Science.gov

Sample records for modulation infrared reflection

  1. Origin of Infrared Light Modulation in Reflectance-Mode Photoplethysmography

    PubMed Central

    Sidorov, Igor S.; Romashko, Roman V.; Koval, Vasily T.; Giniatullin, Rashid

    2016-01-01

    We recently pointed out the important role of dermis deformation by pulsating arterial pressure in the formation of a photoplethysmographic signal at green light. The aim of this study was to explore the role of this novel finding in near-infrared (NIR) light. A light-emitting diode (LED)-based imaging photoplethysmography (IPPG) system was used to detect spatial distribution of blood pulsations under frame-to-frame switching green and NIR illumination in the palms of 34 healthy individuals. We observed a significant increase of light-intensity modulation at the heartbeat frequency for both illuminating wavelengths after a palm was contacted with a glass plate. Strong positive correlation between data measured at green and NIR light was found, suggesting that the same signal was read independently from the depth of penetration. Analysis of the data shows that an essential part of remitted NIR light is modulated in time as a result of elastic deformations of dermis caused by variable blood pressure in the arteries. Our observations suggest that in contrast with the classical model, photoplethysmographic waveform originates from the modulation of the density of capillaries caused by the variable pressure applied to the skin from large blood vessels. Particularly, beat-to-beat transmural pressure in arteries compresses/decompresses the dermis and deforms its connective-tissue components, thus affecting the distance between the capillaries, which results in the modulation of absorption and scattering coefficients of both green and NIR light. These findings are important for the correct interpretation of this widely used medical technique, which may have novel applications in diagnosis and treatment monitoring of aging and skin diseases. PMID:27768753

  2. Photoelastic modulation-reflection absorption infrared spectroscopy of CO on Pd(111)

    NASA Astrophysics Data System (ADS)

    Stacchiola, D.; Thompson, A. W.; Kaltchev, M.; Tysoe, W. T.

    2002-11-01

    The photoelastic modulation-reflection absorption infrared spectrum (PEM-RAIRS) of CO on single crystal Pd(111) is measured for CO pressures up to ~150 Torr. The ac component of the signal, corresponding to the infrared signal of the surface, is measured using a synchronous demodulator circuit rather than using a lock-in amplifier as used in previous experiments to measure the infrared spectra of model catalysts surfaces. This allows the spectra to be collected at almost the same speed as RAIRS spectra performed in ultrahigh vacuum. A simplified synchronous demodulator circuit is described consisting of two sample-and-hold circuits operating at 100 kHz. Spectra are obtained that are in excellent agreement with previous results showing that a combination of hcp and fcc threefold sites are occupied by CO at 300 K. Atop sites become occupied as the CO pressure increases. Heating the Pd(111) sample to ~500 K removes all adsorbed CO.

  3. Titanium-silicon oxide film structures for polarization-modulated infrared reflection absorption spectroscopy

    PubMed Central

    Dunlop, Iain E.; Zorn, Stefan; Richter, Gunther; Srot, Vesna; Kelsch, Marion; van Aken, Peter A.; Skoda, Maximilian; Gerlach, Alexander; Spatz, Joachim P.; Schreiber, Frank

    2010-01-01

    We present a titanium-silicon oxide film structure that permits polarization modulated infrared reflection absorption spectroscopy on silicon oxide surfaces. The structure consists of a ~6 nm sputtered silicon oxide film on a ~200 nm sputtered titanium film. Characterization using conventional and scanning transmission electron microscopy, electron energy loss spectroscopy, X-ray photoelectron spectroscopy and X-ray reflectometry is presented. We demonstrate the use of this structure to investigate a selectively protein-resistant self-assembled monolayer (SAM) consisting of silane-anchored, biotin-terminated poly(ethylene glycol) (PEG). PEG-associated IR bands were observed. Measurements of protein-characteristic band intensities showed that this SAM adsorbed streptavidin whereas it repelled bovine serum albumin, as had been expected from its structure. PMID:20418963

  4. Polarization-modulation infrared reflection-absorption spectroscopy affording time-resolved simultaneous detection of surface and liquid phase species at catalytic solid-liquid interfaces.

    PubMed

    Meier, Daniel M; Urakawa, Atsushi; Baiker, Alfons

    2009-09-01

    Polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) combined with concentration modulation allows simultaneous monitoring of dynamic evolutions of surface and liquid phase species during reactions at catalytic interfaces as demonstrated for the Pt-catalysed oxidation of CO by O2 in cyclohexane.

  5. Structure of collagen adsorbed on a model implant surface resolved by polarization modulation infrared reflection-absorption spectroscopy.

    PubMed

    Brand, Izabella; Habecker, Florian; Ahlers, Michael; Klüner, Thorsten

    2015-03-05

    The polarization modulation infrared reflection-absorption spectra of collagen adsorbed on a titania surface and quantum chemical calculations are used to describe components of the amide I mode to the protein structure at a sub-molecular level. In this study, imino acid rich and poor fragments, representing the entire collagen molecule, are taken into account. The amide I mode of the collagen triple helix is composed of three absorption bands which involve: (i) (∼1690cm(-1)) the CO stretching modes at unhydrated groups, (ii) (1655-1673cm(-1)) the CO stretching at carbonyl groups at imino acids and glycine forming intramolecular hydrogen bonds with H atoms at both NH2 and, unusual for proteins, CH2 groups at glycine at a neighbouring chain and (iii) (∼1640cm(-1)) the CO stretching at carbonyl groups forming hydrogen bonds between two, often charged, amino acids as well as hydrogen bonds to water along the entire helix. The IR spectrum of films prepared from diluted solutions (c<50μgml(-1)) corresponds to solution spectra indicating that native collagen molecules interact with water adsorbed on the titania surface. In films prepared from solutions (c⩾50μgml(-1)) collagen multilayers are formed. The amide I mode is blue-shifted by 18cm(-1), indicating that intramolecular hydrogen bonds at imino acid rich fragments are weakened. Simultaneous red-shift of the amide A mode implies that the strength of hydrogen bonds at the imino acid poor fragments increases. Theoretically predicted distortion of the collagen structure upon adsorption on the titania surface is experimentally confirmed.

  6. Structure of collagen adsorbed on a model implant surface resolved by polarization modulation infrared reflection-absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Brand, Izabella; Habecker, Florian; Ahlers, Michael; Klüner, Thorsten

    2015-03-01

    The polarization modulation infrared reflection-absorption spectra of collagen adsorbed on a titania surface and quantum chemical calculations are used to describe components of the amide I mode to the protein structure at a sub-molecular level. In this study, imino acid rich and poor fragments, representing the entire collagen molecule, are taken into account. The amide I mode of the collagen triple helix is composed of three absorption bands which involve: (i) (∼1690 cm-1) the Cdbnd O stretching modes at unhydrated groups, (ii) (1655-1673 cm-1) the Cdbnd O stretching at carbonyl groups at imino acids and glycine forming intramolecular hydrogen bonds with H atoms at both NH2 and, unusual for proteins, CH2 groups at glycine at a neighbouring chain and (iii) (∼1640 cm-1) the Cdbnd O stretching at carbonyl groups forming hydrogen bonds between two, often charged, amino acids as well as hydrogen bonds to water along the entire helix. The IR spectrum of films prepared from diluted solutions (c < 50 μg ml-1) corresponds to solution spectra indicating that native collagen molecules interact with water adsorbed on the titania surface. In films prepared from solutions (c ⩾ 50 μg ml-1) collagen multilayers are formed. The amide I mode is blue-shifted by 18 cm-1, indicating that intramolecular hydrogen bonds at imino acid rich fragments are weakened. Simultaneous red-shift of the amide A mode implies that the strength of hydrogen bonds at the imino acid poor fragments increases. Theoretically predicted distortion of the collagen structure upon adsorption on the titania surface is experimentally confirmed.

  7. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, I.J.; Wendt, J.R.

    1994-09-06

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

  8. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, Ian J.; Wendt, Joel R.

    1994-01-01

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors.

  9. Modulated infrared radiant source

    NASA Technical Reports Server (NTRS)

    Stewart, W. F.; Edwards, S. F.; Vann, D. S.; Mccormick, R. F.

    1981-01-01

    A modulated, infrared radiant energy source was developed to calibrate an airborne nadir-viewing pressure modulated radiometer to be used to detect from Earth orbit trace gases in the troposphere. The technique used an 8 cm long, 0.005 cm diameter platinum-iridium wire as an isothermal, thin line radiant energy source maintained at 1200 K. A + or - 20 K signal, oscillating at controllable frequencies from dc to 20 Hz, was superimposed on it. This periodic variation of the line source energy was used to verify the pressure modulated radiometer's capability to distinguish between the signal variations caused by the Earth's background surface and the signal from the atmospheric gases of interest.

  10. Near infrared leaf reflectance modeling

    NASA Technical Reports Server (NTRS)

    Parrish, J. B.

    1985-01-01

    Near infrared leaf reflectance modeling using Fresnel's equation (Kumar and Silva, 1973) and Snell's Law successfully approximated the spectral curve for a 0.25-mm turgid oak leaf lying on a Halon background. Calculations were made for ten interfaces, air-wax, wax-cellulose, cellulose-water, cellulose-air, air-water, and their inverses. A water path of 0.5 mm yielded acceptable results, and it was found that assignment of more weight to those interfaces involving air versus water or cellulose, and less to those involving wax, decreased the standard deviation of the error for all wavelengths. Data suggest that the air-cell interface is not the only important contributor to the overall reflectance of a leaf. Results also argue against the assertion that the near infrared plateau is a function of cell structure within the leaf.

  11. An experimental set-up to apply polarization modulation to infrared reflection absorption spectroscopy for improved in situ studies of atmospheric corrosion processes.

    PubMed

    Wiesinger, R; Schade, U; Kleber, Ch; Schreiner, M

    2014-06-01

    A new set-up for improved monitoring of atmospheric corrosion processes in situ and in real-time is presented. To characterize chemical structures of thin films on metal surfaces surface sensitive analytical techniques are required. One possible technique is Infrared Reflection Absorption Spectroscopy (IRRAS) which has become an established method to investigate surface corrosion films of thicknesses less than 200 nm. However, there are limitations related to the sensitivity of these measurements, in case of investigating ultrathin films or absorption bands of interest, surface species are superimposed by atmospheric background absorption, which changes during in situ measurements in ambient atmospheres. These difficulties of in situ surface reflection measurements can be eliminated by availing the polarization selectivity of adsorbed surface species. At grazing angles of incidence the absorption of p-polarized infrared radiation by thin surface films on metals is enhanced, while the absorption of s-polarized light by this film is nearly zero. This different behavior of the polarization properties leads to strong selection rules at the surface and can therefore be used to identify molecules adsorbed on metal surfaces. Polarization Modulation (PM) of the infrared (IR) light takes advantage of this disparity of polarization on sample surfaces and in combination with IRRAS yielding a very sensitive and surface-selective method for obtaining IR spectra of ultra-thin films on metal surfaces. An already existing in situ IRRAS/Quartz Crystal Microbalance weathering cell was combined with PM and evaluated according to its applicability to study in situ atmospheric corrosion processes. First real-time measurements on silver samples exposed to different atmospheres were performed showing the advantage of PM-IRRAS compared to conventional IRRAS for such investigations.

  12. An experimental set-up to apply polarization modulation to infrared reflection absorption spectroscopy for improved in situ studies of atmospheric corrosion processes

    SciTech Connect

    Wiesinger, R.; Schade, U.; Kleber, Ch.; Schreiner, M.

    2014-06-15

    A new set-up for improved monitoring of atmospheric corrosion processes in situ and in real-time is presented. To characterize chemical structures of thin films on metal surfaces surface sensitive analytical techniques are required. One possible technique is Infrared Reflection Absorption Spectroscopy (IRRAS) which has become an established method to investigate surface corrosion films of thicknesses less than 200 nm. However, there are limitations related to the sensitivity of these measurements, in case of investigating ultrathin films or absorption bands of interest, surface species are superimposed by atmospheric background absorption, which changes during in situ measurements in ambient atmospheres. These difficulties of in situ surface reflection measurements can be eliminated by availing the polarization selectivity of adsorbed surface species. At grazing angles of incidence the absorption of p-polarized infrared radiation by thin surface films on metals is enhanced, while the absorption of s-polarized light by this film is nearly zero. This different behavior of the polarization properties leads to strong selection rules at the surface and can therefore be used to identify molecules adsorbed on metal surfaces. Polarization Modulation (PM) of the infrared (IR) light takes advantage of this disparity of polarization on sample surfaces and in combination with IRRAS yielding a very sensitive and surface-selective method for obtaining IR spectra of ultra-thin films on metal surfaces. An already existing in situ IRRAS/Quartz Crystal Microbalance weathering cell was combined with PM and evaluated according to its applicability to study in situ atmospheric corrosion processes. First real-time measurements on silver samples exposed to different atmospheres were performed showing the advantage of PM-IRRAS compared to conventional IRRAS for such investigations.

  13. An experimental set-up to apply polarization modulation to infrared reflection absorption spectroscopy for improved in situ studies of atmospheric corrosion processes

    NASA Astrophysics Data System (ADS)

    Wiesinger, R.; Schade, U.; Kleber, Ch.; Schreiner, M.

    2014-06-01

    A new set-up for improved monitoring of atmospheric corrosion processes in situ and in real-time is presented. To characterize chemical structures of thin films on metal surfaces surface sensitive analytical techniques are required. One possible technique is Infrared Reflection Absorption Spectroscopy (IRRAS) which has become an established method to investigate surface corrosion films of thicknesses less than 200 nm. However, there are limitations related to the sensitivity of these measurements, in case of investigating ultrathin films or absorption bands of interest, surface species are superimposed by atmospheric background absorption, which changes during in situ measurements in ambient atmospheres. These difficulties of in situ surface reflection measurements can be eliminated by availing the polarization selectivity of adsorbed surface species. At grazing angles of incidence the absorption of p-polarized infrared radiation by thin surface films on metals is enhanced, while the absorption of s-polarized light by this film is nearly zero. This different behavior of the polarization properties leads to strong selection rules at the surface and can therefore be used to identify molecules adsorbed on metal surfaces. Polarization Modulation (PM) of the infrared (IR) light takes advantage of this disparity of polarization on sample surfaces and in combination with IRRAS yielding a very sensitive and surface-selective method for obtaining IR spectra of ultra-thin films on metal surfaces. An already existing in situ IRRAS/Quartz Crystal Microbalance weathering cell was combined with PM and evaluated according to its applicability to study in situ atmospheric corrosion processes. First real-time measurements on silver samples exposed to different atmospheres were performed showing the advantage of PM-IRRAS compared to conventional IRRAS for such investigations.

  14. Polarization-modulated infrared spectroscopy and x-ray reflectivity of photosystem II core complex at the gas-water interface.

    PubMed Central

    Gallant, J; Desbat, B; Vaknin, D; Salesse, C

    1998-01-01

    The state of photosystem II core complex (PS II CC) in monolayer at the gas-water interface was investigated using in situ polarization-modulated infrared reflection absorption spectroscopy and x-ray reflectivity techniques. Two approaches for preparing and manipulating the monolayers were examined and compared. In the first, PS II CC was compressed immediately after spreading at an initial surface pressure of 5.7 mN/m, whereas in the second, the monolayer was incubated for 30 min at an initial surface pressure of 0.6 mN/m before compression. In the first approach, the protein complex maintained its native alpha-helical conformation upon compression, and the secondary structure of PS II CC was found to be stable for 2 h. The second approach resulted in films showing stable surface pressure below 30 mN/m and the presence of large amounts of beta-sheets, which indicated denaturation of PS II CC. Above 30 mN/m, those films suffered surface pressure instability, which had to be compensated by continuous compression. This instability was correlated with the formation of new alpha-helices in the film. Measurements at 4 degreesC strongly reduced denaturation of PS II CC. The x-ray reflectivity studies indicated that the spread film consists of a single protein layer at the gas-water interface. Altogether, this study provides direct structural and molecular information on membrane proteins when spread in monolayers at the gas-water interface. PMID:9826610

  15. Advanced infrared laser modulator development

    NASA Technical Reports Server (NTRS)

    Cheo, P. K.; Wagner, R.; Gilden, M.

    1984-01-01

    A parametric study was conducted to develop an electrooptic waveguide modulator for generating continuous tunable sideband power from an infrared CO2 laser. Parameters included were the waveguide configurations, microstrip dimensions device impedance, and effective dielectric constants. An optimum infrared laser modulator was established and was fabricated. This modulator represents the state-of-the-art integrated optical device, which has a three-dimensional topology to accommodate three lambda/4 step transformers for microwave impedance matching at both the input and output terminals. A flat frequency response of the device over 20 HGz or = 3 dB) was achieved. Maximum single sideband to carrier power greater than 1.2% for 20 W microwave input power at optical carrier wavelength of 10.6 microns was obtained.

  16. Electrochromic window with high reflectivity modulation

    DOEpatents

    Goldner, Ronald B.; Gerouki, Alexandra; Liu, Te-Yang; Goldner, Mark A.; Haas, Terry E.

    2000-01-01

    A multi-layered, active, thin film, solid-state electrochromic device having a high reflectivity in the near infrared in a colored state, a high reflectivity and transmissivity modulation when switching between colored and bleached states, a low absorptivity in the near infrared, and fast switching times, and methods for its manufacture and switching are provided. In one embodiment, a multi-layered device comprising a first indium tin oxide transparent electronic conductor, a transparent ion blocking layer, a tungsten oxide electrochromic anode, a lithium ion conducting-electrically resistive electrolyte, a complimentary lithium mixed metal oxide electrochromic cathode, a transparent ohmic contact layer, a second indium oxide transparent electronic conductor, and a silicon nitride encapsulant is provided. Through elimination of optional intermediate layers, simplified device designs are provided as alternative embodiments. Typical colored-state reflectivity of the multi-layered device is greater than 50% in the near infrared, bleached-state reflectivity is less than 40% in the visible, bleached-state transmissivity is greater than 60% in the near infrared and greater than 40% in the visible, and spectral absorbance is less than 50% in the range from 0.65-2.5 .mu.m.

  17. Reflective coherent spatial light modulator

    DOEpatents

    Simpson, John T.; Richards, Roger K.; Hutchinson, Donald P.; Simpson, Marcus L.

    2003-04-22

    A reflective coherent spatial light modulator (RCSLM) includes a subwavelength resonant grating structure (SWS), the SWS including at least one subwavelength resonant grating layer (SWL) have a plurality of areas defining a plurality of pixels. Each pixel represents an area capable of individual control of its reflective response. A structure for modulating the resonant reflective response of at least one pixel is provided. The structure for modulating can include at least one electro-optic layer in optical contact with the SWS. The RCSLM is scalable in both pixel size and wavelength. A method for forming a RCSLM includes the steps of selecting a waveguide material and forming a SWS in the waveguide material, the SWS formed from at least one SWL, the SWL having a plurality of areas defining a plurality of pixels.

  18. Infrared Reflective Filter and Its Applications

    NASA Astrophysics Data System (ADS)

    Honda, Kiyokazu; Ishizaki, Ariyoshi; Yuge, Youji; Saitoh, Tokuyoshi

    1983-12-01

    A thin film, which reflects infra-red ray while transmits visible light, is discussed in a background of energy saving incandescent lamps. The film which consists of multi-layer Ti02-Si02 film reflects infra-red ray effectively and has a high heat resistance. This film is formed from organometallic solutions by dipping method. In order to carry out multi-layer coatings, the organometallic solutions are improved. A film on a substrate turns into a metalic oxide film having desired optical thickness and refractive index. The optical properties of this film and its application to tubular tungsten halogen lamps are discussed in this paper.

  19. Mid-infrared reflectivity of experimental atheromas.

    PubMed

    Holman, Hoi-Ying N; Bjornstad, Kathy A; Martin, Michael C; McKinney, Wayne R; Blakely, Eleanor A; Blankenberg, Francis G

    2008-01-01

    We report that the pathologic components present within the atheromatous plaques of ApoE knock-out mice can reflect significant amounts of mid-infrared (mid-IR) light. Furthermore, the reflected light spectra contained the unique signatures of a variety of biologic features including those found in unstable or "vulnerable" plaque. This discovery may represent a unique opportunity to develop a new intravascular diagnostic modality that can detect and characterize sites of atherosclerosis.

  20. Optimization of diffuse reflectance infrared spectroscopy accessories

    SciTech Connect

    Hirschfeld, T.

    1986-11-01

    The value of diffuse reflectance as an infrared or near-infrared spectroscopic sampling procedure has been limited by the low efficiency of accessories designed for it. In terms of signal-to-noise ratio, these average 2-6% for integrating spheres and 10-12% for various ellipsoidal mirror arrangements. Much better performances, up to 37% efficiency, can be obtained by optimizing a concentric confocal ellipsoidal mirror arrangement by using a very large central opening in the amular collector mirror, and adapting the throughput of the detector to the geometry of the collected beam.

  1. Near-infrared reflectance modulation with electrochromic crystalline WO sub 3 films deposited on ambient temperature glass substrates by an oxygen ion-assisted technique

    SciTech Connect

    Arntz, F.O.; Goldner, R.B.; Morel, B.; Hass, T.E.; Wong, K.K. )

    1990-03-15

    Electrochromic, crystalline WO{sub 3} films have been deposited on glass substrates at ambient temperature by an oxygen-ion-assisted technique using oxygen ion energies {ge}300 eV and oxygen ion to vapor molecule (WO{sub 3}) ratios, {gamma}{ge}2.5. After lithiation, the resulting Li{sub {ital x}}WO{sub 3} films exhibited {gt}50% reflectivity in the near infrared, and the reflectivity dispersion was fit by a Drude free-electron model, yielding the Drude parameters: plasma energy, {ital E}{sub {ital p}}=3.3 eV; and the loss (damping) parameter, {ital E}{sub {Gamma}}=1.0 eV. (The bound electron permittivity, {epsilon}{sub {ital b}}, was fixed at 4.0.) These values are comparable to those obtained with WO{sub 3} films rf sputter deposited onto substrates at temperatures {gt}420 {degree}C. During the ion-assisted deposition the substrate temperature reached approximately 90 {degree}C, caused primarily by radiation from the WO{sub 3} evaporant source. This indicates that economical low-temperature substrates, such as plastics, could be used. These results suggest that practical electrochromic smart windows for energy-efficient buildings might be produced using ion-assisted deposition techniques.

  2. Near-infrared hyperspectral reflective confocal microscopy

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Zhang, Yunhai; Miao, Xin; Xue, Xiaojun; Xiao, Yun

    2016-10-01

    A Near-Infrared HyperSpectral Reflective Confocal Microscopy (NIHS-RCM) is proposed in order to get high resolution images of deep biological tissues such as skin. The microscopy system uses a super-continuum laser for illumination, an acousto-optic tunable filter (AOTF) for rapid selection of near-infrared spectrum, a resonant galvanometer scanner for high speed imaging (15f/s) and near-infrared avalanche diode as detector. Porcine skin and other experiments show that the microscopy system could get deep tissue images (180 μm), and show the different ingredients of tissue with different wavelength of illumination. The system has the ability of selectively imaging of multiple ingredients at deep tissue which can be used in skin diseases diagnosis and other fields.

  3. Infrared reflectance in leaf-sitting neotropical frogs.

    PubMed

    Schwalm, P A; Starrett, P H; McDiarmid, R W

    1977-06-10

    Two members of the glass-frog family Centrolenidae (Centrolenella fleischmanni, C. prosoblepon) and the hylid subfamily Phyllomedusinae (Agalychnis moreletii, Pachymedusa dacnicolor) reflect near-infrared light (700 to 900 nanometers) when examined by infrared color photography. Infrared reflectance may confer adaptive advantage to these arboreal frogs both in thermoregulation and infrared cryptic coloration.

  4. Pigments which reflect infrared radiation from fire

    DOEpatents

    Berdahl, P.H.

    1998-09-22

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.

  5. Pigments which reflect infrared radiation from fire

    DOEpatents

    Berdahl, Paul H.

    1998-01-01

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer (.mu.m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 .mu.m or, for cool smoky fires, about 2 .mu.m to about 16 .mu.m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 .mu.m to about 2 .mu.m and thin leafing aluminum flake pigments.

  6. Identification coding schemes for modulated reflectance systems

    DOEpatents

    Coates, Don M.; Briles, Scott D.; Neagley, Daniel L.; Platts, David; Clark, David D.

    2006-08-22

    An identifying coding apparatus employing modulated reflectance technology involving a base station emitting a RF signal, with a tag, located remotely from the base station, and containing at least one antenna and predetermined other passive circuit components, receiving the RF signal and reflecting back to the base station a modulated signal indicative of characteristics related to the tag.

  7. Adding diffuse reflectance infrared Fourier transform spectroscopy capability to extended x-ray-absorption fine structure in a new cell to study solid catalysts in combination with a modulation approach

    NASA Astrophysics Data System (ADS)

    Chiarello, Gian Luca; Nachtegaal, Maarten; Marchionni, Valentina; Quaroni, Luca; Ferri, Davide

    2014-07-01

    We describe a novel cell used to combine in situ transmission X-ray absorption spectroscopy (XAS) with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) in a single experiment. The novelty of the cell design compared to current examples is that both radiations are passed through an X-ray and IR transparent window in direct contact with the sample. This innovative geometry also offers a wide surface for IR collection. In order to avoid interference from the crystalline IR transparent materials (e.g., CaF2, MgF2, diamond) a 500 μm carbon filled hole is laser drilled in the center of a CaF2 window. The cell is designed to represent a plug flow reactor, has reduced dead volume in order to allow for fast exchange of gases and is therefore suitable for experiments under fast transients, e.g., according to the concentration modulation approach. High quality time-resolved XAS and DRIFTS data of a 2 wt.% Pt/Al2O3 catalyst are obtained in concentration modulation experiments where CO (or H2) pulses are alternated to O2 pulses at 150 °C. We show that additional information can be obtained on the Pt redox dynamic under working conditions thanks to the improved sensitivity given by the modulation approach followed by Phase Sensitive Detection (PSD) analysis. It is anticipated that the design of the novel cell is likely suitable for a number of other in situ spectroscopic and diffraction methods.

  8. Infrared reflectance measurement of ion implanted silica

    SciTech Connect

    Magruder, R.H. III; Morgan, S.H.; Weeks, R.A.; Zuhr, R.

    1988-01-01

    Infrared reflectance spectra of silica glass implanted with Ti, Cr, Mn, Fe, and Bi to doses between 0.5 - 6 /times/10/sup 16/ cm/sup /minus/2/ have been measured from 5000 cm/sup /minus/1/ to 400 cm/sup /minus/1/ at room temperature. The ion energy of the implantation was 160 keV and the current was 10..mu..A. Alterations in reflectance of bands at 1125 and 481 cm/sup /minus/1/ in the spectrum of an unimplanted sample of the order of 20% are observed. A band attributed to non-bridging oxygen ions at /approximately/1015 cm/sup /minus/1/ is observed to increase in intensity with increasing dose for all species. The band at 1125 cm/sup /minus/1/ is observed to shift to lower wavenumber with implantation. Bands due to implanted ion-oxygen vibrations were not detected. The magnitudes of the effects on the existing bands were ion specific. This ion specificity is attributed to the differing chemical states of the implanted ions after implantation. 15 refs., 8 figs.

  9. Photovoltaic module with light reflecting backskin

    DOEpatents

    Gonsiorawski, Ronald C.

    2007-07-03

    A photovoltaic module comprises electrically interconnected and mutually spaced photovoltaic cells that are encapsulated by a light-transmitting encapsulant between a light-transparent front cover and a back cover, with the back cover sheet being an ionomer/nylon alloy embossed with V-shaped grooves running in at least two directions and coated with a light reflecting medium so as to provide light-reflecting facets that are aligned with the spaces between adjacent cells and oriented so as to reflect light falling in those spaces back toward said transparent front cover for further internal reflection onto the solar cells, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to the photovoltaic cells, thereby increasing the current output of the module. The internal reflector improves power output by as much as 67%.

  10. Infrared-Proximity-Sensor Modules For Robot

    NASA Technical Reports Server (NTRS)

    Parton, William; Wegerif, Daniel; Rosinski, Douglas

    1995-01-01

    Collision-avoidance system for articulated robot manipulators uses infrared proximity sensors grouped together in array of sensor modules. Sensor modules, called "sensorCells," distributed processing board-level products for acquiring data from proximity-sensors strategically mounted on robot manipulators. Each sensorCell self-contained and consists of multiple sensing elements, discrete electronics, microcontroller and communications components. Modules connected to central control computer by redundant serial digital communication subsystem including both serial and a multi-drop bus. Detects objects made of various materials at distance of up to 50 cm. For some materials, such as thermal protection system tiles, detection range reduced to approximately 20 cm.

  11. Temperature-dependent modulated reflectance of InAs/InGaAs/GaAs quantum dots-in-a-well infrared photodetectors

    SciTech Connect

    Nedzinskas, R. Čechavičius, B.; Rimkus, A.; Pozingytė, E.; Kavaliauskas, J.; Valušis, G.; Li, L. H.; Linfield, E. H.

    2015-04-14

    We present a photoreflectance (PR) study of multi-layer InAs quantum dot (QD) photodetector structures, incorporating InGaAs overgrown layers and positioned asymmetrically within GaAs/AlAs quantum wells (QWs). The influence of the back-surface reflections on the QD PR spectra is explained and a temperature-dependent photomodulation mechanism is discussed. The optical interband transitions originating from the QD/QW ground- and excited-states are revealed and their temperature behaviour in the range of 3–300 K is established. In particular, we estimated the activation energy (∼320 meV) of exciton thermal escape from QD to QW bound-states at high temperatures. Furthermore, from the obtained Varshni parameters, a strain-driven partial decomposition of the InGaAs cap layer is determined.

  12. Extracting infrared absolute reflectance from relative reflectance measurements.

    PubMed

    Berets, Susan L; Milosevic, Milan

    2012-06-01

    Absolute reflectance measurements are valuable to the optics industry for development of new materials and optical coatings. Yet, absolute reflectance measurements are notoriously difficult to make. In this paper, we investigate the feasibility of extracting the absolute reflectance from a relative reflectance measurement using a reference material with known refractive index.

  13. Infrared-Bolometer Arrays with Reflective Backshorts

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Abrahams, John; Allen, Christine A.

    2011-01-01

    Integrated circuits that incorporate square arrays of superconducting-transition- edge bolometers with optically reflective backshorts are being developed for use in image sensors in the spectral range from far infrared to millimeter wavelengths. To maximize the optical efficiency (and, thus, sensitivity) of such a sensor at a specific wavelength, resonant optical structures are created by placing the backshorts at a quarter wavelength behind the bolometer plane. The bolometer and backshort arrays are fabricated separately, then integrated to form a single unit denoted a backshort-under-grid (BUG) bolometer array. In a subsequent fabrication step, the BUG bolometer array is connected, by use of single-sided indium bump bonding, to a readout device that comprises mostly a superconducting quantum interference device (SQUID) multiplexer circuit. The resulting sensor unit comprising the BUG bolometer array and the readout device is operated at a temperature below 1 K. The concept of increasing optical efficiency by use of backshorts at a quarter wavelength behind the bolometers is not new. Instead, the novelty of the present development lies mainly in several features of the design of the BUG bolometer array and the fabrication sequence used to implement the design. Prior to joining with the backshort array, the bolometer array comprises, more specifically, a square grid of free-standing molybdenum/gold superconducting-transition-edge bolometer elements on a 1.4- m-thick top layer of silicon that is part of a silicon support frame made from a silicon-on-insulator wafer. The backshort array is fabricated separately as a frame structure that includes support beams and contains a correspond - ing grid of optically reflective patches on a single-crystal silicon substrate. The process used to fabricate the bolometer array includes standard patterning and etching steps that result in the formation of deep notches in the silicon support frame. These notches are designed to

  14. Reflections From Plasma Would Enhance Infrared Detector

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1992-01-01

    Quantum efficiency of proposed photoemission semiconductor detector of long-wavelength infrared radiation enhanced by multiple passes of radiation. Device has features of back-to-back heterojunction internal-photoemission (HIP) detector, and Fabry-Perot interferometer. Arrays of devices of this type incorporated into integrated-circuit infrared imaging devices.

  15. Spectral infrared hemispherical reflectance measurements for LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Wood, Bobby E.; Cromwell, Brian K.; Pender, Charles W.; Shepherd, Seth D.

    1992-01-01

    This paper describes infrared hemispherical reflectance measurements (2-15 microns) that were made on 58 chromic acid anodized tray clamps retrieved from the LDEF spacecraft. These clamps were used for maintaining the experiments in place and were located at various locations about the spacecraft. Changes in reflectance of the tray clamps at these locations were compared with atomic oxygen fluxes at the same locations. A decrease in absorption band depth was seen for the surfaces exposed to space indicating that there was some surface layer erosion. In all of the surfaces measured, little evidence of contamination was observed and none of the samples showed evidence of the brown nicotine stain that was so prominent in other experiments. Total emissivity values were calculated for both exposed and unexposed tray clamp surfaces. Only small differences, usually less than 1 percent, were observed. The spectral reflectances were measured using a hemi-ellipsoidal mirror reflectometer matched with an interferometer spectrometer. The rapid scanning capability of the interferometer allowed the reflectance measurements to be made in a timely fashion. The ellipsoidal mirror has its two foci separated by 2 inches and located on the major axis. A blackbody source was located at one focus while the tray clamp samples were located at the conjugate focus. The blackbody radiation was modulated and then focused by the ellipsoid onto the tray clamps. Radiation reflected from the tray clamp was sampled by the interferometer by viewing through a hole in the ellipsoid. A gold mirror (reflectance approximately 98 percent) was used as the reference surface.

  16. Spectral infrared hemispherical reflectance measurements for LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Wood, Bobby E.; Cromwell, Brian K.; Pender, Charles W.; Shepherd, Seth D.

    1992-01-01

    This paper describes infrared hemispherical reflectance measurements (2-15 microns) that were made on 58 chromic acid anodized tray clamps retrieved from the LDEF spacecraft. These clamps were used for maintaining the experiments in place and were located at various locations about the spacecraft. Changes in reflectance of the tray clamps at these locations were compared with atomic oxygen fluxes at the same locations. A decrease in absorption band depth was seen for the surfaces exposed to space indicating that there was some surface layer erosion. In all of the surfaces measured, little evidence of contamination was observed and none of the samples showed evidence of the brown nicotine stain that was so prominent in other experiments. Total emissivity values were calculated for both exposed and unexposed tray clamp surfaces. Only small differences, usually less than 1 percent, were observed. The spectral reflectances were measured using a hemi-ellipsoidal mirror reflectometer matched with an interferometer spectrometer. The rapid scanning capability of the interferometer allowed the reflectance measurements to be made in a timely fashion. The ellipsoidal mirror has its two foci separated by 2 inches and located on the major axis. A blackbody source was located at one focus while the tray clamp samples were located at the conjugate focus. The blackbody radiation was modulated and then focused by the ellipsoid onto the tray clamps. Radiation reflected from the tray clamp was sampled by the interferometer by viewing through a hole in the ellipsoid. A gold mirror (reflectance approximately 98 percent) was used as the reference surface.

  17. Light distribution modulated diffuse reflectance spectroscopy

    PubMed Central

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-01-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931

  18. Light distribution modulated diffuse reflectance spectroscopy.

    PubMed

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-06-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation.

  19. Novel Techniques for Enhanced Reflectivity Infrared Mirrors.

    DTIC Science & Technology

    1983-07-01

    photodissociation display good reflectivity. Chemical vapor deposition of ZnSe layers has been used to explore the crystalline structures possible with different substrates and growth parameters. (Author)

  20. Infrared studies of dust grains in infrared reflection nebulae

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne J.; Tielens, Alexander G. G. M.; Werner, Michael W.

    1989-01-01

    IR reflection nebulae, regions of dust which are illuminated by nearby embedded sources, were observed in several regions of ongoing star formation. Near IR observation and theoretical modelling of the scattered light form IR reflection nebulae can provide information about the dust grain properties in star forming regions. IR reflection nebulae were modelled as plane parallel slabs assuming isotropically scattering grains. For the grain scattering properties, graphite and silicate grains were used with a power law grain size distribution. Among the free parameters of the model are the stellar luminosity and effective temperature, the optical depth of the nebula, and the extinction by foreground material. The typical results from this model are presented and discussed.

  1. Red and near-infrared spectral reflectance of snow

    NASA Technical Reports Server (NTRS)

    Obrien, H. W.; Munis, R. H.

    1975-01-01

    The spectral reflectance of snow in the range of 0.60 to 2.50 microns wavelengths was studied in a cold laboratory using natural snow and simulated preparations of snow. A white barium sulfate powder was used as the standard for comparison. The high reflectance (usually nearly 100%) of fresh natural snow in visible wavelengths declines rapidly at wavelengths longer than the visible, as the spectral absorption coefficients of ice increase. Aging snow becomes only somewhat less reflective than fresh snow in the visible region and usually retains a reflectance greater than 80%. In the near infrared, aging snow tends to become considerably less reflective than fresh snow.

  2. Capabilities and Limitations of Infrared Reflectance Microspectroscopy

    NASA Technical Reports Server (NTRS)

    Klima, R. L.; Pieters, C. M.

