility of the hybrid measurement method.
Atomic Forces for Geometry-Dependent Point Multipole and Gaussian Multipole Models
Elking, Dennis M.; Perera, Lalith; Duke, Robert; Darden, Thomas; Pedersen, Lee G.
2010-01-01
In standard treatments of atomic multipole models, interaction energies, total molecular forces, and total molecular torques are given for multipolar interactions between rigid molecules. However, if the molecules are assumed to be flexible, two additional multipolar atomic forces arise due to 1) the transfer of torque between neighboring atoms, and 2) the dependence of multipole moment on internal geometry (bond lengths, bond angles, etc.) for geometry-dependent multipole models. In the current study, atomic force expressions for geometry-dependent multipoles are presented for use in simulations of flexible molecules. The atomic forces are derived by first proposing a new general expression for Wigner function derivatives ∂Dlm′m/∂Ω. The force equations can be applied to electrostatic models based on atomic point multipoles or Gaussian multipole charge density. Hydrogen bonded dimers are used to test the inter-molecular electrostatic energies and atomic forces calculated by geometry-dependent multipoles fit to the ab initio electrostatic potential (ESP). The electrostatic energies and forces are compared to their reference ab initio values. It is shown that both static and geometry-dependent multipole models are able to reproduce total molecular forces and torques with respect to ab initio, while geometry-dependent multipoles are needed to reproduce ab initio atomic forces. The expressions for atomic force can be used in simulations of flexible molecules with atomic multipoles. In addition, the results presented in this work should lead to further development of next generation force fields composed of geometry-dependent multipole models. PMID:20839297
Modulation of ENA in the heliosphere
NASA Astrophysics Data System (ADS)
Bzowski, Maciej; Kubiak, Marzena; Czechowski, Andrzej
Energetic Neutral Atoms (ENA), an important part of heliospheric physics, have recently en-joyed an increased interest because of the breakthrough observations by the NASA SMEX mission IBEX. Generally, ENA appear as a product of charge exchange reaction between an energetic ion and a neutral gas atom. Being insensitive to electromagnetic forces, ENA run away freely from their birth sites and can carry information on the physical state of the parent plasma on (somewhat energy-dependent) distances well in excess of 100 AU. The ENA fluxes exhibit modulation due to time variations of their source function due to modulation of solar wind on time scales from days to solar cycle and due to large-scale variation in the latitude structure of the solar wind, as well as to the variations in the loss rate due to re-ionization. Once created, the ENA flux suffers losses mostly due to photoionization by solar EUV photons, but also to charge exchange and electron impact. We will review the variation of survival prob-ability of the ENA created in the inner heliosheath and observed by spacecraft on Mars, Earth, and Venus orbits (like Mars Express, IBEX, and Venus Express) and solar-cycle modulation of the radially-expanding spectral flux of ENA consisting of the solar wind protons and alpha particles transcharged on the neutral interstellar gas inside the heliosphere.
Micropatterned Azopolymer Surfaces Modulate Cell Mechanics and Cytoskeleton Structure.
Rianna, Carmela; Ventre, Maurizio; Cavalli, Silvia; Radmacher, Manfred; Netti, Paolo A
2015-09-30
Physical and chemical characteristics of materials are important regulators of cell behavior. In particular, cell elasticity is a fundamental parameter that reflects the state of a cell. Surface topography finely modulates cell fate and function via adhesion mediated signaling and cytoskeleton generated forces. However, how topographies alter cell mechanics is still unclear. In this work we have analyzed the mechanical properties of peripheral and nuclear regions of NIH-3T3 cells on azopolymer substrates with different topographic patterns. Micrometer scale patterns in the form of parallel ridges or square lattices of surface elevations were encoded on light responsive azopolymer films by means of contactless optical methods. Cell mechanics was investigated by atomic force microscopy (AFM). Cells and consequently the cell cytoskeleton were oriented along the linear patterns affecting cytoskeletal structures, e.g., formation of actin stress fibers. Our data demonstrate that topographic substrate patterns are recognized by cells and mechanical information is transferred by the cytoskeleton. Furthermore, cytoskeleton generated forces deform the nucleus, changing its morphology that appears to be related to different mechanical properties in the nuclear region.
NASA Astrophysics Data System (ADS)
Cashen, M.; Yatsenko, L.; Metcalf, H.
2001-05-01
Sisyphus cooling arises when the conservative dipole force of a monochromatic optical standing wave (SW) is modified by optical pumping among multiple ground state sublevels at low intensity(J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. B6), 2023 (1989)., or among dressed state manifolds at high intensity(A. Aspect et al., Phys. Rev. Lett. 57), 1688 (1986). As part of our ongoing exploration of optical forces in non-monochromatic light, we have discovered a new type of Sisyphus cooling in a two-level atom where the optical pumping is driven by a second SW produced as a sideband from weak frequency modulation. Each beam of the carrier's SW has a Rabi frequency Ωc ~ 20 γ and is tuned below atomic resonance by δc ~ -38 γ. Thus the light shift at the antinodes is ω_c^ls ~ 8.6 γ. For the sideband, Ωs ~ 1.4 γ and δs ~ +1 γ so ω_s^ls ~ 1 γ. The resulting forces satisfy Fc > 8 F_s. By contrast, the excitation rate γ_s^p > 2 γ_c^p. We choose the relative spatial phase of the SW's to be π, so moving atoms are most likely to be excited at the red-tuned carrier nodes, and thus they climb more hills than they descend. We observe transverse cooling of a beam of He metastables when δc < 0 and heating otherwise, in contrast to Ref. 3 because here the excitation is at the nodes of the high intensity carrier SW. We also observe channeling of the slow atoms in the carrier's SW.
Hirayama, Tomoko; Kawamura, Ryota; Fujino, Keita; Matsuoka, Takashi; Komiya, Hiroshi; Onishi, Hiroshi
2017-10-10
To observe in situ the adsorption of fatty acid onto metal surfaces, cross-sectional images of the adsorption layer were acquired by frequency-modulation atomic force microscopy (FM-AFM). Hexadecane and palmitic acid were used as the base oil and typical fatty acid, respectively. A Cu-coated silicon wafer was prepared as the target substrate. The solvation structure formed by hexadecane molecules at the interface between the Cu substrate and the hexadecane was observed, and the layer pitch was found to be about 0.6 nm, which corresponds to the height of hexadecane molecules. This demonstrates that hexadecane molecules physically adsorbed onto the surface due to van der Waals forces with lying orientation because hexadecane is a nonpolar hydrocarbon. When hexadecane with palmitic acid was put on the Cu substrate instead of pure hexadecane, an adsorption layer of palmitic acid was observed at the interface. The layer pitch was about 2.5-2.8 nm, which matches the chain length of palmitic acid molecules well. This indicates that the original adsorption layer was monolayer or single bilayer in the local area. In addition, a cross-sectional image captured 1 h after observation started to reveal that the adsorbed additive layer gradually grew up to be thicker than about 20 nm due to an external stimulus, such as cantilever oscillation. This is the first report of in situ observation of an adsorbed layer by FM-AFM in the tribology field and demonstrates that FM-AFM is useful for clarifying the actual boundary lubrication mechanism.
Morphology and force probing of primary murine liver sinusoidal endothelial cells.
Zapotoczny, B; Owczarczyk, K; Szafranska, K; Kus, E; Chlopicki, S; Szymonski, M
2017-07-01
Liver sinusoidal endothelial cells (LSECs) represent unique type of endothelial cells featured by their characteristic morphology, ie, lack of a basement membrane and presence of fenestrations-transmembrane pores acting as a dynamic filter between the vascular space and the liver parenchyma. Delicate structure of LSECs membrane combined with a submicron size of fenestrations hinders their visualization in live cells. In this work, we apply atomic force microscopy contact mode to characterize fenestrations in LSECs. We reveal the structure of fenestrations in live LSECs. Moreover, we show that the high-resolution imaging of fenestrations is possible for the glutaraldehyde-fixed LSECs. Finally, thorough information about the morphology of LSECs including great contrast in visualization of sieve plates and fenestrations is provided using Force Modulation mode. We show also the ability to precisely localize the cell nuclei in fixed LSECs. It can be helpful for more precise description of nanomechanical properties of cell nuclei using atomic force microscopy. Presented methodology combining high-quality imaging of fixed cells with an additional nanomechanical information of both live and fixed LSECs provides a unique approach to study LSECs morphology and nanomechanics that could foster understanding of the role of LSECs in maintaining liver homeostasis. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Lyuksyutov, Sergei F.; Paramonov, Pavel B.; Sigalov, Grigori; Vaia, Richard A.; Juhl, Shane; Sancaktar, Erol
2003-10-01
The combination of localized softening attolitres (10^2 -10^4) of polymer film by Jule heating, extremely non-uniform electric field gradients to polarize and manipulate the soften polymer, and single step technique using conventional atomic force microscopy (AFM), establishes a new paradigm for nanolithography in a broad class of polymer materials allowing rapid (order of milliseconds) creation of raised and depressed nanostructures without external heating of a polymer film of AFM tip-film contact [1]. In this work we present recent studies of AFM-assisted electrostatic nanolithography (AFMEN) such as amplitude-modulated AFMEN, and the humidity influence on nanostructures formation during contact mode AFMEN. It has been shown that the aspect ratio of nanostructures grows on the order of magnitude (0.2), while the lateral dimensions of nanodots decreases down to 10-15 nm. [1] S.F. Lyuksyutov, R.A. Vaia, P.B. Paramonov, S. Juhl, L. Waterhouse, R.M. Ralich, G. Sigalov, and E. Sancaktar, "Electrostatic nanolithography in polymers using atomic force microscopy," Nature Materials 2, 468-472 (2003)
NASA Astrophysics Data System (ADS)
Ido, Shinichiro; Kimiya, Hirokazu; Kobayashi, Kei; Kominami, Hiroaki; Matsushige, Kazumi; Yamada, Hirofumi
2014-03-01
The conformational flexibility of antibodies in solution directly affects their immune function. Namely, the flexible hinge regions of immunoglobulin G (IgG) antibodies are essential in epitope-specific antigen recognition and biological effector function. The antibody structure, which is strongly related to its functions, has been partially revealed by electron microscopy and X-ray crystallography, but only under non-physiological conditions. Here we observed monoclonal IgG antibodies in aqueous solution by high-resolution frequency modulation atomic force microscopy (FM-AFM). We found that monoclonal antibodies self-assemble into hexamers, which form two-dimensional crystals in aqueous solution. Furthermore, by directly observing antibody-antigen interactions using FM-AFM, we revealed that IgG molecules in the crystal retain immunoactivity. As the self-assembled monolayer crystal of antibodies retains immunoactivity at a neutral pH and is functionally stable at a wide range of pH and temperature, the antibody crystal is applicable to new biotechnological platforms for biosensors or bioassays.
Yamazaki, Shiro; Maeda, Keisuke; Sugimoto, Yoshiaki; Abe, Masayuki; Zobač, Vladimír; Pou, Pablo; Rodrigo, Lucia; Mutombo, Pingo; Pérez, Ruben; Jelínek, Pavel; Morita, Seizo
2015-07-08
We assemble bistable silicon quantum dots consisting of four buckled atoms (Si4-QD) using atom manipulation. We demonstrate two competing atom switching mechanisms, downward switching induced by tunneling current of scanning tunneling microscopy (STM) and opposite upward switching induced by atomic force of atomic force microscopy (AFM). Simultaneous application of competing current and force allows us to tune switching direction continuously. Assembly of the few-atom Si-QDs and controlling their states using versatile combined AFM/STM will contribute to further miniaturization of nanodevices.
Near-field deformation of a liquid interface by atomic force microscopy.
Mortagne, C; Chireux, V; Ledesma-Alonso, R; Ogier, M; Risso, F; Ondarçuhu, T; Legendre, D; Tordjeman, Ph
2017-07-01
We experiment the interaction between a liquid puddle and a spherical probe by Atomic Force Microscopy (AFM) for a probe radius R ranging from 10 nm to 30 μm. We have developed a new experimental setup by coupling an AFM with a high-speed camera and an inverted optical microscope. Interaction force-distance curves (in contact mode) and frequency shift-distance curves (in frequency modulation mode) are measured for different bulk model liquids for which the probe-liquid Hamaker constant H_{pl} is known. The experimental results, analyzed in the frame of the theoretical model developed in Phys. Rev. Lett. 108, 106104 (2012)PRLTAO0031-900710.1103/PhysRevLett.108.106104 and Phys. Rev. E 85, 061602 (2012)PLEEE81539-375510.1103/PhysRevE.85.061602, allow to determine the "jump-to-contact" critical distance d_{min} below which the liquid jumps and wets the probe. Comparison between theory and experiments shows that the probe-liquid interaction at nanoscale is controlled by the liquid interface deformation. This work shows a very good agreement between the theoretical model and the experiments and paves the way to experimental studies of liquids at the nanoscale.
Near-field deformation of a liquid interface by atomic force microscopy
NASA Astrophysics Data System (ADS)
Mortagne, C.; Chireux, V.; Ledesma-Alonso, R.; Ogier, M.; Risso, F.; Ondarçuhu, T.; Legendre, D.; Tordjeman, Ph.
2017-07-01
We experiment the interaction between a liquid puddle and a spherical probe by Atomic Force Microscopy (AFM) for a probe radius R ranging from 10 nm to 30 μ m . We have developed a new experimental setup by coupling an AFM with a high-speed camera and an inverted optical microscope. Interaction force-distance curves (in contact mode) and frequency shift-distance curves (in frequency modulation mode) are measured for different bulk model liquids for which the probe-liquid Hamaker constant Hp l is known. The experimental results, analyzed in the frame of the theoretical model developed in Phys. Rev. Lett. 108, 106104 (2012), 10.1103/PhysRevLett.108.106104 and Phys. Rev. E 85, 061602 (2012), 10.1103/PhysRevE.85.061602, allow to determine the "jump-to-contact" critical distance dmin below which the liquid jumps and wets the probe. Comparison between theory and experiments shows that the probe-liquid interaction at nanoscale is controlled by the liquid interface deformation. This work shows a very good agreement between the theoretical model and the experiments and paves the way to experimental studies of liquids at the nanoscale.
Elucidating the structure and function of S100 proteins in membranes
NASA Astrophysics Data System (ADS)
Valenzuela, Stella M.; Berkahn, Mark; Martin, Donald K.; Huynh, Thuan; Yang, Zheng; Geczy, Carolyn L.
2006-01-01
S100 proteins are important Ca 2+-binding proteins involved in vital cellular functions including the modulation of cell growth, migration and differentiation, regulation of intracellular signal transduction/phosphorylation pathways, energy metabolism, cytoskeletal interactions and modulation of ion channels. Furthermore, they are implicated in oncogenesis and numerous other disease states. Three S100 proteins: S100A8, S100A9 and S100A12 are constitutively expressed in neutrophils and monocytes. At low levels of intracellular Ca 2+, S100A8 and S100A9 are located predominantly in the cytosol but when Ca 2+ concentrations are elevated as a consequence of activation, they translocate to membranes and complex with cytoskeletal components such as vimentin. The functions of S100A8 and S100A9 at the plasma membrane remain unclear. A possible role may be the regulation of ion channel proteins. The current study uses the techniques of Atomic Force Microscopy and production of artificial lipid membranes in the form of liposomes to investigate possible mechanisms for the insertion of these proteins into membranes in order to elucidate their structure and stoichiometry in the transmembrane state. We have successfully imaged the liposomes as a lipid bilayer, the S100A8/A9 protein complex in solution and the S100A8/A9 complex associating with lipid, using tapping-mode atomic force microscopy, in buffer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billings, Amanda N; Siuti, Piro; Bible, Amber
2011-01-01
To compete in complex microbial communities, bacteria must quickly sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the modulation of multiple cellular responses, including motility, EPS production, and cell-to-cell interactions. Recently, the Che1 chemotaxis-like pathway from Azospirillum brasilense was shown to modulate flocculation. In A. brasilense, cell surface properties, including EPS production, are thought to play a direct role in promoting flocculation. Using atomic force microscopy (AFM), we have detected distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains that are absent in the wild type strain.more » Whereas the wild type strain produces a smooth mucosal extracellular matrix, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition and lectin-binding assays suggest that the composition of EPS components in the extracellular matrix differs between the cheA1 and cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that mutations in the Che1 pathway that result in increased flocculation are correlated with distinctive changes in the extracellular matrix structure produced by the mutants, including likely changes in the EPS structure and/or composition.« less
Mikulska-Ruminska, Karolina; Kulik, Andrej J; Benadiba, Carine; Bahar, Ivet; Dietler, Giovanni; Nowak, Wieslaw
2017-08-18
Contactin-4 (CNTN4) is a complex cell adhesion molecule (CAM) localized at neuronal membranes, playing a key role in maintaining the mechanical integrity and signaling properties of the synapse. CNTN4 consists of six immunoglobulin C2 type (IgC2) domains and four fibronectin type III (FnIII) domains that are shared with many other CAMs. Mutations in CNTN4 gene have been linked to various psychiatric disorders. Toward elucidating the response of this modular protein to mechanical stress, we studied its force-induced unfolding using single molecule atomic force microscopy (smAFM) and steered molecular dynamics (SMD) simulations. Extensive smAFM and SMD data both indicate the distinctive mechanical behavior of the two types of modules distinguished by unique force-extension signatures. The data also reveal the heterogeneity of the response of the individual FNIII and IgC2 modules, which presumably plays a role in the adaptability of CNTN4 to maintaining cell-cell communication and adhesion properties under different conditions. Results show that extensive sampling of force spectra, facilitated by robot-enhanced AFM, can help reveal the existence of weak stabilizing interactions between the domains of multidomain proteins, and provide insights into the nanomechanics of such multidomain or heteromeric proteins.
Impurity-induced modulations in PdxNbSe3 coupled to charge-density-wave formation
NASA Astrophysics Data System (ADS)
Xue, Q.; Gong, Y.; Drake, D. L.; Qian, J.; Coleman, R. V.
1996-01-01
Very dilute amounts of Pd in PdxNbSe3 introduce long-range electronic modulations of wavelength 7b0, 4b0, 3b0, and 2b0 at room temperature as the Pd concentration increases in the range x=0.002 to x=0.02 while the low-temperature charge-density waves (CDW's) initially remain unchanged. For x>=0.02 the low-temperature CDW's are quenched while the NbSe3 structure remains intact, and the high-temperature modulations disappear, indicating a clear correlation between the two effects. The magnetoquantum oscillations due to magnetic breakdown first detect the band-structure shift followed by the sudden quenching of the nested Fermi surface sheets. The atomic force microscope scans show substantial charge transfer between chains caused by the Pd doping.
Enhancement of collective atomic recoil lasing due to pump phase modulation
NASA Astrophysics Data System (ADS)
Robb, G. R. M.; Burgess, R. T. L.; Firth, W. J.
2008-10-01
We investigate the effect of a phase-modulated pump beam on collective backscattering [also termed collective atomic recoil lasing (CARL)] by a cold, collisionless atomic gas. We show using a numerical analysis that different regimes can be identified in which the atomic dynamics evolves in a qualitatively different manner during the light-atom interaction, depending on the magnitude of the pump modulation frequency. Our results also demonstrate that phase-modulating the pump field can substantially enhance the backscattered field intensity relative to the case of a monochromatic pump which has been used in CARL experiments to date.
MEMS based Low Cost Piezoresistive Microcantilever Force Sensor and Sensor Module
Pandya, H. J.; Kim, Hyun Tae; Roy, Rajarshi; Desai, Jaydev P.
2014-01-01
In the present work, we report fabrication and characterization of a low-cost MEMS based piezoresistive micro-force sensor with SU-8 tip using laboratory made silicon-on-insulator (SOI) substrate. To prepare SOI wafer, silicon film (0.8 µm thick) was deposited on an oxidized silicon wafer using RF magnetron sputtering technique. The films were deposited in Argon (Ar) ambient without external substrate heating. The material characteristics of the sputtered deposited silicon film and silicon film annealed at different temperatures (400–1050°C) were studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The residual stress of the films was measured as a function of annealing temperature. The stress of the as-deposited films was observed to be compressive and annealing the film above 1050°C resulted in a tensile stress. The stress of the film decreased gradually with increase in annealing temperature. The fabricated cantilevers were 130 µm in length, 40 µm wide and 1.0 µm thick. A series of force-displacement curves were obtained using fabricated microcantilever with commercial AFM setup and the data were analyzed to get the spring constant and the sensitivity of the fabricated microcantilever. The measured spring constant and sensitivity of the sensor was 0.1488N/m and 2.7mV/N. The microcantilever force sensor was integrated with an electronic module that detects the change in resistance of the sensor with respect to the applied force and displays it on the computer screen. PMID:24855449
MEMS based Low Cost Piezoresistive Microcantilever Force Sensor and Sensor Module.
Pandya, H J; Kim, Hyun Tae; Roy, Rajarshi; Desai, Jaydev P
2014-03-01
In the present work, we report fabrication and characterization of a low-cost MEMS based piezoresistive micro-force sensor with SU-8 tip using laboratory made silicon-on-insulator (SOI) substrate. To prepare SOI wafer, silicon film (0.8 µm thick) was deposited on an oxidized silicon wafer using RF magnetron sputtering technique. The films were deposited in Argon (Ar) ambient without external substrate heating. The material characteristics of the sputtered deposited silicon film and silicon film annealed at different temperatures (400-1050°C) were studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The residual stress of the films was measured as a function of annealing temperature. The stress of the as-deposited films was observed to be compressive and annealing the film above 1050°C resulted in a tensile stress. The stress of the film decreased gradually with increase in annealing temperature. The fabricated cantilevers were 130 µm in length, 40 µm wide and 1.0 µm thick. A series of force-displacement curves were obtained using fabricated microcantilever with commercial AFM setup and the data were analyzed to get the spring constant and the sensitivity of the fabricated microcantilever. The measured spring constant and sensitivity of the sensor was 0.1488N/m and 2.7mV/N. The microcantilever force sensor was integrated with an electronic module that detects the change in resistance of the sensor with respect to the applied force and displays it on the computer screen.
A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants
Ewen, James P.; Gattinoni, Chiara; Thakkar, Foram M.; Morgan, Neal; Spikes, Hugh A.; Dini, Daniele
2016-01-01
For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD) simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i) accurately predict important properties of long-chain, linear molecules; and (ii) reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n-hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP), allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n-hexadecane using equilibrium molecular dynamics (EMD) simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-atom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n-hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are consistently under-predicted and the friction-coverage and friction-velocity behavior deviates from that observed using all-atom force-fields and experimentally. This has important implications regarding force-field selection for NEMD simulations of systems containing long-chain, linear molecules; specifically, it is recommended that accurate all-atom potentials, such as L-OPLS-AA, are employed. PMID:28773773
A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants.
Ewen, James P; Gattinoni, Chiara; Thakkar, Foram M; Morgan, Neal; Spikes, Hugh A; Dini, Daniele
2016-08-02
For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD) simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i) accurately predict important properties of long-chain, linear molecules; and (ii) reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n -hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP), allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n -hexadecane using equilibrium molecular dynamics (EMD) simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-atom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n -hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are consistently under-predicted and the friction-coverage and friction-velocity behavior deviates from that observed using all-atom force-fields and experimentally. This has important implications regarding force-field selection for NEMD simulations of systems containing long-chain, linear molecules; specifically, it is recommended that accurate all-atom potentials, such as L-OPLS-AA, are employed.
Arslan, Baran; Colpan, Mert; Ju, Xiaohui; Zhang, Xiao; Kostyukova, Alla; Abu-Lail, Nehal I
2016-05-09
The lack of fundamental understanding of the types of forces that govern how cellulose-degrading enzymes interact with cellulosic and noncellulosic components of lignocellulosic surfaces limits the design of new strategies for efficient conversion of biomass to bioethanol. In a step to improve our fundamental understanding of such interactions, nanoscale forces acting between a model cellulase-a carbohydrate-binding module (CBM) of cellobiohydrolase I (CBH I)-and a set of lignocellulosic substrates with controlled composition were measured using atomic force microscopy (AFM). The three model substrates investigated were kraft (KP), sulfite (SP), and organosolv (OPP) pulped substrates. These substrates varied in their surface lignin coverage, lignin type, and xylan and acetone extractives' content. Our results indicated that the overall adhesion forces of biomass to CBM increased linearly with surface lignin coverage with kraft lignin showing the highest forces among lignin types investigated. When the overall adhesion forces were decoupled into specific and nonspecific component forces via the Poisson statistical model, hydrophobic and Lifshitz-van der Waals (LW) forces dominated the binding forces of CBM to kraft lignin, whereas permanent dipole-dipole interactions and electrostatic forces facilitated the interactions of lignosulfonates to CBM. Xylan and acetone extractives' content increased the attractive forces between CBM and lignin-free substrates, most likely through hydrogen bonding forces. When the substrates treated differently were compared, it was found that both the differences in specific and nonspecific forces between lignin-containing and lignin-free substrates were the least for OPP. Therefore, cellulase enzymes represented by CBM would weakly bind to organosolv lignin. This will facilitate an easy enzyme recovery compared to other substrates treated with kraft or sulfite pulping. Our results also suggest that altering the surface hydrophobicity and the surface energy of lignin that facilitates the LW forces should be a priori to avoid nonproductive binding of cellulase to kraft lignin.
NASA Astrophysics Data System (ADS)
Ptak, Arkadiusz; Takeda, Seiji; Nakamura, Chikashi; Miyake, Jun; Kageshima, Masami; Jarvis, Suzanne P.; Tokumoto, Hiroshi
2001-09-01
A modified atomic force microscopy (AFM) system, based on a force modulation technique, has been used to find an approximate value for the elastic modulus of a single peptide molecule directly from a mechanical test. For this purpose a self-assembled monolayer built from two kinds of peptides, reactive (able to anchor to the AFM tip) and nonreactive, was synthesized. In a typical experiment a single C3K30C (C=cysteine, K=lysine) peptide molecule was stretched between a Au(111) substrate and the gold-coated tip of an AFM cantilever to which it was attached via gold-sulfur bonds. The amplitude of the cantilever oscillations, due to an external force applied via a magnetic particle to the cantilever, was recorded by a lock-in amplifier and recalculated into stiffness of the stretched molecule. A longitudinal Young's modulus for the α-helix of a single peptide molecule and for the elongated state of this molecule has been estimated. The obtained values; 1.2±0.3 and 50±15 GPa, for the peptide α-helix and elongated peptide backbone, respectively, seem to be reasonable comparing them to the Young's modulus of protein crystals and linear organic polymers. We believe this research opens up a means by which scientists can perform quantitative studies of the elastic properties of single molecule, especially of biologically important polymers like peptides or DNA.
Ma, Zhipeng; Huang, Yunfei; Park, Seongsu; Kawai, Kentaro; Kim, Do-Nyun; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Yamada, Hirofumi; Tabata, Osamu
2018-01-01
DNA origami methods enable the fabrication of various nanostructures and nanodevices, but their effective use depends on an understanding of their structural and mechanical properties and the effects of basic structural features. Frequency-modulation atomic force microscopy is introduced to directly characterize, in aqueous solution, the crossover regions of sets of 2D DNA origami based on different crossover/nick designs. Rhombic-shaped nanostructures formed under the influence of flexible crossovers placed between DNA helices are observed in DNA origami incorporating crossovers every 3, 4, or 6 DNA turns. The bending rigidity of crossovers is determined to be only one-third of that of the DNA helix, based on interhelical electrostatic forces reported elsewhere, and the measured pitches of the 3-turn crossover design rhombic-shaped nanostructures undergoing negligible bending. To evaluate the robustness of their structural integrity, they are intentionally and simultaneously stressed using force-controlled atomic force microscopy. DNA crossovers are verified to have a stabilizing effect on the structural robustness, while the nicks have an opposite effect. The structural and mechanical properties of DNA origami and the effects of crossovers and nicks revealed in this paper can provide information essential for the design of versatile DNA origami structures that exhibit specified and desirable properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials.
Giridharagopal, Rajiv; Cox, Phillip A; Ginger, David S
2016-09-20
From hybrid perovskites to semiconducting polymer/fullerene blends for organic photovoltaics, many new materials being explored for energy harvesting and storage exhibit performance characteristics that depend sensitively on their nanoscale morphology. At the same time, rapid advances in the capability and accessibility of scanning probe microscopy methods over the past decade have made it possible to study processing/structure/function relationships ranging from photocurrent collection to photocarrier lifetimes with resolutions on the scale of tens of nanometers or better. Importantly, such scanning probe methods offer the potential to combine measurements of local structure with local function, and they can be implemented to study materials in situ or devices in operando to better understand how materials evolve in time in response to an external stimulus or environmental perturbation. This Account highlights recent advances in the development and application of scanning probe microscopy methods that can help address such questions while filling key gaps between the capabilities of conventional electron microscopy and newer super-resolution optical methods. Focusing on semiconductor materials for solar energy applications, we highlight a range of electrical and optoelectronic scanning probe microscopy methods that exploit the local dynamics of an atomic force microscope tip to probe key properties of the solar cell material or device structure. We discuss how it is possible to extract relevant device properties using noncontact scanning probe methods as well as how these properties guide materials development. Specifically, we discuss intensity-modulated scanning Kelvin probe microscopy (IM-SKPM), time-resolved electrostatic force microscopy (trEFM), frequency-modulated electrostatic force microscopy (FM-EFM), and cantilever ringdown imaging. We explain these developments in the context of classic atomic force microscopy (AFM) methods that exploit the physics of cantilever motion and photocarrier generation to provide robust, nanoscale measurements of materials physics that are correlated with device operation. We predict that the multidimensional data sets made possible by these types of methods will become increasingly important as advances in data science expand capabilities and opportunities for image correlation and discovery.
Subatomic Features on the Silicon (111)-(7x7) Surface Observed by Atomic Force Microscopy.
Giessibl; Hembacher; Bielefeldt; Mannhart
2000-07-21
The atomic force microscope images surfaces by sensing the forces between a sharp tip and a sample. If the tip-sample interaction is dominated by short-range forces due to the formation of covalent bonds, the image of an individual atom should reflect the angular symmetry of the interaction. Here, we report on a distinct substructure in the images of individual adatoms on silicon (111)-(7x7), two crescents with a spherical envelope. The crescents are interpreted as images of two atomic orbitals of the front atom of the tip. Key for the observation of these subatomic features is a force-detection scheme with superior noise performance and enhanced sensitivity to short-range forces.
NASA Astrophysics Data System (ADS)
Stomp, Romain-Pierre
This thesis is devoted to the studies of self-assembled InAs quantum dots (QD) by low-temperature Atomic Force Microscopy (AFM) in frequency modulation mode. Several spectroscopic methods are developed to investigate single electron charging from a two-dimensional electron gas (2DEG) to an individual InAs QD. Furthermore, a new technique to measure the absolute tip-sample capacitance is also demonstrated. The main observables are the electrostatic force between the metal-coated AFM tip and sample as well as the sample-induced energy dissipation, and therefore no tunneling current has to be collected at the AFM tip. Measurements were performed by recording simultaneously the shift in the resonant frequency and the Q-factor degradation of the oscillating cantilever either as a function of tip-sample voltage or distance. The signature of single electron charging was detected as an abrupt change in the frequency shift as well as corresponding peaks in the dissipation. The main experimental features in the force agree well with the semi-classical theory of Coulomb blockade by considering the free energy of the system. The observed dissipation peaks can be understood as a back-action effect on the oscillating cantilever beam due to the fluctuation in time of electrons tunneling back and forth between the 2DEG and the QD. It was also possible to extract the absolute value of the tip-sample capacitance, as a consequence of the spectroscopic analysis of the electrostic force as a function of tip-sample distance for different values of the applied voltage. At the same time, the contact potential difference and the residual non-capacitive force could also be determined as a function of tip-sample distance.
Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy.
Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph
2015-09-01
The combination of alternating electric fields with nanometer-sized electrodes allows the permanent immobilization of proteins by dielectrophoretic force. Here, atomic force microscopy is introduced as a quantification method, and results are compared with fluorescence microscopy. Experimental parameters, for example the applied voltage and duration of field application, are varied systematically, and the influence on the amount of immobilized proteins is investigated. A linear correlation to the duration of field application was found by atomic force microscopy, and both microscopical methods yield a square dependence of the amount of immobilized proteins on the applied voltage. While fluorescence microscopy allows real-time imaging, atomic force microscopy reveals immobilized proteins obscured in fluorescence images due to low S/N. Furthermore, the higher spatial resolution of the atomic force microscope enables the visualization of the protein distribution on single nanoelectrodes. The electric field distribution is calculated and compared to experimental results with very good agreement to atomic force microscopy measurements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Świątkowski, Michał; Wojtuś, Arkadiusz; Wielgoszewski, Grzegorz; Rudek, Maciej; Piasecki, Tomasz; Jóźwiak, Grzegorz; Gotszalk, Teodor
2018-04-01
Atomic force microscopy (AFM) is a widely used technology for the investigation and characterization of nanomaterials. Its functionality can be easily expanded by applying dedicated extension modules, which can measure the electrical conductivity or temperature of a sample. In this paper, we introduce a transformer ratio-arm bridge setup dedicated to AFM-based thermal imaging. One of the key features of the thermal module is the use of a low-power driving signal that prevents undesirable tip heating during resistance measurement, while the other is the sensor location in a ratio-arm transformer bridge working in the audio frequency range and ensuring galvanic isolation of the tip, enabling contact-mode scanning of electronic circuits. The proposed expansion module is compact and it can be integrated onto the AFM head close to the cantilever. The calibration process and the resolution of 11 mK of the proposed setup are shown.
Edwards, Amanda Nicole; Siuti, Piro; Bible, Amber N; Alexandre, Gladys; Retterer, Scott T; Doktycz, Mitchel J; Morrell-Falvey, Jennifer L
2011-01-01
To compete in complex microbial communities, bacteria must sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the regulation of multiple behaviors in response to changes in the environment, including motility patterns, exopolysaccharide production, and cell-to-cell interactions. In Azospirillum brasilense, cell surface properties, including exopolysaccharide production, are thought to play a direct role in promoting flocculation. Recently, the Che1 chemotaxis-like pathway from A. brasilense was shown to modulate flocculation, suggesting an associated modulation of cell surface properties. Using atomic force microscopy, distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains were detected. Whereas the wild-type strain produces a smooth mucosal extracellular matrix after 24 h, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition, lectin-binding assays, and comparison of lipopolysaccharides profiles suggest that the extracellular matrix differs between the cheA1 and the cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that disruption of the Che1 pathway is correlated with distinctive changes in the extracellular matrix, which likely result from changes in surface polysaccharides structure and/or composition. FEMS Microbiology Letters © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.
NASA Astrophysics Data System (ADS)
Kilpatrick, J. I.; Gannepalli, A.; Cleveland, J. P.; Jarvis, S. P.
2009-02-01
Frequency modulation atomic force microscopy (FM-AFM) is rapidly evolving as the technique of choice in the pursuit of high resolution imaging of biological samples in ambient environments. The enhanced stability afforded by this dynamic AFM mode combined with quantitative analysis enables the study of complex biological systems, at the nanoscale, in their native physiological environment. The operational bandwidth and accuracy of constant amplitude FM-AFM in low Q environments is heavily dependent on the cantilever dynamics and the performance of the demodulation and feedback loops employed to oscillate the cantilever at its resonant frequency with a constant amplitude. Often researchers use ad hoc feedback gains or instrument default values that can result in an inability to quantify experimental data. Poor choice of gains or exceeding the operational bandwidth can result in imaging artifacts and damage to the tip and/or sample. To alleviate this situation we present here a methodology to determine feedback gains for the amplitude and frequency loops that are specific to the cantilever and its environment, which can serve as a reasonable "first guess," thus making quantitative FM-AFM in low Q environments more accessible to the nonexpert. This technique is successfully demonstrated for the low Q systems of air (Q ˜40) and water (Q ˜1). In addition, we present FM-AFM images of MC3T3-E1 preosteoblast cells acquired using the gains calculated by this methodology demonstrating the effectiveness of this technique.
Nanoscale observation of organic thin film by atomic force microscopy
NASA Astrophysics Data System (ADS)
Mochizuki, Shota; Uruma, Takeshi; Satoh, Nobuo; Saravanan, Shanmugam; Soga, Tetsuo
2017-08-01
Organic photovoltaics (OPVs) fabricated using organic semiconductors and hybrid solar cells (HSCs) based on organic semiconductors/quantum dots (QDs) have been attracting significant attention owing to their potential use in low-cost solar energy-harvesting applications and flexible, light-weight, colorful, large-area devices. In this study, we observed and evaluated the surface of a photoelectric conversion layer (active layer) of the OPVs and HSCs based on phenyl-C61-butyric acid methyl ester (PCBM), poly(3-hexylthiophene) (P3HT), and zinc oxide (ZnO) nanoparticles. The experiment was performed using atomic force microscopy (AFM) combined with a frequency modulation detector (FM detector) and a contact potential difference (CPD) detection circuit. We experimentally confirmed the changes in film thickness and surface potential, as affected by the ZnO nanoparticle concentration. From the experimental results, we confirmed that ZnO nanoparticles possibly affect the structures of PCBM and P3HT. Also, we prepared an energy band diagram on the basis of the observation results, and analyzed the energy distribution inside the active layer.
NASA Astrophysics Data System (ADS)
Kou, Lili; Li, Yan Jun; Kamijyo, Takeshi; Naitoh, Yoshitaka; Sugawara, Yasuhiro
2016-12-01
We investigate the surface potential distribution on a TiO2 (110)-1 × 1 surface by Kelvin probe force microscopy (KPFM) and atom-dependent bias-distance spectroscopic mapping. The experimental results demonstrate that the local contact potential difference increases on twofold-coordinated oxygen sites, and decreases on OH defects and fivefold-coordinated Ti sites. We propose a qualitative model to explain the origin of the surface potential of TiO2 (110). We qualitatively calculate the surface potential induced by chemical potential and permanent surface dipole. The calculated results agree with our experimental ones. Therefore, we suggest that the surface potential of TiO2 (110) is dominated not only by the permanent surface dipole between the tip apex atom and surface, but also by the dipoles induced by the chemical interaction between the tip and sample. The KPFM technique demonstrate the possibility of investigation of the charge transfer phenomenon on TiO2 surface under gas conditions. It is useful for the elucidation of the mechanism of the catalytic reactions.
Kou, Lili; Li, Yan Jun; Kamijyo, Takeshi; Naitoh, Yoshitaka; Sugawara, Yasuhiro
2016-12-16
We investigate the surface potential distribution on a TiO 2 (110)-1 × 1 surface by Kelvin probe force microscopy (KPFM) and atom-dependent bias-distance spectroscopic mapping. The experimental results demonstrate that the local contact potential difference increases on twofold-coordinated oxygen sites, and decreases on OH defects and fivefold-coordinated Ti sites. We propose a qualitative model to explain the origin of the surface potential of TiO 2 (110). We qualitatively calculate the surface potential induced by chemical potential and permanent surface dipole. The calculated results agree with our experimental ones. Therefore, we suggest that the surface potential of TiO 2 (110) is dominated not only by the permanent surface dipole between the tip apex atom and surface, but also by the dipoles induced by the chemical interaction between the tip and sample. The KPFM technique demonstrate the possibility of investigation of the charge transfer phenomenon on TiO 2 surface under gas conditions. It is useful for the elucidation of the mechanism of the catalytic reactions.
Determination of cellular strains by combined atomic force microscopy and finite element modeling.
Charras, Guillaume T; Horton, Mike A
2002-01-01
Many organs adapt to their mechanical environment as a result of physiological change or disease. Cells are both the detectors and effectors of this process. Though many studies have been performed in vitro to investigate the mechanisms of detection and adaptation to mechanical strains, the cellular strains remain unknown and results from different stimulation techniques cannot be compared. By combining experimental determination of cell profiles and elasticities by atomic force microscopy with finite element modeling and computational fluid dynamics, we report the cellular strain distributions exerted by common whole-cell straining techniques and from micromanipulation techniques, hence enabling their comparison. Using data from our own analyses and experiments performed by others, we examine the threshold of activation for different signal transduction processes and the strain components that they may detect. We show that modulating cell elasticity, by increasing the F-actin content of the cytoskeleton, or cellular Poisson ratio are good strategies to resist fluid shear or hydrostatic pressure. We report that stray fluid flow in some substrate-stretch systems elicits significant cellular strains. In conclusion, this technique shows promise in furthering our understanding of the interplay among mechanical forces, strain detection, gene expression, and cellular adaptation in physiology and disease. PMID:12124270
Atomic force microscopy of pea starch: origins of image contrast.
Ridout, Michael J; Parker, Mary L; Hedley, Cliff L; Bogracheva, Tatiana Y; Morris, Victor J
2004-01-01
Atomic force microscopy (AFM) has been used to image the internal structure of pea starch granules. Starch granules were encased in a nonpenetrating matrix of rapid-set Araldite. Images were obtained of the internal structure of starch exposed by cutting the face of the block and of starch in sections collected on water. These images have been obtained without staining, or either chemical or enzymatic treatment of the granule. It has been demonstrated that contrast in the AFM images is due to localized absorption of water within specific regions of the exposed fragments of the starch granules. These regions swell, becoming "softer" and higher than surrounding regions. The images obtained confirm the "blocklet model" of starch granule architecture. By using topographic, error signal and force modulation imaging modes on samples of the wild-type pea starch and the high amylose r near-isogenic mutant, it has been possible to demonstrate differing structures within granules of different origin. These architectural changes provide a basis for explaining the changed appearance and functionality of the r mutant. The growth-ring structure of the granule is suggested to arise from localized "defects" in blocklet distribution within the granule. It is proposed that these defects are partially crystalline regions devoid of amylose.
Coupled molecular and cantilever dynamics model for frequency-modulated atomic force microscopy.
Klocke, Michael; Wolf, Dietrich E
2016-01-01
A molecular dynamics model is presented, which adds harmonic potentials to the atomic interactions to mimic the elastic properties of an AFM cantilever. It gives new insight into the correlation between the experimentally monitored frequency shift and cantilever damping due to the interaction between tip atoms and scanned surface. Applying the model to ionic crystals with rock salt structure two damping mechanisms are investigated, which occur separately or simultaneously depending on the tip position. These mechanisms are adhesion hysteresis on the one hand and lateral excitations of the cantilever on the other. We find that the short range Lennard-Jones part of the atomic interaction alone is sufficient for changing the predominant mechanism. When the long range ionic interaction is switched off, the two damping mechanisms occur with a completely different pattern, which is explained by the energy landscape for the apex atom of the tip. In this case the adhesion hysteresis is always associated with a distinct lateral displacement of the tip. It is shown how this may lead to a systematic shift between the periodic patterns obtained from the frequency and from the damping signal, respectively.
Thermal Casimir-Polder forces on a V-type three-level atom
NASA Astrophysics Data System (ADS)
Xu, Chen-Ran; Xu, Jing-Ping; Al-amri, M.; Zhu, Cheng-Jie; Xie, Shuang-Yuan; Yang, Ya-Ping
2017-09-01
We study the thermal Casimir-Polder (CP) forces on a V-type three-level atom. The competition between the thermal effect and the quantum interference of the two transition dipoles on the force is investigated. To shed light onto the role of the quantum interference, we analyze two kinds of initial states of the atom, i.e., the superradiant state and the subradiant state. Considering the atom being in the thermal reservoir, the resonant CP force arising from the real photon emission dominates in the evolution of the CP force. Under the zero-temperature condition, the quantum interference can effectively modify the amplitude and the evolution of the force, leading to a long-time force or even the cancellation of the force. Our results reveal that in the finite-temperature case, the thermal photons can enhance the amplitude of all force elements, but have no influence on the net resonant CP force in the steady state, which means that the second law of thermodynamics still works. For the ideal degenerate V-type atom with parallel dipoles under the initial subradiant state, the robust destructive quantum interference overrides the thermal fluctuations, leading to the trapping of the atom in the subradiant state and the disappearance of the CP force. However, in terms of a realistic Zeeman atom, the thermal photons play a significant role during the evolution of the CP force. The thermal fluctuations can enhance the amplitude of the initial CP force by increasing the temperature, and weaken the influence of the quantum interference on the evolution of the CP force from the initial superradiant (subradiant) state to the steady state.
Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing
Vanommeslaeghe, K.; MacKerell, A. D.
2012-01-01
Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF’s complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at https://www.paramchem.org/. PMID:23146088
Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing.
Vanommeslaeghe, K; MacKerell, A D
2012-12-21
Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters, and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF's complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at https://www.paramchem.org/ .
Nanomechanics of Pectin-Linked β-Lactoglobulin Nanofibril Bundles.
Loveday, Simon M; Gunning, A Patrick
2018-06-14
Nanofibrils of β-lactoglobulin can be assembled into bundles by site-specific noncovalent cross-linking with high-methoxyl pectin (Hettiarachchi et al. Soft Matter 2016, 12, 756). Here we characterized the nanomechanical properties of bundles using atomic force microscopy and force spectroscopy. Bundles had Gaussian cross sections and a mean height of 17.4 ± 1.4 nm. Persistence lengths were calculated using image analysis with the mean-squared end-to-end model. The relationship between the persistence length and the thickness had exponents of 1.69-2.30, which is consistent with previous reports for other fibril types. In force spectroscopy experiments, the bundles stretched in a qualitatively different manner to fibrils, and some of the force curves were consistent with peeling fibrils away from bundles. The flexibility of pectin-linked nanofibril bundles is likely to be tunable by modulating the stiffness and length of fibrils and the ratio of pectin to fibrils, giving rise to a wide range of structures and functionalities.
Spontaneous lateral atomic recoil force close to a photonic topological material
NASA Astrophysics Data System (ADS)
Hassani Gangaraj, S. Ali; Hanson, George W.; Antezza, Mauro; Silveirinha, Mário G.
2018-05-01
We investigate the quantum recoil force acting on an excited atom close to the surface of a nonreciprocal photonic topological insulator (PTI). The main atomic emission channel is the unidirectional surface plasmon propagating at the PTI-vacuum interface, and we show that it enables a spontaneous lateral recoil force that scales at short distances as 1 /d4 , where d is the atom-PTI separation. Remarkably, the sign of the recoil force is polarization and orientation independent, and it occurs in a translation-invariant homogeneous system in thermal equilibrium. Surprisingly, the recoil force persists for very small values of the gyration pseudovector, which, for a biased plasma, corresponds to very low cyclotron frequencies. The ultrastrong recoil force is rooted in the quasihyperbolic dispersion of the surface plasmons. We consider both an initially excited atom and a continuous pump scenario, the latter giving rise to a steady lateral force whose direction can be changed at will by simply varying the orientation of the biasing magnetic field. Our predictions may be tested in experiments with cold Rydberg atoms and superconducting qubits.
Budker, Dmitry; Higbie, James; Corsini, Eric P.
2013-11-19
An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.
Periodic surface instabilities in stressed polymer solids
NASA Astrophysics Data System (ADS)
Tsukruk, Vladimir V.; Reneker, Darrell H.
1995-03-01
The surface morphology of isothermally grown polymer single crystals of polypropylene is observed by atomic force microscopy. The distinguishing features of the polymer single crystals studied are periodic undulations and transverse fractures (cracks) across the single crystal laths. Up to 20 wrinkles are observed near the edges of the cracks. The periodicity of these surface perturbations is 400+/-100 nm and the amplitude is 6+/-3 nm. The formation of the periodic modulations and transverse fractures is attributed to surface stress relief caused by the uniaxial thermal contraction of polymer solids.
Kim, Seong-Oh; Jackman, Joshua A; Mochizuki, Masahito; Yoon, Bo Kyeong; Hayashi, Tomohiro; Cho, Nam-Joon
2016-06-07
The coating of solid-binding peptides (SBPs) on inorganic material surfaces holds significant potential for improved surface functionalization at nano-bio interfaces. In most related studies, the goal has been to engineer peptides with selective and high binding affinity for a target material. The role of the material substrate itself in modulating the adsorption behavior of a peptide molecule remains less explored and there are few studies that compare the interaction of one peptide with different inorganic substrates. Herein, using a combination of two experimental techniques, we investigated the adsorption of a 16 amino acid-long random coil peptide to various inorganic substrates - gold, silicon oxide, titanium oxide and aluminum oxide. Quartz crystal microbalance-dissipation (QCM-D) experiments were performed in order to measure the peptide binding affinity for inorganic solid supports at the ensemble average level, and atomic force microscopy (AFM) experiments were conducted in order to determine the adhesion force of a single peptide molecule. A positive trend was observed between the total mass uptake of attached peptide and the single-molecule adhesion force on each substrate. Peptide affinity for gold was appreciably greater than for the oxide substrates. Collectively, the results obtained in this study offer insight into the ways in which inorganic materials can differentially influence and modulate the adhesion of SBPs.