    2005-01-01

    Technological improvements in IR microspectroscopy have made it an increasingly appealing tool for planetary mineralogy. Microspectroscopy presents the prospect of examining small samples nondestructively and acquiring spectra that can be related to remote sensing observations. However, complications are introduced as a target beam size is reduced, and it is critical that limitations are understood. We present the results of a series of well constrained spectroscopic measurements, linking microspectroscopic data to traditionally collected reflectance spectra and petrologic information for the same rock.

  3. Optical modulation characteristics of graphene supercapacitors at oblique incidence in visible-infrared region

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Zhou, Yixuan; Xu, Xinlong; Zhu, Lipeng; Xia, Wei; Qi, Mei; Bai, Jintao; Ren, Zhaoyu

    2017-05-01

    Multi-angle modulation properties of electrolyte gated graphene visible-infrared modulators with supercapacitor structures have been examined in both experiment and theory. Both transmission and reflection geometries have been studied, and the results show that all the modulations of these devices are gate voltage and wavelength dependent. Maximum modulation depths for transmission device ∼3% and reflection modulator ∼5% are obtained, which can be attributed to the electrolyte assistant considerable change of the Fermi energy with tunable gate voltage. Moreover, little incident angle dependency can be observed with a certain gate voltage. Theoretical analysis based on the different tangential and normal optical responses of the quartz/graphene/eletrolyte interface has been used to explain the phenomena, which indicated a common effect of p-polarized and s-polarized light. This work offers useful insight into a multi-angle application of the graphene-based optical modulator in visible-infrared region.

  4. Structural analysis of HS(CD(2))(12)(O-CH(2)-CH(2))(6)OCH(3) monolayers on gold by means of polarization modulation infrared reflection absorption spectroscopy. progress of the reaction with bromine.

    PubMed

    Brand, Izabella; Nullmeier, Martina; Klüner, Thorsten; Jogireddy, Rajamalleswaramma; Christoffers, Jens; Wittstock, Gunther

    2010-01-05

    A self-assembled monolayer (SAM) on gold was formed with specifically perdeuterated hexaethylene glycol-terminated alkanethiol HS(CD(2))(12)(O-CH(2)-CH(2))(6)OCH(3) (D-OEG). The structure of the d-alkane and the oligoethylene glycol (OEG) parts of the molecule in a SAM was studied by means of polarization modulation infrared reflection absorption spectroscopy. The D-OEG monolayers are highly ordered and exist in a crystalline phase. The d-alkane chain adopts an all-trans conformation. Both, the d-alkane chain and long axis of the OEG part make an angle of 26.0 degrees +/- 1.5 degrees with respect to the surface normal, a value characteristic for the tilt of solid n-alkane thiols in the SAMs on Au. The positions of nu(as)(COC) and CH(2) wagging and rocking modes indicate a helical arrangement of the OEG chains. The D-OEG SAMs were exposed to 25 muM Br(2) in two ways: (i) by immersion into the Br(2) solution and (ii) in the galvanic cell Au|D-OEG SAM|25 muM Br(2) + 0.1 M Na(2)SO(4)|| 50 muM KBr + 0.1 M Na(2)SO(4)|Au. In the galvanic cell, the oxidant (Br(2)) is scavenged by a heterogeneous electron transfer reaction, slowing the reaction of D-OEG with Br(2). The slow progress of the reaction with Br(2) allowed us to draw conclusions about molecular rearrangements taking place during this reaction. The reaction with Br(2) starts on boundaries and/or defects present in the SAM. First, at the defect place, the alpha-C atom of the OEG chain reacts with Br(2) and the OEG part of the molecule is removed from the monolayer. In consequence an increase in disorder in the OEG part of the SAM is observed. The same mechanism of the reaction with Br(2) is applied for the d-dodecane alkanethiol part of the molecule. This reaction is slow, thus the order and the tilt of the hydrocarbon chain changes only a little during the reaction time.

  5. Near infrared reflectance analysis by Gauss-Jordan linear algebra

    NASA Astrophysics Data System (ADS)

    Honigs, D. E.; Freelin, J. M.; Hieftje, G. M.

    1983-02-01

    Near-infrared reflectance analysis (NIRA) is an analytical technique that uses the near-infrared diffuse reflectance of a sample at several discrete wavelengths to predict the concentration of one or more of the chemical species in that sample. However, because near-infrared bands from solid samples are both abundant and broad, the reflectance at a given wavelength usually contains contributions from several sample components, requiring extensive calculations on overlapped bands. In the present study, these calculations have been performed using an approach similar to that employed in multi-component spectrophotometry, but with Gauss-Jordan linear algebra serving as the computational vehicle. Using this approach, correlations for percent protein in wheat flour and percent benzene in hydrocarbons have been obtained and are evaluated. The advantages of a linear-algebra approach over the common one employing stepwise regression are explored.

  6. Infrared reflection nebulae in Orion Molecular Cloud 2

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne; Werner, M. W.; Capps, R.; Lester, D.

    1986-01-01

    New observations of Orion Molecular Cloud 2 have been made from 1 to 100 microns using the NASA Infrared Telescope Facility and the Kuiper Airborne Observatory. An extensive program of polarimetry, photometry, and spectrophotometry has shown that the extended emission regions associated with two of the previously known near-infrared sources, IRS 1 and IRS 4, are infrared reflection nebulae, and that the compact sources IRS 1 and IRS 4 are the main luminosity sources in the cloud. The constraints from the far-infrared observations and an analysis of the scattered light from the IRS 1 nebula show that OMC-2/IRS 1 can be characterized by L of 500 solar luminosities or less and T of roughly 1000 K. The near-infrared albedo of the grains in the IRS 1 nebula is greater than 0.08.

  7. Infrared reflection nebulae in Orion molecular cloud 2

    NASA Technical Reports Server (NTRS)

    Pendleton, Y.; Werner, M. W.; Capps, R.; Lester, D.

    1986-01-01

    New obervations of Orion Molecular Cloud-2 have been made from 1-100 microns using the NASA Infrared Telescope Facility and the Kuiper Airborne Observatory. An extensive program of polarimetry, photometry and spectrophotometry has shown that the extended emission regions associated with two of the previously known near infrared sources, IRS1 and IRS4, are infrared reflection nebulae, and that the compact sources IRS1 and IRS4 are the main luminosity sources in the cloud. The constraints from the far infrared observations and an analysis of the scattered light from the IRS1 nebula show that OMC-2/IRS1 can be characterized by L less than or equal to 500 Solar luminosities and T approx. 1000 K. The near infrared (1-5) micron albedo of the grains in the IRS1 nebula is greater than 0.08.

  8. Infrared spectra of lunar soil analogs. [spectral reflectance of minerals

    NASA Technical Reports Server (NTRS)

    Aronson, J. R.

    1977-01-01

    The infrared spectra of analogs of lunar soils were investigated to further the development of methodology for interpretation of remotely measured infrared spectra of the lunar surface. The optical constants of dunite, bytownite, augite, ilmenite, and a mare glass analog were obtained. The infrared emittance spectra of powdered minerals were measured and compared with spectra calculated by the reflectance theory using a catalog of optical constants. The results indicate that the predictions of the theory closely simulate the experimental measurements if the optical constants are properly derived.

  9. Mid-Infrared Reflectance Imaging of Thermal-Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Edlridge, Jeffrey I.; Martin, Richard E.

    2009-01-01

    An apparatus for mid-infrared reflectance imaging has been developed as means of inspecting for subsurface damage in thermal-barrier coatings (TBCs). The apparatus is designed, more specifically, for imaging the progression of buried delamination cracks in plasma-sprayed yttria-stabilized zirconia coatings on turbine-engine components. Progression of TBC delamination occurs by the formation of buried cracks that grow and then link together to produce eventual TBC spallation. The mid-infrared reflectance imaging system described here makes it possible to see delamination progression that is invisible to the unaided eye, and therefore give sufficiently advanced warning before delamination progression adversely affects engine performance and safety. The apparatus (see figure) includes a commercial mid-infrared camera that contains a liquid-nitrogen-cooled focal plane indium antimonide photodetector array, and imaging is restricted by a narrow bandpass centered at wavelength of 4 microns. This narrow wavelength range centered at 4 microns was chosen because (1) it enables avoidance of interfering absorptions by atmospheric OH and CO2 at 3 and 4.25 microns, respectively; and (2) the coating material exhibits maximum transparency in this wavelength range. Delamination contrast is produced in the midinfrared reflectance images because the introduction of cracks into the TBC creates an internal TBC/air-gap interface with a high diffuse reflectivity of 0.81, resulting in substantially higher reflectance of mid-infrared radiation in regions that contain buried delamination cracks. The camera is positioned a short distance (.12 cm) from the specimen. The mid-infrared illumination is generated by a 50-watt silicon carbide source positioned to the side of the mid-infrared camera, and the illumination is collimated and reflected onto the specimen by a 6.35-cm-diameter off-axis paraboloidal mirror. Because the collected images are of a steady-state reflected intensity (in

  10. Extended near infrared emission from visual reflection nebulae

    NASA Technical Reports Server (NTRS)

    Sellgren, K.; Werner, M. W.; Dinerstein, H. L.

    1982-01-01

    Extended near infrared (2 to 5 microns) emission was observed from three visual reflection nebulae, NGC 7023, 2023, and 2068. The emission from each nebula consists of a smooth continuum, which can be described by a greybody with a color temperature of 1000 K, and emission features at 3.3 and 3.4 microns. The continuum emission cannot be explained by free-free emission, reflected light, or field stars, or by thermal emission from grains, with commonly accepted ratios of infrared to ultraviolet emissivities, which are in equilibrium with the stellar radiation field. A possible explanation is thermal emission from grains with extremely low ratios of infrared to ultraviolet emissivities, or from grains with a temperature determined by mechanisms other than equilibrium radiative heating. Another possibility is continuum fluorescence.

  11. Ellipsoidal-mirror reflectometer accurately measures infrared reflectance of materials

    NASA Technical Reports Server (NTRS)

    Dunn, S. T.; Richmond, J. C.

    1967-01-01

    Reflectometer accurately measures the reflectance of specimens in the infrared beyond 2.5 microns and under geometric conditions approximating normal irradiation and hemispherical viewing. It includes an ellipsoidal mirror, a specially coated averaging sphere associated with a detector for minimizing spatial and angular sensitivity, and an incident flux chopper.

  12. [Identification of pearl powder using microscopic infrared reflectance spectroscopy].

    PubMed

    Zhang, Xuan; Hu, Chao; Yan, Yan; Yang, Hai-Feng; Li, Jun-Fang; Bai, Hua; Xi, Guang-Cheng; Liao, Jie

    2014-09-01

    Pearl is a precious ornament and traditional Chinese medicine, which application history in China is more than 2000 years. It is well known that the chemical ingredients of shell and pearl are very similar, which all of them including calcium carbonate and various amino acids. Generally, shell powders also can be used as medicine; however, its medicinal value is much lower than that of pearl powders. Due to the feature similarity between pearl powders and shell powders, the distinguishment of them by detecting chemical composition and morphology is very difficult. It should be noted that shell powders have been often posing as pearl powders in markets, which seriously infringes the interests of consumers. Identification of pearl powder was investigated by microscopic infrared reflectance spectroscopy, and pearl powder as well as shell powder was calcined at different temperatures for different time before infrared reflectance spectroscopy analysis. The experimental results indicated that when calcined at 400 °C for 30 minutes under atmospheric pressure, aragonite in pearl powder partly transformed into calcite, while aragonite in shell powder completely transformed into calcite. At the same time, the difference in phase transition between the pearl powders 'and shell powders can be easily detected by using the microscopic infrared reflectance spectroscopy. Therefore, based on the difference in their phase transition process, infrared reflectance spectroscopy can be used to identify phase transformation differences between pearl powder and shell powder. It's more meaningfully that the proposed infrared reflectance spec- troscopy method was also investigated for the applicability to other common counterfeits, such as oyster shell powders and abalone shell powders, and the results show that the method can be a simple, efficiently and accurately method for identification of pearl powder.

  13. Improved Spatial Resolution For Reflection Mode Infrared Spectromicroscopy

    SciTech Connect

    Bechtel, Hans A; Martin, Michael C.; May, T. E.; Lerch, Philippe

    2009-08-13

    Standard commercial infrared microscopes operating in reflection mode use a mirror to direct the reflected light from the sample to the detector. This mirror blocks about half of the incident light, however, and thus degrades the spatial resolution by reducing the numerical aperture of the objective. Here, we replace the mirror with a 50% beamsplitter to allow full illumination of the objective and retain a way to direct the reflected light to the detector. The improved spatial resolution is demonstrated using a microscope coupled to a synchrotron source.

  14. Improved Spatial Resolution For Reflection Mode Infrared Spectromicroscopy

    SciTech Connect

    Bechtel, Hans A.; Martin, Michael C.; May, T. E.; Lerch, Philippe

    2010-02-03

    Standard commercial infrared microscopes operating in reflection mode use a mirror to direct the reflected light from the sample to the detector. This mirror blocks about half of the incident light, however, and thus degrades the spatial resolution by reducing the numerical aperture of the objective. Here, we replace the mirror with a 50% beamsplitter to allow full illumination of the objective and retain a way to direct the reflected light to the detector. The improved spatial resolution is demonstrated using a microscope coupled to a synchrotron source.

  15. Studies of dust grain properties in infrared reflection nebulae.

    PubMed

    Pendleton, Y J; Tielens, A G; Werner, M W

    1990-01-20

    We have developed a model for reflection nebulae around luminous infrared sources embedded in dense dust clouds. The aim of this study is to determine the sizes of the scattering grains. In our analysis, we have adopted an MRN-like power-law size distribution (Mathis, Rumpl, and Nordsieck) of graphite and silicate grains, but other current dust models would give results which were substantially the same. In the optically thin limit, the intensity of the scattered light is proportional to the dust column density, while in the optically thick limit, it reflects the grain albedo. The results show that the shape of the infrared spectrum is the result of a combination of the scattering properties of the dust, the spectrum of the illuminating source, and foreground extinction, while geometry plays a minor role. Comparison of our model results with infrared observations of the reflection nebula surrounding OMC-2/IRS 1 shows that either a grain size distribution like that found in the diffuse interstellar medium, or one consisting of larger grains, can explain the observed shape of the spectrum. However, the absolute intensity level of the scattered light, as well as the observed polarization, requires large grains (approximately 5000 angstroms). By adding water ice mantles to the silicate and graphite cores, we have modeled the 3.08 micrometers ice band feature, which has been observed in the spectra of several infrared reflection nebulae. We show that this ice band arises naturally in optically thick reflection nebulae containing ice-coated grains. We show that the shape of the ice band is diagnostic of the presence of large grains, as previously suggested by Knacke and McCorkle. Comparison with observations of the BN/KL reflection nebula in the OMC-1 cloud shows that large ice grains (approximately 5000 angstroms) contribute substantially to the scattered light.

  16. Remote sensing of vegetation water content using shortwave infrared reflectances

    NASA Astrophysics Data System (ADS)

    Hunt, E. Raymond, Jr.; Yilmaz, M. Tugrul

    2007-09-01

    Vegetation water content is an important biophysical parameter for estimation of soil moisture from microwave radiometers. One of the objectives of the Soil Moisture Experiments in 2004 (SMEX04) and 2005 (SMEX05) were to develop and test algorithms for a vegetation water content data product using shortwave infrared reflectances. SMEX04 studied native vegetation in Arizona, USA, and Sonora, Mexico, while SMEX05 studied corn and soybean in Iowa, USA. The normalized difference infrared index (NDII) is defined as (R 850 - R 1650)/(R 800 + R 1650), where R 850 is the reflectance in the near infrared and R1650 is the reflectance in the shortwave infrared. Simulations using the Scattering by Arbitrarily Inclined Leaves (SAIL) model indicated that NDII is sensitive to surface moisture content. From Landsat 5 Thematic Mapper and other imagery, NDII is linear with respect to foliar water content with R2 = 0.81. The regression standard error of the y estimate is 0.094 mm, which is equivalent to about a leaf area index of 0.5 m2 m -2. Based on modeling the dynamic water flow through plants, the requirement for detection of water stress is about 0.01 mm, so detection of water stress may not be possible. However, this standard error is accurate for input into the tau-omega model for soil moisture. Therefore, NDII may be a robust backup algorithm for MODIS as a standard data product.

  17. Infrared reflectance spectra: Effects of particle size, provenance and preparation

    SciTech Connect

    Su, Yin-Fong; Myers, Tanya L.; Brauer, Carolyn S.; Blake, Thomas A.; Forland, Brenda M.; Szecsody, James E.; Johnson, Timothy J.

    2014-09-22

    We have recently developed methods for making more accurate infrared total and diffuse directional - hemispherical reflectance measurements using an integrating sphere. We have found that reflectance spectra of solids, especially powders, are influenced by a number of factors including the sample preparation method, the particle size and morphology, as well as the sample origin. On a quantitative basis we have investigated some of these parameters and the effects they have on reflectance spectra, particularly in the longwave infrared. In the IR the spectral features may be observed as either maxima or minima: In general, upward-going peaks in the reflectance spectrum result from strong surface scattering, i.e. rays that are reflected from the surface without bulk penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. The light signals reflected from solids usually encompass all such effects, but with strong dependencies on particle size and preparation. This paper measures the reflectance spectra in the 1.3 – 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to observe the effects on the spectral features: Bulk materials were ground with a mortar and pestle and sieved to separate the samples into various size fractions between 5 and 500 microns. The median particle size is demonstrated to have large effects on the reflectance spectra. For certain minerals we also observe significant spectral change depending on the geologic origin of the sample. All three such effects (particle size, preparation and provenance) result in substantial change in the reflectance spectra for solid materials; successful identification algorithms will require sufficient flexibility to account for these parameters.

  18. Fourier transform infrared - attenuated total reflection for wheat grain

    NASA Astrophysics Data System (ADS)

    Suchowilska, E.; Kandler, W.; Wiwart, M.; Krska, R.

    2012-04-01

    Mid-infrared regions of the spectrum of grain of four Triticum species were analyzed using Fourier transform infrared - attenuated total reflection. Significant variations were noted in the absorbance of all studied taxa over four wavenumber ranges. The principal component analysis supported strong discrimination of the four examined species. The percentage of variation explained by the first two principal component analyses reached 95.04%, including principal components 1-72.16% and 2-22.88%. The applied method supports quick identification of the grains of various hulled species of wheat and it is a useful tool for evaluating the seeds and food products obtained from those cereal species.

  19. The Influence of Particle Size on Infrared Reflectance Spectra

    SciTech Connect

    Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong; Blake, Thomas A.; Johnson, Timothy J.; Richardson, Robert L.

    2014-06-13

    Reflectance spectra of solids are influenced by the absorption coefficient as well as the particle size and morphology. In the infrared, spectral features may be observed as either maxima or minima: in general, the upward-going peaks in the reflectance spectrum result from surface scattering, which are rays that have reflected from the surface without penetration, whereas downward-going peaks result from either absorption or volume scattering, i.e. rays that have penetrated into the sample or refracted into the sample interior and are not reflected. The light signal reflected from solids usually encompasses all these effects which include dependencies on particle size, morphology and sample density. This paper measures the reflectance spectra in the 1.3 – 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to understand the effects on the spectral features as a function of the mean grain size of the sample. The bulk materials were ground with a mortar and pestle and then sieved to separate the samples into various size fractions: 0-45, 45-90, 90-180, 180-250, 250-500, and >500 microns. The directional-hemispherical spectra were recorded using a Fourier transform infrared spectrometer equipped with an integrating sphere to measure the reflectance for all of the particle-size fractions. We have studied both organic and inorganic materials, but this paper focuses on inorganic salts, NaNO3 in particular. Our studies clearly show that particle size has an enormous influence on the measured reflectance spectra for bulk materials and that successful identification requires sufficient representative reflectance data so as to include the particle size(s) of interest. Origins of the effects are discussed.

  20. Spectral infrared hemispherical reflectance measurements for LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Cromwell, B. K.; Shepherd, S. D.; Pender, C. W.; Wood, B. E.

    1993-01-01

    Infrared hemispherical reflectance measurements that were made on 58 chromic acid anodized tray clamps from LDEF are described. The measurements were made using a hemiellipsoidal mirror reflectometer with interferometer for wavelengths between 2-15 microns. The tray clamps investigated were from locations about the entire spacecraft and provided the opportunity for comparing the effects of atomic oxygen at each location. Results indicate there was essentially no dependence on atomic oxygen fluence for the surfaces studied, but there did appear to be a slight dependence on solar radiation exposure. The reflectances of the front sides of the tray clamps consistently were slightly higher than for the protected rear tray clamp surfaces.

  1. Thermal consequences of colour and near-infrared reflectance.

    PubMed

    Stuart-Fox, Devi; Newton, Elizabeth; Clusella-Trullas, Susana

    2017-07-05

    The importance of colour for temperature regulation in animals remains controversial. Colour can affect an animal's temperature because all else being equal, dark surfaces absorb more solar energy than do light surfaces, and that energy is converted into heat. However, in reality, the relationship between colour and thermoregulation is complex and varied because it depends on environmental conditions and the physical properties, behaviour and physiology of the animal. Furthermore, the thermal effects of colour depend as much on absorptance of near-infrared ((NIR), 700-2500 nm) as visible (300-700 nm) wavelengths of direct sunlight; yet the NIR is very rarely considered or measured. The few available data on NIR reflectance in animals indicate that the visible reflectance is often a poor predictor of NIR reflectance. Adaptive variation in animal coloration (visible reflectance) reflects a compromise between multiple competing functions such as camouflage, signalling and thermoregulation. By contrast, adaptive variation in NIR reflectance should primarily reflect thermoregulatory requirements because animal visual systems are generally insensitive to NIR wavelengths. Here, we assess evidence and identify key research questions regarding the thermoregulatory function of animal coloration, and specifically consider evidence for adaptive variation in NIR reflectance.This article is part of the themed issue 'Animal coloration: production, perception, function and application'. © 2017 The Author(s).

  2. Infrared reflection-absorption spectroscope using thin film structures

    NASA Astrophysics Data System (ADS)

    Finke, S. J.; Schrader, G. L.

    Infrared reflection-absorption spectroscopy (IRRAS) has been used extensively in the study of adsorbates and thin layers on metal surfaces, but little work has been performed on non-metals due to the low sensitivity which results when these materials are used. In this work, thin film structures consisting of a thin layer of a semiconductor (silicon) on a metal (copper) surface are used to increase the sensitivity of the technique for examining layers of poly(methylmethacrylate).

  3. Visible and infrared reflectance imaging spectroscopy of paintings: pigment mapping and improved infrared reflectography

    NASA Astrophysics Data System (ADS)

    Delaney, John K.; Zeibel, Jason G.; Thoury, Mathieu; Littleton, Roy; Morales, Kathryn M.; Palmer, Michael; de la Rie, E. René

    2009-07-01

    Reflectance imaging spectroscopy, the collection of images in narrow spectral bands, has been developed for remote sensing of the Earth. In this paper we present findings on the use of imaging spectroscopy to identify and map artist pigments as well as to improve the visualization of preparatory sketches. Two novel hyperspectral cameras, one operating from the visible to near-infrared (VNIR) and the other in the shortwave infrared (SWIR), have been used to collect diffuse reflectance spectral image cubes on a variety of paintings. The resulting image cubes (VNIR 417 to 973 nm, 240 bands, and SWIR 970 to 1650 nm, 85 bands) were calibrated to reflectance and the resulting spectra compared with results from a fiber optics reflectance spectrometer (350 to 2500 nm). The results show good agreement between the spectra acquired with the hyperspectral cameras and those from the fiber reflectance spectrometer. For example, the primary blue pigments and their distribution in Picasso's Harlequin Musician (1924) are identified from the reflectance spectra and agree with results from X-ray fluorescence data and dispersed sample analysis. False color infrared reflectograms, obtained from the SWIR hyperspectral images, of extensively reworked paintings such as Picasso's The Tragedy (1903) are found to give improved visualization of changes made by the artist. These results show that including the NIR and SWIR spectral regions along with the visible provides for a more robust identification and mapping of artist pigments than using visible imaging spectroscopy alone.

  4. Infrared imaging based on quantum dot optical phase modulation

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Yang, Tao; Peng, Chen; Martini, Rainer

    2011-08-01

    In the past two decades, there is an increasing interest in developing new infrared photodetectors based on novel nanostructures, such as quantum well infrared photodetector (QWIP) and quantum dot infrared photodetector (QDIP). However, the commonly used electrical read-out approach limits the resolution of QWIP/QDIP infrared imaging to around 1 mega pixel. In this paper, we reported our theoretical study on an all-optical readout based on quantum dot phase modulation, which provides a new way for the intersubband infrared detection by measuring the phase change in the transmitted interband near infrared (NIR) and allows a high-resolution middle infrared (MIR) or far infrared (FIR) imaging. Utilizing the long life time in the quantum dots, the intersubband infrared resonant light is used to control the interband NIR resonant light phase. An infrared image can be converted into a visible or near infrared image, which can be easily captured with a high resolution CCD camera. It provides a new way to obtain a high resolution infrared image.

  5. Terahertz and mid-infrared reflectance of epitaxial graphene

    PubMed Central

    Santos, Cristiane N.; Joucken, Frédéric; De Sousa Meneses, Domingos; Echegut, Patrick; Campos-Delgado, Jessica; Louette, Pierre; Raskin, Jean-Pierre; Hackens, Benoit

    2016-01-01

    Graphene has emerged as a promising material for infrared (IR) photodetectors and plasmonics. In this context, wafer scale epitaxial graphene on SiC is of great interest in a variety of applications in optics and nanoelectronics. Here we present IR reflectance spectroscopy of graphene grown epitaxially on the C-face of 6H-SiC over a broad optical range, from terahertz (THz) to mid-infrared (MIR). Contrary to the transmittance, reflectance measurements are not hampered by the transmission window of the substrate, and in particular by the SiC Reststrahlen band in the MIR. This allows us to present IR reflectance data exhibiting a continuous evolution from the regime of intraband to interband charge carrier transitions. A consistent and simultaneous analysis of the contributions from both transitions to the optical response yields precise information on the carrier dynamics and the number of layers. The properties of the graphene layers derived from IR reflection spectroscopy are corroborated by other techniques (micro-Raman and X-ray photoelectron spectroscopies, transport measurements). Moreover, we also present MIR microscopy mapping, showing that spatially-resolved information can be gathered, giving indications on the sample homogeneity. Our work paves the way for a still scarcely explored field of epitaxial graphene-based THz and MIR optical devices. PMID:27102827

  6. Visible and near infrared reflectances measured from laboratory ice clouds.

    PubMed

    Barkey, Brian; Liou, K N

    2008-05-01

    We present laboratory results of the 0.68 microm visible (VIS) and 1.617 microm near infrared (NIR) reflectances typically used for inferring optical depth and ice crystal size from satellite radiometers, from ice clouds generated in a temperature controlled column cloud chamber. Two types of ice crystals were produced in this experiment: small columns and dendrites with mean maximum dimensions of about 17 and 35 microm. Within experimental uncertainty, the measured reflectances from ice clouds at both wavelengths agree reasonably well with the theoretical results computed from the plane-parallel adding-doubling method for radiative transfer using the measured ice particle morphology. We demonstrate that laboratory scattering and reflectance data for thin ice clouds with optical depths less than 0.4 can be used for validation of the thin cirrus optical depth and ice crystal size that have been routinely retrieved from the satellite VIS-NIR two channel pair.

  7. Improved Spatial Resolution for Reflection Mode Infrared Microscopy

    SciTech Connect

    Bechtel, Hans A.; Martin, Michael C.; May, T.E.; Lerch, Philippe

    2009-10-09

    Standard commercial infrared microscopes operating in reflection mode use a mirror to direct the reflected light from the sample to the detector. This mirror blocks about half of the incident light, however, and thus degrades the spatial resolution by reducing the umerical aperture of the objective. Here, we replace the mirror with a 50% beamsplitter to allow full illumination of the objective and retain a way to direct the reflected light to the detector. The improved spatial resolution is demonstrated using two different microscopes apable of diffraction-limited resolution: the first microscope is coupled to a synchrotron source and utilizes a single point detector, whereas the second microscope has a standard blackbody source and uses a focal planetarray (FPA) detector.

  8. Reflected infrared spectrum of a massive protostar in Orion.

    PubMed

    Morino, J I; Yamashita, T; Hasegawa, T; Nakano, T

    1998-05-28

    The infrared source IRc2 in the star-forming region Orion-KL is generally believed to contain a massive and very young star. Its nature and evolutionary status, however, are difficult to determine because it is hidden from direct view by a dense disklike envelope of gas and dust. Here we report observations of infrared radiation (at a wavelength of about 2 microm) that has escaped the surrounding dust in the polar direction, perpendicular to the plane of the disk, and then been reflected towards us by dust farther away from the star. The reflected spectrum contains absorption lines of neutral metallic atoms and carbon monoxide, which we interpret as indicating a source temperature of about 4,500 K. But, given the luminosity of the source, its radius must be at least 300 solar radii-too large to be attained with the modest gas-accretion rates in existing theories of massive-star formation. Whether the infrared radiation is coming from the protostar itself or the self-luminous accretion disk around it, the accretion rate must be around (5-15) x 10(-3) solar masses per year, at least two orders of magnitude greater than is commonly assumed in models of star formation.

  9. Optimally designed narrowband guided-mode resonance reflectance filters for mid-infrared spectroscopy

    PubMed Central

    Liu, Jui-Nung; Schulmerich, Matthew V.; Bhargava, Rohit; Cunningham, Brian T.

    2011-01-01

    An alternative to the well-established Fourier transform infrared (FT-IR) spectrometry, termed discrete frequency infrared (DFIR) spectrometry, has recently been proposed. This approach uses narrowband mid-infrared reflectance filters based on guided-mode resonance (GMR) in waveguide gratings, but filters designed and fabricated have not attained the spectral selectivity (≤ 32 cm−1) commonly employed for measurements of condensed matter using FT-IR spectroscopy. With the incorporation of dispersion and optical absorption of materials, we present here optimal design of double-layer surface-relief silicon nitride-based GMR filters in the mid-IR for various narrow bandwidths below 32 cm−1. Both shift of the filter resonance wavelengths arising from the dispersion effect and reduction of peak reflection efficiency and electric field enhancement due to the absorption effect show that the optical characteristics of materials must be taken into consideration rigorously for accurate design of narrowband GMR filters. By incorporating considerations for background reflections, the optimally designed GMR filters can have bandwidth narrower than the designed filter by the antireflection equivalence method based on the same index modulation magnitude, without sacrificing low sideband reflections near resonance. The reported work will enable use of GMR filters-based instrumentation for common measurements of condensed matter, including tissues and polymer samples. PMID:22109445

  10. Optimally designed narrowband guided-mode resonance reflectance filters for mid-infrared spectroscopy.

    PubMed

    Liu, Jui-Nung; Schulmerich, Matthew V; Bhargava, Rohit; Cunningham, Brian T

    2011-11-21

    An alternative to the well-established Fourier transform infrared (FT-IR) spectrometry, termed discrete frequency infrared (DFIR) spectrometry, has recently been proposed. This approach uses narrowband mid-infrared reflectance filters based on guided-mode resonance (GMR) in waveguide gratings, but filters designed and fabricated have not attained the spectral selectivity (≤ 32 cm(-1)) commonly employed for measurements of condensed matter using FT-IR spectroscopy. With the incorporation of dispersion and optical absorption of materials, we present here optimal design of double-layer surface-relief silicon nitride-based GMR filters in the mid-IR for various narrow bandwidths below 32 cm(-1). Both shift of the filter resonance wavelengths arising from the dispersion effect and reduction of peak reflection efficiency and electric field enhancement due to the absorption effect show that the optical characteristics of materials must be taken into consideration rigorously for accurate design of narrowband GMR filters. By incorporating considerations for background reflections, the optimally designed GMR filters can have bandwidth narrower than the designed filter by the antireflection equivalence method based on the same index modulation magnitude, without sacrificing low sideband reflections near resonance. The reported work will enable use of GMR filters-based instrumentation for common measurements of condensed matter, including tissues and polymer samples. © 2011 Optical Society of America

  11. Reflectance modulation with electrochromic Li sub x WO sub 3 films

    SciTech Connect

    Goldner, R.B.; Berera, G.; Arntz, F.O.; Haas, T.E.; Morel, B.; Wong, K.K.

    1989-01-01

    Reflectance-modulated Smart Glass Windows (or smart windows) is a potentially important application for electrochromic thin films. The question addressed in this paper is, what is the upper bound for the near infrared reflectivity modulation in Li{sub x}WO{sub 3} films Based upon recent research on bulk crystals of Na{sub x}WO{sub 3} and bulk crystals and thin films of polycrystalline Li{sub x}WO{sub 3}, it is concluded that the upper bound is probably close to that of bulk crystals of Na{sub x}WO{sub 3} (x > 0.5) for which near infrared reflectance >90% has been reported. 9 refs., 7 figs.

  12. Infrared Observations of Temperature Modulations on the Hudson River

    NASA Astrophysics Data System (ADS)

    Zuckerman, S.; Anderson, S. P.; Zappa, C. J.; Smith, R. A.

    2011-12-01

    The thermal boundary layer at the surface of a river is constantly disrupted and renewed by physical processes associated with convection, turbulence, wind stress, heat flux, and other environmental factors. These disruptions cause temperature modulations in the surface layer which can be measured with an infrared (IR) sensor. Over the course of two ten-day periods in August and November of 2010, we imaged the Hudson River from atop a nearby cliff using a large-format, mid-wave IR sensor. Time series imagery was collected for 5 to 10 minute periods, every 30 minutes for the entirety of each experiment. In the field of view, several in situ instruments were mounted to a steel piling driven into the river bed. Above and below the water surface, an array of instruments were installed to measure heat flux, wind speed, air and water temperature, current velocity, humidity, radiance, and conductivity. In this analysis, we investigate the relationship between the temperature modulations present in the IR imagery, which are associated with coherent features advecting with the mean flow, and the environmental parameters measured from our in situ instruments. The IR imagery from these experiments show a diverse range of temperature modulation patterns, on scales of 20cm to several tens of meters, often masked by the presence of surface waves. At low grazing angles, the IR images of the water surface are comprised of a combination of emitted radiance from temperature modulations on the surface and reflected radiance from the sky above. To separate out the emitted signal from the reflected signal, we employ a Fourier space filtering technique to exclude the variance in the imagery due to the surface waves. We find the remaining emitted signal to be correlated with wind speed and the air-water temperature difference, and weakly or uncorrelated with stratification and mean current speed. We report on both the signal processing technique used to extract the emitted signal from

  13. Design and realization of a contact-less interaction system based on infrared reflection photoelectric detection array

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Lei, Bing; Feng, Ying

    2015-10-01

    Due to the good performance of high sensitivity, quick response and low cost, infrared reflection detection technology is widely used in various fields. In this work, we present a novel contact-less interaction system which is based on infrared reflection detection technology. The system is mainly composed of a Micro Controller Unit (MCU), upper computer and photoelectric detection module. The MCU is utilized to control the photoelectric detection module and to make sure that the sensing unit is lighted one by one in a given order. When the interactive object appears upon the infrared reflection photoelectric detection array, its position information will be ensured and sent to the upper computer through MCU. In this system, every sensing unit is lighted for 1ms, and the detection array includes 8×8 units. It means that the photoelectric detection array will scan 15.6 times per-second. The experimental research results indicate that the factors affecting the detection range including the working current of transmitting diode, modulation frequency, and the reflectivity of the interactive object. When the working current is 10mA, and the modulation frequency is 80 KHz, the system has a detection range of 20 cm. Moreover, efficient modulation and demodulation of optical signal is quite necessary to remove the influence of surrounding light.

  14. Photo-induced reflectivity in the mid and far infrared

    SciTech Connect

    Haar, P.; Harrington, K.J.; Schwettman, H.A.

    1995-12-31

    Interest in switching FEL beams has motivated studies of photo-induced reflectivity in the mid and far infrared. We are particularly interested in Ge{sup 4}, GaAs, and Si{sup 5}, materials that can be pumped with a visible or near-IR conventional laser and which together cover the wavelengths from 3-100{mu}m. We have made quantitative measurements to determine the induced reflectivity, carrier lifetime, and transient absorption of these materials at several wavelengths across this range using a variety of pump laser wavelengths and pulse lengths. These measurements allow us to determine the feasibility of single pulse selection and cavity dumping with our FELs at high repetition rates.

  15. Far-infrared emissivity measurements of reflective surfaces

    NASA Technical Reports Server (NTRS)

    Xu, J.; Lange, A. E.; Bock, J. J.

    1996-01-01

    An instrument developed to measure the emissivity of reflective surfaces by comparing the thermal emission of a test sample to that of a reference surface is reported. The instrument can accurately measure the emissivity of mirrors made from lightweight thermally insulating materials such as glass and metallized carbon fiber reinforced plastics. Far infrared measurements at a wavelength of 165 micrometers are reported. The instrument has an absolute accuracy of Delta epsilon = 9 x 10(exp -4) and can reproducibly measure an emissivity of as small as 2 x 10(exp -4) between flat reflective surfaces. The instrument was used to measure mirror samples for balloon-borne and spaceborne experiments. An emissivity of (6.05 +/- 1.24) x 10(exp -3) was measured for gold evaporated on glass, and (6.75 +/- 1.17) x 10(exp -3) for aluminum evaporated on glass.

  16. Canopy near-infrared reflectance and terrestrial photosynthesis

    PubMed Central

    Badgley, Grayson; Field, Christopher B.; Berry, Joseph A.

    2017-01-01

    Global estimates of terrestrial gross primary production (GPP) remain highly uncertain, despite decades of satellite measurements and intensive in situ monitoring. We report a new approach for quantifying the near-infrared reflectance of terrestrial vegetation (NIRV). NIRV provides a foundation for a new approach to estimate GPP that consistently untangles the confounding effects of background brightness, leaf area, and the distribution of photosynthetic capacity with depth in canopies using existing moderate spatial and spectral resolution satellite sensors. NIRV is strongly correlated with solar-induced chlorophyll fluorescence, a direct index of photons intercepted by chlorophyll, and with site-level and globally gridded estimates of GPP. NIRV makes it possible to use existing and future reflectance data as a starting point for accurately estimating GPP. PMID:28345046

  17. Modulation method for infrared communication based on a MEMS Planck infrared source

    NASA Astrophysics Data System (ADS)

    Wei, Hongjing; Ma, Li; Sun, Guofeng; Jia, Jun

    2012-12-01

    Infrared communication in the near ground free space has both military and civilian potential. To meet the requirements of infrared communication based on a micro-electro-mechanical system Planck infrared source/radiator, we propose a modulation method with large code information content, strong confidentiality, and a high recognition rate. With the characteristics of mid-infrared light, a long-range and anti-EMI wireless communication system is available. The information code is loaded on the carrier signal generated by the infrared source with specific frequency. Taking a 3×3 array system for an instance in our work, the design principle and implementation procedure of encoding and modulation is discussed. The total information content of the optical dynamic code is 1.5 kbytes. The communication system could transmit data in the bound rate of 900 bit/s with a photoelectric code recognition rate of 96.4% and an effective information content of 190 bytes.

  18. Infrared Investigations.

    ERIC Educational Resources Information Center

    Lascours, Jean; Albe, Virginie

    2001-01-01

    Describes a series of simple and nontraditional experiments that enable students to discover the properties of infrared radiation by studying the propagation, reflection, diffusion, and refraction of infrared. The experiments rely on two modules, an infrared transmitter and an infrared receiver. (SAH)

  19. Infrared Investigations.

    ERIC Educational Resources Information Center

    Lascours, Jean; Albe, Virginie

    2001-01-01

    Describes a series of simple and nontraditional experiments that enable students to discover the properties of infrared radiation by studying the propagation, reflection, diffusion, and refraction of infrared. The experiments rely on two modules, an infrared transmitter and an infrared receiver. (SAH)

  20. Combined use of visible, reflected infrared, and thermal infrared images for mapping Hawaiian lava flows

    NASA Technical Reports Server (NTRS)

    Abrams, Michael; Abbott, Elsa; Kahle, Anne

    1991-01-01

    The weathering of Hawaiian basalts is accompanied by chemical and physical changes of the surfaces. These changes have been mapped using remote sensing data from the visible and reflected infrared and thermal infrared wavelength regions. They are related to the physical breakdown of surface chill coats, the development and erosion of silica coatings, the oxidation of mafic minerals, and the development of vegetation cover. These effects show systematic behavior with age and can be mapped using the image data and related to relative ages of pahoehoe and aa flows. The thermal data are sensitive to silica rind development and fine structure of the scene; the reflectance data show the degree of oxidation and differentiate vegetation from aa and cinders. Together, data from the two wavelength regions show more than either separately. The combined data potentially provide a powerful tool for mapping basalt flows in arid to semiarid volcanic environments.

  1. Combined use of visible, reflected infrared, and thermal infrared images for mapping Hawaiian lava flows

    NASA Technical Reports Server (NTRS)

    Abrams, Michael; Abbott, Elsa; Kahle, Anne

    1991-01-01

    The weathering of Hawaiian basalts is accompanied by chemical and physical changes of the surfaces. These changes have been mapped using remote sensing data from the visible and reflected infrared and thermal infrared wavelength regions. They are related to the physical breakdown of surface chill coats, the development and erosion of silica coatings, the oxidation of mafic minerals, and the development of vegetation cover. These effects show systematic behavior with age and can be mapped using the image data and related to relative ages of pahoehoe and aa flows. The thermal data are sensitive to silica rind development and fine structure of the scene; the reflectance data show the degree of oxidation and differentiate vegetation from aa and cinders. Together, data from the two wavelength regions show more than either separately. The combined data potentially provide a powerful tool for mapping basalt flows in arid to semiarid volcanic environments.

  2. Infrared focal plane detector modules for space applications at AIM

    NASA Astrophysics Data System (ADS)

    Hübner, Dominique; Hanna, Stefan; Thöt, Richard; Gassmann, Kai-Uwe; Haiml, Markus; Weber, Andreas; Haas, Luis-Dieter; Ziegler, Johann; Nothaft, Hans-Peter; Fick, Wolfgang

    2012-09-01

    In the framework of this paper, AIM presents the actual status of some of its currently ongoing focal plane detector module developments for space applications covering the spectral range from the short-wavelength infrared (SWIR) to the long-wavelength infrared (LWIR) and very-long-wavelength infrared (VLWIR), where both imaging and spectroscopy applications will be addressed. In particular, the integrated detector cooler assemblies for a mid-wavelength infrared (MWIR) push-broom imaging satellite mission, for the German hyperspectral satellite mission EnMAP will be elaborated. Additionally dedicated detector modules for LWIR/VLWIR sounding, providing the possibility to have two different PVs driven by one ROIC will be addressed.

  3. Narrowband Mid-infrared reflectance filters using guided mode resonance

    PubMed Central

    Kodali, Anil K.; Schulmerich, Matthew; Ip, Jason; Yen, Gary; Cunningham, Brian T.; Bhargava, Rohit

    2010-01-01

    There is a need to develop mid-infrared (IR) spectrometers for applications in which the absorbance of only a few vibrational mode (optical) frequencies needs to be recorded; unfortunately, there are limited alternatives for the same. The key requirement is the development of a means to access discretely a small set of spectral positions from the wideband thermal sources commonly used for spectroscopy. We present here the theory, design and practical realization of a new class of filters in the mid-infrared (IR) spectral regions based on using guided mode resonances (GMR) for narrowband optical reflection. A simple, periodic surface-relief configuration is chosen to enable both a spectral response and facile fabrication. A theoretical model based on rigorous coupled wave analysis is developed, incorporating anomalous dispersion of filter materials in the mid-IR spectral region. As a proof-of-principle demonstration, a set of four filters for a spectral region around the C-H stretching mode (2600–3000 cm−1) are fabricated and responses compared to theory. The reflectance spectra were well-predicted by the developed theory and results were found to be sensitive to the angle of incidence and dispersion characteristics of the material. In summary, the work reported here forms the basis for a rational design of filters that can prove useful for IR absorption spectroscopy. PMID:20527738

  4. Final Technical Report - Polymeric Multilayer Infrared Reflecting Mirrors

    SciTech Connect

    Reed, John

    2016-09-16

    The goal of this project was to develop a clear, polymeric, multilayer film with an expanded infrared (IR) reflection band which would allow improved rejection of incident IR energy. The IR reflection band is covering the region from about 850 nm to 1830 nm. This film is essentially clear and colorless in the visible portion of the electromagnetic spectra (visible light transmission of about 89%) while reflecting 90-95% of the IR energy over the portion of the spectra indicated above. This film has a nominal thickness of 3 mils, is polymeric in nature (contains no metals, metal oxides, or other material types) and is essentially clear in appearance This film can then be used as a component of other products such as a solar window film, an IR reflecting interlayer for laminated glass, a heat rejecting skylight film, a base film for daylight redirecting products, a greenhouse film, and many more applications. One of the main strengths of this product is that because it is a standalone IR rejecting film, it can be incorporated and retrofitted into many applications that desire or require the transmission of visible light, but want to block other portions of the solar spectra, especially the IR portion. Many of the applications exist in the window glazing product area where this film can provide for substantial energy improvements in applications where visible light is desired.

  5. Testing the spectrum of infrared emission reflected by several surfaces with a FTIR

    NASA Astrophysics Data System (ADS)

    Wang, Xuanyu; Hu, Rui; Pang, Minhui; Bai, Haitao; Dong, Wenjie

    2014-09-01

    A set of sectional FTIR is applied to study the reflecting characteristics of several surfaces to infrared emission. The standard infrared source is separated from the host of the FTIR and set in a right-angled triangle with the reflecting plate and the entrance to make the reflecting infrared emission can easily pass into the detector through the route. The reflecting infrared emission from the FTIR source is measured by the FTIR detector. The reflecting plate includes metal plate, mirror, wood block and so on. A high intensity standard infrared source cooled by air is accepted and the testing background is atmosphere. The infrared emission reflected by the plate from the standard source is tested one by one. By the experiment, mirror has a good performance to reflect infrared emission, which is much better than unpainted iron plate or painted wood block. Certainly, unpainted iron plate has stronger capacity to reflect infrared emission than painted wood block, etc. As a result, the smoother the surface is, the stronger the reflecting performance is. The reflecting performance of painted surface to infrared emission is poorer than unpainted one. The various painted surfaces have not a visible difference upon their reflecting performance to infrared emission although they are made from different materials.

  6. 10-gigabit colourless reflective amplified modulator for access network

    NASA Astrophysics Data System (ADS)

    Kazmierski, C.; Garreau, A.; Decobert, J.; Cuisin, M.-C.; Provost, J.-G.; Sillard, H.; Blache, F.; Carpentier, D.; Landreau, J.; Chanclou, P.

    2006-07-01

    For high speed remote colorless modulation in FTTH technology, a new 10Gbit/s monolithically integrated amplified reflective electroabsorption modulator (R-EAM-SOA) is demonstrated over 50nm spectral range and over 20°C-60°C, with excellent eye diagrams.

  7. Reflections on Designing a Biology/Humanities Interdisciplinary Module

    ERIC Educational Resources Information Center

    Stack, David; Battey, Nicholas

    2013-01-01

    This paper uses the reflections of a recent workshop on biology and the humanities subject areas to consider the potential for designing a first year interdisciplinary module that brings together teachers and learners in the Biosciences with their counterparts in English and History. It considers three building blocks of module design: aims and…

  8. Cirrus Infrared Parameters and Shortwave Reflectance Relations from Observations.

    NASA Astrophysics Data System (ADS)

    Spinhirne, James D.; Hart, William D.; Hlavka, Dennis L.

    1996-05-01

    A summary of experimental observations and analysis of cirrus from high-altitude aircraft remote sensing is presented. The vertical distribution of cirrus optical and infrared cross-section parameters and the relative effective emittance and visible reflectance are derived from nadir-viewing lidar and multispectral radiometer data for observations during the 1986 and 1991 FIRE cirrus experiments. Statistics on scattering and absorption cross sections in relation to altitude and temperature are given. The emittance and reflectance results are considered as a function of solar zenith angle. Comparative radiative transfer calculations based on the discrete-ordinate method were carried out for three representative cloud phase function models: a spherical water droplet, an ice column crystal cloud, and a Henyey-Greenstein function. The agreements between observations of the effective emittance and shortwave reflectance and the model calculations were a function of the solar zenith angle. At angles between 54° and 60° a Henyey-Greenstein (HG) function with an asymmetry factor of 0.6-0.7 produced the best comparison. At 66°-72° the ice column model was equally comparable to observations. Comparisons to the water cloud model wore poor in all cases. The effects of ice crystal microphysical variations on the observed results were not generally apparent, but one dramatic example of difference was found. In order to explain the variations noted for solar zenith angle, an instrument-the Tilt Scan CCD Camera radiometer-was developed to directly observe the shortwave bidirectional reflectance function for 1991 measurements. The results indicate a characteristic angular function of the visible reflectance of cirrus that is flatter than predicted by the ice column scattering model, but the overall asymmetry factor is comparable. The good agreement with values from an HG function at some angles is not generally applicable. The characteristics of the observed cirrus angular

  9. Near infrared reflectance measurement of nitrogen faecal losses.

    PubMed

    Benini, L; Caliari, S; Bonfante, F; Guidi, G C; Brentegani, M T; Castellani, G; Sembenini, C; Bardelli, E; Vantini, I

    1992-06-01

    Chemical methods of measuring nitrogen in stools are complex, unpleasant, and therefore rarely performed. Recently, near infrared reflectance (NIRA) has been suggested for stool analysis. The aim of this study was to evaluate the possible application of this method in routine faecal nitrogen measurement. Nitrogen concentration and daily output were measured in the stools of 83 patients using NIRA and, for comparison, the Kjeldahl method. Nitrogen concentration and output ranged between 0.4-2.72 g% and 0.45-8.96 g/day respectively. Correlation coefficients (r), of 0.89 and 0.97 were found between the two methods for concentration and output respectively, and similar values were found in patients on enteral nutrition. Repeated measurements from the same stool collection, requiring only a few minutes, allowed homogenisation to be avoided. NIRA seems to be an easy, fast, and reliable alternative to chemical assays of nitrogen measurement in the management of patients with digestive disorders.

  10. Near infrared reflectance measurement of nitrogen faecal losses.

    PubMed Central

    Benini, L; Caliari, S; Bonfante, F; Guidi, G C; Brentegani, M T; Castellani, G; Sembenini, C; Bardelli, E; Vantini, I

    1992-01-01

    Chemical methods of measuring nitrogen in stools are complex, unpleasant, and therefore rarely performed. Recently, near infrared reflectance (NIRA) has been suggested for stool analysis. The aim of this study was to evaluate the possible application of this method in routine faecal nitrogen measurement. Nitrogen concentration and daily output were measured in the stools of 83 patients using NIRA and, for comparison, the Kjeldahl method. Nitrogen concentration and output ranged between 0.4-2.72 g% and 0.45-8.96 g/day respectively. Correlation coefficients (r), of 0.89 and 0.97 were found between the two methods for concentration and output respectively, and similar values were found in patients on enteral nutrition. Repeated measurements from the same stool collection, requiring only a few minutes, allowed homogenisation to be avoided. NIRA seems to be an easy, fast, and reliable alternative to chemical assays of nitrogen measurement in the management of patients with digestive disorders. PMID:1624153

  11. Analysis of silage composition by near-infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Reeves, James B., III; Blosser, Timothy H.; Colenbrander, V. F.

    1991-02-01

    Two studies were performed to investigate the feasibility of using near infrared reflectance spectroscopy (NIRS) with undried silages. In the first study silages were analyzed for major components (e. g. dry matter crude protein and other forms of nitrogen fiber and in vitro digestible dry matter) and short chain fatty acids (SCFA). NIRS was found to operate satisfactorily except for some forms of nitrogen and SCFA. In study two various methods of grinding spectral regions and sample presentation were examined. Undried Wiley ground samples in a rectangular cell gave the best overall results for non-dry ice undried grinds with wavelengths between 1100 and 2498 nm. Silages scanned after drying however produced the best results. Intact samples did not perform as well as ground samples and wavelengths below 1100 nm were of little use. 2 .

  12. Thermal infrared reflectance and emission spectroscopy of quartzofeldspathic glasses

    USGS Publications Warehouse

    Byrnes, J.M.; Ramsey, M.S.; King, P.L.; Lee, R.J.

    2007-01-01

    This investigation seeks to better understand the thermal infrared (TIR) spectral characteristics of naturally-occurring amorphous materials through laboratory synthesis and analysis of glasses. Because spectra of glass phases differ markedly from their mineral counterparts, examination of glasses is important to accurately determine the composition of amorphous surface materials using remote sensing datasets. Quantitatively characterizing TIR (5-25 ??m) spectral changes that accompany structural changes between glasses and mineral crystals provides the means to understand natural glasses on Earth and Mars. A suite of glasses with compositions analogous to common terrestrial volcanic glasses was created and analyzed using TIR reflectance and emission techniques. Documented spectral characteristics provide a basis for comparison with TIR spectra of other amorphous materials (glasses, clays, etc.). Our results provide the means to better detect and characterize glasses associated with terrestrial volcanoes, as well as contribute toward understanding the nature of amorphous silicates detected on Mars. Copyright 2007 by the American Geophysical Union.

  13. Aerosol collection and analysis using diffuse reflectance infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Samuels, Alan C.; Wong, Diane M.; Meyer, Gerald J.; Roelant, Geoffrey J.; Williams, Barry R.; Miles, Ronald W., Jr.; Manning, Christopher J.

    2004-08-01

    Infrared spectroscopy is routinely employed for the identification of organic molecules and, more recently, for the classification of biological materials. We have developed a sample collection method that facilitates infrared analysis of airborne particulates using a diffuse reflectance (DR) technique. Efforts are underway to extend the method to include simultaneous analysis of vapor phase organics by using adsorbent substrates compatible with the DR technique. This series of laboratory results provides proof-of-principle for both the sample collection and data collection processes. Signal processing of the DR spectra is shown to provide rapid qualitative identification of representative aerosol materials, including particulate matter commonly found in the environment. We compare the results for such materials as bacterial spores, pollens and molds, clays and dusts, smoke and soot. Background correction analysis is shown to be useful for differentiation and identification of these constituents. Issues relating to complex mixtures of environmental samples under highly variable conditions are considered. Instrumentation development and materials research are now underway with the aim of constructing a compact sampling system for near real-time monitoring of aerosol and organic pollutants. A miniature, tilt-compensated Fourier transform spectrometer will provide spectroscopic interrogation. A series of advanced digital signal processing methods are also under development to enhance the sensor package. The approach will be useful for industrial applications, chemical and biological agent detection, and environmental monitoring for chemical vapors, hazardous air pollutants, and allergens.

  14. Modeling Infrared Signal Reflections to Characterize Indoor Multipath Propagation

    PubMed Central

    De-La-Llana-Calvo, Álvaro; Lázaro-Galilea, José Luis; Gardel-Vicente, Alfredo; Rodríguez-Navarro, David; Bravo-Muñoz, Ignacio; Tsirigotis, Georgios; Iglesias-Miguel, Juan

    2017-01-01

    In this paper, we propose a model to characterize Infrared (IR) signal reflections on any kind of surface material, together with a simplified procedure to compute the model parameters. The model works within the framework of Local Positioning Systems (LPS) based on IR signals (IR-LPS) to evaluate the behavior of transmitted signal Multipaths (MP), which are the main cause of error in IR-LPS, and makes several contributions to mitigation methods. Current methods are based on physics, optics, geometry and empirical methods, but these do not meet our requirements because of the need to apply several different restrictions and employ complex tools. We propose a simplified model based on only two reflection components, together with a method for determining the model parameters based on 12 empirical measurements that are easily performed in the real environment where the IR-LPS is being applied. Our experimental results show that the model provides a comprehensive solution to the real behavior of IR MP, yielding small errors when comparing real and modeled data (the mean error ranges from 1% to 4% depending on the environment surface materials). Other state-of-the-art methods yielded mean errors ranging from 15% to 40% in test measurements. PMID:28406436

  15. Reflectivity modulator based on GaSb/GaAs heterostructure

    NASA Astrophysics Data System (ADS)

    Rabbaa, S.

    2017-07-01

    A structure of gallium antimonide (GaSb) and gallium arsenide (GaAs) wafers is built to modulate light reflectivity at CO2 laser wavelength. A quantum well composed of GaSb/GaAs heterojunction with highly doped GaAs up to 3×1018 cm-3 is inserted inside a layer structure. A grating of periodic structure of GaAs and gold layer is added just below the substrate. Gsolver software is used to determine the reflectivity of incident light with the existence of free carriers. A voltage is applied to the doped layer to deplete the free electrons and the reflectivity is determined again. The significant difference in reflectivity between the two cases can be used to build a light reflectivity modulator device.

  16. Efficient modulation of orthogonally polarized infrared light using graphene metamaterials

    NASA Astrophysics Data System (ADS)

    Cui, Yudong; Zeng, Chao

    2017-04-01

    We propose an efficient modulation of linearly polarized infrared light using graphene metamaterials (GMMs) by exploiting the phase-coupled plasmon-induced transparency (PIT) mechanism. Because of the phase-coupling effect in GMMs, pronounced PIT peaks can be simultaneously obtained for the orthogonally polarized light through tuning of the Fermi level in graphene. Taking advantage of such polarization-selective PIT spectral responses and precise phase management, a dual-polarization GMM modulator is successfully achieved with ultra-high modulation depths of ˜32 dB at 10 μm and ˜28 dB at 12.45 μm for the x- and y-polarized light beams, respectively. The underlying principle of the proposal is well explained and verified by using transfer matrix method. The proposed scheme provides new opportunities for developing graphene-integrated high-performance electro-optical modulation, switching, and other optoelectronics applications.

  17. Mapping polarons in polymer FETs by charge modulation microscopy in the mid-infrared

    PubMed Central

    Chin, Xin Yu; Yin, Jun; Wang, Zilong; Caironi, Mario; Soci, Cesare

    2014-01-01

    We implemented spatial mapping of charge carrier density in the channel of a conventional polymer Field-Effect Transistor (FET) by mid-infrared Charge Modulation Spectroscopy (CMS). CMS spectra are recorded with a high sensitivity confocal Fourier Transform Infra-Red (FTIR) microscope by probing electroinduced Infra-Red Active Vibrational (IRAV) modes and low-energy polaron bands in the spectral region 680–4000 cm−1. Thanks to the high specificity and strong oscillator strength of these modes, charge-induced reflectance measurements allow quantitative estimation of charge carrier densities within the FET channel, without the need for amplitude or phase modulation. This is illustrated by identifying the contribution of intrinsic and electrostatically induced polarons to conduction, and by mapping the polaron spatial distribution in a P3HT (Poly(3-hexylthiophene-2,5-diyl)) FET channel under different drain-source bias conditions. This work demonstrates the potential of mid-infrared charge modulation microscopy to characterize carrier injection and transport in semiconducting polymer materials. PMID:24406635

  18. Electronic modulation of infrared radiation in graphene plasmonic resonators.

    PubMed

    Brar, Victor W; Sherrott, Michelle C; Jang, Min Seok; Kim, Seyoon; Kim, Laura; Choi, Mansoo; Sweatlock, Luke A; Atwater, Harry A

    2015-05-07

    All matter at finite temperatures emits electromagnetic radiation due to the thermally induced motion of particles and quasiparticles. Dynamic control of this radiation could enable the design of novel infrared sources; however, the spectral characteristics of the radiated power are dictated by the electromagnetic energy density and emissivity, which are ordinarily fixed properties of the material and temperature. Here we experimentally demonstrate tunable electronic control of blackbody emission from graphene plasmonic resonators on a silicon nitride substrate. It is shown that the graphene resonators produce antenna-coupled blackbody radiation, which manifests as narrow spectral emission peaks in the mid-infrared. By continuously varying the nanoresonator carrier density, the frequency and intensity of these spectral features can be modulated via an electrostatic gate. This work opens the door for future devices that may control blackbody radiation at timescales beyond the limits of conventional thermo-optic modulation.

  19. Near- and Mid-Infrared Reflectance Spectroscopy for the Quantitative and Qualitative Analysis of Agricultural Products

    USDA-ARS?s Scientific Manuscript database

    For several decades near-infrared diffuse reflectance spectroscopy (NIRS) has been used to determine the composition of a variety of agricultural products. More recently, diffuse reflectance Fourier transform mid-infrared spectroscopy (DRIFTS) has similarly been shown to be able to determine the co...

  20. Plasmonic nanostructured metal-oxide-semiconductor reflection modulators.

    PubMed

    Olivieri, Anthony; Chen, Chengkun; Hassan, Sa'ad; Lisicka-Skrzek, Ewa; Tait, R Niall; Berini, Pierre

    2015-04-08

    We propose a plasmonic surface that produces an electrically controlled reflectance as a high-speed intensity modulator. The device is conceived as a metal-oxide-semiconductor capacitor on silicon with its metal structured as a thin patch bearing a contiguous nanoscale grating. The metal structure serves multiple functions as a driving electrode and as a grating coupler for perpendicularly incident p-polarized light to surface plasmons supported by the patch. Modulation is produced by charging and discharging the capacitor and exploiting the carrier refraction effect in silicon along with the high sensitivity of strongly confined surface plasmons to index perturbations. The area of the modulator is set by the area of the incident beam, leading to a very compact device for a strongly focused beam (∼2.5 μm in diameter). Theoretically, the modulator can operate over a broad electrical bandwidth (tens of gigahertz) with a modulation depth of 3 to 6%, a loss of 3 to 4 dB, and an optical bandwidth of about 50 nm. About 1000 modulators can be integrated over a 50 mm(2) area producing an aggregate electro-optic modulation rate in excess of 1 Tb/s. We demonstrate experimentally modulators operating at telecommunications wavelengths, fabricated as nanostructured Au/HfO2/p-Si capacitors. The modulators break conceptually from waveguide-based devices and belong to the same class of devices as surface photodetectors and vertical cavity surface-emitting lasers.

  1. Near-infrared reflectance analysis for predicting beef longissimus tenderness.

    PubMed

    Park, B; Chen, Y R; Hruschka, W R; Shackelford, S D; Koohmaraie, M

    1998-08-01

    Near-infrared reflectance spectra (1,100 to 2,498 nm) were collected on beef longissimus thoracis steaks for the purpose of establishing the feasibility of predicting meat tenderness by spectroscopy. Partial least squares (PLS) analysis (up to 20 factors) and multiple linear regression (MLR) were used to predict cooked longissimus Warner-Bratzler shear (WBS) force values from spectra of steaks from 119 beef carcasses. Modeling used the combination of log(1/R) and its second derivative. Overall, absorption was higher for extremely tough steaks than for tender steaks. This was particularly true at wavelengths between 1,100 and 1,350 nm. For PLS regression, optimal model conditions (R2 = .67; SEC = 1.2 kg) occurred with six PLS factors. When the PLS model was tested against the validation subset, similar performance was obtained (R2 = .63; SEP = 1.3 kg) and bias was small (<.3 kg). Among the 39 samples in the validation data set, 48.7, 87.7, and 97.4% of the samples were predicted within 1.0, 2.0, and 3.0 kg, respectively, of the observed Warner-Bratzler shear force value. The optimal PLS model was able to predict whether a steak would have a Warner-Bratzler shear force value < 6 kg with 75% accuracy. The R2 of MLR model was .67, and 89% of samples were correctly classified (< 6 vs > 6 kg) for Warner-Bratzler shear force. These data indicate that NIR is capable of predicting Warner-Bratzler shear force values of longissimus steaks. Refinement of this technique may allow nondestructive measurement of beef longissimus at the processing plant level.

  2. Optimal design of high concentration reflected photovoltaic module

    NASA Astrophysics Data System (ADS)

    Hsu, Cheng-Yi; Lin, Yuli

    2017-09-01

    In this study, a fabrication and design process of a high concentration reflected photovoltaic (HCRPV) using 3x3 array modules with the light guide tube and III-V solar cells are demonstrated. The developed and designed of 3x3 array modules with the light guide tube following key design aims are all satisfied with highly uniform irradiance on the solar cell absorber and maximum light collective efficiency. With the use of the maximum peak power output from the tracking system which had two phases of X-Y axis and θ-axis tracking the sun position precisely and getting. With an optimized high concentration reflected photovoltaic systems of 3x3 array modules with the light guide tube, the optimal condition and measured characteristics and efficiency was conducted. This improved HCRPV performance is attributed to the enhanced collection light power from a big reflected mirror area. The HCRPV module was then fabricated using Aluminum material and it was coated with silver material. From the simulation results, the light collective efficiency can be reached to about 94.9% with uniform irradiance. From the measurement results, the power can be calculated to be 2.62W˜2.74W, which is about 90% of the power of solar cell (3W) used.

  3. Optical Reflection Measurement System Using A Swept Modulation Frequency Technique

    NASA Astrophysics Data System (ADS)

    Braun, David M.; Leyde, Kent W.

    1989-03-01

    A measurement system has been developed capable of mea-suring reflected optical power as low as 0.0025% with a spot size diam-eter of 24 Am. One application for this system is the characterization of small-area photodetectors. The operation of the measurement system is simple, allowing the operator to quickly make multiple reflection measurements, and it does not require a darkroom. The measurement system merges a microscope, for visual alignment and focusing of the laser beam, with a lightwave component analyzer using modulation vec-tor error correction. A measurement comparison between the analyzer-based system and a power-meter-based system showed that each sys-tem can measure reflections as low as 0.0025%. However, the analyzer-based system offers the advantage of identifying the location and magnitude of system reflections. The system operates at a wavelength of 1310 nm.

  4. Multivariation calibration techniques applied to NIRA (near infrared reflectance analysis) and FTIR (Fourier transform infrared) data

    NASA Astrophysics Data System (ADS)

    Long, C. L.

    1991-02-01

    Multivariate calibration techniques can reduce the time required for routine testing and can provide new methods of analysis. Multivariate calibration is commonly used with near infrared reflectance analysis (NIRA) and Fourier transform infrared (FTIR) spectroscopy. Two feasibility studies were performed to determine the capability of NIRA, using multivariate calibration techniques, to perform analyses on the types of samples that are routinely analyzed at this laboratory. The first study performed included a variety of samples and indicated that NIRA would be well-suited to perform analyses on selected materials properties such as water content and hydroxyl number on polyol samples, epoxy content on epoxy resins, water content of desiccants, and the amine values of various amine cure agents. A second study was performed to assess the capability of NIRA to perform quantitative analysis of hydroxyl numbers and water contents of hydroxyl-containing materials. Hydroxyl number and water content were selected for determination because these tests are frequently run on polyol materials and the hydroxyl number determination is time consuming. This study pointed out the necessity of obtaining calibration standards identical to the samples being analyzed for each type of polyol or other material being analyzed. Multivariate calibration techniques are frequently used with FTIR data to determine the composition of a large variety of complex mixtures. A literature search indicated many applications of multivariate calibration to FTIR data. Areas identified where quantitation by FTIR would provide a new capability are quantitation of components in epoxy and silicone resins, polychlorinated biphenyls (PCBs) in oils, and additives to polymers.

  5. Determination of plant silicon content with near infrared reflectance spectroscopy

    PubMed Central

    Smis, Adriaan; Ancin Murguzur, Francisco Javier; Struyf, Eric; Soininen, Eeva M.; Herranz Jusdado, Juan G.; Meire, Patrick; Bråthen, Kari Anne

    2014-01-01

    Silicon (Si) is one of the most common elements in the earth bedrock, and its continental cycle is strongly biologically controlled. Yet, research on the biogeochemical cycle of Si in ecosystems is hampered by the time and cost associated with the currently used chemical analysis methods. Here, we assessed the suitability of Near Infrared Reflectance Spectroscopy (NIRS) for measuring Si content in plant tissues. NIR spectra depend on the characteristics of the present bonds between H and N, C and O, which can be calibrated against concentrations of various compounds. Because Si in plants always occurs as hydrated condensates of orthosilicic acid (Si(OH)4), linked to organic biomolecules, we hypothesized that NIRS is suitable for measuring Si content in plants across a range of plant species. We based our testing on 442 samples of 29 plant species belonging to a range of growth forms. We calibrated the NIRS method against a well-established plant Si analysis method by using partial least-squares regression. Si concentrations ranged from detection limit (0.24 ppmSi) to 7.8% Si on dry weight and were well predicted by NIRS. The model fit with validation data was good across all plant species (n = 141, R2 = 0.90, RMSEP = 0.24), but improved when only graminoids were modeled (n = 66, R2 = 0.95, RMSEP = 0.10). A species specific model for the grass Deschampsia cespitosa showed even slightly better results than the model for all graminoids (n = 16, R2 = 0.93, RMSEP = 0.015). We show for the first time that NIRS is applicable for determining plant Si concentration across a range of plant species and growth forms, and represents a time- and cost-effective alternative to the chemical Si analysis methods. As NIRS can be applied concurrently to a range of plant organic constituents, it opens up unprecedented research possibilities for studying interrelations between Si and other plant compounds in vegetation, and for addressing the role of Si in ecosystems across a range of Si

  6. Reversible modulated mid-infrared absorption of Ag/TiO{sub 2} by photoinduced interfacial charge transfer

    SciTech Connect

    Xu, S. C. E-mail: ghli@issp.ac.cn; Li, L.; Pan, S. S.; Luo, Y. Y.; Zhang, Y. X.; Li, G. H. E-mail: ghli@issp.ac.cn

    2014-10-06

    An enhanced mid-infrared absorption in Ag nanoparticles-decorated TiO{sub 2} microflowers was reported. It was found that the mid-infrared absorption of the Ag/TiO{sub 2} complex depends strongly on the content and size of Ag nanoparticles, the higher the Ag nanoparticles content, the stronger the infrared absorption. The average reflectivity in the entire mid-infrared region of the microflowers drops from 57.6% to 10.5% after Ag nanoparticles decoration. Reversible modulated mid-infrared absorption properties were found in the Ag/TiO{sub 2} complexes upon alternative illumination of visible and UV light due to the photoinduced interfacial electron transfer between TiO{sub 2} semiconductor and Ag nanoparticles.

  7. Femtosecond measurements of near-infrared pulse induced mid-infrared transmission modulation of quantum cascade lasers

    SciTech Connect

    Cai, Hong; Liu, Sheng; Lalanne, Elaine; Guo, Dingkai; Chen, Xing; Choa, Fow-Sen; Wang, Xiaojun; Johnson, Anthony M.

    2014-05-26

    We temporally resolved the ultrafast mid-infrared transmission modulation of quantum cascade lasers (QCLs) using a near-infrared pump/mid-infrared probe technique at room temperature. Two different femtosecond wavelength pumps were used with photon energy above and below the quantum well (QW) bandgap. The shorter wavelength pump modulates the mid-infrared probe transmission through interband transition assisted mechanisms, resulting in a high transmission modulation depth and several nanoseconds recovery lifetime. In contrast, pumping with a photon energy below the QW bandgap induces a smaller transmission modulation depth but much faster (several picoseconds) recovery lifetime, attributed to intersubband transition assisted mechanisms. The latter ultrafast modulation (>60 GHz) could provide a potential way to realize fast QCL based free space optical communication.

  8. Applications of microstructured silicon wafers as internal reflection elements in attenuated total reflection Fourier transform infrared spectroscopy.

    PubMed

    Schumacher, Henrik; Künzelmann, Ulrich; Vasilev, Boris; Eichhorn, Klaus-Jochen; Bartha, Johann W

    2010-09-01

    A novel internal reflection element (IRE) for attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectral acquisition is introduced and applied for several surface-sensitive measurements. It is based on microstructured double-side-polished (100) silicon wafers with v-shaped grooves of {111} facets on their backside. These facets of the so-called "microstructured single-reflection elements" (mSRE) are formed by a crystal-oriented anisotropic wet etching process within a conventional wafer structuring process. They are used to couple infrared radiation into and out of the IRE. In contrast to the application of the commonly used silicon multiple-reflection elements (MRE), the new elements provide single-reflection ATR measurements at the opposite wafer side by using simple reflection accessories without any special collimation. Due to the short light path, the spectral range covers the entire mid-infrared region with a high optical throughput, including the range of silicon lattice vibrations from 300 to 1500 cm(-1). In addition to typical ATR applications, i.e., the measurement of bulk liquids and soft materials, the new reflection elements can be effectively used and customer-specifically designed for in situ and ex situ investigations of aqueous solutions, thin films, and monolayers on Si. Examples presented in this article are in situ etching of native as well as thermal SiO(2) and characterization of polydimethylsiloxane (PDMS) films on Si under various measuring conditions.

  9. Hydrodynamic potential-modulated reflectance spectroscopy: theory and experiment.

    PubMed

    Wang, R L; Peter, L M; Qiu, F L; Fisher, A C

    2001-05-15

    This article describes the development and application of a new electrochemical methodology based on potential-modulated UV-vis reflectance spectroscopy (PMRS). The device configuration is based upon a thin-layer flow-through channel cell incorporating a platinum working electrode. Reagent solutions are pumped through the cell under well-defined hydrodynamic conditions and electrolyzed at the platinum working electrode. Measurements are presented for linear sweep and fixed dc potentials with a superimposed small amplitude sinusoidal potential perturbation. A UV-vis source is employed to irradiate the electrode region, and the resulting reflected signal is analyzed using a phase sensitive detector. Experimental studies using tris(4-bromophenyl) amine (TBPA) in acetonitrile are presented which quantify the relationship between the absorption spectrum and reflected light intensity as a function of the transport rate, electrolysis reactions, and the modulation frequency of the incident irradiation. The experimental results are analyzed using numerical simulations based on a finite difference strategy. These permit the quantitative prediction of the concentration distribution of reagents within the cell. A fast Fourier transform (FFT) routine was used to analyze the frequency response of the numerically predicted reflectance signal. Excellent agreement was observed between the numerical predictions and experimental observations.

  10. Modulation Transfer Function of Infrared Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Rafol, S. B.; Ting, D. Z.; Soibel, A.; Hill, C. J.; Khoshakhlagh, A.; Liu, J. K.; Mumolo, J. M.; Hoglund, L.; Luong, E. M.