AtomicJ: An open source software for analysis of force curves
NASA Astrophysics Data System (ADS)
Hermanowicz, Paweł; Sarna, Michał; Burda, Kvetoslava; Gabryś, Halina
2014-06-01
We present an open source Java application for analysis of force curves and images recorded with the Atomic Force Microscope. AtomicJ supports a wide range of contact mechanics models and implements procedures that reduce the influence of deviations from the contact model. It generates maps of mechanical properties, including maps of Young's modulus, adhesion force, and sample height. It can also calculate stacks, which reveal how sample's response to deformation changes with indentation depth. AtomicJ analyzes force curves concurrently on multiple threads, which allows for high speed of analysis. It runs on all popular operating systems, including Windows, Linux, and Macintosh.
Structural properties of GaAsN grown on (001) GaAs by metalorganic molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Ok, Young-Woo; Choi, Chel-Jong; Seong, Tae-Yeon; Uesugi, K.; Suemune, I.
2001-07-01
Detailed transmission electron microscopy (TEM) and transmission electron diffraction (TED) examination has been made of metalorganic molecular beam epitaxial GaAsN layers grown on (001) GaAs substrates. TEM results show that lateral composition modulation occurs in the GaAs1-xNx layer (x 6.75%). It is shown that increasing N composition and Se (dopant) concentration leads to poor crystallinity. It is also shown that the addition of Se increases N composition. Atomic force microscopy (AFM) results show that the surfaces of the samples experience a morphological change from faceting to islanding, as the N composition and Se concentration increase. Based on the TEM and AFM results, a simple model is given to explain the formation of the lateral composition modulation.
Observation of linear I-V curves on vertical GaAs nanowires with atomic force microscope
NASA Astrophysics Data System (ADS)
Geydt, P.; Alekseev, P. A.; Dunaevskiy, M.; Lähderanta, E.; Haggrén, T.; Kakko, J.-P.; Lipsanen, H.
2015-12-01
In this work we demonstrate the possibility of studying the current-voltage characteristics for single vertically standing semiconductor nanowires on standard AFM equipped by current measuring module in PeakForce Tapping mode. On the basis of research of eight different samples of p-doped GaAs nanowires grown on different GaAs substrates, peculiar electrical effects were revealed. It was found how covering of substrate surface by SiOx layer increases the current, as well as phosphorous passivation of the grown nanowires. Elimination of the Schottky barrier between golden cap and the top parts of nanowires was observed. It was additionally studied that charge accumulation on the shell of single nanowires affects its resistivity and causes the hysteresis loops on I-V curves.
Computational model for noncontact atomic force microscopy: energy dissipation of cantilever.
Senda, Yasuhiro; Blomqvist, Janne; Nieminen, Risto M
2016-09-21
We propose a computational model for noncontact atomic force microscopy (AFM) in which the atomic force between the cantilever tip and the surface is calculated using a molecular dynamics method, and the macroscopic motion of the cantilever is modeled by an oscillating spring. The movement of atoms in the tip and surface is connected with the oscillating spring using a recently developed coupling method. In this computational model, the oscillation energy is dissipated, as observed in AFM experiments. We attribute this dissipation to the hysteresis and nonconservative properties of the interatomic force that acts between the atoms in the tip and sample surface. The dissipation rate strongly depends on the parameters used in the computational model.
Nonmonotonic velocity dependence of atomic friction.
Reimann, Peter; Evstigneev, Mykhaylo
2004-12-03
We propose a theoretical model for friction force microscopy experiments with special emphasis on the realistic description of dissipation and inertia effects. Its main prediction is a nonmonotonic dependence of the friction force upon the sliding velocity of the atomic force microscope tip relative to an atomically flat surface. The region around the force maximum can be approximately described by a universal scaling law and should be observable under experimentally realistic conditions.
NASA Astrophysics Data System (ADS)
Zhou, Shiqi
2018-03-01
One recently proposed new method for accurately determining wetting temperature is applied to the wetting transition occurring in a single component nonpolar neutral molecule system near a neutral planar substrate with roughness produced by cosinusoidal modulation(s). New observations are summarized into five points: (i) for a planar substrate superimposed with one cosinusoidal modulation, with increasing of the periodicity length or the surface attraction force field, or decreasing of the amplitude, wetting temperature T_W drops accordingly and the three parameters show multiplication effect; moreover, both the periodicity length and amplitude effect curves display pole phenomena and saturation phenomena, and the T_W saturation occurs at small (for case of large amplitude) or large (for case of small amplitude) periodicity length side, respectively. (ii) In the case of the planar substrate superimposed with two cosinusoidal modulations with equal periodicity length, the initial phase difference is critical issue that influences the T_W, which decreases with the initial phase difference. (iii) In the case of the planar substrate superimposed with two cosinusoidal modulations with zero phase difference, change of the T_W with one periodicity length under the condition of another periodicity length unchanged is non-monotonous. (iv) When the parameters are chosen such that the T_W draws ever closer to the bulk critical temperature, wetting transition on the roughness substrate eventually does not occur. (v) The present microscopic calculation challenges traditional macroscopic theory by confirming that the atomic length scale roughness always renders the surface less hydrophilic and whereas the mesoscopical roughness renders the surface more hydrophilic. All of these observations summarized can be reasonably explained by the relative strength of the attraction actually enjoyed by the surface gas molecules to the attraction the gas molecules can get when in bulk.
NASA Astrophysics Data System (ADS)
Schlupf, Chandler; Niederriter, Robert; Bohr, Eliot; Khamis, Sami; Park, Youna; Szwed, Erik; Hamilton, Paul
2017-04-01
Atom interferometry has been used in many precision measurements such as Newton's gravitational constant, the fine structure constant, and tests of the equivalence principle. We will perform atom interferometry in an optical lattice to measure the force felt by an atom due to a test mass in search of new forces suggested by dark matter and dark energy theories. We will be developing a new apparatus using laser-cooled ytterbium to continuously measure this force by observing their Bloch oscillations. Interfering atoms in an optical lattice allows continuous measurements in a small volume over a long period of time, enabling our device to be sensitive to time-varying forces while minimizing vibrational noise. We present the details of this experiment and the progress on it thus far.
Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution
NASA Astrophysics Data System (ADS)
Payne, Adam
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.
NASA Astrophysics Data System (ADS)
Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.
2015-05-01
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.
Direct Force Measurements of Receptor-Ligand Interactions on Living Cells
NASA Astrophysics Data System (ADS)
Eibl, Robert H.
The characterization of cell adhesion between two living cells at the level of single receptor-ligand bonds is an experimental challenge. This chapter describes how the extremely sensitive method of atomic force microscopy (AFM) based force spectroscopy can be applied to living cells in order to probe for cell-to-cell or cell-to-substrate interactions mediated by single pairs of adhesion receptors. In addition, it is outlined how single-molecule AFM force spectroscopy can be used to detect physiologic changes of an adhesion receptor in a living cell. This force spectroscopy allows us to detect in living cells rapidly changing, chemokine SDF-1 triggered activation states of single VLA-4 receptors. This recently developed AFM application will allow for the detailed investigation of the integrin-chemokine crosstalk of integrin activation mechanisms and on how other adhesion receptors are modulated in health and disease. As adhesion molecules, living cells and even bacteria can be studied by single-molecule AFM force spectroscopy, this method is set to become a powerful tool that can not only be used in biophysics, but in cell biology as well as in immunology and cancer research.
The desmoplakin–intermediate filament linkage regulates cell mechanics
Broussard, Joshua A.; Yang, Ruiguo; Huang, Changjin; Nathamgari, S. Shiva P.; Beese, Allison M.; Godsel, Lisa M.; Hegazy, Marihan H.; Lee, Sherry; Zhou, Fan; Sniadecki, Nathan J.; Green, Kathleen J.; Espinosa, Horacio D.
2017-01-01
The translation of mechanical forces into biochemical signals plays a central role in guiding normal physiological processes during tissue development and homeostasis. Interfering with this process contributes to cardiovascular disease, cancer progression, and inherited disorders. The actin-based cytoskeleton and its associated adherens junctions are well-established contributors to mechanosensing and transduction machinery; however, the role of the desmosome–intermediate filament (DSM–IF) network is poorly understood in this context. Because a force balance among different cytoskeletal systems is important to maintain normal tissue function, knowing the relative contributions of these structurally integrated systems to cell mechanics is critical. Here we modulated the interaction between DSMs and IFs using mutant forms of desmoplakin, the protein bridging these structures. Using micropillar arrays and atomic force microscopy, we demonstrate that strengthening the DSM–IF interaction increases cell–substrate and cell–cell forces and cell stiffness both in cell pairs and sheets of cells. In contrast, disrupting the interaction leads to a decrease in these forces. These alterations in cell mechanics are abrogated when the actin cytoskeleton is dismantled. These data suggest that the tissue-specific variability in DSM–IF network composition provides an opportunity to differentially regulate tissue mechanics by balancing and tuning forces among cytoskeletal systems. PMID:28495795
Surface Biology of DNA by Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Hansma, Helen G.
2001-10-01
The atomic force microscope operates on surfaces. Since surfaces occupy much of the space in living organisms, surface biology is a valid and valuable form of biology that has been difficult to investigate in the past owing to a lack of good technology. Atomic force microscopy (AFM) of DNA has been used to investigate DNA condensation for gene therapy, DNA mapping and sizing, and a few applications to cancer research and to nanotechnology. Some of the most exciting new applications for atomic force microscopy of DNA involve pulling on single DNA molecules to obtain measurements of single-molecule mechanics and thermodynamics.
NASA Astrophysics Data System (ADS)
Li, Tao; Lipatov, Alexey; Sharma, Pankaj; Lee, Hyungwoo; Eom, Chang-Beom; Sinitskii, Alexander; Gruverman, Alexei; Alexei Gruverman Team; Alexander Sinitskii Team; Chang-Beom Eom Team
Transition metal dichalcogenides (TMDs) are emerging 2-dimensional (2D) materials of the MX2 type, where M is a transition metal atom (Mo, W, Ti, Sn, Zr, etc.) and X is a chalcogen atom (S, Se, or Te.). Comparing to graphene, TMDs have a sizable band gap and can be metal, half-metal, semiconductor or superconductor. Their band structures can be tuned by external bias voltage, mechanical force, or light illumination. Their rich physical properties make TMDs potential candidates for a variety of applications in nanoelectronics and optoelectronics. Ferroelectric tunnel junctions (FTJs) are actively studied as a next-generation of non-volatile memory elements. An FTJ comprises a ferroelectric tunnel barrier sandwiched between two electrodes. In this work, we investigate the resistive switching behavior of MoS2/BaTiO3-based FTJs. The ON/OFF ratio can be modulated via electric or mechanical control of the switched polarization fraction opening a possibility of tunable electroresistance effect. Effect of optical illumination on the polarization reversal dynamics has been observed and analyzed based on the polarization-induced modulation of the MoS2 layered electronic properties.
Evidence for non-conservative current-induced forces in the breaking of Au and Pt atomic chains.
Sabater, Carlos; Untiedt, Carlos; van Ruitenbeek, Jan M
2015-01-01
This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a 'Berry force'. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high voltage appears to behave as expected for regular break down by thermal excitation due to Joule heating. However, there is a low-voltage breaking mode that has characteristics expected for the mechanism of current-induced forces. Although a full comparison would require more detailed information on the individual atomic configurations, the systems we consider are very similar to those considered in recent model calculations and the comparison between experiment and theory is very encouraging for the interpretation we propose.
Usenik, Aleksandra; Renko, Miha; Mihelič, Marko; Lindič, Nataša; Borišek, Jure; Perdih, Andrej; Pretnar, Gregor; Müller, Uwe; Turk, Dušan
2017-03-07
Bacterial cell wall proteins play crucial roles in cell survival, growth, and environmental interactions. In Gram-positive bacteria, cell wall proteins include several types that are non-covalently attached via cell wall binding domains. Of the two conserved surface-layer (S-layer)-anchoring modules composed of three tandem SLH or CWB2 domains, the latter have so far eluded structural insight. The crystal structures of Cwp8 and Cwp6 reveal multi-domain proteins, each containing an embedded CWB2 module. It consists of a triangular trimer of Rossmann-fold CWB2 domains, a feature common to 29 cell wall proteins in Clostridium difficile 630. The structural basis of the intact module fold necessary for its binding to the cell wall is revealed. A comparison with previously reported atomic force microscopy data of S-layers suggests that C. difficile S-layers are complex oligomeric structures, likely composed of several different proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.
Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy
Neuman, Keir C.; Nagy, Attila
2012-01-01
Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917
Optimization of classical nonpolarizable force fields for OH(-) and H3O(+).
Bonthuis, Douwe Jan; Mamatkulov, Shavkat I; Netz, Roland R
2016-03-14
We optimize force fields for H3O(+) and OH(-) that reproduce the experimental solvation free energies and the activities of H3O(+) Cl(-) and Na(+) OH(-) solutions up to concentrations of 1.5 mol/l. The force fields are optimized with respect to the partial charge on the hydrogen atoms and the Lennard-Jones parameters of the oxygen atoms. Remarkably, the partial charge on the hydrogen atom of the optimized H3O(+) force field is 0.8 ± 0.1|e|--significantly higher than the value typically used for nonpolarizable water models and H3O(+) force fields. In contrast, the optimal partial charge on the hydrogen atom of OH(-) turns out to be zero. Standard combination rules can be used for H3O(+) Cl(-) solutions, while for Na(+) OH(-) solutions, we need to significantly increase the effective anion-cation Lennard-Jones radius. While highlighting the importance of intramolecular electrostatics, our results show that it is possible to generate thermodynamically consistent force fields without using atomic polarizability.
Research on System Coherence Evolution of Different Environmental Models
NASA Astrophysics Data System (ADS)
Zhang, Si-Qi; Lu, Jing-Bin; Li, Hong; Liu, Ji-Ping; Zhang, Xiao-Ru; Liu, Han; Liang, Yu; Ma, Ji; Liu, Xiao-Jing; Wu, Xiang-Yao
2018-04-01
In this paper, we have studied the evolution curve of two-level atomic system that the initial state is excited state. At the different of environmental reservoir models, which include the single Lorentzian, ideal photon band-gap, double Lorentzian and square Lorentzian reservoir, we researched the influence of these environmental reservoir models on the evolution of energy level population. At static no modulation, comparing the four environmental models, the atomic energy level population oscillation of square Lorentzian reservoir model is fastest, and the atomic system decoherence is slowest. Under dynamic modulation, comparing the photon band-gap model with the single Lorentzian reservoir model, no matter what form of dynamic modulation, the time of atoms decay to the ground state is longer for the photonic band-gap model. These conclusions make the idea of using the environmental change to modulate the coherent evolution of atomic system become true.
Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giridharagopal, Rajiv; Cox, Phillip A.; Ginger, David S.
From hybrid perovskites to semiconducting polymer/fullerene blends for organic photovoltaics, many new materials being explored for energy harvesting and storage exhibit performance characteristics that depend sensitively on their nanoscale morphology. At the same time, rapid advances in the capability and accessibility of scanning probe microscopy methods over the past decade have made it possible to study processing/structure/function relationships ranging from photocurrent collection to photocarrier lifetimes with resolutions on the scale of tens of nanometers or better. Importantly, such scanning probe methods offer the potential to combine measurements of local structure with local function, and they can be implemented to studymore » materials in situ or devices in operando to better understand how materials evolve in time in response to an external stimulus or environmental perturbation. This Account highlights recent advances in the development and application of scanning probe microscopy methods that can help address such questions while filling key gaps between the capabilities of conventional electron microscopy and newer super-resolution optical methods. Focusing on semiconductor materials for solar energy applications, we highlight a range of electrical and optoelectronic scanning probe microscopy methods that exploit the local dynamics of an atomic force microscope tip to probe key properties of the solar cell material or device structure. We discuss how it is possible to extract relevant device properties using noncontact scanning probe methods as well as how these properties guide materials development. Specifically, we discuss intensity-modulated scanning Kelvin probe microscopy (IM-SKPM), time-resolved electrostatic force microscopy (trEFM), frequency-modulated electrostatic force microscopy (FM-EFM), and cantilever ringdown imaging. We explain these developments in the context of classic atomic force microscopy (AFM) methods that exploit the physics of cantilever motion and photocarrier generation to provide robust, nanoscale measurements of materials physics that are correlated with device operation. We predict that the multidimensional data sets made possible by these types of methods will become increasingly important as advances in data science expand capabilities and opportunities for image correlation and discovery.« less
Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials
Giridharagopal, Rajiv; Cox, Phillip A.; Ginger, David S.
2016-08-30
From hybrid perovskites to semiconducting polymer/fullerene blends for organic photovoltaics, many new materials being explored for energy harvesting and storage exhibit performance characteristics that depend sensitively on their nanoscale morphology. At the same time, rapid advances in the capability and accessibility of scanning probe microscopy methods over the past decade have made it possible to study processing/structure/function relationships ranging from photocurrent collection to photocarrier lifetimes with resolutions on the scale of tens of nanometers or better. Importantly, such scanning probe methods offer the potential to combine measurements of local structure with local function, and they can be implemented to studymore » materials in situ or devices in operando to better understand how materials evolve in time in response to an external stimulus or environmental perturbation. This Account highlights recent advances in the development and application of scanning probe microscopy methods that can help address such questions while filling key gaps between the capabilities of conventional electron microscopy and newer super-resolution optical methods. Focusing on semiconductor materials for solar energy applications, we highlight a range of electrical and optoelectronic scanning probe microscopy methods that exploit the local dynamics of an atomic force microscope tip to probe key properties of the solar cell material or device structure. We discuss how it is possible to extract relevant device properties using noncontact scanning probe methods as well as how these properties guide materials development. Specifically, we discuss intensity-modulated scanning Kelvin probe microscopy (IM-SKPM), time-resolved electrostatic force microscopy (trEFM), frequency-modulated electrostatic force microscopy (FM-EFM), and cantilever ringdown imaging. We explain these developments in the context of classic atomic force microscopy (AFM) methods that exploit the physics of cantilever motion and photocarrier generation to provide robust, nanoscale measurements of materials physics that are correlated with device operation. We predict that the multidimensional data sets made possible by these types of methods will become increasingly important as advances in data science expand capabilities and opportunities for image correlation and discovery.« less
Lässer, Cecilia; Théry, Clotilde; Buzás, Edit I; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; Lötvall, Jan
2016-01-01
The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, "Basics of Extracellular Vesicles," uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform "Coursera" and is free of charge.
Periodically modulated dark states
NASA Astrophysics Data System (ADS)
Han, Yingying; Zhang, Jun; Zhang, Wenxian
2018-04-01
Phenomena of electromagnetically induced transparency (PEIT) may be interpreted by the Autler-Townes Splitting (ATS), where the coupled states are split by the coupling laser field, or by the quantum destructive interference (QDI), where the atomic phases caused by the coupling laser and the probe laser field cancel. We propose modulated experiments to explore the PEIT in an alternative way by periodically modulating the coupling and the probe fields in a Λ-type three-level system initially in a dark state. Our analytical and numerical results rule out the ATS interpretation and show that the QDI interpretation is more appropriate for the modulated experiments. Interestingly, dark state persists in the double-modulation situation where control and probe fields never occur simultaneously, which is significant difference from the traditional dark state condition. The proposed experiments are readily implemented in atomic gases, artificial atoms in superconducting quantum devices, or three-level meta-atoms in meta-materials.
Hierarchical atom type definitions and extensible all-atom force fields.
Jin, Zhao; Yang, Chunwei; Cao, Fenglei; Li, Feng; Jing, Zhifeng; Chen, Long; Shen, Zhe; Xin, Liang; Tong, Sijia; Sun, Huai
2016-03-15
The extensibility of force field is a key to solve the missing parameter problem commonly found in force field applications. The extensibility of conventional force fields is traditionally managed in the parameterization procedure, which becomes impractical as the coverage of the force field increases above a threshold. A hierarchical atom-type definition (HAD) scheme is proposed to make extensible atom type definitions, which ensures that the force field developed based on the definitions are extensible. To demonstrate how HAD works and to prepare a foundation for future developments, two general force fields based on AMBER and DFF functional forms are parameterized for common organic molecules. The force field parameters are derived from the same set of quantum mechanical data and experimental liquid data using an automated parameterization tool, and validated by calculating molecular and liquid properties. The hydration free energies are calculated successfully by introducing a polarization scaling factor to the dispersion term between the solvent and solute molecules. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Subatomic-scale force vector mapping above a Ge(001) dimer using bimodal atomic force microscopy
NASA Astrophysics Data System (ADS)
Naitoh, Yoshitaka; Turanský, Robert; Brndiar, Ján; Li, Yan Jun; Štich, Ivan; Sugawara, Yasuhiro
2017-07-01
Probing physical quantities on the nanoscale that have directionality, such as magnetic moments, electric dipoles, or the force response of a surface, is essential for characterizing functionalized materials for nanotechnological device applications. Currently, such physical quantities are usually experimentally obtained as scalars. To investigate the physical properties of a surface on the nanoscale in depth, these properties must be measured as vectors. Here we demonstrate a three-force-component detection method, based on multi-frequency atomic force microscopy on the subatomic scale and apply it to a Ge(001)-c(4 × 2) surface. We probed the surface-normal and surface-parallel force components above the surface and their direction-dependent anisotropy and expressed them as a three-dimensional force vector distribution. Access to the atomic-scale force distribution on the surface will enable better understanding of nanoscale surface morphologies, chemical composition and reactions, probing nanostructures via atomic or molecular manipulation, and provide insights into the behaviour of nano-machines on substrates.
Atom optics in the time domain
NASA Astrophysics Data System (ADS)
Arndt, M.; Szriftgiser, P.; Dalibard, J.; Steane, A. M.
1996-05-01
Atom-optics experiments are presented using a time-modulated evanescent light wave as an atomic mirror in the trampoline configuration, i.e., perpendicular to the direction of the atomic free fall. This modulated mirror is used to accelerate cesium atoms, to focus their trajectories, and to apply a ``multiple lens'' to separately focus different velocity classes of atoms originating from a point source. We form images of a simple two-slit object to show the resolution of the device. The experiments are modelled by a general treatment analogous to classical ray optics.
Van der Waals interactions and the limits of isolated atom models at interfaces
Kawai, Shigeki; Foster, Adam S.; Björkman, Torbjörn; Nowakowska, Sylwia; Björk, Jonas; Canova, Filippo Federici; Gade, Lutz H.; Jung, Thomas A.; Meyer, Ernst
2016-01-01
Van der Waals forces are among the weakest, yet most decisive interactions governing condensation and aggregation processes and the phase behaviour of atomic and molecular matter. Understanding the resulting structural motifs and patterns has become increasingly important in studies of the nanoscale regime. Here we measure the paradigmatic van der Waals interactions represented by the noble gas atom pairs Ar–Xe, Kr–Xe and Xe–Xe with a Xe-functionalized tip of an atomic force microscope at low temperature. Individual rare gas atoms were fixed at node sites of a surface-confined two-dimensional metal–organic framework. We found that the magnitude of the measured force increased with the atomic radius, yet detailed simulation by density functional theory revealed that the adsorption induced charge redistribution strengthened the van der Waals forces by a factor of up to two, thus demonstrating the limits of a purely atomic description of the interaction in these representative systems. PMID:27174162
Taking Nanomedicine Teaching into Practice with Atomic Force Microscopy and Force Spectroscopy
ERIC Educational Resources Information Center
Carvalho, Filomena A.; Freitas, Teresa; Santos, Nuno C.
2015-01-01
Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic…
Modulation Transfer Through Coherence and Its Application to Atomic Frequency Offset Locking
NASA Astrophysics Data System (ADS)
Jagatap, B. N.; Ray, Ayan; Kale, Y. B.; Singh, Niharika; Lawande, Q. V.
We discuss the process of modulation transfer in a coherently prepared three-level atomic medium and its prospective application to atomic frequency offset locking (AFOL). The issue of modulation transfer through coherence is treated in the framework of temporal evolution of dressed atomic system with externally superimposed deterministic flow. This dynamical description of the atom-field system offers distinctive advantage of using a single modulation source to dither passively the coherent phenomenon as probed by an independent laser system under pump-probe configuration. Modulation transfer is demonstrated experimentally using frequency modulation spectroscopy on a subnatural linewidth electromagnetically induced transparency (EIT) and a sub-Doppler linewidth Autler-Townes (AT) resonance in Doppler broadened alkali vapor medium, and AFOL is realized by stabilizing the probe laser on the first/third derivative signals. The stability of AFOL is discussed in terms of the frequency noise power spectral density and Allan variance. Analysis of AFOL schemes is carried out at the backdrop of closed loop active frequency control in a conventional master-slave scheme to point out the contrasting behavior of AFOL schemes based on EIT and AT resonances. This work adds up to the discussion on the subtle link between dressed state spectroscopy and AFOL, which is relevant for developing a master-slave type laser system in the domain of coherent photon-atom interaction.
Vibrational Profiling of Brain Tumors and Cells
Nelson, Sultan L; Proctor, Dustin T; Ghasemloonia, Ahmad; Lama, Sanju; Zareinia, Kourosh; Ahn, Younghee; Al-Saiedy, Mustafa R; Green, Francis HY; Amrein, Matthias W; Sutherland, Garnette R
2017-01-01
This study reports vibration profiles of neuronal cells and tissues as well as brain tumor and neocortical specimens. A contact-free method and analysis protocol was designed to convert an atomic force microscope into an ultra-sensitive microphone with capacity to record and listen to live biological samples. A frequency of 3.4 Hz was observed for both cultured rat hippocampal neurons and tissues and vibration could be modulated pharmacologically. Malignant astrocytoma tissue samples obtained from operating room, transported in artificial cerebrospinal fluid, and tested within an hour, vibrated with a much different frequency profile and amplitude, compared to meningioma or lateral temporal cortex providing a quantifiable measurement to accurately distinguish the three tissues in real-time. Vibration signals were converted to audible sound waves by frequency modulation, thus demonstrating, acoustic patterns unique to meningioma, malignant astrocytoma and neocortex. PMID:28744324
2015-03-25
lime glass, the polyhedron -center atoms are all silicon and each silicon atom is surrounded by four oxygen atoms (while each oxygen atom is connected...of metallic force-field functions (in the pure metallic environment) within the force-field function database used in the present work. Consequently
Interface structure between tetraglyme and graphite
NASA Astrophysics Data System (ADS)
Minato, Taketoshi; Araki, Yuki; Umeda, Kenichi; Yamanaka, Toshiro; Okazaki, Ken-ichi; Onishi, Hiroshi; Abe, Takeshi; Ogumi, Zempachi
2017-09-01
Clarification of the details of the interface structure between liquids and solids is crucial for understanding the fundamental processes of physical functions. Herein, we investigate the structure of the interface between tetraglyme and graphite and propose a model for the interface structure based on the observation of frequency-modulation atomic force microscopy in liquids. The ordering and distorted adsorption of tetraglyme on graphite were observed. It is found that tetraglyme stably adsorbs on graphite. Density functional theory calculations supported the adsorption structure. In the liquid phase, there is a layered structure of the molecular distribution with an average distance of 0.60 nm between layers.
Local modulation of double optomechanically induced transparency and amplification.
Yang, Q; Hou, B P; Lai, D G
2017-05-01
We consider the probe absorption properties in a mechanically coupled optomechanical system in which the two coupled nanomechanical oscillators are driven by the time-dependent forces, respectively. It is found that the mechanical interaction splits the transparency window for a usual single-mode optomechanical system into two parts and then leads to appearance of the double optomechanically induced transparency. The distance between the two transparency positions (the frequency for the maximal transparency) is determined by the mechanical interaction amplitude. This can be explained by using optomechanical dressed-mode picture which is analogue to the interacting dark resonances in coherent atoms. When the mechanical resonators are driven by the external forces, the transparencies in the double-transparency spectrum can be increased into amplifications or be suppressed by tuning the amplitude of the forces. Additionally, it is shown that the double transparencies or the amplifications oscillate with the initial phases of the forces with a period of 2π. These investigations will be useful for more flexible controllability of multi-channel optical communication based on the optomechanical systems.
NASA Astrophysics Data System (ADS)
Hutter, Jeffrey Lee
When a material freezes, the form it takes depends on the solidification conditions. For instance, as the undercooling is increased, one typically sees solidification into less-ordered forms. The resulting growth modes appear to be generic, with qualitative similarities between systems whose microscopic details are quite dissimilar. I have used both optical and atomic-force microscopy to study the transitions between different growth morphologies during the solidification of a particular liquid crystal, 10 OCB. We have observed six different solidification modes, each with a distinct micro and meso structure. The front-velocity-vs.-undercooling curve has a discontinuity in its slope and, in some cases, in the curve itself at mode transitions, suggesting that these transitions are analogous to phase transitions. Such transitions have been seen in other systems, but no general rule has been found that can predict which morphology will be selected. We show that, contrary to intuition and widespread speculation, the fastest-growing mode is not always the one selected. One of the growth modes exhibited by 10 OCB is known as banded spherulitic growth. Spherulites have been seen in a wide variety of materials including minerals, pure elements, polymers, biomolecules, and metal alloys. However, despite a century of study, there is no generally accepted theory of spherulitic growth. In particular, the cause of the concentric banding seen in many spherulites remains a mystery. Our studies of banded spherulites in 10 OCB using both optical and atomic-force microscopy show that the bands are associated with a density modulation and thus are not merely the result of a birefringent effect, as is commonly believed. As the atomic-force microscope (AFM) is a relatively new tool, some time was spent studying its capabilities. We found that because the AFM resolution is largely determined by attractive forces between the tip of the probe and the sample, resolution can be improved by imaging in a suitable liquid medium. We also developed a simple method for calibrating AFM cantilevers--a crucial step in using the AFM to obtain quantitative force data. This work is presented in an appendix.
Phase modulation for reduced vibration sensitivity in laser-cooled clocks in space
NASA Technical Reports Server (NTRS)
Klipstein, W.; Dick, G.; Jefferts, S.; Walls, F.
2001-01-01
The standard interrogation technique in atomic beam clocks is square-wave frequency modulation (SWFM), which suffers a first order sensitivity to vibrations as changes in the transit time of the atoms translates to perceived frequency errors. Square-wave phase modulation (SWPM) interrogation eliminates sensitivity to this noise.
Force modulation and electrochemical gating of conductance in a cytochrome
NASA Astrophysics Data System (ADS)
Davis, Jason J.; Peters, Ben; Xi, Wang
2008-09-01
Scanning probe methods have been used to measure the effect of electrochemical potential and applied force on the tunnelling conductance of the redox metalloprotein yeast iso-1-cytochrome c (YCC) at a molecular level. The interaction of a proximal probe with any sample under test will, at this scale, be inherently perturbative. This is demonstrated with conductive probe atomic force microscopy (CP-AFM) current-voltage spectroscopy in which YCC, chemically adsorbed onto pristine Au(111) via its surface cysteine residue, is observed to become increasingly compressed as applied load is increased, with concomitant decrease in junction resistance. Electrical contact at minimal perturbation, where probe-molecule coupling is comparable to that in scanning tunnelling microscopy, brings with it the observation of negative differential resistance, assigned to redox-assisted probe-substrate tunnelling. The role of the redox centre in conductance is also resolved in electrochemical scanning tunnelling microscopy assays where molecular conductance is electrochemically gateable through more than an order of magnitude.
Roy-Gobeil, Antoine; Miyahara, Yoichi; Grutter, Peter
2015-04-08
We present theoretical and experimental studies of the effect of the density of states of a quantum dot (QD) on the rate of single-electron tunneling that can be directly measured by electrostatic force microscopy (e-EFM) experiments. In e-EFM, the motion of a biased atomic force microscope cantilever tip modulates the charge state of a QD in the Coulomb blockade regime. The charge dynamics of the dot, which is detected through its back-action on the capacitavely coupled cantilever, depends on the tunneling rate of the QD to a back-electrode. The density of states of the QD can therefore be measured through its effect on the energy dependence of tunneling rate. We present experimental data on individual 5 nm colloidal gold nanoparticles that exhibit a near continuous density of state at 77 K. In contrast, our analysis of already published data on self-assembled InAs QDs at 4 K clearly reveals discrete degenerate energy levels.
Cooling optically levitated dielectric nanoparticles via parametric feedback
NASA Astrophysics Data System (ADS)
Neukirch, Levi; Rodenburg, Brandon; Bhattacharya, Mishkatul; Vamivakas, Nick
2015-05-01
The inability to leverage resonant scattering processes involving internal degrees of freedom differentiates optical cooling experiments performed with levitated dielectric nanoparticles, from similar atomic and molecular traps. Trapping in optical cavities or the application of active feedback techniques have proven to be effective ways to circumvent this limitation. We present our nanoparticle optical cooling apparatus, which is based on parametric feedback modulation of a single-beam gradient force optical trap. This scheme allows us to achieve effective center-of-mass temperatures well below 1 kelvin for our ~ 1 ×10-18 kg particles, at modest vacuum pressures. The method provides a versatile platform, with parameter tunability not found in conventional tethered nanomechanical systems. Potential applications include investigations of nonequilibrium nanoscale thermodynamics, ultra-sensitive force metrology, and mesoscale quantum mechanics and hybrid systems. Supported by the office of Naval Research award number N000141410442.
Direct Writing of Graphene-based Nanoelectronics via Atomic Force Microscopy
2012-05-07
To) 07-05-2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Direct Writing of Graphene -based Nanoelectronics via Atomic Force Microscopy 5b. GRANT...ABSTRACT This project employs direct writing with an atomic force microscope (AFM) to fabricate simple graphene -based electronic components like resistors...and transistors at nanometer-length scales. The goal is to explore their electrical properties for graphene -based electronics. Conducting
Hiroshima: Perspectives on the Atomic Bombing.
ERIC Educational Resources Information Center
Cheng, Amy
In this curriculum module students analyze both U.S. and Japanese perspectives of the atomic bombing of Hiroshima. The activities integrate Howard Gardner's work on multiple intelligences. The module is recommended as a supplement to textbook coverage of the war in the Pacific and of the atomic bombing of Hiroshima. It can be used to support both…
Radical Chemistry and Charge Manipulation with an Atomic Force Microscope
NASA Astrophysics Data System (ADS)
Gross, Leo
The fuctionalization of tips by atomic manipulation dramatically increased the resolution of atomic force microscopy (AFM). The combination of high-resolution AFM with atomic manipulation now offers the unprecedented possibility to custom-design individual molecules by making and breaking bonds with the tip of the microscope and directly characterizing the products on the atomic scale. We recently applied this technique to generate and study reaction intermediates and to investigate chemical reactions trigged by atomic manipulation. We formed diradicals by dissociating halogen atoms and then reversibly triggered ring-opening and -closing reactions via atomic manipulation, allowing us to switch and control the molecule's reactivity, magnetic and optical properties. Additional information about charge states and charge distributions can be obtained by Kelvin probe force spectroscopy. On multilayer insulating films we investigated single-electron attachment, detachment and transfer between individual molecules. EU ERC AMSEL (682144), EU project PAMS (610446).
A versatile variable field module for Asylum Cypher scanning probe system
NASA Astrophysics Data System (ADS)
Liu, Hongxue; Comes, Ryan; Lu, Jiwei; Wolf, Stuart; Hodgson, Jim; Rutgers, Maarten
2013-03-01
Atomic force microscopy (AFM) has become one of the most widely used techniques for measuring and manipulating various characteristics of materials at the nanoscale. However, there are very limited option for the characterization of field dependence properties. In this work, we demonstrate a versatile variable field module (VFM) with magnetic field up to 1800 Oe for the Asylum Research Cypher system. The magnetic field is changed by adjusting the distance between a rare earth magnet and the AFM probe. A built-in Hall sensor makes it possible to perform in-situ measurements of the field. Rotating the magnet makes it possible to do angular field dependent measurements. The capability of the VFM system is demonstrated by degaussing a floppy disk media with increasing magnetic field. The written bits are erased at about 800 Oe. Angular dependence measurements clearly show the evolution of magnetic domain structures. A completely reversible magnetic force microscopy (MFM) phase contrast is observed when the magnetic field is rotated by 180°. Further demonstration of successful magnetic switching of CoFe2O4 pillars in CoFe2O4-BiFeO3 nanocomposites will be presented and field dependent MFM and piezoresponse force microscopy (PFM) will be discussed. The work at University of Virginia was supported by DARPA under contract no. HR-0011-10-1-0072.
MATCH: An Atom- Typing Toolset for Molecular Mechanics Force Fields
Yesselman, Joseph D.; Price, Daniel J.; Knight, Jennifer L.; Brooks, Charles L.
2011-01-01
We introduce a toolset of program libraries collectively titled MATCH (Multipurpose Atom-Typer for CHARMM) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion from multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges and force field parameters is achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In the present work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM CGENFF force field (Vanommeslaeghe, et al., JCC., 2010, 31, 671–690), one million molecules from the PubChem database of small molecules are typed, parameterized and minimized. PMID:22042689
Quantum Chemical Topology: Knowledgeable atoms in peptides
NASA Astrophysics Data System (ADS)
Popelier, Paul L. A.
2012-06-01
The need to improve atomistic biomolecular force fields remains acute. Fortunately, the abundance of contemporary computing power enables an overhaul of the architecture of current force fields, which typically base their electrostatics on fixed atomic partial charges. We discuss the principles behind the electrostatics of a more realistic force field under construction, called QCTFF. At the heart of QCTFF lies the so-called topological atom, which is a malleable box, whose shape and electrostatics changes in response to a changing environment. This response is captured by a machine learning method called Kriging. Kriging directly predicts each multipole moment of a given atom (i.e. the output) from the coordinates of the nuclei surrounding this atom (i.e. the input). This procedure yields accurate interatomic electrostatic energies, which form the basis for future-proof progress in force field design.
Atomic force microscopy as a tool for the investigation of living cells.
Morkvėnaitė-Vilkončienė, Inga; Ramanavičienė, Almira; Ramanavičius, Arūnas
2013-01-01
Atomic force microscopy is a valuable and useful tool for the imaging and investigation of living cells in their natural environment at high resolution. Procedures applied to living cell preparation before measurements should be adapted individually for different kinds of cells and for the desired measurement technique. Different ways of cell immobilization, such as chemical fixation on the surface, entrapment in the pores of a membrane, or growing them directly on glass cover slips or on plastic substrates, result in the distortion or appearance of artifacts in atomic force microscopy images. Cell fixation allows the multiple use of samples and storage for a prolonged period; it also increases the resolution of imaging. Different atomic force microscopy modes are used for the imaging and analysis of living cells. The contact mode is the best for cell imaging because of high resolution, but it is usually based on the following: (i) image formation at low interaction force, (ii) low scanning speed, and (iii) usage of "soft," low resolution cantilevers. The tapping mode allows a cell to behave like a very solid material, and destructive shear forces are minimized, but imaging in liquid is difficult. The force spectroscopy mode is used for measuring the mechanical properties of cells; however, obtained results strongly depend on the cell fixation method. In this paper, the application of 3 atomic force microscopy modes including (i) contact, (ii) tapping, and (iii) force spectroscopy for the investigation of cells is described. The possibilities of cell preparation for the measurements, imaging, and determination of mechanical properties of cells are provided. The applicability of atomic force microscopy to diagnostics and other biomedical purposes is discussed.
Photo-Carrier Multi-Dynamical Imaging at the Nanometer Scale in Organic and Inorganic Solar Cells.
Fernández Garrillo, Pablo A; Borowik, Łukasz; Caffy, Florent; Demadrille, Renaud; Grévin, Benjamin
2016-11-16
Investigating the photocarrier dynamics in nanostructured and heterogeneous energy materials is of crucial importance from both fundamental and technological points of view. Here, we demonstrate how noncontact atomic force microscopy combined with Kelvin probe force microscopy under frequency-modulated illumination can be used to simultaneously image the surface photopotential dynamics at different time scales with a sub-10 nm lateral resolution. The basic principle of the method consists in the acquisition of spectroscopic curves of the surface potential as a function of the illumination frequency modulation on a two-dimensional grid. We show how this frequency-spectroscopy can be used to probe simultaneously the charging rate and several decay processes involving short-lived and long-lived carriers. With this approach, dynamical images of the trap-filling, trap-delayed recombination and nongeminate recombination processes have been acquired in nanophase segregated organic donor-acceptor bulk heterojunction thin films. Furthermore, the spatial variation of the minority carrier lifetime has been imaged in polycrystalline silicon thin films. These results establish two-dimensional multidynamical photovoltage imaging as a universal tool for local investigations of the photocarrier dynamics in photoactive materials and devices.
Coherent population trapping with polarization modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Peter, E-mail: enxue.yun@obspm.fr; Guérandel, Stéphane; Clercq, Emeric de
Coherent population trapping (CPT) is extensively studied for future vapor cell clocks of high frequency stability. In the constructive polarization modulation CPT scheme, a bichromatic laser field with polarization and phase synchronously modulated is applied on an atomic medium. A high contrast CPT signal is observed in this so-called double-modulation configuration, due to the fact that the atomic population does not leak to the extreme Zeeman states, and that the two CPT dark states, which are produced successively by the alternate polarizations, add constructively. Here, we experimentally investigate CPT signal dynamics first in the usual configuration, a single circular polarization.more » The double-modulation scheme is then addressed in both cases: one pulse Rabi interaction and two pulses Ramsey interaction. The impact and the optimization of the experimental parameters involved in the time sequence are reviewed. We show that a simple seven-level model explains the experimental observations. The double-modulation scheme yields a high contrast similar to the one of other high contrast configurations like push-pull optical pumping or crossed linear polarization scheme, with a setup allowing a higher compactness. The constructive polarization modulation is attractive for atomic clock, atomic magnetometer, and high precision spectroscopy applications.« less
Elemental Identification by Combining Atomic Force Microscopy and Kelvin Probe Force Microscopy.
Schulz, Fabian; Ritala, Juha; Krejčí, Ondrej; Seitsonen, Ari Paavo; Foster, Adam S; Liljeroth, Peter
2018-06-01
There are currently no experimental techniques that combine atomic-resolution imaging with elemental sensitivity and chemical fingerprinting on single molecules. The advent of using molecular-modified tips in noncontact atomic force microscopy (nc-AFM) has made it possible to image (planar) molecules with atomic resolution. However, the mechanisms responsible for elemental contrast with passivated tips are not fully understood. Here, we investigate elemental contrast by carrying out both nc-AFM and Kelvin probe force microscopy (KPFM) experiments on epitaxial monolayer hexagonal boron nitride (hBN) on Ir(111). The hBN overlayer is inert, and the in-plane bonds connecting nearest-neighbor boron and nitrogen atoms possess strong covalent character and a bond length of only ∼1.45 Å. Nevertheless, constant-height maps of both the frequency shift Δ f and the local contact potential difference exhibit striking sublattice asymmetry. We match the different atomic sites with the observed contrast by comparison with nc-AFM image simulations based on the density functional theory optimized hBN/Ir(111) geometry, which yields detailed information on the origin of the atomic-scale contrast.
Periodically modulated single-photon transport in one-dimensional waveguide
NASA Astrophysics Data System (ADS)
Li, Xingmin; Wei, L. F.
2018-03-01
Single-photon transport along a one-dimension waveguide interacting with a quantum system (e.g., two-level atom) is a very useful and meaningful simplified model of the waveguide-based optical quantum devices. Thus, how to modulate the transport of the photons in the waveguide structures by adjusting certain external parameters should be particularly important. In this paper, we discuss how such a modulation could be implemented by periodically driving the energy splitting of the interacting atom and the atom-photon coupling strength. By generalizing the well developed time-independent full quantum mechanical theory in real space to the time-dependent one, we show that various sideband-transmission phenomena could be observed. This means that, with these modulations the photon has certain probabilities to transmit through the scattering atom in the other energy sidebands. Inversely, by controlling the sideband transmission the periodic modulations of the single photon waveguide devices could be designed for the future optical quantum information processing applications.
Evidence for non-conservative current-induced forces in the breaking of Au and Pt atomic chains
Sabater, Carlos; Untiedt, Carlos
2015-01-01
Summary This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a ‘Berry force’. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high voltage appears to behave as expected for regular break down by thermal excitation due to Joule heating. However, there is a low-voltage breaking mode that has characteristics expected for the mechanism of current-induced forces. Although a full comparison would require more detailed information on the individual atomic configurations, the systems we consider are very similar to those considered in recent model calculations and the comparison between experiment and theory is very encouraging for the interpretation we propose. PMID:26734525
Polarizable atomic multipole-based force field for DOPC and POPE membrane lipids
NASA Astrophysics Data System (ADS)
Chu, Huiying; Peng, Xiangda; Li, Yan; Zhang, Yuebin; Min, Hanyi; Li, Guohui
2018-04-01
A polarizable atomic multipole-based force field for the membrane bilayer models 1,2-dioleoyl-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) has been developed. The force field adopts the same framework as the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) model, in which the charge distribution of each atom is represented by the permanent atomic monopole, dipole and quadrupole moments. Many-body polarization including the inter- and intra-molecular polarization is modelled in a consistent manner with distributed atomic polarizabilities. The van der Waals parameters were first transferred from existing AMOEBA parameters for small organic molecules and then optimised by fitting to ab initio intermolecular interaction energies between models and a water molecule. Molecular dynamics simulations of the two aqueous DOPC and POPE membrane bilayer systems, consisting of 72 model molecules, were then carried out to validate the force field parameters. Membrane width, area per lipid, volume per lipid, deuterium order parameters, electron density profile, etc. were consistent with experimental values.
Friction and Wear on the Atomic Scale
NASA Astrophysics Data System (ADS)
Gnecco, Enrico; Bennewitz, Roland; Pfeiffer, Oliver; Socoliuc, Anisoara; Meyer, Ernst
Friction has long been the subject of research: the empirical da Vinci-Amontons friction laws have been common knowledge for centuries. Macroscopic experiments performed by the school of Bowden and Tabor revealed that macroscopic friction can be related to the collective action of small asperities. Over the last 15 years, experiments performed with the atomic force microscope have provided new insights into the physics of single asperities sliding over surfaces. This development, together with the results from complementary experiments using surface force apparatus and the quartz microbalance, have led to the new field of nanotribology. At the same time, increasing computing power has permitted the simulation of processes that occur during sliding contact involving several hundreds of atoms. It has become clear that atomic processes cannot be neglected when interpreting nanotribology experiments. Even on well-defined surfaces, experiments have revealed that atomic structure is directly linked to friction force. This chapter will describe friction force microscopy experiments that reveal, more or less directly, atomic processes during sliding contact.
Canetta, Elisabetta; Riches, Andrew; Borger, Eva; Herrington, Simon; Dholakia, Kishan; Adya, Ashok K
2014-05-01
Atomic force microscopy (AFM) and modulated Raman spectroscopy (MRS) were used to discriminate between living normal human urothelial cells (SV-HUC-1) and bladder tumour cells (MGH-U1) with high specificity and sensitivity. MGH-U1 cells were 1.5-fold smaller, 1.7-fold thicker and 1.4-fold rougher than normal SV-HUC-1 cells. The adhesion energy was 2.6-fold higher in the MGH-U1 cells compared to normal SV-HUC-1 cells, which possibly indicates that bladder tumour cells are more deformable than normal cells. The elastic modulus of MGH-U1 cells was 12-fold lower than SV-HUC-1 cells, suggesting a higher elasticity of the bladder cancer cell membranes. The biochemical fingerprints of cancer cells displayed a higher DNA and lipid content, probably due to an increase in the nuclear to cytoplasm ratio. Normal cells were characterized by higher protein contents. AFM studies revealed a decrease in the lateral dimensions and an increase in thickness of cancer cells compared to normal cells; these studies authenticate the observations from MRS. Nanostructural, nanomechanical and biochemical profiles of bladder cells provide qualitative and quantitative markers to differentiate between normal and cancerous cells at the single cellular level. AFM and MRS allow discrimination between adhesion energy, elasticity and Raman spectra of SV-HUC-1 and MGH-U1 cells with high specificity (83, 98 and 95%) and sensitivity (97, 93 and 98%). Such single-cell-level studies could have a pivotal impact on the development of AFM-Raman combined methodologies for cancer profiling and screening with translational significance. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Autopilot for frequency-modulation atomic force microscopy.
Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri
2015-10-01
One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.
Autopilot for frequency-modulation atomic force microscopy
NASA Astrophysics Data System (ADS)
Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri
2015-10-01
One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.
Autopilot for frequency-modulation atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri, E-mail: phsivan@tx.technion.ac.il
2015-10-15
One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loopsmore » require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.« less
MEAM interatomic force calculation subroutine for LAMMPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stukowski, A.
2010-10-25
Interatomic force and energy calculation subroutine tobe used with the molecular dynamics simulation code LAMMPS (Ref a.). The code evaluates the total energy and atomic forces (energy gradient) according to cubic spine-based variant (Ref b.) of the Modified Embedded Atom Method (MEAM).
Isolating and moving single atoms using silicon nanocrystals
Carroll, Malcolm S.
2010-09-07
A method is disclosed for isolating single atoms of an atomic species of interest by locating the atoms within silicon nanocrystals. This can be done by implanting, on the average, a single atom of the atomic species of interest into each nanocrystal, and then measuring an electrical charge distribution on the nanocrystals with scanning capacitance microscopy (SCM) or electrostatic force microscopy (EFM) to identify and select those nanocrystals having exactly one atom of the atomic species of interest therein. The nanocrystals with the single atom of the atomic species of interest therein can be sorted and moved using an atomic force microscope (AFM) tip. The method is useful for forming nanoscale electronic and optical devices including quantum computers and single-photon light sources.
Increased Force Variability in Chronic Stroke: Contributions of Force Modulation below 1 Hz
Lodha, Neha; Misra, Gaurav; Coombes, Stephen A.; Christou, Evangelos A.; Cauraugh, James H.
2013-01-01
Increased force variability constitutes a hallmark of arm disabilities following stroke. Force variability is related to the modulation of force below 1 Hz in healthy young and older adults. However, whether the increased force variability observed post stroke is related to the modulation of force below 1 Hz remains unknown. Thus, the purpose of this study was to compare force modulation below 1 Hz in chronic stroke and age-matched healthy individuals. Both stroke and control individuals (N = 26) performed an isometric grip task to submaximal force levels. Coefficient of variation quantified force variability, and power spectrum density of force quantified force modulation below 1 Hz with a high resolution (0.07 Hz). Analyses indicated that force variability was greater for the stroke group compared with to healthy controls and for the paretic hand compared with the non-paretic hand. Force modulation below 1 Hz differentiated the stroke individuals and healthy controls, as well as the paretic and non-paretic hands. Specifically, stroke individuals (paretic hand) exhibited greater power ∼0.2 Hz (0.07–0.35 Hz) and lesser power ∼0.6 Hz (0.49–0.77 Hz) compared to healthy controls (non-dominant hand). Similarly, the paretic hand exhibited greater power ∼0.2 Hz, and lesser power ∼0.6 Hz than the non-paretic hand. Moreover, variability of force was strongly predicted from the modulation of specific frequencies below 1 Hz (R 2 = 0.80). Together, these findings indicate that the modulation of force below 1 Hz provides significant insight into changes in motor control after stroke. PMID:24386208
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solares, Santiago D.
The final project report covering the period 7/1/14-6/30/17 provides an overview of the technical accomplishments in the areas of (i) fundamental viscoelasticity, (ii) multifrequency atomic force microscopy, and (iii) characterization of energy-relevant materials with atomic force microscopy. A list of publications supported by the project is also provided.
Microwave ac Zeeman force for ultracold atoms
NASA Astrophysics Data System (ADS)
Fancher, C. T.; Pyle, A. J.; Rotunno, A. P.; Aubin, S.
2018-04-01
We measure the ac Zeeman force on an ultracold gas of 87Rb due to a microwave magnetic field targeted to the 6.8 GHz hyperfine splitting of these atoms. An atom chip produces a microwave near field with a strong amplitude gradient, and we observe a force over three times the strength of gravity. Our measurements are consistent with a simple two-level theory for the ac Zeeman effect and demonstrate its resonant, bipolar, and spin-dependent nature. We observe that the dressed-atom eigenstates gradually mix over time and have mapped out this behavior as a function of magnetic field and detuning. We demonstrate the practical spin selectivity of the force by pushing or pulling a specific spin state while leaving other spin states unmoved.
The dressed atom as binary phase modulator: towards attojoule/edge optical phase-shift keying.
Kerckhoff, Joseph; Armen, Michael A; Pavlichin, Dmitri S; Mabuchi, Hideo
2011-03-28
We use a single 133Cs atom strongly coupled to an optical resonator to induce random binary phase modulation of a near infra-red, ∼ 500 pW laser beam, with each modulation edge caused by the dissipation of a single photon (≈ 0.23 aJ) by the atom. While our ability to deterministically induce phase edges with an additional optical control beam is limited thus far, theoretical analysis of an analogous, solid-state system indicates that efficient external control should be achievable in demonstrated nanophotonic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Gaigong; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H{sub 2} and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
Zhang, Gaigong; Lin, Lin; Hu, Wei; ...
2017-01-27
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Gaigong; Lin, Lin; Hu, Wei
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
NASA Astrophysics Data System (ADS)
Zhang, Gaigong; Lin, Lin; Hu, Wei; Yang, Chao; Pask, John E.
2017-04-01
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn-Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann-Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann-Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al-Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.
Dynamical Casimir-Polder force on a partially dressed atom near a conducting wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messina, Riccardo; Vasile, Ruggero; Passante, Roberto
2010-12-15
We study the time evolution of the Casimir-Polder force acting on a neutral atom in front of a perfectly conducting plate, when the system starts its unitary evolution from a partially dressed state. We solve the Heisenberg equations for both atomic and field quantum operators, exploiting a series expansion with respect to the electric charge and an iterative technique. After discussing the behavior of the time-dependent force on an initially partially dressed atom, we analyze a possible experimental scheme to prepare the partially dressed state and the observability of this new dynamical effect.
A High-Q AFM Sensor Using a Balanced Trolling Quartz Tuning Fork in the Liquid
Li, Yingzi; Song, Zihang; Lin, Rui; Chen, Yifu; Qian, Jianqiang
2018-01-01
A quartz tuning fork (QTF) has been widely used as a force sensor of the frequency modulation atomic force microscope due to its ultrahigh stiffness, high quality factor and self-sensing nature. However, due to the bulky structure and exposed surface electrode arrangement, its application is limited, especially in liquid imaging of in situ biological samples, ionic liquids, electrochemical reaction, etc. Although the complication can be resolved by coating insulating materials on the QTF surface and then immersing the whole QTF into the liquid, it would result in a sharp drop of the quality factor, which will reduce the sensitivity of the QTF. To solve the problem, a novel method, called the balanced trolling quartz tuning fork (BT-QTF), is introduced here. In this method, two same probes are glued on both prongs of the QTF separately while only one probe immersed in the liquid. With the method, the hydrodynamic interaction can be reduced, thus the BT-QTF can retain a high quality factor and constant resonance frequency. The stable small vibration of the BT-QTF can be achieved in the liquid. Initially, a theoretical model is presented to analyze the sensing performance of the BT-QTF in the liquid. Then, the sensing performance analysis experiments of the BT-QTF have been performed. At last, the proposed method is applied to atomic force microscope imaging different samples in the liquid, which proves its feasibility. PMID:29783740
NASA Astrophysics Data System (ADS)
Li, Mingtao; Li, Wenlian; Chen, Lili; Kong, Zhiguo; Chu, Bei; Li, Bin; Hu, Zhizhi; Zhang, Zhiqiang
2006-02-01
Electroluminescent colors of organic light-emitting diodes (OLEDs) can be tuned by modulating the thickness of gadolinium (Gd) complex layer sandwiched between an electron-transporting layer (ETL) and a hole-transporting layer (HTL). The emission colors, which originate from the two interfacial exciplexes simultaneously, can be tuned from green to orange by increasing the thickness of the Gd-complex layer. The atom force microscope images have proved that there are many gaps in the thinner Gd-complex layers. Therefore, besides the exciplex formation between Gd complex and HTL, the exciplex between ETL and HTL is also formed. The results demonstrate that a simple way of color tuning can be realized by inserting a thin layer of color tuning material between HTL with lower ionization potentials and ETL with higher electron affinities. Moreover, photovoltaic device and white OLED based on the two exciplexes are also discussed.
NASA Technical Reports Server (NTRS)
Sahoo, N. K.; Shapiro, A. P.
1998-01-01
The process-parameter-dependent optical and structural properties of ZrO2MgO mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. By use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray (EDX) analysis, the surface morphology, grain size distributions, crystallographic phases, and process-dependent material composition of films have been investigated. EDX analysis made evident the correlation between the oxygen enrichment in the films prepared at a high level of oxygen pressure and the very low refractive index. Since oxygen pressure can be dynamically varied during a deposition process, coatings constructed of suitable mixed-composite thin films can benefit from continuous modulation of the index of refraction. A step modulation approach is used to develop various multilayer-equivalent thin-film devices.
Moiré-Modulated Conductance of Hexagonal Boron Nitride Tunnel Barriers.
Summerfield, Alex; Kozikov, Aleksey; Cheng, Tin S; Davies, Andrew; Cho, Yong-Jin; Khlobystov, Andrei N; Mellor, Christopher J; Foxon, C Thomas; Watanabe, Kenji; Taniguchi, Takashi; Eaves, Laurence; Novoselov, Kostya S; Novikov, Sergei V; Beton, Peter H
2018-06-27
Monolayer hexagonal boron nitride (hBN) tunnel barriers investigated using conductive atomic force microscopy reveal moiré patterns in the spatial maps of their tunnel conductance consistent with the formation of a moiré superlattice between the hBN and an underlying highly ordered pyrolytic graphite (HOPG) substrate. This variation is attributed to a periodc modulation of the local density of states and occurs for both exfoliated hBN barriers and epitaxially grown layers. The epitaxial barriers also exhibit enhanced conductance at localized subnanometer regions which are attributed to exposure of the substrate to a nitrogen plasma source during the high temperature growth process. Our results show clearly a spatial periodicity of tunnel current due to the formation of a moiré superlattice and we argue that this can provide a mechanism for elastic scattering of charge carriers for similar interfaces embedded in graphene/hBN resonant tunnel diodes.
Wrinkling of graphene membranes supported by silica nanoparticles on substrates
NASA Astrophysics Data System (ADS)
Yamamoto, Mahito; Cullen, William; Fuhrer, Michael; Einstein, Theodore; Department of Physics, University of Maryland Team
2011-03-01
The challenging endeavor of modulating the morphology of graphene via a patterned substrate to produce a controlled deformation has great potential importance for strain engineering the electronic properties of graphene. An essential step in this direction is to understand the response of graphene to substrate features of known geometry. Here we employ silica nanoparticles with a diameter of 10-100 nm to uniformly decorate Si O2 and mica substrates before depositing graphene, to promote nanoscale modulation of graphene geometry. The morphology of graphene on this modified substrate is then characterized by atomic force spectroscopy. We find that graphene on the substrate is locally raised by the supporting nanoparticles, and wrinkling propagates radially from the protrusions to form a ridge network which links the protrusions. We discuss the dependence of the wrinkled morphology on nanoparticle diameter and graphene thickness in terms of graphene elasticity and adhesion energy. Supported by NSF-MRSEC, Grant DMR 05-20471
Motion of Cesium Atoms in the One-Dimensional Magneto-Optical Trap
NASA Technical Reports Server (NTRS)
Li, Yimin; Chen, Xuzong; Wang, Qingji; Wang, Yiqiu
1996-01-01
The force to which Cs atoms are subjected in the one-dimensional magneto-optical trap (lD-MOT) is calculated, and properties of this force are discussed. Several methods to increase the number of Cs atoms in the lD-MOT are presented on the basis of the analysis of the capture and escape of Cs atoms in the ID-MOT.
A universal strategy for the creation of machine learning-based atomistic force fields
NASA Astrophysics Data System (ADS)
Huan, Tran Doan; Batra, Rohit; Chapman, James; Krishnan, Sridevi; Chen, Lihua; Ramprasad, Rampi
2017-09-01
Emerging machine learning (ML)-based approaches provide powerful and novel tools to study a variety of physical and chemical problems. In this contribution, we outline a universal strategy to create ML-based atomistic force fields, which can be used to perform high-fidelity molecular dynamics simulations. This scheme involves (1) preparing a big reference dataset of atomic environments and forces with sufficiently low noise, e.g., using density functional theory or higher-level methods, (2) utilizing a generalizable class of structural fingerprints for representing atomic environments, (3) optimally selecting diverse and non-redundant training datasets from the reference data, and (4) proposing various learning approaches to predict atomic forces directly (and rapidly) from atomic configurations. From the atomistic forces, accurate potential energies can then be obtained by appropriate integration along a reaction coordinate or along a molecular dynamics trajectory. Based on this strategy, we have created model ML force fields for six elemental bulk solids, including Al, Cu, Ti, W, Si, and C, and show that all of them can reach chemical accuracy. The proposed procedure is general and universal, in that it can potentially be used to generate ML force fields for any material using the same unified workflow with little human intervention. Moreover, the force fields can be systematically improved by adding new training data progressively to represent atomic environments not encountered previously.
NASA Astrophysics Data System (ADS)
Bezur, L.; Marshall, J.; Ottaway, J. M.
A square-wave wavelength modulation system, based on a rotating quartz chopper with four quadrants of different thicknesses, has been developed and evaluated as a method for automatic background correction in carbon furnace atomic emission spectrometry. Accurate background correction is achieved for the residual black body radiation (Rayleigh scatter) from the tube wall and Mie scatter from particles generated by a sample matrix and formed by condensation of atoms in the optical path. Intensity modulation caused by overlap at the edges of the quartz plates and by the divergence of the optical beam at the position of the modulation chopper has been investigated and is likely to be small.
Constructive polarization modulation for coherent population trapping clock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Peter, E-mail: enxue.yun@obspm.fr; Danet, Jean-Marie; Holleville, David
2014-12-08
We propose a constructive polarization modulation scheme for atomic clocks based on coherent population trapping (CPT). In this scheme, the polarization of a bichromatic laser beam is modulated between two opposite circular polarizations to avoid trapping the atomic populations in the extreme Zeeman sublevels. We show that if an appropriate phase modulation between the two optical components of the bichromatic laser is applied synchronously, the two CPT dark states which are produced successively by the alternate polarizations add constructively. Measured CPT resonance contrasts up to 20% in one-pulse CPT and 12% in two-pulse Ramsey-CPT experiments are reported, demonstrating the potentialmore » of this scheme for applications to high performance atomic clocks.« less
The Chemical Structure and Acid Deterioration of Paper.
ERIC Educational Resources Information Center
Hollinger, William K., Jr.
1984-01-01
Describes the chemical structure of paper, including subatomic particles, atoms and molecules, and the forces that bond atoms into molecules, molecules into chains, chains into sheets, and sheets into layers. Acid is defined, and the deleterious role of acid in breaking the forces that bond atoms into molecules is detailed. (EJS)
NASA Astrophysics Data System (ADS)
Takeuchi, Osamu; Miyakoshi, Takaaki; Taninaka, Atsushi; Tanaka, Katsunori; Cho, Daichi; Fujita, Machiko; Yasuda, Satoshi; Jarvis, Suzanne P.; Shigekawa, Hidemi
2006-10-01
The accuracy of dynamic-force spectroscopy (DFS), a promising technique of analyzing the energy landscape of noncovalent molecular bonds, was reconsidered in order to justify the use of an atomic-force microscopy (AFM) cantilever as a DFS force probe. The advantages and disadvantages caused, for example, by the force-probe hardness were clarified, revealing the pivotal role of the molecular linkage between the force probe and the molecular bonds. It was shown that the feedback control of the loading rate of tensile force enables us a precise DFS measurement using an AFM cantilever as the force probe.
Experimental Demonstration of a Synthetic Lorentz Force by Using Radiation Pressure.
Šantić, N; Dubček, T; Aumiler, D; Buljan, H; Ban, T
2015-09-02
Synthetic magnetism in cold atomic gases opened the doors to many exciting novel physical systems and phenomena. Ubiquitous are the methods used for the creation of synthetic magnetic fields. They include rapidly rotating Bose-Einstein condensates employing the analogy between the Coriolis and the Lorentz force, and laser-atom interactions employing the analogy between the Berry phase and the Aharonov-Bohm phase. Interestingly, radiation pressure - being one of the most common forces induced by light - has not yet been used for synthetic magnetism. We experimentally demonstrate a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, by observing the centre-of-mass motion of a cold atomic cloud. The force is perpendicular to the velocity of the cold atomic cloud, and zero for the cloud at rest. Our novel concept is straightforward to implement in a large volume, for a broad range of velocities, and can be extended to different geometries.
Lässer, Cecilia; Théry, Clotilde; Buzás, Edit I.; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; Lötvall, Jan
2016-01-01
The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge. PMID:27989272
Controlling Casimir force via coherent driving field
NASA Astrophysics Data System (ADS)
Ahmad, Rashid; Abbas, Muqaddar; Ahmad, Iftikhar; Qamar, Sajid
2016-04-01
A four level atom-field configuration is used to investigate the coherent control of Casimir force between two identical plates made up of chiral atomic media and separated by vacuum of width d. The electromagnetic chirality-induced negative refraction is obtained via atomic coherence. The behavior of Casimir force is investigated using Casimir-Lifshitz formula. It is noticed that Casimir force can be switched from repulsive to attractive and vice versa via coherent control of the driving field. This switching feature provides new possibilities of using the repulsive Casimir force in the development of new emerging technologies, such as, micro-electro-mechanical and nano-electro-mechanical systems, i.e., MEMS and NEMS, respectively.
The effects of viscoelastic polymer substrates on adult stem cell differentiation
NASA Astrophysics Data System (ADS)
Chang, Chungchueh; Fields, Adam; Ramek, Alex; Jurukovski, Vladimir; Simon, Marcia; Rafailovich, Miriam
2009-03-01
Dental Pulp Stem Cells (DPSCs) are known to differentiate in either bone, dentine, or nerve tissue by different environment signals. In this study, we have determined whether differentiation could only through modification of the substrate mechanics. Atomic Force Microscopy (AFM) on Shear Modulation Force Microscopy (SMFM) mode indicated that the spun-cast polybutadiene (PB) thin films could be used to provide different stiffness substrates by changing the thicknesses of thin films. DPSCs were then plated on these substrates and cultured in standard media. After 28 days incubation, Lasar Scanning Confocal Microscopy (LSCM) with mercury lamp indicated that the crystals were observed only on hard surfaces. The Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDX analysis) indicated that the crystals are calcium phosphates. The Glancing Incidence Diffraction (GID) was also used to determine the structure of crystals. These results indicate that DPSCs could be differentiated into osteoblasts by mechanical stimuli from substrate mechanics.
Biological Applications of FM-AFM in Liquid Environment
NASA Astrophysics Data System (ADS)
Fukuma, Takeshi; Jarvis, Suzanne P.
Atomic force microscopy (AFM) was noted for its potential to study biological materials shortly after its first development in 1986 due to its ability to image insulators in liquid environments. The subsequent application of AFM to biology has included lateral characterization via imaging, unraveling of molecules under a tensile load and application of a force either to measure mechanical properties under the tip or to instigate a biochemical response in living cells. To date, the application of frequency modulation AFM (FM-AFM) specifically to biological materials has been limited to relatively few research groups when compared to the extensive application of AFM to biological materials. This is probably due to the perceived complexity of the technique both by researchers in the life sciences and those manufacturing liquid AFMs for biological research. In this chapter, we aim to highlight the advantages of applying the technique to biological materials.
Suh, Hyo Seon; Chen, Xuanxuan; Rincon-Delgadillo, Paulina A.; ...
2016-04-22
Grazing-incidence small-angle X-ray scattering (GISAXS) is increasingly used for the metrology of substrate-supported nanoscale features and nanostructured films. In the case of line gratings, where long objects are arranged with a nanoscale periodicity perpendicular to the beam, a series of characteristic spots of high-intensity (grating truncation rods, GTRs) are recorded on a two-dimensional detector. The intensity of the GTRs is modulated by the three-dimensional shape and arrangement of the lines. Previous studies aimed to extract an average cross-sectional profile of the gratings, attributing intensity loss at GTRs to sample imperfections. Such imperfections are just as important as the average shapemore » when employing soft polymer gratings which display significant line-edge roughness. Herein are reported a series of GISAXS measurements of polymer line gratings over a range of incident angles. Both an average shape and fluctuations contributing to the intensity in between the GTRs are extracted. Lastly, the results are critically compared with atomic force microscopy (AFM) measurements, and it is found that the two methods are in good agreement if appropriate corrections for scattering from the substrate (GISAXS) and contributions from the probe shape (AFM) are accounted for.« less
NASA Astrophysics Data System (ADS)
Kageshima, Masami; Lantz, Mark A.; Jarvis, Suzanne P.; Tokumoto, Hiroshi; Takeda, Seiji; Ptak, Arkadiusz; Nakamura, Chikashi; Miyake, Jun
2001-07-01
Stiffness variations during the conformational change of a single α-helix polylysine peptide molecule were measured in a liquid environment using atomic force microscopy (AFM) with magnetic cantilever modulation. At the initial stage of the stretching process the stiffness decreased due to the breaking of hydrogen bonds and then increased due to the stretching of the helix backbone. These changes were reversible on reversal of the stretching motion. Below p K, the stiffness did not show increase on reversal, indicating that the reforming of hydrogen bonds did not take place. Conformational changes in the molecule were examined via these changes in stiffness.
Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range.
Zhang, Yuxia; Yu, Haohai; Zhang, Rui; Zhao, Gang; Zhang, Huaijin; Chen, Yanxue; Mei, Liangmo; Tonelli, Mauro; Wang, Jiyang
2017-02-01
Visible lasers are a fascinating regime, and their significance is illustrated by the 2014 Noble prizes in physics and chemistry. With the development of blue laser diodes (LDs), the LD-pumped solid-state visible lasers become a burgeoning direction today. Constrained by the scarce visible optical modulators, the solid-state ultrafast visible lasers are rarely realized. Based on the bandgap structure and optoelectronic properties of atomic-layer MoS2, it can be proposed that MoS2 has the potential as a visible optical modulator. Here, by originally revealing layer-dependent nonlinear absorption of the atomic-layer MoS2 in the visible range, broadband atomic-layer MoS2 optical modulators for the visible ultrafast pulse generation are developed and selected based on the proposed design criteria for novel two-dimensional (2D) optical modulators. By applying the selected MoS2 optical modulators in the solid-state praseodymium lasers, broadband mode-locked ultrafast lasers from 522 to 639 nm are originally realized. We believe that this Letter should promote the development of visible ultrafast photonics and further applications of 2D optoelectronic materials.
Andolfi, Laura; Bourkoula, Eugenia; Migliorini, Elisa; Palma, Anita; Pucer, Anja; Skrap, Miran; Scoles, Giacinto; Beltrami, Antonio Paolo; Cesselli, Daniela; Lazzarino, Marco
2014-01-01
Active cell migration and invasion is a peculiar feature of glioma that makes this tumor able to rapidly infiltrate into the surrounding brain tissue. In our recent work, we identified a novel class of glioma-associated-stem cells (defined as GASC for high-grade glioma--HG--and Gasc for low-grade glioma--LG) that, although not tumorigenic, act supporting the biological aggressiveness of glioma-initiating stem cells (defined as GSC for HG and Gsc for LG) favoring also their motility. Migrating cancer cells undergo considerable molecular and cellular changes by remodeling their cytoskeleton and cell interactions with surrounding environment. To get a better understanding about the role of the glioma-associated-stem cells in tumor progression, cell deformability and interactions between glioma-initiating stem cells and glioma-associated-stem cells were investigated. Adhesion of HG/LG-cancer cells on HG/LG-glioma-associated stem cells was studied by time-lapse microscopy, while cell deformability and cell-cell adhesion strengths were quantified by indentation measurements by atomic force microscopy and single cell force spectroscopy. Our results demonstrate that for both HG and LG glioma, cancer-initiating-stem cells are softer than glioma-associated-stem cells, in agreement with their neoplastic features. The adhesion strength of GSC on GASC appears to be significantly lower than that observed for Gsc on Gasc. Whereas, GSC spread and firmly adhere on Gasc with an adhesion strength increased as compared to that obtained on GASC. These findings highlight that the grade of glioma-associated-stem cells plays an important role in modulating cancer cell adhesion, which could affect glioma cell migration, invasion and thus cancer aggressiveness. Moreover this work provides evidence about the importance of investigating cell adhesion and elasticity for new developments in disease diagnostics and therapeutics.
Origins of the Mechanochemical Coupling of Peptide Bond Formation to Protein Synthesis.
Fritch, Benjamin; Kosolapov, Andrey; Hudson, Phillip; Nissley, Daniel A; Woodcock, H Lee; Deutsch, Carol; O'Brien, Edward P
2018-04-18
Mechanical forces acting on the ribosome can alter the speed of protein synthesis, indicating that mechanochemistry can contribute to translation control of gene expression. The naturally occurring sources of these mechanical forces, the mechanism by which they are transmitted 10 nm to the ribosome's catalytic core, and how they influence peptide bond formation rates are largely unknown. Here, we identify a new source of mechanical force acting on the ribosome by using in situ experimental measurements of changes in nascent-chain extension in the exit tunnel in conjunction with all-atom and coarse-grained computer simulations. We demonstrate that when the number of residues composing a nascent chain increases, its unstructured segments outside the ribosome exit tunnel generate piconewtons of force that are fully transmitted to the ribosome's P-site. The route of force transmission is shown to be through the nascent polypetide's backbone, not through the wall of the ribosome's exit tunnel. Utilizing quantum mechanical calculations we find that a consequence of such a pulling force is to decrease the transition state free energy barrier to peptide bond formation, indicating that the elongation of a nascent chain can accelerate translation. Since nascent protein segments can start out as largely unfolded structural ensembles, these results suggest a pulling force is present during protein synthesis that can modulate translation speed. The mechanism of force transmission we have identified and its consequences for peptide bond formation should be relevant regardless of the source of the pulling force.
The Analog Atomic Force Microscope: Measuring, Modeling, and Graphing for Middle School
ERIC Educational Resources Information Center
Goss, Valerie; Brandt, Sharon; Lieberman, Marya
2013-01-01
using an analog atomic force microscope (A-AFM) made from a cardboard box and mailing tubes. Varying numbers of ping pong balls inside the tubes mimic atoms on a surface. Students use a dowel to make macroscale measurements similar to those of a nanoscale AFM tip as it…
NASA Astrophysics Data System (ADS)
Demming, Anna
2013-07-01
The development of scanning probe microscopy repositioned modern physics. When Rohrer and Binnig first used electronic tunnelling effects to image atoms and quantum states they did more than pin down theoretical hypotheses to real-world observables; the scanning tunnelling microscope fed imaginations, prompting researchers to consider new directions and possibilities [1]. As Rohrer once commented, 'We could show that you can easily manipulate or position something small in space with an accuracy of 10 pm.... When you can do that, you simply have ideas of what you can do' [2]. The development heralded a cavalry of scanning probe techniques—such as atomic force microscopy (AFM) [3-5], scanning near-field optical microscopy (SNOM) [6-8] and Kelvin probe force microscopy (KPFM) [9, 10]—that still continue to bring nanomaterials and nanoscale phenomena into fresh focus. Not long after the development of scanning tunnelling microscopy, Binnig, Quate and Gerber collaborating in California in the US published work on a new type of microscope also capable of atomic level resolution [3]. The original concept behind scanning tunnelling microscopy uses electrical conductance, which places substantial limitations on the systems that it can image. Binnig, Quate and Gerber developed the AFM to 'feel' the topology of surfaces like the needle of an old fashioned vinyl player. In this way insulators could be imaged as well. The development of a force modulation mode AFM extended the tool's reach to soft materials making images of biological samples accessible with the technique [4]. There have now been a number of demonstrations of image capture at rates that allow dynamics at the nanoscale to be tracked in real time, opening further possibilities in applications of the AFM as described in a recent review by Toshio Ando at Kanazawa University [5]. Researchers also found a way to retrieve optical information at 'super-resolution' [6, 7]. Optical microscopy provides spectral details that harbour a wealth of additional information about the sample and its environment, like switching from black and white to technicolour. With the invention of SNOM these details were no longer restricted by the diffraction limit to a resolution of half the wavelength of the incident light. The principle behind SNOM remains very similar to STM but instead of measuring an electronic current, information is captured from the non-propagating optical near field, where the diffraction limit does not apply. SNOM continues to be an invaluable imaging technique as demonstrated recently by researchers in Spain and Korea, who used it to measure near-infrared-to-visible upconversion and cathodoluminescence emission properties of Ln3+ in nanocrystalline Ln-doped Lu2O3 materials with 1D morphology [8]. Their work holds promise for controlled incorporation of such optically active nanostructures in future photonic structures and applications. The cantilever-probe system provides a number of highly sensitive interactions that can be exploited to extract details of a sample system. The potential offset between the probe and surface manifests itself in a force and this too has been used in KPFM [9]. The finite tip size has a profound effect on the measured image in scanning probe-microscopes in general. In KPFM, as Rosenwaks and colleagues in Israel, US and Germany point out in this issue [10] the influence of the tip and cantilever on measurements is particularly significant because of the long range nature of the electrostatic forces involved. Measurements at any one point provide a weighted average of the contact potential difference of the sample and to obtain a quantitative image this averaging must be taken into account. Rosenwaks and colleagues tackle this challenge in the work reported in this issue, presenting an algorithm for reconstructing a sample surface potential from its KPFM image. Their study also reveals that the averaging effects are far more significant for amplitude modulated KPFM measurements compared with the frequency modulated mode. Rohrer and Binnig shared the Nobel Prize for Physics 'for their design of the scanning tunnelling microscope' [11]. They are widely recognized among the founding fathers of nanoscience. In an interview in 2005 Rohrer once commented on the benefits of changing fields even if it leaves you feeling a little 'lost and lonely' at first. In fact he attributed his ability to contribute his Nobel Prize winning work to science at a comparatively senior age to the fact that he had changed fields. 'You cannot be the star from the beginning, but I think what is important is that you might bring in a different way of thinking. You have a certain lightness to approach something that is the expert opinion' [2]. In nanotechnology where such a formidable range of disciplines seem to feed into the research such words may be particularly encouraging. Rohrer passed away on 16 May 2013, but the awesome legacy of his life's work continues. With the scanning tunnelling microscope the lofty eccentricities of quantum mechanical theory literally came into view, quite an inspiration. References [1] Binning G, Rohrer H, Gerber Ch and Weibel E 1982 Surface studies by scanning tunneling microscopy Phys. Rev. Lett. 49 57-61 [2] Weiss P S 2007 A conversation with Dr. Heinrich Rohrer: STM Co-inventor and one of the founding fathers of nanoscience ACS Nano 1 3-5 [3] Binnig G, Quate C F and Gerber Ch 1986 Atomic force microscope Phys. Rev. Lett. 56 930-3 [4] Maivald P, Butt H J, Gould S A C, Prater C B, Drake B, Gurley J A, Elings V B and Hansma P K 1991 Using force modulation to image surface elasticities with the atomic force microscope Nanotechnology 2 103-6 [5] Ando T 2012 High-speed atomic force microscopy coming of age Nanotechnology 23 062001 [6] Betzig E, Isaacson M, Barshatzky H, Lewis A and Lin K 1988 Super-resolution imaging with near-field scanning optical microscopy (NSOM) Ultramicroscopy 25 155-63 [7] Thio T, Lezec H J, Ebbesen T W, Pellerin K M, Lewen G D, Nahata A and Linke R A 2002 Giant optical transmission of sub-wavelength apertures: physics and applications Nanotechnology 13 429-32 [8] Barrera E W, Pujol M C, Díaz F, Choi S B, Rotermund F, Park K H, Jeong M S and Cascales C 2011 Emission properties of hydrothermal Yb3+, Er3+ and Yb3+, Tm3+-codoped Lu2O3 nanorods: upconversion, cathodoluminescence and assessment of waveguide behaviour Nanotechnology 22 075205 [9] Nonnenmacher M, O'Boyle M P and Wickramasinghe H K 1991 Kelvin probe force microscopy Appl. Phys. Lett. 58 2921-3 [10] Cohen G, Halpern E, Nanayakkara S U, Luther J M, Held C, Bennewitz R, Boag A and Rosenwaks Y 2013 Reconstruction of surface potential from Kelvin probe force microscopy images Nanotechnology 24 295702 [11] 1986 The Nobel Prize in Physics www.nobelprize.org/nobel prizes/physics/laureates/1986/ index.html
Sweetman, Adam; Stannard, Andrew
2014-01-01
In principle, non-contact atomic force microscopy (NC-AFM) now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired 'short-range' force from the experimental observable (frequency shift) is often far from trivial. In most cases there is a significant contribution to the total tip-sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the 'on-minus-off' method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method.
NASA Astrophysics Data System (ADS)
Schwarz, Udo
2005-03-01
With the ongoing miniaturization of devices and controlled nanostructuring of materials, the importance of atomic-scale information on surfaces and surface properties is growing continuously. The astonishing progress in nanoscience and nanotechnology that took place during the last two decades was in many ways related to recent progress in high-resolution imaging techniques such as scanning tunnelling microscopy and transmission electron microscopy. Since the mid-1990s, non-contact atomic force microscopy (NC-AFM) performed in ultrahigh vacuum has evolved as an alternative technique that achieves atomic resolution, but without the restriction to conducting surfaces of the previously established techniques. Advances of the rapidly developing field of NC-AFM are discussed at annual conferences as part of a series that started in 1998 in Osaka, Japan. This special issue of Nanotechnology is a compilation of original work presented at the 7th International Conference on Non-contact Atomic Force Microscopy that took place in Seattle, USA, 12-15 September 2004. Over the years, the conference grew in size and scope. Atomic resolution imaging of oxides and semiconductors remains an issue. Noticeable new developments have been presented in this regard such as, e.g., the demonstrated ability to manipulate individual atoms. Additionally, the investigation of individual molecules, clusters, and organic materials gains more and more attention. In this context, considerable effort is undertaken to transfer the NC-AFM principle based on frequency modulation to applications in air and liquids with the goal of enabling high-resolution surface studies of biological material in native environments, as well as to reduce the experimental complexity, which so far involves the availability of (costly) vacuum systems. Force spectroscopy methods continue to be improved and are applied to topics such as the imaging of the three-dimensional force field as a function of the distance with atomic resolution, the investigation of near-surface electronic states, the quantification of adhesion forces, and the lateral mapping of surface potentials. The origin of energy dissipation, which is closely related to an in-depth understanding of tip-surface interactions and imaging mechanisms, was the subject of an ongoing discussion and addressed by various theoretical, computational, and experimental contributions. A characteristic of the NC-AFM conference series is the lively and friendly atmosphere, which year after year stimulates scientific discussions between the participants. This time, the programme included 5 invited talks, 84 contributed presentations, and 113 participants; furthermore, three educational lectures were given as part of a pre-conference workshop targeted at NC-AFM newcomers, which was attended by 30 participants. I would like to thank the members of the international steering committee and the programme committee for their continued effort in organizing the meeting. Special thanks go to the chair of the programme and local organizing committees S Fain and the conference manager J Kvamme for making the meeting a success. Financial support is acknowledged from the corporate sponsors MikroMasch USA, Nanonis GmbH, Nanosurf AG, Omicron Nanotechnology, PSIA, Inc., and RHK Technology, as well as from the institutional sponsors National Science Foundation and PNNL/UW Joint Institute for Nanoscience. Finally, I would like to express my gratitude to everyone who participated in assembling this special issue including the authors, the reviewers, and, in particular, the excellent and experienced journal team from the Institute of Physics Publishing headed by Nina Couzin, for devoting their time and efforts so that we could make this issue a useful representation of the progress in NC-AFM while maintaining our tight publication schedule. In conclusion, I would like to mention that the Seattle conference was the first one of the NC-AFM series that took place in the USA. As such, it was part of a series of recent activities within the USA, which will help in establishing a strong domestic NC-AFM community.
Non-Contact Surface Roughness Measurement by Implementation of a Spatial Light Modulator
Aulbach, Laura; Salazar Bloise, Félix; Lu, Min; Koch, Alexander W.
2017-01-01
The surface structure, especially the roughness, has a significant influence on numerous parameters, such as friction and wear, and therefore estimates the quality of technical systems. In the last decades, a broad variety of surface roughness measurement methods were developed. A destructive measurement procedure or the lack of feasibility of online monitoring are the crucial drawbacks of most of these methods. This article proposes a new non-contact method for measuring the surface roughness that is straightforward to implement and easy to extend to online monitoring processes. The key element is a liquid-crystal-based spatial light modulator, integrated in an interferometric setup. By varying the imprinted phase of the modulator, a correlation between the imprinted phase and the fringe visibility of an interferogram is measured, and the surface roughness can be derived. This paper presents the theoretical approach of the method and first simulation and experimental results for a set of surface roughnesses. The experimental results are compared with values obtained by an atomic force microscope and a stylus profiler. PMID:28294990
Programmable formation of catalytic RNA triangles and squares by assembling modular RNA enzymes.
Oi, Hiroki; Fujita, Daisuke; Suzuki, Yuki; Sugiyama, Hiroshi; Endo, Masayuki; Matsumura, Shigeyoshi; Ikawa, Yoshiya
2017-05-01
RNA is a biopolymer that is attractive for constructing nano-scale objects with complex structures. Three-dimensional (3D) structures of naturally occurring RNAs often have modular architectures. The 3D structure of a group I (GI) ribozyme from Tetrahymena has a typical modular architecture, which can be separated into two structural modules (ΔP5 and P5abc). The fully active ribozyme can be reconstructed by assembling the two separately prepared modules through highly specific and strong assembly between ΔP5 ribozyme and P5abc RNA. Such non-covalent assembly of the two modules allows the design of polygonal RNA nano-structures. Through rational redesign of the parent GI ribozyme, we constructed variant GI ribozymes as unit RNAs for polygonal-shaped (closed) oligomers with catalytic activity. Programmed trimerization and tetramerization of the unit RNAs afforded catalytically active nano-sized RNA triangles and squares, the structures of which were directly observed by atomic force microscopy (AFM). © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Characterization of Akiyama probe applied to dual-probes atomic force microscope
NASA Astrophysics Data System (ADS)
Wang, Hequn; Gao, Sitian; Li, Wei; Shi, Yushu; Li, Qi; Li, Shi; Zhu, Zhendong
2016-10-01
The measurement of nano-scale line-width has always been important and difficult in the field of nanometer measurements, while the rapid development of integrated circuit greatly raises the demand again. As one kind of scanning probe microscope (SPM), atomic force microscope (AFM) can realize quasi three-dimensional measurement, which is widely used in nanometer scale line-width measurement. Our team researched a dual-probes atomic force microscope, which can eliminate the prevalent effect of probe width on measurement results. In dual-probes AFM system, a novel head are newly designed. A kind of self-sensing and self-exciting probes which is Nanosensors cooperation's patented probe—Akiyama probe, is used in this novel head. The Akiyama probe applied to dual-probe atomic force microscope is one of the most important issues. The characterization of Akiyama probe would affect performance and accuracy of the whole system. The fundamental features of the Akiyama probe are electrically and optically characterized in "approach-withdraw" experiments. Further investigations include the frequency response of an Akiyama probe to small mechanical vibrations externally applied to the tip and the effective loading force yielding between the tip and the sample during the periodic contact. We hope that the characterization of the Akiyama probe described in this paper will guide application for dual-probe atomic force microscope.
Resonant difference-frequency atomic force ultrasonic microscope
NASA Technical Reports Server (NTRS)
Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)
2010-01-01
A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.
Direct Imaging of Individual Intrinsic Hydration Layers on Lipid Bilayers at Ångstrom Resolution
Fukuma, Takeshi; Higgins, Michael J.; Jarvis, Suzanne P.
2007-01-01
The interactions between water and biological molecules have the potential to influence the structure, dynamics, and function of biological systems, hence the importance of revealing the nature of these interactions in relation to the local biochemical environment. We have investigated the structuring of water at the interface of supported dipalmitoylphosphatidylcholine bilayers in the gel phase in phosphate buffer solution using frequency modulation atomic force microscopy (FM-AFM). We present experimental results supporting the existence of intrinsic (i.e., surface-induced) hydration layers adjacent to the bilayer. The force versus distance curves measured between the bilayer and the AFM tip show oscillatory force profiles with a peak spacing of 0.28 nm, indicative of the existence of up to two hydration layers next to the membrane surface. These oscillatory force profiles reveal the molecular-scale origin of the hydration force that has been observed between two apposing lipid bilayers. Furthermore, FM-AFM imaging at the water/lipid interface visualizes individual hydration layers in three dimensions, with molecular-scale corrugations corresponding to the lipid headgroups. The results demonstrate that the intrinsic hydration layers are stable enough to present multiple energy barriers to approaching nanoscale objects, such as proteins and solvated ions, and are expected to affect membrane permeability and transport. PMID:17325013
Modular Organization of Exploratory Force Development Under Isometric Conditions in the Human Arm.
Roh, Jinsook; Lee, Sang Wook; Wilger, Kevin D
2018-01-31
Muscle coordination of isometric force production can be explained by a smaller number of modules. Variability in force output, however, is higher during exploratory/transient force development phases than force maintenance phase, and it is not clear whether the same modular structure underlies both phases. In this study, eight neurologically-intact adults isometrically performed target force matches in 54 directions at hands, and electromyographic (EMG) data from eight muscles were parsed into four sequential phases. Despite the varying degree of motor complexity across phases (significant between-phase differences in EMG-force correlation, angular errors, and between-force correlations), the number/composition of motor modules were found equivalent across phases, suggesting that the CNS systematically modulated activation of the same set of motor modules throughout sequential force development.
Van der Waals forces in pNRQED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shtabovenko, Vladyslav
2016-01-22
We report on the calculation of electromagnetic van der Waals forces [1] between two hydrogen atoms using non-relativistic effective field theories (EFTs) of QED for large and small momentum transfers with respect to the intrinsic energy scale of the hydrogen atom. Our results reproduce the well known London and Casimir-Polder forces.
2015-01-01
Using the translocation of short, charged cationic oligo-arginine peptides (mono-, di-, and triarginine) from bulk aqueous solution into model DMPC bilayers, we explore the question of the similarity of thermodynamic and structural predictions obtained from molecular dynamics simulations using all-atom and Martini coarse-grain force fields. Specifically, we estimate potentials of mean force associated with translocation using standard all-atom (CHARMM36 lipid) and polarizable and nonpolarizable Martini force fields, as well as a series of modified Martini-based parameter sets. We find that we are able to reproduce qualitative features of potentials of mean force of single amino acid side chain analogues into model bilayers. In particular, modifications of peptide–water and peptide–membrane interactions allow prediction of free energy minima at the bilayer–water interface as obtained with all-atom force fields. In the case of oligo-arginine peptides, the modified parameter sets predict interfacial free energy minima as well as free energy barriers in almost quantitative agreement with all-atom force field based simulations. Interfacial free energy minima predicted by a modified coarse-grained parameter set are −2.51, −4.28, and −5.42 for mono-, di-, and triarginine; corresponding values from all-atom simulations are −0.83, −3.33, and −3.29, respectively, all in units of kcal/mol. We found that a stronger interaction between oligo-arginine and the membrane components and a weaker interaction between oligo-arginine and water are crucial for producing such minima in PMFs using the polarizable CG model. The difference between bulk aqueous and bilayer center states predicted by the modified coarse-grain force field are 11.71, 14.14, and 16.53 kcal/mol, and those by the all-atom model are 6.94, 8.64, and 12.80 kcal/mol; those are of almost the same order of magnitude. Our simulations also demonstrate a remarkable similarity in the structural aspects of the ensemble of configurations generated using the all-atom and coarse-grain force fields. Both resolutions show that oligo-arginine peptides adopt preferential orientations as they translocate into the bilayer. The guiding theme centers on charged groups maintaining coordination with polar and charged bilayer components as well as local water. We also observe similar behaviors related with membrane deformations. PMID:25290376
Hu, Yuan; Sinha, Sudipta Kumar; Patel, Sandeep
2014-10-16
Using the translocation of short, charged cationic oligo-arginine peptides (mono-, di-, and triarginine) from bulk aqueous solution into model DMPC bilayers, we explore the question of the similarity of thermodynamic and structural predictions obtained from molecular dynamics simulations using all-atom and Martini coarse-grain force fields. Specifically, we estimate potentials of mean force associated with translocation using standard all-atom (CHARMM36 lipid) and polarizable and nonpolarizable Martini force fields, as well as a series of modified Martini-based parameter sets. We find that we are able to reproduce qualitative features of potentials of mean force of single amino acid side chain analogues into model bilayers. In particular, modifications of peptide-water and peptide-membrane interactions allow prediction of free energy minima at the bilayer-water interface as obtained with all-atom force fields. In the case of oligo-arginine peptides, the modified parameter sets predict interfacial free energy minima as well as free energy barriers in almost quantitative agreement with all-atom force field based simulations. Interfacial free energy minima predicted by a modified coarse-grained parameter set are -2.51, -4.28, and -5.42 for mono-, di-, and triarginine; corresponding values from all-atom simulations are -0.83, -3.33, and -3.29, respectively, all in units of kcal/mol. We found that a stronger interaction between oligo-arginine and the membrane components and a weaker interaction between oligo-arginine and water are crucial for producing such minima in PMFs using the polarizable CG model. The difference between bulk aqueous and bilayer center states predicted by the modified coarse-grain force field are 11.71, 14.14, and 16.53 kcal/mol, and those by the all-atom model are 6.94, 8.64, and 12.80 kcal/mol; those are of almost the same order of magnitude. Our simulations also demonstrate a remarkable similarity in the structural aspects of the ensemble of configurations generated using the all-atom and coarse-grain force fields. Both resolutions show that oligo-arginine peptides adopt preferential orientations as they translocate into the bilayer. The guiding theme centers on charged groups maintaining coordination with polar and charged bilayer components as well as local water. We also observe similar behaviors related with membrane deformations.
Modulation of ferroelectricity and resistance switching in SrTiO3 films
NASA Astrophysics Data System (ADS)
Yang, Fang; Wang, Weihua; Guo, Jiandong
SrTiO3 has remarkable dielectric property; it also exhibits ferroelectricity in thin films with strain or defects. It is expected that modulation of its ferroelectricity and electricity is potential in oxide electronics. The nonstoichiometry SrTiO3 thin films with different cation concentrations were prepared on Si (001) substrates. Piezoresponse force microscopy measurements show that those films with Sr deficiency display obvious ferroelectricity. The scanning transmission electron microscopy results show that there are interstitial Ti atoms in the unit cells. Polar defect pairs can be formed by the interstitial Ti atoms and Sr vacancies along [100] or [110] direction. Such antisitelike defects observed in SrTiO3 films are considered as the origin of the ferroelectricity. In this way, the SrTiO3 ferroelectricity can be modulated by control the concentration of the antisitelike defects via changing the cation concentration. Further, [(SrTiO3)3 /(LaTiO3)2 ]3 superlattices have been prepared on 0.67[Pb(Mg1/3Nb2/3) O3]-0.33[PbTiO3] (PMN-PT) substrate. The superlattices show resistance switching under the ferroelectric polarization of the PMN-PT substrate. The on/off ratio of the interfacial resistance is about 20% 25%. This can be applied in oxide electronics in potential. This work is supported by Chinese MOST (Grant No. 2014CB921001), Chinese NSFC (Grant No. 11404381 & Grant No. 11225422) and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07030100).
The Indeterminate Case of Classical Static Friction When Coupled with Tension
NASA Astrophysics Data System (ADS)
Hahn, Kenneth D.; Russell, Jacob M.