    2015-01-01

    Modulation transfer function (MTF) is the ability of an imaging system to faithfully image a given object. The MTF of an imaging system quantifies the ability of the system to resolve or transfer spatial frequencies. In this presentation we will discuss the detail MTF measurements of 1024x1024 pixels mid -wavelength and long- wavelength quantum well infrared photodetector, and 320x256 pixels long- wavelength InAs/GaSb superlattice infrared focal plane arrays (FPAs). Long wavelength Complementary Barrier Infrared Detector (CBIRD) based on InAs/GaSb superlattice material is hybridized to recently designed and fabricated 320x256 pixel format ROIC. The n-type CBIRD was characterized in terms of performance and thermal stability. The experimentally measured NE delta T of the 8.8 micron cutoff n-CBIRD FPA was 18.6 mK with 300 K background and f/2 cold stop at 78K FPA operating temperature. The horizontal and vertical MTFs of this pixel fully delineated CBIRD FPA at Nyquist frequency are 49% and 52%, respectively.

  11. Modulation transfer function of infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Rafol, S. B.; Ting, D. Z.; Soibel, A.; Hill, C. J.; Khoshakhlagh, A.; Liu, J. K.; Mumolo, J. M.; Keo, S. A.; Höglund, L.; Luong, E. M.

    2015-09-01

    Modulation transfer function (MTF) is the ability of an imaging system to faithfully image a given object. The MTF of an imaging system quantifies the ability of the system to resolve or transfer spatial frequencies. In this presentation we will discuss the detail MTF measurements of 1024x1024 pixels mid-wavelength and long-wavelength quantum well infrared photodetector, and 320x256 pixels long-wavelength InAs/GaSb superlattice infrared focal plane arrays (FPAs). Long wavelength Complementary Barrier Infrared Detector (CBIRD) based on InAs/GaSb superlattice material is hybridized to recently designed and fabricated 320x256 pixel format ROIC. The n-type CBIRD was characterized in terms of performance and thermal stability. The experimentally measured NEΔT of the 8.8μm cutoff n-CBIRD FPA was 18.6 mK with 300 K background and f/2 cold stop at 78K FPA operating temperature. The horizontal and vertical MTFs of this pixel fully delineated CBIRD FPA at Nyquist frequency are 49% and 52%, respectively.

  12. Mid-infrared high-power diode lasers and modules

    NASA Astrophysics Data System (ADS)

    Kelemen, Márc T.; Gilly, Juergen; Rattunde, Marcel; Wagner, Joachim; Ahlert, Sandra; Biesenbach, Jens

    2010-02-01

    High-power diode lasers in the mid-infrared wavelength range between 1.8μm and 2.3μm have emerged new possibilities for applications like processing and accelerated drying of materials, medical surgery, infrared countermeasures or for pumping of solid-state and semiconductor disc lasers. We will present results on MBE grown (AlGaIn)(AsSb) quantum-well diode laser single emitters with emitter widths between 90μm and 200μm. In addition laser bars with 20% or 30% fill factor have been processed. More than 30% maximum wall-plug efficiency in cw operation for single emitters and laser bars has been reached. Even at 2200nm more than 15W have been demonstrated with a 30% fill factor bar. Due to an increasing interest in pulsed operation modes for these mid-infrared lasers, we have investigated single emitters and laser bars at 1940nm for different pulse times and duty cycles. More than 9W have been measured at 30A with 500ns pulse time and 1% duty cycle without COMD for a single emitter. Most applications mentioned before need fiber coupled output power, therefore fiber coupled modules based on single emitters or laser bars have been developed. Single-emitter based modules show 600mW out of a 200μm core fiber with NA=0.22 at different wavelengths between 1870nm and 1940nm. At 2200nm an output power of 450mW ex fiber impressively demonstrates the potential of GaSb based diode lasers well beyond wavelengths of 2μm. Combining several laser bars, 20W out of a 600μm core fiber have been established at 1870nm. Finally for a 7 bar stack at 1870nm we have demonstrated more than 85W at 50A in qcw mode.

  13. A Study of Bi-Directional Reflectance Distribution Functions and Their Effect on Infrared Signature Models

    DTIC Science & Technology

    2007-03-01

    A STUDY OF BI-DIRECTIONAL REFLECTANCE DISTRIBUTION FUNCTIONS AND THEIR EFFECT ON INFRARED SIGNATURE MODELS THESIS Samuel I. Harkiss, Flight...FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this thesis are those of the author and do not reflect the official policy or...Infrared Signature Models THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air Force

  14. Multiple reflections in a photoelastic modulator: errors in polarization measurement

    NASA Astrophysics Data System (ADS)

    Gemeiner, P.; Yang, D.; Canit, J. C.

    1996-09-01

    The use of a coherent light source (laser) can lead to significant errors when measurements of optical activity, magneto optical Kerr rotation, dichroism or ellipsometric parameters are down with a photoelastic modulator. In particular, a phenomenon of interferences occurs between beams arising from multiple reflections in the modulator. These interferences give rise to parasitic effects which depend on the one hand on the characteristics of the modulator and on the other hand on the wavelength of the light. A variation of temperature causes a modification of those artefacts. These have been noticed experimentally and their amplitude is in good agreement with theoretical predictions, based on a calculation of interferences. The amplitude of an artefact may reach one degree of angle in case of optical activity and is equal to five thousandth in case of measurement of a dichroism. We have shown experimentally that these effects can be cancelled by inclining the modulator with respect to the axis of the light beam or by using a new modulator with a trapezoidal section.

  15. [Fast determination of induction period of motor gasoline using Fourier transform attenuated total reflection infrared spectroscopy].

    PubMed

    Liu, Ya-Fei; Yuan, Hong-Fu; Song, Chun-Feng; Xie, Jin-Chun; Li, Xiao-Yu; Yan, De-Lin

    2014-11-01

    A new method is proposed for the fast determination of the induction period of gasoline using Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR). A dedicated analysis system with the function of spectral measurement, data processing, display and storage was designed and integrated using a Fourier transform infrared spectrometer module and chemometric software. The sample presentation accessory designed which has advantages of constant optical path, convenient sample injection and cleaning is composed of a nine times reflection attenuated total reflectance (ATR) crystal of zinc selenide (ZnSe) coated with a diamond film and a stainless steel lid with sealing device. The influence of spectral scanning number and repeated sample loading times on the spectral signal-to-noise ratio was studied. The optimum spectral scanning number is 15 times and the optimum sample loading number is 4 times. Sixty four different gasoline samples were collected from the Beijing-Tianjin area and the induction period values were determined as reference data by standard method GB/T 8018-87. The infrared spectra of these samples were collected in the operating condition mentioned above using the dedicated fast analysis system. Spectra were pretreated using mean centering and 1st derivative to reduce the influence of spectral noise and baseline shift A PLS calibration model for the induction period was established by correlating the known induction period values of the samples with their spectra. The correlation coefficient (R2), standard error of calibration (SEC) and standard error of prediction (SEP) of the model are 0.897, 68.3 and 91.9 minutes, respectively. The relative deviation of the model for gasoline induction period prediction is less than 5%, which meets the requirements of repeatability tolerance in GB method. The new method is simple and fast. It takes no more than 3 minutes to detect one sample. Therefore, the method is feasible for implementing

  16. [Application of near infrared reflectance spectroscopy to predict meat chemical compositions: a review].

    PubMed

    Tao, Lin-Li; Yang, Xiu-Juan; Deng, Jun-Ming; Zhang, Xi

    2013-11-01

    In contrast to conventional methods for the determination of meat chemical composition, near infrared reflectance spectroscopy enables rapid, simple, secure and simultaneous assessment of numerous meat properties. The present review focuses on the use of near infrared reflectance spectroscopy to predict meat chemical compositions. The potential of near infrared reflectance spectroscopy to predict crude protein, intramuscular fat, fatty acid, moisture, ash, myoglobin and collagen of beef, pork, chicken and lamb is reviewed. This paper discusses existing questions and reasons in the current research. According to the published results, although published results vary considerably, they suggest that near-infrared reflectance spectroscopy shows a great potential to replace the expensive and time-consuming chemical analysis of meat composition. In particular, under commercial conditions where simultaneous measurements of different chemical components are required, near infrared reflectance spectroscopy is expected to be the method of choice. The majority of studies selected feature-related wavelengths using principal components regression, developed the calibration model using partial least squares and modified partial least squares, and estimated the prediction accuracy by means of cross-validation using the same sample set previously used for the calibration. Meat fatty acid composition predicted by near-infrared spectroscopy and non-destructive prediction and visualization of chemical composition in meat using near-infrared hyperspectral imaging and multivariate regression are the hot studying field now. On the other hand, near infrared reflectance spectroscopy shows great difference for predicting different attributes of meat quality which are closely related to the selection of calibration sample set, preprocessing of near-infrared spectroscopy and modeling approach. Sample preparation also has an important effect on the reliability of NIR prediction; in particular

  17. Tree Canopy Characterization for EO-1 Reflective and Thermal Infrared Validation Studies: Rochester, New York

    NASA Technical Reports Server (NTRS)

    Ballard, Jerrell R., Jr.; Smith, James A.

    2002-01-01

    The tree canopy characterization presented herein provided ground and tree canopy data for different types of tree canopies in support of EO-1 reflective and thermal infrared validation studies. These characterization efforts during August and September of 2001 included stem and trunk location surveys, tree structure geometry measurements, meteorology, and leaf area index (LAI) measurements. Measurements were also collected on thermal and reflective spectral properties of leaves, tree bark, leaf litter, soil, and grass. The data presented in this report were used to generate synthetic reflective and thermal infrared scenes and images that were used for the EO-1 Validation Program. The data also were used to evaluate whether the EO-1 ALI reflective channels can be combined with the Landsat-7 ETM+ thermal infrared channel to estimate canopy temperature, and also test the effects of separating the thermal and reflective measurements in time resulting from satellite formation flying.

  18. Characterization and Application of a Grazing Angle Objective for Quantitative Infrared Reflection Microspectroscopy

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.

    1995-01-01

    A grazing angle objective on an infrared microspectrometer is studied for quantitative spectroscopy by considering the angular dependence of the incident intensity within the objective's angular aperture. The assumption that there is no angular dependence is tested by comparing the experimental reflectance of Si and KBr surfaces with the reflectance calculated by integrating the Fresnel reflection coefficient over the angular aperture under this assumption. Good agreement was found, indicating that the specular reflectance of surfaces can straight-forwardly be quantitatively integrated over the angular aperture without considering non-uniform incident intensity. This quantitative approach is applied to the thickness determination of dipcoated Krytox on gold. The infrared optical constants of both materials are known, allowing the integration to be carried out. The thickness obtained is in fair agreement with the value determined by ellipsometry in the visible. Therefore, this paper illustrates a method for more quantitative use of a grazing angle objective for infrared reflectance microspectroscopy.

  19. Infrared reflectance spectra of Hyperion, Titania, and Triton

    NASA Technical Reports Server (NTRS)

    Lebofsky, L. A.; Lebofsky, M. J.; Rieke, G. H.

    1981-01-01

    Medium-resolution infrared (1-2.5 microns; Delta-lambda/lambda = 0.05) photometry of Triton, Titania, and Hyperion and medium-resolution (1.5-2.4 microns; Delta-lambda/lambda not greater than 0.01) spectroscopy of Triton are presented. Hyperion and Titania have spectra roughly similar to the laboratory spectrum of water frost, while the spectrum of Triton is inconsistent with the spectra of frosts likely to be major surface constituents.

  20. Near-Infrared Reflectance of Snow-Covered Substrates,

    DTIC Science & Technology

    1981-11-01

    I - NEAR-INFRA RED RFETANCE OF SNOW-COVERED SUBSTRATES.IU) INoV SL H B RIEN, . KOH UNCLASSIF IED CRREL-8-21N L ~~LEVE REPORT 81-21 Near-infrared...that more than half of the radiant The condition of the snow cover at the time energy transmitted by the so-called 1.3-,um filter may explain the shape

  1. Laser data transmission with the application of reflectance modulator

    NASA Astrophysics Data System (ADS)

    Knysak, Piotr; Mierczyk, Zygmunt; Zygmunt, Marek; Wojtanowski, Jacek; Traczyk, Maciej

    2016-12-01

    The article presents the main aspects related to the development of nonconventional asymmetric laser data transmission system. It describes the principle of data transmission in both the direction away from the laser transmitter, wherein a pulse position modulation is used, and in the opposite direction, where the modulation of the reflected radiation is performed. The results presented in the article confirm the possibility of using the described technology in the civilian area for monitoring and telemetry, where devices without radiation sources are taken into account. In military applications, the system can be used to identify own objects and forces on the battlefield by the application of pulsed laser rangefinders which are currently a standard battle equipment.

  2. High Performance Concentrating Photovoltaic Module Designs Employing Reflective Lens Optics

    NASA Astrophysics Data System (ADS)

    Vasylyev, Sergey V.; Vasylyev, Viktor P.

    2011-12-01

    The present study is aimed at advancing the optical component as well as optimizing the design of concentrating photovoltaic (CPV) modules in order to increase the conversion efficiency and improve the utility of CPV while obtaining the prescribed concentration ratio. In this work, we turn to non-traditional concentrating optics, namely Reflective Lenses™ (RL), first introduced in early 2000s. The optical configuration of RLs is unique since it combines the very low F/D number (hence resulting in a very low profile of the unit) of mirrors with a rear-focus of lenses and uses only a single-stage reflection. A liner-focus version of RLs, the Slat-Array Concentrator (SAC), is a capable alternative to the parabolic troughs for mid-concentration CPV. A point-focus version called the Ring-Array Concentrator (RAC) is deemed suitable for high concentration photovoltaics.

  3. A method to overcome the diffraction limit in infrared microscopy using standing waves in an attenuated total reflection configuration

    NASA Astrophysics Data System (ADS)

    Hendaoui, Nordine; Mani, Aladin; Liu, Ning; Tofail, Syed M.; Silien, Christophe; Peremans, André

    2017-01-01

    A method is proposed to overcome the diffraction limit of spatial resolution in infrared microscopy. To achieve this, standing waves in an attenuated total reflection configuration were generated to spatially modulate the absorbance of adsorbate vibrational transitions. A numerical simulation was undertaken. It showed that chemical imaging with a spatial resolution of approximately 100 nm is achievable in the case of self-assembled patterns (ofoctdecyltrichlorosilane [CH3-(CH2)17-SiCl3]), when probing the methyl modes located near 3.5 micrometres.

  4. Optical diffuse reflectance accessory for measurements of skin tissue by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Marbach, R.; Heise, H. M.

    1995-02-01

    An optimized accessory for measuring the diffuse reflectance spectra of human skin tissue in the near-infrared spectral range is presented. The device includes an on-axis ellipsoidal collecting mirror with efficient illumination optics for small sampling areas of bulky body specimens. The optical design is supported by the results of a Monte Carlo simulation study of the reflectance characteristics of skin tissue. Because the results evolved from efforts to measure blood glucose noninvasively, the main emphasis is placed on the long-wavelength near-infrared range where sufficient penetration depth for radiation into tissue is still available. The accessory is applied for in vivo diffuse reflectance measurements.

  5. Optical diffuse reflectance accessory for measurements of skin tissue by near-infrared spectroscopy.

    PubMed

    Marbach, R; Heise, H M

    1995-02-01

    An optimized accessory for measuring the diffuse reflectance spectra of human skin tissue in the near-infrared spectral range is presented. The device includes an on-axis ellipsoidal collecting mirror with efficient illumination optics for small sampling areas of bulky body specimens. The optical design is supported by the results of a Monte Carlo simulation study of the reflectance characteristics of skin tissue. Because the results evolved from efforts to measure blood glucose noninvasively, the main emphasis is placed on the long-wavelength near-infrared range where sufficient penetration depth for radiation into tissue is still available. The accessory is applied for in vivo diffuse reflectance measurements.

  6. The spatial distribution of infrared radiation from visible reflection nebulae

    NASA Technical Reports Server (NTRS)

    Luan, Ling; Werner, Michael W.; Dwek, Eli; Sellgren, Kris

    1989-01-01

    The emission at IRAS 12 and 25 micron bands of reflection nebulae is far in excess of that expected from the longer wavelength equilibrium thermal emission. The excess emission in the IRAS 12 micron band is a general phenomenon, seen in various components of interstellar medium such as IR cirrus clouds, H II regions, atomic and molecular clouds, and also normal spiral galaxies. This excess emission has been attributed to UV excited fluorescence in polycyclic aromatic hydrocarbon (PAH) molecules or to the effect of temperature fluctuations in very small grains. Results are presented of studies of IRAS data on reflection nebulae selected from the van den Bergh reflection nebulae sample. Detailed scans of flux ratio and color temperature across the nebulae were obtained in order to study the spatial distribution of IR emission. A model was used to predict the spatial distribution of IR emission from dust grains illuminated by a B type star. The model was also used to explore the excitation of the IRAS 12 micron band emission as a function of stellar temperature. The model predictions are in good agreement with the analysis of reflection nebulae, illuminated by stars with stellar temperature ranging from 21,000 down to 3,000 K.

  7. Studies of dust grain properties in infrared reflection nebulae

    NASA Technical Reports Server (NTRS)

    Pendleton, Y. J.; Tielens, A. G. G. M.; Werner, M. W.

    1990-01-01

    A model has been developed for reflection nebulae around luminous IR sources embedded in dense dust clouds. The shape of the IR spectrum is shown to be the result of a combination of the scattering properties of the dust, the spectrum of the illuminating source, and foreground extinction, while geometry plays a minor role. Comparison of the model results with IR observations of the reflection nebula surrounding OMC-2/IRS 1 shows that either a grain size distribution like that found in the diffuse ISM, or consisting of larger grains, can explain the observed shape of the spectrum. However, the absolute intensity level of the scattered light, as well as the observed polarization, requires large grains. By adding water-ice mantles to the silicate and graphite cores, the 3.08 micron ice-band feature observed in the spectra of several IR reflection nebulae has been modeled. It is shown that this ice band arises naturally in optically thick reflection nebulae containing ice-coated grains.

  8. Electro-optic modulator for infrared laser using gallium arsenide crystal

    NASA Technical Reports Server (NTRS)

    Walsh, T. E.

    1968-01-01

    Gallium arsenide electro-optic modulator used for infrared lasers has a mica quarter-wave plate and two calcite polarizers to amplitude or phase modulate an infrared laser light source in the wavelength range from 1 to 3 microns. The large single crystal has uniformly high resistivities, is strain free, and comparable in quality to good optical glass.

  9. High-speed infra-red modulator with multilayered pn-junctions

    NASA Astrophysics Data System (ADS)

    Yamada, S.; Urisu, T.; Mizushima, Y.

    1983-10-01

    A high-speed infra-red modulator having a GaAs multilayered pn-junction and resonator structure is proposed. Device operation is based on infra-red interaction with injected carriers at each junction. The performance calculation reveals an amplitude of 50 percent, and an approximately pi phase modulation depth with expected bandwidth in the gigahertz order.

  10. Social exclusion modulates pre-reflective interpersonal body representation.

    PubMed

    Ambrosini, Ettore; Blomberg, Olle; Mandrigin, Alisa; Costantini, Marcello

    2014-01-01

    Perception of affordance is enhanced not only when that object is located in one's own peripersonal space, as compared to when it is located within extrapersonal space, but also when the object is located in another person's peripersonal space [as measured by a spatial alignment effect (SAE)]. It has been suggested that this reflects the existence of an interpersonal body representation (IBR) that allows us to represent the perceptual states and action possibilities of others. Here, we address the question of whether IBR can be modulated by higher level/reflective social cognition, such as judgments about one's own social status. Participants responded with either the right or the left hand as soon as a go signal appeared. The go signal screen contained a task-irrelevant stimulus consisting of a 3D scene in which a mug with a left- or right-facing handle was positioned on a table. The mug was positioned either inside or outside the reaching space of the participants. In a third of the trials, the mug was positioned within the reaching space of an avatar seated at the table. Prior to this task we induced an experience of social ostracism in half of the participants by means of a standardized social exclusion condition. The results were that the SAE that normally occurs when the mug is in the avatar's reaching space is extinguished by the induced social exclusion. This indicates that judgments about one's own social status modulate the effect of IBR.

  11. Prediction of tablets disintegration times using near-infrared diffuse reflectance spectroscopy as a nondestructive method.

    PubMed

    Donoso, M; Ghaly, Evone S

    2005-01-01

    The goals of this study are to user near-infrared reflectance (NIR) spectroscopy to measure the disintegration time of a series of tablets compacted at different compressional forces, calibrate NIR data vs. laboratory equipment data, develop a model equation, validate the model, and test the model's predictive ability. Seven theophylline tablet formulations of the same composition but with different disintegration time values (0.224, 1.141, 2.797, 5.492, 9.397, 16.8, and 30.092 min) were prepared along with five placebo tablet formulations with different disintegration times. Laboratory disintegration time was compared to near-infrared diffuse reflectance data. Linear regression, quadratic, cubic, and partial least square techniques were used to determine the relationship between disintegration time and near-infrared spectra. The results demonstrated that an increase in disintegration time produced an increase in near-infrared absorbance. Series of model equations, which depended on the mathematical technique used for regression, were developed from the calibration of disintegration time using laboratory equipment vs. the near-infrared diffuse reflectance for each formulation. The results of NIR disintegration time were similar to laboratory tests. The near-infrared diffuse reflectance spectroscopy method is an alternative nondestructive method for measurement of disintegration time of tablets.

  12. Measurement of leaf relative water content by infrared reflectance

    NASA Technical Reports Server (NTRS)

    Hunt, E. Raymond, Jr.; Rock, Barrett N.; Nobel, Park S.

    1987-01-01

    From basic considerations and Beer's law, a leaf water content index incorporating reflectances of wavelengths from 0.76 to 0.90 microns and from 1.55 to 1.75 microns was developed that relates leaf reflectance to leaf relative water content. For the leaf succulent, Agave deserti, the leaf water content index was not significantly different from the relative water content for either individual leaves or an entire plant. Also, the relative water contents of intact plants of Encelia farinosa and Hilaria rigida in the field were estimated by the leaf water content index; variations in the proportion of living to dead leaf area could cause large errors in the estimate of relative water content. Thus, the leaf water content index may be able to estimate average relative water content of canopies when TM4 and TM5 are measured at a known relative water content and fraction of dead leaf material.

  13. Anomalous Reflectivity Losses of Coated Mirrors Used in the Infrared,

    DTIC Science & Technology

    1982-01-01

    Fig 1 and Fig 2. Experi- mental observations of anomalous reflectivity losses are discussed in the next 1 paragraph. From Table 1 and the experimental... observations it can be seen that the losses occur for only one direction of polarisation Rp, and are not found at normal incidence. Also that the...protected aluminium (measured for us by SIRA institute (3 )) is illustrated in Fig 2 for comparison with the spectra calculated for Al + SiO and Al + SiO 2

  14. Modulation transfer function measurement of scanning reflectance microscopes.

    PubMed

    Wang, Zhao; Glazowski, Christopher E; Zavislan, James M

    2007-01-01

    Real-time medical imaging systems such as reflectance confocal microscopes and optical coherence microscopes are being tested in multiple-patient and multiple-center clinical trials. The modulation transfer function (MTF) of these systems at any given time influences the image information content and can affect the interpretation of the images. MTF is difficult to measure in real-time scanning systems when imaging at the Nyquist limit. We describe a measurement technique similar to the electronic imaging resolution standards ISO-12233 (electronic cameras) that can be applied to scanned spot imaging systems with asynchronous pixel clocks. This technique requires the acquisition of a single image of a reflective stripe object. An asynchronous pixel clock induces subpixel jitter in the edge location. The jitter is removed using a Fourier method, and an oversampled edge response function is calculated using algorithms developed in MATLAB. This technique provides fast, simple to use, and repeatable full-width at half maximum lateral resolution and MTF measurements based on only one test image. We present the results for reflectance confocal microscopes operating at 0.9 numerical aperture.

  15. Dry film preparation from whole blood, plasma and serum for quantitative infrared diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Bittner, A.; Heise, H. M.

    1998-06-01

    The potential of infrared spectroscopy in the analysis of biotic fluids for the determination of important clinical parameters such as glucose and other blood substrates has been investigated. For this purpose dried films from whole blood, blood plasma and serum were prepared on diffusely reflecting gold-coated substrates from sandpaper of different grades. This enabled measurements in the mid and near infrared spectral ranges by using special diffuse reflectance accessories. The removal of water leads to a considerable enrichment of the fluid constituents. Due to the reduced sample complexity a considerable gain in spectral information is obtained. This is especially valid for measurements in the near infrared where the problems associated with variability in the spectra of aqueous samples due to several parameters, i.e., temperature, electrolyte content etc., are well known. Additionally, mid infrared studies were carried out into the stability of dried samples.

  16. Diffuse reflectance infrared Fourier-Transform spectra of selected organic compounds

    SciTech Connect

    Harmon, S.H.; Caton, J.E.

    1982-05-01

    Diffuse reflectance infrared spectra of a variety of different organic compounds have been determined. Profiles of the spectra along with the location and relative intensity of the principal bands have been included for each compound studied. In addition both diffuse reflectance and transmittance infrared spectra were obtained for the same samples, and the spectral results were compared. Although some minor variations are observed between a diffuse reflectance spectrum and the corresponding transmittance spectrum, the diffuse reflectance is quite useful and may be a superior technique for the study of many samples because it possesses an inherently higher signal-to-noise response, requires less sample preparation and allows a very wide range of samples (solids, liquids of low volatility, neat sample, or sample diluted in a reflecting medium) to be studied under very similar conditions.

  17. Determination of styrene-butadiene rubber composition by attenuated total internal reflection infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Orlov, A. S.; Kiselev, S. A.; Kiseleva, E. A.; Budeeva, A. V.; Mashukov, V. I.

    2013-03-01

    A rapid method for determining the composition of styrene-butadiene rubber using attenuated total internal reflection infrared spectroscopy was proposed. PMR and 13C NMR spectroscopy and infrared transmission spectroscopy were used as absolute techniques for determining the compositions of calibration samples. It was shown that the method was applicable to a wide range of styrene-butadiene rubbers, did not require additional sample preparation, and was easily reproducible.

  18. Near-infrared reflectance analysis by Gauss-Jordan linear algebra

    SciTech Connect

    Honigs, D.E.; Freelin, J.M.; Hieftje, G.M.; Hirschfeld, T.B.

    1983-11-01

    Near-infrared reflectance analysis is an analytical technique that uses the near-infrared diffuse reflectance of a sample at several discrete wavelengths to predict the concentration of one or more of the chemical species in that sample. However, because near-infrared bands from solid samples are both abundant and broad, the reflectance at a given wavelength usually contains contributions from several sample components, requiring extensive calculations on overlapped bands. In the present study, these calculations have been performed using an approach similar to that employed in multi-component spectrophotometry, but with Gauss-Jordan linear algebra serving as the computational vehicle. Using this approach, correlations for percent protein in wheat flour and percent benzene in hydrocarbons have been obtained and are evaluated. The advantages of a linear-algebra approach over the common one employing stepwise regression are explored.

  19. Investigation of Latent Traces Using Infrared Reflectance Hyperspectral Imaging

    NASA Astrophysics Data System (ADS)

    Schubert, Till; Wenzel, Susanne; Roscher, Ribana; Stachniss, Cyrill

    2016-06-01

    The detection of traces is a main task of forensics. Hyperspectral imaging is a potential method from which we expect to capture more fluorescence effects than with common forensic light sources. This paper shows that the use of hyperspectral imaging is suited for the analysis of latent traces and extends the classical concept to the conservation of the crime scene for retrospective laboratory analysis. We examine specimen of blood, semen and saliva traces in several dilution steps, prepared on cardboard substrate. As our key result we successfully make latent traces visible up to dilution factor of 1:8000. We can attribute most of the detectability to interference of electromagnetic light with the water content of the traces in the shortwave infrared region of the spectrum. In a classification task we use several dimensionality reduction methods (PCA and LDA) in combination with a Maximum Likelihood classifier, assuming normally distributed data. Further, we use Random Forest as a competitive approach. The classifiers retrieve the exact positions of labelled trace preparation up to highest dilution and determine posterior probabilities. By modelling the classification task with a Markov Random Field we are able to integrate prior information about the spatial relation of neighboured pixel labels.

  20. Performance improvement of a near-infrared acetylene sensor system by reducing residual amplitude modulation

    NASA Astrophysics Data System (ADS)

    He, Qixin; Zheng, Chuantao; Liu, Huifang; Li, Bin; Wang, Yiding; Tittel, Frank K.

    2017-05-01

    A near-infrared acetylene (C2H2) sensor was experimentally demonstrated by using a tunable diode laser absorption spectroscopy (TDLAS) technique as well as a second-harmonic wavelength modulation spectroscopy technique. A near-infrared distributed feedback (DFB) laser was used as a light source, and an interference-free absorption line located at the vibration overtone band near 1.53 µm was selected for the detection of C2H2. A self-developed, open-reflective gas sensing probe with a 30 cm path length was adopted as the C2H2 absorption pool. In order to reduce the residual amplitude modulation (RAM) caused by wavelength modulation, a divider pretreatment module was introduced into the traditional dual-channel detection structure. The line shape distortion of the extracted 2f signal was eliminated by the reduction of RAM. Under general laboratory conditions (1 atm, 25 °C), a minimum detection limit (MDL) of 540 ppbv was achieved with an averaging time of 68 s while the MDL without reducing the RAM is up to 1.03 ppmv. A good linear relationship was observed between the amplitude of the 2f signal and the C2H2 concentration within the range of 50-2000 ppm. Long-term measurements were carried out to verify the stability of the system. Using an optical fiber to connect the DFB laser with the probe, the probe can be placed in a faraway field for long-distance, in situ measurement.

  1. [Research on VOC concentration detection by photoelastic modulation infrared spectrum absorption method].

    PubMed

    Hu, Miao; Wang, Tai-yong; Qiao, Zhi-feng; Geng, Bo; Xiao, Xin-hua

    2011-12-01

    In order to ensure high stability and strong anti-interference ability in static interference system for qualitative and quantitative analysis of gas, a static scans interference detection system was designed based on photoelastic modulation infrared spectrum absorption system. The system consists of infrared laser, polarizer, photoelastic modulator, polarization analyzer and CCD components. By photoelastic modulator the principal refractive index of optical crystal will change cyclically by the modulation signal, producing cyclical changes in the optical path difference. With the calculation of modulation phase variation, the authors can get the function of the crystal length, the modulation cycle, and the range of optical path difference. Based on phase delay value and the energy distribution of interference pattern, the authors got the formula for the corresponding interference light intensity. The experiment used ZnSe crystal as the photoelastic modulation crystal, the polarizer uses the DOP3212 polarizer, and the detector uses the TCD5390AP array CCD. The five groups have different concentrations with three common VOC gases (formaldehyde, benzene and xylene) for detecting the concentrations of gases. The experimental results with the traditional infrared absorption were compared with the test results of photoelastic modulation infrared spectrum absorption method. The method of photoelastic modulation infrared spectrum absorption had high stability and real-time features, while the detection accuracy is better than the traditional infrared absorption method.

  2. Carbonates in Antarctic ordinary chondrites inferred from infrared diffuse reflectance spectra

    NASA Astrophysics Data System (ADS)

    Miyamoto, Masamichi

    1989-12-01

    Examination of Antarctic ordinary chondrites was made through use of infrared diffuse reflectance spectroscopy. The spectra of all the Antarctic ordinary chondrites measured show weak absorption bands near 1350/cm which are caused by carbonates (probably hydrated carbonates). The band is not present after acid dissolution, consistent with the carbonate identification. The carbonates were probably produced by terrestrial weathering, since the spectra of recently fallen non-Antarctic chondrites, Nuevo Mercurio (H5) and La Criolla (L6), do not show the 1350/cm band. Infrared diffuse reflectance spectroscopy is useful for easily detecting the presence (or absence) of the weathering-produced carbonates in meteorites.

  3. [Application of near-infrared diffuse reflectance spectroscopy to the detection and identification of transgenic corn].

    PubMed

    Rui, Yu-kui; Luo, Yun-bo; Huang, Kun-lun; Wang, Wei-min; Zhang, Lu-da

    2005-10-01

    With the rapid development of the GMO, more and more GMO food has been pouring into the market. Much attention has been paid to GMO labeling under the controversy of GMO safety. Transgenic corns and their parents were scanned by continuous wave of near infrared diffuse reflectance spectroscopy range of 12000-4000 cm(-1); the resolution was 4 cm(-1); scanning was carried out for 64 times; BP algorithm was applied for data processing. The GMO food was easily resolved. Near-infrared diffuse reflectance spectroscopy is unpolluted and inexpensive compared with PCR and ELISA, so it is a very promising detection method for GMO food.

  4. Catheter based mid-infrared reflectance and reflectance generated absorption spectroscopy

    DOEpatents

    Holman, Hoi-Ying N

    2013-10-29

    A method of characterizing conditions in a tissue, by (a) providing a catheter that has a light source that emits light in selected wavenumbers within the range of mid-IR spectrum; (b) directing the light from the catheter to an area of tissue at a location inside a blood vessel of a subject; (c) collecting light reflected from the location and generating a reflectance spectra; and (d) comparing the reflectance spectra to a reference spectra of normal tissue, whereby a location having an increased number of absorbance peaks at said selected wavenumbers indicates a tissue inside the blood vessel containing a physiological marker for atherosclerosis.

  5. Differences in visible and near-infrared light reflectance between orange fruit and leaves

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Escobar, D. E.; Berumen, A.

    1975-01-01

    The objective was to find the best time during the season (April 26, 1972 to January 8, 1973) to distinguish orange fruit from leaves by spectrophotometrically determining at 10-day intervals when the difference in visible (550- and 650-nm wavelengths) and near-infrared (850-nm wavelength) light reflectance between fruit and nearby leaves was largest. December 5 to January 8 was the best time to distinguish fruit from leaves. During this period the fruit's color was rapidly changing from green to yellow, and the difference in visible light reflectance between fruit and leaves was largest. The difference in near-infrared reflectance between leaves and fruit remained essentially constant during ripening when the difference in visible light reflectance between leaves and fruit was largest.

  6. Differences in visible and near-infrared light reflectance between orange fruit and leaves

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Escobar, D. E.; Berumen, A.

    1975-01-01

    The objective was to find the best time during the season (April 26, 1972 to January 8, 1973) to distinguish orange fruit from leaves by spectrophotometrically determining at 10-day intervals when the difference in visible (550- and 650-nm wavelengths) and near-infrared (850-nm wavelength) light reflectance between fruit and nearby leaves was largest. December 5 to January 8 was the best time to distinguish fruit from leaves. During this period the fruit's color was rapidly changing from green to yellow, and the difference in visible light reflectance between fruit and leaves was largest. The difference in near-infrared reflectance between leaves and fruit remained essentially constant during ripening when the difference in visible light reflectance between leaves and fruit was largest.

  7. Mid-infrared polarization devices based on the double-phase modulating dielectric metasurface

    NASA Astrophysics Data System (ADS)

    Guo, Zhongyi; Tian, Lihua; Shen, Fei; Zhou, Hongping; Guo, Kai

    2017-06-01

    Metasurfaces are composed of the subwavelength structures, which can be used to manipulate the phase, amplitude and polarization of transmitted or reflected electromagnetic waves. Here, we propose an all-dielectric metasurface working in mid-infrared (mid-IR) range, in which the transmitted phase can almost span over the entire 2π range for both X-polarization and Y-polarization simultaneously just by tailoring the geometric sizes of the silicon (Si) nanobricks, while the transmitted amplitude can be maintained at high values without significant variations. We have successfully realized the beam deflector, beam splitter and the focusing lenses based on the designed metasurfaces at a wavelength of 4.5 µm. Our work paves the way toward establishing low-loss dielectric-based mid-IR devices and extends the modulating dimension of the metasurfaces.

  8. Thermal Infrared Reflective Metal Oxide Sol-Gel Coatings for Carbon Fiber Reinforced Composite Structures

    NASA Astrophysics Data System (ADS)

    Richard, Brandon Demar

    Recent trends in composite research include the development of structural materials with multiple functionalities. In new studies, novel materials are being designed, developed, modified, and implemented into composite designs. Typically, an increase in functionality requires additional material phases within one system. The presence of excessive phases can result in deterioration of individual or overall properties. True multi-functional materials must maintain all properties at or above the minimum operating limit. In this project, samples of antimony and cobalt-doped tin oxide (ATO(Co2O 3)) sol-gel solutions are used to coat carbon fibers and are heat treated at a temperature range of 200 - 500 °C. Results from this research are used to model the implementation of sol-gel coatings into carbon fiber reinforced multifunctional composite systems. This research presents a novel thermo-responsive sol-gel/ (dopant) combination and evaluation of the actuating responses (reflectivity and surface heat dissipation) due to various heat treatment temperatures. While ATO is a well-known transparent conductive material, the implementation of ATO on carbon fibers for infrared thermal reflectivity has not been examined. These coatings serve as actuators capable of reflecting thermal infrared radiation in the near infrared wavelengths of 0.7-1.2 μm. By altering the level of Co2O3 and heat treatment temperatures, optimal optical properties are obtained. While scanning electron microscopy (SEM) is used for imaging, electron diffraction spectroscopy (EDS) is used to verify the compounds present in the coatings. Fourier transform infrared (FT-IR) spectroscopy was performed to analyze the chemical bonds and reflectivity in the infrared spectra after the heat treatments. Total reflection and angle-dependent reflectivity measurements were performed on the coatings in the wavelengths of 0.7-2 μm. Laser induced damage threshold testing was done to investigate the dielectric breakdown

  9. Preparation and characterization of nano bismuth titanate powders with high reflectivity in near-infrared waveband

    NASA Astrophysics Data System (ADS)

    Jia, Y. H.; Wu, Y. B.; Huang, Y.; Zhou, Z. H.; Shen, S.

    2017-03-01

    Nano powders with high reflectivity in near-infrared waveband have broad applications as thermal insulation materials. In this study, nano bismuth titanate powders with the reflectance to near-infrared of as high as 89.5% in average were prepared via a sol-gel method by using tetrabutyl titanate, bismuth nitrate as raw materials and citric acid, acetic acid as reaction adjuvant reagents. Furthermore, to control the reflectivity in the visible light waveband, the as-prepared nano bismuth titanate powders were further coated with nano-Ag by using NaBH4 as a reduction agent. The influence of different dispersants on reflectivity and on powder dispersibility has also been studied. SEM characterization demonstrates that PEG1000, worked as a dispersant, significantly enhances the dispersion of bismuth titanate powders comparing with non-dispersant system. UV-Vis-NIR spectra reveal that with addition amount of AgNO3 of 1.5 ml and PEG1000 as the dispersant, the Ag-coated bismuth titanate nano powders can reach about 60% of reflectance to near-infrared, while the reflectance of visible light can be controlled as low as around 14%. It is very promising for such nano powders to be used in thermal insulation glass materials.

  10. Preparation and near-infrared reflective characterization of Cu-doped sodium zincophosphate

    NASA Astrophysics Data System (ADS)

    Wang, Da; Su, Da Gen; Zhong, Ming Feng; Xia, Hui

    2012-02-01

    Cu-doped sodium zincophosphate [NaZn 1- x(Cu) xPO 4; x=0.05, 0.10, 0.15, and 0.20] powders were prepared by a coprecipitation method for the use as a dark heat-reflective material. The weighted average of the reflectance was calculated according to the reflectivity data measured using a UV-visible and near-infrared spectrophotometer. The measurement wavelength region was 380-2500 nm. The visible and near-infrared reflective properties of NaZn 1- x(Cu) xPO 4 doped with different amounts of Cu at varied calcination temperatures were investigated. NaZn(Cu)PO 4 was found to be the main phase that crystallized in a monoclinic system of NaZn 0.9(Cu) 0.1PO 4 at 800 °C. The sample of NaZn 0.9(Cu) 0.1PO 4 was black in the visible region because of its high absorption, and its weighted average reflectance reached 51% in the near-infrared region. As a result, NaZn 1- x(Cu) xPO 4 has potential applications as a dark heat-reflective material.

  11. Near-infrared reflectance bull’s eye maculopathy as an early indication of hydroxychloroquine toxicity

    PubMed Central

    Wong, Keye L; Pautler, Scott E; Browning, David J

    2015-01-01

    Importance In some patients, hydroxychloroquine ocular toxicity may progress even following cessation of therapy. Any leverage the clinician may use to allow earlier detection may avert significant vision loss. Observation We report three cases suggesting that bull’s eye maculopathy seen on near-infrared reflectance with a confocal scanning laser ophthalmoscope could be an early, objective manifestation of hydroxychloroquine ocular toxicity, and with progression of the disease this near-infrared “bull’s eye” change may disappear. Conclusion and relevance Alerting clinicians to this observation may allow a larger case series to corroborate the hypothesis that bull’s eye maculopathy detected by near-infrared reflectance may represent an early sign of hydroxychloroquine toxicity. PMID:25834390

  12. Low-resolution mid-infrared reflection analysis for discernment of contaminants in seed cotton

    USDA-ARS?s Scientific Manuscript database

    Contaminants often decrease cotton quality, which subsequently decrease cotton profitability. In this research, a low-resolution mid-infrared reflection instrument was designed and constructed by using only four different wavelengths to accomplish good separation of cotton samples from 14 contaminan...

  13. Preparation and Characterization of Bayerite Samples: Use of Diffuse Reflectance Infrared Spectroscopy to Monitor Purification

    NASA Astrophysics Data System (ADS)

    Phambu, Nsoki; Humbert, Bernard; Burneau, Andre

    2002-09-01

    We show here how bayerite, a polymorphic form of aluminum trihydroxides, can be synthesized and characterized by simple spectroscopic methods. Purification of the product by washing with water can be monitored by diffuse reflectance infrared spectra. A product with extremely high purity is obtained after repeated washings.

  14. Analysis of Total Oil and Fatty Acids Composition by Near Infrared Reflectance Spectroscopy in Edible Nuts

    USDA-ARS?s Scientific Manuscript database

    Near Infrared (NIR) Reflectance spectroscopy has established itself as an important tool in quantifying water and oil present in various food materials. It is rapid and nondestructive, easier to use, and does not require processing the samples with corrosive chemicals that would render them non-edib...

  15. Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics.

    PubMed

    Xiang, Jie; Li, Yannian; Li, Quan; Paterson, Daniel A; Storey, John M D; Imrie, Corrie T; Lavrentovich, Oleg D

    2015-05-20

    Electrical tuning of selective reflection of light is achieved in a very broad spectral range from ultraviolet to visible and infrared by an oblique helicoidal state of a cholesteric liquid crystal in a wide temperature range (including room temperature). The phenomenon offers potential applications in tunable smart windows, lasers, optical filters and limiters, as well as in displays.

  16. Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits.

    PubMed

    Cai, Yijun; Zhu, Jinfeng; Liu, Qing Huo; Lin, Timothy; Zhou, Jianyang; Ye, Longfang; Cai, Zhiping

    2015-12-14

    Modulating spatial near-infrared light for ultra-compact electro-optic devices is a critical issue in optical communication and imaging applications. To date, spatial near-infrared modulators based on graphene have been reported, but they showed limited modulation effects due to the relatively weak light-graphene interaction. In combination with graphene and metallic nanoslits, we design a kind of ultrathin near-infrared perfect absorber with enhanced spatial modulation effects and independence on a wide range of incident angles. The modulated spectral shift of central wavelength is up to 258.2 nm in the near-infrared range, which is more promising in applications than state-of-the-art devices. The modulation enhancement is attributed to the plasmonic nanoslit mode, in which the optical electric field is highly concentrated in the deep subwavelength scale and the light-graphene interaction is significantly strengthened. The physical insight is deeply revealed by a combination of equivalent circuit and electromagnetic field analysis. The design principles are not only crucial for spatial near-infrared modulators, but also provide a key guide for developing active near-infrared patch nanoantennas based on graphene.

  17. Durable silver mirror with ultra-violet thru far infra-red reflection

    DOEpatents

    Wolfe, Jesse D.

    2010-11-23

    A durable highly reflective silver mirror characterized by high reflectance in a broad spectral range of about 300 nm in the UV to the far infrared (.about.10000 nm), as well as exceptional environmental durability. A high absorptivity metal underlayer is used which prevents the formation of a galvanic cell with a silver layer while increasing the reflectance of the silver layer. Environmentally durable overcoat layers are provided to enhance mechanical and chemical durability and protect the silver layer from corrosion and tarnishing, for use in a wide variety of surroundings or climates, including harsh or extreme environments.

  18. Study of jamming of the frequency modulation infrared seekers

    NASA Astrophysics Data System (ADS)

    Qian, Fang; Guo, Jin; Shao, Jun-feng; Wang, Ting-feng

    2013-09-01

    The threat of the IR guidance missile is a direct consequence of extensive proliferation of the airborne IR countermeasure. The aim of a countermeasure system is to inject false information into a sensor system to create confusion. Many optical seekers have a single detector that is used to sense the position of its victim in its field of view. A seeker has a spinning reticle in the focal plane of the optical system that collects energy from the thermal scene and focuses it on to the detector. In this paper, the principle of the conical-scan FM reticle is analyzed. Then the effect that different amplitude or frequency modulated mid-infrared laser pulse acts on the reticle system is simulated. When the ratio of jamming energy to target radiation (repression) gradually increases, the azimuth error and the misalignment angle error become larger. The results show that simply increasing the intensity of the jamming light achieves little, but it increases the received signal strength of the FM reticle system ,so that the target will be more easily exposed. A slow variation of amplitude will warp the azimuth information received by the seeker, but the target can't be completely out of the missile tracking. If the repression and the jamming frequency change at the same time, the jamming effects can be more obvious. When the jamming signal's angular frequency is twice as large as the carrier frequency of the reticle system, the seeker will can't receive an accurate signal and the jamming can be achieved. The jamming mechanism of the conical-scan FM IR seeker is described and it is helpful to the airborne IR countermeasure system.

  19. Modeling thermal infrared (2-14 micrometer) reflectance spectra of frost and snow

    NASA Technical Reports Server (NTRS)

    Wald, Andrew E.

    1994-01-01

    Existing theories of radiative transfer in close-packed media assume that each particle scatters independently of its neighbors. For opaque particles, such as are common in the thermal infrared, this assumption is not valid, and these radiative transfer theories will not be accurate. A new method is proposed, called 'diffraction subtraction', which modifies the scattering cross section of close-packed large, opaque spheres to account for the effect of close packing on the diffraction cross section of a scattering particle. This method predicts the thermal infrared reflectance of coarse (greater than 50 micrometers radius), disaggregated granular snow. However, such coarse snow is typically old and metamorphosed, with adjacent grains welded together. The reflectance of such a welded block can be described as partly Fresnel in nature and cannot be predicted using Mie inputs to radiative transfer theory. Owing to the high absorption coefficient of ice in the thermal infrared, a rough surface reflectance model can be used to calculate reflectance from such a block. For very small (less than 50 micrometers), disaggregated particles, it is incorrect in principle to treat diffraction independently of reflection and refraction, and the theory fails. However, for particles larger than 50 micrometers, independent scattering is a valid assumption, and standard radiative transfer theory works.

  20. Modeling thermal infrared (2-14 micrometer) reflectance spectra of frost and snow

    NASA Technical Reports Server (NTRS)

    Wald, Andrew E.

    1994-01-01

    Existing theories of radiative transfer in close-packed media assume that each particle scatters independently of its neighbors. For opaque particles, such as are common in the thermal infrared, this assumption is not valid, and these radiative transfer theories will not be accurate. A new method is proposed, called 'diffraction subtraction', which modifies the scattering cross section of close-packed large, opaque spheres to account for the effect of close packing on the diffraction cross section of a scattering particle. This method predicts the thermal infrared reflectance of coarse (greater than 50 micrometers radius), disaggregated granular snow. However, such coarse snow is typically old and metamorphosed, with adjacent grains welded together. The reflectance of such a welded block can be described as partly Fresnel in nature and cannot be predicted using Mie inputs to radiative transfer theory. Owing to the high absorption coefficient of ice in the thermal infrared, a rough surface reflectance model can be used to calculate reflectance from such a block. For very small (less than 50 micrometers), disaggregated particles, it is incorrect in principle to treat diffraction independently of reflection and refraction, and the theory fails. However, for particles larger than 50 micrometers, independent scattering is a valid assumption, and standard radiative transfer theory works.

  1. Analysis of bacteria on steel surfaces using reflectance micro-Fourier transform infrared spectroscopy.

    PubMed

    Ojeda, Jesús J; Romero-González, María E; Banwart, Steven A

    2009-08-01

    Reflectance micro-Fourier transform infrared (FT-IR) analysis has been applied to characterize biofilm formation of Aquabacterium commune, a common microorganism present on drinking water distribution systems, onto the increasingly popular pipe material stainless steel EN1.4307. The applicability of the reflectance micro-FT-IR technique for analyzing the bacterial functional groups is discussed, and the results are compared to spectra obtained using more conventional FT-IR techniques: transmission micro-FT-IR, attenuated transmitted reflectance (ATR), and KBr pellets. The differences between the infrared spectra of wet and dried bacteria, as well as free versus attached bacteria, are also discussed. The spectra obtained using reflectance micro-FT-IR spectroscopy were comparable to those obtained using other FT-IR techniques. The absence of sample preparation, the potential to analyze intact samples, and the ability to characterize opaque and thick samples without the need to transfer the bacterial samples to an infrared transparent medium or produce a pure culture were the main advantages of reflectance micro-FT-IR spectroscopy.

  2. Reflection and transmission mid-infrared spectroscopy for rapid determination of coal properties by multivariate analysis.

    PubMed

    Bona, M T; Andrés, J M

    2008-01-15

    In the present paper, the influence of different acquisition techniques (transmission, diffuse reflectance infrared Fourier transform and attenuated total reflectance) in the determination of nine coal properties related to combustion power plants has been studied. Raw coal samples of different origins were pooled for developing a correlation between the resultant spectra and the corresponding coal properties by multivariate analysis techniques. Thus, the existent collinearity in mid-infrared coal spectra led to the application of partial least squares regression (PLS), studying simultaneously the influence of different spectroscopic units as well as several spectral data mathematical pre-treatments. On the other hand, a principal component analysis (PCA) revealed a relationship between principal components and coal composition in both transmission and reflection techniques. Although the best accuracy and precision results were obtained for coal properties related to organic matter, the system was also able to differentiate coal samples attending to the presence of a specific mineral matter, kaolinite.

  3. [The research progress in determining lignocellulosic content by near infrared reflectance spectroscopy technology].

    PubMed

    Du, Juan; An, Dong; Xia, Tian; Huang, Yan-Hua; Li, Hong-Chao; Zhang, Yun-Wei

    2013-12-01

    Near infrared reflectance spectroscopy technology, as a new analytic method, can be used to determine the content of lignin, cellulose and hemi-cellulose which is faster, effective, easier to operate, and more accurate than the traditional wet chemical methods. Nowadays it has been widely used in measuring the composition of lignocelluloses in woody plant and herbaceous plant. The domestic and foreign research progress in determining the lignin, cellulose and hemi-cellulose content in woody plant ( wood and bamboo used as papermaking raw materials and wood served as potential biomass energy) and herbaceous plant (forage grass and energy grass) by near infrared reflectance spectroscopy technology is comprehensively summarized and the advances in method studies of measuring the composition of lignocelluloses by near infrared reflectance spectroscopy technology are summed up in three aspects, sample preparation, spectral data pretreatment and wavelength selection methods, and chemometric analysis respectively. Four outlooks are proposed combining the development statues of wood, forage grass and energy grass industry. First of all, the authors need to establish more feasible and applicable models for a variety of uses which can be used for more species from different areas, periods and anatomical parts. Secondly, comprehensive near infrared reflectance spectroscopy data base of grass products quality index needs to be improved to realize on-line quality and process control in grassproducts industry, which can guarantee the quality of the grass product. Thirdly, the near infrared reflectance spectroscopy quality index model of energy plant need to be built which can not only contribute to breed screening, but also improve the development of biomass industry. Besides, modeling approaches are required to be explored and perfected any further. Finally, the authors need to try our best to boost the advancement in the determination method of lignin, cellulose and hemi

  4. Experimental study on synergistic effects of reflectance and transmittance for near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Jingying; Liu, Jiajia; Ma, Congcong; Li, Lin; Lu, Junsheng; Xu, Kexin

    2016-03-01

    Usually, diffused reflectance or diffused transmittance has been collected respectively when performing the near-infrared spectroscopic measurements. However, glucose-relative spectral signal is quite weak due to the noises from the measuring system and the environment. Previous Monte-Carlo simulation results from our group showed that the spectral magnitude of both diffused reflectance and diffused transmittance can reach the same order. In this talk, it is our aim to further investigate the synergistic effect of diffused reflectance and diffused transmittance for Near Infrared spectral measurements. The diffused reflectance spectra and diffused transmittance spectra of human's earlobe have been obtained simultaneously by home-made optical probes within the wavelength of 1100-1400nm. Two processing methods---Superposition Method and Division Method are introduced to demonstrate the synergistic effect of reflectance and transmittance. Both of the processing methods are performed on diffused reflectance and diffused transmittance in accordance with corresponding wavelengths. The results show that the combination of diffused reflectance and transmittance can effectively enhances the SNR by reducing the interference caused by individual differences and measuring environmental factors. Moreover, comparatively, the Division Method has a more distinguished effect.

  5. The Development of Reflective Undergraduate Students: Assessing the Educational Benefits of Reflective Learning Logs in Entrepreneurship Module

    ERIC Educational Resources Information Center

    Kheng, Yeoh Khar; Sethela, June

    2015-01-01

    The objective of this paper is to analyze written reflections on learning log of among the third and final year students undertaking an entrepreneurship module. Data was collected in the form of written reflection taken from the learning log of 140 students from 3 classes. At the end of the collection only 136 students' responses were managed to…

  6. Effects of Sample Preparation on the Infrared Reflectance Spectra of Powders

    SciTech Connect

    Brauer, Carolyn S.; Johnson, Timothy J.; Myers, Tanya L.; Su, Yin-Fong; Blake, Thomas A.; Forland, Brenda M.

    2015-05-22

    While reflectance spectroscopy is a useful tool in identifying molecular compounds, laboratory measurement of solid (particularly powder) samples often is confounded by sample preparation methods. For example, both the packing density and surface roughness can have an effect on the quantitative reflectance spectra of powdered samples. Recent efforts in our group have focused on developing standard methods for measuring reflectance spectra that accounts for sample preparation, as well as other factors such as particle size and provenance. In this work, the effect of preparation method on sample reflectivity was investigated by measuring the directional-hemispherical spectra of samples that were hand-packed as well as pressed into pellets using an integrating sphere attached to a Fourier transform infrared spectrometer. The results show that the methods used to prepare the sample have a substantial effect on the measured reflectance spectra, as do other factors such as particle size.

  7. Computational design of solar reflection and far-infrared transmission films for a variable emittance device.

    PubMed

    Shimazaki, Kazunori; Ohnishi, Akira; Nagasaka, Yuji

    2003-03-01

    A smart radiation device (SRD) that is a variable emittance radiator has been studied as a method of thermal control for spacecraft. The SRD consists of manganese oxide with a perovskite-type structure, and the total hemispherical emittance of the SRD changes considerably depending on temperature. Here we propose an optimal method of designing multilayer films for the SRD by using agenetic algorithm. The multilayer films reflect solar radiation and transmit far-infrared radiation to maintain variation of the infrared optical properties of the SRD.

  8. Infrared reflectance measurements of the insulator-metal transition in solid hydrogen

    NASA Technical Reports Server (NTRS)

    Mao, H. K.; Hemley, R. J.; Hanfland, M.

    1990-01-01

    Reflectance measurements on solid hydrogen to 177 GPa (1.77 Mbar) have been performed from near-infrared to ultraviolet wavelengths (0.5 to 3 eV). Above 150 GPa characteristic free-electron behavior in the infrared region is observed to increase sharply with increasing pressure. Analysis of volume dependence of the plasma frequency obtained from Drude-model fits to the spectra indicates that the pressure of the insulator-metal transition is 149 (+ or - 10) GPa at 295 K. The measurements are consistent with metallization by closure of an indirect gap in the molecular solid.

  9. Infrared diffuse reflectances (2.5-25 microns) of some meteorites

    NASA Astrophysics Data System (ADS)

    Miyamato, M.

    1987-04-01

    Emissionless infrared diffuse reflectances of several meteorites were measured using a Fourier transform infrared spectrophotometer to identify asteroidal surface materials. It is noted that C3 carbonaceous chondrite materials may be distinguished from C3 materials by the depth of their hydration bands around 3 and 6 microns. Acid dissolution experiments suggest that the 6.8-micron band in the spectra of the Murchison (C2) meteorite is due to carbonates. The Norton County enstatite meteorite shows absorption bands around 10 microns which are due to the presence of pyroxene, and which are not found in the Mundrabilla iron meteorite.

  10. Study of ester crosslinking reactions on aluminum surfaces by infrared attenuated total reflectance spectrometry

    NASA Astrophysics Data System (ADS)

    Bhat, Sanmitra A.; Yang, Charles Q.; de Haseth, James A.

    1998-06-01

    Polycarboxylic acids are used as an alternative nonformaldehyde durable press finishing agents for cotton fabrics. Previous studies have shown that polycarboxylic acids esterify with cotton cellulose through intermediate formation of a cyclic anhydride. Cotton cellulose, due to the presence of hydroxyl groups, is a very active substrate. To understand the mechanism of ester formation, esterification reactions were studied on aluminum surfaces by infrared attenuated total reflectance (ATR) spectrometry. The infrared data showed that a five-membered cyclic anhydride is formed as an intermediate, that esterifies with the crosslinking agents. The data also demonstrated that formation of anhydride increases with temperature and also in the presence of a catalyst.

  11. Infrared reflectance measurements of the insulator-metal transition in solid hydrogen

    NASA Technical Reports Server (NTRS)

    Mao, H. K.; Hemley, R. J.; Hanfland, M.

    1990-01-01

    Reflectance measurements on solid hydrogen to 177 GPa (1.77 Mbar) have been performed from near-infrared to ultraviolet wavelengths (0.5 to 3 eV). Above 150 GPa characteristic free-electron behavior in the infrared region is observed to increase sharply with increasing pressure. Analysis of volume dependence of the plasma frequency obtained from Drude-model fits to the spectra indicates that the pressure of the insulator-metal transition is 149 (+ or - 10) GPa at 295 K. The measurements are consistent with metallization by closure of an indirect gap in the molecular solid.

  12. A partial least squares model for non-volatile residue quantification using diffuse reflectance infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Amylynn; Moision, Robert M.

    2016-09-01

    Traditionally, quantification of non-volatile residue (NVR) on surfaces relevant to space systems has been performed using solvent wipes for NVR removal followed by gravimetric analysis. In this approach the detectable levels of NVR are ultimately determined by the mass sensitivity of the analytical balance employed. Unfortunately, for routine samples, gravimetric measurement requires large sampling areas, on the order of a square foot, in order to clearly distinguish sample and background levels. Diffuse Reflectance Infrared Reflectance Spectroscopy (DRIFTS) is one possible alternative to gravimetric analysis for NVR measurement. DRIFTS is an analytical technique used for the identification and quantification of organic compounds that has two primary advantages relative to gravimetric based methods: increased sensitivity and the ability to identify classes of organic species present. However, the use of DRIFTS is not without drawbacks, most notably repeatability of sample preparation and the additive quantification uncertainty arising from overlapping infrared signatures. This can result in traditional calibration methods greatly overestimating the concentration of species in mixtures. In this work, a partial least squares (PLS) regression model is shown to be an effective method for removing the over prediction error of a three component mixture of common contaminant species.

  13. [Near infrared reflectance spectroscopy (NIRS) and its application in the determination for the quality of animal feed and products].

    PubMed

    Wang, Li; Meng, Qing-Xiang; Ren, Li-Ping; Yang, Jian-Song

    2010-06-01

    Near-infrared reflectance spectroscopy (NIRS) has been the most rapidly developing and noticeable spectrographic analytical technique in recent years. The determining principle and progresses of near-infrared reflectance spectroscopy are presented briefly. It mainly includes the progresses in pre-processing technique and analyzing model of near-infrared reflectance spectroscopy. Two pre-processing techniques, including differential coefficient-dealt with technique, the signal-smoothing technique, and four analyzing models of near-infrared spectroscopy, including the multiplied lined regression (MLR), principal component analysis (PCA), partial least squares (PLS), and artificial nerve network (ANN). The application of near-infrared reflectance spectroscopy to the first time. The investigation of reviewed papers shows that the near-infrared reflectance spectroscopy is widely applied in feed analysis and animal products analysis because of its rapidness, non-destruction and non-pollution. The near infrared reflectance spectroscopy has been used to determine the feed common ingredient, such as dry matter, crude protein, crude fiber, crude fat and so on, micro-components including amino acid, vitamin, and noxious components, and to determine the physical and chemical properties of animal products which including egg, mutton, beef and pork. Details of the analytical characteristics of feed and animal products described in the reviewed papers are given. New trends and limits to the application of near-infrared reflectance spectroscopy in these fields are also discussed.

  14. Attenuated total reflectance powder cell for infrared analysis of hygroscopic samples.

    PubMed

    Lekgoathi, M D S; le Roux, J P

    2011-11-01

    An attenuated total reflectance (ATR) sample cell has been designed, manufactured and subsequently used for the mid-infrared analysis of hygroscopic samples. This sample cell was installed as a simple drop-in replacement for the cell supplied with our commercially available Harrick Mvp-Pro FTIR-ATR accessory. Calcium chloride, a well-known desiccant that has a propensity to absorb water into its crystal lattice, was selected as non-infrared active substrate to accentuate the efficacy of the cell in preserving the anhydrous state of the sample by straightforward monitoring of the water bands. In contrast, mid-infrared spectra are presented that qualitatively demonstrate the rapid rate at which atmospheric moisture is incorporated into the anhydrous sample when analyzed using the conventional ATR cell assembly.

  15. Cryo-Transmittance and -Reflectance of Filters and Beamsplitters for the SIRTF Infrared Array Camera

    NASA Technical Reports Server (NTRS)

    Stewart, Kenneth P.; Quijada, Manuel A.a

    2000-01-01

    The Space Infrared Telescope Facility (SIRTF) Infrared Array Camera (IRAC) uses two dichroic beamsplitters, four bandpass filters, and four detector arrays to acquire images in four channels at wavelengths between 3 and 10 micron. Accurate knowledge of the pass bands is necessary because, in order to meet the science objectives, IRAC is required to do 2% relative photometry in each band relative to the other bands. We report the in-band and out-of-band polarized transmittance and reflectance of these optical elements measured near the instrument operating temperature of 1.4 K. Details of the experimental apparatus, which include a continuous flow liquid helium optical cryostat and a Fourier transform infrared (FTIR) spectrometer are discussed.

  16. Electro-optic study of PZT ferroelectric ceramics using modulation of reflected light

    NASA Astrophysics Data System (ADS)

    Kniazkov, A. V.

    2016-04-01

    Electro-optic coefficients of variations in the refractive index of PZT and PLZT ceramic materials induced by ac electric field are estimated using modulation of reflected light. The electro-optic coefficients of PLZT ceramics measured with the aid of conventional birefringence using the phase shift of transmitted radiation and the proposed method of birefringence using the modulation of reflected light are compared.

  17. [Rapid determination of fatty acids in soybean oils by transmission reflection-near infrared spectroscopy].

    PubMed

    Song, Tao; Zhang, Feng-ping; Liu, Yao-min; Wu, Zong-wen; Suo, You-rui

    2012-08-01

    In the present research, a novel method was established for determination of five fatty acids in soybean oil by transmission reflection-near infrared spectroscopy. The optimum conditions of mathematics model of five components (C16:0, C18:0, C18:1, C18:2 and C18:3) were studied, including the sample set selection, chemical value analysis, the detection methods and condition. Chemical value was analyzed by gas chromatography. One hundred fifty eight samples were selected, 138 for modeling set, 10 for testing set and 10 for unknown sample set. All samples were placed in sample pools and scanned by transmission reflection-near infrared spectrum after sonicleaning for 10 minute. The 1100-2500 nm spectral region was analyzed. The acquisition interval was 2 nm. Modified partial least square method was chosen for calibration mode creating. Result demonstrated that the 1-VR of five fatty acids between the reference value of the modeling sample set and the near infrared spectrum predictive value were 0.8839, 0.5830, 0.9001, 0.9776 and 0.9596, respectively. And the SECV of five fatty acids between the reference value of the modeling sample set and the near infrared spectrum predictive value were 0.42, 0.29, 0.83, 0.46 and 0.21, respectively. The standard error of the calibration (SECV) of five fatty acids between the reference value of testing sample set and the near infrared spectrum predictive value were 0.891, 0.790, 0.900, 0.976 and 0.942, respectively. It was proved that the near infrared spectrum predictive value was linear with chemical value and the mathematical model established for fatty acids of soybean oil was feasible. For validation, 10 unknown samples were selected for analysis by near infrared spectrum. The result demonstrated that the relative standard deviation between predict value and chemical value was less than 5.50%. That was to say that transmission reflection-near infrared spectroscopy had a good veracity in analysis of fatty acids of soybean oil.

  18. Broadband infrared electro-optic modulator having a buried microstrip network

    NASA Technical Reports Server (NTRS)

    Cheo, Peter K. (Inventor); Gilden, Meyer (Inventor)

    1987-01-01

    A microwave infrared modulator having a novel three dimensional structure is presented. The modulator includes a waveguide and metal base with a dielectric wafer buried therebetween. The buried wafer allows for conventional microstrip structures to be employed with larger microstrip electrode dimensions than would otherwise be possible.

  19. [Tri-Level Infrared Spectroscopic Identification of Hot Melting Reflective Road Marking Paint].

    PubMed

    Li, Hao; Ma, Fang; Sun, Su-qin

    2015-12-01

    In order to detect the road marking paint from the trace evidence in traffic accident scene, and to differentiate their brands, we use Tri-level infrared spectroscopic identification, which employs the Fourier transform infrared spectroscopy (FTIR), the second derivative infrared spectroscopy(SD-IR), two-dimensional correlation infrared spectroscopy(2D-IR) to identify three different domestic brands of hot melting reflective road marking paints and their raw materials in formula we Selected. The experimental results show that three labels coatings in ATR and FTIR spectrograms are very similar in shape, only have different absorption peak wave numbers, they have wide and strong absorption peaks near 1435 cm⁻¹, and strong absorption peak near 879, 2955, 2919, 2870 cm⁻¹. After enlarging the partial areas of spectrograms and comparing them with each kind of raw material of formula spectrograms, we can distinguish them. In the region 700-970 and 1370-1 660 cm⁻¹ the spectrograms mainly reflect the different relative content of heavy calcium carbonate of three brands of the paints, and that of polyethylene wax (PE wax), ethylene vinyl acetate resin (EVA), dioctyl phthalate (DOP) in the region 2800-2960 cm⁻¹. The SD-IR not only verify the result of the FTIR analysis, but also further expand the microcosmic differences and reflect the different relative content of quartz sand in the 512-799 cm-1 region. Within the scope of the 1351 to 1525 cm⁻¹, 2D-IR have more significant differences in positions and numbers of automatically peaks. Therefore, the Tri-level infrared spectroscopic identification is a fast and effective method to distinguish the hot melting road marking paints with a gradually improvement in apparent resolution.

  20. Infrared beam-steering using acoustically modulated surface plasmons over a graphene monolayer

    NASA Astrophysics Data System (ADS)

    Chen, P.-Y.; Farhat, M.; Askarpour, A. N.; Tymchenko, M.; Alù, A.

    2014-09-01

    We model and design a graphene-based infrared beamformer based on the concept of leaky-wave (fast traveling wave) antennas. The excitation of infrared surface plasmon polaritons (SPPs) over a ‘one-atom-thick’ graphene monolayer is typically associated with intrinsically ‘slow light’. By modulating the graphene with elastic vibrations based on flexural waves, a dynamic diffraction grating can be formed on the graphene surface, converting propagating SPPs into fast surface waves, able to radiate directive infrared beams into the background medium. This scheme allows fast on-off switching of infrared emission and dynamic tuning of its radiation pattern, beam angle and frequency of operation, by simply varying the acoustic frequency that controls the effective grating period. We envision that this graphene beamformer may be integrated into reconfigurable transmitter/receiver modules, switches and detectors for THz and infrared wireless communication, sensing, imaging and actuation systems.

  1. Near-infrared reflectance spectra-applications to problems in asteroid-meteorite relationships

    NASA Technical Reports Server (NTRS)

    Mcfadden, Lucy A.; Chamberlin, Alan; Vilas, Faith

    1991-01-01

    Near-infrared spectral reflectance data were collected at the Infrared Telescope Facility (IRTF) at Mauna Kea Observatories in 1985 and 1986 for the purpose of searching the region near the 3:1 Kirkwood gap for asteroids with the spectral signatures of ordinary chondrite parent bodies. Twelve reflectance spectra are observed. The presence of ordinary chondrite parent bodies among this specific set of observed asteroids is not obvious, though the sample is biased towards the larger asteroids in the region due to limitations imposed by detector sensitivity. The data set, which was acquired with the same instrumentation used for the 52-color asteroid survey (Bell et al., 1987), also presents some additional findings. The range of spectral characteristics that exist among asteroids of the same taxonomic type is noted. Conclusions based on the findings are discussed.

  2. Modeling the attenuated total reflectance infrared (ATR-FTIR) spectrum of apatite

    NASA Astrophysics Data System (ADS)

    Aufort, Julie; Ségalen, Loïc; Gervais, Christel; Brouder, Christian; Balan, Etienne

    2016-10-01

    Attenuated total reflectance (ATR) infrared spectra were measured on a synthetic and a natural fluorapatite sample. A modeling approach based on the computation of the Fresnel reflection coefficient between the ATR crystal and the powder sample was used to analyze the line shape of the spectra. The dielectric properties of the samples were related to those of pure fluorapatite using an effective medium approach, based on Maxwell-Garnett and Bruggeman models. The Bruggeman effective medium model leads to a very good agreement with the experimental data recorded on the synthetic fluorapatite sample. The poorer agreement observed on the natural sample suggests a more significant heterogeneity of the sample at a characteristic length scale larger than the mid-infrared characteristic wavelength, i.e., about 10 micrometers. The results demonstrate the prominent role of macroscopic electrostatic effects over fine details of the microscopic structure in determining the line shape of strong ATR bands.

  3. Prepreg cure monitoring using diffuse reflectance-FTIR. [Fourier Transform Infrared Technique

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Chang, A. C.

    1984-01-01

    An in situ diffuse reflectance-Fourier transform infrared technique was developed to determine infrared spectra of graphite fiber prepregs as they were being cured. A bismaleimide, an epoxy, and addition polyimide matrix resin prepregs were studied. An experimental polyimide adhesive was also examined. Samples were positioned on a small heater at the focal point of diffuse reflectance optics and programmed at 15 F/min while FTIR spectra were being scanned, averaged, and stored. An analysis of the resulting spectra provided basic insights into changes in matrix resin molecular structure which accompanied reactions such as imidization and crosslinking. An endo-exothermal isomerization involving reactive end-caps was confirmed for the addition polyimide prepregs. The results of this study contribute to a fundamental understanding of the processing of composites and adhesives. Such understanding will promote the development of more efficient cure cycles.

  4. [Detection of erucic acid and glucosinolate in intact rapeseed by near-infrared diffuse reflectance spectroscopy].

    PubMed

    Riu, Yu-kui; Huang, Kun-lun; Wang, Wei-min; Guo, Jing; Jin, Yin-hua; Luo, Yun-bo

    2006-12-01

    With the rapid development of transgenic food, more and more transgenic food has been pouring into the market, raising great concern about transgenic food' s edible safety. To analyze the content of erucic acid and glucosinolate in transgenic rapeseed and its parents, all the seeds were scanned intact by continuous wave of near infrared diffuse reflectance spectrometry ranging from 12 000 to 4 000 cm(-1) with a resolution of 4 cm(-1) and 64 times of scanning. Bruker OPUS software package was applied for quantification, while the results were compared with the standard methods. The results showed that the method of NIRS was very precise, which proved that infrared diffuse reflectance spectroscopy can be applied to detect the toxins in transgenic food. On the other hand, the results also showed that the content of erucic acid in transgenic rapeseeds is 0. 5-1. 0 times

  5. Mix ratio measurements of pozzolanic blends by Fourier transform infrared-attenuated total reflectance method

    SciTech Connect

    Rebagay, T.V.; Dodd, D.A.

    1992-07-01

    The disposal of low-level radioactive liquid wastes at the Hanford Site near Richland, Washington, involves mixing the wastes with pozzolanic grout-forming solid blends. Checking the quality of each blend component and its mix ratio will ensure processibility of the blend and the long-term performance of the resulting waste grout. In earlier work at Hanford laboratories, Fourier transform infrared-transmission method (FTIR-TR) using KBr pellet was applied successfully in the analysis of blends consisting of cement, fly ash, and clays. This method involves time-consuming sample preparation resulting in slow turnaround for repetitive sampling. Because reflection methods do not require elaborate sample preparation, they have the potential to reduce turnaround analysis time. Neat samples may be examined making these methods attractive for quality control. This study investigates the capability of Fourier transform infrared-attenuated total reflectance method (FTIR-ATR) to analyze pozzolanic blends.

  6. Attenuated Total Reflection (ATR) Sampling in Infrared Spectroscopy of Heterogeneous Materials Requires Reproducible Pressure Control.

    PubMed

    Lu, Zhenyu; Cassidy, Brianna M; DeJong, Stephanie A; Belliveau, Raymond G; Myrick, Michael L; Morgan, Stephen L

    2017-01-01

    Attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy, in which the sample is pressed against an internal reflection element, is a popular technique for rapid IR spectral collection. However, depending on the accessory design, the pressure applied to the sample is not always well controlled. While collecting data from fabrics with heterogeneous coatings, we have observed systematic pressure-dependent changes in spectra that can be eliminated by more reproducible pressure control. We also described a pressure sensor adapted to work with an ATR tower to enable more precise control of pressure during ATR sampling.

  7. Simulation of infrared emissivity and reflectivity of oil films on sea surfaces

    NASA Astrophysics Data System (ADS)

    Pinel, Nicolas; Monnier, Goulven; Sergievskaya, Irina; Bourlier, Christophe

    2015-10-01

    In this paper, an efficient sea surface generation is described for the fast and realistic simulation of the infrared emissivity and reflectivity of clean and contaminated seas. The clean sea surface is modelled by the Elfouhaily et al. spectrum model. For describing the surface damping due to the oil film at the sea surface, the model of local balance (MLB) is used. Thus, these surface models are used as the basis for calculating the emissivity and reflectivity. The numerical efficient computation is tested by comparison with the reference statistical computation for its validation.