2018-02-01
It has been noted that the static friction force poses challenges for students and, at times, even their instructors. Unlike the gravitational force, which has a precise and unambiguous magnitude (FG = mg), the magnitude and direction of the static friction force depend on other forces at play. Friction can be understood rather well in terms of complicated atomic-scale interactions between surfaces. Ringlein and Robbins survey aspects of the atomic origins of friction, and Folkerts explores factors that affect the value of static friction. However, what students typically encounter in an introductory course ignores the atomic origins of friction (beyond perhaps a brief overview of the atomic model). The rules of dry friction (i.e., non-lubricated surfaces in contact) taught in introductory physics were originally published in 1699 by Guillaume Amontons. Amontons's first law states that the force of friction is directly proportional to the applied load, i.e., f = μFN, where FN is the normal force and μ is the coefficient of friction. His second law states that the force of friction is independent of the macroscopic area of contact. These laws were verified by Coulomb in 1781.
Spatial distribution of filament elasticity determines the migratory behaviors of a cell
Harn, Hans I-Chen; Hsu, Chao-Kai; Wang, Yang-Kao; Huang, Yi-Wei; Chiu, Wen-Tai; Lin, Hsi-Hui; Cheng, Chao-Min; Tang, Ming-Jer
2016-01-01
ABSTRACT Any cellular response leading to morphological changes is highly tuned to balance the force generated from structural reorganization, provided by actin cytoskeleton. Actin filaments serve as the backbone of intracellular force, and transduce external mechanical signal via focal adhesion complex into the cell. During migration, cells not only undergo molecular changes but also rapid mechanical modulation. Here we focus on determining, the role of spatial distribution of mechanical changes of actin filaments in epithelial, mesenchymal, fibrotic and cancer cells with non-migration, directional migration, and non-directional migration behaviors using the atomic force microscopy. We found 1) non-migratory cells only generated one type of filament elasticity, 2) cells generating spatially distributed two types of filament elasticity showed directional migration, and 3) pathologic cells that autonomously generated two types of filament elasticity without spatial distribution were actively migrating non-directionally. The demonstration of spatial regulation of filament elasticity of different cell types at the nano-scale highlights the coupling of cytoskeletal function with physical characters at the sub-cellular level, and provides new research directions for migration related disease. PMID:26919488
Picas, Laura; Rico, Félix; Deforet, Maxime; Scheuring, Simon
2013-02-26
The erythrocyte membrane, a metabolically regulated active structure that comprises lipid molecules, junctional complexes, and the spectrin network, enables the cell to undergo large passive deformations when passing through the microvascular system. Here we use atomic force microscopy (AFM) imaging and quantitative mechanical mapping at nanometer resolution to correlate structure and mechanics of key components of the erythrocyte membrane, crucial for cell integrity and function. Our data reveal structural and mechanical heterogeneity modulated by the metabolic state at unprecedented nanometer resolution. ATP-depletion, reducing skeletal junction phosphorylation in RBC cells, leads to membrane stiffening. Analysis of ghosts and shear-force opened erythrocytes show that, in the absence of cytosolic kinases, spectrin phosphorylation results in membrane stiffening at the extracellular face and a reduced junction remodeling in response to loading forces. Topography and mechanical mapping of single components at the cytoplasmic face reveal that, surprisingly, spectrin phosphorylation by ATP softens individual filaments. Our findings suggest that, besides the mechanical signature of each component, the RBC membrane mechanics is regulated by the metabolic state and the assembly of its structural elements.
Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy.
Stadnik, Yevgeny V
2018-06-01
The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a "long-range" 1/r^{5} potential, which can be sought for in phenomena originating on the atomic and subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding energies in atoms and nuclei. In the case of atomic s-wave states, there is a large enhancement of the induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude. Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of pairs of standard-model neutrinos and other weakly charged particles.
Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy
NASA Astrophysics Data System (ADS)
Stadnik, Yevgeny V.
2018-06-01
The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a "long-range" 1 /r5 potential, which can be sought for in phenomena originating on the atomic and subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding energies in atoms and nuclei. In the case of atomic s -wave states, there is a large enhancement of the induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude. Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of pairs of standard-model neutrinos and other weakly charged particles.
A novel Cs-(129)Xe atomic spin gyroscope with closed-loop Faraday modulation.
Fang, Jiancheng; Wan, Shuangai; Qin, Jie; Zhang, Chen; Quan, Wei; Yuan, Heng; Dong, Haifeng
2013-08-01
We report a novel Cs-(129)Xe atomic spin gyroscope (ASG) with closed-loop Faraday modulation method. This ASG requires approximately 30 min to start-up and 110 °C to operate. A closed-loop Faraday modulation method for measurement of the optical rotation was used in this ASG. This method uses an additional Faraday modulator to suppress the laser intensity fluctuation and Faraday modulator thermal induced fluctuation. We theoretically and experimentally validate this method in the Cs-(129)Xe ASG and achieved a bias stability of approximately 3.25 °∕h.
Local Electric Field Facilitates High-Performance Li-Ion Batteries.
Liu, Youwen; Zhou, Tengfei; Zheng, Yang; He, Zhihai; Xiao, Chong; Pang, Wei Kong; Tong, Wei; Zou, Youming; Pan, Bicai; Guo, Zaiping; Xie, Yi
2017-08-22
By scrutinizing the energy storage process in Li-ion batteries, tuning Li-ion migration behavior by atomic level tailoring will unlock great potential for pursuing higher electrochemical performance. Vacancy, which can effectively modulate the electrical ordering on the nanoscale, even in tiny concentrations, will provide tempting opportunities for manipulating Li-ion migratory behavior. Herein, taking CuGeO 3 as a model, oxygen vacancies obtained by reducing the thickness dimension down to the atomic scale are introduced in this work. As the Li-ion storage progresses, the imbalanced charge distribution emerging around the oxygen vacancies could induce a local built-in electric field, which will accelerate the ions' migration rate by Coulomb forces and thus have benefits for high-rate performance. Furthermore, the thus-obtained CuGeO 3 ultrathin nanosheets (CGOUNs)/graphene van der Waals heterojunctions are used as anodes in Li-ion batteries, which deliver a reversible specific capacity of 1295 mAh g -1 at 100 mA g -1 , with improved rate capability and cycling performance compared to their bulk counterpart. Our findings build a clear connection between the atomic/defect/electronic structure and intrinsic properties for designing high-efficiency electrode materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinata, Shintaro; Research Fellowship Division Japan Society for the Promotion of Science; Yamane, Akira
2016-05-15
The effect of additional element on compositionally modulated atomic layered structure of hexagonal Co{sub 80}Pt{sub 20} alloy films with superlattice diffraction was investigated. In this study it is found that the addition of Cr or W element to Co{sub 80}Pt{sub 20} alloy film shows less deterioration of hcp stacking structure and compositionally modulated atomic layer stacking structure as compared to Si or Zr or Ti with K{sub u} of around 1.4 or 1.0 × 10{sup 7} erg/cm{sup 3} at 5 at.% addition. Furthermore, for O{sub 2} addition of O{sub 2} ≥ 5.0 × 10{sup −3} Pa to CoPt alloy, compositionallymore » modulated atomic layer stacking structure will be deteriorated with enhancement of formation of hcp stacking structure which leads higher K{sub u} of 1.0 × 10{sup 7} erg/cm{sup 3}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonthuis, Douwe Jan, E-mail: douwe.bonthuis@physics.ox.ac.uk; Mamatkulov, Shavkat I.; Netz, Roland R.
We optimize force fields for H{sub 3}O{sup +} and OH{sup −} that reproduce the experimental solvation free energies and the activities of H{sub 3}O{sup +} Cl{sup −} and Na{sup +} OH{sup −} solutions up to concentrations of 1.5 mol/l. The force fields are optimized with respect to the partial charge on the hydrogen atoms and the Lennard-Jones parameters of the oxygen atoms. Remarkably, the partial charge on the hydrogen atom of the optimized H{sub 3}O{sup +} force field is 0.8 ± 0.1|e|—significantly higher than the value typically used for nonpolarizable water models and H{sub 3}O{sup +} force fields. In contrast,more » the optimal partial charge on the hydrogen atom of OH{sup −} turns out to be zero. Standard combination rules can be used for H{sub 3}O{sup +} Cl{sup −} solutions, while for Na{sup +} OH{sup −} solutions, we need to significantly increase the effective anion-cation Lennard-Jones radius. While highlighting the importance of intramolecular electrostatics, our results show that it is possible to generate thermodynamically consistent force fields without using atomic polarizability.« less
High-resolution imaging of silicene on an Ag(111) surface by atomic force microscopy
NASA Astrophysics Data System (ADS)
Onoda, Jo; Yabuoshi, Keisuke; Miyazaki, Hiroki; Sugimoto, Yoshiaki
2017-12-01
Silicene, a two-dimensional (2D) honeycomb arrangement of Si atoms, is expected to have better electronic properties than graphene and has been mostly synthesized on Ag surfaces. Although scanning tunneling microscopy (STM) has been used for visualizing its atomic structure in real space, the interpretation of STM contrast is not straightforward and only the topmost Si atoms were observed on the (4 ×4 ) silicene/Ag(111) surface. Here, we demonstrate that high-resolution atomic force microscopy (AFM) can resolve all constituent Si atoms in the buckled honeycomb arrangement of the (4 ×4 ) silicene. Site-specific force spectroscopy attributes the origin of the high-resolution AFM images to chemical bonds between the AFM probe apex and the individual Si atoms on the (4 ×4 ) silicene. A detailed analysis of the geometric parameters suggests that the pulling up of lower-buckled Si atoms by the AFM tip could be a key for high-resolution AFM, implying a weakening of the Si-Ag interactions at the interface. We expect that high-resolution AFM will also unveil atomic structures of edges and defects of silicene, or other emerging 2D materials.
Kroeger, Marie E; Sorenson, Blaire A; Thomas, J Santoro; Stojković, Emina A; Tsonchev, Stefan; Nicholson, Kenneth T
2014-10-24
Atomic force microscopy (AFM) uses a pyramidal tip attached to a cantilever to probe the force response of a surface. The deflections of the tip can be measured to ~10 pN by a laser and sectored detector, which can be converted to image topography. Amplitude modulation or "tapping mode" AFM involves the probe making intermittent contact with the surface while oscillating at its resonant frequency to produce an image. Used in conjunction with a fluid cell, tapping-mode AFM enables the imaging of biological macromolecules such as proteins in physiologically relevant conditions. Tapping-mode AFM requires manual tuning of the probe and frequent adjustments of a multitude of scanning parameters which can be challenging for inexperienced users. To obtain high-quality images, these adjustments are the most time consuming. PeakForce Quantitative Nanomechanical Property Mapping (PF-QNM) produces an image by measuring a force response curve for every point of contact with the sample. With ScanAsyst software, PF-QNM can be automated. This software adjusts the set-point, drive frequency, scan rate, gains, and other important scanning parameters automatically for a given sample. Not only does this process protect both fragile probes and samples, it significantly reduces the time required to obtain high resolution images. PF-QNM is compatible for AFM imaging in fluid; therefore, it has extensive application for imaging biologically relevant materials. The method presented in this paper describes the application of PF-QNM to obtain images of a bacterial red-light photoreceptor, RpBphP3 (P3), from photosynthetic R. palustris in its light-adapted state. Using this method, individual protein dimers of P3 and aggregates of dimers have been observed on a mica surface in the presence of an imaging buffer. With appropriate adjustments to surface and/or solution concentration, this method may be generally applied to other biologically relevant macromolecules and soft materials.
Interplay between Mechanics, Electronics, and Energetics in Atomic-Scale Junctions
NASA Astrophysics Data System (ADS)
Aradhya, Sriharsha V.
The physical properties of materials at the nanoscale are controlled to a large extent by their interfaces. While much knowledge has been acquired about the properties of material in the bulk, there are many new and interesting phenomena at the interfaces that remain to be better understood. This is especially true at the scale of their constituent building blocks - atoms and molecules. Studying materials at this intricate level is a necessity at this point in time because electronic devices are rapidly approaching the limits of what was once thought possible, both in terms of their miniaturization as well as our ability to design their behavior. In this thesis I present our explorations of the interplay between mechanical properties, electronic transport and binding energetics of single atomic contacts and single-molecule junctions. Experimentally, we use a customized conducting atomic force microscope (AFM) that simultaneously measures the current and force across atomic-scale junctions. We use this instrument to study single atomic contacts of gold and silver and single-molecule junctions formed in the gap between two gold metallic point contacts, with molecules with a variety of backbones and chemical linker groups. Combined with density functional theory based simulations and analytical modeling, these experiments provide insight into the correlations between mechanics and electronic structure at the atomic level. In carrying out these experimental studies, we repeatedly form and pull apart nanoscale junctions between a metallized AFM cantilever tip and a metal-coated substrate. The force and conductance of the contact are simultaneously measured as each junction evolves through a series of atomic-scale rearrangements and bond rupture events, frequently resulting in single atomic contacts before rupturing completely. The AFM is particularly optimized to achieve high force resolution with stiff probes that are necessary to create and measure forces across atomic-size junctions that are otherwise difficult to fabricate using conventional lithographic techniques. In addition to the instrumentation, we have developed new algorithmic routines to perform statistical analyses of force data, with varying degrees of reliance on the conductance signatures. The key results presented in this thesis include our measurements with gold metallic contacts, through which we are able to rigorously characterize the stiffness and maximum forces sustained by gold single atomic contacts and many different gold-molecule-gold single-molecule junctions. In our experiments with silver metallic contacts we use statistical correlations in conductance to distinguish between pristine and oxygen-contaminated silver single atomic contacts. This allows us to separately obtain mechanical information for each of these structural motifs. The independently measured force data also provides new insights about atomic-scale junctions that are not possible to obtain through conductance measurements alone. Using a systematically designed set of molecules, we are able to demonstrate that quantum interference is not quenched in single-molecule junctions even at room temperature and ambient conditions. We have also been successful in conducting one of the first quantitative measurements of van der Waals forces at the metal-molecule interface at the single-molecule level. Finally, towards the end of this thesis, we present a general analytical framework to quantitatively reconstruct the binding energy curves of atomic-scale junctions directly from experiments, thereby unifying all of our mechanical measurements. I conclude with a summary of the work presented in this thesis, and an outlook for potential future studies that could be guided by this work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dugrain, Vincent; Reichel, Jakob; Rosenbusch, Peter
2014-08-15
We describe and characterize a device for alkali vapor pressure modulation on the 100 ms timescale in a single-cell cold atom experiment. Its mechanism is based on optimized heat conduction between a current-modulated alkali dispenser and a heat sink at room temperature. We have studied both the short-term behavior during individual pulses and the long-term pressure evolution in the cell. The device combines fast trap loading and relatively long trap lifetime, enabling high repetition rates in a very simple setup. These features make it particularly suitable for portable atomic sensors.
Midinfrared absorption measured at a lambda/400 resolution with an atomic force microscope.
Houel, Julien; Homeyer, Estelle; Sauvage, Sébastien; Boucaud, Philippe; Dazzi, Alexandre; Prazeres, Rui; Ortéga, Jean-Michel
2009-06-22
Midinfrared absorption can be locally measured using a detection combining an atomic force microscope and a pulsed excitation. This is illustrated for the midinfrared bulk GaAs phonon absorption and for the midinfrared absorption of thin SiO(2) microdisks. We show that the signal given by the cantilever oscillation amplitude of the atomic force microscope follows the spectral dependence of the bulk material absorption. The absorption spatial resolution achieved with microdisks is around 50 nanometer for an optical excitation around 22 micrometer wavelength.
Charge density wave order in 1D mirror twin boundaries of single-layer MoSe 2
Barja, Sara; Wickenburg, Sebastian; Liu, Zhen-Fei; ...
2016-04-18
Here, We provide direct evidence for the existence of isolated, one-dimensional charge density waves at mirror twin boundaries (MTBs) of single-layer semiconducting MoSe 2. Such MTBs have been previously observed by transmission electron microscopy and have been predicted to be metallic in MoSe 2 and MoS 2. Our low-temperature scanning tunnelling microscopy/spectroscopy measurements revealed a substantial bandgap of 100 meV opening at the Fermi energy in the otherwise metallic one-dimensional structures. We found a periodic modulation in the density of states along the MTB, with a wavelength of approximately three lattice constants. In addition to mapping the energy-dependent densitymore » of states, we determined the atomic structure and bonding of the MTB through simultaneous high-resolution non-contact atomic force microscopy. Density functional theory calculations based on the observed structure reproduced both the gap opening and the spatially resolved density of states.« less
Modeling the interaction of seven bisphosphonates with the hydroxyapatite(100) face.
Chen, Chunyu; Xia, Mingzhu; Wu, Lei; Zhou, Chao; Wang, Fengyun
2012-09-01
The interaction of seven pamidronate bisphosphonate (Pami-BPs) and its analogs with the hydroxyapatite (HAP) (100) surface was studied using density functional theory (DFT) and molecular dynamic (MD) methods. Partial Mulliken oxygen atomic charges in protonated structures were calculated at the level of B3LYP/6-31G*. The MD simulation was performed using the Discover module of Material Studio by compass force field. The results indicate the abilities of donating electrons of the oxygen atoms of the phosphate groups that are closely associated with the antiresorptive potency. The binding energies, including vdw and electrostatic, are used to discuss the mechanism of antiresorption. The results of calculations show that the strength of interaction of the HAP (100) face with the bisphosphonates is N(4) > N(6) > N(7) > N(5) > N(3) > N(2) > N(1) according to their experimental pIC(50) values.
Pairing preferences of the model mono-valence mono-atomic ions investigated by molecular simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qiang; Department of Chemistry, Bohai University, Jinzhou 121000; Zhang, Ruiting
2014-05-14
We carried out a series of potential of mean force calculations to study the pairing preferences of a series of model mono-atomic 1:1 ions with evenly varied sizes. The probabilities of forming the contact ion pair (CIP) and the single water separate ion pair (SIP) were presented in the two-dimensional plots with respect to the ion sizes. The pairing preferences reflected in these plots largely agree with the empirical rule of matching ion sizes in the small and big size regions. In the region that the ion sizes are close to the size of the water molecule; however, a significantmore » deviation from this conventional rule is observed. Our further analysis indicated that this deviation originates from the competition between CIP and the water bridging SIP state. The competition is mainly an enthalpy modulated phenomenon in which the existing of the water bridging plays a significant role.« less
Kong, Xiang-Peng; Shen, Xiaomei; Jang, Joonkyung; Gao, Xingfa
2018-03-01
The electronic and optical properties of black phosphorus (black-P) are significantly modulated by fabricating the edges of this two-dimensional material. Electron lone pairs (ELPs) are ubiquitous in black-P, but their role in creating the edge effects of black-P is poorly understood. Using first-principle calculations, we report ELPs of black-P experience severe Coulomb repulsion and play a central role in creating the edge effects of black-P. We discover the outermost P atoms of the zigzag edges of black-PQDs are free of the Coulomb repulsion, but the P atoms of the armchair edges do experience the Coulomb repulsion. The Coulomb repulsion serves as a new chemical driving force to make electron donor-acceptor bonds with chemical groups bearing vacant orbitals. Our results provide insights into the mechanism responsible for the peculiar edge effects of black-P and highlight the opportunity to use the ELPs of black-P for their damage-free surface functionalization.
NASA Astrophysics Data System (ADS)
Sarakinos, Kostas
2016-09-01
Synthesis of multicomponent thin films using vapor fluxes with a modulated deposition pattern is a potential route for accessing a wide gamut of atomic arrangements and morphologies for property tuning. In the current study, we present a research concept that allows for understanding the combined effect of flux modulation, kinetics and thermodynamics on the growth of multinary thin films. This concept entails the combined use of thin film synthesis by means of multiatomic vapor fluxes modulated with sub-monolayer resolution, deterministic growth simulations and nanoscale microstructure probes. Using this research concept we study structure formation within the archetype immiscible Ag-Cu binary system showing that atomic arrangement and morphology at different length scales is governed by diffusion of near-surface Ag atoms to encapsulate 3D Cu islands growing on 2D Ag layers. Moreover, we explore the relevance of the mechanism outlined above for morphology evolution and structure formation within the miscible Ag-Au binary system. The knowledge generated and the methodology presented herein provides the scientific foundation for tailoring atomic arrangement and physical properties in a wide range of miscible and immiscible multinary systems.
Buslaev, Pavel; Gordeliy, Valentin; Grudinin, Sergei; Gushchin, Ivan
2016-03-08
Molecular dynamics simulations of lipid bilayers are ubiquitous nowadays. Usually, either global properties of the bilayer or some particular characteristics of each lipid molecule are evaluated in such simulations, but the structural properties of the molecules as a whole are rarely studied. Here, we show how a comprehensive quantitative description of conformational space and dynamics of a single lipid molecule can be achieved via the principal component analysis (PCA). We illustrate the approach by analyzing and comparing simulations of DOPC bilayers obtained using eight different force fields: all-atom generalized AMBER, CHARMM27, CHARMM36, Lipid14, and Slipids and united-atom Berger, GROMOS43A1-S3, and GROMOS54A7. Similarly to proteins, most of the structural variance of a lipid molecule can be described by only a few principal components. These major components are similar in different simulations, although there are notable distinctions between the older and newer force fields and between the all-atom and united-atom force fields. The DOPC molecules in the simulations generally equilibrate on the time scales of tens to hundreds of nanoseconds. The equilibration is the slowest in the GAFF simulation and the fastest in the Slipids simulation. Somewhat unexpectedly, the equilibration in the united-atom force fields is generally slower than in the all-atom force fields. Overall, there is a clear separation between the more variable previous generation force fields and significantly more similar new generation force fields (CHARMM36, Lipid14, Slipids). We expect that the presented approaches will be useful for quantitative analysis of conformations and dynamics of individual lipid molecules in other simulations of lipid bilayers.
Leite, Fabio L.; Bueno, Carolina C.; Da Róz, Alessandra L.; Ziemath, Ervino C.; Oliveira, Osvaldo N.
2012-01-01
The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of AFS, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution. PMID:23202925
Rogers, T Ryan; Wang, Feng
2017-10-28
An atomic version of the Millikan oil drop experiment is performed computationally. It is shown that for planar molecules, the atomic version of the Millikan experiment can be used to define an atomic partial charge that is free from charge flow contributions. We refer to this charge as the Millikan-Thomson (MT) charge. Since the MT charge is directly proportional to the atomic forces under a uniform electric field, it is the most relevant charge for force field developments. The MT charge shows good stability with respect to different choices of the basis set. In addition, the MT charge can be easily calculated even at post-Hartree-Fock levels of theory. With the MT charge, it is shown that for a planar water dimer, the charge transfer from the proton acceptor to the proton donor is about -0.052 e. While both planar hydrated cations and anions show signs of charge transfer, anions show a much more significant charge transfer to the hydration water than the corresponding cations. It might be important to explicitly model the ion charge transfer to water in a force field at least for the anions.
NASA Astrophysics Data System (ADS)
Zhou, Wenting; Yu, Hongwei
2014-09-01
We study the energy shift and the Casimir-Polder force of an atom out of thermal equilibrium near the surface of a dielectric substrate. We first generalize, adopting the local source hypothesis, the formalism proposed by Dalibard, Dupont-Roc, and Cohen-Tannoudji [J. Phys. (Paris) 43, 1617 (1982), 10.1051/jphys:0198200430110161700; J. Phys. (Paris) 45, 637 (1984), 10.1051/jphys:01984004504063700], which separates the contributions of thermal fluctuations and radiation reaction to the energy shift and allows a distinct treatment of atoms in the ground and excited states, to the case out of thermal equilibrium, and then we use the generalized formalism to calculate the energy shift and the Casimir-Polder force of an isotropically polarizable neutral atom. We identify the effects of the thermal fluctuations that originate from the substrate and the environment and discuss in detail how the Casimir-Polder force out of thermal equilibrium behaves in three different distance regions in both the low-temperature limit and the high-temperature limit for both the ground-state and excited-state atoms, with special attention devoted to the distinctive features as opposed to thermal equilibrium. In particular, we recover the distinctive behavior of the atom-wall force out of thermal equilibrium at large distances in the low-temperature limit recently found in a different theoretical framework, and furthermore we give a concrete region where this behavior holds.
Measuring Roughnesses Of Optical Surfaces
NASA Technical Reports Server (NTRS)
Coulter, Daniel R.; Al-Jumaily, Gahnim A.; Raouf, Nasrat A.; Anderson, Mark S.
1994-01-01
Report discusses use of scanning tunneling microscopy and atomic force microscopy to measure roughnesses of optical surfaces. These techniques offer greater spatial resolution than other techniques. Report notes scanning tunneling microscopes and atomic force microscopes resolve down to 1 nm.
NASA Astrophysics Data System (ADS)
Csete, M.; Sipos, Á.; Kőházi-Kis, A.; Szalai, A.; Szekeres, G.; Mathesz, A.; Csákó, T.; Osvay, K.; Bor, Zs.; Penke, B.; Deli, M. A.; Veszelka, Sz.; Schmatulla, A.; Marti, O.
2007-12-01
Two-dimensional gratings are generated on poly-carbonate films spin-coated onto thin gold-silver bimetallic layers by two-beam interference method. Sub-micrometer periodic polymer dots and stripes are produced illuminating the poly-carbonate surface by p- and s-polarized beams of a frequency quadrupled Nd:YAG laser, and crossed gratings are generated by rotating the substrates between two sequential treatments. It is shown by pulsed force mode atomic force microscopy that the mean value of the adhesion is enhanced on the dot-arrays and on the crossed gratings. The grating-coupling on the two-dimensional structures results in double peaks on the angle dependent resonance curves of the surface plasmons excited by frequency doubled Nd:YAG laser. The comparison of the resonance curves proves that a surface profile ensuring minimal undirected scattering is required to optimize the grating-coupling, in addition to the minimal modulation amplitude, and to the optimal azimuthal orientation. The secondary minima are the narrowest in presence of linear gratings on multi-layers having optimized composition, and on crossed structures consisting of appropriately oriented polymer stripes. The large coupling efficiency and adhesion result in high detection sensitivity on the crossed gratings. Bio-sensing is realized by monitoring the rotated-crossed grating-coupled surface plasmon resonance curves, and detecting the chemical heterogeneity by tapping-mode atomic force microscopy. The interaction of Amyloid-β peptide, a pathogenetic factor in Alzheimer disease, with therapeutical molecules is demonstrated.
The deflection of carbon composite carbon nanotube / graphene using molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Kolesnikova, A. S.; Kirillova, I. V.; Kossovich, L. U.
2018-02-01
For the first time, the dependence of the bending force on the transverse displacement of atoms in the center of the composite material consisting of graphene and parallel oriented zigzag nanotubes was studied. Mathematical modeling of the action of the needle of the atomic force microscope was carried out using the single-layer armchair carbon nanotube. Armchair nanotubes are convenient for using them as a needle of an atomic force microscope, because their edges are not sharpened (unlike zigzag tubes). Consequently, armchair nanotubes will cause minimal damage upon contact with the investigation object. The geometric parameters of the composite was revealed under the action of the bending force of 6μN.
2013-07-11
in Fig. 3) is simulated. Each atom interacts with its neighboring atoms through a potential energy surface (PES), such as the simple Lennard - Jones ... Lennard -‐ Jones (LJ) potential energy surface (PES) dictating atomic interaction forces. The main point of this section is to...the potential energy surface (PES) that governs individual atomic interaction forces. In contrast to existing rotational energy models, we found
Toggling Bistable Atoms via Mechanical Switching of Bond Angle
NASA Astrophysics Data System (ADS)
Sweetman, Adam; Jarvis, Sam; Danza, Rosanna; Bamidele, Joseph; Gangopadhyay, Subhashis; Shaw, Gordon A.; Kantorovich, Lev; Moriarty, Philip
2011-04-01
We reversibly switch the state of a bistable atom by direct mechanical manipulation of bond angle using a dynamic force microscope. Individual buckled dimers at the Si(100) surface are flipped via the formation of a single covalent bond, actuating the smallest conceivable in-plane toggle switch (two atoms) via chemical force alone. The response of a given dimer to a flip event depends critically on both the local and nonlocal environment of the target atom—an important consideration for future atomic scale fabrication strategies.
Will a Decaying Atom Feel a Friction Force?
Sonnleitner, Matthias; Trautmann, Nils; Barnett, Stephen M
2017-02-03
We show how a simple calculation leads to the surprising result that an excited two-level atom moving through a vacuum sees a tiny friction force of first order in v/c. At first sight this seems to be in obvious contradiction to other calculations showing that the interaction with the vacuum does not change the velocity of an atom. It is even more surprising that this change in the atom's momentum turns out to be a necessary result of energy and momentum conservation in special relativity.
NASA Astrophysics Data System (ADS)
Kageshima, Masami; Jensenius, Henriette; Dienwiebel, Martin; Nakayama, Yoshikazu; Tokumoto, Hiroshi; Jarvis, Suzanne P.; Oosterkamp, Tjerk H.
2002-03-01
A force sensor for noncontact atomic force microscopy in liquid environment was developed by combining a multiwalled carbon nanotube (MWNT) probe with a quartz tuning fork. Solvation shells of octamethylcyclotetrasiloxane on a graphite surface were detected both in the frequency shift and dissipation. Due to the high aspect ratio of the CNT probe, the long-range background force was barely detectable in the solvation region.
Wideband laser locking to an atomic reference with modulation transfer spectroscopy.
Negnevitsky, V; Turner, L D
2013-02-11
We demonstrate that conventional modulated spectroscopy apparatus, used for laser frequency stabilization in many atomic physics laboratories, can be enhanced to provide a wideband lock delivering deep suppression of frequency noise across the acoustic range. Using an acousto-optic modulator driven with an agile oscillator, we show that wideband frequency modulation of the pump laser in modulation transfer spectroscopy produces the unique single lock-point spectrum previously demonstrated with electro-optic phase modulation. We achieve a laser lock with 100 kHz feedback bandwidth, limited by our laser control electronics. This bandwidth is sufficient to reduce frequency noise by 30 dB across the acoustic range and narrows the imputed linewidth by a factor of five.
Electronegativity determination of individual surface atoms by atomic force microscopy.
Onoda, Jo; Ondráček, Martin; Jelínek, Pavel; Sugimoto, Yoshiaki
2017-04-26
Electronegativity is a fundamental concept in chemistry. Despite its importance, the experimental determination has been limited only to ensemble-averaged techniques. Here, we report a methodology to evaluate the electronegativity of individual surface atoms by atomic force microscopy. By measuring bond energies on the surface atoms using different tips, we find characteristic linear relations between the bond energies of different chemical species. We show that the linear relation can be rationalized by Pauling's equation for polar covalent bonds. This opens the possibility to characterize the electronegativity of individual surface atoms. Moreover, we demonstrate that the method is sensitive to variation of the electronegativity of given atomic species on a surface due to different chemical environments. Our findings open up ways of analysing surface chemical reactivity at the atomic scale.
Electronegativity determination of individual surface atoms by atomic force microscopy
Onoda, Jo; Ondráček, Martin; Jelínek, Pavel; Sugimoto, Yoshiaki
2017-01-01
Electronegativity is a fundamental concept in chemistry. Despite its importance, the experimental determination has been limited only to ensemble-averaged techniques. Here, we report a methodology to evaluate the electronegativity of individual surface atoms by atomic force microscopy. By measuring bond energies on the surface atoms using different tips, we find characteristic linear relations between the bond energies of different chemical species. We show that the linear relation can be rationalized by Pauling's equation for polar covalent bonds. This opens the possibility to characterize the electronegativity of individual surface atoms. Moreover, we demonstrate that the method is sensitive to variation of the electronegativity of given atomic species on a surface due to different chemical environments. Our findings open up ways of analysing surface chemical reactivity at the atomic scale. PMID:28443645
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jing; Yun, Peter; Tian, Yuan
2014-03-07
A scheme for a Ramsey-coherent population trapping (CPT) atomic clock that eliminates the acousto-optic modulator (AOM) is proposed and experimentally studied. Driven by a periodically microwave modulated current, the vertical-cavity surface-emitting laser emits a continuous beam that switches between monochromatic and multichromatic modes. Ramsey-CPT interference has been studied with this mode-switching beam. In eliminating the AOM, which is used to generate pulsed laser in conventional Ramsey-CPT atomic clock, the physics package of the proposed scheme is virtually the same as that of a conventional compact CPT atomic clock, although the resource budget for the electronics will slightly increase as amore » microwave switch should be added. By evaluating and comparing experimentally recorded signals from the two Ramsey-CPT schemes, the short-term frequency stability of the proposed scheme was found to be 46% better than the scheme with AOM. The experimental results suggest that the implementation of a compact Ramsey-CPT atomic clock promises better frequency stability.« less
Coupling of a nanomechanical oscillator and an atomic three-level medium
NASA Astrophysics Data System (ADS)
Sanz-Mora, A.; Eisfeld, A.; Wüster, S.; Rost, J.-M.
2016-02-01
We theoretically investigate the coupling of an ultracold three-level atomic gas and a nanomechanical mirror via classical electromagnetic radiation. The radiation pressure on the mirror is modulated by absorption of a probe light field, caused by the atoms which are electromagnetically rendered nearly transparent, allowing the gas to affect the mirror. In turn, the mirror can affect the gas as its vibrations generate optomechanical sidebands in the control field. We show that the sidebands cause modulations of the probe intensity at the mirror frequency, which can be enhanced near atomic resonances. Through the radiation pressure from the probe beam onto the mirror, this results in resonant driving of the mirror. Controllable by the two-photon detuning, the phase relation of the driving to the mirror motion decides upon amplification or damping of mirror vibrations. This permits direct phase locking of laser amplitude modulations to the motion of a nanomechanical element opening a perspective for cavity-free cooling through coupling to an atomic gas.
Atomic scale study of nanocontacts
NASA Astrophysics Data System (ADS)
Buldum, A.; Ciraci, S.; Batra, Inder P.; Fong, C. Y.
1998-03-01
Nanocontact and subsequent pulling off a sharp Ni(111) tip on a Cu(110) surface are investigated by using molecular dynamics method with embedded atom model. As the contact is formed, the sharp tip experiences multiple jump to contact in the attractive force range. The contact interface develops discontinuously mainly due to disorder-order transformations which lead to disappearance of a layer and hence abrupt changes in the normal force variation. Atom exchange occurs in the repulsive range. The connective neck is reduced also discontinuously by pulling off the tip. The novel atomic structure of the neck under the tensile force is analyzed. We also presented a comperative study for the contact by a Si(111) tip on Si(111)-(2x1) surface.
Dynamics-Enabled Nanoelectromechanical Systems (NEMS) Oscillators
2014-06-01
it becomes strongly nonlinear, and thus constitutes an archetypal candidate for nonlinear engineering • its fundamental resonant frequency...width of spectral peaks of atomic force microscopy (AFM) resonators as they are brought close to a surface. 39 Approved for public release...alternating current AD Allan Deviation AFM atomic force microscopy AFRL Air Force Research Laboratory AlN aluminum nitride APN Anomalous Phase
Fabrication of electron beam deposited tip for atomic-scale atomic force microscopy in liquid.
Miyazawa, K; Izumi, H; Watanabe-Nakayama, T; Asakawa, H; Fukuma, T
2015-03-13
Recently, possibilities of improving operation speed and force sensitivity in atomic-scale atomic force microscopy (AFM) in liquid using a small cantilever with an electron beam deposited (EBD) tip have been intensively explored. However, the structure and properties of an EBD tip suitable for such an application have not been well-understood and hence its fabrication process has not been established. In this study, we perform atomic-scale AFM measurements with a small cantilever and clarify two major problems: contaminations from a cantilever and tip surface, and insufficient mechanical strength of an EBD tip having a high aspect ratio. To solve these problems, here we propose a fabrication process of an EBD tip, where we attach a 2 μm silica bead at the cantilever end and fabricate a 500-700 nm EBD tip on the bead. The bead height ensures sufficient cantilever-sample distance and enables to suppress long-range interaction between them even with a short EBD tip having high mechanical strength. After the tip fabrication, we coat the whole cantilever and tip surface with Si (30 nm) to prevent the generation of contamination. We perform atomic-scale AFM imaging and hydration force measurements at a mica-water interface using the fabricated tip and demonstrate its applicability to such an atomic-scale application. With a repeated use of the proposed process, we can reuse a small cantilever for atomic-scale measurements for several times. Therefore, the proposed method solves the two major problems and enables the practical use of a small cantilever in atomic-scale studies on various solid-liquid interfacial phenomena.
NASA Astrophysics Data System (ADS)
Shi, Ruoyu; Gao, Lei; Lu, Hongliang; Li, Qunyang; Ma, Tian-Bao; Guo, Hui; Du, Shixuan; Feng, Xi-Qiao; Zhang, Shuai; Liu, Yanmin; Cheng, Peng; Hu, Yuan-Zhong; Gao, Hong-Jun; Luo, Jianbin
2017-06-01
Two dimensional (2D) materials often exhibit novel properties due to various coupling effects with their supporting substrates. Here, using friction force microscopy (FFM), we report an unusual moiré superlattice-level stick-slip instability on monolayer graphene epitaxially grown on Ru(0 0 0 1) substrate. Instead of smooth friction modulation, a significant long-range stick-slip sawtooth modulation emerges with a period coinciding with the moiré superlattice structure, which is robust against high external loads and leads to an additional channel of energy dissipation. In contrast, the long-range stick-slip instability reduces to smooth friction modulation on graphene/Ir(1 1 1) substrate. The moiré superlattice-level slip instability could be attributed to the large sliding energy barrier, which arises from the morphological corrugation of graphene on Ru(0 0 0 1) surface as indicated by density functional theory (DFT) calculations. The locally steep humps acting as obstacles opposing the tip sliding, originates from the strong interfacial electronic interaction between graphene and Ru(0 0 0 1). This study opens an avenue for modulating friction by tuning the interfacial atomic interaction between 2D materials and their substrates.
Single ricin detection by atomic force microscopy chemomechanical mapping
NASA Astrophysics Data System (ADS)
Chen, Guojun; Zhou, Jianfeng; Park, Bosoon; Xu, Bingqian
2009-07-01
The authors report on a study of detecting ricin molecules immobilized on chemically modified Au (111) surface by chemomechanically mapping the molecular interactions with a chemically modified atomic force microscopy (AFM) tip. AFM images resolved the different fold-up conformations of single ricin molecule as well as their intramolecule structure of A- and B-chains. AFM force spectroscopy study of the interaction indicates that the unbinding force has a linear relation with the logarithmic force loading rate, which agrees well with calculations using one-barrier bond dissociation model.
Vibrational properties of TaW alloy using modified embedded atom method potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chand, Manesh, E-mail: maneshchand@gmail.com; Uniyal, Shweta; Joshi, Subodh
2016-05-06
Force-constants up to second neighbours of pure transition metal Ta and TaW alloy are determined using the modified embedded atom method (MEAM) potential. The obtained force-constants are used to calculate the phonon dispersion of pure Ta and TaW alloy. As a further application of MEAM potential, the force-constants are used to calculate the local vibrational density of states and mean square thermal displacements of pure Ta and W impurity atoms with Green’s function method. The calculated results are found to be in agreement with the experimental measurements.
Meza, José Antonio Morán; Lubin, Christophe; Thoyer, François; Cousty, Jacques
2015-01-26
The structural and mechanical properties of an epitaxial graphene (EG) monolayer thermally grown on top of a 6H-SiC(0001) surface were studied by combined dynamic scanning tunneling microscopy (STM) and frequency modulation atomic force microscopy (FM-AFM). Experimental STM, dynamic STM and AFM images of EG on 6H-SiC(0001) show a lattice with a 1.9 nm period corresponding to the (6 × 6) quasi-cell of the SiC surface. The corrugation amplitude of this (6 × 6) quasi-cell, measured from AFM topographies, increases with the setpoint value of the frequency shift Δf (15-20 Hz, repulsive interaction). Excitation variations map obtained simultaneously with the AFM topography shows that larger dissipation values are measured in between the topographical bumps of the (6 × 6) quasi-cell. These results demonstrate that the AFM tip deforms the graphene monolayer. During recording in dynamic STM mode, a frequency shift (Δf) map is obtained in which Δf values range from 41 to 47 Hz (repulsive interaction). As a result, we deduced that the STM tip, also, provokes local mechanical distortions of the graphene monolayer. The origin of these tip-induced distortions is discussed in terms of electronic and mechanical properties of EG on 6H-SiC(0001).
Jarvis, Sam; Danza, Rosanna; Moriarty, Philip
2012-01-01
Summary Background: Noncontact atomic force microscopy (NC-AFM) now regularly produces atomic-resolution images on a wide range of surfaces, and has demonstrated the capability for atomic manipulation solely using chemical forces. Nonetheless, the role of the tip apex in both imaging and manipulation remains poorly understood and is an active area of research both experimentally and theoretically. Recent work employing specially functionalised tips has provided additional impetus to elucidating the role of the tip apex in the observed contrast. Results: We present an analysis of the influence of the tip apex during imaging of the Si(100) substrate in ultra-high vacuum (UHV) at 5 K using a qPlus sensor for noncontact atomic force microscopy (NC-AFM). Data demonstrating stable imaging with a range of tip apexes, each with a characteristic imaging signature, have been acquired. By imaging at close to zero applied bias we eliminate the influence of tunnel current on the force between tip and surface, and also the tunnel-current-induced excitation of silicon dimers, which is a key issue in scanning probe studies of Si(100). Conclusion: A wide range of novel imaging mechanisms are demonstrated on the Si(100) surface, which can only be explained by variations in the precise structural configuration at the apex of the tip. Such images provide a valuable resource for theoreticians working on the development of realistic tip structures for NC-AFM simulations. Force spectroscopy measurements show that the tip termination critically affects both the short-range force and dissipated energy. PMID:22428093
Atomic Clock Based on Opto-Electronic Oscillator
NASA Technical Reports Server (NTRS)
Maleki, Lute; Yu, Nan
2005-01-01
A proposed highly accurate clock or oscillator would be based on the concept of an opto-electronic oscillator (OEO) stabilized to an atomic transition. Opto-electronic oscillators, which have been described in a number of prior NASA Tech Briefs articles, generate signals at frequencies in the gigahertz range characterized by high spectral purity but not by longterm stability or accuracy. On the other hand, the signals generated by previously developed atomic clocks are characterized by long-term stability and accuracy but not by spectral purity. The proposed atomic clock would provide high spectral purity plus long-term stability and accuracy a combination of characteristics needed to realize advanced developments in communications and navigation. In addition, it should be possible to miniaturize the proposed atomic clock. When a laser beam is modulated by a microwave signal and applied to a photodetector, the electrical output of the photodetector includes a component at the microwave frequency. In atomic clocks of a type known as Raman clocks or coherent-population-trapping (CPT) clocks, microwave outputs are obtained from laser beams modulated, in each case, to create two sidebands that differ in frequency by the amount of a hyperfine transition in the ground state of atoms of an element in vapor form in a cell. The combination of these sidebands produces a transparency in the population of a higher electronic level that can be reached from either of the two ground-state hyperfine levels by absorption of a photon. The beam is transmitted through the vapor to a photodetector. The components of light scattered or transmitted by the atoms in the two hyperfine levels mix in the photodetector and thereby give rise to a signal at the hyperfine- transition frequency. The proposed atomic clock would include an OEO and a rubidium- or cesium- vapor cell operating in the CPT/Raman regime (see figure). In the OEO portion of this atomic clock, as in a typical prior OEO, a laser beam would pass through an electro-optical modulator, the modulated beam would be fed into a fiber-optic delay line, and the delayed beam would be fed to a photodetector. The electrical output of the photodetector would be detected, amplified, filtered, and fed back to the microwave input port of the modulator. The laser would be chosen to have the same wavelength as that of the pertinent ground-state/higher-state transition of the atoms in the vapor. The modulator/ filter combination would be designed to operate at the microwave frequency of the hyperfine transition. Part of the laser beam would be tapped from the fiberoptic loop of the OEO and introduced into the vapor cell. After passing through the cell, this portion of the beam would be detected differentially with a tapped portion of the fiber-optically-delayed beam. The electrical output of the photodetector would be amplified and filtered in a loop that would control a DC bias applied to the modulator. In this manner, the long-term stability and accuracy of the atomic transition would be transferred to the OEO.
Optical Interferometric Micrometrology
NASA Technical Reports Server (NTRS)
Abel, Phillip B.; Lauer, James R.
1989-01-01
Resolutions in angstrom and subangstrom range sought for atomic-scale surface probes. Experimental optical micrometrological system built to demonstrate calibration of piezoelectric transducer to displacement sensitivity of few angstroms. Objective to develop relatively simple system producing and measuring translation, across surface of specimen, of stylus in atomic-force or scanning tunneling microscope. Laser interferometer used to calibrate piezoelectric transducer used in atomic-force microscope. Electronic portion of calibration system made of commercially available components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polat, Ozgur; Ertugrul, Memhet; Thompson, James R
To obtain an engineered surface for deposition of high-Tc superconductors, nanoscale modulations of the surface of the underlying LaMnO3 (LMO) cap layer is a potential source for generating microstructural defects in YBa2Cu3O7- (YBCO) films. These defects may improve the flux-pinning and consequently increase the critical current density, Jc. To provide such nanoscale modulation via a practical and scalable process, tantalum (Ta) and palladium (Pd) nano-islands were deposited using dc-magnetron sputtering on the surface of the cap layer of commercial metal tape templates for second-generation wires. The size and density of these nano-islands can be controlled by changing sputtering conditions suchmore » as the power and deposition time. Compared to the reference sample grown on an untreated LMO cap layer, the YBCO films grown on the LMO cap layers with Ta or Pd nano-islands exhibited improved in-field Jc performance. Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM) were used to assess the evolving size and density of the nano-islands.« less
Microscopic modulation of mechanical properties in transparent insect wings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, Ashima; Kumar, Pramod; Bhagavathi, Jithin
We report on the measurement of local friction and adhesion of transparent insect wings using an atomic force microscope cantilever down to nanometre length scales. We observe that the wing-surface is decorated with 10 μm long and 2 μm wide islands that have higher topographic height. The friction on the islands is two orders of magnitude higher than the back-ground while the adhesion on the islands is smaller. Furthermore, the high islands are decorated with ordered nano-wire-like structures while the background is full of randomly distributed granular nano-particles. Coherent optical diffraction through the wings produce a stable diffraction pattern revealing a quasi-periodicmore » organization of the high islands over the entire wing. This suggests a long-range order in the modulation of friction and adhesion which is directly correlated with the topography. The measurements unravel novel functional design of complex wing surface and could find application in miniature biomimetic devices.« less
Complexation of amyloid fibrils with charged conjugated polymers.
Ghosh, Dhiman; Dutta, Paulami; Chakraborty, Chanchal; Singh, Pradeep K; Anoop, A; Jha, Narendra Nath; Jacob, Reeba S; Mondal, Mrityunjoy; Mankar, Shruti; Das, Subhadeep; Malik, Sudip; Maji, Samir K
2014-04-08
It has been suggested that conjugated charged polymers are amyloid imaging agents and promising therapeutic candidates for neurological disorders. However, very less is known about their efficacy in modulating the amyloid aggregation pathway. Here, we studied the modulation of Parkinson's disease associated α-synuclein (AS) amyloid assembly kinetics using conjugated polyfluorene polymers (PF, cationic; PFS, anionic). We also explored the complexation of these charged polymers with the various AS aggregated species including amyloid fibrils and oligomers using multidisciplinary biophysical techniques. Our data suggests that both polymers irrespective of their different charges in the side chains increase the fibrilization kinetics of AS and also remarkably change the morphology of the resultant amyloid fibrils. Both polymers were incorporated/aligned onto the AS amyloid fibrils as evident from electron microscopy (EM) and atomic force microscopy (AFM), and the resultant complexes were structurally distinct from their pristine form of both polymers and AS supported by FTIR study. Additionally, we observed that the mechanism of interactions between the polymers with different species of AS aggregates were markedly different.
NASA Astrophysics Data System (ADS)
Ahmadi, Elaheh; Koksaldi, Onur S.; Zheng, Xun; Mates, Tom; Oshima, Yuichi; Mishra, Umesh K.; Speck, James S.