  8. Features of the infrared reflection spectra of SmS semiconductor in the homogeneity range

    SciTech Connect

    Ulashkevich, Yu. V. Kaminski, V. V.; Golubkov, A. V.

    2009-03-15

    Infrared reflection spectra in the range of 5200-380 cm{sup -1} were measured for polycrystalline samarium monosulfide samples in the semiconductor phase with compositions Sm{sub 1+x}S lying within the homogeneity range (0 {<=} x {<=} 0.17) in the temperature range of 300-600 K. Five peaks with energies in the range of 1150-880 cm{sup -1}, whose positions depend weakly on the composition and temperature. It was shown that the reflection peaks are associated with {sup 7}F{sub 0}-{sup 7}F{sub 2} transitions of 4f electrons of Sm{sup 2+} ions.

  9. Measuring near infrared spectral reflectance changes from water stressed conifer stands with AIS-2

    NASA Technical Reports Server (NTRS)

    Riggs, George; Running, Steven W.

    1987-01-01

    Airborne Imaging Spectrometer-2 (AIS-2) data was acquired over two paired conifer stands for the purpose of detecting differences in spectral reflectance between stressed and natural canopies. Water stress was induced in a stand of Norway spruce and white pine by severing the sapwood near the ground. Water stress during the AIS flights was evaluated through shoot water potential and relative water content measurements. Preliminary analysis with raw AIS-2 data using SPAM indicates that there were small, inconsistent differences in absolute spectral reflectance in the near infrared 0.97 to 1.3 micron between the stressed and natural canopies.

  10. Dynamic measurement of reflectance/emissivity in mid-infrared band

    NASA Astrophysics Data System (ADS)

    Zhang, Tian-yu; Chen, Min-sun; Zhang, Xiang-yu; Jiang, Hou-man

    2016-11-01

    In order to measure the change of laser energy coupling coefficient with temperature in mid-infrared wave band, reflectance integrating sphere experiment system was designed and set up. 915nm CW laser was used to heat samples and the wavelength of probe laser is 3.8μm. Chopper and phase-locked amplifier were adopted in the system. Thermal imager was used to measure and record the temperature of samples during laser irradiation. The reflectance of steel and aluminum plates to 3.8μm was measured during 915nm laser irradiation. EDS analysis was done to investigate the change of elemental composition in the samples respectively. The experimental results show that, the results of reflectance and radiation temperature measured by this system are relatively accurate during laser irradiation. In the process of temperature rising from 300K to 785K, the color of 45# steel plates turns blue and black, while the color of aluminum alloy plates is basically unchanged. When temperature reaches about 700K, reflectance of 45# steel decreases obviously with the increase of temperature, while reflectance of aluminum is almost constant. The reflectance is probably determined by the oxide in the surface of samples which is consistent with the results of EDS analysis. Reflectance decreases with the increase of the content of oxygen in the surface. The reason of why the reflectance of aluminum is almost constant is that aluminum oxide is not generate massively under 750K.

  11. Infrared reflection spectroscopy and optical constants of LiNbO3 films on crystal substrates

    NASA Astrophysics Data System (ADS)

    Novikova, N. N.; Yakovlev, V. A.; Medaglia, P. G.

    2017-01-01

    We have measured infrared reflectivity spectra of thin lithium niobate films of nanometer thickness, grown by a pulsed laser deposition technique using KrF-excimer laser (λ=248 nm) on the single crystalline substrates (sapphire, MgO, NdGaO3 and SrTiO3). Using the dispersion analysis technique, we have calculated thicknesses and optical constants of the films. The phonon parameters of the substrates and films are obtained.

  12. Infrared reflection spectroscopy and optical constants of LiNbO3 films on crystal substrates

    NASA Astrophysics Data System (ADS)

    Novikova, N. N.; Yakovlev, V. A.; Medaglia, P. G.

    2016-12-01

    We have measured infrared reflectivity spectra of thin lithium niobate films of nanometer thickness, grown by a pulsed laser deposition technique using KrF-excimer laser (λ=248 nm) on the single crystalline substrates (sapphire, MgO, NdGaO3 and SrTiO3). Using the dispersion analysis technique, we have calculated thicknesses and optical constants of the films. The phonon parameters of the substrates and films are obtained.

  13. Tunable near- to mid-infrared pump terahertz probe spectroscopy in reflection geometry

    NASA Astrophysics Data System (ADS)

    Zhang, S. J.; Wang, Z. X.; Dong, T.; Wang, N. L.

    2017-10-01

    Strong-field mid-infrared pump-terahertz (THz) probe spectroscopy has been proven as a powerful tool for light control of different orders in strongly correlated materials. We report the construction of an ultrafast broadband infrared pump-THz probe system in reflection geometry. A two-output optical parametric amplifier is used for generating mid-infrared pulses with GaSe as the nonlinear crystal. The setup is capable of pumping bulk materials at wavelengths ranging from 1.2 μm to 15 μm and beyond, and detecting the subtle, transient photoinduced changes in the reflected electric field of the THz probe at different temperatures. As a demonstration, we present 15 μm pump-THz probe measurements of a bulk EuSbTe3 single crystal. A 0:5% transient change in the reflected THz electric field can be clearly resolved. The widely tuned pumping energy could be used in mode-selective excitation experiments and applied to many strongly correlated electron systems.

  14. High reflected cubic cavity as long path absorption cell for infrared gas sensing

    NASA Astrophysics Data System (ADS)

    Yu, Jia; Gao, Qiang; Zhang, Zhiguo

    2014-10-01

    One direct and efficient method to improve the sensitivity of infrared gas sensors is to increase the optical path length of gas cells according to Beer-Lambert Law. In this paper, cubic shaped cavities with high reflected inner coating as novel long path absorption cells for infrared gas sensing were developed. The effective optical path length (EOPL) for a single cubic cavity and tandem cubic cavities were investigated based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) measuring oxygen P11 line at 763 nm. The law of EOPL of a diffuse cubic cavity in relation with the reflectivity of the coating, the port fraction and side length of the cavity was obtained. Experimental results manifested an increase of EOPL for tandem diffuse cubic cavities as the decrease of port fraction of the connecting aperture f', and the EOPL equaled to the sum of that of two single cubic cavities at f'<0.01. The EOPL spectra at infrared wavelength range for different inner coatings including high diffuse coatings and high reflected metallic thin film coatings were deduced.

  15. Multipitched Diffraction Gratings for Surface Plasmon Resonance-Enhanced Infrared Reflection Absorption Spectroscopy.

    PubMed

    Petefish, Joseph W; Hillier, Andrew C

    2015-11-03

    We demonstrate the application of metal-coated diffraction gratings possessing multiple simultaneous pitch values for surface enhanced infrared absorption (SEIRA) spectroscopy. SEIRA increases the magnitude of vibrational signals in infrared measurements by one of several mechanisms, most frequently involving the enhanced electric field associated with surface plasmon resonance (SPR). While the majority of SEIRA applications to date have employed nanoparticle-based plasmonic systems, recent advances have shown how various metals and structures lead to similar signal enhancement. Recently, diffraction grating couplers have been demonstrated as a highly tunable platform for SEIRA. Indeed, gratings are an experimentally advantageous platform due to the inherently tunable nature of surface plasmon excitation at these surfaces since both the grating pitch and incident angle can be used to modify the spectral location of the plasmon resonance. In this work, we use laser interference lithography (LIL) to fabricate gratings possessing multiple pitch values by subjecting photoresist-coated glass slides to repetitive exposures at varying orientations. After metal coating, these gratings produced multiple, simultaneous plasmon peaks associated with the multipitched surface, as identified by infrared reflectance measurements. These plasmon peaks could then be coupled to vibrational modes in thin films to provide localized enhancement of infrared signals. We demonstrate the flexibility and tunability of this platform for signal enhancement. It is anticipated that, with further refinement, this approach might be used as a general platform for broadband enhancement of infrared spectroscopy.

  16. Rapid profiling of Swiss cheese by attenuated total reflectance (ATR) infrared spectroscopy and descriptive sensory analysis.

    PubMed

    Kocaoglu-Vurma, N A; Eliardi, A; Drake, M A; Rodriguez-Saona, L E; Harper, W J

    2009-08-01

    The acceptability of cheese depends largely on the flavor formed during ripening. The flavor profiles of cheeses are complex and region- or manufacturer-specific which have made it challenging to understand the chemistry of flavor development and its correlation with sensory properties. Infrared spectroscopy is an attractive technology for the rapid, sensitive, and high-throughput analysis of foods, providing information related to its composition and conformation of food components from the spectra. Our objectives were to establish infrared spectral profiles to discriminate Swiss cheeses produced by different manufacturers in the United States and to develop predictive models for determination of sensory attributes based on infrared spectra. Fifteen samples from 3 Swiss cheese manufacturers were received and analyzed using attenuated total reflectance infrared spectroscopy (ATR-IR). The spectra were analyzed using soft independent modeling of class analogy (SIMCA) to build a classification model. The cheeses were profiled by a trained sensory panel using descriptive sensory analysis. The relationship between the descriptive sensory scores and ATR-IR spectra was assessed using partial least square regression (PLSR) analysis. SIMCA discriminated the Swiss cheeses based on manufacturer and production region. PLSR analysis generated prediction models with correlation coefficients of validation (rVal) between 0.69 and 0.96 with standard error of cross-validation (SECV) ranging from 0.04 to 0.29. Implementation of rapid infrared analysis by the Swiss cheese industry would help to streamline quality assurance.

  17. Discrimination between immature and mature green coffees by attenuated total reflectance and diffuse reflectance Fourier transform infrared spectroscopy.

    PubMed

    Craig, Ana Paula; Franca, Adriana S; Oliveira, Leandro S

    2011-10-01

    The objective of this work was to evaluate the potential of Fourier transform infrared spectroscopy (FTIR) in the characterization and discrimination between immature and mature or ripe coffee beans. Arabica coffee beans were submitted to FTIR analysis by reflectance readings employing attenuated total reflectance (ATR) and diffuse reflectance (DR) accessories. The obtained spectra were similar, but in general higher absorbance values were observed for nondefective beans in comparison to immature ones. Multivariate statistical analysis (principal component analysis, PCA, and agglomerative hierarchical clustering, AHC) was performed in order to verify the possibility of discrimination between immature and mature coffee samples. A clear separation between immature and mature coffees was observed based on AHC and PCA analyses of the normalized spectra obtained by employing both ATR and DR accessories. Linear discriminant analysis was employed for developing classification models, with recognition and prediction abilities of 100%. Such results showed that FTIR analysis presents potential for the development of a simple routine methodology for separation of immature and mature coffee beans. Practical Application: The ultimate goal of this research is to be able to propose improvements in the way immature coffee beans are separated from graded mature beans in coffee facilities (cooperatives and other coffee producer's associations). The results obtained herein point toward FTIR as a potential tool for the aimed improvements.

  18. Beyond colour: consistent variation in near infrared and solar reflectivity in sunbirds (Nectariniidae)

    NASA Astrophysics Data System (ADS)

    Shawkey, Matthew D.; Igic, Branislav; Rogalla, Svana; Goldenberg, Jonathan; Clusella-Trullas, Susana; D'Alba, Liliana

    2017-10-01

    The visible spectrum represents a fraction of the sun's radiation, a large portion of which is within the near infrared (NIR). However, wavelengths outside of the visible spectrum that are reflected by coloured tissues have rarely been considered, despite their potential significance to thermal effects. Here, we report the reflectivity from 300 to 2100 nm of differently coloured feathers. We measured reflectivity across the UV-Vis-NIR spectra of different (a) body parts, (b) colour-producing mechanisms and (c) sexes for 252 individuals of 68 sunbird (family: Nectariniidae) species. Breast plumage was the most reflective and cap plumage the least. Female plumage had greater reflectivity than males. Carotenoid-based colours had the greatest reflectivity, followed by non-iridescent and iridescent melanin-based colours. As ordered arrays of melanin-filled organelles (melanosomes) produce iridescent colours, this suggests that nanostructuring may affect reflectance across the spectrum. Our results indicate that differently coloured feathers consistently vary in their thermal, as well as obvious visual, properties.

  19. Health Monitoring of Thermal Barrier Coatings by Mid-Infrared Reflectance

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Spuckler, C. M.; Nesbitt, J. A.; Street, K. W.

    2002-01-01

    Mid-infrared (MIR) reflectance is shown to be a powerful tool for monitoring the integrity of 8wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs). Because of the translucent nature of plasma-sprayed 8YSZ TBCs at MIR wavelengths (3 to 5 pm), measured reflectance does not only originate from the TBC surface, but contains strong contributions from internal scattering within the coating as well as reflectance from the underlying TBC/substrate interface. Therefore, changes in MIR reflectance measurements can be used to monitor the progression of TBC delamination. In particular, MIR reflectance is shown to reproducibly track the progression of TBC delamination produced by repeated thermal cycling (to 1163 C) of plasma-sprayed 8YSZ TBCs on Rene N5 superalloy substrates. To understand the changes in MIR reflectance with the progression of a delamination crack network, a four-flux scattering model is used to predict the increase in MIR reflectance produced by the introduction of these cracks.

  20. Health Monitoring of Thermal Barrier Coatings by Mid-Infrared Reflectance

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Spuckler, C. M.; Nesbitt, J. A.; Street, K. W.

    2002-01-01

    Mid-infrared (MIR) reflectance is shown to be a powerful tool for monitoring the integrity of 8wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs). Because of the translucent nature of plasma-sprayed 8YSZ TBCs, particularly at MIR wavelengths (3 to 5 microns), measured reflectance does not only originate from the TBC surface, but contains strong contributions from internal scattering within the coating as well as reflectance from the underlying TBC/substrate interface. Therefore, changes in MIR reflectance measurements can be used to monitor the progression of TBC delamination. In particular, MIR reflectance is shown to reproducibly track the progression of TBC delamination produced by repeated thermal cycling (to 1163 C) of plasma-sprayed 8YSZ TBCs on Rene N5 superalloy substrates. To understand the changes in MIR reflectance with the progression of a delamination crack network, a four-flux scattering model is used to predict the increase in MIR reflectance produced by the introduction of these cracks.

  1. The infrared imaging spectrograph (IRIS) for TMT: reflective ruled diffraction grating performance testing and discussion

    NASA Astrophysics Data System (ADS)

    Meyer, Elliot; Chen, Shaojie; Wright, Shelley A.; Moore, Anna M.; Larkin, James E.; Simard, Luc; Marie, Jerome; Mieda, Etsuko; Gordon, Jacob

    2014-07-01

    We present the efficiency of near-infrared reflective ruled diffraction gratings designed for the InfraRed Imaging Spectrograph (IRIS). IRIS is a first light, integral field spectrograph and imager for the Thirty Meter Telescope (TMT) and narrow field infrared adaptive optics system (NFIRAOS). IRIS will operate across the near-infrared encompassing the ZYJHK bands (~0.84 - 2.4μm) with multiple spectral resolutions. We present our experimental setup and analysis of the efficiency of selected reflective diffraction gratings. These measurements are used as a comparison sample against selected candidate Volume Phase Holographic (VPH) gratings (see Chen et al., this conference). We investigate the efficiencies of five ruled gratings designed for IRIS from two separate vendors. Three of the gratings accept a bandpass of 1.19-1.37μm (J band) with ideal spectral resolutions of R=4000 and R=8000, groove densities of 249 and 516 lines/mm, and blaze angles of 9.86° and 20.54° respectively. The other two gratings accept a bandpass of 1.51-1.82μm (H Band) with an ideal spectral resolution of R=4000, groove density of 141 lines/mm, and blaze angle of 9.86°. The fraction of flux in each diffraction mode was compared to both a pure reflection mirror as well as the sum of the flux measured in all observable modes. We measure the efficiencies off blaze angle for all gratings and the efficiencies between the polarization transverse magnetic (TM) and transverse electric (TE) states. The peak reflective efficiencies are 98.90 +/- 3.36% (TM) and 84.99 +/- 2.74% (TM) for the H-band R=4000 and J-band R=4000 respectively. The peak reflective efficiency for the J-band R=8000 grating is 78.78 +/- 2.54% (TE). We find that these ruled gratings do not exhibit a wide dependency on incident angle within +/-3°. Our best-manufactured gratings were found to exhibit a dependency on the polarization state of the incident beam with a ~10-20% deviation, consistent with the theoretical efficiency

  2. Quantitative analysis of sulfathiazole polymorphs in ternary mixtures by attenuated total reflectance infrared, near-infrared and Raman spectroscopy.

    PubMed

    Hu, Yun; Erxleben, Andrea; Ryder, Alan G; McArdle, Patrick

    2010-11-02

    The simultaneous quantitative analysis of sulfathiazole polymorphs (forms I, III and V) in ternary mixtures by attenuated total reflectance-infrared (ATR-IR), near-infrared (NIR) and Raman spectroscopy combined with multivariate analysis is reported. To reduce the effect of systematic variations, four different data pre-processing methods; multiplicative scatter correction (MSC), standard normal variate (SNV), first and second derivatives, were applied and their performance was evaluated using their prediction errors. It was possible to derive a reliable calibration model for the three polymorphic forms, in powder ternary mixtures, using a partial least squares (PLS) algorithm with SNV pre-processing, which predicted the concentration of polymorphs I, III and V. Root mean square errors of prediction (RMSEP) for ATR-IR spectra were 5.0%, 5.1% and 4.5% for polymorphs I, III and V, respectively, while NIR spectra had a RMSEP of 2.0%, 2.9%, and 2.8% and Raman spectra had a RMSEP of 3.5%, 4.1%, and 3.6% for polymorphs I, III and V, respectively. NIR spectroscopy exhibits the smallest analytical error, higher accuracy and robustness. When these advantages are combined with the greater convenience of NIR's "in glass bottle" sampling method both ATR-IR and Raman methods appear less attractive.

  3. Infrared complex refractive index measurements and simulated reflection mode infrared absorption spectroscopy of shock-compressed polymer thin films.

    PubMed

    Moore, D S; McGrane, S D; Funk, D J

    2004-05-01

    Thin film interference effects complicate the interpretation of reflection-mode infrared absorption spectra obtained in shock-compressed thin film materials and must be carefully accounted for in any analysis attempting to unravel shock-induced energy transfer or reactivity. We have calculated such effects for spectrally simple model systems and also, to the extent possible, for real systems such as polymethylmethacrylate (PMMA) and nitrocellulose (NC). We have utilized angle-dependent infrared (IR) reflectometry to obtain the ambient spectral complex index for PMMA and NC for use in the calculations and to interpret experiments. A number of counter-intuitive spectral effects are observed versus film thickness and during uniaxial shock compression: absorption band shifts, changes of shape, and changes in both absolute and relative peak intensities. The film thickness effects can be predicted by thin film interference alone, while additional assumptions are required to predict the effects due to shock compression. Since it is very difficult to obtain the complex index in the shock state, we made very simple assumptions regarding the change in vibrational spectra upon shock load-ing. We illustrate general thin film interference effects that could be expected and compare them to experimental results for the antisymmetric NO2 stretch mode of NC.

  4. Detection of Cracks on Tomatoes Using a Hyperspectral Near-Infrared Reflectance Imaging System

    PubMed Central

    Lee, Hoonsoo; Kim, Moon S.; Jeong, Danhee; Delwiche, Stephen R.; Chao, Kuanglin; Cho, Byoung-Kwan

    2014-01-01

    The objective of this study was to evaluate the use of hyperspectral near-infrared (NIR) reflectance imaging techniques for detecting cuticle cracks on tomatoes. A hyperspectral NIR reflectance imaging system that analyzed the spectral region of 1000–1700 nm was used to obtain hyperspectral reflectance images of 224 tomatoes: 112 with and 112 without cracks along the stem-scar region. The hyperspectral images were subjected to partial least square discriminant analysis (PLS-DA) to classify and detect cracks on the tomatoes. Two morphological features, roundness (R) and minimum-maximum distance (D), were calculated from the PLS-DA images to quantify the shape of the stem scar. Linear discriminant analysis (LDA) and a support vector machine (SVM) were then used to classify R and D. The results revealed 94.6% and 96.4% accuracy for classifications made using LDA and SVM, respectively, for tomatoes with and without crack defects. These data suggest that the hyperspectral near-infrared reflectance imaging system, in addition to traditional NIR spectroscopy-based methods, could potentially be used to detect crack defects on tomatoes and perform quality assessments. PMID:25310472

  5. Noninvasive blood glucose sensing on human body with near-infrared reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Zhen-hao; Hao, Chang-ning; Zhang, Lin-lin; Huang, Yan-chao; Shi, Yi-qin; Jiang, Geng-ru; Duan, Jun-li

    2011-08-01

    The non-invasive blood glucose sensing method has shown its high impact on the clinic application. This can make the measurement on the clinically relevant concentrations of glucose be free from the pain of patient. The transmission spectrum study indicates that the dependence of glucose concentration on the absorbance is in linear manner for the glucose concentration in the region of 30mg/dL to 4.5×104mg/dL. By the near infrared reflection spectroscopy of fiber spectrometer, the reflection band between 1.2μm and 1.35μm can be used to correlated with the glucose concentration in the range of 30 to 300 mg/dL. This reflection band is finally used to measure the glucose concentration effect in non-invasive manner, which gives the statistical significance of P value 0.02. Our experiment result shows that it is possible to get the glucose concentration by the near infrared reflection spectrum measurement on the human forefinger. This non-invasive blood glucose sensing method may useful in clinic after more experiment for different people.

  6. Near-Infrared Confocal Laser Reflectance Cytoarchitectural Imaging of the Substantia Nigra and Cerebellum in the Fresh Human Cadaver.

    PubMed

    Cheyuo, Cletus; Grand, Walter; Balos, Lucia L

    2017-01-01

    Cytoarchitectural neuroimaging remains critical for diagnosis of many brain diseases. Fluorescent dye-enhanced, near-infrared confocal in situ cellular imaging of the brain has been reported. However, impermeability of the blood-brain barrier to most fluorescent dyes limits clinical utility of this modality. The differential degree of reflectance from brain tissue with unenhanced near-infrared imaging may represent an alternative technique for in situ cytoarchitectural neuroimaging. We assessed the utility of unenhanced near-infrared confocal laser reflectance imaging of the cytoarchitecture of the cerebellum and substantia nigra in 2 fresh human cadaver brains using a confocal near-infrared laser probe. Cellular images based on near-infrared differential reflectance were captured at depths of 20-180 μm from the brain surface. Parts of the cerebellum and substantia nigra imaged using the probe were subsequently excised and stained with hematoxylin and eosin for histologic correlation. Near-infrared reflectance imaging revealed the 3-layered cytoarchitecture of the cerebellum, with Purkinje cells appearing hyperreflectant. In the substantia nigra, neurons appeared hyporeflectant with hyperreflectant neuromelanin cytoplasmic inclusions. Cytoarchitecture of the cerebellum and substantia nigra revealed on near-infrared imaging closely correlated with the histology on hematoxylin-eosin staining. We showed that unenhanced near-infrared reflectance imaging of fresh human cadaver brain can reliably identify and distinguish neurons and detailed cytoarchitecture of the cerebellum and substantia nigra. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Quantitative diffuse reflectance infrared spectroscopy of cotton fabrics treated with a cyclodextrin derivative finishing auxiliary

    NASA Astrophysics Data System (ADS)

    Heise, H. M.; Kuckuk, R.; Damm, U.; Bereck, A.; Riegel, D.

    2005-06-01

    For the textile industry, infrared spectroscopic methods that are based on diffuse reflectance measurements can be used for the non-destructive analysis of polymer composition of the fabric materials including their auxiliaries. Our diffuse reflectance accessory allows the contact-free measurement of sample spots located on large and bulky samples with a sufficient spectral signal-to-noise ratio. In this study, the results of a quantitative analysis of a reactive auxiliary (cyclodextrin derivative) applied on cotton fabrics up to 5% (by weight) are shown and limitations of the diffuse reflectance measurement technique discussed. Reference values had been provided by the laborious Kjeldahl method. Multivariate calibration based on partial least squares was employed using the specific bands of the cyclodextrin derivative within the spectral interval of 1900-1480 cm -1, providing prediction results with around 5% of relative standard prediction error, based on mean sample population concentrations.

  8. [Determination of sinigrin in semen Thlaspi from Sichuan and Tibet using near infrared diffuse reflectance spectroscopy].

    PubMed

    Wang, Lei-Lei; Chen, Cong; Zhou, Min; Wang, Jian-Zhong; Luo, Xia; Huang, Guo; Ye, Li-Ming

    2009-10-01

    The objective of the present study was to develop a method for the determination of sinigrin in semen Thlaspi from Sichuan using near infrared diffuse reflectance spectroscopy. Near infrared spectra (NIR) in the region of 7,502.1-5,446.2 cm(-1) were recorded for the 246 semen Thlaspi samples containing sinigrin in the content of 1.962%-3.917%. Calibration models were established using the PLS (partial least squares). Different spectra pretreatment methods were compared. The study showed that spectral information can be extracted thoroughly by minimum and maximum normalization pretreatment methods. In this calibration model, the correlation coefficient (R2) was 0.9280, the SEC (standard deviation of the calibration sets) was 0.314 and the SEP (standard deviation of the prediction sets) was 0.388. Results indicated that near infrared diffuse reflectance spectroscopy method can be used to rapidly analyze the valid component in traditional Chinese medicine, and also can be used in the quality control of traditional Chinese medicine.

  9. [Determination of baicalin and total flavonoids in Radix scutellariae by near infrared diffuse reflectance spectroscopy].

    PubMed

    Huang, Qian-qian; Pan, Rui-le; Wei, Jian-he; Wu, Yan-wei; Zhang, Lu-da

    2009-09-01

    The objective of the present study was to develop a method for rapid determination of baicalin and total flavonoids in radix scutellariae by near infrared diffuse reflectance spectroscopy. Sixty one samples of radix scutellariae from different areas containing baicalin of 12.24%-21.34% and total flavonoids of 16.08%-26.52% were used. The range of 8000-4000 cm(-1) of near infrared spectra (NIRS) was selected. Calibration models were established using the PLS(partial least squares). Different spectra pretreatment methods were compared and the optimal model was selected. The study showed that first derivative pretreatments and minimum-maximum normalization methods can be used to extracted spectra information thoroughly to analyze the contents of baicalin and total flavonoids, respectively. The correlation coefficient (r) of baicalin was 0.9024, SEC was 1.01 (standard deviation of the calibration sets) and SEP was 0.8764 (standarddeviation ofthe prediction sets). The correlation coefficient(r) of total flavonoids was 0.9527, SEC was 0.7850 and SEP was 0.5211. Results indicated that near infrared diffuse reflectance spectroscopy method can be used to analyze the main active components in radix scutellariae rapidly.

  10. [The evaluation of hydrocarbon potential generation for source rocks by near-infrared diffuse reflection spectra].

    PubMed

    Zhang, Yu-Jia; Xu, Xiao-Xuan; Song, Ning; Wu, Zhong-Chen; Zhou, Xiang; Chen, Jin; Cao, Xue-Wei; Wang, Bin

    2011-04-01

    Near-infrared (NIR) and mid-infrared (MIR) diffuse reflection spectra were compared and evaluated for hydrocarbon potential generation of source rocks. Near-infrared diffuse reflectance often exhibits significant differences in the spectra due to the non-homogeneous distribution of the particles, so the signal-to-noise ratio of NIR is much lower than MIR It is too difficult to get accurate results by NIR without using a strong spectral preprocessing method to remove systematic noise such as base-line variation and multiplicative scatter effects. In the present paper, orthogonal signal correction (OSC) and an improved algorithm of it, i.e. direct orthogonal signal correction (DOSC), are used as different methods to preprocess both the NIR and MIR spectra of the hydrocarbon source rocks. Another algorithm, wavelet multi-scale direct orthogonal signal correction (WMDOSC), which is a combination of discrete wavelet transform (DWT) and DOSC, is also used as a preprocessing method. Then, the calibration model of hydrocarbon source rocks before and after pretreatment was established by interval partial least square (iPLS). The experimental results show that WMDOSC is more successfully applied to preprocess the NIR spectra data of the hydrocarbon source rocks than other two algorithms, and NIR performed as good as MIR in the analysis of hydrocarbon potential generation of source rocks with WMDOSC-iPLS pretreatment calibration model.

  11. Nondestructive Evaluation of Thermal Barrier Coatings by Mid-infrared Reflectance

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I; Spuckler, Charles M.; Nesbitt, James A.; Martin, Richard E.

    2005-01-01

    The application of mid-infrared reflectance (MIR) imaging to monitor damage in thermal barrier coatings (TBCs) has been extended from a previously demonstrated area-averaged spectroscopic analysis tool to become a practical imaging tool that provides the spatial resolution needed to quickly identify localized regions of TBC damage by visual inspection, Illumination optics and image collection procedures were developed to produce illumination-normalized flatfield reflectance images after subtraction of the background thermal emission. MIR reflectance images were collected with a bandpass filter centered at a wavelength of 4 microns, which provided the optimum balance between good sensitivity to buried cracks and coating erosion, but with a desirable sensitivity to TBC sintering and absorption from ambient gases. Examples are presented of the application of MIR reflectance imaging to monitor damage progression in plasma-sprayed 8wt% yttria-stabilized zirconia (8YSZ) TBCs subjected to either furnace cycling or alumina particle jet erosion. These results show that MIR reflectance imaging can reliably track the progression of buried delamination cracks produced by thermal cycling and can also be used to determine when any local section of the TBC has eroded beyond an acceptable limit. Modeling of the effects of buried cracks and erosion on reflectance will be presented to show the dependence of damage sensitivity to TBC thickness.

  12. Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance.

    PubMed

    Petefish, Joseph W; Hillier, Andrew C

    2014-03-04

    Surface enhanced infrared absorption (SEIRA) spectroscopy is an attractive method for increasing the prominence of vibrational modes in infrared spectroscopy. To date, the majority of reports associated with SEIRA utilize localized surface plasmon resonance from metal nanoparticles to enhance electromagnetic fields in the region of analytes. Limited work has been performed using propagating surface plasmons as a method for SEIRA excitation. In this report, we demonstrate angle-tunable enhancement of vibrational stretching modes associated with a thin poly(methyl methacrylate) (PMMA) film that is coupled to a silver-coated diffraction grating. Gratings are fabricated using laser interference lithography to achieve precise surface periodicities, which can be used to generate surface plasmons that overlap with specific vibrational modes in the polymer film. Infrared reflection absorption spectra are presented for both bare silver and PMMA-coated silver gratings at a range of angles and polarization states. In addition, spectra were obtained with the grating direction oriented perpendicular and parallel to the infrared source in order to isolate plasmon enhancement effects. Optical simulations using the rigorous coupled-wave analysis method were used to identify the origin of the plasmon-induced enhancement. Angle-dependent absorption measurements achieved signal enhancements of more than 10-times the signal in the absence of the plasmon.

  13. High temperature far-infrared dynamics of orthorhombic NdMnO3: emissivity and reflectivity.

    PubMed

    Massa, Néstor E; del Campo, Leire; Meneses, Domingos De Sousa; Echegut, Patrick; Martínez-Lope, María Jesús; Alonso, José Antonio

    2013-06-12

    We report on near normal far- and mid-infrared emission and reflectivity of NdMnO3 perovskite from room temperature to sample decomposition above 1800 K. At 300 K the number of infrared active phonons is in close agreement with the 25 calculated for the orthorhombic D(2h)(16)-Pbnm (Z = 4) space group. Their number gradually decreases as we approach the temperature of orbital disorder at ~1023 K where the orthorhombic O' lower temperature cooperative phase coexists with the cubic orthorhombic O. At above ~1200 K, the three infrared active phonons coincide with that expected for cubic Pm-3m (Z = 1) in the high temperature insulating regime. Heating samples in dry air triggers double exchange conductivity by Mn(3+) and Mn(4+) ions and a small polaron mid-infrared band. Fits to the optical conductivity single out the octahedral antisymmetric and symmetric vibrational modes as the main phonons in the electron-phonon interactions at 875 K. For 1745 K, it is enough to consider the symmetric stretching internal mode. An overdamped defect induced Drude component is clearly outlined at the highest temperatures. We conclude that rare earth manganite eg electrons are prone to spin, charge, orbital, and lattice couplings in an intrinsic orbital distorted perovskite lattice, favoring embryonic low energy collective excitations.

  14. Infrared Attenuated Total Reflectance Spectroscopy: An Innovative Strategy for Analyzing Mineral Components in Energy Relevant Systems

    NASA Astrophysics Data System (ADS)

    Müller, Christian Menno; Pejcic, Bobby; Esteban, Lionel; Piane, Claudio Delle; Raven, Mark; Mizaikoff, Boris

    2014-10-01

    The direct qualitative and quantitative determination of mineral components in shale rocks is a problem that has not been satisfactorily resolved to date. Infrared spectroscopy (IR) is a non-destructive method frequently used in mineral identification, yet challenging due to the similarity of spectral features resulting from quartz, clay, and feldspar minerals. This study reports on a significant improvement of this methodology by combining infrared attenuated total reflection spectroscopy (IR-ATR) with partial least squares (PLS) regression techniques for classifying and quantifying various mineral components present in a number of different shale rocks. The developed multivariate classification model was calibrated using pure component mixtures of the most common shale minerals (i.e., kaolinite, illite, montmorillonite, calcite, and quartz). Using this model, the IR spectra of 11 real-world shale samples were analyzed and evaluated. Finally, the performance of the developed IR-ATR method was compared with results obtained via X-ray diffraction (XRD) analysis.

  15. Infrared attenuated total reflectance spectroscopy: an innovative strategy for analyzing mineral components in energy relevant systems.

    PubMed

    Müller, Christian Menno; Pejcic, Bobby; Esteban, Lionel; Delle Piane, Claudio; Raven, Mark; Mizaikoff, Boris

    2014-10-31

    The direct qualitative and quantitative determination of mineral components in shale rocks is a problem that has not been satisfactorily resolved to date. Infrared spectroscopy (IR) is a non-destructive method frequently used in mineral identification, yet challenging due to the similarity of spectral features resulting from quartz, clay, and feldspar minerals. This study reports on a significant improvement of this methodology by combining infrared attenuated total reflection spectroscopy (IR-ATR) with partial least squares (PLS) regression techniques for classifying and quantifying various mineral components present in a number of different shale rocks. The developed multivariate classification model was calibrated using pure component mixtures of the most common shale minerals (i.e., kaolinite, illite, montmorillonite, calcite, and quartz). Using this model, the IR spectra of 11 real-world shale samples were analyzed and evaluated. Finally, the performance of the developed IR-ATR method was compared with results obtained via X-ray diffraction (XRD) analysis.

  16. An attenuated total reflectance mid infrared (ATR-MIR) spectroscopy study of gelatinization in barley.

    PubMed

    Cozzolino, D; Roumeliotis, S; Eglinton, J

    2014-08-08

    The aim of this study was to evaluate the use of attenuated total reflectance and mid infrared (ATR-MIR) spectroscopy and to understand the gelatinization and retro-gradation of flour barley samples and the relationship with malting quality. Samples were sourced from two commercial barley varieties exhibiting high hot water extract (HWE) namely Navigator (n=8), and Admiral (n=8). Samples were analysed using the Rapid Visco Analyser (RVA) and ATR-MIR analysis. These results showed that ATR-MIR spectroscopy is capable of characterising gel samples derived from barley flour samples having different malting characteristics. Infrared spectra can effectively represent a 'fingerprint' of the sample being analysed and can be used to simplify and reduce analytical times in the routine methods currently used. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Determination of in vivo skin moisture level by near-infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Saknite, Inga; Spigulis, Janis

    2015-03-01

    Near-infrared spectroscopy has a potential for noninvasive determination of skin moisture level due to high water absorption. In this study, diffuse reflectance spectra of in vivo skin were acquired in the spectral range of 900 nm to 1700 nm by using near-infrared spectrometer, optical fiber and halogen bulb light source. Absorption changes after applying skin moisturizers were analyzed over time at different body sites. Results show difference in absorption when comparing dry and normal skin. Comparison of absorption changes over time after applying moisturizer at different body sites is analyzed and discussed. Some patterns of how skin reacts to different skin moisturizers are shown, although no clear pattern can be seen due to signal noise.

  18. Determination of molecular order in supported lipid membranes by internal reflection Fourier transform infrared spectroscopy.

    PubMed Central

    Citra, M J; Axelsen, P H

    1996-01-01

    When polarized internal reflection infrared spectroscopy is used to determine molecular order in supported lipid membranes, the results are critically dependent on the accuracy of assumptions made about the evanescent electric field amplitudes in the membrane. In this work, we examine several expressions used for calculating evanescent electric field amplitudes in supported lipid monolayers and bilayers, and test their validity by measuring the infrared dichroism of poly-gamma-benzyl-L-glutamate and poly-beta-benzyl-L-aspartate under conditions in which their molecular order is known. Our results indicate that treating such systems as a simple single interface between two semi-infinite bulk phases is more accurate than the commonly employed thin-film approximation. This implies that earlier conclusions about molecular order in supported lipid membranes may require substantial revision. PMID:8889156

  19. Attenuated total reflectance Fourier transform infrared spectroscopy analysis of red seal inks on questioned document.