2017-07-01
β-(Al x Ga1- x )2O3/β-Ga2O3 heterostructures were grown via plasma-assisted molecular beam epitaxy. The β-(Al x Ga1- x )2O3 barrier was partially doped by Ge to achieve a two-dimensional electron gas (2DEG) in Ga2O3. The formation of the 2DEG was confirmed by capacitance-voltage measurements. The impact of Ga-polishing on both the surface morphology and the reduction of the unintentionally incorporated Si at the growth interface was investigated using atomic force microscopy and secondary-ion mass spectrometry. Modulation doped field-effect transistors were fabricated. A maximum current density of 20 mA/mm with a pinch-off voltage of -6 V was achieved on a sample with a 2DEG sheet charge density of 1.2 × 1013 cm-2.
Kurk, Toby; Adams, David G; Connell, Simon D; Thomson, Neil H
2010-05-01
Imaging signals derived from the atomic force microscope (AFM) are typically presented as separate adjacent images with greyscale or pseudo-colour palettes. We propose that information-rich false-colour composites are a useful means of presenting three-channel AFM image data. This method can aid the interpretation of complex surfaces and facilitate the perception of information that is convoluted across data channels. We illustrate this approach with images of filamentous cyanobacteria imaged in air and under aqueous buffer, using both deflection-modulation (contact) mode and amplitude-modulation (tapping) mode. Topography-dependent contrast in the error and tertiary signals aids the interpretation of the topography signal by contributing additional data, resulting in a more detailed image, and by showing variations in the probe-surface interaction. Moreover, topography-independent contrast and topography-dependent contrast in the tertiary data image (phase or friction) can be distinguished more easily as a consequence of the three dimensional colour-space.
Laser-Excited Electronic and Thermal Elastic Vibrations in a Semiconductor Rectangular Plate
NASA Astrophysics Data System (ADS)
Todorović, D. M.; Cretin, B.; Vairac, P.; Song, Y. Q.; Rabasović, M. D.; Markushev, D. D.
2013-09-01
Photoacoustic and photothermal effects can be important as driven mechanisms for micro-(opto)-electro-mechanical structures (MOEMS). A new approach for a producing a compact, lightweight, highly sensitive detector is provided by MOEMS technology, which is based on the elastic bending of microstructure generated by absorption of modulated optical power. The electronic and thermal elastic vibrations (the electronic deformation and thermoelastic mechanisms of elastic wave generation) in a semiconductor rectangular simply supported plate (3D geometry), photogenerated by a focused and intensity-modulated laser beam, were studied. The theoretical model for the elastic displacements space and frequency distribution by using the Green function method was given. The amplitude of the elastic bending in the rectangular plate was calculated and analyzed, including the thermalization and surface and volume recombination heat sources. The theoretical results were compared with the experimental data. These investigations are important for many practical experimental situations (atomic force microscopy, thermal microscopy, thermoelastic microscopy, etc.) and sensors and actuators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Tomoharu; Yamada, Hirofumi, E-mail: h-yamada@kuee.kyoto-u.ac.jp; Kobayashi, Kei
The device performances of organic thin film transistors are often limited by the metal–organic interface because of the disordered molecular layers at the interface and the energy barriers against the carrier injection. It is important to study the local impedance at the interface without being affected by the interface morphology. We combined frequency modulation atomic force microscopy with scanning impedance microscopy (SIM) to sensitively measure the ac responses of the interface to an ac voltage applied across the interface and the dc potential drop at the interface. By using the frequency-modulation SIM (FM-SIM) technique, we characterized the interface impedance ofmore » a Pt electrode and a single pentacene grain as a parallel circuit of a contact resistance and a capacitance. We found that the reduction of the contact resistance was caused by the reduction of the energy level mismatch at the interface by the FM-SIM measurements, demonstrating the usefulness of the FM-SIM technique for investigation of the local interface impedance without being affected by its morphology.« less
Effect of dispersion forces on squeezing with Rydberg atoms
NASA Technical Reports Server (NTRS)
Ng, S. K.; Muhamad, M. R.; Wahiddin, M. R. B.
1994-01-01
We report exact results concerning the effect of dipole-dipole interaction (dispersion forces) on dynamic and steady-state characteristics of squeezing in the emitted fluorescent field from two identical coherently driven two-level atoms. The atomic system is subjected to three different damping baths in particular the normal vacuum, a broad band thermal field and a broad band squeezed vacuum. The atomic model is the Dicke model, hence possible experiments are most likely to agree with theory when performed on systems of Rydberg atoms making microwave transitions. The presence of dipole-dipole interaction can enhance squeezing for realizable values of the various parameters involved.
Biaxial tensile strain modulates magnetic properties of the 3d transition metal doped stanene
NASA Astrophysics Data System (ADS)
Dai, Xian-Qi; Zhao, Ming-Yu; Zhao, Ru-Meng; Li, Wei
2017-06-01
Utilizing first-principle calculations, the biaxial tensile strain modulating magnetic states and electronic structures of transition metal (TM) (i.e., Mn, Fe, Sc, Ni and Ti) atoms doped in stanene are investigated. It shows that Mn and Fe doped stanene systems are magnetic, while the Sc, Ti and Ni doped stanene systems are nonmagnetic. When the biaxial tensile strain increases, a weaker antiferromagnetic coupling between the nearest neighbor (NN) Sn atoms and Mn (Fe, Ti) atom is observed. For Sc and Ni doped stanene systems, the biaxial strain doesn't introduce spin polarization for the TM atoms. In a word, the TM atoms doped stanene systems may manifest potential applications in nanoelectronics, spintronics and magnetic storage devices.
Adhesion Forces between Lewis(X) Determinant Antigens as Measured by Atomic Force Microscopy.
Tromas, C; Rojo, J; de la Fuente, J M; Barrientos, A G; García, R; Penadés, S
2001-01-01
The adhesion forces between individual molecules of Lewis(X) trisaccharide antigen (Le(X) ) have been measured in water and in calcium solution by using atomic force microscopy (AFM, see graph). These results demonstrate the self-recognition capability of this antigen, and reinforce the hypothesis that carbohydrate-carbohydrate interaction could be considered as the first step in the cell-adhesion process in nature. Copyright © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.
Li, Ying; Lu, Liyuan; Li, Juan
2016-09-01
Hereditary spherocytosis is an inherited red blood cell membrane disorder resulting from mutations of genes encoding erythrocyte membrane and cytoskeletal proteins. Few equipments can observe the structural characteristics of hereditary spherocytosis directly expect for atomic force microscopy In our study, we proved atomic force microscopy is a powerful and sensitive instrument to describe the characteristics of hereditary spherocytosis. Erythrocytes from hereditary spherocytosis patients were small spheroidal, lacking a well-organized lattice on the cell membrane, with smaller cell surface particles and had reduced valley to peak distance and average cell membrane roughness vs. those from healthy individuals. These observations indicated defects in the certain cell membrane structural proteins such as α- and β-spectrin, ankyrin, etc. Until now, splenectomy is still the most effective treatment for symptoms relief for hereditary spherocytosis. In this study, we further solved the mysteries of membrane nanostructure changes of erythrocytes before and after splenectomy in hereditary spherocytosis by atomic force microscopy. After splenectomy, the cells were larger, but still spheroidal-shaped. The membrane ultrastructure was disorganized and characterized by a reduced surface particle size and lower than normal Ra values. These observations indicated that although splenectomy can effectively relieve the symptoms of hereditary spherocytosis, it has little effect on correction of cytoskeletal membrane defects of hereditary spherocytosis. We concluded that atomic force microscopy is a powerful tool to investigate the pathophysiological mechanisms of hereditary spherocytosis and to monitor treatment efficacy in clinical practices. To the best of our knowledge, this is the first report to study hereditary spherocytosis with atomic force microscopy and offers important mechanistic insight into the underlying role of splenectomy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Yu; Fan, Shanhui, E-mail: shanhui@stanford.edu
2016-01-11
We introduce a distinct class of dynamic non-reciprocal meta-surfaces with arbitrary phase-reconfigurability. This meta-surface consists of an array of meta-atoms, each of which is subject to temporal refractive index modulation, which induces photonic transitions between the states of the meta-atom. We show that arbitrary phase profile for the outgoing wave can be achieved by controlling the phase of the modulation at each meta-atom. Moreover, such dynamic meta-surfaces exhibit non-reciprocal response without the need for magneto-optical effects. The use of photonic transition significantly enhances the tunability and the possible functionalities of meta-surfaces.
2016-01-01
We present the AMBER ff15ipq force field for proteins, the second-generation force field developed using the Implicitly Polarized Q (IPolQ) scheme for deriving implicitly polarized atomic charges in the presence of explicit solvent. The ff15ipq force field is a complete rederivation including more than 300 unique atomic charges, 900 unique torsion terms, 60 new angle parameters, and new atomic radii for polar hydrogens. The atomic charges were derived in the context of the SPC/Eb water model, which yields more-accurate rotational diffusion of proteins and enables direct calculation of nuclear magnetic resonance (NMR) relaxation parameters from molecular dynamics simulations. The atomic radii improve the accuracy of modeling salt bridge interactions relative to contemporary fixed-charge force fields, rectifying a limitation of ff14ipq that resulted from its use of pair-specific Lennard-Jones radii. In addition, ff15ipq reproduces penta-alanine J-coupling constants exceptionally well, gives reasonable agreement with NMR relaxation rates, and maintains the expected conformational propensities of structured proteins/peptides, as well as disordered peptides—all on the microsecond (μs) time scale, which is a critical regime for drug design applications. These encouraging results demonstrate the power and robustness of our automated methods for deriving new force fields. All parameters described here and the mdgx program used to fit them are included in the AmberTools16 distribution. PMID:27399642
NASA Astrophysics Data System (ADS)
Topcu, Turker; Derevianko, Andrei
2013-11-01
Intensity-modulated optical lattice potentials can change sign for an alkali-metal Rydberg atom, and the atoms are not always attracted to intensity minima in optical lattices with wavelengths near the CO2 laser band. Here we demonstrate that such IR lattices can be tuned so that the trapping potential experienced by the Rydberg atom can be made to vanish for atoms in “targeted” Rydberg states. Such state-selective trapping of Rydberg atoms can be useful in controlled cold Rydberg collisions, cooling Rydberg states, and species-selective trapping and transport of Rydberg atoms in optical lattices. We tabulate wavelengths at which the trapping potential vanishes for the ns, np, and nd Rydberg states of Na and Rb atoms and discuss advantages of using such optical lattices for state-selective trapping of Rydberg atoms. We also develop exact analytical expressions for the lattice-induced polarizability for the mz=0 Rydberg states and derive an accurate formula predicting tune-out wavelengths at which the optical trapping potential becomes invisible to Rydberg atoms in targeted l=0 states.
Kumar, Santosh; Fan, Haoquan; Kübler, Harald; Jahangiri, Akbar J; Shaffer, James P
2017-04-17
Rydberg atom-based electrometry enables traceable electric field measurements with high sensitivity over a large frequency range, from gigahertz to terahertz. Such measurements are particularly useful for the calibration of radio frequency and terahertz devices, as well as other applications like near field imaging of electric fields. We utilize frequency modulated spectroscopy with active control of residual amplitude modulation to improve the signal to noise ratio of the optical readout of Rydberg atom-based radio frequency electrometry. Matched filtering of the signal is also implemented. Although we have reached similarly, high sensitivity with other read-out methods, frequency modulated spectroscopy is advantageous because it is well-suited for building a compact, portable sensor. In the current experiment, ∼3 µV cm-1 Hz-1/2 sensitivity is achieved and is found to be photon shot noise limited.
Evolution of optical force on two-level atom by ultrashort time-domain dark hollow Gaussian pulse
NASA Astrophysics Data System (ADS)
Cao, Xiaochao; Wang, Zhaoying; Lin, Qiang
2017-09-01
Based on the analytical expression of the ultrashort time-domain dark hollow Gaussian (TDHG) pulse, the optical force on two-level atoms induced by a TDHG pulse is calculated in this paper. The phenomena of focusing or defocusing of the light force is numerical analyzed for different detuning, various duration time, and different order of the ultrashort pulse. The transverse optical force can change from a focusing force to a defocusing force depending on the spatial-temporal coupling effect as the TDHG pulses propagating in free space. Our results also show that the initial phase of the TDHG pulse can significantly changes the envelope of the optical force.
Torun, H; Finkler, O; Degertekin, F L
2009-07-01
The authors describe a method for athermalization in atomic force microscope (AFM) based force spectroscopy applications using microstructures that thermomechanically match the AFM probes. The method uses a setup where the AFM probe is coupled with the matched structure and the displacements of both structures are read out simultaneously. The matched structure displaces with the AFM probe as temperature changes, thus the force applied to the sample can be kept constant without the need for a separate feedback loop for thermal drift compensation, and the differential signal can be used to cancel the shift in zero-force level of the AFM.
Three-dimensional rearrangement of single atoms using actively controlled optical microtraps.
Lee, Woojun; Kim, Hyosub; Ahn, Jaewook
2016-05-02
We propose and demonstrate three-dimensional rearrangements of single atoms. In experiments performed with single 87Rb atoms in optical microtraps actively controlled by a spatial light modulator, we demonstrate various dynamic rearrangements of up to N = 9 atoms including rotation, 2D vacancy filling, guiding, compactification, and 3D shuffling. With the capability of a phase-only Fourier mask to generate arbitrary shapes of the holographic microtraps, it was possible to place single atoms at arbitrary geometries of a few μm size and even continuously reconfigure them by conveying each atom. For this purpose, we loaded a series of computer-generated phase masks in the full frame rate of 60 Hz of the spatial light modulator, so the animation of phase mask transformed the holographic microtraps in real time, driving each atom along the assigned trajectory. Possible applications of this method of transformation of single atoms include preparation of scalable quantum platforms for quantum computation, quantum simulation, and quantum many-body physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graetsch, H.A., E-mail: heribert.graetsch@rub.de
The amplitudes of the positional, occupational and adp modulations of sbn mixed crystals are strongly enhanced for high strontium contents. The increase of structural modulations is accompanied by reduced spontaneous electric polarization largely due to smaller off-center shifts of the niobium atoms. Beyond the room temperature ferroelectric – intermediate transition near x=0.77, anomal large U{sub 33} atomic displacement parameters of the niobium atoms indicate static disorder caused by loss of orientational coupling between residual shifts of Nb atoms in neighboring NbO{sub 6} octahedra. Change of satellite intensities show a reduction from two-dimensional to one-dimensional modulation which is not consistent withmore » tetragonal symmetry. The pseudo-tetragonally twinned crystal structure of sbn82 was refined in the orthorhombic super-space group A2mm(½0γ)000. The apparent tetragonal symmetry of the other investigated sbn samples also seems to be due to pseudo tetragonal twinning with equal twin volumes. The modulations mainly consist of cooperatively tilted NbO{sub 6} octahedra and wave-like ordered incomplete occupation of the largest cation sites (Me2a and b) by Ba{sup 2+} and Sr{sup 2+}. Furthermore, the atomic displacement parameters of the Me2 sites are strongly modulated. - Graphical abstract: Satellite reflections and modulation coefficients in the solid solution series Sr{sub x}Ba{sub 1−x}Nb{sub 2}O{sub 6}. - Highlights: • The modulationed structures are refined for the whole composition range of sbn32–sbn82 in tetragonal and orthorhombic setting. • The amplitudes of positional, occupational and adp modulations increase strongly with the strontium content. • Evidence is presented that the sbn crystals are pseudo tetragonally twinned. • The ferroelectric–intermediate paraelectric transition is not accompanied by a change of symmetry. • Anomal adp of intermediate (non-ferroelectric) sbn82 indicate loss of coupling between off-center shifts of neighboring niobium.« less
The use of atomic force microscopy to evaluate warm mix asphalt.
DOT National Transportation Integrated Search
2013-01-01
The main objective of this study was to use the Atomic Force Microscopy (AFM) to examine the moisture susceptibility : and healing characteristics of Warm Mix Asphalt (WMA) and compare it with those of conventional Hot Mix Asphalt (HMA). To : this en...
New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy
Van Vleet, Mary J.; Misquitta, Alston J.; Schmidt, J. R.
2017-12-21
Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes, leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmarkmore » MASTIFF against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules. MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus showing promise as a basis for “next-generation” force field development.« less
New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Vleet, Mary J.; Misquitta, Alston J.; Schmidt, J. R.
Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes, leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmarkmore » MASTIFF against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules. MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus showing promise as a basis for “next-generation” force field development.« less
NASA Astrophysics Data System (ADS)
Murray, Eamonn; Fahy, Stephen
2014-03-01
Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of polarized light. When radiation with polarization perpendicular to the c-axis is absorbed in bismuth, the distribution of excited electrons and holes breaks the three-fold rotational symmetry and leads to a net force on the atoms in the direction perpendicular to the axis. We calculate the initial excited electronic distribution as a function of photon energy and polarization and find the resulting transverse and longitudinal forces experienced by the atoms. Using the measured, temperature-dependent rate of decay of the transverse force[2], we predict the approximate amplitude of induced atomic motion in the Eg mode as a function of temperature and optical fluence. This work is supported by Science Foundation Ireland and a Marie Curie International Incoming Fellowship.
Universal aspects of brittle fracture, adhesion, and atomic force microscopy
NASA Technical Reports Server (NTRS)
Banerjea, Amitava; Ferrante, John; Smith, John R.
1989-01-01
This universal relation between binding energy and interatomic separation was originally discovered for adhesion at bimetallic interfaces involving the simple metals Al, Zn, Mg, and Na. It is shown here that the same universal relation extends to adhesion at transition-metal interfaces. Adhesive energies have been computed for the low-index interfaces of Al, Ni, Cu, Ag, Fe, and W, using the equivalent-crystal theory (ECT) and keeping the atoms in each semiinfinite slab fixed rigidly in their equilibrium positions. These adhesive energy curves can be scaled onto each other and onto the universal adhesion curve. The effect of tip shape on the adhesive forces in the atomic-force microscope (AFM) is studied by computing energies and forces using the ECT. While the details of the energy-distance and force-distance curves are sensitive to tip shape, all of these curves can be scaled onto the universal adhesion curve.
Guo, Shuai; Niu, Chunhui; Liang, Liang; Chai, Ke; Jia, Yaqing; Zhao, Fangyin; Li, Ya; Zou, Bingsuo; Liu, Ruibin
2016-01-01
Based on a silica sol-gel technique, highly-structurally ordered silica photonic structures were fabricated by UV lithography and hot manual nanoimprint efforts, which makes large-scale fabrication of silica photonic crystals easy and results in low-cost. These photonic structures show perfect periodicity, smooth and flat surfaces and consistent aspect ratios, which are checked by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, glass substrates with imprinted photonic nanostructures show good diffraction performance in both transmission and reflection mode. Furthermore, the reflection efficiency can be enhanced by 5 nm Au nanoparticle coating, which does not affect the original imprint structure. Also the refractive index and dielectric constant of the imprinted silica is close to that of the dielectric layer in nanodevices. In addition, the polarization characteristics of the reflected light can be modulated by stripe nanostructures through changing the incident light angle. The experimental findings match with theoretical results, making silica photonic nanostructures functional integration layers in many optical or optoelectronic devices, such as LED and microlasers to enhance the optical performance and modulate polarization properties in an economical and large-scale way. PMID:27698465
In situ elasticity modulation with dynamic substrates to direct cell phenotype
Kloxin, April M.; Benton, Julie A.; Anseth, Kristi S.
2009-01-01
Microenvironment elasticity influences critical cell functions such as differentiation, cytoskeletal organization, and process extension. Unfortunately, few materials allow elasticity modulation in real-time to probe its direct effect on these dynamic cellular processes. Here, a new approach is presented for the photochemical modulation of elasticity within the cell's microenvironment at any point in time. A photodegradable hydrogel was irradiated and degraded under cytocompatible conditions to generate a wide range of elastic moduli similar to soft tissues and characterized using rheometry and atomic force microscopy (AFM). The effect of the elastic modulus on valvular interstitial cell (VIC) activation into myofibroblasts was explored. In these studies, gradient samples were used to identify moduli that either promote or suppress VIC myofibroblastic activation. With this knowledge, VICs were cultured on a high modulus, activating hydrogel substrate, and uniquely, results show that decreasing the substrate modulus with irradiation reverses this activation, demonstrating that myofibroblasts can be de-activated solely by changing the modulus of the underlying substrate. This finding is important for the rational design of biomaterials for tissue regeneration and offers insight into fibrotic disease progression. These photodegradable hydrogels demonstrate the capability to both probe and direct cell function through dynamic changes in substrate elasticity. PMID:19788947
Guo, Shuai; Niu, Chunhui; Liang, Liang; Chai, Ke; Jia, Yaqing; Zhao, Fangyin; Li, Ya; Zou, Bingsuo; Liu, Ruibin
2016-10-04
Based on a silica sol-gel technique, highly-structurally ordered silica photonic structures were fabricated by UV lithography and hot manual nanoimprint efforts, which makes large-scale fabrication of silica photonic crystals easy and results in low-cost. These photonic structures show perfect periodicity, smooth and flat surfaces and consistent aspect ratios, which are checked by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, glass substrates with imprinted photonic nanostructures show good diffraction performance in both transmission and reflection mode. Furthermore, the reflection efficiency can be enhanced by 5 nm Au nanoparticle coating, which does not affect the original imprint structure. Also the refractive index and dielectric constant of the imprinted silica is close to that of the dielectric layer in nanodevices. In addition, the polarization characteristics of the reflected light can be modulated by stripe nanostructures through changing the incident light angle. The experimental findings match with theoretical results, making silica photonic nanostructures functional integration layers in many optical or optoelectronic devices, such as LED and microlasers to enhance the optical performance and modulate polarization properties in an economical and large-scale way.
A Surface-Coupled Optical Trap with 1-bp Precision via Active Stabilization
Okoniewski, Stephen R.; Carter, Ashley R.; Perkins, Thomas T.
2017-01-01
Optical traps can measure bead motions with Å-scale precision. However, using this level of precision to infer 1-bp motion of molecular motors along DNA is difficult, since a variety of noise sources degrade instrumental stability. In this chapter, we detail how to improve instrumental stability by (i) minimizing laser pointing, mode, polarization, and intensity noise using an acousto-optical-modulator mediated feedback loop and (ii) minimizing sample motion relative to the optical trap using a 3-axis piezo-electric-stage mediated feedback loop. These active techniques play a critical role in achieving a surface stability of 1 Å in 3D over tens of seconds and a 1-bp stability and precision in a surface-coupled optical trap over a broad bandwidth (Δf = 0.03–2 Hz) at low force (6 pN). These active stabilization techniques can also aid other biophysical assays that would benefit from improved laser stability and/or Å-scale sample stability, such as atomic force microscopy and super-resolution imaging. PMID:27844426
Noncontact viscoelastic measurement of polymer thin films in a liquid medium using a long-needle AFM
NASA Astrophysics Data System (ADS)
Guan, Dongshi; Barraud, Chloe; Charlaix, Elisabeth; Tong, Penger
We report noncontact measurement of the viscoelastic property of polymer thin films in a liquid medium using frequency-modulation atomic force microscopy (FM-AFM) with a newly developed long-needle probe. The probe contains a long vertical glass fiber with one end adhered to a cantilever beam and the other end with a sharp tip placed near the liquid-film interface. The nanoscale flow generated by the resonant oscillation of the needle tip provides a precise hydrodynamic force acting on the soft surface of the thin film. By accurately measuring the mechanical response of the thin film, we obtain the elastic and loss moduli of the thin film using the linear response theory of elasto-hydrodynamics. The experiment verifies the theory and demonstrates its applications. The technique can be used to accurately measure the viscoelastic property of soft surfaces, such as those made of polymers, nano-bubbles, live cells and tissues. This work was supported by the Research Grants Council of Hong Kong SAR.
NASA Astrophysics Data System (ADS)
Jolivet, S.; Mezghani, S.; El Mansori, M.
2016-09-01
The replication of topography has been generally restricted to optimizing material processing technologies in terms of statistical and single-scale features such as roughness. By contrast, manufactured surface topography is highly complex, irregular, and multiscale. In this work, we have demonstrated the use of multiscale analysis on replicates of surface finish to assess the precise control of the finished replica. Five commercial resins used for surface replication were compared. The topography of five standard surfaces representative of common finishing processes were acquired both directly and by a replication technique. Then, they were characterized using the ISO 25178 standard and multiscale decomposition based on a continuous wavelet transform, to compare the roughness transfer quality at different scales. Additionally, atomic force microscope force modulation mode was used in order to compare the resins’ stiffness properties. The results showed that less stiff resins are able to replicate the surface finish along a larger wavelength band. The method was then tested for non-destructive quality control of automotive gear tooth surfaces.
Interfacial assembly structures and nanotribological properties of saccharic acids.
Shi, Hongyu; Liu, Yuhong; Zeng, Qingdao; Yang, Yanlian; Wang, Chen; Lu, Xinchun
2017-01-04
Saccharides have been recognized as potential bio-lubricants because of their good hydration ability. However, the interfacial structures of saccharides and their derivatives are rarely studied and the molecular details of interaction mechanisms have not been well understood. In this paper, the supramolecular assembly structures of saccharic acids (including galactaric acid and lactobionic acid), mediated by hydrogen bonds O-HN and O-HO, were successfully constructed on a highly oriented pyrolytic graphite (HOPG) surface by introducing pyridine modulators and were explicitly revealed by using scanning tunneling microscopy (STM). Furthermore, friction forces were measured in the saccharic acid/pyridine co-assembled system by atomic force microscopy (AFM), revealing a larger value than a pristine saccharic acid system, which could be attributed to the stronger tip-assembled molecule interactions that lead to the higher potential energy barrier needed to overcome. The effort on saccharide-related supramolecular self-assembly and nanotribological behavior could provide a novel and promising pathway to explore the interaction mechanisms underlying friction and reveal the structure-property relationship at the molecular level.
Surface Modulation of Graphene Field Effect Transistors on Periodic Trench Structure.
Jin, Jun Eon; Choi, Jun Hee; Yun, Hoyeol; Jang, Ho-Kyun; Lee, Byung Chul; Choi, Ajeong; Joo, Min-Kyu; Dettlaff-Weglikowska, Urszula; Roth, Siegmar; Lee, Sang Wook; Lee, Jae Woo; Kim, Gyu Tae
2016-07-20
In this work, graphene field effect transistors (FETs) were fabricated on a trench structure made by carbonized poly(methylmethacrylate) to modify the graphene surface. The trench-structured devices showed different characteristics depending on the channel orientation and the pitch size of the trenches as well as channel area in the FETs. Periodic corrugations and barriers of suspended graphene on the trench structure were measured by atomic force microscopy and electrostatic force microscopy. Regular barriers of 160 mV were observed for the trench structure with graphene. To confirm the transfer mechanism in the FETs depending on the channel orientation, the ratio of experimental mobility (3.6-3.74) was extracted from the current-voltage characteristics using equivalent circuit simulation. It is shown that the number of barriers increases as the pitch size decreases because the number of corrugations increases from different trench pitches. The noise for the 140 nm pitch trench is 1 order of magnitude higher than that for the 200 nm pitch trench.
Universal aspects of adhesion and atomic force microscopy
NASA Technical Reports Server (NTRS)
Banerjea, Amitava; Smith, John R.; Ferrante, John
1990-01-01
Adhesive energies are computed for flat and atomically sharp tips as a function of the normal distance to the substrate. The dependence of binding energies on tip shape is investigated. The magnitudes of the binding energies for the atomic force microscope are found to depend sensitively on tip material, tip shape and the sample site being probed. The form of the energy-distance curve, however, is universal and independent of these variables, including tip shape.
Yudin, V I; Taichenachev, A V; Basalaev, M Yu; Kovalenko, D V
2017-02-06
We theoretically investigate the dynamic regime of coherent population trapping (CPT) in the presence of frequency modulation (FM). We have formulated the criteria for quasi-stationary (adiabatic) and dynamic (non-adiabatic) responses of atomic system driven by this FM. Using the density matrix formalism for Λ system, the error signal is exactly calculated and optimized. It is shown that the optimal FM parameters correspond to the dynamic regime of atomic-field interaction, which significantly differs from conventional description of CPT resonances in the frame of quasi-stationary approach (under small modulation frequency). Obtained theoretical results are in good qualitative agreement with different experiments. Also we have found CPT-analogue of Pound-Driver-Hall regime of frequency stabilization.
Scanning ion-conductance and atomic force microscope with specialized sphere-shaped nanopippettes
NASA Astrophysics Data System (ADS)
Zhukov, M. V.; Sapozhnikov, I. D.; Golubok, A. O.; Chubinskiy-Nadezhdin, V. I.; Komissarenko, F. E.; Lukashenko, S. Y.
2017-11-01
A scanning ion-conductance microscope was designed on the basis of scanning probe microscope NanoTutor. The optimal parameters of nanopipettes fabrication were found according to scanning electron microscopy diagnostics, current-distance I (Z) and current-voltage characteristics. A comparison of images of test objects, including biological samples, was carried out in the modes of optical microscopy, atomic force microscopy and scanning ion-conductance microscopy. Sphere-shaped nanopippettes probes were developed and tested to increase the stability of pipettes, reduce invasiveness and improve image quality of atomic force microscopy in tapping mode. The efficiency of sphere-shaped nanopippettes is shown.
Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.
1986-01-01
The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.
Thom, Joseph; Wilpers, Guido; Riis, Erling; Sinclair, Alastair G
2013-08-12
We demonstrate a system for fast and agile digital control of laser phase, amplitude and frequency for applications in coherent atomic systems. The full versatility of a direct digital synthesis radiofrequency source is faithfully transferred to laser radiation via acousto-optic modulation. Optical beatnotes are used to measure phase steps up to 2π, which are accurately implemented with a resolution of ≤ 10 mrad. By linearizing the optical modulation process, amplitude-shaped pulses of durations ranging from 500 ns to 500 ms, in excellent agreement with the programmed functional form, are demonstrated. Pulse durations are limited only by the 30 ns rise time of the modulation process, and a measured extinction ratio of > 5 × 10(11) is achieved. The system presented here was developed specifically for controlling the quantum state of trapped ions with sequences of multiple laser pulses, including composite and bichromatic pulses. The demonstrated techniques are widely applicable to other atomic systems ranging across quantum information processing, frequency metrology, atom interferometry, and single-photon generation.
Minimizing pulling geometry errors in atomic force microscope single molecule force spectroscopy.
Rivera, Monica; Lee, Whasil; Ke, Changhong; Marszalek, Piotr E; Cole, Daniel G; Clark, Robert L
2008-10-01
In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies.
VEDA: a web-based virtual environment for dynamic atomic force microscopy.
Melcher, John; Hu, Shuiqing; Raman, Arvind
2008-06-01
We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.
Invited Article: VEDA: A web-based virtual environment for dynamic atomic force microscopy
NASA Astrophysics Data System (ADS)
Melcher, John; Hu, Shuiqing; Raman, Arvind
2008-06-01
We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.
Taking nanomedicine teaching into practice with atomic force microscopy and force spectroscopy.
Carvalho, Filomena A; Freitas, Teresa; Santos, Nuno C
2015-12-01
Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic force microscope by performing AFM scanning images of human blood cells and force spectroscopy measurements of the fibrinogen-platelet interaction. Since the beginning of this course, in 2008, the overall rating by the students was 4.7 (out of 5), meaning a good to excellent evaluation. Students were very enthusiastic and produced high-quality AFM images and force spectroscopy data. The implementation of the hands-on AFM course was a success, giving to the students the opportunity of contact with a technique that has a wide variety of applications on the nanomedicine field. In the near future, nanomedicine will have remarkable implications in medicine regarding the definition, diagnosis, and treatment of different diseases. AFM enables students to observe single molecule interactions, enabling the understanding of molecular mechanisms of different physiological and pathological processes at the nanoscale level. Therefore, the introduction of nanomedicine courses in bioscience and medical school curricula is essential. Copyright © 2015 The American Physiological Society.
Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frei M.; Hybertsen M.; Aradhya S.V.
We use a modified conducting atomic force microscope to simultaneously probe the conductance of a single-molecule junction and the force required to rupture the junction formed by alkanes terminated with four different chemical link groups which vary in binding strength and mechanism to the gold electrodes. Molecular junctions with amine, methylsulfide, and diphenylphosphine terminated molecules show clear conductance signatures and rupture at a force that is significantly smaller than the measured 1.4 nN force required to rupture the single-atomic gold contact. In contrast, measurements with a thiol terminated alkane which can bind covalently to the gold electrode show conductance andmore » force features unlike those of the other molecules studied. Specifically, the strong Au-S bond can cause structural rearrangements in the electrodes, which are accompanied by substantial conductance changes. Despite the strong Au-S bond and the evidence for disruption of the Au structure, the experiments show that on average these junctions also rupture at a smaller force than that measured for pristine single-atom gold contacts.« less
Corroding of copper piping used in household drinking water plumbing may potentially impacts consumer’s health and economics. Copper corrosion studies conducted on newly corroding material with atomic force microscopy (AFM) may be particularly useful in understanding the impact ...
Altered mechanical properties of titin immunoglobulin domain 27 in the presence of calcium.
DuVall, Michael M; Gifford, Jessica L; Amrein, Matthias; Herzog, Walter
2013-04-01
Titin (connectin) based passive force regulation has been an important physiological mechanism to adjust to varying muscle stretch conditions. Upon stretch, titin behaves as a spring capable of modulating its elastic response in accordance with changes in muscle biochemistry. One such mechanism has been the calcium-dependent stiffening of titin domains that renders the spring inherently more resistant to stretch. This transient titin-calcium interaction may serve a protective function in muscle, which could preclude costly unfolding of select domains when muscles elongate to great lengths. To test this idea, fluorescence spectroscopy was performed revealing a change in the microenvironment of the investigated immunoglobulin domain 27 (I27) of titin with calcium. Additionally, an atomic force microscope was used to evaluate the calcium-dependent regulation of passive force by stretching eight linked titin I27 domains until they unfolded. When stretching in the presence of calcium, the I27 homopolymer chain became stabilized, displaying three novel properties: (1) higher stretching forces were needed to unfold the domains, (2) the stiffness, measured as a persistence length (PL), increased and (3) the peak-to-peak distance between adjacent I27 domains increased. Furthermore, a peak order dependence became apparent for both force and PL, reflecting the importance of characterizing the dynamic unfolding history of a polymer with this approach. Together, this novel titin Ig-calcium interaction may serve to stabilize the I27 domain permitting titin to tune passive force within stretched muscle in a calcium-dependent manner.
Trapped atom number in millimeter-scale magneto-optical traps
NASA Astrophysics Data System (ADS)
Hoth, Gregory W.; Donley, Elizabeth A.; Kitching, John
2012-06-01
For compact cold-atom instruments, it is desirable to trap a large number of atoms in a small volume to maximize the signal-to-noise ratio. In MOTs with beam diameters of a centimeter or larger, the slowing force is roughly constant versus velocity and the trapped atom number scales as d^4. For millimeter-scale MOTs formed from pyramidal reflectors, a d^6 dependence has been observed [Pollack et al., Opt. Express 17, 14109 (2009)]. A d^6 scaling is expected for small MOTs, where the slowing force is proportional to the atom velocity. For a 1 mm diameter MOT, a d^6 scaling results in 10 atoms, and the difference between a d^4 and a d^6 dependence corresponds to a factor of 1000 in atom number and a factor of 30 in the signal-to-noise ratio. We have observed >10^4 atoms in 1 mm diameter MOTs, consistent with a d^4 dependence. We are currently performing measurements for sub-mm MOTs to determine where the d^4 to d^6 crossover occurs in our system. We are also exploring MOTs based on linear polarization, which can potentially produce stronger slowing forces due to stimulated emission [Emile et al., Europhys. Lett. 20, 687 (1992)]. It may be possible to trap more atoms in small volumes with this method, since high intensities can be easily achieved.
Direct quantitative measurement of the C═O⋅⋅⋅H–C bond by atomic force microscopy
Kawai, Shigeki; Nishiuchi, Tomohiko; Kodama, Takuya; Spijker, Peter; Pawlak, Rémy; Meier, Tobias; Tracey, John; Kubo, Takashi; Meyer, Ernst; Foster, Adam S.
2017-01-01
The hydrogen atom—the smallest and most abundant atom—is of utmost importance in physics and chemistry. Although many analysis methods have been applied to its study, direct observation of hydrogen atoms in a single molecule remains largely unexplored. We use atomic force microscopy (AFM) to resolve the outermost hydrogen atoms of propellane molecules via very weak C═O⋅⋅⋅H–C hydrogen bonding just before the onset of Pauli repulsion. The direct measurement of the interaction with a hydrogen atom paves the way for the identification of three-dimensional molecules such as DNAs and polymers, building the capabilities of AFM toward quantitative probing of local chemical reactivity. PMID:28508080
Atom-Pair Kinetics with Strong Electric-Dipole Interactions.
Thaicharoen, N; Gonçalves, L F; Raithel, G
2016-05-27
Rydberg-atom ensembles are switched from a weakly to a strongly interacting regime via adiabatic transformation of the atoms from an approximately nonpolar into a highly dipolar quantum state. The resultant electric dipole-dipole forces are probed using a device akin to a field ion microscope. Ion imaging and pair-correlation analysis reveal the kinetics of the interacting atoms. Dumbbell-shaped pair-correlation images demonstrate the anisotropy of the binary dipolar force. The dipolar C_{3} coefficient, derived from the time dependence of the images, agrees with the value calculated from the permanent electric-dipole moment of the atoms. The results indicate many-body dynamics akin to disorder-induced heating in strongly coupled particle systems.
Stretching of short monatomic gold chains-some model calculations
NASA Astrophysics Data System (ADS)
Sumali, Priyanka, Verma, Veena; Dharamvir, Keya
2012-06-01
The Mechanical properties of zig-zag monatomic gold chains containing 5 and 7 atoms were studied using the Siesta Code (SC), which works within the framework of DFT formalism and Gupta Potential (GP), which is an effective atom-atom potential. The zig-zag chains were stretched by keeping the end atoms fixed while rest of the atoms were relaxed till minimum energy is obtained. Energy, Force and Young's Modulus found using GP and SC were plotted as functions of total length. It is found that the breaking force in case of GP is of order of 1.6nN while for SIESTA is of the order of 2.9nN for both the chains.
Imaging powders with the atomic force microscope: from biominerals to commercial materials.
Friedbacher, G; Hansma, P K; Ramli, E; Stucky, G D
1991-09-13
Atomically resolved images of pressed powder samples have been obtained with the atomic force microscope (AFM). The technique was successful in resolving the particle, domain, and atomic structure of pismo clam (Tivela stultorum) and sea urchin (Strongylocentrotus purpuratus) shells and of commercially available calcium carbonate (CaCO(3)) and strontium carbonate (SrCO(3)) powders. Grinding and subsequent pressing of the shells did not destroy the microstructure of these materials. The atomic-resolution imaging capabilities of AFM can be applied to polycrystalline samples by means of pressing powders with a grain size as small as 50 micrometers. These results illustrate that the AFM is a promising tool for material science and the study of biomineralization.
Foster, Rami N; Keefe, Andrew J; Jiang, Shaoyi; Castner, David G
2013-11-01
This study investigates the grafting of poly-sodium styrene sulfonate (pNaSS) from trichlorosilane/10-undecen-1-yl 2-bromo-2-methylpropionate functionalized Si and Ti substrates by atom transfer radical polymerization (ATRP). The composition, molecular structure, thickness, and topography of the grafted pNaSS films were characterized with x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), variable angle spectroscopic ellipsometry (VASE), and atomic force microscopy (AFM), respectively. XPS and ToF-SIMS results were consistent with the successful grafting of a thick and uniform pNaSS film on both substrates. VASE and AFM scratch tests showed the films were between 25 and 49 nm thick on Si, and between 13 and 35 nm thick on Ti. AFM determined root-mean-square roughness values were ∼2 nm on both Si and Ti substrates. Therefore, ATRP grafting is capable of producing relatively smooth, thick, and chemically homogeneous pNaSS films on Si and Ti substrates. These films will be used in subsequent studies to test the hypothesis that pNaSS-grafted Ti implants preferentially adsorb certain plasma proteins in an orientation and conformation that modulates the foreign body response and promotes formation of new bone.
Foster, Rami N.; Keefe, Andrew J.; Jiang, Shaoyi; Castner, David G.
2013-01-01
This study investigates the grafting of poly-sodium styrene sulfonate (pNaSS) from trichlorosilane/10-undecen-1-yl 2-bromo-2-methylpropionate functionalized Si and Ti substrates by atom transfer radical polymerization (ATRP). The composition, molecular structure, thickness, and topography of the grafted pNaSS films were characterized with x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), variable angle spectroscopic ellipsometry (VASE), and atomic force microscopy (AFM), respectively. XPS and ToF-SIMS results were consistent with the successful grafting of a thick and uniform pNaSS film on both substrates. VASE and AFM scratch tests showed the films were between 25 and 49 nm thick on Si, and between 13 and 35 nm thick on Ti. AFM determined root-mean-square roughness values were ∼2 nm on both Si and Ti substrates. Therefore, ATRP grafting is capable of producing relatively smooth, thick, and chemically homogeneous pNaSS films on Si and Ti substrates. These films will be used in subsequent studies to test the hypothesis that pNaSS-grafted Ti implants preferentially adsorb certain plasma proteins in an orientation and conformation that modulates the foreign body response and promotes formation of new bone. PMID:24482558
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemchinsky, V.; Khrabry, A.
Trajectories of a polarizable species (atoms or molecules) in the vicinity of a negatively charged nanoparticle (at a floating potential) are considered. The atoms are pulled into regions of strong electric field by polarization forces. The polarization increases the deposition rate of the atoms and molecules at the nanoparticle. The effect of the non-spherical shape of the nanoparticle is investigated by the Monte Carlo method. The shape of the non-spherical nanoparticle is approximated by an ellipsoid. The total deposition rate and its flux density distribution along the nanoparticle surface are calculated. As a result, it is shown that the fluxmore » density is not uniform along the surface. It is maximal at the nanoparticle tips.« less
Nemchinsky, V.; Khrabry, A.
2018-02-01
Trajectories of a polarizable species (atoms or molecules) in the vicinity of a negatively charged nanoparticle (at a floating potential) are considered. The atoms are pulled into regions of strong electric field by polarization forces. The polarization increases the deposition rate of the atoms and molecules at the nanoparticle. The effect of the non-spherical shape of the nanoparticle is investigated by the Monte Carlo method. The shape of the non-spherical nanoparticle is approximated by an ellipsoid. The total deposition rate and its flux density distribution along the nanoparticle surface are calculated. As a result, it is shown that the fluxmore » density is not uniform along the surface. It is maximal at the nanoparticle tips.« less
Hagedorn, Till; El Ouali, Mehdi; Paul, William; Oliver, David; Miyahara, Yoichi; Grütter, Peter
2011-11-01
A modification of the common electrochemical etching setup is presented. The described method reproducibly yields sharp tungsten tips for usage in the scanning tunneling microscope and tuning fork atomic force microscope. In situ treatment under ultrahigh vacuum (p ≤10(-10) mbar) conditions for cleaning and fine sharpening with minimal blunting is described. The structure of the microscopic apex of these tips is atomically resolved with field ion microscopy and cross checked with field emission. © 2011 American Institute of Physics
Thermodynamic forces in coarse-grained simulations
NASA Astrophysics Data System (ADS)
Noid, William
Atomically detailed molecular dynamics simulations have profoundly advanced our understanding of the structure and interactions in soft condensed phases. Nevertheless, despite dramatic advances in the methodology and resources for simulating atomically detailed models, low-resolution coarse-grained (CG) models play a central and rapidly growing role in science. CG models not only empower researchers to investigate phenomena beyond the scope of atomically detailed simulations, but also to precisely tailor models for specific phenomena. However, in contrast to atomically detailed simulations, which evolve on a potential energy surface, CG simulations should evolve on a free energy surface. Therefore, the forces in CG models should reflect the thermodynamic information that has been eliminated from the CG configuration space. As a consequence of these thermodynamic forces, CG models often demonstrate limited transferability and, moreover, rarely provide an accurate description of both structural and thermodynamic properties. In this talk, I will present a framework that clarifies the origin and impact of these thermodynamic forces. Additionally, I will present computational methods for quantifying these forces and incorporating their effects into CG MD simulations. As time allows, I will demonstrate applications of this framework for liquids, polymers, and interfaces. We gratefully acknowledge the support of the National Science Foundation via CHE 1565631.
AFM Study of Charge Transfer Between Metals Due to the Oxygen Redox Couple in Water
NASA Astrophysics Data System (ADS)
Trombley, Jeremy; Panthani, Tessie; Sankaran, Mohan; Angus, John; Kash, Kathleen
2010-03-01
The oxygen redox couple in an adsorbed water film can pin the Fermi level at the surfaces of diamond, GaN and ZnO.footnotetextV. Chakrapani, C. Pendyala, K. Kash, A. B. Anderson, M. K. Sunkara and J. C. Angus, J. Am. Chem. Soc. 130 (2008) 12944-12952, and ref. 6 therein. We report here preliminary observations of the same phenomenon at metal surfaces. A Pt-coated atomic force microscope (AFM) tip was used to take force-distance measurements on Au, Ag, and Pt surfaces placed in pH-controlled water. The work functions of these surfaces vary over ˜2eV and span the electrochemical potential range of the oxygen redox couple, which varies with pH according to the Nernst equation. Adjusting the pH of the water from 4 to 12 allowed us to change the redox potential energy from -5.42eV to -4.95eV, changing the surface charge and the associated screening charge and modulating the pull-off force. This work has relevance to AFM of many materials in air, and to contact electrification, mechanical friction, and nanoscale corona discharges.
Observation of DNA Molecules Using Fluorescence Microscopy and Atomic Force Microscopy
ERIC Educational Resources Information Center
Ito, Takashi
2008-01-01
This article describes experiments for an undergraduate instrumental analysis laboratory that aim to observe individual double-stranded DNA (dsDNA) molecules using fluorescence microscopy and atomic force microscopy (AFM). dsDNA molecules are observed under several different conditions to discuss their chemical and physical properties. In…
Conductive Atomic Force Microscopy | Materials Science | NREL
electrical measurement techniques is the high spatial resolution. For example, C-AFM measurements on : High-resolution image of a sample semiconductor device; the image shows white puff-like clusters on a dark background and was obtained using atomic force microscopy. Bottom: High-resolution image of the
Atomic force microscope with combined FTIR-Raman spectroscopy having a micro thermal analyzer
Fink, Samuel D [Aiken, SC; Fondeur, Fernando F [North Augusta, SC
2011-10-18
An atomic force microscope is provided that includes a micro thermal analyzer with a tip. The micro thermal analyzer is configured for obtaining topographical data from a sample. A raman spectrometer is included and is configured for use in obtaining chemical data from the sample.
Uncertainty quantification in nanomechanical measurements using the atomic force microscope
Ryan Wagner; Robert Moon; Jon Pratt; Gordon Shaw; Arvind Raman
2011-01-01
Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale...
Florin, E; Dafsari, H S; Reck, C; Barbe, M T; Pauls, K A M; Maarouf, M; Sturm, V; Fink, G R; Timmermann, L
2013-06-14
Investigations of local field potentials of the subthalamic nucleus of patients with Parkinson's disease have provided evidence for pathologically exaggerated oscillatory beta-band activity (13-30 Hz) which is amenable to physiological modulation by, e.g., voluntary movement. Previous functional magnetic resonance imaging studies in healthy controls have provided evidence for an increase of subthalamic nucleus blood-oxygenation-level-dependant signal in incremental force generation tasks. However, the modulation of neuronal activity by force generation and its relationship to peripheral feedback remain to be elucidated. We hypothesised that beta-band activity in the subthalamic nucleus is modulated by incremental force generation. Subthalamic nucleus local field potentials were recorded intraoperatively in 13 patients with Parkinson's disease (37 recording sites) during rest and five incremental isometric force generation conditions of the arm with applied loads of 0-400 g (in 100-g increments). Repeated measures analysis of variance (ANOVA) revealed a modulation of local field potential (LFP) power in the upper beta-band (in 24-30 Hz; F(₃.₀₄₂)=4.693, p=0.036) and the gamma-band (in 70-76 Hz; F(₄)=4.116, p=0.036). Granger-causality was computed with the squared partial directed coherence and showed no significant modulation during incremental isometric force generation. Our findings indicate that the upper beta- and gamma-band power of subthalamic nucleus local field potentials are modulated by the physiological task of force generation in patients with Parkinson's disease. This modulation seems to be not an effect of a modulation of peripheral feedback. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Iverson, Brian D; Blendell, John E; Garimella, Suresh V
2010-03-01
Thermal diffusion measurements on polymethylmethacrylate-coated Si substrates using heated atomic force microscopy tips were performed to determine the contact resistance between an organic thin film and Si. The measurement methodology presented demonstrates how the thermal contrast signal obtained during a force-displacement ramp is used to quantify the resistance to heat transfer through an internal interface. The results also delineate the interrogation thickness beyond which thermal diffusion in the organic thin film is not affected appreciably by the underlying substrate.
77 FR 42483 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-19
... creating artificial nanoscale structures on an atom-by- atom basis using nascent atom manipulation techniques. The instrument will be used to investigate the amount of force required to move one atom on a materials surface while simultaneously measuring local electronic structural changes during atom movement...
DelPhiForce web server: electrostatic forces and energy calculations and visualization.
Li, Lin; Jia, Zhe; Peng, Yunhui; Chakravorty, Arghya; Sun, Lexuan; Alexov, Emil
2017-11-15
Electrostatic force is an essential component of the total force acting between atoms and macromolecules. Therefore, accurate calculations of electrostatic forces are crucial for revealing the mechanisms of many biological processes. We developed a DelPhiForce web server to calculate and visualize the electrostatic forces at molecular level. DelPhiForce web server enables modeling of electrostatic forces on individual atoms, residues, domains and molecules, and generates an output that can be visualized by VMD software. Here we demonstrate the usage of the server for various biological problems including protein-cofactor, domain-domain, protein-protein, protein-DNA and protein-RNA interactions. The DelPhiForce web server is available at: http://compbio.clemson.edu/delphi-force. delphi@clemson.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Banerjee, S; Rakshit, T; Sett, S; Mukhopadhyay, R
2015-10-22
One of the important properties of the transcriptional coactivator p300 is histone acetyltransferase (HAT) activity that enables p300 to influence chromatin action via histone modulation. p300 can exert its HAT action upon the other nuclear proteins too--one notable example being the transcription-factor-like protein HMGB1, which functions also as a cytokine, and whose accumulation in the cytoplasm, as a response to tissue damage, is triggered by its acetylation. Hitherto, no information on the structure and stability of the complexes between full-length p300 (p300FL) (300 kDa) and the histone/HMGB1 proteins are available, probably due to the presence of unstructured regions within p300FL that makes it difficult to be crystallized. Herein, we have adopted the high-resolution atomic force microscopy (AFM) approach, which allows molecularly resolved three-dimensional contour mapping of a protein molecule of any size and structure. From the off-rate and activation barrier values, obtained using single molecule dynamic force spectroscopy, the biochemical proposition of preferential binding of p300FL to histone H3, compared to the octameric histone, can be validated. Importantly, from the energy landscape of the dissociation events, a model for the p300-histone and the p300-HMGB1 dynamic complexes that HAT forms, can be proposed. The lower unbinding forces of the complexes observed in acetylating conditions, compared to those observed in non-acetylating conditions, indicate that upon acetylation, p300 tends to weakly associate, probably as an outcome of charge alterations on the histone/HMGB1 surface and/or acetylation-induced conformational changes. To our knowledge, for the first time, a single molecule level treatment of the interactions of HAT, where the full-length protein is considered, is being reported.
NASA Astrophysics Data System (ADS)
Sherkunov, Yury
2018-03-01
We study theoretically the van der Waals interaction between two atoms out of equilibrium with an isotropic electromagnetic field. We demonstrate that at large interatomic separations, the van der Waals forces are resonant, spatially oscillating, and nonreciprocal due to resonance absorption and emission of virtual photons. We suggest that the van der Waals forces can be controlled and manipulated by tuning the spectrum of artificially created random light.
Kazmerski, Lawrence L.
1990-01-01
A Method and apparatus for differential spectroscopic atomic-imaging is disclosed for spatial resolution and imaging for display not only individual atoms on a sample surface, but also bonding and the specific atomic species in such bond. The apparatus includes a scanning tunneling microscope (STM) that is modified to include photon biasing, preferably a tuneable laser, modulating electronic surface biasing for the sample, and temperature biasing, preferably a vibration-free refrigerated sample mounting stage. Computer control and data processing and visual display components are also included. The method includes modulating the electronic bias voltage with and without selected photon wavelengths and frequency biasing under a stabilizing (usually cold) bias temperature to detect bonding and specific atomic species in the bonds as the STM rasters the sample. This data is processed along with atomic spatial topography data obtained from the STM raster scan to create a real-time visual image of the atoms on the sample surface.
Single atom array to form a Rydberg ring
NASA Astrophysics Data System (ADS)
Zhan, Mingsheng; Xu, Peng; He, Xiaodong; Liu, Min; Wang, Jin
2012-02-01
Single atom arrays are ideal quantum systems for studying few-body quantum simulation and quantum computation [1]. Towards realizing a fully controllable array we did a lot of experimental efforts, which include rotating single atoms in a ring optical lattice generated by a spatial light modulator [2], high efficient loading of two atoms into a microscopic optical trap by dynamically reshaping the trap with a spatial light modulator [3], and trapping a single atom in a blue detuned optical bottle beam trap [4]. Recently, we succeeded in trapping up to 6 atoms in a ring optical lattice with one atom in each site. Further laser cooling the array and manipulation of the inner states will provide chance to form Ryberg rings for quantum simulation. [4pt] [1] M. Saffman et al., Rev. Mod. Phys. 82, 2313 (2010)[0pt] [2] X.D. He et al., Opt. Express 17, 21014 (2009)[0pt] [3] X.D. He et al., Opt. Express 18, 13586 (2010)[0pt] [4] P. Xu et al., Opt. Lett. 35, 2164 (2010)
Continuous parametric feedback cooling of a single atom in an optical cavity
NASA Astrophysics Data System (ADS)
Sames, C.; Hamsen, C.; Chibani, H.; Altin, P. A.; Wilk, T.; Rempe, G.
2018-05-01
We demonstrate a feedback algorithm to cool a single neutral atom trapped inside a standing-wave optical cavity. The algorithm is based on parametric modulation of the confining potential at twice the natural oscillation frequency of the atom, in combination with fast and repetitive atomic position measurements. The latter serve to continuously adjust the modulation phase to a value for which parametric excitation of the atomic motion is avoided. Cooling is limited by the measurement backaction which decoheres the atomic motion after only a few oscillations. Nonetheless, applying this feedback scheme to an ˜5 -kHz oscillation mode increases the average storage time of a single atom in the cavity by a factor of 60 to more than 2 s. In contrast to previous feedback schemes, our algorithm is also capable of cooling a much faster ˜500 -kHz oscillation mode within just microseconds. This demonstrates that parametric cooling is a powerful technique that can be applied in all experiments where optical access is limited.
NASA Astrophysics Data System (ADS)
Reichling, Michael
2004-02-01
Direct nanoscale and atomic resolution imaging is a key issue in nanoscience and nanotechnology. The invention of the dynamic force microscope in the early 1990s was an important step forward in this direction as this instrument provides a universal tool for measuring the topography and many other physical and chemical properties of surfaces at the nanoscale. Operation in the so-called non-contact mode now allows direct atomic resolution imaging of electrically insulating surfaces and nanostructures which has been an unsolved problem during the first decade of nanotechnology. Today, we face a most rapid development of the technique and an extension of its capabilities far beyond imaging; atomically resolved force spectroscopy provides information about local binding properties and researchers now develop sophisticated schemes of force controlled atomic manipulation with the tip of the force microscope. Progress in the field of non-contact force microscopy is discussed at the annually held NC-AFM conferences that are part of a series started in 1998 with a meeting in Osaka, Japan. The 6th International Conference on Non-contact Atomic Force Microscopy took place in Dingle, Ireland, from 31 August to 3 September 2003 and this special issue is a compilation of the original publications of work presented at this meeting. The papers published here well reflect recent achievements, current trends and some of the challenging new directions in non-contact force microscopy that have been discussed during the most stimulating conference days in Dingle. Fundamental aspects of forces and dissipation relevant in imaging and spectroscopy have been covered by experimental and theoretical contributions yielding a more detailed understanding of tip--surface interaction in force microscopy. Novel and improved imaging and spectroscopy techniques have been introduced that either improve the performance of force microscopy or pave the way towards new functionalities and applications. With regard to studies on the specific systems investigated, there was a strong emphasis on oxides and ionics, as well as on organic systems. Following previous pioneering work in uncovering the atomic structure of insulating oxides with force microscopy, it was shown in the meeting that this important class of materials is now accessible for a quantitative atomic scale surface characterization. Single organic molecules and ordered organic layers are building blocks for functional nanostructures currently developed in many laboratories for applications in molecular electronics and sensor technologies. The Dingle conference impressively demonstrated that dynamic force microscopy is ready for its application as an analytical tool for these promising future nanotechnologies. The meeting was a great success scientifically and participants enjoyed the beauty of the conference site. I would like to thank all members of the international steering committee, the programme committee and the co-chairs, J Pethica, A Shluger and G Thornton, for their efforts in preparing the meeting. The members of the local organising committee, J Ballentine-Armstrong, G Cross, S Dunne, S Jarvis and Ö Özer, kept the meeting running smoothly and created a very pleasant atmosphere. The generous financial support from Science Foundation Ireland (SFI), is greatly appreciated; SFI is dramatically raising the profile of Irish science. I would also like to express my sincere gratitude to N Couzin and the journal team from Institute of Physics Publishing for their editorial management and perfect co-operation in the preparation of this special issue.
Achieving nonlinear optical modulation via four-wave mixing in a four-level atomic system
NASA Astrophysics Data System (ADS)
Li, Hai-Chao; Ge, Guo-Qin; Zubairy, M. Suhail
2018-05-01
We propose an accessible scheme for implementing tunable nonlinear optical amplification and attenuation via a synergetic mechanism of four-wave mixing (FWM) and optical interference in a four-level ladder-type atomic system. By constructing a cyclic atom-field interaction, we show that two reverse FWM processes can coexist via optical transitions in different branches. In the suitable input-field conditions, strong interference effects between the input fields and the generated FWM fields can be induced and result in large amplification and deep attenuation of the output fields. Moreover, such an optical modulation from enhancement to suppression can be controlled by tuning the relative phase. The quantum system can be served as a switchable optical modulator with potential applications in quantum nonlinear optics.
Atomic Force Microscopy of Biological Membranes
Frederix, Patrick L.T.M.; Bosshart, Patrick D.; Engel, Andreas
2009-01-01
Abstract Atomic force microscopy (AFM) is an ideal method to study the surface topography of biological membranes. It allows membranes that are adsorbed to flat solid supports to be raster-scanned in physiological solutions with an atomically sharp tip. Therefore, AFM is capable of observing biological molecular machines at work. In addition, the tip can be tethered to the end of a single membrane protein, and forces acting on the tip upon its retraction indicate barriers that occur during the process of protein unfolding. Here we discuss the fundamental limitations of AFM determined by the properties of cantilevers, present aspects of sample preparation, and review results achieved on reconstituted and native biological membranes. PMID:19167286
Preparation and atomic force microscopy of CTAB stabilized polythiophene nanoparticles thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graak, Pinki; Devi, Ranjna; Kumar, Dinesh
2016-05-06
Polythiophene nanoparticles were synthesized by iron catalyzed oxidative polymerization method. Polythiophene formation was detected by UV-Visible spectroscopy with λmax 375nm. Thin films of CTAB stabilized polythiophene nanoparticles was deposited on n-type silicon wafer by spin coating technique at 3000rpm in three cycles. Thickness of the thin films was computed as 300-350nm by ellipsometry. Atomic force micrscopyrevealws the particle size of polymeric nanoparticles in the range of 30nm to 100nm. Roughness of thinfilm was also analyzed from the atomic force microscopy data by Picoimage software. The observed RMS value lies in the range of 6 nm to 12 nm.
Lintilhac, Phillip M.; Vesecky, Thompson B.
1995-01-01
Apparatus and methods are disclosed facilitating the application of forces and measurement of dimensions of a test subject. In one arrangement the test subject is coupled to a forcing frame and controlled forces applied thereto. Force applied to the test subject is measured and controlled. A dimensional characteristic of the test subject, such as growth, is measured by a linear variable differential transformer. The growth measurement data can be used to control the force applied. The transducer module receives force and dimensional data from the forcing frame. The transducer module is a separate, microprocessor-based unit that communicates the test data to a controller unit that controls the application of force to the test subject and receives the test data from the transducer module for force control, storage, and/or communication to the user.
Lintilhac, P.M.; Vesecky, T.B.
1995-09-19
An apparatus and methods are disclosed facilitating the application of forces and measurement of dimensions of a test subject. In one arrangement the test subject is coupled to a forcing frame and controlled forces applied thereto. Force applied to the test subject is measured and controlled. A dimensional characteristic of the test subject, such as growth, is measured by a linear variable differential transformer. The growth measurement data can be used to control the force applied. The transducer module receives force and dimensional data from the forcing frame. The transducer module is a separate, microprocessor-based unit that communicates the test data to a controller unit that controls the application of force to the test subject and receives the test data from the transducer module for force control, storage, and/or communication to the user. 8 figs.
Inter-atomic force constants of BaF{sub 2} by diffuse neutron scattering measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakuma, Takashi, E-mail: sakuma@mx.ibaraki.ac.jp; Makhsun,; Sakai, Ryutaro
2015-04-16
Diffuse neutron scattering measurement on BaF{sub 2} crystals was performed at 10 K and 295 K. Oscillatory form in the diffuse scattering intensity of BaF{sub 2} was observed at 295 K. The correlation effects among thermal displacements of F-F atoms were obtained from the analysis of oscillatory diffuse scattering intensity. The force constants among neighboring atoms in BaF{sub 2} were determined and compared to those in ionic crystals and semiconductors.
Coercion from the Air: The United States Use of Airpower to Influence End of Conflict Negotiations
2017-05-25
shock of two atomic bombs drove the Japanese to surrender. In the months and days leading to the armistice in Korea, Far East Air Force (FEAF...mainland by the Twentieth Air Force and the shock of two atomic bombs drove the Japanese to surrender. In the months and days leading to the...increasing destruction brought upon the Japanese population and war-making capacity combined with the shock of two atomic bombs to drive the Japanese towards
Controlled ionic condensation at the surface of a native extremophile membrane
NASA Astrophysics Data System (ADS)
Contera, Sonia Antoranz; Voïtchovsky, Kislon; Ryan, John F.
2010-02-01
At the nanoscale level biological membranes present a complex interface with the solvent. The functional dynamics and relative flexibility of membrane components together with the presence of specific ionic effects can combine to create exciting new phenomena that challenge traditional theories such as the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory or models interpreting the role of ions in terms of their ability to structure water (structure making/breaking). Here we investigate ionic effects at the surface of a highly charged extremophile membrane composed of a proton pump (bacteriorhodopsin) and archaeal lipids naturally assembled into a 2D crystal. Using amplitude-modulation atomic force microscopy (AM-AFM) in solution, we obtained sub-molecular resolution images of ion-induced surface restructuring of the membrane. We demonstrate the presence of a stiff cationic layer condensed at its extracellular surface. This layer cannot be explained by traditional continuum theories. Dynamic force spectroscopy experiments suggest that it is produced by electrostatic correlation mediated by a Manning-type condensation of ions. In contrast, the cytoplasmic surface is dominated by short-range repulsive hydration forces. These findings are relevant to archaeal bioenergetics and halophilic adaptation. Importantly, they present experimental evidence of a natural system that locally controls its interactions with the surrounding medium and challenges our current understanding of biological interfaces.At the nanoscale level biological membranes present a complex interface with the solvent. The functional dynamics and relative flexibility of membrane components together with the presence of specific ionic effects can combine to create exciting new phenomena that challenge traditional theories such as the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory or models interpreting the role of ions in terms of their ability to structure water (structure making/breaking). Here we investigate ionic effects at the surface of a highly charged extremophile membrane composed of a proton pump (bacteriorhodopsin) and archaeal lipids naturally assembled into a 2D crystal. Using amplitude-modulation atomic force microscopy (AM-AFM) in solution, we obtained sub-molecular resolution images of ion-induced surface restructuring of the membrane. We demonstrate the presence of a stiff cationic layer condensed at its extracellular surface. This layer cannot be explained by traditional continuum theories. Dynamic force spectroscopy experiments suggest that it is produced by electrostatic correlation mediated by a Manning-type condensation of ions. In contrast, the cytoplasmic surface is dominated by short-range repulsive hydration forces. These findings are relevant to archaeal bioenergetics and halophilic adaptation. Importantly, they present experimental evidence of a natural system that locally controls its interactions with the surrounding medium and challenges our current understanding of biological interfaces. Electronic supplementary information (ESI) available: Figs. S1 and S2: amplitude- and phase-extension curves used to derive the data presented in Figs. 2 and 4. See DOI: 10.1039/b9nr00248k
Extremely small bandgaps, engineered by controlled multi-scale ordering in InAsSb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarney, W. L.; Svensson, S. P.; Lin, Y.
2016-06-07
The relationship between the effective bandgap and the crystalline structure in ordered InAsSb material has been studied. Modulation of the As/Sb ratio was induced along the growth direction during molecular beam epitaxy, producing a strained layer superlattice. To enable the use of concentration ratios near unity in both layers in the period, the structures were grown with negligible net strain on a virtual substrate with a lattice constant considerably larger than that of GaSb. The bandgap line-up of InAsSb layers with different compositions is such that a type II superlattice is formed, which exhibits smaller bandgaps than either of themore » two constituents. It can also be smaller than the possible minimum direct-bandgap of the alloy. From observations of CuPt ordering in bulk layers with small amounts of strain of both signs, we postulate that strain is the main driving force for atomic ordering in InAsSb. Because the modulated structures exhibit small but opposing amounts of strain, both layers in the period exhibit ordering at the atomic scale throughout the structure. Since the strain can be controlled, the ordering can be controlled and sustained for arbitrary thick layers, unlike the situation in uniform bulk layers where the residual strain eventually leads to dislocation formation. This offers a unique way of using ordering at two different scales to engineer the band-structure.« less
USDA-ARS?s Scientific Manuscript database
Single molecular detection of pathogens and toxins of interest to food safety is within grasp using technology such as Atomic Force Microscopy. Using antibodies or specific aptamers connected to the AFM tip make it possible to detect a pathogen molecule on a surface. However, it also becomes necess...
Ryan Wagner; Robert J. Moon; Arvind Raman
2016-01-01
Quantification of the mechanical properties of cellulose nanomaterials is key to the development of new cellulose nanomaterial based products. Using contact resonance atomic force microscopy we measured and mapped the transverse elastic modulus of three types of cellulosic nanoparticles: tunicate cellulose nanocrystals, wood cellulose nanocrystals, and wood cellulose...
Coffee Cup Atomic Force Microscopy
ERIC Educational Resources Information Center
Ashkenaz, David E.; Hall, W. Paige; Haynes, Christy L.; Hicks, Erin M.; McFarland, Adam D.; Sherry, Leif J.; Stuart, Douglas A.; Wheeler, Korin E.; Yonzon, Chanda R.; Zhao, Jing; Godwin, Hilary A.; Van Duyne, Richard P.
2010-01-01
In this activity, students use a model created from a coffee cup or cardstock cutout to explore the working principle of an atomic force microscope (AFM). Students manipulate a model of an AFM, using it to examine various objects to retrieve topographic data and then graph and interpret results. The students observe that movement of the AFM…
Tai, Tamin; Karácsony, Orsolya; Bocharova, Vera; ...
2016-02-18
This article describes how the use of a hybrid atomic force microscopy/infrared spectroscopy/mass spectrometry imaging platform was demonstrated for the acquisition and correlation of nanoscale sample surface topography and chemical images based on infrared spectroscopy and mass spectrometry.
Emmrich, Matthias; Huber, Ferdinand; Pielmeier, Florian; Welker, Joachim; Hofmann, Thomas; Schneiderbauer, Maximilian; Meuer, Daniel; Polesya, Svitlana; Mankovsky, Sergiy; Ködderitzsch, Diemo; Ebert, Hubert; Giessibl, Franz J
2015-04-17
Clusters built from individual iron atoms adsorbed on surfaces (adatoms) were investigated by atomic force microscopy (AFM) with subatomic resolution. Single copper and iron adatoms appeared as toroidal structures and multiatom clusters as connected structures, showing each individual atom as a torus. For single adatoms, the toroidal shape of the AFM image depends on the bonding symmetry of the adatom to the underlying structure [twofold for copper on copper(110) and threefold for iron on copper(111)]. Density functional theory calculations support the experimental data. The findings correct our previous work, in which multiple minima in the AFM signal were interpreted as a reflection of the orientation of a single front atom, and suggest that dual and triple minima in the force signal are caused by dimer and trimer tips, respectively. Copyright © 2015, American Association for the Advancement of Science.
Force-field parameters of the Psi and Phi around glycosidic bonds to oxygen and sulfur atoms.
Saito, Minoru; Okazaki, Isao
2009-12-01
The Psi and Phi torsion angles around glycosidic bonds in a glycoside chain are the most important determinants of the conformation of a glycoside chain. We determined force-field parameters for Psi and Phi torsion angles around a glycosidic bond bridged by a sulfur atom, as well as a bond bridged by an oxygen atom as a preparation for the next study, i.e., molecular dynamics free energy calculations for protein-sugar and protein-inhibitor complexes. First, we extracted the Psi or Phi torsion energy component from a quantum mechanics (QM) total energy by subtracting all the molecular mechanics (MM) force-field components except for the Psi or Phi torsion angle. The Psi and Phi energy components extracted (hereafter called "the remaining energy components") were calculated for simple sugar models and plotted as functions of the Psi and Phi angles. The remaining energy component curves of Psi and Phi were well represented by the torsion force-field functions consisting of four and three cosine functions, respectively. To confirm the reliability of the force-field parameters and to confirm its compatibility with other force-fields, we calculated adiabatic potential curves as functions of Psi and Phi for the model glycosides by adopting the Psi and Phi force-field parameters obtained and by energetically optimizing other degrees of freedom. The MM potential energy curves obtained for Psi and Phi well represented the QM adiabatic curves and also these curves' differences with regard to the glycosidic oxygen and sulfur atoms. Our Psi and Phi force-fields of glycosidic oxygen gave MM potential energy curves that more closely represented the respective QM curves than did those of the recently developed GLYCAM force-field. (c) 2009 Wiley Periodicals, Inc.
Nonperturbative theory of atom-surface interaction: corrections at short separations
NASA Astrophysics Data System (ADS)
Bordag, M.; Klimchitskaya, G. L.; Mostepanenko, V. M.
2018-02-01
The nonperturbative expressions for the free energy and force of interaction between a ground-state atom and a real-material surface at any temperature are presented. The transition to the Matsubara representation is performed, whereupon the comparison is made with the commonly used perturbative results based on the standard Lifshitz theory. It is shown that the Lifshitz formulas for the free energy and force of an atom-surface interaction follow from the nonperturbative ones in the lowest order of the small parameter. Numerical computations of the free energy and force for the atoms of He{\\hspace{0pt}}\\ast and Na interacting with a surface of an Au plate have been performed using the frequency-dependent dielectric permittivity of Au and highly accurate dynamic atomic polarizabilities in the framework of both the nonperturbative and perturbative theories. According to our results, the maximum deviations between the two theories are reached at the shortest atom-surface separations of about 1 nm. Simple analytic expressions for the atom-surface free energy are derived in the classical limit and for an ideal-metal plane. In the lowest order of the small parameter, they are found in agreement with the perturbative ones following from the standard Lifshitz theory. Possible applications of the obtained results in the theory of van der Waals adsorption are discussed.
Adya, Ashok K; Canetta, Elisabetta; Walker, Graeme M
2006-01-01
Morphological changes in the cell surfaces of the budding yeast Saccharomyces cerevisiae (strain NCYC 1681), and the fission yeast Schizosaccharomyces pombe (strain DVPB 1354), in response to thermal and osmotic stresses, were investigated using an atomic force microscope. With this microscope imaging, together with measurements of culture viability and cell size, it was possible to relate topological changes of the cell surface at nanoscale with cellular stress physiology. As expected, when the yeasts were exposed to thermostress or osmostress, their viability together with the mean cell volume decreased in conjunction with the increase in thermal or osmotic shock. Nevertheless, the viability of cells stressed for up to 1 h remained relatively high. For example, viabilities were >50% and >90% for the thermostressed, and >60% and >70% for the osmostressed S. cerevisiae and Schiz. pombe, respectively. Mean cell volume measurements, and bearing and roughness analyses of atomic force microscope images of stressed yeasts indicate that Schiz. pombe may be more resistant to physical stresses than S. cerevisiae. Overall, this study has highlighted the usefulness of atomic force microscope in studies of yeast stress physiology.
Harnessing the damping properties of materials for high-speed atomic force microscopy.
Adams, Jonathan D; Erickson, Blake W; Grossenbacher, Jonas; Brugger, Juergen; Nievergelt, Adrian; Fantner, Georg E
2016-02-01
The success of high-speed atomic force microscopy in imaging molecular motors, enzymes and microbes in liquid environments suggests that the technique could be of significant value in a variety of areas of nanotechnology. However, the majority of atomic force microscopy experiments are performed in air, and the tapping-mode detection speed of current high-speed cantilevers is an order of magnitude lower in air than in liquids. Traditional approaches to increasing the imaging rate of atomic force microscopy have involved reducing the size of the cantilever, but further reductions in size will require a fundamental change in the detection method of the microscope. Here, we show that high-speed imaging in air can instead be achieved by changing the cantilever material. We use cantilevers fabricated from polymers, which can mimic the high damping environment of liquids. With this approach, SU-8 polymer cantilevers are developed that have an imaging-in-air detection bandwidth that is 19 times faster than those of conventional cantilevers of similar size, resonance frequency and spring constant.
Kim, Il Kwang; Lee, Soo Il
2016-05-01
The modal decomposition of tapping mode atomic force microscopy microcantilevers in liquid environments was studied experimentally. Microcantilevers with different lengths and stiffnesses and two sample surfaces with different elastic moduli were used in the experiment. The response modes of the microcantilevers were extracted as proper orthogonal modes through proper orthogonal decomposition. Smooth orthogonal decomposition was used to estimate the resonance frequency directly. The effects of the tapping setpoint and the elastic modulus of the sample under test were examined in terms of their multi-mode responses with proper orthogonal modes, proper orthogonal values, smooth orthogonal modes and smooth orthogonal values. Regardless of the stiffness of the microcantilever under test, the first mode was dominant in tapping mode atomic force microscopy under normal operating conditions. However, at lower tapping setpoints, the flexible microcantilever showed modal distortion and noise near the tip when tapping on a hard sample. The stiff microcantilever had a higher mode effect on a soft sample at lower tapping setpoints. Modal decomposition for tapping mode atomic force microscopy can thus be used to estimate the characteristics of samples in liquid environments.
Unified Technical Concepts. Module 8: Force Transformers.
ERIC Educational Resources Information Center
Technical Education Research Center, Waco, TX.
This concept module on force transformers is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy…
Unified Technical Concepts. Module 1: Force.
ERIC Educational Resources Information Center
Technical Education Research Center, Waco, TX.
This concept module on force is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system. This…
NASA Astrophysics Data System (ADS)
Harrell, Lee; Moore, Eric; Lee, Sanggap; Hickman, Steven; Marohn, John
2011-03-01
We present data and theoretical signal and noise calculations for a protocol using parametric amplification to evade the inherent tradeoff between signal and detector frequency noise in force-gradient magnetic resonance force microscopy signals, which are manifested as a modulated frequency shift of a high- Q microcantilever. Substrate-induced frequency noise has a 1 / f frequency dependence, while detector noise exhibits an f2 dependence on modulation frequency f . Modulation of sample spins at a frequency that minimizes these two contributions typically results in a surface frequency noise power an order of magnitude or more above the thermal limit and may prove incompatible with sample spin relaxation times as well. We show that the frequency modulated force-gradient signal can be used to excite the fundamental resonant mode of the cantilever, resulting in an audio frequency amplitude signal that is readily detected with a low-noise fiber optic interferometer. This technique allows us to modulate the force-gradient signal at a sufficiently high frequency so that substrate-induced frequency noise is evaded without subjecting the signal to the normal f2 detector noise of conventional demodulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balke, Nina; Jesse, Stephen; Yu, Pu
Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less
Sensing mode atomic force microscope
Hough, Paul V. C.; Wang, Chengpu
2003-01-01
An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.
Introduction of steered molecular dynamics into UNRES coarse-grained simulations package.
Sieradzan, Adam K; Jakubowski, Rafał
2017-03-30
In this article, an implementation of steered molecular dynamics (SMD) in coarse-grain UNited RESidue (UNRES) simulations package is presented. Two variants of SMD have been implemented: with a constant force and a constant velocity. The huge advantage of SMD implementation in the UNRES force field is that it allows to pull with the speed significantly lower than the accessible pulling speed in simulations with all-atom representation of a system, with respect to a reasonable computational time. Therefore, obtaining pulling speed closer to those which appear in the atomic force spectroscopy is possible. The newly implemented method has been tested for behavior in a microcanonical run to verify the influence of introduction of artificial constrains on keeping total energy of the system. Moreover, as time dependent artificial force was introduced, the thermostat behavior was tested. The new method was also tested via unfolding of the Fn3 domain of human contactin 1 protein and the I27 titin domain. Obtained results were compared with Gø-like force field, all-atom force field, and experimental results. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Balke, Nina; Jesse, Stephen; Yu, Pu; ...
2016-09-15
Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less
Emergence of Huge Negative Spin-Transfer Torque in Atomically Thin Co layers
NASA Astrophysics Data System (ADS)
Je, Soong-Geun; Yoo, Sang-Cheol; Kim, Joo-Sung; Park, Yong-Keun; Park, Min-Ho; Moon, Joon; Min, Byoung-Chul; Choe, Sug-Bong
2017-04-01
Current-induced domain wall motion has drawn great attention in recent decades as the key operational principle of emerging magnetic memory devices. As the major driving force of the motion, the spin-orbit torque on chiral domain walls has been proposed and is currently extensively studied. However, we demonstrate here that there exists another driving force, which is larger than the spin-orbit torque in atomically thin Co films. Moreover, the direction of the present force is found to be the opposite of the prediction of the standard spin-transfer torque, resulting in the domain wall motion along the current direction. The symmetry of the force and its peculiar dependence on the domain wall structure suggest that the present force is, most likely, attributed to considerable enhancement of a negative nonadiabatic spin-transfer torque in ultranarrow domain walls. Careful measurements of the giant magnetoresistance manifest a negative spin polarization in the atomically thin Co films which might be responsible for the negative spin-transfer torque.
The Bichromatic Optical Force on the Atomic Life- time Scale
NASA Astrophysics Data System (ADS)
Corder, Christopher; Arnold, Brian; Metcalf, Harold
2013-05-01
Our experimental and theoretical studies of the bichromatic force (BF) have shown that its strength and velocity range are very much larger than those of the usual radiative force. Since the BF relies on stimulated effects, the role of spontaneous emission in laser cooling has come into question. We drive the 23 S -->33 P transition of He at λ = 389 nm with laser frequencies ωl =ωa +/- δ , where ωa is the atomic transition frequency and δ ~ 30 MHz. Thus the velocity range of the force is Δv ~ δ / 2 k = 6 m/s. Because of the large and nearly constant strength of the BF, F ~ ℏkδ / π , all atoms can reach the velocity limit in a time <= MΔv / F = π / 4ωr = 380 ns, where ωr is the atomic recoil frequency. In our experiment a beam of He atoms crosses perpendicular through the BF laser beams in 380 ns so the relatively long lifetime of the excited state (τ = 106 ns) allows one or at most two spontaneous emission events, despite Δv of many tens of recoils. We will present our initial measurements of the BF in this new domain. Supported by ONR and Dept. of Ed. GAANN.
Super-Maxwellian helium evaporation from pure and salty water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, Christine; Kann, Zachary R.; Faust, Jennifer A.
2016-01-28
Helium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4–8.5 molal LiCl and LiBr at 232–252 K. The average He atom energies exceed the flux-weighted Maxwell-Boltzmann average of 2RT by 30% for pure water and 70% for 8.5m LiBr. Classical molecular dynamics simulations closely reproduce the observed speed distributions and provide microscopic insight into the forces that eject the He atoms from solution. Comparisons of the densitymore » profile and He kinetic energies across the water-vacuum interface indicate that the He atoms are accelerated by He–water collisions within the top 1-2 layers of the liquid. We also find that the average He atom kinetic energy scales with the free energy of solvation of this sparingly soluble gas. This free-energy difference reflects the steeply decreasing potential of mean force on the He atoms in the interfacial region, whose gradient is the repulsive force that tends to expel the atoms. The accompanying sharp decrease in water density suppresses the He–water collisions that would otherwise maintain a Maxwell-Boltzmann distribution, allowing the He atom to escape at high energies. Helium is especially affected by this reduction in collisions because its weak interactions make energy transfer inefficient.« less
Study of magnetic resonance with parametric modulation in a potassium vapor cell
NASA Astrophysics Data System (ADS)
Zhang, Rui; Wang, Zhiguo; Peng, Xiang; Li, Wenhao; Li, Songjian; Guo, Hong; Cream Team
2017-04-01
A typical magnetic-resonance scheme employs a static bias magnetic field and an orthogonal driving magnetic field oscillating at the Larmor frequency, at which the atomic polarization precesses around the static magnetic field. We demonstrate in a potassium vapor cell the variations of the resonance condition and the spin precession dynamics resulting from the parametric modulation of the bias field, which are in well agreement with theoretical predictions from the Bloch equation. We show that, the driving magnetic field with the frequency detuned by different harmonics of the parametric modulation frequency can lead to resonance as well. Also, a series of frequency sidebands centered at the driving frequency and spaced by the parametric modulation frequency can be observed in the precession of the atomic polarization. These effects could be used in different atomic magnetometry applications. This work is supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 61225003) and the National Natural Science Foundation of China (Grant Nos. 61531003 and 61571018).
Nonequilibrium forces between atoms and dielectrics mediated by a quantum field
NASA Astrophysics Data System (ADS)
Behunin, Ryan O.; Hu, Bei-Lok
2011-07-01
In this paper we give a first principles microphysics derivation of the nonequilibrium forces between an atom, treated as a three-dimensional harmonic oscillator, and a bulk dielectric medium modeled as a continuous lattice of oscillators coupled to a reservoir. We assume no direct interaction between the atom and the medium but there exist mutual influences transmitted via a common electromagnetic field. By employing concepts and techniques of open quantum systems we introduce coarse-graining to the physical variables—the medium, the quantum field, and the atom’s internal degrees of freedom, in that order—to extract their averaged effects from the lowest tier progressively to the top tier. The first tier of coarse-graining provides the averaged effect of the medium upon the field, quantified by a complex permittivity (in the frequency domain) describing the response of the dielectric to the field in addition to its back action on the field through a stochastic forcing term. The last tier of coarse-graining over the atom’s internal degrees of freedom results in an equation of motion for the atom’s center of mass from which we can derive the force on the atom. Our nonequilibrium formulation provides a fully dynamical description of the atom’s motion including back-action effects from all other relevant variables concerned. In the long-time limit we recover the known results for the atom-dielectric force when the combined system is in equilibrium or in a nonequilibrium stationary state.
ERIC Educational Resources Information Center
Farina, William J., Jr.; Bodzin, Alec M.
2018-01-01
Web-based learning is a growing field in education, yet empirical research into the design of high quality Web-based university science instruction is scarce. A one-week asynchronous online module on the Bohr Model of the atom was developed and implemented guided by the knowledge integration framework. The unit design aligned with three identified…
NASA Astrophysics Data System (ADS)
Hosokawa, Yoichiroh
2011-12-01
We developed a local force measurement system of a femtosecond laser-induced impulsive force, which is due to shock and stress waves generated by focusing an intense femtosecond laser into water with a highly numerical aperture objective lens. In this system, the force localized in micron-sized region was detected by bending movement of a cantilever of atomic force microscope (AFM). Here we calculated the bending movement of the AFM cantilever when the femtosecond laser is focused in water at the vicinity of the cantilever and the impulsive force is loaded on the cantilever. From the result, a method to estimate the total of the impulsive force at the laser focal point was suggested and applied to estimate intercellular adhesion strength.
Examining the origins of the hydration force between lipid bilayers using all-atom simulations.
Gentilcore, Anastasia N; Michaud-Agrawal, Naveen; Crozier, Paul S; Stevens, Mark J; Woolf, Thomas B
2010-05-01
Using 237 all-atom double bilayer simulations, we examined the thermodynamic and structural changes that occur as a phosphatidylcholine lipid bilayer stack is dehydrated. The simulated system represents a micropatch of lipid multilayer systems that are studied experimentally using surface force apparatus, atomic force microscopy and osmotic pressure studies. In these experiments, the hydration level of the system is varied, changing the separation between the bilayers, in order to understand the forces that the bilayers feel as they are brought together. These studies have found a curious, strongly repulsive force when the bilayers are very close to each other, which has been termed the "hydration force," though the origins of this force are not clearly understood. We computationally reproduce this repulsive, relatively free energy change as bilayers come together and make qualitative conclusions as to the enthalpic and entropic origins of the free energy change. This analysis is supported by data showing structural changes in the waters, lipids and salts that have also been seen in experimental work. Increases in solvent ordering as the bilayers are dehydrated are found to be essential in causing the repulsion as the bilayers come together.
NASA Astrophysics Data System (ADS)
Kulikovska, Olga; Gharagozloo-Hubmann, Kati; Stumpe, Joachim; Huey, Bryan D.; Bliznyuk, Valery N.
2012-12-01
We studied peculiarities of the structural reconstruction within holographically recorded gratings on the surface of several different amorphous azobenzene-containing polymers. Under illumination with a light interference pattern, two processes take place in this type of polymer. The first process is the light-induced orientation of azobenzene units perpendicular to the polarization plane of the incident light. The second one is a transfer of macromolecules along the grating vector (i.e. perpendicular to the grating lines). These two processes result in the creation of a volume orientation grating (alternating regions of different direction or degree of molecular orientation) and a surface relief grating (SRG)—i.e. modulation of film thickness. One can assume that both orientation of molecules and their movement might change the local mechanical properties of the material. Therefore, formation of the SRG is expected to result also in modulation of the local stiffness of the polymer film. To reveal and investigate these stiffness changes within the grating, spin-coated polymer films were prepared and the gratings were recorded on them in two different ways: with an orthogonal circular or orthogonal linear polarization of two recording light beams. A combination of atomic force microscopy (AFM) and ultrasonic force microscopy (UFM) techniques was applied for SRG development monitoring. We demonstrate that formation of the phase gratings depends on the chemical structure of polymers being used, polymer film thickness, and recording parameters, with the height of grating structures (depth of modulation) increasing with both the exposure time and the film thickness. UFM images suggest that the slopes of the topographic peaks in the phase gratings exhibit an increased stiffness with respect to the grating depressions.
Joint CPT and N resonance in compact atomic time standards
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Hohensee, Michael; Xiao, Yanhong; Phillips, David; Walsworth, Ron
2008-05-01
Currently development efforts towards small, low power atomic time standards use current-modulated VCSELs to generate phase-coherent optical sidebands that interrogate the hyperfine structure of alkali atoms such as rubidium. We describe and use a modified four-level quantum optics model to study the optimal operating regime of the joint CPT- and N-resonance clock. Resonant and non-resonant light shifts as well as modulation comb detuning effects play a key role in determining the optimal operating point of such clocks. We further show that our model is in good agreement with experimental tests performed using Rb-87 vapor cells.
Synchronous optical pumping of quantum revival beats for atomic magnetometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seltzer, S. J.; Meares, P. J.; Romalis, M. V.
2007-05-15
We observe quantum beats with periodic revivals due to nonlinear spacing of Zeeman levels in the ground state of potassium atoms, and demonstrate their synchronous optical pumping by double modulation of the pumping light at the Larmor frequency and the revival frequency. We show that synchronous pumping increases the degree of spin polarization by a factor of 4. As a practical example, we explore the application of this double-modulation technique to atomic magnetometers operating in the geomagnetic field range, and find that it can increase the sensitivity and reduce magnetic-field-orientation-dependent measurement errors endemic to alkali-metal magnetometers.
NASA Astrophysics Data System (ADS)
Wang, Deng-Shan; Liu, Jiang; Wang, Lizhen
2018-03-01
In this paper, we investigate matter-wave solitons in hybrid atomic-molecular Bose-Einstein condensates with tunable interactions and external potentials. Three types of time-modulated harmonic potentials are considered and, for each of them, two groups of exact non-autonomous matter-wave soliton solutions of the coupled Gross-Pitaevskii equation are presented. Novel nonlinear structures of these non-autonomous matter-wave solitons are analyzed by displaying their density distributions. It is shown that the time-modulated nonlinearities and external potentials can support exact non-autonomous atomic-molecular matter-wave solitons.
NASA Astrophysics Data System (ADS)
de Pablo, Pedro J.
The basic architecture of a virus consists of the capsid, a shell made up of repeating protein subunits, which packs, shuttles and delivers their genome at the right place and moment. Viral particles are endorsed with specific physicochemical properties which confer to their structures certain meta-stability whose modulation permits fulfilling each task of the viral cycle. These natural designed capabilities have impelled using viral capsids as protein containers of artificial cargoes (drugs, polymers, enzymes, minerals) with applications in biomedical and materials sciences. Both natural and artificial protein cages have to protect their cargo against a variety of physicochemical aggressive environments, including molecular impacts of highly crowded media, thermal and chemical stresses, and osmotic shocks. Viral cages stability under these ambiences depend not only on the ultimate structure of the external capsid, which rely on the interactions between protein subunits, but also on the nature of the cargo. During the last decade our lab has focused on the study of protein cages with Atomic Force Microscopy (AFM) (figure 1). We are interested in stablishing links of their mechanical properties with their structure and function. In particular, mechanics provide information about the cargo storage strategies of both natural and virus-derived protein cages. Mechanical fatigue has revealed as a nanosurgery tool to unveil the strength of the capisd subunit bonds. We also interrogated the electrostatics of individual protein shells. Our AFM-fluorescence combination provided information about DNA diffusing out cracked-open protein cages in real time.
Method for lateral force calibration in atomic force microscope using MEMS microforce sensor.
Dziekoński, Cezary; Dera, Wojciech; Jarząbek, Dariusz M
2017-11-01
In this paper we present a simple and direct method for the lateral force calibration constant determination. Our procedure does not require any knowledge about material or geometrical parameters of an investigated cantilever. We apply a commercially available microforce sensor with advanced electronics for direct measurement of the friction force applied by the cantilever's tip to a flat surface of the microforce sensor measuring beam. Due to the third law of dynamics, the friction force of the equal value tilts the AFM cantilever. Therefore, torsional (lateral force) signal is compared with the signal from the microforce sensor and the lateral force calibration constant is determined. The method is easy to perform and could be widely used for the lateral force calibration constant determination in many types of atomic force microscopes. Copyright © 2017 Elsevier B.V. All rights reserved.
Cohen, Oren; Kapteyn, Henry C.; Mumane, Margaret M.
2010-02-16
Phase matching high harmonic generation (HHG) uses a single, long duration non-collinear modulating pulse intersecting the driving pulse. A femtosecond driving pulse is focused into an HHG medium (such as a noble gas) to cause high-harmonic generation (HHG), for example in the X-ray region of the spectrum, via electrons separating from and recombining with gas atoms. A non-collinear pulse intersects the driving pulse within the gas, and modulates the field seen by the electrons while separated from their atoms. The modulating pulse is low power and long duration, and its frequency and amplitude is chosen to improve HHG phase matching by increasing the areas of constructive interference between the driving pulse and the HHG, relative to the areas of destructive interference.
Phantom force induced by tunneling current: a characterization on Si(111).
Weymouth, A J; Wutscher, T; Welker, J; Hofmann, T; Giessibl, F J
2011-06-03
Simultaneous measurements of tunneling current and atomic forces provide complementary atomic-scale data of the electronic and structural properties of surfaces and adsorbates. With these data, we characterize a strong impact of the tunneling current on the measured force on samples with limited conductivity. The effect is a lowering of the effective gap voltage through sample resistance which in turn lowers the electrostatic attraction, resulting in an apparently repulsive force. This effect is expected to occur on other low-conductance samples, such as adsorbed molecules, and to strongly affect Kelvin probe measurements when tunneling occurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhunthan, N.; Singh, Om Pal; Toutam, Vijaykumar, E-mail: toutamvk@nplindia.org
2015-10-15
Graphical abstract: Experimental setup for conducting AFM (C-AFM). - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film was grown by reactive co-sputtering. • The electronic properties were probed using conducting atomic force microscope, scanning Kelvin probe microscopy and scanning capacitance microscopy. • C-AFM current flow mainly through grain boundaries rather than grain interiors. • SKPM indicated higher potential along the GBs compared to grain interiors. • The SCM explains that charge separation takes place at the interface of grain and grain boundary. - Abstract: Electrical characterization of grain boundaries (GB) of Cu-deficient CZTS (Copper Zinc Tin Sulfide) thin films wasmore » done using atomic force microscopic (AFM) techniques like Conductive atomic force microscopy (CAFM), Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM). Absorbance spectroscopy was done for optical band gap calculations and Raman, XRD and EDS for structural and compositional characterization. Hall measurements were done for estimation of carrier mobility. CAFM and KPFM measurements showed that the currents flow mainly through grain boundaries (GB) rather than grain interiors. SCM results showed that charge separation mainly occurs at the interface of grain and grain boundaries and not all along the grain boundaries.« less
High Atom Number in Microsized Atom Traps
2015-12-14
forces on the order of (hbar)(k) (Omega), where Omega is the laser Rabi frequency. We have observed behavior compatible with bichromatic slowing and... Rabi frequency. We have observed behavior compatible with bichromatic slowing and cooling of some atoms in atomic beam. Results were presented at the
2012-01-01
Implicit solvation is a mean force approach to model solvent forces acting on a solute molecule. It is frequently used in molecular simulations to reduce the computational cost of solvent treatment. In the first instance, the free energy of solvation and the associated solvent–solute forces can be approximated by a function of the solvent-accessible surface area (SASA) of the solute and differentiated by an atom–specific solvation parameter σiSASA. A procedure for the determination of values for the σiSASA parameters through matching of explicit and implicit solvation forces is proposed. Using the results of Molecular Dynamics simulations of 188 topologically diverse protein structures in water and in implicit solvent, values for the σiSASA parameters for atom types i of the standard amino acids in the GROMOS force field have been determined. A simplified representation based on groups of atom types σgSASA was obtained via partitioning of the atom–type σiSASA distributions by dynamic programming. Three groups of atom types with well separated parameter ranges were obtained, and their performance in implicit versus explicit simulations was assessed. The solvent forces are available at http://mathbio.nimr.mrc.ac.uk/wiki/Solvent_Forces. PMID:23180979
Applications of AFM for atomic manipulation and spectroscopy
NASA Astrophysics Data System (ADS)
Custance, Oscar
2009-03-01
Since the first demonstration of atom-by-atom assembly [1], atomic manipulation with scanning tunneling microscopy has yielded stunning realizations in nanoscience. A new exciting panorama has been recently opened with the possibility of manipulating atoms at surfaces using atomic force microscopy (AFM) [2-5]. In this talk, we will present two different approaches that enable patterning structures at semiconductor surfaces by manipulating individual atoms with AFM and at room temperature [2, 3]. We will discuss the physics behind each protocol through the analysis of the measured forces associated with these manipulations [3-5]. Another challenging issue in scanning probe microscopy is the ability to disclose the local chemical composition of a multi-element system at atomic level. Here, we will introduce a single-atom chemical identification method, which is based on detecting the forces between the outermost atom of the AFM tip and the atoms at a surface [6]. We demonstrate this identification procedure on a particularly challenging system, where any discrimination attempt based solely on topographic measurements would be impossible to achieve. [4pt] References: [0pt] [1] D. M. Eigler and E. K. Schweizer, Nature 344, 524 (1990); [0pt] [2] Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, O. Custance and S. Morita, Nature Materials 4, 156 (2005); [0pt] [3] Y. Sugimoto, P. Pou, O. Custance, P. Jelinek, M. Abe, R. Perez and S. Morita, Science 322, 413 (2008); [0pt] [4] Y. Sugimoto, P. Jelinek, P. Pou, M. Abe, S. Morita, R. Perez and O. Custance, Phys. Rev. Lett. 98, 106104 (2007); [0pt] [5] M. Ternes, C. P. Lutz, C. F. Hirjibehedin, F. J. Giessibl and A. J. Heinrich, Science 319, 1066 (2008); [0pt] [6] Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita, and O. Custance, Nature 446, 64 (2007)
NASA Astrophysics Data System (ADS)
Arai, Toyoko; Inamura, Ryo; Kura, Daiki; Tomitori, Masahiko
2018-03-01
The kinetic energy of the oscillating cantilever of noncontact atomic force microscopy (nc-AFM) at room temperature was considerably dissipated over regions between a Si adatom and its neighboring rest atom for Si(111 )-(7 ×7 ) in close proximity to a Si tip on the cantilever. However, nc-AFM topographic images showed no atomic features over those regions, which were the hollow sites of the (7 ×7 ). This energy dissipation likely originated from displacement of Si adatoms with respect to the tip over the hollow sites, leading to a lateral shift of the adatoms toward the rest atom. This interaction led to hysteresis over each cantilever oscillation cycle; when the tip was retracted, the Si adatom likely returned to its original position. To confirm the atomic processes involved in the force interactions through Si dangling bonds, the Si(111 )-(7 ×7 ) surface was partly terminated with atomic hydrogen (H) and examined by nc-AFM. When the Si adatoms and/or the rest atoms were terminated with H, the hollow sites were not bright (less dissipation) in images of the energy dissipation channels by nc-AFM. The hollow sites acted as metastable sites for Si adatoms in surface diffusion and atom manipulation; thus, the dissipation energy which is saturated on the tip likely corresponds to the difference in the potential energy between the hollow site and the Si adatom site. In this study, we demonstrated the ability of dissipation channels of nc-AFM to enable visualization of the dynamics of atoms and molecules on surfaces, which cannot be revealed by nc-AFM topographic images alone.