    PubMed

    Nam, Yun Sik; Park, Jin Sook; Kim, Nak-Kyoon; Lee, Yeonhee; Lee, Kang-Bong

    2014-07-01

    Seals are traditionally used in the Far East Asia to stamp an impression on a document in place of a signature. In this study, an accuser claimed that a personal contract regarding mining development rights acquired by a defendant was devolved to the accuser because the defendant stamped the devolvement contract in the presence of the accuser and a witness. The accuser further stated that the seal ink stamped on the devolvement contract was the same as that stamped on the development rights application document. To verify this, the seals used in two documents were analyzed using micro-attenuated total reflectance Fourier transform infrared spectroscopy and infrared spectra. The findings revealed that the seals originated from different manufacturers. Thus, the accuser's claim on the existence of a devolvement contract was proved to be false.

  20. Applications of diffuse reflectance Fourier transform infrared spectroscopy to fiber-reinforced composites

    SciTech Connect

    Cole, K.C.; Noel, D.; Hechler, J.J.

    1988-12-01

    Diffuse reflectance Fourier transform infrared (FTIR) spectroscopy can be used to obtain infrared spectra directly from the surface of composite materials, with little or no sample preparation. It is thus of interest as a nondestructive method for industrial inspection. In many cases, the IR spectra provide detailed information concerning the chemical composition and molecular structure of the material. The technique works particularly well for carbon-fiber composites. This paper describes the principles involved, some factors which influence the quality of the spectra, and a number of examples of applications. These include the characterization of epoxy matrices (composition, curing, degradation), the detection of surface contamination, and the determination of the degree of crystallinity in poly(phenylene sulfide)-based composites. 24 references.

  1. Silver mirror for enhancing the detection ability of near-infrared diffuse reflectance spectroscopy.

    PubMed

    Wang, Cuicui; Wang, Shuyu; Cai, Wensheng; Shao, Xueguang

    2017-01-01

    Near-infrared diffuse reflectance spectroscopy (NIRDRS) has been proved to be a convenient and fast quantitative method for complex samples. The sensitivity or the detection limit, however, has been the obstacle in practical uses, although great efforts have been made through experimental and chemometric approaches. Due to the strong reflectivity of silver in near-infrared region, a novel method that utilizes silver layer as the adsorption substrate was developed to enhance the detection ability of NIRDRS in this study. For investigating the enhancement effect of the method, lysozyme samples with different concentrations were spotted on the silver layer and NIR spectra were measured. Then quantitative determination was performed using multivariate calibration. For comparison, the comparative experiment was performed using the copper sheet as the substrate. The results show that the intensity of diffuse reflection can be enhanced, and the background variation was reduced by taking the mirror layer as the substrate. A linear variation was obtained between the concentrations and the intensities of the spectral response at a wavenumber. Using multivariate calibration for quantitative analysis, the optimal PLS model was obtained. The maximum deviation of the prediction results can be as low as 12.8µg. Therefore, this study made a progress for NIRDRS technique in microanalysis.

  2. Infrared Properties and Terahertz Wave Modulation of Graphene/MnZn Ferrite/p-Si Heterojunctions

    NASA Astrophysics Data System (ADS)

    Zhang, Dainan; Wei, Miaoqing; Wen, Tianlong; Liao, Yulong; Jin, Lichuan; Li, Jie; Wen, Qiye

    2017-08-01

    MnZn ferrite thin films were deposited on p-Si substrate and used as the dielectric layer in the graphene field effect transistor for infrared and terahertz device applications. The conditions for MnZn ferrite thin film deposition were optimized before device fabrication. The infrared properties and terahertz wave modulation were studied at different gate voltage. The resistive and magnetic MnZn ferrite thin films are highly transparent for THz wave, which make it possible to magnetically modulate the transmitted THz wave via the large magnetoresistance of graphene monolayer.

  3. Self-assembled flower-like antimony trioxide microstructures with high infrared reflectance performance

    SciTech Connect

    Ge, Shengsong; Yang, Xiaokun; Shao, Qian; Liu, Qingyun; Wang, Tiejun; Wang, Lingyun; Wang, Xiaojie

    2013-04-15

    A simple hydrothermal process was adopted to self-assembly prepare high infrared reflective antimony trioxide with three-dimensional flower-like microstructures. The morphologies of antimony trioxide microstructures were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HRTEM) respectively. It is also found that experimental parameters, such as NaOH concentration, surfactant concentration and volume ratio of ethanol–water played crucial roles in controlling the morphologies of Sb{sub 2}O{sub 3} microstructures. A possible growth mechanism of flower-like Sb{sub 2}O{sub 3} microstructure was proposed based on the experimental data. UV–vis–NIR spectra verified that the near infrared reflectivity of the obtained flower-like microstructures could averagely achieve as 92% with maximum reflectivity of 98%, obviously higher than that of other different morphologies of antimony trioxide microstructures. It is expected that the flower-like Sb{sub 2}O{sub 3} nanostructures have some applications in optical materials and heat insulation coatings. - Graphical abstract: Flower-like Sb{sub 2}O{sub 3} microstructures that composed of nanosheets with thickness of ca. 100 nm exhibit high reflectivity under UV–vis–NIR spectra. Highlights: ► Uniform flower-like microstructures were synthesized via simple hydrothermal reaction. ► The flower-like Sb{sub 2}O{sub 3} microstructures exhibited higher reflectivity than other morphologies under the UV–vis–NIR light. ► Influencing parameters on the Sb{sub 2}O{sub 3} morphologies have been discussed in detail. ► Possible mechanism leading to flower-like microstructures was proposed.

  4. Electron tunneling infrared sensor module with integrated control circuitry

    NASA Technical Reports Server (NTRS)

    Boyadzhyan-Sevak, Vardkes V. (Inventor)

    2001-01-01

    In an integrated electron tunneling sensor, an automatic tunneling control circuit varies a high voltage bias applied to the sensor deflection electrode in response to changes in sensor output to maintain the proper gap between the sensor tip and membrane. The control circuit ensures stable tunneling activity in the presence of large signals and other disturbances to the sensor. Output signals from the module may be derived from the amplified sensor output. The integrated sensor module is particularly well adapted for use in blood glucose measurement and monitoring system.

  5. Atomic Scale Flatness of Chemically Cleaned Silicon Surfaces Studied by Infrared Attenuated-Total-Reflection Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sawara, Kenichi; Yasaka, Tatsuhiro; Miyazaki, Seiichi; Hirose, Masataka

    1992-07-01

    Hydrogen-terminated Si(111) and Si(100) surfaces obtained by aqueous HF or pH-modified (pH{=}5.3) buffered-HF (BHF) treatments have been characterized by a Fourier transform infrared (FT-IR) attenuated-total-reflection (ATR) technique. The BHF treatment provides better surface flatness than the HF treatment. Pure water rinse is effective for improving the Si(111) surface flatness, while this is not the case for Si(100) because the pure water acts as an alkaline etchant and promotes the formation of (111) microfacets or microdefects on the (100) surface.

  6. Infrared reflectance spectra (2.2-15 microns) of plagioclase feldspars

    NASA Technical Reports Server (NTRS)

    Nash, Douglas B.; Salisbury, John W.

    1991-01-01

    Laboratory results show that (1) the Christiansen frequency (CF) feature in mid-infrared reflectance spectra of powders can be used to accurately distinguish plagioclase composition, and (2) the wavelength position of the CF is not affected by vitrification of the plagioclase. Although the CF position does not distinguish glass from crystalline forms of plagioclase, other features (combination-tone, overtone, restrahlen bands) in the mid-IR spectra of plagioclase can be used for that purpose. These results have important implications for application of thermal emission spectroscopy to mapping the surface composition of regolith-covered planetary bodies like the moon, Mars, and asteroids.

  7. Preliminary Method for Direct Quantification of Colistin Methanesulfonate by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy

    PubMed Central

    Niece, Krista L.

    2015-01-01

    Colistin use has increased in response to the advent of infections caused by multidrug-resistant organisms. It is administered parenterally as an inactive prodrug, colistin methanesulfonate (CMS). Various formulations of CMS and labeling conventions can lead to confusion about colistin dosing, and questions remain about the pharmacokinetics of CMS. Since CMS does not have strong UV absorbance, current methods employ a laborious process of chemical conversion to colistin followed by precolumn derivatization to detect formed colistin by high-performance liquid chromatography. Here, we report a method for direct quantification of colistin methanesulfonate by attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR). PMID:26124160

  8. [Sugar characterization of mini-watermelon and rapid sugar determination by near infrared diffuse reflectance spectroscopy].

    PubMed

    Wang, Shuo; Yuan, Hong-fu; Song, Chun-feng; Xie, Jin-chun; Li, Xiao-yu; Feng, Le-ping

    2012-08-01

    In the present paper, the distribution of sugar level within the mini-watermelon was studied, a new sugar characterization method of mini-watermelon using average sugar level, the highest sugar level and the lowest sugar level index is proposed. Feasibility of nondestructive determination of mini-watermenlon sugar level using diffuse reflectance spectroscopy information was investigated by an experiment. PLS models for measuring the 3 sugar levels were established. The results obtained by near infrared spectroscopy agreed with that of the new method established above.

  9. Soil moisture estimation using reflected solar and emitted thermal infrared radiation

    NASA Technical Reports Server (NTRS)

    Jackson, R. D.; Cihlar, J.; Estes, J. E.; Heilman, J. L.; Kahle, A.; Kanemasu, E. T.; Millard, J.; Price, J. C.; Wiegand, C. L.

    1978-01-01

    Classical methods of measuring soil moisture such as gravimetric sampling and the use of neutron moisture probes are useful for cases where a point measurement is sufficient to approximate the water content of a small surrounding area. However, there is an increasing need for rapid and repetitive estimations of soil moisture over large areas. Remote sensing techniques potentially have the capability of meeting this need. The use of reflected-solar and emitted thermal-infrared radiation, measured remotely, to estimate soil moisture is examined.

  10. Determination of Moisture Content in 5-Fluorouracil using Diffuse Reflectance Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Parul; Jangir, Deepak Kumar; Mehrotra, Ranjana; Kandpal, H. C.

    2008-11-01

    Determination of moisture content in pharmaceuticals is very important, as moisture is mainly responsible for the degradation of drugs. The degraded drug has not only reduced efficacy but is also hazardous for health. The objective of the present work is to replace the Karl Fischer (KF) titration method used for moisture analysis with a method that is rapid, involves no toxic materials and is more effective. Diffuse reflectance infrared spectroscopy, which is explored as a potential alternate for various applications, is investigated for moisture analysis in 5-Fluorouracil, an anticancer drug.

  11. Microscopic observation of strain induced in heteroepitaxial layers with reflection type of infrared polariscope

    NASA Astrophysics Data System (ADS)

    Yamada, Masayoshi; Chu, Tao

    2000-03-01

    Photoelastic measurements using a reflection type of infrared polariscope have been done for the first time to investigate birefringence or residual strain induced in as-grown and pulsed-laser-annealed silicon-on-sapphire (SOS) wafers. It was found that the residual strain, arising from mismatchings of the lattice constants and the thermal expansion coefficients between silicon and sapphire, was reduced effectively by pulsed-laser annealing with laser energy density beyond a threshold value. Also found was a mosaic pattern due to local melting at about the threshold energy density, indicating the coexistence of solid and liquid phases.

  12. Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles.

    PubMed

    Wang, Ling; Dong, Hao; Li, Yannian; Xue, Chenming; Sun, Ling-Dong; Yan, Chun-Hua; Li, Quan

    2014-03-26

    Adding external, dynamic control to self-organized superstructures with desired functionalities is an important leap necessary in leveraging the fascinating molecular systems for applications. Here, the new light-driven chiral molecular switch and upconversion nanoparticles, doped in a liquid crystal media, were able to self-organize into an optically tunable helical superstructure. The resulting nanoparticle impregnated helical superstructure was found to exhibit unprecedented reversible near-infrared (NIR) light-guided tunable behavior only by modulating the excitation power density of a continuous-wave NIR laser (980 nm). Upon irradiation by the NIR laser at the high power density, the reflection wavelength of the photonic superstructure red-shifted, whereas its reverse process occurred upon irradiation by the same laser but with the lower power density. Furthermore, reversible dynamic NIR-light-driven red, green, and blue reflections in a single thin film, achieved only by varying the power density of the NIR light, were for the first time demonstrated.

  13. Modulation of Retrieval Processing Reflects Accuracy of Emotional Source Memory

    ERIC Educational Resources Information Center

    Smith, Adam P. R.; Henson, Richard N. A.; Rugg, Michael D.; Dolan, Raymond J.

    2005-01-01

    There is considerable evidence that encoding and consolidation of memory are modulated by emotion, but the retrieval of emotional memories is not well characterized. Here we manipulated the emotional context with which affectively neutral stimuli were associated during encoding, allowing us to examine neural activity associated with retrieval of…

  14. Imaging the Material Properties of Bone Specimens using Reflection-Based Infrared Microspectroscopy

    PubMed Central

    Acerbo, Alvin S.; Carr, G. Lawrence; Judex, Stefan; Miller, Lisa M.

    2012-01-01

    Fourier Transform InfraRed Microspectroscopy (FTIRM) is a widely used method for mapping the material properties of bone and other mineralized tissues, including mineralization, crystallinity, carbonate substitution, and collagen cross-linking. This technique is traditionally performed in a transmission-based geometry, which requires the preparation of plastic-embedded thin sections, limiting its functionality. Here, we theoretically and empirically demonstrate the development of reflection-based FTIRM as an alternative to the widely adopted transmission-based FTIRM, which reduces specimen preparation time and broadens the range of specimens that can be imaged. In this study, mature mouse femurs were plastic-embedded and longitudinal sections were cut at a thickness of 4 μm for transmission-based FTIRM measurements. The remaining bone blocks were polished for specular reflectance-based FTIRM measurements on regions immediately adjacent to the transmission sections. Kramers-Kronig analysis of the reflectance data yielded the dielectric response from which the absorption coefficients were directly determined. The reflectance-derived absorbance was validated empirically using the transmission spectra from the thin sections. The spectral assignments for mineralization, carbonate substitution, and collagen cross-linking were indistinguishable in transmission and reflection geometries, while the stoichiometric/non-stoichiometric apatite crystallinity parameter shifted from 1032 / 1021 cm−1 in transmission-based to 1035 / 1025 cm−1 in reflection-based data. This theoretical demonstration and empirical validation of reflection-based FTIRM eliminates the need for thin sections of bone and more readily facilitates direct correlations with other methods such nanoindentation and quantitative backscatter electron imaging (qBSE) from the same specimen. It provides a unique framework for correlating bone’s material and mechanical properties. PMID:22455306

  15. High-accuracy infra-red thermography method using reflective marker arrays

    NASA Astrophysics Data System (ADS)

    Kirollos, Benjamin; Povey, Thomas

    2017-09-01

    In this paper, we describe a new method for high-accuracy infra-red (IR) thermography measurements in situations with significant spatial variation in reflected radiation from the surroundings, or significant spatial variation in surface emissivity due to viewing angle non-uniformity across the field of view. The method employs a reflective marker array (RMA) on the target surface—typically, high emissivity circular dots—and an integrated image analysis algorithm designed to require minimal human input. The new technique has two particular advantages which make it suited to high-accuracy measurements in demanding environments: (i) it allows the reflected radiation component to be calculated directly, in situ, and as a function of position, overcoming a key problem in measurement environments with non-uniform and unsteady stray radiation from the surroundings; (ii) using image analysis of the marker array (via apparent aspect ratio of the circular reflective markers), the local viewing angle of the target surface can be estimated, allowing corrections for angular variation of local emissivity to be performed without prior knowledge of the geometry. A third advantage of the technique is that allows for simple focus-stacking algorithms due to increased image entropy. The reflective marker array method is demonstrated for an isothermal, hemispherical object exposed to an external IR source arranged to give a significant non-uniform reflected radiation term. This is an example of a challenging environment, both because of the significant non-uniform reflected radiation term, and also the significant variation in target emissivity due to surface angle variation. We demonstrate that the new RMA IR technique leads to significantly lower error in evaluated surface temperature than conventional IR techniques. The method is applicable to any complex radiative environment.

  16. Imaging the Material Properties of Bone Specimens Using Reflection-Based Infrared Microspectroscopy

    SciTech Connect

    Acerbo A. S.; Carr, G.L.; Judex, S.; Miller, L.M.

    2012-03-13

    Fourier transform infrared microspectroscopy (FTIRM) is a widely used method for mapping the material properties of bone and other mineralized tissues, including mineralization, crystallinity, carbonate substitution, and collagen cross-linking. This technique is traditionally performed in a transmission-based geometry, which requires the preparation of plastic-embedded thin sections, limiting its functionality. Here, we theoretically and empirically demonstrate the development of reflection-based FTIRM as an alternative to the widely adopted transmission-based FTIRM, which reduces specimen preparation time and broadens the range of specimens that can be imaged. In this study, mature mouse femurs were plastic-embedded and longitudinal sections were cut at a thickness of 4 {micro}m for transmission-based FTIRM measurements. The remaining bone blocks were polished for specular reflectance-based FTIRM measurements on regions immediately adjacent to the transmission sections. Kramers-Kronig analysis of the reflectance data yielded the dielectric response from which the absorption coefficients were directly determined. The reflectance-derived absorbance was validated empirically using the transmission spectra from the thin sections. The spectral assignments for mineralization, carbonate substitution, and collagen cross-linking were indistinguishable in transmission and reflection geometries, while the stoichiometric/nonstoichiometric apatite crystallinity parameter shifted from 1032/1021 cm{sup -1} in transmission-based to 1035/1025 cm{sup -1} in reflection-based data. This theoretical demonstration and empirical validation of reflection-based FTIRM eliminates the need for thin sections of bone and more readily facilitates direct correlations with other methods such as nanoindentation and quantitative backscatter electron imaging (qBSE) from the same specimen. It provides a unique framework for correlating bone's material and mechanical properties.

  17. Digital signal processing for step-scan phase and electrochemical potential double-modulation Fourier transform infrared spectrometry.

    PubMed

    Brevnov, Dmitri A; Hutter, Eliza; Fendler, Janos H

    2004-02-01

    Step-scan double-modulation (phase and electrochemical potential) Fourier transform infrared (FT-IR) spectrometry provides both spectroscopic and dynamic information about faradaic reactions. Recently introduced digital signal processing (DSP) can be used, instead of two lock-in amplifiers, for the optical signal demodulation at two modulation frequencies. In order to establish the merits of double-modulation FT-IR spectrometry with DSP, spectro-electrochemical experiments are performed in the attenuated total reflection configuration and with the commonly used ferri/ferrocyanide redox couple. Because of a large potential drop associated with the uncompensated resistance, a satisfactory signal-to-noise ratio for the alternating current (ac) optical measurements is obtained only with the employment of positive feedback compensation. In this arrangement, the amplitude of electrochemical modulation is sufficiently large to convert a significant fraction of the reduced form to the oxidized form and back to the reduced form. Large amplitude ac voltammetry demonstrates that the phase of faradaic admittance at the formal potential is approximately 45 degrees at 2.00 Hz. In addition, these experiments allow for calculation of the interfacial ac potential. This variable is needed for the normalization of the in-phase and the quadrature spectra in order to overcome the problem associated with the iR(u) drop. Because of the integral relationship between the faradaic current and the electromodulation reflectance coefficient, the phases of electromodulation reflectance coefficient with respect to the interfacial ac potential are expected to be -45 degrees and 135 degrees for the reduced and oxidized forms, respectively. However, dynamic information from double-modulation FT-IR spectrometry is available only if demodulation at the electrochemical potential modulation frequency is performed with respect to a defined phase. Because of an undefined demodulation phase implemented in

  18. Bidirectional reflectance distribution function of the Infrared Astronomical Satellite solar-shield material

    NASA Technical Reports Server (NTRS)

    Hubbs, J. E.; Nofziger, M. J.; Bartell, F. O.; Wolfe, W. L.; Brooks, L. D.

    1982-01-01

    The Infrared Astronomical Satellite (IRAS) telescope has an outer shield on it which is used to reduce the amount of thermal radiation that enters the telescope. The shield forms the first part of the baffle structure which reduces the photon incidence on the focal plane. It was, therefore, necessary to model this structure for scattering, and a required input for such modeling is the scattering characteristic of this surface. Attention is given to the measurement of the bidirectional reflectance distribution function (BRDF), the reflected radiance divided by the incident irradiance at 10.6 micrometers, 118 micrometers, and at several angles of incidence. Visual observation of the gold sample shows that there are striations which line up in a single direction. The data were, therefore, taken with the sample oriented in each of two directions.

  19. Sediment mineralogy based on visible and near-infrared reflectance spectroscopy

    USGS Publications Warehouse

    Jarrard, R.D.; Vanden Berg, M.D.; ,

    2006-01-01

    Visible and near-infrared spectroscopy (VNIS) can be used to measure reflectance spectra (wavelength 350-2500 nm) for sediment cores and samples. A local ground-truth calibration of spectral features to mineral percentages is calculated by measuring reflectance spectra for a suite of samples of known mineralogy. This approach has been tested on powders, core plugs and split cores, and we conclude that it works well on all three, unless pore water is present. Initial VNIS studies have concentrated on determination of relative proportions of carbonate, opal, smectite and illite in equatorial Pacific sediments. Shipboard VNIS-based determination of these four components was demonstrated on Ocean Drilling Program Leg 199. ?? The Geological Society of London 2006.

  20. Pluto-Charon: Infrared Reflectance from 3.6 to 8.0 Micrometers

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Emery, Joshua P.; Stansberry, John A.; VanCleve, Jeffrey E.

    2004-01-01

    We have measured the spectral reflectance of the Pluto-Charon pair at 3.6, 4.5, 5.8, and 8.0 micrometers with the Infrared Array Camera (IRAC) (G. G. Fazzio et al. Ap.J.Supp. 154, 10-17, 2004) on the Spitzer Space Telescope (STS), at eight different longitudes that cover a full rotation of the planet. STS does not have sufficient resolution to separate the light from the planet and the satellite. The image of the Pluto-Charon pair is clearly visible at each of the four wavelengths. We will discuss the spectral reflectance in terms of models that include the known components of Pluto and Charon s surfaces, and evidence for diurnal variations.

  1. Modelling of sensory and instrumental texture parameters in processed cheese by near infrared reflectance spectroscopy.

    PubMed

    Blazquez, Carmen; Downey, Gerard; O'Callaghan, Donal; Howard, Vincent; Delahunty, Conor; Sheehan, Elizabeth; Everard, Colm; O'Donnell, Colm P

    2006-02-01

    This study investigated the application of near infrared (NIR) reflectance spectroscopy to the measurement of texture (sensory and instrumental) in experimental processed cheese samples. Spectra (750 to 2498 nm) of cheeses were recorded after 2 and 4 weeks storage at 4 degrees C. Trained assessors evaluated 9 sensory properties, a texture profile analyser (TPA) was used to record 5 instrumental parameters and cheese 'meltability' was measured by computer vision. Predictive models for sensory and instrumental texture parameters were developed using partial least squares regression on raw or pre-treated spectral data. Sensory attributes and instrumental texture measurements were modelled with sufficient accuracy to recommend the use of NIR reflectance spectroscopy for routine quality assessment of processed cheese.

  2. A variable reflectivity output coupler for optically pumped far infrared lasers

    NASA Astrophysics Data System (ADS)

    Graf, U. U.; Harris, A. I.; Stutzki, J.; Genzel, R.

    1992-06-01

    The design and performance of a variable reflectivity output coupler for optically pumped far infrared lasers are investigated. The output coupler is a compact, tunable Michelson interferometer. The output coupling ratio is adjustable between 0 and equal to or greater than 60% for laser line wavelengths between 110 and 500 micrometers. This output coupler provides increased output power and flexibility. Beam profile measurements show that the Michelson output coupler produces a well collimated Gaussian laser beam. Design features are: the use of a 10 micrometers reflection coated quartz vacuum window which acts as a dichroic mirror for the pump radiation; the high mechanical stability obtained by leaf sping flexure mount of the movable Michelson mirror and by restricted alignment devices.

  3. Fully reflective deep ultraviolet to near infrared spectrometer and entrance optics for resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Schulz, B.; Bäckström, J.; Budelmann, D.; Maeser, R.; Rübhausen, M.; Klein, M. V.; Schoeffel, E.; Mihill, A.; Yoon, S.

    2005-07-01

    We present the design and performance of a new triple-grating deep ultraviolet to near-infrared spectrometer. The system is fully achromatic due to the use of reflective optics. The minimization of image aberrations by using on- and off- axis parabolic mirrors as well as elliptical mirrors yields a strong stray light rejection with high resolution over a wavelength range between 165 and 1000nm. The Raman signal is collected with a reflective entrance objective with a numerical aperture of 0.5, featuring a Cassegrain-type design. Resonance Raman studies on semiconductors and on correlated compounds, such as LaMnO3, highlight the performance of this instrument, and show diverse resonance effects between 1.96 and 5.4eV.

  4. Near-infrared spectral reflectance of mineral mixtures - Systematic combinations of pyroxenes, olivine, and iron oxides

    NASA Technical Reports Server (NTRS)

    Singer, R. B.

    1981-01-01

    Near-infrared spectral reflectance data are presented for systematic variations in weight percent of two component mixtures of ferromagnesium and iron oxide minerals used to study the dark materials on Mars. Olivine spectral features are greatly reduced in contrast by admixture of other phases but remain distinctive even for low olivine contents. Clinopyroxene and orthopyroxene mixtures show resolved pyroxene absorptions near 2 microns. Limonite greatly modifies pyroxene and olivine reflectance, but does not fully eliminate distinctive spectral characteristics. Using only spectral data in the 1 micron region, it is difficult to differentiate orthopyroxene and limonite in a mixture. All composite mineral absorptions were either weaker than or intermediate in strength to the end-member absorptions and have bandwidths greater than or equal to those for the end members. In general, spectral properties in an intimate mixture combine in a complex, nonadditive manner, with features demonstrating a regular but usually nonlinear variation as a function of end-member phase proportions.

  5. Pluto-Charon: Infrared Reflectance from 3.6 to 8.0 Micrometers

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Emery, Joshua P.; Stansberry, John A.; VanCleve, Jeffrey E.

    2004-01-01

    We have measured the spectral reflectance of the Pluto-Charon pair at 3.6, 4.5, 5.8, and 8.0 micrometers with the Infrared Array Camera (IRAC) (G. G. Fazzio et al. Ap.J.Supp. 154, 10-17, 2004) on the Spitzer Space Telescope (STS), at eight different longitudes that cover a full rotation of the planet. STS does not have sufficient resolution to separate the light from the planet and the satellite. The image of the Pluto-Charon pair is clearly visible at each of the four wavelengths. We will discuss the spectral reflectance in terms of models that include the known components of Pluto and Charon s surfaces, and evidence for diurnal variations.

  6. The cuticle modulates ultraviolet reflectance of avian eggshells.

    PubMed

    Fecheyr-Lippens, Daphne C; Igic, Branislav; D'Alba, Liliana; Hanley, Daniel; Verdes, Aida; Holford, Mande; Waterhouse, Geoffrey I N; Grim, Tomas; Hauber, Mark E; Shawkey, Matthew D

    2015-05-11

    Avian eggshells are variedly coloured, yet only two pigments, biliverdin and protoporphyrin IX, are known to contribute to the dramatic diversity of their colours. By contrast, the contributions of structural or other chemical components of the eggshell are poorly understood. For example, unpigmented eggshells, which appear white to the human eye, vary in their ultraviolet (UV) reflectance, which may be detectable by birds. We investigated the proximate mechanisms for the variation in UV-reflectance of unpigmented bird eggshells using spectrophotometry, electron microscopy, chemical analyses, and experimental manipulations. We specifically tested how UV-reflectance is affected by the eggshell cuticle, the outermost layer of most avian eggshells. The chemical dissolution of the outer eggshell layers, including the cuticle, increased UV-reflectance for only eggshells that contained a cuticle. Our findings demonstrate that the outer eggshell layers, including the cuticle, absorb UV-light, probably because they contain higher levels of organic components and other chemicals, such as calcium phosphates, compared to the predominantly calcite-based eggshell matrix. These data highlight the need to examine factors other than the known pigments in studies of avian eggshell colour.

  7. The cuticle modulates ultraviolet reflectance of avian eggshells

    PubMed Central

    Fecheyr-Lippens, Daphne C.; Igic, Branislav; D'Alba, Liliana; Hanley, Daniel; Verdes, Aida; Holford, Mande; Waterhouse, Geoffrey I. N.; Grim, Tomas; Hauber, Mark E.; Shawkey, Matthew D.

    2015-01-01

    ABSTRACT Avian eggshells are variedly coloured, yet only two pigments, biliverdin and protoporphyrin IX, are known to contribute to the dramatic diversity of their colours. By contrast, the contributions of structural or other chemical components of the eggshell are poorly understood. For example, unpigmented eggshells, which appear white to the human eye, vary in their ultraviolet (UV) reflectance, which may be detectable by birds. We investigated the proximate mechanisms for the variation in UV-reflectance of unpigmented bird eggshells using spectrophotometry, electron microscopy, chemical analyses, and experimental manipulations. We specifically tested how UV-reflectance is affected by the eggshell cuticle, the outermost layer of most avian eggshells. The chemical dissolution of the outer eggshell layers, including the cuticle, increased UV-reflectance for only eggshells that contained a cuticle. Our findings demonstrate that the outer eggshell layers, including the cuticle, absorb UV-light, probably because they contain higher levels of organic components and other chemicals, such as calcium phosphates, compared to the predominantly calcite-based eggshell matrix. These data highlight the need to examine factors other than the known pigments in studies of avian eggshell colour. PMID:25964661

  8. Gap-modulation infrared spectroscopy of high transition temperature superconductors

    PubMed Central

    Little, William A.; Collman, James P.

    1988-01-01

    Conventional methods of determining the coupling factor α2(ω)F(ω) for the newly discovered high transition temperature (Tc) cuprate superconductors by using tunneling and infrared measurements have thus far failed to show the cause of the very high Tc of these compounds. This is due in part to difficulties in sample preparation for tunneling studies and to difficulties in obtaining good data at relatively high tunneling voltages. Also, in IR (infrared) measurements, small differences in absorptivity between the normal and superconducting state can be masked by changes in the phonon occupation at high and low temperatures. Here we propose a technique for determing the coupling constant, which should be less dependent on the surface quality of the sample than with tunneling and should allow measurements at higher energies with greater precision than do tunneling or simple IR observations. This should make possible a definitive determination of any possible exciton contribution to this coupling term, which would appear at energies well above the range where conventional IR or tunneling measurements are effective. PMID:16593950

  9. An Overview of Ultraviolet Through Infrared Reflectance Spectroscopic Observations of Mercury During the First MESSENGER Flyby

    NASA Astrophysics Data System (ADS)

    Izenberg, N. R.; McClintock, W. E.; Holsclaw, G. M.; Robinson, M. S.; Blewett, D. T.; Domingue, D. L.; Head, J. W.; Jensen, E. A.; Kochte, M. C.; Lankton, M. R.; Murchie, S. L.; Sprague, A. L.; Vilas, F.; Solomon, S. C.

    2008-05-01

    During the first MESSENGER flyby of Mercury on January 14, 2008, the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) measured reflectance spectra from Mercury's surface over the wavelength range 220-1450 nm. These are the first high-spatial-resolution (<10 km) spectra at any wavelength and the first reported ultraviolet (UV, wavelength < 360 nm) observations of the surface. MASCS observed the sunlit surface for approximately 14 minutes after closest approach, acquiring over 650 spectra with the Visible and Infrared Spectrograph (VIRS) detectors of MASCS sensitive to wavelengths of 350-1450 nm. MASCS also obtained just under four grating scans in the middle ultraviolet (220-320 nm) using MASCS's Ultraviolet and Visible Spectrometer (UVVS) component. Most of the near-equatorial ground track of the observation covered terrain in the previously unseen hemisphere of Mercury but also crossed into the hemisphere viewed by Mariner 10 south of Mozart crater and in Tir Planitia. Ground-based observations of Mercury reveal a surface with a red, nearly featureless spectrum in the visible and near-infrared (wavelengths greater than ~ 500 nm) that has been interpreted as evidence for a largely iron-poor feldspathic composition. Initial analyses of VIRS spectra also show strongly red-sloped, near featureless spectra, appearing to support contentions of low iron abundance in surface materials. However, interpretation of Mercury's spectral reflectance is complicated by our lack of knowledge about the effects on its surface materials of space weathering, which both suppresses the strength of spectral absorption features and reddens the spectrum. Brightness variations and absorption bands in ultraviolet reflectance may help determine both the nature and extent of processes that modify observed reflectance at longer wavelengths. MASCS surface observation data demonstrate spectral variations across the Mercury surface that can be related to previous telescopic

  10. Quantitative mid-infrared diffuse reflection of occupational wood dust exposures.

    PubMed

    Chirila, Madalina M; Lee, Taekhee; Flemmer, Michael M; Slaven, James E; Harper, Martin

    2011-03-01

    Occupational exposure to airborne wood dust has been implicated in the development of several symptoms and diseases, including nasal carcinoma. However, the assessment of occupational wood dust exposure is usually performed by gravimetric analysis, which is non-specific. In this study, a mid-infrared (mid-IR) diffuse reflection method was adapted for direct on-filter determination of wood dust mass. The cup from the diffuse reflection unit was replaced with a horizontal translational stage and a filter with wood dust was set thereon. Diffuse reflection (DR) spectra were collected from filters with six different diameters in order to average the signal from the most filter surface. Two absorption bands around 1595 and 1510 cm(-1), attributed to lignin, were monitored for quantitative analysis. Calibration curves were constructed for standard extrathoracic red oak and yellow pine (aerodynamic particle diameters between 10 and 100 μm). Calibration of DR intensity versus known wood dust mass on the filter using the Kubelka-Munk function showed a nonlinear dependence for mass of less than 10 mg of wood dust. The experimental data and small-thickness samples indicate that Kubelka-Munk conditions are not obeyed. Alternatively, the pseudo-absorption function log(1/R), for which R is the relative reflectance, while still giving nonlinear dependence against mass, is closer to a linear dependence and has been preferred by other researchers. Therefore, we consider the use of the log(1/R) function for mid-infrared DR analysis of neat, small-thickness wood dust samples. Furthermore, we suggest the use of a silver metal membrane filter for direct on-filter analysis of wood dust rather than the glass fiber filters that have been used previously.

  11. Universal Near-Infrared and Mid-Infrared Optical Modulation for Ultrafast Pulse Generation Enabled by Colloidal Plasmonic Semiconductor Nanocrystals.

    PubMed

    Guo, Qiangbing; Yao, Yunhua; Luo, Zhi-Chao; Qin, Zhipeng; Xie, Guoqiang; Liu, Meng; Kang, Jia; Zhang, Shian; Bi, Gang; Liu, Xiaofeng; Qiu, Jianrong

    2016-09-21

    Field effect relies on the nonlinear current-voltage relation in semiconductors; analogously, materials that respond nonlinearly to an optical field can be utilized for optical modulation. For instance, nonlinear optical (NLO) materials bearing a saturable absorption (SA) feature an on-off switching behavior at the critical pumping power, thus enabling ultrafast laser pulse generation with high peak power. SA has been observed in diverse materials preferably in its nanoscale form, including both gaped semiconductor nanostructures and gapless materials like graphene; while the presence of optical bandgap and small carrier density have limited the active spectral range and intensity. We show here that solution-processed plasmonic semiconductor nanocrystals exhibit superbroadband (over 400 THz) SA, meanwhile with large modulation depth (∼7 dB) and ultrafast recovery (∼315 fs). Optical modulators fabricated using these plasmonic nanocrystals enable mode-locking and Q-switching operation across the near-infrared and mid-infrared spectral region, as exemplified here by the pulsed lasers realized at 1.0, 1.5, and 2.8 μm bands with minimal pulse duration down to a few hundreds of femtoseconds. The facile accessibility and superbroadband optical nonlinearity offered by these nonconventional plasmonic nanocrystals may stimulate a growing interest in the exploiting of relevant NLO and photonic applications.

  12. Surface Compositional Units on Mercury from Spectral Reflectance at Ultraviolet to Near-infrared Wavelengths

    NASA Astrophysics Data System (ADS)

    Izenberg, N. R.; Holsclaw, G. M.; Domingue, D. L.; McClintock, W. E.; Klima, R. L.; Blewett, D. T.; Helbert, J.; Head, J. W.; Sprague, A. L.; Vilas, F.; Solomon, S. C.