Quantum state atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passian, Ali; Siopsis, George
New classical modalities of atomic force microscopy continue to emerge to achieve higher spatial, spectral, and temporal resolution for nanometrology of materials. Here, we introduce the concept of a quantum mechanical modality that capitalizes on squeezed states of probe displacement. We show that such squeezing is enabled nanomechanically when the probe enters the van der Waals regime of interaction with a sample. The effect is studied in the non-contact mode, where we consider the parameter domains characterizing the attractive regime of the probe-sample interaction force.
Quantum state atomic force microscopy
Passian, Ali; Siopsis, George
2017-04-10
New classical modalities of atomic force microscopy continue to emerge to achieve higher spatial, spectral, and temporal resolution for nanometrology of materials. Here, we introduce the concept of a quantum mechanical modality that capitalizes on squeezed states of probe displacement. We show that such squeezing is enabled nanomechanically when the probe enters the van der Waals regime of interaction with a sample. The effect is studied in the non-contact mode, where we consider the parameter domains characterizing the attractive regime of the probe-sample interaction force.
2011-09-01
glancing angle X - ray diffraction (GAXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and electrochemical...Emission SEM FWHM full width at half maximum GAXRD glancing angle X - ray diffraction H3COCH2CH2OH 2-methoxyethanol LiMn2O4 lithium manganese oxide...were characterized by scanning electron microscopy (SEM), X - ray diffraction (XRD), and atomic force microscopy (AFM). In addition,
ERIC Educational Resources Information Center
Gokalp, Sumeyra; Horton, William; Jónsdóttir-Lewis, Elfa B.; Foster, Michelle; Török, Marianna
2018-01-01
To facilitate learning advanced instrumental techniques, essential tools for visualizing biomaterials, a simple and versatile laboratory exercise demonstrating the use of Atomic Force Microscopy (AFM) in biomedical applications was developed. In this experiment, the morphology of heat-denatured and amyloid-type aggregates formed from a low-cost…
USDA-ARS?s Scientific Manuscript database
The specific interactions between ricin and anti-ricin aptamer were measured with atomic force microscopy (AFM) and surface plasmon resonance (SPR) spectrometry and the results were compared. In AFM, a single-molecule experiment with ricin functionalized AFM tip was used for scanning the aptamer mol...
Method for Measuring Intramolecular Forces by Atomic Force Microscopy.
1999-01-27
Unfolding of Individual Thin Immunoglobulin Domains by AMF ," Science, 1997,276, pp 1109 15 -1112, incorporated herein by reference. The use of atomic...a DNA Mnlemli» 11 A 511 -bp PCR fragment was amplified from human genomic DNA using a 5’-biotinylated 12 "proximal" primer and 5’-amino-modified
A Computer-Controlled Classroom Model of an Atomic Force Microscope
ERIC Educational Resources Information Center
Engstrom, Tyler A.; Johnson, Matthew M.; Eklund, Peter C.; Russin, Timothy J.
2015-01-01
The concept of "seeing by feeling" as a way to circumvent limitations on sight is universal on the macroscopic scale--reading Braille, feeling one's way around a dark room, etc. The development of the atomic force microscope (AFM) in 1986 extended this concept to imaging in the nanoscale. While there are classroom demonstrations that use…
Atomic force microscopy of torus-bearing pit membranes
Roland R. Dute; Thomas Elder
2011-01-01
Atomic force microscopy was used to compare the structures of dried, torus-bearing pit membranes from four woody species, three angiosperms and one gymnosperm. Tori of Osmanthus armatus are bipartite consisting of a pustular zone overlying parallel sets of microfibrils that form a peripheral corona. Microfibrils of the corona form radial spokes as they traverse the...
Characterizing the surface roughness of thermomechanical pulp fibers with atomic force microscopy
Rebecca Snell; Leslie H. Groom; Timothy G. Rials
2001-01-01
Loblolly pine, separated into mature and juvenile portions, was refined at various pressures (4, 8 and 12 bar). Fiber surfaces were investigated using a Scanning Electron Microscope (SEM) and an Atomic Force Microscope (AFM). Refiner pressure had a significant effect on the fiber surefaces. SEM images showed an apparent increase in surface roughness with increased...
Convergent Inquiry in Science & Engineering: The Use of Atomic Force Microscopy in a Biology Class
ERIC Educational Resources Information Center
Lee, Il-Sun; Byeon, Jung-Ho; Kwon, Yong-Ju
2013-01-01
The purpose of this study was to design a teaching method suitable for science high school students using atomic force microscopy. During their scientific inquiry procedure, high school students observed a micro-nanostructure of a biological sample, which is unobservable via an optical microscope. The developed teaching method enhanced students'…
USDA-ARS?s Scientific Manuscript database
Atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) are used to investigate vitreous (hard) and non-vitreous (soft) wheat kernels and their corresponding wheat flours. AFM data reveal two different microstructures. The vitreous kernel reveals a granular text...
NASA Technical Reports Server (NTRS)
Hersam, Mark C. (Inventor); Pingree, Liam S. C. (Inventor)
2008-01-01
A conductive atomic force microscopy (cAFM) technique which can concurrently monitor topography, charge transport, and electroluminescence with nanometer spatial resolution. This cAFM approach is particularly well suited for probing the electroluminescent response characteristics of operating organic light-emitting diodes (OLEDs) over short length scales.
A Fifth Force: Generalized through Superconductors
NASA Technical Reports Server (NTRS)
Robertson, Glen A.
1999-01-01
The connection between the Biefield-Brown Effect, the recent repeat of the 1902 Trouton-Noble (TN) experiments, and the gravity shielding experiments was explored. This connection is visualized through high capacitive electron concentrations. From this connection, a theory is proposed that connects mass energy to gravity and a fifth force. The theory called the Gravi-Atomic Energy theory presents two new terms: Gravi-atomic energy and quantum vacuum pressure (QVP). Gravi-atomic energy is defined as the radiated mass energy, which acts on vacuum energy to create a QVP about a mass, resulting in gravity and the fifth force. The QVP emission from a superconductor was discussed followed by the description of a test for QVP from a superconductor using a Cavendish balance.
NASA Technical Reports Server (NTRS)
Rodgers, Stephen L.; Reisz, Al; Wyckoff, James (Technical Monitor)
2002-01-01
Galactic forces spiral across the cosmos fueled by nuclear fission and fusion and atoms in plasmatic states with throes of constraints of gravitational forces and magnetic fields, In their wanderings these galaxies spew light, radiation, atomic and subatomic particles throughout the universe. Throughout the ages of man visions of journeying through the stars have been wondered. If humans and human devices from Earth are to go beyond the Moon and journey into deep space, it must be accomplished with like forces of the cosmos such as electrical fields, magnetic fields, ions, electrons and energies generated from the manipulation of subatomic and atomic particles. Forms of electromagnetic waves such as light, radio waves and lasers must control deep space engines. We won't get far on our Earth accustomed hydrocarbon fuels.
Cooling an Optically Trapped Ultracold Fermi Gas by Periodical Driving.
Li, Jiaming; de Melo, Leonardo F; Luo, Le
2017-03-30
We present a cooling method for a cold Fermi gas by parametrically driving atomic motions in a crossed-beam optical dipole trap (ODT). Our method employs the anharmonicity of the ODT, in which the hotter atoms at the edge of the trap feel the anharmonic components of the trapping potential, while the colder atoms in the center of the trap feel the harmonic one. By modulating the trap depth with frequencies that are resonant with the anharmonic components, we selectively excite the hotter atoms out of the trap while keeping the colder atoms in the trap, generating parametric cooling. This experimental protocol starts with a magneto-optical trap (MOT) that is loaded by a Zeeman slower. The precooled atoms in the MOT are then transferred to an ODT, and a bias magnetic field is applied to create an interacting Fermi gas. We then lower the trapping potential to prepare a cold Fermi gas near the degenerate temperature. After that, we sweep the magnetic field to the noninteracting regime of the Fermi gas, in which the parametric cooling can be manifested by modulating the intensity of the optical trapping beams. We find that the parametric cooling effect strongly depends on the modulation frequencies and amplitudes. With the optimized frequency and amplitude, we measure the dependence of the cloud energy on the modulation time. We observe that the cloud energy is changed in an anisotropic way, where the energy of the axial direction is significantly reduced by parametric driving. The cooling effect is limited to the axial direction because the dominant anharmonicity of the crossed-beam ODT is along the axial direction. Finally, we propose to extend this protocol for the trapping potentials of large anharmonicity in all directions, which provides a promising scheme for cooling quantum gases using external driving.
Application of atomic force microscopy to the study of natural and model soil particles.
Cheng, S; Bryant, R; Doerr, S H; Rhodri Williams, P; Wright, C J
2008-09-01
The structure and surface chemistry of soil particles has extensive impact on many bulk scale properties and processes of soil systems and consequently the environments that they support. There are a number of physiochemical mechanisms that operate at the nanoscale which affect the soil's capability to maintain native vegetation and crops; this includes soil hydrophobicity and the soil's capacity to hold water and nutrients. The present study used atomic force microscopy in a novel approach to provide unique insight into the nanoscale properties of natural soil particles that control the physiochemical interaction of material within the soil column. There have been few atomic force microscopy studies of soil, perhaps a reflection of the heterogeneous nature of the system. The present study adopted an imaging and force measurement research strategy that accounted for the heterogeneity and used model systems to aid interpretation. The surface roughness of natural soil particles increased with depth in the soil column a consequence of the attachment of organic material within the crevices of the soil particles. The roughness root mean square calculated from ten 25 microm(2) images for five different soil particles from a Netherlands soil was 53.0 nm, 68.0 nm, 92.2 nm and 106.4 nm for the respective soil depths of 0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm. A novel analysis method of atomic force microscopy phase images based on phase angle distribution across a surface was used to interpret the nanoscale distribution of organic material attached to natural and model soil particles. Phase angle distributions obtained from phase images of model surfaces were found to be bimodal, indicating multiple layers of material, which changed with the concentration of adsorbed humic acid. Phase angle distributions obtained from phase images of natural soil particles indicated a trend of decreasing surface coverage with increasing depth in the soil column. This was consistent with previous macroscopic determination of the proportions of organic material chemically extracted from bulk samples of the soils from which specimen particles were drawn. Interaction forces were measured between atomic force microscopy cantilever tips (Si(3)N(4)) and natural soil and model surfaces. Adhesion forces at humic acid free specimen surfaces (Av. 20.0 nN), which are primarily hydrophilic and whose interactions are subject to a significant contribution from the capillary forces, were found to be larger than those of specimen surfaces with adsorbed humic acid (Av. 6.5 nN). This suggests that adsorbed humic acid increased surface hydrophobicity. The magnitude and distribution of adhesion forces between atomic force microscopy tips and the natural particle surfaces was affected by both local surface roughness and the presence of adsorbed organic material. The present study has correlated nanoscale measurements with established macroscale methods of soil study. Thus, the research demonstrates that atomic force microscopy is an important addition to soil science that permits a multiscale analysis of the multifactorial phenomena of soil hydrophobicity and wetting.
Resolution-Adapted All-Atomic and Coarse-Grained Model for Biomolecular Simulations.
Shen, Lin; Hu, Hao
2014-06-10
We develop here an adaptive multiresolution method for the simulation of complex heterogeneous systems such as the protein molecules. The target molecular system is described with the atomistic structure while maintaining concurrently a mapping to the coarse-grained models. The theoretical model, or force field, used to describe the interactions between two sites is automatically adjusted in the simulation processes according to the interaction distance/strength. Therefore, all-atomic, coarse-grained, or mixed all-atomic and coarse-grained models would be used together to describe the interactions between a group of atoms and its surroundings. Because the choice of theory is made on the force field level while the sampling is always carried out in the atomic space, the new adaptive method preserves naturally the atomic structure and thermodynamic properties of the entire system throughout the simulation processes. The new method will be very useful in many biomolecular simulations where atomistic details are critically needed.
von Allwörden, H; Ruschmeier, K; Köhler, A; Eelbo, T; Schwarz, A; Wiesendanger, R
2016-07-01
The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped (3)He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).
Maciaszek, Jamie L; Partola, Kostyantyn; Zhang, Jing; Andemariam, Biree; Lykotrafitis, George
2014-12-18
Single-cell force spectroscopy (SCFS), an atomic force microscopy (AFM)-based assay, enables quantitative study of cell adhesion while maintaining the native state of surface receptors in physiological conditions. Human healthy and pathological red blood cells (RBCs) express a large number of surface proteins which mediate cell-cell interactions, or cell adhesion to the extracellular matrix. In particular, RBCs adhere with high affinity to subendothelial matrix laminin via the basal cell adhesion molecule and Lutheran protein (BCAM/Lu). Here, we established SCFS as an in vitro technique to study human RBC adhesion at baseline and following biochemical treatment. Using blood obtained from healthy human subjects, we recorded adhesion forces from single RBCs attached to AFM cantilevers as the cell was pulled-off of substrates coated with laminin protein. We found that an increase in the overall cell adhesion measured via SCFS is correlated with an increase in the resultant total force measured on 1 µm(2) areas of the RBC membrane. Further, we showed that SCFS can detect significant changes in the adhesive response of RBCs to modulation of the cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) pathway. Lastly, we identified variability in the RBC adhesion force to laminin amongst the human subjects, suggesting that RBCs maintain diverse levels of active BCAM/Lu adhesion receptors. By using single-cell measurements, we established a powerful new method for the quantitative measurement of single RBC adhesion with specific receptor-mediated binding. Copyright © 2014 Elsevier Ltd. All rights reserved.
Potapov, V; Reichmann, D; Abramovich, R; Filchtinski, D; Zohar, N; Ben Halevy, D; Edelman, M; Sobolev, V; Schreiber, G
2008-12-05
A new method is presented for the redesign of protein-protein interfaces, resulting in specificity of the designed pair while maintaining high affinity. The design is based on modular interface architecture and was carried out on the interaction between TEM1 beta-lactamase and its inhibitor protein, beta-lactamase inhibitor protein. The interface between these two proteins is composed of several mostly independent modules. We previously showed that it is possible to delete a complete module without affecting the overall structure of the interface. Here, we replace a complete module with structure fragments taken from nonrelated proteins. Nature-optimized fragments were chosen from 10(7) starting templates found in the Protein Data Bank. A procedure was then developed to identify sets of interacting template residues with a backbone arrangement mimicking the original module. This generated a final list of 361 putative replacement modules that were ranked using a novel scoring function based on grouped atom-atom contact surface areas. The top-ranked designed complex exhibited an affinity of at least the wild-type level and a mode of binding that was remarkably specific despite the absence of negative design in the procedure. In retrospect, the combined application of three factors led to the success of the design approach: utilizing the modular construction of the interface, capitalizing on native rather than artificial templates, and ranking with an accurate atom-atom contact surface scoring function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Day, R.D.; Russell, P.E.
The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.
The Ehrenfest force field: Topology and consequences for the definition of an atom in a molecule.
Martín Pendás, A; Hernández-Trujillo, J
2012-10-07
The Ehrenfest force is the force acting on the electrons in a molecule due to the presence of the other electrons and the nuclei. There is an associated force field in three-dimensional space that is obtained by the integration of the corresponding Hermitian quantum force operator over the spin coordinates of all of the electrons and the space coordinates of all of the electrons but one. This paper analyzes the topology induced by this vector field and its consequences for the definition of molecular structure and of an atom in a molecule. Its phase portrait reveals: that the nuclei are attractors of the Ehrenfest force, the existence of separatrices yielding a dense partitioning of three-dimensional space into disjoint regions, and field lines connecting the attractors through these separatrices. From the numerical point of view, when the Ehrenfest force field is obtained as minus the divergence of the kinetic stress tensor, the induced topology was found to be highly sensitive to choice of gaussian basis sets at long range. Even the use of large split valence and highly uncontracted basis sets can yield spurious critical points that may alter the number of attraction basins. Nevertheless, at short distances from the nuclei, in general, the partitioning of three-dimensional space with the Ehrenfest force field coincides with that induced by the gradient field of the electron density. However, exceptions are found in molecules where the electron density yields results in conflict with chemical intuition. In these cases, the molecular graphs of the Ehrenfest force field reveal the expected atomic connectivities. This discrepancy between the definition of an atom in a molecule between the two vector fields casts some doubts on the physical meaning of the integration of Ehrenfest forces over the basins of the electron density.
A single molecule study of cellulase hydrolysis of crystalline cellulose
NASA Astrophysics Data System (ADS)
Liu, Yu-San; Luo, Yonghua; Baker, John O.; Zeng, Yining; Himmel, Michael E.; Smith, Steve; Ding, Shi-You
2010-02-01
Cellobiohydrolase-I (CBH I), a processive exoglucanase secreted by Trichoderma reesei, is one of the key enzyme components in a commercial cellulase mixture currently used for processing biomass to biofuels. CBH I contains a family 7 glycoside hydrolase catalytic module, a family 1 carbohydrate-binding module (CBM), and a highlyglycosylated linker peptide. It has been proposed that the CBH I cellulase initiates the hydrolysis from the reducing end of one cellulose chain and successively cleaves alternate β-1,4-glycosidic bonds to release cellobiose as its principal end product. The role each module of CBH I plays in the processive hydrolysis of crystalline cellulose has yet to be convincingly elucidated. In this report, we use a single-molecule approach that combines optical (Total Internal Reflection Fluorescence microscopy, or TIRF-M) and non-optical (Atomic Force Microscopy, or AFM) imaging techniques to analyze the molecular motion of CBM tagged with green fluorescence protein (GFP), and to investigate the surface structure of crystalline cellulose and changes made in the structure by CBM and CBH I. The preliminary results have revealed a confined nanometer-scale movement of the TrCBM1-GFP bound to cellulose, and decreases in cellulose crystal size as well as increases in surface roughness during CBH I hydrolysis of crystalline cellulose.
Villarreal, Oscar D; Chen, Liao Y; Whetten, Robert L; Demeler, Borries
2015-01-01
Nanometer-sized gold particles (AuNPs) are of peculiar interest because their behaviors in an aqueous solution are sensitive to changes in environmental factors including the size and shape of the solute ions. In order to determine these important characteristics, we performed all-atom molecular dynamics simulations on the icosahedral Au144 nanoparticles each coated with a homogeneous set of 60 thiolates (4-mercapto-benzoate, pMBA) in eight aqueous solutions having ions of varying sizes and shapes (Na+, K+, tetramethylamonium cation TMA+, trisamonium cation TRS+, Cl−, and OH−). For each solution, we computed the reversible work (potential of mean of force) to bring two nanoparticles together as a function of their separation distance. We found that the behavior of pMBA protected Au144 nanoparticles can be readily modulated by tuning their aqueous environmental factors (pH and solute ion combinations). We examined the atomistic details on how the sizes and shapes of solute ions quantitatively factor in the definitive characteristics of nanoparticle-environment and nanoparticle-nanoparticle interactions. We predict that tuning the concentrations of non-spherical composite ions such as TRS+ in an aqueous solution of AuNPs be an effective means to modulate the aggregation propensity desired in biomedical and other applications of small charged nanoparticles. PMID:26581232
Villarreal, Oscar D; Chen, Liao Y; Whetten, Robert L; Demeler, Borries
2015-12-17
Nanometer-sized gold particles (AuNPs) are of peculiar interest because their behaviors in an aqueous solution are sensitive to changes in environmental factors including the size and shape of the solute ions. In order to determine these important characteristics, we performed all-atom molecular dynamics simulations on the icosahedral Au144 nanoparticles each coated with a homogeneous set of 60 thiolates (4-mercaptobenzoate, pMBA) in eight aqueous solutions having ions of varying sizes and shapes (Na(+), K(+), tetramethylamonium cation TMA(+), tris-ammonium cation TRS(+), Cl(-), and OH(-)). For each solution, we computed the reversible work (potential of mean of force) to bring two nanoparticles together as a function of their separation distance. We found that the behavior of pMBA protected Au144 nanoparticles can be readily modulated by tuning their aqueous environmental factors (pH and solute ion combinations). We examined the atomistic details on how the sizes and shapes of solute ions quantitatively factor in the definitive characteristics of nanoparticle-environment and nanoparticle-nanoparticle interactions. We predict that tuning the concentrations of nonspherical composite ions such as TRS(+) in an aqueous solution of AuNPs be an effective means to modulate the aggregation propensity desired in biomedical and other applications of small charged nanoparticles.
Zmantar, Tarek; Ben Slama, Rihab; Fdhila, Kais; Kouidhi, Bochra; Bakhrouf, Amina; Chaieb, Kamel
This study aims to investigate the antimicrobial and the anti-biofilm activities of Lactobacillus plantarum extract (LPE) against a panel of oral Staphylococcus aureus (n=9) and S. aureus ATCC 25923. The in vitro ability of LPE to modulate bacterial resistance to tetracycline, benzalchonium chloride, and chlorhexidine were tested also. The minimum inhibitory concentrations (MICs) and the minimal bactericidal concentrations of Lactobacillus plantarum extract, tetracycline, benzalchonium chloride and clohrhexidine were determined in absence and in presence of a sub-MIC doses of LPE (1/2 MIC). In addition, the LPE potential to inhibit biofilm formation was assessed by microtiter plate and atomic force microscopy assays. Statistical analysis was performed on SPSS v. 17.0 software using Friedman test and Wilcoxon signed ranks test. These tests were used to assess inter-group difference (p<0.05). Our results revealed that LPE exhibited a significant antimicrobial and anti-biofilm activities against the tested strains. A synergistic effect of LPEs and drug susceptibility was observed with a 2-8-fold reduction. LPE may be considered to have resistance-modifying activity. A more detailed investigation is necessary to determine the active compound responsible for therapeutic and disinfectant modulation. Copyright © 2016 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.
Parametric modulation of thermomagnetic convection in magnetic fluids.
Engler, H; Odenbach, S
2008-05-21
Previous theoretical investigations on thermal flow in a horizontal fluid layer have shown that the critical temperature difference, where heat transfer changes from diffusion to convective flow, depends on the frequency of a time-modulated driving force. The driving force of thermal convection is the buoyancy force resulting from the interaction of gravity and the density gradient provided by a temperature difference in the vertical direction of a horizontal fluid layer. An experimental investigation of such phenomena fails because of technical problems arising if buoyancy is to be changed by altering the temperature difference or gravitational acceleration. The possibility of influencing convective flow in a horizontal magnetic fluid layer by magnetic forces might provide us with a means to solve the problem of a time-modulated magnetic driving force. An experimental setup to investigate the dependence of the critical temperature difference on the frequency of the driving force has been designed and implemented. First results show that the time modulation of the driving force has significant influence on the strength of the convective flow. In particular a pronounced minimum in the strength of convection has been found for a particular frequency.
Motor control differs for increasing and releasing force
Park, Seoung Hoon; Kwon, MinHyuk; Solis, Danielle; Lodha, Neha
2016-01-01
Control of the motor output depends on our ability to precisely increase and release force. However, the influence of aging on force increase and release remains unknown. The purpose of this study, therefore, was to determine whether force control differs while increasing and releasing force in young and older adults. Sixteen young adults (22.5 ± 4 yr, 8 females) and 16 older adults (75.7 ± 6.4 yr, 8 females) increased and released force at a constant rate (10% maximum voluntary contraction force/s) during an ankle dorsiflexion isometric task. We recorded the force output and multiple motor unit activity from the tibialis anterior (TA) muscle and quantified the following outcomes: 1) variability of force using the SD of force; 2) mean discharge rate and variability of discharge rate of multiple motor units; and 3) power spectrum of the multiple motor units from 0–4, 4–10, 10–35, and 35–60 Hz. Participants exhibited greater force variability while releasing force, independent of age (P < 0.001). Increased force variability during force release was associated with decreased modulation of multiple motor units from 35 to 60 Hz (R2 = 0.38). Modulation of multiple motor units from 35 to 60 Hz was further correlated to the change in mean discharge rate of multiple motor units (r = 0.66) and modulation from 0 to 4 Hz (r = −0.64). In conclusion, these findings suggest that force control is altered while releasing due to an altered modulation of the motor units. PMID:26961104
Siuti, Piro; Green, Calvin; Edwards, Amanda Nicole; Doktycz, Mitchel J; Alexandre, Gladys
2011-10-01
The Azospirillum brasilense chemotaxis-like Che1 signal transduction pathway was recently shown to modulate changes in adhesive cell surface properties that, in turn, affect cell-to-cell aggregation and flocculation behaviors rather than flagellar-mediated chemotaxis. Attachment to surfaces and root colonization may be functions related to flocculation. Here, the conditions under which A. brasilense wild-type Sp7 and che1 mutant strains attach to abiotic and biotic surfaces were examined using in vitro attachment and biofilm assays combined with atomic force microscopy and confocal microscopy. The nitrogen source available for growth is found to be a major modulator of surface attachment by A. brasilense and could be promoted in vitro by lectins, suggesting that it depends on interaction with surface-exposed residues within the extracellular matrix of cells. However, Che1-dependent signaling is shown to contribute indirectly to surface attachment, indicating that distinct mechanisms are likely underlying flocculation and attachment to surfaces in A. brasilense. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Photopatterned surface relief gratings in azobenzene-amorphous polycarbonate thin films
NASA Astrophysics Data System (ADS)
Vollmann, Morten; Getek, Peter; Olear, Kellie; Combs, Cody; Campos, Benjamin; Witkowski, Edmund; Cain, Erin; McGee, David
Photoinduced orientation of azobenzene chromophores in polymeric host materials has been broadly explored for optical processing applications. Illumination of the chromophore with polarized light rotates the trans isomer perpendicular to the polarization, resulting in spatially modulated birefringence. The photoinduced anisotropy may also drive mass transport, with surface relief patterns being observed in a wide variety of systems. Here we report photoinduced birefringence in a guest-host system of Disperse Red 1- amorphous polycarbonate (DR1-APC). Birefringence was induced with a 490 nm laser and probed at 633 nm, with typical values of Δn = 0.01 in 2 micron thick films. Illumination of DR1-APC with intensity and/or polarization gratings also resulted in sinusoidal surface relief patterns with periodicity 1- 3 micron as controlled by the interbeam crossing angle of the 490 nm writing beams; the surface modulation was +/- 20 nm as measured by atomic force microscopy. Photopatterned DR1-APC is advantageous for applications given the ease of thin-film fabrication and the high glass transition temperature of APC, resulting in robust optically-induced surface gratings. We acknowledge support from NSF-DMR Award No. 1138416.
Correlative nanoscale imaging of actin filaments and their complexes
NASA Astrophysics Data System (ADS)
Sharma, Shivani; Zhu, Huanqi; Grintsevich, Elena E.; Reisler, Emil; Gimzewski, James K.
2013-06-01
Actin remodeling is an area of interest in biology in which correlative microscopy can bring a new way to analyze protein complexes at the nanoscale. Advances in EM, X-ray diffraction, fluorescence, and single molecule techniques have provided a wealth of information about the modulation of the F-actin structure and its regulation by actin binding proteins (ABPs). Yet, there are technological limitations of these approaches to achieving quantitative molecular level information on the structural and biophysical changes resulting from ABPs interaction with F-actin. Fundamental questions about the actin structure and dynamics and how these determine the function of ABPs remain unanswered. Specifically, how local and long-range structural and conformational changes result in ABPs induced remodeling of F-actin needs to be addressed at the single filament level. Advanced, sensitive and accurate experimental tools for detailed understanding of ABP-actin interactions are much needed. This article discusses the current understanding of nanoscale structural and mechanical modulation of F-actin by ABPs at the single filament level using several correlative microscopic techniques, focusing mainly on results obtained by Atomic Force Microscopy (AFM) analysis of ABP-actin complexes.
Maali, Abdelhamid; Wang, Yuliang; Bhushan, Bharat
2009-10-20
In this study we present measurements of the hydrodynamic force exerted on a glass sphere glued to an atomic force microscopy (AFM) cantilever approaching a mica surface in water. A large sphere was used to reduce the impact of the cantilever beam on the measurement. An AFM cantilever with large stiffness was used to accurately determine the actual contact position between the sphere and the sample surface. The measured hydrodynamic force with different approach velocities is in good agreement with the Taylor force calculated in the lubrication theory with the no-slip boundary conditions, which verifies that there is no boundary slip on the glass and mica surfaces. Moreover, a detailed procedure of how to subtract the electrostatic double-layer force is presented.
Sato, Fumiya; Asakawa, Hitoshi; Fukuma, Takeshi; Terada, Sumio
2016-08-01
Neurofilaments are intermediate filament proteins specific for neurons and characterized by formation of biochemically stable, obligate heteropolymers in vivo While purified or reassembled neurofilaments have been subjected to morphological analyses by electron microscopy and atomic force microscopy, there has been a need for direct imaging of cytoplasmic genuine intermediate filaments with minimal risk of artefactualization. In this study, we applied the modified 'cells on glass sandwich' method to exteriorize intracellular neurofilaments, reducing the risk of causing artefacts through sample preparation. SW13vim(-) cells were double transduced with neurofilament medium polypeptide (NF-M) and alpha-internexin (α-inx). Cultured cells were covered with a cationized coverslip after prestabilization with tannic acid to form a sandwich and then split into two. After confirming that neurofilaments could be deposited on ventral plasma membranes exposed via unroofing, we performed atomic force microscopy imaging semi-in situ in aqueous solution. The observed thin filaments, considered to retain native structures of the neurofilaments, exhibited an approximate periodicity of 50-60 nm along their length. Their structural property appeared to reflect the morphology formed by their constituents, i.e. NF-M and α-inx. The success of semi-in situ atomic force microscopy of exposed bona fide assembled neurofilaments through separating the sandwich suggests that it can be an effective and alternative method for investigating cytoplasmic intermediate filaments under physiological conditions by atomic force microscopy. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Precisely detecting atomic position of atomic intensity images.
Wang, Zhijun; Guo, Yaolin; Tang, Sai; Li, Junjie; Wang, Jincheng; Zhou, Yaohe
2015-03-01
We proposed a quantitative method to detect atomic position in atomic intensity images from experiments such as high-resolution transmission electron microscopy, atomic force microscopy, and simulation such as phase field crystal modeling. The evaluation of detection accuracy proves the excellent performance of the method. This method provides a chance to precisely determine atomic interactions based on the detected atomic positions from the atomic intensity image, and hence to investigate the related physical, chemical and electrical properties. Copyright © 2014 Elsevier B.V. All rights reserved.
The physical basis for absorption of light. [effects on wave functions of gas molecules and atoms
NASA Technical Reports Server (NTRS)
Pickett, H. M.
1979-01-01
The effects of light absorption on the wave functions of gas-phase molecules and atoms are investigated by high resolution spectral measurements of radiation emerging from a sample. A Stark-modulated sample of methyl fluoride was irradiated at the 102 GHz rotational transition and the emergent radiation was resolved by means of a spectrum analyzer. For signal oscillator frequencies below or above the molecular resonance by one modulation frequency, the amplitudes of the upper and lower modulation sidebands are found to be of nonuniform intensity, which is inconsistent with amplitude modulation. Emission due to polarization is, however, calculated to be consistent with the results observed, indicating that light absorption should be considered as a subtractive stimulated emission.
Sensing mode atomic force microscope
Hough, Paul V. C.; Wang, Chengpu
2006-08-22
An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.
Sensing mode atomic force microscope
Hough, Paul V.; Wang, Chengpu
2004-11-16
An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.
Microcontroller-driven fluid-injection system for atomic force microscopy.
Kasas, S; Alonso, L; Jacquet, P; Adamcik, J; Haeberli, C; Dietler, G
2010-01-01
We present a programmable microcontroller-driven injection system for the exchange of imaging medium during atomic force microscopy. Using this low-noise system, high-resolution imaging can be performed during this process of injection without disturbance. This latter circumstance was exemplified by the online imaging of conformational changes in DNA molecules during the injection of anticancer drug into the fluid chamber.
A Cost-Effective Atomic Force Microscope for Undergraduate Control Laboratories
ERIC Educational Resources Information Center
Jones, C. N.; Goncalves, J.
2010-01-01
This paper presents a simple, cost-effective and robust atomic force microscope (AFM), which has been purposely designed and built for use as a teaching aid in undergraduate controls labs. The guiding design principle is to have all components be open and visible to the students, so the inner functioning of the microscope has been made clear to…
SCALAR MULTI-PASS ATOMIC MAGNETOMETER
2017-08-01
primarily by atomic shot noise. Furthermore, the spectrum of quantum spin noise provides information on the time correlation between the spins and...the resulting light to be shot -noise-limited both with and without the polarizer in place. Newer Vixar VCSELs with internal gratings on output...described on inside pages STINFO COPY AIR FORCE RESEARCH LABORATORY SENSORS DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
Thermal nanostructure: An order parameter multiscale ensemble approach
NASA Astrophysics Data System (ADS)
Cheluvaraja, S.; Ortoleva, P.
2010-02-01
Deductive all-atom multiscale techniques imply that many nanosystems can be understood in terms of the slow dynamics of order parameters that coevolve with the quasiequilibrium probability density for rapidly fluctuating atomic configurations. The result of this multiscale analysis is a set of stochastic equations for the order parameters whose dynamics is driven by thermal-average forces. We present an efficient algorithm for sampling atomistic configurations in viruses and other supramillion atom nanosystems. This algorithm allows for sampling of a wide range of configurations without creating an excess of high-energy, improbable ones. It is implemented and used to calculate thermal-average forces. These forces are then used to search the free-energy landscape of a nanosystem for deep minima. The methodology is applied to thermal structures of Cowpea chlorotic mottle virus capsid. The method has wide applicability to other nanosystems whose properties are described by the CHARMM or other interatomic force field. Our implementation, denoted SIMNANOWORLD™, achieves calibration-free nanosystem modeling. Essential atomic-scale detail is preserved via a quasiequilibrium probability density while overall character is provided via predicted values of order parameters. Applications from virology to the computer-aided design of nanocapsules for delivery of therapeutic agents and of vaccines for nonenveloped viruses are envisioned.
Raman-atomic force microscopy of the ommatidial surfaces of Dipteran compound eyes.
Anderson, Mark S; Gaimari, Stephen D
2003-06-01
The ommatidial lens surfaces of the compound eyes in several species of files (Insecta: Diptera) and a related order (Mecoptera) were analyzed using a recently developed Raman-atomic force microscope. We demonstrate in this work that the atomic force microscope (AFM) is a potentially useful instrument for gathering phylogenetic data and that the newly developed Raman-AFM may extend this application by revealing nanometer-scale surface chemistry. This is the first demonstration of apertureless near-field Raman spectroscopy on an intact biological surface. For Chrysopilus testaceipes Bigot (Rhagionidae), this reveals unique cerebral cortex-like surface ridges with periodic variation in height and surface chemistry. Most other Brachyceran flies, and the "Nematoceran" Sylvicola fenestralis (Scopoli) (Anisopodidae), displayed the same morphology, while other taxa displayed various other characteristics, such as a nodule-like (Tipula (Triplicitipula) sp. (Tipulidae)) or coalescing nodule-like (Tabanus punctifer Osten Sacken (Tabanidae)) morphology, a smooth morphology with distinct pits and grooves (Dilophus orbatus (Say) (Bibionidae)), or an entirely smooth surface (Bittacus chlorostigma MacLachlan (Mecoptera: Bittacidae)). The variation in submicrometer structure and surface chemistry provides a new information source of potential phylogenetic importance, suggesting the Raman-atomic force microscope could provide a new tool useful to systematic and evolutionary inquiry.
Raman-atomic force microscopy of the ommatidial surfaces of Dipteran compound eyes
NASA Technical Reports Server (NTRS)
Anderson, Mark S.; Gaimari, Stephen D.
2003-01-01
The ommatidial lens surfaces of the compound eyes in several species of files (Insecta: Diptera) and a related order (Mecoptera) were analyzed using a recently developed Raman-atomic force microscope. We demonstrate in this work that the atomic force microscope (AFM) is a potentially useful instrument for gathering phylogenetic data and that the newly developed Raman-AFM may extend this application by revealing nanometer-scale surface chemistry. This is the first demonstration of apertureless near-field Raman spectroscopy on an intact biological surface. For Chrysopilus testaceipes Bigot (Rhagionidae), this reveals unique cerebral cortex-like surface ridges with periodic variation in height and surface chemistry. Most other Brachyceran flies, and the "Nematoceran" Sylvicola fenestralis (Scopoli) (Anisopodidae), displayed the same morphology, while other taxa displayed various other characteristics, such as a nodule-like (Tipula (Triplicitipula) sp. (Tipulidae)) or coalescing nodule-like (Tabanus punctifer Osten Sacken (Tabanidae)) morphology, a smooth morphology with distinct pits and grooves (Dilophus orbatus (Say) (Bibionidae)), or an entirely smooth surface (Bittacus chlorostigma MacLachlan (Mecoptera: Bittacidae)). The variation in submicrometer structure and surface chemistry provides a new information source of potential phylogenetic importance, suggesting the Raman-atomic force microscope could provide a new tool useful to systematic and evolutionary inquiry.
Quantifying Tip-Sample Interactions in Vacuum Using Cantilever-Based Sensors: An Analysis
NASA Astrophysics Data System (ADS)
Dagdeviren, Omur E.; Zhou, Chao; Altman, Eric I.; Schwarz, Udo D.
2018-04-01
Atomic force microscopy is an analytical characterization method that is able to image a sample's surface topography at high resolution while simultaneously probing a variety of different sample properties. Such properties include tip-sample interactions, the local measurement of which has gained much popularity in recent years. To this end, either the oscillation frequency or the oscillation amplitude and phase of the vibrating force-sensing cantilever are recorded as a function of tip-sample distance and subsequently converted into quantitative values for the force or interaction potential. Here, we theoretically and experimentally show that the force law obtained from such data acquired under vacuum conditions using the most commonly applied methods may deviate more than previously assumed from the actual interaction when the oscillation amplitude of the probe is of the order of the decay length of the force near the surface, which may result in a non-negligible error if correct absolute values are of importance. Caused by approximations made in the development of the mathematical reconstruction procedures, the related inaccuracies can be effectively suppressed by using oscillation amplitudes sufficiently larger than the decay length. To facilitate efficient data acquisition, we propose a technique that includes modulating the drive amplitude at a constant height from the surface while monitoring the oscillation amplitude and phase. Ultimately, such an amplitude-sweep-based force spectroscopy enables shorter data acquisition times and increased accuracy for quantitative chemical characterization compared to standard approaches that vary the tip-sample distance. An additional advantage is that since no feedback loop is active while executing the amplitude sweep, the force can be consistently recovered deep into the repulsive regime.
Noncontact Atomic Force Microscopy: An Emerging Tool for Fundamental Catalysis Research.
Altman, Eric I; Baykara, Mehmet Z; Schwarz, Udo D
2015-09-15
Although atomic force microscopy (AFM) was rapidly adopted as a routine surface imaging apparatus after its introduction in 1986, it has not been widely used in catalysis research. The reason is that common AFM operating modes do not provide the atomic resolution required to follow catalytic processes; rather the more complex noncontact (NC) mode is needed. Thus, scanning tunneling microscopy has been the principal tool for atomic scale catalysis research. In this Account, recent developments in NC-AFM will be presented that offer significant advantages for gaining a complete atomic level view of catalysis. The main advantage of NC-AFM is that the image contrast is due to the very short-range chemical forces that are of interest in catalysis. This motivated our development of 3D-AFM, a method that yields quantitative atomic resolution images of the potential energy surfaces that govern how molecules approach, stick, diffuse, and rebound from surfaces. A variation of 3D-AFM allows the determination of forces required to push atoms and molecules on surfaces, from which diffusion barriers and variations in adsorption strength may be obtained. Pushing molecules towards each other provides access to intermolecular interaction between reaction partners. Following reaction, NC-AFM with CO-terminated tips yields textbook images of intramolecular structure that can be used to identify reaction intermediates and products. Because NC-AFM and STM contrast mechanisms are distinct, combining the two methods can produce unique insight. It is demonstrated for surface-oxidized Cu(100) that simultaneous 3D-AFM/STM yields resolution of both the Cu and O atoms. Moreover, atomic defects in the Cu sublattice lead to variations in the reactivity of the neighboring O atoms. It is shown that NC-AFM also allows a straightforward imaging of work function variations which has been used to identify defect charge states on catalytic surfaces and to map charge transfer within an individual molecule. These advances highlight the potential for NC-AFM-based methods to become the cornerstone upon which a quantitative atomic scale view of each step of a catalytic process may be gained. Realizing this potential will rely on two breakthroughs: (1) development of robust methods for tip functionalization and (2) simplification of NC-AFM instrumentation and control schemes. Quartz force sensors may offer paths forward in both cases. They allow any material with an atomic asperity to be used as a tip, opening the door to a wide range of surface functionalization chemistry. In addition, they do not suffer from the instabilities that motivated the initial adoption of complex control strategies that are still used today.
NASA Astrophysics Data System (ADS)
Waddell, J.; Ou, R.; Capozzi, C. J.; Gupta, S.; Parker, C. A.; Gerhardt, R. A.; Seal, K.; Kalinin, S. V.; Baddorf, A. P.
2009-12-01
Composite specimens possessing polyhedral segregated network microstructures require a very small amount of nanosize filler, <1 vol %, to reach percolation because percolation occurs by accumulation of the fillers along the edges of the deformed polymer matrix particles. In this paper, electrostatic force microscopy (EFM) and conductive atomic force microscopy (C-AFM) were used to confirm the location of the nanosize fillers and the corresponding percolating paths in polymethyl methacrylate/carbon black composites. The EFM and C-AFM images revealed that the polyhedral polymer particles were coated with filler, primarily on the edges as predicted by the geometric models provided.
NASA Astrophysics Data System (ADS)
Ditscherlein, L.; Peuker, U. A.
2017-04-01
For the application of colloidal probe atomic force microscopy at high temperatures (>500 K), stable colloidal probe cantilevers are essential. In this study, two new methods for gluing alumina particles onto temperature stable cantilevers are presented and compared with an existing method for borosilicate particles at elevated temperatures as well as with cp-cantilevers prepared with epoxy resin at room temperature. The durability of the fixing of the particle is quantified with a test method applying high shear forces. The force is calculated with a mechanical model considering both the bending as well as the torsion on the colloidal probe.
Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements.
Wierez-Kien, M; Craciun, A D; Pinon, A V; Roux, S Le; Gallani, J L; Rastei, M V
2018-04-01
The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically <10 3 nm 2 ) measured with sensitive probes the bonding is found to be influenced by thermal-induced fluctuations. Using interface interactions described by Morse, embedded atom model, or Lennard-Jones potential within reaction rate theory, we investigate three bonding types of covalent and van der Waals nature. The comparison of numerical and experimental results reveals that a Lennard-Jones-like potential originating from van der Waals interactions captures the binding characteristics of dry silicon oxide nanocontacts, and likely of other nanoscale materials adsorbed on silicon oxide surfaces. The analyses reveal the importance of the dispersive surface energy and of the effective contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.
Efficient molecular dynamics simulations with many-body potentials on graphics processing units
NASA Astrophysics Data System (ADS)
Fan, Zheyong; Chen, Wei; Vierimaa, Ville; Harju, Ari
2017-09-01
Graphics processing units have been extensively used to accelerate classical molecular dynamics simulations. However, there is much less progress on the acceleration of force evaluations for many-body potentials compared to pairwise ones. In the conventional force evaluation algorithm for many-body potentials, the force, virial stress, and heat current for a given atom are accumulated within different loops, which could result in write conflict between different threads in a CUDA kernel. In this work, we provide a new force evaluation algorithm, which is based on an explicit pairwise force expression for many-body potentials derived recently (Fan et al., 2015). In our algorithm, the force, virial stress, and heat current for a given atom can be accumulated within a single thread and is free of write conflicts. We discuss the formulations and algorithms and evaluate their performance. A new open-source code, GPUMD, is developed based on the proposed formulations. For the Tersoff many-body potential, the double precision performance of GPUMD using a Tesla K40 card is equivalent to that of the LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) molecular dynamics code running with about 100 CPU cores (Intel Xeon CPU X5670 @ 2.93 GHz).
NASA Astrophysics Data System (ADS)
Moreno-Herrero, F.; Colchero, J.; Gómez-Herrero, J.; Baró, A. M.
2004-03-01
The capabilities of the atomic force microscope for imaging biomolecules under physiological conditions has been systematically investigated. Contact, dynamic, and jumping modes have been applied to four different biological systems: DNA, purple membrane, Alzheimer paired helical filaments, and the bacteriophage φ29. These samples have been selected to cover a wide variety of biological systems in terms of sizes and substrate contact area, which make them very appropriate for the type of comparative studies carried out in the present work. Although dynamic mode atomic force microscopy is clearly the best choice for imaging soft samples in air, in liquids there is not a leading technique. In liquids, the most appropriate imaging mode depends on the sample characteristics and preparation methods. Contact or dynamic modes are the best choices for imaging molecular assemblies arranged as crystals such as the purple membrane. In this case, the advantage of image acquisition speed predominates over the disadvantage of high lateral or normal force. For imaging individual macromolecules, which are weakly bonded to the substrate, lateral and normal forces are the relevant factors, and hence the jumping mode, an imaging mode which minimizes lateral and normal forces, is preferable to other imaging modes.
Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements
NASA Astrophysics Data System (ADS)
Wierez-Kien, M.; Craciun, A. D.; Pinon, A. V.; Le Roux, S.; Gallani, J. L.; Rastei, M. V.
2018-04-01
The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically <103 nm2) measured with sensitive probes the bonding is found to be influenced by thermal-induced fluctuations. Using interface interactions described by Morse, embedded atom model, or Lennard-Jones potential within reaction rate theory, we investigate three bonding types of covalent and van der Waals nature. The comparison of numerical and experimental results reveals that a Lennard-Jones-like potential originating from van der Waals interactions captures the binding characteristics of dry silicon oxide nanocontacts, and likely of other nanoscale materials adsorbed on silicon oxide surfaces. The analyses reveal the importance of the dispersive surface energy and of the effective contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.
Observation and Uses of Position-Space Bloch Oscillations in an Ultracold Gas.
Geiger, Zachary A; Fujiwara, Kurt M; Singh, Kevin; Senaratne, Ruwan; Rajagopal, Shankari V; Lipatov, Mikhail; Shimasaki, Toshihiko; Driben, Rodislav; Konotop, Vladimir V; Meier, Torsten; Weld, David M
2018-05-25
We report the observation and characterization of position-space Bloch oscillations using cold atoms in a tilted optical lattice. While momentum-space Bloch oscillations are a common feature of optical lattice experiments, the real-space center-of-mass dynamics are typically unresolvable. In a regime of rapid tunneling and low force, we observe real-space Bloch oscillation amplitudes of hundreds of lattice sites, in both ground and excited bands. We demonstrate two unique capabilities enabled by tracking of Bloch dynamics in position space: measurement of the full position-momentum phase-space evolution during a Bloch cycle, and direct imaging of the lattice band structure. These techniques, along with the ability to exert long-distance coherent control of quantum gases without modulation, may open up new possibilities for quantum control and metrology.
Morphological and Structural Aspects of the Extremely Halophilic Archaeon Haloquadratum walsbyi
Sublimi Saponetti, Matilde; Bobba, Fabrizio; Salerno, Grazia; Scarfato, Alessandro; Corcelli, Angela; Cucolo, Annamaria
2011-01-01
Ultrathin square cell Haloquadratum walsbyi from the Archaea domain are the most abundant microorganisms in the hypersaline water of coastal salterns and continental salt lakes. In this work, we explore the cell surface of these microorganisms using amplitude-modulation atomic-force microscopy in nearly physiological conditions. We demonstrate the presence of a regular corrugation with a periodicity of 16–20 nm attributed to the surface layer (S-layer) protein lattice, striped domains asymmetrically distributed on the cell faces and peculiar bulges correlated with the presence of intracellular granules. Besides, subsequent images of cell evolution during the drying process indicate the presence of an external capsule that might correspond to the giant protein halomucin, predicted by the genome but never before observed by other microscopy studies. PMID:21559517
Morphological and structural aspects of the extremely halophilic archaeon Haloquadratum walsbyi.
Sublimi Saponetti, Matilde; Bobba, Fabrizio; Salerno, Grazia; Scarfato, Alessandro; Corcelli, Angela; Cucolo, Annamaria
2011-04-29
Ultrathin square cell Haloquadratum walsbyi from the Archaea domain are the most abundant microorganisms in the hypersaline water of coastal salterns and continental salt lakes. In this work, we explore the cell surface of these microorganisms using amplitude-modulation atomic-force microscopy in nearly physiological conditions. We demonstrate the presence of a regular corrugation with a periodicity of 16-20 nm attributed to the surface layer (S-layer) protein lattice, striped domains asymmetrically distributed on the cell faces and peculiar bulges correlated with the presence of intracellular granules. Besides, subsequent images of cell evolution during the drying process indicate the presence of an external capsule that might correspond to the giant protein halomucin, predicted by the genome but never before observed by other microscopy studies.
NASA Astrophysics Data System (ADS)
Humed Yusuf, Mohammed; Gura, Anna; Du, Xu; Dawber, Matthew
2017-06-01
We exploit nanoscale mechanically induced switching of an artificially layered ferroelectric material, used as an active substrate, to achieve the local manipulation of the electrical transport properties of graphene. In Graphene Ferroelectric Field Effect Transistors (GFeFETs), the graphene channel’s charge state is controlled by an underlying ferroelectric layer. The tip of an atomic force microscope (AFM) can be used to mechanically ‘write’ nanoscale regions of the graphene channel and ‘read’ off the modulation in the transport behavior. The written features associated with the switching of ferroelectric domains remain polarized until an electrical reset operation is carried out. Our result provides a method for flexible and reversible nano-scale manipulation of the transport properties of a broad class of 2D materials.
Observation and Uses of Position-Space Bloch Oscillations in an Ultracold Gas
NASA Astrophysics Data System (ADS)
Geiger, Zachary A.; Fujiwara, Kurt M.; Singh, Kevin; Senaratne, Ruwan; Rajagopal, Shankari V.; Lipatov, Mikhail; Shimasaki, Toshihiko; Driben, Rodislav; Konotop, Vladimir V.; Meier, Torsten; Weld, David M.
2018-05-01
We report the observation and characterization of position-space Bloch oscillations using cold atoms in a tilted optical lattice. While momentum-space Bloch oscillations are a common feature of optical lattice experiments, the real-space center-of-mass dynamics are typically unresolvable. In a regime of rapid tunneling and low force, we observe real-space Bloch oscillation amplitudes of hundreds of lattice sites, in both ground and excited bands. We demonstrate two unique capabilities enabled by tracking of Bloch dynamics in position space: measurement of the full position-momentum phase-space evolution during a Bloch cycle, and direct imaging of the lattice band structure. These techniques, along with the ability to exert long-distance coherent control of quantum gases without modulation, may open up new possibilities for quantum control and metrology.
Method and system for near-field spectroscopy using targeted deposition of nanoparticles
NASA Technical Reports Server (NTRS)
Anderson, Mark S. (Inventor)
2012-01-01
There is provided in one embodiment of the invention a method for analyzing a sample material using surface enhanced spectroscopy. The method comprises the steps of imaging the sample material with an atomic force microscope (AFM) to select an area of interest for analysis, depositing nanoparticles onto the area of interest with an AFM tip, illuminating the deposited nanoparticles with a spectrometer excitation beam, and disengaging the AFM tip and acquiring a localized surface enhanced spectrum. The method may further comprise the step of using the AFM tip to modulate the spectrometer excitation beam above the deposited nanoparticles to obtain improved sensitivity data and higher spatial resolution data from the sample material. The invention further comprises in one embodiment a system for analyzing a sample material using surface enhanced spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, Udo; Albers, Boris J.; Liebmann, Marcus
2008-02-27
The authors present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaroundmore » times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1 pm could successfully be resolved. In addition, lateral drifts rates of below 15 pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance.« less
Pedraza-González, Laura Milena; Galindo, Johan Fabian; Gonzalez, Ronald; Reyes, Andrés
2016-10-09
The solvent effect on the nucleophile and leaving group atoms of the prototypical F - + CH 3 Cl → CH 3 F + Cl - backside bimolecular nucleophilic substitution reaction (S N 2) is analyzed employing the reaction force and the atomic contributions methods on the intrinsic reaction coordinate (IRC). Solvent effects were accounted for using the polarizable continuum solvent model. Calculations were performed employing eleven dielectric constants, ε, ranging from 1.0 to 78.5, to cover a wide spectrum of solvents. The reaction force data reveals that the solvent mainly influences the region of the IRC preceding the energy barrier, where the structural rearrangement to reach the transition state occurs. A detailed analysis of the atomic role in the reaction as a function of ε reveals that the nucleophile and the carbon atom are the ones that contribute the most to the energy barrier. In addition, we investigated the effect of the choice of nucleophile and leaving group on the ΔE 0 and ΔE ↕ of Y - + CH 3 X → YCH 3 + X - (X,Y= F, Cl, Br, I) in aqueous solution. Our analysis allowed us to find relationships between the atomic contributions to the activation energy and leaving group ability and nucleophilicity.
Nanosecond pulsed electric field induced changes in cell surface charge density.
Dutta, Diganta; Palmer, Xavier-Lewis; Asmar, Anthony; Stacey, Michael; Qian, Shizhi
2017-09-01
This study reports that the surface charge density changes in Jurkat cells with the application of single 60 nanosecond pulse electric fields, using atomic force microscopy. Using an atomic force microscope tip and Jurkat cells on silica in a 0.01M KCl ionic concentration, we were able to measure the interfacial forces, while also predicting surface charge densities of both Jurkat cell and silica surfaces. The most important finding is that the pulsing conditions varyingly reduced the cells' surface charge density. This offers a novel way in which to examine cellular effects of pulsed electric fields that may lead to the identification of unique mechanical responses. Compared to a single low field strength NsPEF (15kV/cm) application, exposure of Jurkat cells to a single high field strength NsPEF (60kV/cm) resulted in a further reduction in charge density and major morphological changes. The structural, physical, and chemical properties of biological cells immensely influence their electrostatic force; we were able to investigate this through the use of atomic force microscopy by measuring the surface forces between the AFM's tip and the Jurkat cells under different pulsing conditions as well as the interfacial forces in ionic concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-30
... science. This instrument is specialized for creating artificial nanoscale structures on an atom-by-atom basis using nascent atom manipulation techniques. The instrument will be used to investigate the amount of force required to move one atom on a materials surface while simultaneously measuring local...
Liquid Spray Characterization in Flow Fields with Centripetal Acceleration
2014-03-27
25 2.4.1 Atomization of Liquid Jets ...volumetric heat release rates, easier light-up, wider burning range, and lower exhaust pollutant emissions [11]. 26 2.4.1 Atomization of Liquid Jets ...Atomization involves the interaction of consolidating and disruptive forces acting on a jet of liquid . The process of atomization can be further
Spectroscopie Raman et Rayleigh stimulée des mélasses optiques unidimensionnelles (partie I)
NASA Astrophysics Data System (ADS)
Courtois, Jean-Yves
In this paper, we present a detailed theoretical investigation of the transmission spectra of a weak probe beam through one-dimensional optical molasses in the so-called linperp lin and σ^+-σ- laser configurations. We show that the resonant structures displayed by the spectra in both situations can be interpreted in terms of stimulated Raman or Rayleigh scattering and that they provide important information about the physical properties of the molasses. The paper is divided into two main parts. In order to emphasize the specificity of the stimulated scattering processes taking place in optical molasses, we present in a first part the main characteristics of the stimulated Raman and Rayleigh processes occurring in conventional atomic and molecular media. Section 2 is devoted to stimulated Raman scattering, which is associated with the presence of scattering particles having differently populated nondegenerate states. In the case of atomic vapours, which is traditionnally not discussed in textbooks, we demonstrate the occurrence of stimulated Raman transitions between differently populated and light shifted ground state Zeeman sublevels, which manifest themselves on pump-probe transmission spectra in the form of Lorentzian resonances having a width of the order of the optical pumping rate. Section 3 presents a more detailed study of stimulated Rayleigh scattering, which is associated with the modulation of nonpropagating observables (i.e., of observables whose dynamics does not contain any eigen evolution frequency) by the interference pattern between a probe and a pump field, and with the existence of a physical mechanism responsible for a phase shift between the time and spatial modulation of the observables and the pump-probe excitation. By considering the most generally encountered situation where the phase shift arises from a relaxation mechanism taking place in the material medium, and where stimulated Rayleigh scattering manifests itself in the form of a dispersive resonance having a width equal to twice the associated relaxation rate, we identify three classification criteria for the stimulated Rayleigh mechanisms, involving the characteristics of the scattering medium, of the relaxation process occurring in the medium, and of the excitation mechanism of the medium by the probe field, respectively. This classification scheme is then employed on the one hand in the case of dense molecular media, where stimulated Rayleigh-wing scattering (associated with the laser-induced orientation of anisotropic molecules) is discussed, together with the so-called electrostrictive and thermodiffusive Rayleigh scattering mechanisms (related to a spatial modulation of the molecular density); and on the other hand in the case of dilute atomic vapours, where one distinguishes between two-level atoms (for which the Rayleigh resonance is interpreted in terms of quantum interference between photon scattering processes), and multilevel atoms (where stimulated Rayleigh scattering involves optical pumping induced relaxation of internal observable modulations). The second part of the paper is devoted to the investigation of the stimulated Raman and Rayleigh processes taking place in one-dimensional optical molasses. These processes exhibit outstanding characteristics because of the entanglement between internal and external degrees of freedom of the atoms, which is an intrinsic feature of the cooling mechanisms. Section 4 discusses the case of linperp lin molasses. We restrict ourselves to the situation of a J_g=1/2→ J_e=3/2 atomic transition, and to the limit where the dissipative part of the atom-laser coupling is negligible compared to the Hamiltonian part (oscillating regime of Sisyphus cooling). We first consider stimulated Raman processes between quantized vibrational states of the atoms at the bottom of the optical potential wells associated with the light shifts of the ground state Zeeman sublevels, and we demonstrate the occurrence of a lengthening of the lifetime of the coherences between the vibrational levels due to the strong spatial atomic localization (Lamb-Dicke effect). Stimulated Rayleigh resonances sensitive to the probe polarization are also predicted in the center of the spectra. These structures are interpreted in terms of diffraction of the cooling beams onto time-modulated density or magnetization gratings induced by the probe beam, and we show that these resonances provide information about the dynamical properties of the medium and the anti-ferromagnetic spatial order of the atoms in the molasses. Indications about the treatment of atomic transition having larger angular momenta are given by considering more particularly the situation of the J_g=4→ J_e=5 transition of cesium, for which an inversion of the stimulated Rayleigh resonance is predicted, which is related to the resonant variation of the populations of the vibrational levels with the otpical potential depth. Section 5 is devoted to the case of the σ^+-σ- molasses. We consider the case of a J_g=1→ J_e=2 atomic transition, and we restrict ourselves to the limit where the steady-state momentum distribution lies within the linearity range of the cooling force. Under such conditions, it is possible to account for the external atomic dynamics through a Fokker-Planck equation derived by adiabatically eliminating the atomic internal degrees of freedom. One investigates on the one hand the stimulated Raman processes taking place between the ground state Zeeman sublevels, indicating the occurrence of differences in the populations and light shifts in the ground state, and on the other hand the stimulated Rayleigh processes providing information about the dynamics of the external degrees of freedom. One considers two polarization configurations for the probe beam, depending on the probe polarization's being identical or opposite to the circular polarization of the copropagating pump beam. In the former case, it is shown that the stimulated Raman lines are homogeneously broadened, and that a stimulated Rayleigh structure appears on the spectra because of the probe-induced time modulation of the cooling force, which induces a modulation of the atomic momentum distribution. In the latter situation, the Raman structures are inhomogeneously broadened, and a recoil-induced resonance is predicted in the center of the spectrum. Its shape corresponds to the derivative of a Gaussian curve and its width is directly proportional to the Doppler width of the molasses. Finally, Section 6 presents a short review about the recent developments in the field of nonlinear spectroscopy of optical molasses. Cet article s'inscrit dans le double contexte de la spectroscopie non linéaire des milieux atomiques et de la physique du refroidissement d'atomes neutres par laser. Il présente une étude détaillée des spectres de transmission d'une onde sonde interagissant avec une mélasse optique unidimensionnelle. Plus précisément, nous montrons que dans chacun des deux cas modèles des mélasses “linperp lin” et “σ^+-σ^-” (ainsi dénommées par référence à la configuration de polarisation des deux faisceaux lasers à l'origine du mécanisme de refroidissement), les spectres pompes-sonde présentent des structures résonnantes pouvant s'interpréter en termes de diffusion Raman ou Rayleigh stimulée, et apportant un grand nombre d'informations sur les propriétés physiques des mélasses optiques. Cet article s'articule autour de deux grandes parties. Destinée à faire ultérieurement ressortir la spécificité des processus de diffusion stimulée se produisant dans les mélasses optiques, la première est consacrée à une présentation générale des processus Raman et Rayleigh stimulés se produisant dans les milieux atomiques et moléculaires conventionnels. L'effet Raman stimulé, lié à l'existence de centres diffuseurs ayant des états d'énergies et de populations différentes, fait l'objet du paragraphe 2. Dans le cas des vapeurs atomiques, traditionnellement moins connu que celui des molécules, on met ainsi en évidence l'existence de transitions Raman stimulées entre sous-niveaux Zeeman ayant des populations et des déplacements lumineux différents, qui se manifestent sur le spectre de transmission d'une onde sonde sous la forme de résonances lorentziennes en absorption et en amplification ayant une largeur de l'ordre du taux de pompage optique. Le paragraphe 3 présente une étude plus détaillée de l'effet Rayleigh stimulé, associé à l'excitation d'observables non propagatives (c'est-à-dire dont la dynamique ne contient aucune fréquence propre d'évolution) dans le milieu diffuseur sous l'action de l'interférence entre un champ pompe et une onde sonde, et à l'existence d'un mécanisme conduisant à un déphasage de la modulation spatiale et temporelle des observables par rapport à l'excitation pompe-sonde. En considérant le cas le plus couramment répandu où le déphasage est lié à l'existence d'un mécanisme de relaxation dans le milieu diffuseur, et où la diffusion Rayleigh stimulée se manifeste généralement sous la forme de résonances dispersives ayant pour demi-largeur le taux de relaxation associé, nous dégageons trois critères de classification des mécanismes de diffusion Rayleigh stimulée portant sur les caractéristiques du milieu diffuseur, du processus de relaxation intervenant dans ce milieu, et du mécanisme d'excitation du milieu par l'onde sonde. Cette classification est alors utilisée d'une part dans le cas des milieux moléculaires denses, où l'on décrit successivement les effets “Rayleigh-wing” (lié à l'orientation de molécules anisotropes le long du champ électrique local), Rayleigh électrostrictif diffusif et Rayleigh thermodiffusif (dus à une modulation spatiale de la densité) ; et d'autre part dans le cas des vapeurs atomiques, où l'on distingue le cas des atomes à deux niveaux (pour lequel une interprétation de la résonance Rayleigh est donnée en termes d'interférence quantique entre processus de diffusion de photons), puis la situation des atomes possédant plusieurs sous-niveaux Zeeman dégénérés dans le niveau fondamental (où l'effet Rayleigh stimulé est lié au pompage optique et à la création d'observables atomiques). La seconde partie de cet article porte sur l'étude des processus Raman et Rayleigh stimulés dans les mélasses optiques unidimensionnelles, dont la grande originalité réside dans l'imbrication intime entre les degrés de liberté internes et externes des atomes, qui est à l'origine même des mécanismes de refroidissement. Le paragraphe 4 est consacré à l'étude des mélasses linperp lin. On considère le cas d'une transition J_g=1/2→ J_e=3/2, et l'on se restreint aux situations pour lesquelles la partie dissipative du couplage atome-laser est négligeable devant la partie hamiltonienne (régime oscillant du refroidissement Sisyphe). On étudie les processus Raman stimulés entre niveaux vibrationnels quantifiés des atomes au fond des puits du potentiel optique associé aux déplacements lumineux des sous-niveaux Zeeman, et l'on met en évidence un phénomène d'allongement de la durée de vie des cohérences entre niveaux de vibration lié à la forte localisation spatiale des atomes (effet Lamb-Dicke). Des résonances Rayleigh stimulées très sensibles à la polarisation de la sonde sont également prédites au centre des spectres. Une interprétation de ces structures est donnée en termes de diffraction des faisceaux de refroidissement sur des réseaux de densité ou de magnétisation modulés temporellement par la sonde, et l'on montre que ces résonances donnent des informations sur les propriétés dynamiques du milieu, ainsi que sur l'ordre spatial anti-ferromagnétique des atomes. Des indications sur le traitement de transitions atomiques de moment cinétique plus élevé sont données, et l'on discute plus particulièrement le cas de la transition J_g=4→ J_e=5 du césium, où l'on prédit un processus de renversement de la résonance Rayleigh lié à une dépendance résonnante des populations des niveaux vibrationnels en fonction de la profondeur des puits de potentiel. Le paragraphe 5 est consacré à l'étude des mélasses σ^+-σ^-. On considère le cas d'une transition J_g=1→ J_e=2, et l'on se restreint aux situations pour lesquelles la distribution stationnaire d'impulsion est contenue dans le domaine de linéarité de la force de refroidissement. Dans ces conditions, il est possible de décrire la dynamique des degrés de liberté externes de l'atome au moyen d'une équation de Fokker-Planck, après élimination adiabatique des variables atomiques internes. On étudie d'une part les processus Raman stimulés entre sous-niveaux Zeeman mettant en évidence l'existence de différences de populations et de déplacements lumineux dans l'état fondamental, et d'autre part les processus Rayleigh stimulés donnant accès aux temps de relaxation des variables externes. On envisage deux cas de polarisation pour l'onde sonde, selon que le faisceau pompe avec lequel elle se copropage a une polarisation circulaire identique ou opposée à celle de la sonde. Dans le premier cas, on montre que les résonances Raman ne subissent pas d'élargissement inhomogène. Il est également montré qu'une résonance Rayleigh apparaît sur les spectres, due à la modulation temporelle de la force de refroidissement par la sonde, qui induit une modulation de la distribution d'impulsion atomique. Cette résonance a une largeur proportionnelle au coefficient de friction de la force de refroidissement. Dans le second cas, on met en évidence un processus d'élargissement inhomogène des résonances Raman, ainsi qu'une résonance centrale de type Raman induite par le recul ayant la forme d'une dérivée de gaussienne de largeur proportionnelle à la largeur Doppler de la mélasse. Finalement, le paragraphe 6 conclut l'article par un résumé des principaux développements enregistrés au cours des dernières années dans le domaine de la spectroscopie non linéaire des mélasses optiques.
NASA Astrophysics Data System (ADS)
Saez, David Adrian; Vöhringer-Martinez, Esteban
2015-10-01
S-Adenosylmethionine (AdoMet) is involved in many biological processes as cofactor in enzymes transferring its sulfonium methyl group to various substrates. Additionally, it is used as drug and nutritional supplement to reduce the pain in osteoarthritis and against depression. Due to the biological relevance of AdoMet it has been part of various computational simulation studies and will also be in the future. However, to our knowledge no rigorous force field parameter development for its simulation in biological systems has been reported. Here, we use electronic structure calculations combined with molecular dynamics simulations in explicit solvent to develop force field parameters compatible with the AMBER99 force field. Additionally, we propose new dynamic Hirshfeld-I atomic charges which are derived from the polarized electron density of AdoMet in aqueous solution to describe its electrostatic interactions in biological systems. The validation of the force field parameters and the atomic charges is performed against experimental interproton NOE distances of AdoMet in aqueous solution and crystal structures of AdoMet in the cavity of three representative proteins.
A Force Balanced Fragmentation Method for ab Initio Molecular Dynamic Simulation of Protein.
Xu, Mingyuan; Zhu, Tong; Zhang, John Z H
2018-01-01
A force balanced generalized molecular fractionation with conjugate caps (FB-GMFCC) method is proposed for ab initio molecular dynamic simulation of proteins. In this approach, the energy of the protein is computed by a linear combination of the QM energies of individual residues and molecular fragments that account for the two-body interaction of hydrogen bond between backbone peptides. The atomic forces on the caped H atoms were corrected to conserve the total force of the protein. Using this approach, ab initio molecular dynamic simulation of an Ace-(ALA) 9 -NME linear peptide showed the conservation of the total energy of the system throughout the simulation. Further a more robust 110 ps ab initio molecular dynamic simulation was performed for a protein with 56 residues and 862 atoms in explicit water. Compared with the classical force field, the ab initio molecular dynamic simulations gave better description of the geometry of peptide bonds. Although further development is still needed, the current approach is highly efficient, trivially parallel, and can be applied to ab initio molecular dynamic simulation study of large proteins.
Quantum Degeneracy in Atomic Point Contacts Revealed by Chemical Force and Conductance
NASA Astrophysics Data System (ADS)
Sugimoto, Yoshiaki; Ondráček, Martin; Abe, Masayuki; Pou, Pablo; Morita, Seizo; Perez, Ruben; Flores, Fernando; Jelínek, Pavel
2013-09-01
Quantum degeneracy is an important concept in quantum mechanics with large implications to many processes in condensed matter. Here, we show the consequences of electron energy level degeneracy on the conductance and the chemical force between two bodies at the atomic scale. We propose a novel way in which a scanning probe microscope can detect the presence of degenerate states in atomic-sized contacts even at room temperature. The tunneling conductance G and chemical binding force F between two bodies both tend to decay exponentially with distance in a certain distance range, usually maintaining direct proportionality G∝F. However, we show that a square relation G∝F2 arises as a consequence of quantum degeneracy between the interacting frontier states of the scanning tip and a surface atom. We demonstrate this phenomenon on the Si(111)-(7×7) surface reconstruction where the Si adatom possesses a strongly localized dangling-bond state at the Fermi level.
NASA Astrophysics Data System (ADS)
Rossi, Mariana; Ceriotti, Michele; Manolopoulos, David
Diffusion of H+ and OH- along water wires provides an efficient mechanism for charge transport that is exploited by biological systems and shows promise in technological applications. However, what is lacking for a better control and design of these systems is a thorough theoretical understanding of the diffusion process at the atomic scale. Here we consider H+ and OH- in finite water wires using density functional theory. We employ machine learning techniques to identify the charged species, thus obtaining an agnostic definition of the charge. We employ thermostated ring polymer molecular dynamics and extract a ``universal'' diffusion coefficient from simulations with different wire sizes by considering Langevin dynamics on the potential of mean force of the charged species. In the classical case, diffusion coefficients depend significantly on the potential energy surface, in particular on how dispersion forces modulate O-O distances. NQEs, however, make the diffusion less sensitive to the underlying potential and geometry of the wire, presumably making them more robust to environment fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundar Rajan, S.; Sinha, A.K.; Sachan, Udai G.P.
4-Tesla warm bore superconducting magnet is being constructed at Bhabha Atomic Research Centre in India. The adiabatically cooled superconducting magnet will be used for corrosion and Magneto Hydro Dynamic (MHD) studies related to development of Lead Lithium Cooled Ceramic Breeder (LLCB) test blanket module (TBM). Magnet aperture is of 300 mm diameter and is accessible from both ends. Magnet is completely immersed in liquid helium bath at 4.2K. The stored magnetic energy during normal operation is 2.6 MJ. Huge amount of Lorentz forces acts on the magnet coils during operation. These forces try to axially compress the coils and causemore » outward radial movement of the conductor. Micro meter movement of the coils result in energy deposition due to large operating fields. This energy, albeit small, is still sufficient to cause quench in the magnet as the heat capacities at cryogenic temperatures are very low. Pre-stressing and banding of the superconducting strands help to overcome conductor movement by increasing structural rigidity. This paper describes the thermal, structural and magnetic design the superconducting solenoid magnet. (author)« less
Diameter-Dependent Modulus and Melting Behavior in Electrospun Semicrystalline Polymer Fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y Liu; S Chen; E Zussman
2011-12-31
Confinement of the semicrystalline polymers, poly(ethylene-co-vinyl acetate) (PEVA) and low-density polyethylene (LDPE), produced by electrospinning has been observed to produce fibers with large protrusions, which have not been previously observed in fibers of comparable diameters produced by other methods. SAXS spectra confirmed the crystalline structure and determined that the lamellar spacing was almost unchanged from the bulk. Measurement of the mechanical properties of these fibers, by both shear modulation force microscopy (SMFM) and atomic force acoustic microscopy (AFAM), indicates that the modulii of these fibers increases with decreasing diameter, with the onset at {approx}10 {micro}m, which is an order ofmore » magnitude larger than previously reported. Melting point measurements indicate a decrease of more than 7% in T{sub m}/T{sub 0} (where T{sub m} is the melting point of semicrystalline polymer fibers and T{sub 0} is the melting point of the bulk polymer) for fibers ranging from 4 to 10 {micro}m in diameter. The functional form of the decrease followed a universal curve for PEVA, when scaled with T{sub 0}.« less
Domain structure of BiFeO3 thin films grown on patterned SrTiO3(001) substrates
NASA Astrophysics Data System (ADS)
Nakashima, Seiji; Seto, Shota; Kurokawa, Yuta; Fujisawa, Hironori; Shimizu, Masaru
2017-10-01
Recently, new functionalities of ferroelectric domain walls (DWs) have attracted much attention. To realize novel devices using the functionalities of the DWs, techniques to introduce the DWs at arbitrary positions in the ferroelectric thin films are necessary. In this study, we have demonstrated the introduction of the DWs at arbitrary positions in epitaxial BiFeO3 (BFO) thin films using the patterned surface of the SrTiO3 (STO) single-crystal substrate. On the slope pattern of the STO surface, the in-plane orientation of BFO has changed because the in-plane orientation of BFO can be controlled by the step propagation direction of the patterned surface. From the piezoresponse scanning force microscopy and X-ray diffraction reciprocal space mapping results, charged 109° DWs have been introduced into the BFO thin film at the bottom and top of the slope pattern of the STO surface. In addition, the conductivity modulation of the positively charged DW has been observed by current-sensitive atomic force microscopy imaging.
A Surface-Coupled Optical Trap with 1-bp Precision via Active Stabilization.
Okoniewski, Stephen R; Carter, Ashley R; Perkins, Thomas T
2017-01-01
Optical traps can measure bead motions with Å-scale precision. However, using this level of precision to infer 1-bp motion of molecular motors along DNA is difficult, since a variety of noise sources degrade instrumental stability. In this chapter, we detail how to improve instrumental stability by (1) minimizing laser pointing, mode, polarization, and intensity noise using an acousto-optical-modulator mediated feedback loop and (2) minimizing sample motion relative to the optical trap using a three-axis piezo-electric-stage mediated feedback loop. These active techniques play a critical role in achieving a surface stability of 1 Å in 3D over tens of seconds and a 1-bp stability and precision in a surface-coupled optical trap over a broad bandwidth (Δf = 0.03-2 Hz) at low force (6 pN). These active stabilization techniques can also aid other biophysical assays that would benefit from improved laser stability and/or Å-scale sample stability, such as atomic force microscopy and super-resolution imaging.
Looking at cell mechanics with atomic force microscopy: experiment and theory.
Benitez, Rafael; Toca-Herrera, José L
2014-11-01
This review reports on the use of the atomic force microscopy in the investigation of the mechanical properties of cells. It is shown that the technique is able to deliver information about the cell surface properties (e.g., topography), the Young modulus, the viscosity, and the cell the relaxation times. Another aspect that this short review points out is the utilization of the atomic force microscope to investigate basic questions related to materials physics, biology, and medicine. The review is written in a chronological way to offer an overview of phenomenological facts and quantitative results to the reader. The final section discusses in detail the advantages and disadvantages of the Hertz and JKR models. A new implementation of the JKR model derived by Dufresne is presented. © 2014 Wiley Periodicals, Inc.
Simulating contrast inversion in atomic force microscopy imaging with real-space pseudopotentials
NASA Astrophysics Data System (ADS)
Lee, Alex J.; Sakai, Yuki; Chelikowsky, James R.
2017-02-01
Atomic force microscopy (AFM) measurements have reported contrast inversions for systems such as Cu2N and graphene that can hamper image interpretation and characterization. Here, we apply a simulation method based on ab initio real-space pseudopotentials to gain an understanding of the tip-sample interactions that influence the inversion. We find that chemically reactive tips induce an attractive binding force that results in the contrast inversion. We find that the inversion is tip height dependent and not observed when using less reactive CO-functionalized tips.
NASA Technical Reports Server (NTRS)
1972-01-01
The Apollo 16 spacecraft is scheduled for launch on Apr. 16, 1972 from Complex 39A at the Kennedy Space Center, Florida by the Saturn V launch vehicle. Crewmen are mission commander John W. Young, command module pilot Thomas K. Mattingly II and lunar module pilot Charles M. Duke Jr. Objectives of the mission, to last up to 12 days, as outlined by NASA: to perform selenological inspection, survey and sampling of materials in a preselected region of Descartes using a lunar roving' vehicle; deploy and activate Apollo surface experiments; develop man's capability to work in the lunar environment; obtain photographs of candidate exploration sites; and toconduct inflight experiments and photographic tasks in lunar orbit. Following launch, the spacecraft will reach Earth Parking Orbit and remain in orbit for about two and one-half revolutions prior to Translunar Injection. Next, the Command and Service Module docks with the Lunar Module and the spacecraft "coasts" to the moon. In orbit around the moon, the Command and Service Module/Lunar Module combination will descend to within 50,000 feet of the lunar surface before undocking. The Lunar Module will continue to descend while the Command and Service Module returns to an orbit approximately 60 miles high. Stay time on the lunar surface is scheduled for approximately 73 hours. The ascent stage of the Lunar Module then lifts the astronauts back into lunar orbit where they will dock with the Command/Service Module. The Lunar Module is jettisoned and Transearth Injection follows. Just prior to reentry into the earth's atmosphere, the Service Module is jettisoned, and the astronauts in the Command Module splashdown in the Pacific Ocean. The target point for end-of-mission splashdown is at 05 degrees 0 minutes north latitude and 158 degrees 40 minutes west longitude or approximately 985 nautical miles south of Honolulu, Hawaii. Splashdown is scheduled for Apr. 28, 1972 at 10:30 a.m. Hawaiian Standard Time (2:30 p.m. CST). Recovery forces for Apollo 16, stationed in both the Atlantic and Pacific Oceans, will consist of three ships, nine aircraft and nearly 1,700 personnel. CTF-130 (Manned Spacecraft Recovery Force, Pacific) forces will be stationed south of Hawaii. Three ships, eight helicopters and three Air Force HC-130H aircraft, and nearly 1,100 personnel, will take part. Task Force 140 (Manned Spacecraft Recovery Force, Atlantic), comprising one ship, six HC-130H aircraft, three helicopters and approximately 300 personnel, will be positioned for possible launch abort operations. Two ships in the Atlantic will also be used for acoustical testing. Other forces, primarily aircraft and personnel of the Air Force Aerospace Rescue and Recovery Service will be on alert around the world for contingency recovery support.
Dufrêne, Y F
2001-02-01
The application of atomic force microscopy (AFM) to probe the ultrastructure and physical properties of microbial cell surfaces is reviewed. The unique capabilities of AFM can be summarized as follows: imaging surface topography with (sub)nanometer lateral resolution; examining biological specimens under physiological conditions; measuring local properties and interaction forces. AFM is being used increasingly for: (i) visualizing the surface ultrastructure of microbial cell surface layers, including bacterial S-layers, purple membranes, porin OmpF crystals and fungal rodlet layers; (ii) monitoring conformational changes of individual membrane proteins; (iii) examining the morphology of bacterial biofilms, (iv) revealing the nanoscale structure of living microbial cells, including fungi, yeasts and bacteria, (v) mapping interaction forces at microbial surfaces, such as van der Waals and electrostatic forces, solvation forces, and steric/bridging forces; and (vi) probing the local mechanical properties of cell surface layers and of single cells.
Wu, Jingheng; Shen, Lin; Yang, Weitao
2017-10-28
Ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation is a useful tool to calculate thermodynamic properties such as potential of mean force for chemical reactions but intensely time consuming. In this paper, we developed a new method using the internal force correction for low-level semiempirical QM/MM molecular dynamics samplings with a predefined reaction coordinate. As a correction term, the internal force was predicted with a machine learning scheme, which provides a sophisticated force field, and added to the atomic forces on the reaction coordinate related atoms at each integration step. We applied this method to two reactions in aqueous solution and reproduced potentials of mean force at the ab initio QM/MM level. The saving in computational cost is about 2 orders of magnitude. The present work reveals great potentials for machine learning in QM/MM simulations to study complex chemical processes.
A Force-Activated Trip Switch Triggers Rapid Dissociation of a Colicin from Its Immunity Protein
Farrance, Oliver E.; Hann, Eleanore; Kaminska, Renata; Housden, Nicholas G.; Derrington, Sasha R.; Kleanthous, Colin; Radford, Sheena E.; Brockwell, David J.
2013-01-01
Colicins are protein antibiotics synthesised by Escherichia coli strains to target and kill related bacteria. To prevent host suicide, colicins are inactivated by binding to immunity proteins. Despite their high avidity (Kd≈fM, lifetime ≈4 days), immunity protein release is a pre-requisite of colicin intoxication, which occurs on a timescale of minutes. Here, by measuring the dynamic force spectrum of the dissociation of the DNase domain of colicin E9 (E9) and immunity protein 9 (Im9) complex using an atomic force microscope we show that application of low forces (<20 pN) increases the rate of complex dissociation 106-fold, to a timescale (lifetime ≈10 ms) compatible with intoxication. We term this catastrophic force-triggered increase in off-rate a trip bond. Using mutational analysis, we elucidate the mechanism of this switch in affinity. We show that the N-terminal region of E9, which has sparse contacts with the hydrophobic core, is linked to an allosteric activator region in E9 (residues 21–30) whose remodelling triggers immunity protein release. Diversion of the force transduction pathway by the introduction of appropriately positioned disulfide bridges yields a force resistant complex with a lifetime identical to that measured by ensemble techniques. A trip switch within E9 is ideal for its function as it allows bipartite complex affinity, whereby the stable colicin:immunity protein complex required for host protection can be readily converted to a kinetically unstable complex whose dissociation is necessary for cellular invasion and competitor death. More generally, the observation of two force phenotypes for the E9:Im9 complex demonstrates that force can re-sculpt the underlying energy landscape, providing new opportunities to modulate biological reactions in vivo; this rationalises the commonly observed discrepancy between off-rates measured by dynamic force spectroscopy and ensemble methods. PMID:23431269
Wang, Zheng; Kwon, Minhyuk; Mohanty, Suman; Schmitt, Lauren M; White, Stormi P; Christou, Evangelos A; Mosconi, Matthew W
2017-03-25
Force control deficits have been repeatedly documented in autism spectrum disorder (ASD). They are associated with worse social and daily living skill impairments in patients suggesting that developing a more mechanistic understanding of the central and peripheral processes that cause them may help guide the development of treatments that improve multiple outcomes in ASD. The neuromuscular mechanisms underlying force control deficits are not yet understood. Seventeen individuals with ASD and 14 matched healthy controls completed an isometric index finger abduction test at 60% of their maximum voluntary contraction (MVC) during recording of the first dorsal interosseous (FDI) muscle to determine the neuromuscular processes associated with sustained force variability. Central modulation of the motorneuron pool activation of the FDI muscle was evaluated at delta (0-4 Hz), alpha (4-10 Hz), beta (10-35 Hz) and gamma (35-60 Hz) frequency bands. ASD patients showed greater force variability than controls when attempting to maintain a constant force. Relative to controls, patients also showed increased central modulation of the motorneuron pool at beta and gamma bands. For controls, reduced force variability was associated with reduced delta frequency modulation of the motorneuron pool activity of the FDI muscle and increased modulation at beta and gamma bands. In contrast, delta, beta, and gamma frequency oscillations were not associated with force variability in ASD. These findings suggest that alterations of central mechanisms that control motorneuron pool firing may underlie the common and often impairing symptoms of ASD.
Ku, Jason T; Lan, Ethan I
2018-03-01
Using engineered photoautotrophic microorganisms for the direct chemical synthesis from CO 2 is an attractive direction for both sustainability and CO 2 mitigation. However, the behaviors of non-native metabolic pathways may be difficult to control due to the different intracellular contexts between natural and heterologous hosts. While most metabolic engineering efforts focus on strengthening driving forces in pathway design to favor biochemical production in these organisms, excessive driving force may be detrimental to product biosynthesis due to imbalanced cellular intermediate distribution. In this study, an ATP-hydrolysis based driving force module was engineered into cyanobacterium Synechococcus elongatus PCC 7942 to produce 3-hydroxybutyrate (3HB), a valuable chemical feedstock for the synthesis of biodegradable plastics and antibiotics. However, while the ATP driving force module is effective for increasing product formation, uncontrolled accumulation of intermediate metabolites likely led to metabolic imbalance and thus to cell growth inhibition. Therefore, the ATP driving force module was reengineered by providing a reversible outlet for excessive carbon flux. Upon expression of this balanced ATP driving force module with 3HB biosynthesis, engineered strain produced 3HB with a cumulative titer of 1.2 g/L, a significant increase over the initial strain. This result highlighted the importance of pathway reversibility as an effective design strategy for balancing driving force and intermediate accumulation, thereby achieving a self-regulated control for increased net flux towards product biosynthesis. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Roles of dynamical symmetry breaking in driving oblate-prolate transitions of atomic clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oka, Yurie, E-mail: ok-yu@fuji.waseda.jp; Yanao, Tomohiro, E-mail: yanao@waseda.jp; Koon, Wang Sang, E-mail: koon@cds.caltech.edu
2015-04-07
This paper explores the driving mechanisms for structural transitions of atomic clusters between oblate and prolate isomers. We employ the hyperspherical coordinates to investigate structural dynamics of a seven-atom cluster at a coarse-grained level in terms of the dynamics of three gyration radii and three principal axes, which characterize overall mass distributions of the cluster. Dynamics of gyration radii is governed by two kinds of forces. One is the potential force originating from the interactions between atoms. The other is the dynamical forces called the internal centrifugal forces, which originate from twisting and shearing motions of the system. The internalmore » centrifugal force arising from twisting motions has an effect of breaking the symmetry between two gyration radii. As a result, in an oblate isomer, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two largest gyration radii is crucial in triggering structural transitions into prolate isomers. In a prolate isomer, on the other hand, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two smallest gyration radii is crucial in triggering structural transitions into oblate isomers. Activation of a twisting motion that switches the movement patterns of three principal axes is also important for the onset of structural transitions between oblate and prolate isomers. Based on these trigger mechanisms, we finally show that selective activations of specific gyration radii and twisting motions, depending on the isomer of the cluster, can effectively induce structural transitions of the cluster. The results presented here could provide further insights into the control of molecular reactions.« less
Roles of dynamical symmetry breaking in driving oblate-prolate transitions of atomic clusters
NASA Astrophysics Data System (ADS)
Oka, Yurie; Yanao, Tomohiro; Koon, Wang Sang
2015-04-01
This paper explores the driving mechanisms for structural transitions of atomic clusters between oblate and prolate isomers. We employ the hyperspherical coordinates to investigate structural dynamics of a seven-atom cluster at a coarse-grained level in terms of the dynamics of three gyration radii and three principal axes, which characterize overall mass distributions of the cluster. Dynamics of gyration radii is governed by two kinds of forces. One is the potential force originating from the interactions between atoms. The other is the dynamical forces called the internal centrifugal forces, which originate from twisting and shearing motions of the system. The internal centrifugal force arising from twisting motions has an effect of breaking the symmetry between two gyration radii. As a result, in an oblate isomer, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two largest gyration radii is crucial in triggering structural transitions into prolate isomers. In a prolate isomer, on the other hand, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two smallest gyration radii is crucial in triggering structural transitions into oblate isomers. Activation of a twisting motion that switches the movement patterns of three principal axes is also important for the onset of structural transitions between oblate and prolate isomers. Based on these trigger mechanisms, we finally show that selective activations of specific gyration radii and twisting motions, depending on the isomer of the cluster, can effectively induce structural transitions of the cluster. The results presented here could provide further insights into the control of molecular reactions.
First principles calculation of current-induced forces in atomic gold contacts
NASA Astrophysics Data System (ADS)
Brandbyge, Mads; Stokbro, Kurt; Taylor, Jeremy; Mozos, Jose-Luis; Ordejon, Pablo
2002-03-01
We have recently developed an first principles method [1] for calculating the electronic structure, electronic transport, and forces acting on the atoms, for atomic scale systems connected to semi-infinite electrodes and with an applied voltage bias. Our method is based on the density functional theory (DFT) as implemented in the well tested SIESTA program [2]. We fully deal with the atomistic structure of the whole system, treating both the contact and the electrodes on the same footing. The effect of the finite bias (including selfconsistency and the solution of the electrostatic problem) is taken into account using nonequilibrium Green's functions. In this talk we show results for the forces acting on the contact atoms due to the nonequilibrium situation in the electronic subsystem, i.e. in the presence of an electronic current. We concentrate on one atom wide gold contacts/wires connected to bulk gold electrodes. References [1] Our implementation is called TranSIESTA and is described in M. Brandbyge, J. Taylor, K. Stokbro, J-L. Mozos, and P. Ordejon, cond-mat/0110650 [2] D. Sanchez-Portal, P. Ordejon, E. Artacho and J. Soler, Int. J. Quantum Chem. 65, 453 (1997).
Nano Goes to School: A Teaching Model of the Atomic Force Microscope
ERIC Educational Resources Information Center
Planinsic, Gorazd; Kovac, Janez
2008-01-01
The paper describes a teaching model of the atomic force microscope (AFM), which proved to be successful in the role of an introduction to nanoscience in high school. The model can demonstrate the two modes of operation of the AFM (contact mode and oscillating mode) as well as some basic principles that limit the resolution of the method. It can…
ERIC Educational Resources Information Center
Phuapaiboon, Unchada; Panijpan, Bhinyo; Osotchan, Tanakorn
2009-01-01
This study was conducted to examine the results of using a low-cost hands-on setup in combination with accompanying activities to promote understanding of the contact mode of atomic force microscopy (AFM). This contact mode setup enabled learners to study how AFM works by hand scanning using probing cantilevers with different characteristics on…
Cooperative scattering and radiation pressure force in dense atomic clouds
NASA Astrophysics Data System (ADS)
Bachelard, R.; Piovella, N.; Courteille, Ph. W.
2011-07-01
Atomic clouds prepared in “timed Dicke” states, i.e. states where the phase of the oscillating atomic dipole moments linearly varies along one direction of space, are efficient sources of superradiant light emission [Scully , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.96.010501 96, 010501 (2006)]. Here, we show that, in contrast to previous assertions, timed Dicke states are not the states automatically generated by incident laser light. In reality, the atoms act back on the driving field because of the finite refraction of the cloud. This leads to nonuniform phase shifts, which, at higher optical densities, dramatically alter the cooperative scattering properties, as we show by explicit calculation of macroscopic observables, such as the radiation pressure force.
Characterization of new drug delivery nanosystems using atomic force microscopy
NASA Astrophysics Data System (ADS)
Spyratou, Ellas; Mourelatou, Elena A.; Demetzos, C.; Makropoulou, Mersini; Serafetinides, A. A.
2015-01-01
Liposomes are the most attractive lipid vesicles for targeted drug delivery in nanomedicine, behaving also as cell models in biophotonics research. The characterization of the micro-mechanical properties of drug carriers is an important issue and many analytical techniques are employed, as, for example, optical tweezers and atomic force microscopy. In this work, polyol hyperbranched polymers (HBPs) have been employed along with liposomes for the preparation of new chimeric advanced drug delivery nanosystems (Chi-aDDnSs). Aliphatic polyester HBPs with three different pseudogenerations G2, G3 and G4 with 16, 32, and 64 peripheral hydroxyl groups, respectively, have been incorporated in liposomal formulation. The atomic force microscopy (AFM) technique was used for the comparative study of the morphology and the mechanical properties of Chi-aDDnSs and conventional DDnS. The effects of both the HBPs architecture and the polyesters pseudogeneration number in the stability and the stiffness of chi-aDDnSs were examined. From the force-distance curves of AFM spectroscopy, the Young's modulus was calculated.
Wagoner, Jason A.; Baker, Nathan A.
2006-01-01
Continuum solvation models provide appealing alternatives to explicit solvent methods because of their ability to reproduce solvation effects while alleviating the need for expensive sampling. Our previous work has demonstrated that Poisson-Boltzmann methods are capable of faithfully reproducing polar explicit solvent forces for dilute protein systems; however, the popular solvent-accessible surface area model was shown to be incapable of accurately describing nonpolar solvation forces at atomic-length scales. Therefore, alternate continuum methods are needed to reproduce nonpolar interactions at the atomic scale. In the present work, we address this issue by supplementing the solvent-accessible surface area model with additional volume and dispersion integral terms suggested by scaled particle models and Weeks–Chandler–Andersen theory, respectively. This more complete nonpolar implicit solvent model shows very good agreement with explicit solvent results and suggests that, although often overlooked, the inclusion of appropriate dispersion and volume terms are essential for an accurate implicit solvent description of atomic-scale nonpolar forces. PMID:16709675
Radiation force on a single atom in a cavity
NASA Technical Reports Server (NTRS)
Kim, M. S.
1992-01-01
We consider the radiation pressure microscopically. Two perfectly conducting plates are parallelly placed in a vacuum. As the vacuum field hits the plates they get pressure from the vacuum. The excessive outside modes of the vacuum field push the plates together, which is known as the Casimer force. We investigate the quantization of the standing wave between the plates to study the interaction between this wave and the atoms on the plates or between the plates. We show that even the vacuum field pushes the atom to place it at nodes of the standing wave.