    2012-12-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has been acquiring reflectance spectra of Mercury's surface for over 16 months. The Visible and Infrared Spectrograph (VIRS) component of MASCS has accumulated a global data set of more than 2 million spectra over the wavelength range 300-1450 nm. We have derived a set of VIRS spectral units (VSUs) from the following spectral parameters: visible brightness (R575: reflectance at 575 nm); visible/near-infrared reflectance ratio (VISr: reflectance at 415 nm to that at 750 nm); and ultraviolet reflectance ratio (UVr: reflectance at 310 nm to that at 390 nm). Five broad, slightly overlapping VSUs may be distinguished from these parameters. "Average VSU" areas have spectral parameters close to mean global values. "Dark blue VSU" areas have spectra with low R575 and high UVr. "Red VSU" areas have spectra with low UVr and higher VISr and R575 than average. "Intermediate VSU" areas have spectra with higher VISr than VSU red, generally higher R575, and a wide range of UVr. "Bright VSU" areas have high R575 and VISr and intermediate UVr. Several units defined by morphological or multispectral criteria correspond to specific VSUs, including low-reflectance material (dark blue VSU), pyroclastic deposits (red VSU), and hollows (intermediate VSU), but these VSUs generally include other types of areas as well. VSU definitions are complementary to those obtained by unsupervised clustering analysis. The global distribution of VIRS spectral units provides new information on Mercury's geological evolution. Much of Mercury's northern volcanic plains show spectral properties ranging from those of average VSU to those of red VSU, as does a large region in the southern hemisphere centered near 50°S, 245°E. Dark blue VSU material is widely distributed, with concentrations south of the northern plains, around the Rembrandt and

  13. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy.

    PubMed

    Chen, Li; Ueta, Hirokazu; Bisson, Régis; Beck, Rainer D

    2013-05-01

    We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S(θ). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.

  14. Infrared Studies of the Reflective Properties of Solar Cells and the HS376 Spacecraft

    NASA Technical Reports Server (NTRS)

    Frith, James; Reyes, Jacqueline; Cowardin, Heather; Anz-Meador, Phillip; Buckalew, Brent; Lederer, Susan

    2016-01-01

    In 2015, a selection of HS-376 buses were observed photometrically with the United Kingdom Infrared Telescope (UKIRT) to explore relationships between time-on-orbit and Near Infrared (NIR) color. These buses were chosen because of their relatively simple shape, for the abundance of similar observable targets, and their surface material being primarily covered by solar cells. While the HS-376 spacecraft were all very similar in design, differences in the specific solar cells used in the construction of each model proved to be an unconstrained variable that could affect the observed reflective properties. In 2016, samples of the solar cells used on various models of HS-376 spacecraft were obtained from Boeing and were analyzed in the Optical Measurements Center at the Johnson Space Center using a visible-near infrared field spectrometer. The laboratory-based spectra are convolved to match the photometric bands previously obtained using UKIRT and compared with the on-orbit photometry. The results and future work are discussed here.

  15. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy

    SciTech Connect

    Chen Li; Ueta, Hirokazu; Beck, Rainer D.; Bisson, Regis

    2013-05-15

    We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S({theta}). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.

  16. Brain tumour differentiation: rapid stratified serum diagnostics via attenuated total reflection Fourier-transform infrared spectroscopy.

    PubMed

    Hands, James R; Clemens, Graeme; Stables, Ryan; Ashton, Katherine; Brodbelt, Andrew; Davis, Charles; Dawson, Timothy P; Jenkinson, Michael D; Lea, Robert W; Walker, Carol; Baker, Matthew J

    2016-05-01

    The ability to diagnose cancer rapidly with high sensitivity and specificity is essential to exploit advances in new treatments to lead significant reductions in mortality and morbidity. Current cancer diagnostic tests observing tissue architecture and specific protein expression for specific cancers suffer from inter-observer variability, poor detection rates and occur when the patient is symptomatic. A new method for the detection of cancer using 1 μl of human serum, attenuated total reflection-Fourier transform infrared spectroscopy and pattern recognition algorithms is reported using a 433 patient dataset (3897 spectra). To the best of our knowledge, we present the largest study on serum mid-infrared spectroscopy for cancer research. We achieve optimum sensitivities and specificities using a Radial Basis Function Support Vector Machine of between 80.0 and 100 % for all strata and identify the major spectral features, hence biochemical components, responsible for the discrimination within each stratum. We assess feature fed-SVM analysis for our cancer versus non-cancer model and achieve 91.5 and 83.0 % sensitivity and specificity respectively. We demonstrate the use of infrared light to provide a spectral signature from human serum to detect, for the first time, cancer versus non-cancer, metastatic cancer versus organ confined, brain cancer severity and the organ of origin of metastatic disease from the same sample enabling stratified diagnostics depending upon the clinical question asked.

  17. A in Situ Study of Plasma Etching Surface Chemistry Using Reflection Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucchesi, Robert Peter

    Plasma etching is an important process in semiconductor manufacturing. The present work describes a means by which plasma etching surface chemistry may be studied in situ. The systems of interest were the sulfur hexafluoride plasma etching of silicon and tungsten in a diode reactor. A reflection infrared spectrometer was designed and constructed to be able to scan the frequency region from about 550cm ^{-1} to 1300cm ^{-1}, and a plasma etch reactor was modified to allow access to the infrared beam. Reflection infrared spectroscopy (RIS) allows the measurement of light absorbed by molecules adsorbed on a reflective surface selectively from light absorbed by molecules in the gas phase. RIS applied to heavily doped silicon substrates had limited success. While sulfur fluorine species were detected on the surface during plasma etching, no silicon fluorine species were ever detected. The sulfur fluorine species (referred to as SF_{rm x}) were not seen under any circumstances in the absence of an SF_6 plasma. Severe baseline drift of the infrared spectrometer during plasma etching was the main reason for the limited success. However, the results were significant in that they demonstrated the presence of sulfur fluorine species during the plasma etching of silicon in an SF_6 plasma. The baseline drift problems experienced with silicon were not found when tungsten was studied. The same SF _{rm x} feature detected on silicon was also found on tungsten during etching in an SF_6 plasma, but was never seen in the absence of the plasma. A detailed experimental and theoretical study was performed to show that the surface absorption feature seen was actually due to SF _{rm x} adsorbed on the surface. A hysteresis behavior was observed in the SF_ {rm x} concentration as the plasma power was ramped up and subsequently decreased. Finally, it could not be concluded if SF_{rm x} participated in the etch reaction by fluorinating the tungsten surface, but the presence of SF_ {rm x} on

  18. Feasibility for quantitative determination of deoxyribonucleic acid by using near-infrared diffuse reflectance spectroscopy.

    PubMed

    Yang, Yafei; Tu, Jiarun; Cai, Wensheng; Shao, Xueguang

    2012-09-15

    A method for quantitative determination of fish sperm deoxyribonucleic acid (fsDNA) in solutions was developed by using adsorption preconcentration and near-infrared diffuse reflectance spectroscopy (NIRDRS). A high capacity adsorbent of amino-modified silica particle (AMSP) was prepared for preconcentration of fsDNA in solutions. Under the optimized conditions, the adsorption rate can be above 90% within 3 min. After adsorbing the DNA onto the adsorbent, near-infrared (NIR) spectra in diffuse reflectance mode were measured and partial least squares (PLS) model was established for fast quantitative prediction. The results show that the correlation coefficient (R) between the predicted and the reference concentration is 0.9894 and the recoveries are in the range of 92.9-123.4% for the validation samples in the concentration range of 3.00-29.38 mg L(-1). Therefore, the feasibility for quantitative analysis of DNA in solutions by NIRDRS is proved. This may provide an alternative way for fast determination of DNA in solutions.

  19. Reflective and photoacoustic infrared spectroscopic techniques in assessment of binding media in paintings

    NASA Astrophysics Data System (ADS)

    Łojewski, Tomasz; Bagniuk, Jacek; Kołodziej, Andrzej; Łojewska, Joanna

    2011-11-01

    This study proposes a method to estimate the lipid content in binding media in paintings that can be used at any laboratory equipped with an infrared spectrometer. The lipid content estimator, termed greasiness index (GI), is defined as a ratio of lipid ν(C=O) and protein amide I bands at 1743 and 1635 cm-1, respectively. Three Fourier transform infrared (FTIR) sampling techniques were evaluated for GI determination: reflective attenuated total reflection—ATR, specular reflection microscopy— μSR and photoacoustic—PAS. A set of model painting samples containing three tempera binding media (casein, egg, egg + oil), seven pigments and one varnish type were used in the study. Multivariate analysis was used to evaluate the resulting data. A good reproducibility of GI was obtained by ATR and PAS but not with μSR. The discriminative power of the technique is higher for unvarnished samples, but, generally, the GI estimator can be used for the categorisation of binding media in large populations of painting samples analysed with the same FTIR technique (sampling technique, detection, etc.).

  20. At-line prediction of fatty acid profile in chicken breast using near infrared reflectance spectroscopy.

    PubMed

    De Marchi, M; Riovanto, R; Penasa, M; Cassandro, M

    2012-03-01

    Near infrared reflectance (NIR) spectroscopy was evaluated as at-line technique to predict FA profile of chicken breast directly at the slaughterhouse. Intact breasts of 214 chickens were scanned by applying a fiber optic probe to the Pectoralis superficialis muscle. Meat samples were analyzed by gas chromatography as the reference method for the determination of FA composition. Calibration equations were developed considering NIR wavelengths between 1100 and 1830nm, and modified partial least square (MPLS) was chosen as the chemometrics method to perform the calibrations. Different mathematical pre-treatments were tested and the best calibration equation for each FA was retained. Near infrared reflectance spectroscopy did not result in satisfactory predictions of FA. The best predictions were observed for oleic acid (C18:1n-9), monounsaturated FA (MUFA), and polyunsaturated FA (PUFA), and for a few minor FA. Results suggest that for chicken breast muscle, a lean meat, it was not possible to predict FA using NIR spectroscopy as an at-line technique in the abattoir. Copyright © 2011. Published by Elsevier Ltd.

  1. Discrimination of Alicyclobacillus strains using nitrocellulose membrane filter and attenuated total reflectance fourier transform infrared spectroscopy.

    PubMed

    Wang, Jun; Yue, Tianli; Yuan, Yahong; Lu, Xiaonan; Shin, Joong-Han; Rasco, Barbara

    2011-03-01

    Alicyclobacillus spp. are thermoacidophilic, spore-forming bacteria, some of which cause spoilage in pasteurized and heat-treated apple juice products through the production of guaiacol. It would be helpful if a rapid method to detect and discriminate Alicyclobacillus strains was available. A simple and rapid sample preparation method using nitrocellulose membrane filter (NMF) and a single reflection horizontal attenuated total reflection (HATR) accessory with Fourier transform infrared (FT-IR) was developed here. Fourier transform infrared (FT-IR) spectroscopy was used and tested on 8 Alicyclobacillus strains (KF, WAC, NWN-13501, NWN-12697, NWN-12654, NWN-10682, 1016, 1101). A linear discriminant analysis (LDA) was established to discriminate Alicyclobacillus strains. The sample preparation method could successfully separated strains into different groups by principal component analysis (PCA). High identification accuracy (95%) was achieved with the LDA model. The method developed in the paper can be used to discriminate different Alicyclobacillus strains from each other making it possible to easily determine whether the strain of Alicyclobacillus present is associated with juice spoilage.

  2. [Evaluation of fresh sample of alfalfa silage through near infrared reflectance spectroscopy (NIRS)].

    PubMed

    Chen, Peng-Fei; Rong, Yu-Ping; Han, Jian-Guo; Wang, Ji-Hua; Zhang, Lu-Da; Xu, Xiao-Jie

    2007-07-01

    It is very important to evaluate the fresh sample of alfalfa silage using near infrared reflectance spectroscopy technology (NIRS) for animal production. The nutrient content of forage means the contents of dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) in the forage. Because of the high moisture content, it is difficult to make uniform samples for fresh forage and to get useful information from the spectrum. Therefore, it is hard to use NIRS analysis. In order to evaluate the feasibility of using NIRS to analyse the fresh alfalfa silage, the DM, CP, NDF and ADF contents of fresh alfalfa silage were evaluated by the near infrared reflectance spectroscopy model in this experiment using partial least square regression (PLS), Fourier transform technology and sample preparation with liquid nitrogen technology. The analysis samples were obtained through different cultivars, maturity, cuttings and ensiling method. The cross validation was determined between 0.884 6-0. 989 8. The standard error of cross validation was between 3.9 and 9.7 g x kg(-1) fresh weight. Fifty samples were used to test the performance of the models. The coefficients of correlation between the chemical value and the NIRS value are between 0.939 7 and 0.994 9, and the root mean square errors of prediction are between 1.9 and 8.3 g x kg(-1) fresh weight. The results showed that NIRS could be used to evaluate the nutrition of fresh forage.

  3. [Evaluation of fermentation character of alfalfa silage through near infrared reflectance spectroscopy (NIRS)].

    PubMed

    Chen, Peng-fei; Rong, Yu-ping; Han, Jian-guo

    2008-12-01

    It is very important to evaluate the fermentation character of alfalfa silage using near infrared reflectance spectroscopy technology (NIRS) for animal production, including the content of NH3-N, lactic acid, acetic acid and butyric acid in silage. In order to evaluate the feasibility of using NIRS to analyze the formation character of alfalfa silage, the near infrared reflectance spectroscopy models were built for NH3-N, lactic acid, zcetic acid and butyric acid in this experiment. Partial least square regression (PLS), Fourier transform technology and sample preparation with liquid nitrogen technology were used to optimize the model. The analyzed samples were obtained with different cultivars, maturity, cuttings and ensiling method. The determination of cross validation was between 0.6024 and 0.9497. The standard errors of cross validation were between 5.59 x 10(-1) and 3.78 g x kg(-1) fresh weight. The validation samples were used to test the performance of the models. The correlation coefficients between the chemical value and the NIRS value were between 0.8826 and 0.9853, and the root mean square errors of prediction were between 5.71 x 10(-1) and 3.15 g x kg(-1) fresh weight. The results showed the NIRS could evaluate the fermentation of the fresh forage.

  4. Glucose quantification in dried-down nanoliter samples using mid-infrared attenuated total reflection spectroscopy.

    PubMed

    Diessel, Edgar; Willmann, Stefan; Kamphaus, Peter; Kurte, Roland; Damm, Uwe; Heise, H Michael

    2004-04-01

    The aim of this study was to determine the feasibility of minimally invasive glucose concentration measurement of a body fluid within the physiologically important range below 100 nL with a number of samples such as interstitial fluid, plasma, or whole blood using mid-infrared spectroscopy, but starting with preliminary measurements on samples of simple aqueous glucose solutions. The Fourier transform infrared spectrometer was equipped with a Golden Gate single reflection diamond attenuated total reflection (ATR) accessory and a room-temperature pyroelectric detector. As the necessary detection limits can be achieved only for dried samples within the spectrometric conditions realized by a commercial instrument, the work focused on the optimization of such ATR measurements. We achieved quantification of samples with volumes as low as 7 nL between 10 and 600 mg/dL. The standard error of prediction (SEP) for the concentration range 10-100 mg/dL is 3.2 mg/dL with full interval data between 1180 and 940 cm(-1). The performance of the prediction is given by a coefficient of variation of prediction (CV(pred) ) of 6.2%. When all samples within the whole concentration range are included, the SEP increases to 20.2 mg/dL, and hence the CV(pred) to 10.6% due to a nonlinear signal dependence on glucose concentration. A detection limit for glucose of 0.7 ng with a signal-to-noise ratio of 10 was obtained.

  5. Combination of infrared thermography and reflectance spectroscopy for precise classification of hair follicle stage

    NASA Astrophysics Data System (ADS)

    Wang, Jianru; Guan, Yue; Liu, Caihua; Zhu, Dan

    2015-03-01

    Hair follicles enjoy continual cycle of anagen, catagen and telogen all life. They not only provide a unique opportunity to study the physiological mechanism of organ regeneration, but also benefit to guide the treatment of organ repair in regenerative medicine. Usually, the histological examination as a gold standard has been applied to determine the stage of hair follicle cycle, but noninvasive classification of hair cycle in vivo remains unsolved. In this study, the thermal infrared imager was applied to measure the temperature change of mouse dorsal skin with hair follicle cycle, and the change of diffuse reflectance was monitored by the optical fiber spectrometer. Histological examination was used to verify the hair follicle stages. The results indicated that the skin temperature increased at the beginning of anagen. After having stayed a high value for several days, the temperature began to decrease. At the same time, the skin diffuse reflectance decreased until the end of this period. Then the temperature increased gradually after slightly decreased when the hair follicle entered into catagen stage, and the diffuse reflectance increased at this time. In telogen, both the temperature and the diffuse reflectance went back to a steady state all the time. Sub-stages of hair follicle cycle could be distinguished based on the joint curves. This study provided a new method to noninvasively recognize the hair follicle stage, and should be valuable for the basic and therapeutic investigations on hair regeneration.

  6. Classification of the waxy condition of durum wheat by near infrared reflectance spectroscopy using wavelets and a genetic algorithm

    USDA-ARS?s Scientific Manuscript database

    Near infrared (NIR) reflectance spectroscopy has been applied to the problem of differentiating four genotypes of durum wheat: ‘waxy’, wx-A1 null, wx-B1 null and wild type. The test data consisted of 95 NIR reflectance spectra of wheat samples obtained from a USDA-ARS wheat breeding program. A two...

  7. Near infrared-modulated propulsion of catalytic Janus polymer multilayer capsule motors.

    PubMed

    Wu, Yingjie; Si, Tieyan; Lin, Xiankun; He, Qiang

    2015-01-11

    The use of a near-infrared (NIR) laser for reversible modulation of a bubble-driven Janus polymer capsule motor is demonstrated. This process was mediated through illumination of the metal face of the Janus capsule motor at the critical concentration of peroxide fuel. Such an effective control of the propulsion of chemically powered microengines holds a considerable promise for diverse applications.

  8. Characterization of a variable angle reflection Fourier transform infrared accessory modified for surface plasmon resonance spectroscopy.

    PubMed

    Menegazzo, Nicola; Kegel, Laurel L; Kim, Yoon-Chang; Booksh, Karl S

    2010-10-01

    The Harrick AutoSeagull variable angle reflection accessory for Fourier transform infrared (FT-IR) spectrometers provides access to various spectroscopic techniques in a highly flexible platform. In particular, its ability to perform total internal reflection measurements is of interest because it also forms the basis for surface plasmon resonance (SPR) spectroscopy in prism-based configurations. The work presented here discusses the modification of the AutoSeagull to perform SPR spectroscopy, allowing for easy incorporation of the technique into most common FT-IR spectrometers. The wavelength dependency of the dielectric constant of the plasmon-supporting metal (in our case, gold) is largely responsible for the sensitivity attributed to changes in the sample's refractive index (RI) monitored by SPR spectroscopy. Furthermore, the optical properties of gold are such that when near-infrared (NIR) and/or mid-infrared (mid-IR) wavelengths are used to excite surface plasmons, higher sensitivities to RI changes are experienced compared to surface plasmons excited with visible wavelengths. The result is that in addition to instrumental simplicity, SPR analysis on FT-IR spectrometers, as permitted by the modified AutoSeagull, also benefits from the wavelength ranges accessible. Adaptation of the AutoSeagull to SPR spectroscopy involved the incorporation of slit apertures to minimize the angular spread reaching the detector, resulting in sharper SPR "dips" but at the cost of noisier spectra. In addition, discussion of the system's analytical performance includes comparison of dip quality as a function of slit size, tailoring of the dip minima location with respect to incident angle, and sensitivity to bulk RI changes.

  9. Improved near-infrared ocean reflectance correction algorithm for satellite ocean color data processing.

    PubMed

    Jiang, Lide; Wang, Menghua

    2014-09-08

    A new approach for the near-infrared (NIR) ocean reflectance correction in atmospheric correction for satellite ocean color data processing in coastal and inland waters is proposed, which combines the advantages of the three existing NIR ocean reflectance correction algorithms, i.e., Bailey et al. (2010) [Opt. Express18, 7521 (2010)Appl. Opt.39, 897 (2000)Opt. Express20, 741 (2012)], and is named BMW. The normalized water-leaving radiance spectra nLw(λ) obtained from this new NIR-based atmospheric correction approach are evaluated against those obtained from the shortwave infrared (SWIR)-based atmospheric correction algorithm, as well as those from some existing NIR atmospheric correction algorithms based on several case studies. The scenes selected for case studies are obtained from two different satellite ocean color sensors, i.e., the Moderate Resolution Imaging Spectroradiometer (MODIS) on the satellite Aqua and the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP), with an emphasis on several turbid water regions in the world. The new approach has shown to produce nLw(λ) spectra most consistent with the SWIR results among all NIR algorithms. Furthermore, validations against the in situ measurements also show that in less turbid water regions the new approach produces reasonable and similar results comparable to the current operational algorithm. In addition, by combining the new NIR atmospheric correction with the SWIR-based approach, the new NIR-SWIR atmospheric correction can produce further improved ocean color products. The new NIR atmospheric correction can be implemented in a global operational satellite ocean color data processing system.

  10. Simulation of oceanic whitecaps and their reflectance characteristics in the short wavelength infrared.

    PubMed

    Schwenger, Frédéric; Repasi, Endre

    2017-02-20

    The knowledge of the spatial energy (or power) distribution of light beams reflected at the dynamic sea surface is of great practical interest in maritime environments. For the estimation of the light energy reflected into a specific spatial direction a lot of parameters need to be taken into account. Both whitecap coverage and its optical properties have a large impact upon the calculated value. In published literature, for applications considering vertical light propagation paths, such as bathymetric lidar, the reflectance of sea surface and whitecaps are approximated by constant values. For near-horizontal light propagation paths the optical properties of the sea surface and the whitecaps must be considered in greater detail. The calculated light energy reflected into a specific direction varies statistically and depends largely on the dynamics of the wavy sea surface and the dynamics of whitecaps. A 3D simulation of the dynamic sea surface populated with whitecaps is presented. The simulation considers the evolution of whitecaps depending on wind speed and fetch. The radiance calculation of the maritime scene (open sea/clear sky) populated with whitecaps is done in the short wavelength infrared spectral band. Wave hiding and shadowing, especially occurring at low viewing angles, are considered. The specular reflection of a light beam at the sea surface in the absence of whitecaps is modeled by an analytical statistical bidirectional reflectance distribution function (BRDF) of the sea surface. For whitecaps, a specific BRDF is used by taking into account their shadowing function. To ensure the credibility of the simulation, the whitecap coverage is determined from simulated image sequences for different wind speeds and compared to whitecap coverage functions from literature. The impact of whitecaps on the radiation balance for bistatic configuration of light source and receiver is calculated for a different incident (zenith/azimuth angles) of the light beam and

  11. Hygrothermal degradation of 3-glycidoxypropyltrimethoxysilane films studied by neutron and X-ray reflectivity and attenuated total reflection infrared spectroscopy.

    SciTech Connect

    Tallant, David Robert; Garcia, Manuel Joseph; Majewski, Jaroslaw; Kent, Michael Stuart; Yim, Hyun

    2005-05-01

    Thin films of organosilanes have great technological importance in the areas of adhesion promotion, durability, and corrosion resistance. However, it is well-known that water can degrade organosilane films, particularly at elevated temperatures. In this work, X-ray and neutron reflectivity (XR and NR) were combined with attenuated total reflection infrared (ATR-IR) spectroscopy to study the chemical and structural changes within thin films of (3-glycidoxypropyl)trimethoxysilane (GPS) after exposure for various periods of time to air saturated with either D{sub 2}O or H{sub 2}O at 80 C. For NR and XR, ultrathin ({approx}100 {angstrom}) films were prepared by spin-coating. Both D{sub 2}O and H{sub 2}O provide neutron scattering contrast with GPS. Variations in the neutron scattering length density (SLD) profiles (a function of mass density and atomic composition) with conditioning time were measured after drying the samples out and also swelled with H{sub 2}O or D{sub 2}O vapor at room temperature. For samples that were dried out prior to measurement, little or no change was observed for H{sub 2}O conditioning up to 3.5 days, but large changes were observed after 30 days of conditioning. The range of conditioning time for this structural change was narrowed to between 4 and 10 days with XR. The SLD profiles indicated that the top portion of the GPS film was transformed into a thick low-density layer after conditioning, but the bottom portion showed little structural change. A previous NR study of as-prepared GPS films involving swelling with deuterated nitrobenzene showed that the central portion of the film has much lower cross-link density than the region nearest the substrate. The present data show that the central portion also swells to a much greater extent with water and hydrolyzes more rapidly. The chemical degradation mechanism was identified by IR as hydrolysis of siloxane bonds. For ATR-IR, GPS films were prepared by dip-coating, which resulted in a greater

  12. Optical inspection of smartphone camera modules by near-infrared low-coherence interferometry

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Yun; Hyun, Sang-Won; Kim, Young-Jin; Kim, Seung-Woo

    2016-09-01

    High-resolution cameras used for smartphones are comprised of multiple aspheric lenses, a spectral filter, and a semiconductor image sensor, which are packaged together into a single module with tight geometrical tolerances. We investigated the technical possibility of near-infrared low-coherence interferometry for nondestructive geometrical inspection of the complex camera module to examine the inside packaging state. This tomographic scheme enabled us to measure the relative axial position of each inside component and also the lateral surface profile of the image sensor, allowing for comprehensive three-dimensional quality assurance of the whole camera module during the packaging process.

  13. Bio-inspired, subwavelength surface structures to control reflectivity, transmission, and scattering in the infrared

    NASA Astrophysics Data System (ADS)

    Lora Gonzalez, Federico

    Controlling the reflection of visible and infrared (IR) light at interfaces is extremely important to increase the power efficiency and performance of optics, electro-optical and (thermo)photovoltaic systems. The eye of the moth has evolved subwavelength protuberances that increase light transmission into the eye tissue and prevent reflection. The subwavelength protuberances effectively grade the refractive index from that of air (n=1) to that of the tissue (n=1.4), making the interface gradual, suppressing reflection. In theory, the moth-eye (ME) structures can be implemented with any material platform to achieve an antireflectance effect by scaling the pitch and size of protuberances for the wavelength range of interest. In this work, a bio-inspired, scalable and substrate-independent surface modification protocol was developed to realize broadband antireflective structures based on the moth-eye principle. Quasi-ordered ME arrays were fabricated in IR relevant materials using a colloidal lithography method to achieve highly efficient, omni-directional transmission of mid and far infrared (IR) radiation. The effect of structure height and aspect ratio on transmittance and scattering is explored, with discussion on experimental techniques and effective medium theory (EMT). The highest aspect ratio structures (AR = 9.4) achieved peak single-side transmittance of 98%, with >85% transmission for lambda = 7--30 microns. A detailed photon balance constructed by transmission, forward scattering, specular reflection and diffuse reflection measurements to quantify optical losses due to near-field effects will be discussed. In addition, angle-dependent transmission measurements showed that moth-eye structures provide superior antireflective properties compared to unstructured interfaces over a wide angular range (0--60° incidence). Finally, subwavelength ME structures are incorporated on a Si substrate to enhance the absorption of near infrared (NIR) light in PtSi films to

  14. Modulation of retrieval processing reflects accuracy of emotional source memory.

    PubMed

    Smith, Adam P R; Henson, Richard N A; Rugg, Michael D; Dolan, Raymond J

    2005-01-01

    There is considerable evidence that encoding and consolidation of memory are modulated by emotion, but the retrieval of emotional memories is not well characterized. Here we manipulated the emotional context with which affectively neutral stimuli were associated during encoding, allowing us to examine neural activity associated with retrieval of emotional memories without confounding the emotional attributes of cue items and the retrieved context. Using a source memory procedure we were also able to compare how retrieval processing was modulated when the emotional encoding context was recollected or not. An interaction between emotional encoding context and accuracy of source memory revealed that successful retrieval of emotional context was associated with activity in left amygdala, and a left frontotemporal network including anterior insula, prefrontal cortex and cingulate. In contrast, when contextual retrieval was unsuccessful, items encoded in emotional contexts elicited enhanced activity in right amygdala and a right-lateralized network that included extrastriate visual areas. These findings indicate distinct effects of emotion on successful and unsuccessful retrieval of source information, including lateralization of amygdala responses.

  15. Dynamics and control of flexible spinning solar sails under reflectivity modulation

    NASA Astrophysics Data System (ADS)

    Mu, Junshan; Gong, Shengping; Ma, Pengbin; Li, Junfeng

    2015-10-01

    Electrochromic devices have been used for the attitude control of a spinning solar sail in a deep space mission by modulating the reflectivity of the sail membrane. As a flexible spinning solar sail has no rigid structure to support its membrane, the distributed load due to solar radiation will lead to the deformation of the sail membrane, and the control torque generated by reflectivity modulation can introduce oscillatory motion to the membrane. By contrast, the deformation and oscillatory motion of the sail membrane have an impact on the performance of the reflectivity control. This paper investigates the dynamics and control of flexible spinning solar sails under reflectivity modulation. The static deformation of a spinning sail membrane subjected to solar radiation pressure in an equilibrium state is analyzed. The von Karman theory is used to obtain the displacements and the stress distribution in the equilibrium states. A simplified analytical first-order mode is chosen to model the membrane oscillation. The coupled membrane oscillation-attitude-orbit dynamics are considered for a GeoSail formation flying mission. The relative attitude and orbit control of flexible spinning solar sails under reflectivity modulation are numerically tested. The simulations indicate that the membrane deformation and oscillation have a lower impact on the control of the reflectivity modulated sails than the increase of the spinning rate.

  16. Nondestructive inspection of organic films on sandblasted metals using diffuse reflectance infrared spectroscopy

    SciTech Connect

    Powell, G.L.; Cox, R.L.; Barber, T.E.; Neu, J.T.

    1996-07-08

    Diffuse reflectance infrared spectroscopy is a very useful tool for the determination of surface contamination and characterization of films in manufacturing applications. Spectral data from the surfaces of a host of practical materials may be obtained with sufficient insensitivity to characterize relatively thick films, such as paint, and the potential exists to detect very thin films, such as trace oil contamination on metals. The SOC 400 Surface Inspection Machine/InfraRed (SIMIR) has been developed as a nondestructive inspection tool to exploit this potential in practical situations. This SIMIR is a complete and ruggidized Fourier transform infrared spectrometer with a very efficient and robust barrel ellipse diffuse reflectance optical collection system and operating software system. The SIMIR weighs less than 8 Kg, occupies less than 14 L volume, and may be manipulated into any orientation during operation. The surface to be inspected is placed at the focal point of the SIMIR by manipulating the SIMIR or the surface. The SIMIR may or may not contact the surface being inspected. For flat or convex items, there are no size limits to items being inspected. For concave surfaces, the SIMIR geometry limits the surface to those having a radius of curvature greater than 0.2 m. For highly reflective metal surfaces, the SIMIR has a noise level approaching 1 {times} 10{sup {minus}4} absorbance units, which is sufficient for detecting nanometer thick organic film residues on metals. The use of this nondestructive inspection tool is demonstrated by the spatial mapping of organic stains on sand blasted metals in which organic stains such as silicone oils, mineral oils, and triglycerides are identified both qualitatively and quantitatively over the surface of the metal specimen.

  17. Single-source bidirectional free-space optical communications using reflective SOA-based amplified modulating retro-reflection

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyan; Feng, Xianglian; Zhang, Peng; Wang, Tianshu; Gao, Shiming

    2017-03-01

    A novel amplified modulating retro-reflector (AMRR) based on a reflective semiconductor optical amplifier (RSOA) is proposed and a bidirectional free-space optical communication (FSO) system including both downstream and upstream links is experimentally demonstrated with only a single light source using this AMRR. The RSOA-based AMRR can provide a net gain more than 4 dB and support the modulation bit rate up to 1.25 Gbit/s. The bidirectional FSO transmission performance is evaluated by observing eye diagrams and measuring bit error rate (BER) results of both 10-Gbit/s DPSK downstream and 1.25-Gbit/s OOK upstream signals. The factors that limit the modulation bit rate and transmission quality are analyzed. The power penalties of both links are less than 0.69 dB in the bidirectional FSO system at the BER of 1×10-3.

  18. Modulation transfer function of antenna-coupled infrared detector arrays.

    PubMed

    Boreman, G D; Dogariu, A; Christodoulou, C; Kotter, D

    1996-11-01

    Individual antenna-coupled IR bolometers have recently been demonstrated at wavelengths near 10 μm. If focal-plane arrays (FPA's) of antenna-coupled detectors can be fabricated, enhancement of IR-imager performance is possible. A first step in the design process is to analyze the image-quality potential of antenna-coupled, FPA-based imagers in terms of the modulation transfer function (MTF). The key step in our analysis is development of a cross-talk MTF that accounts for the electromagnetic coupling between adjacent antennas in the FPA. We find that electromagnetic cross talk will not be a significant image-quality factor in antenna-coupled IR FPA's.

  19. A system for simultaneous near-infrared reflectance and transillumination imaging of occlusal carious lesions

    PubMed Central

    Simon, Jacob C.; Darling, Cynthia L.; Fried, Daniel

    2016-01-01

    Clinicians need technologies to improve the diagnosis of questionable occlusal carious lesions (QOC’s) and determine if decay has penetrated to the underlying dentin. Assessing lesion depth from near-infrared (NIR) images holds great potential due to the high transparency of enamel and stain to NIR light at λ=1300–1700-nm, which allows direct visualization and quantified measurements of enamel demineralization. Unfortunately, NIR reflectance measurements alone are limited in utility for approximating occlusal lesion depth >200-μm due to light attenuation from the lesion body. Previous studies sought to combine NIR reflectance and transillumination measurements taken at λ=1300-nm in order to estimate QOC depth and severity. The objective of this study was to quantify the change in lesion contrast and size measured from multispectral NIR reflectance and transillumination images of natural occlusal carious lesions with increasing lesion depth and severity in order to determine the optimal multimodal wavelength combinations for estimating QOC depth. Extracted teeth with varying amounts of natural occlusal decay were measured using a multispectral-multimodal NIR imaging system at prominent wavelengths within the λ=1300–1700-nm spectral region. Image analysis software was used to calculate lesion contrast and area values between sound and carious enamel regions. PMID:27006524

  20. A system for simultaneous near-infrared reflectance and transillumination imaging of occlusal carious lesions.

    PubMed

    Simon, Jacob C; Darling, Cynthia L; Fried, Daniel

    2016-02-13

    Clinicians need technologies to improve the diagnosis of questionable occlusal carious lesions (QOC's) and determine if decay has penetrated to the underlying dentin. Assessing lesion depth from near-infrared (NIR) images holds great potential due to the high transparency of enamel and stain to NIR light at λ=1300-1700-nm, which allows direct visualization and quantified measurements of enamel demineralization. Unfortunately, NIR reflectance measurements alone are limited in utility for approximating occlusal lesion depth >200-μm due to light attenuation from the lesion body. Previous studies sought to combine NIR reflectance and transillumination measurements taken at λ=1300-nm in order to estimate QOC depth and severity. The objective of this study was to quantify the change in lesion contrast and size measured from multispectral NIR reflectance and transillumination images of natural occlusal carious lesions with increasing lesion depth and severity in order to determine the optimal multimodal wavelength combinations for estimating QOC depth. Extracted teeth with varying amounts of natural occlusal decay were measured using a multispectral-multimodal NIR imaging system at prominent wavelengths within the λ=1300-1700-nm spectral region. Image analysis software was used to calculate lesion contrast and area values between sound and carious enamel regions.

  1. A system for simultaneous near-infrared reflectance and transillumination imaging of occlusal carious lesions

    NASA Astrophysics Data System (ADS)

    Simon, Jacob C.; Darling, Cynthia L.; Fried, Daniel

    2016-02-01

    Clinicians need technologies to improve the diagnosis of questionable occlusal carious lesions (QOC's) and determine if decay has penetrated to the underlying dentin. Assessing lesion depth from near-infrared (NIR) images holds great potential due to the high transparency of enamel and stain to NIR light at λ=1300-1700-nm, which allows direct visualization and quantified measurements of enamel demineralization. Unfortunately, NIR reflectance measurements alone are limited in utility for approximating occlusal lesion depth >200-μm due to light attenuation from the lesion body. Previous studies sought to combine NIR reflectance and transillumination measurements taken at λ=1300-nm in order to estimate QOC depth and severity. The objective of this study was to quantify the change in lesion contrast and size measured from multispectral NIR reflectance and transillumination images of natural occlusal carious lesions with increasing lesion depth and severity in order to determine the optimal multimodal wavelength combinations for estimating QOC depth. Extracted teeth with varying amounts of natural occlusal decay were measured using a multispectral-multimodal NIR imaging system at prominent wavelengths within the λ=1300-1700-nm spectral region. Image analysis software was used to calculate lesion contrast and area values between sound and carious enamel regions.

  2. Infrared Reflectance Analysis of Epitaxial n-Type Doped GaN Layers Grown on Sapphire

    NASA Astrophysics Data System (ADS)

    Tsykaniuk, Bogdan I.; Nikolenko, Andrii S.; Strelchuk, Viktor V.; Naseka, Viktor M.; Mazur, Yuriy I.; Ware, Morgan E.; DeCuir, Eric A.; Sadovyi, Bogdan; Weyher, Jan L.; Jakiela, Rafal; Salamo, Gregory J.; Belyaev, Alexander E.

    2017-06-01

    Infrared (IR) reflectance spectroscopy is applied to study Si-doped multilayer n+/n0/n+-GaN structure grown on GaN buffer with GaN-template/sapphire substrate. Analysis of the investigated structure by photo-etching, SEM, and SIMS methods showed the existence of the additional layer with the drastic difference in Si and O doping levels and located between the epitaxial GaN buffer and template. Simulation of the experimental reflectivity spectra was performed in a wide frequency range. It is shown that the modeling of IR reflectance spectrum using 2 × 2 transfer matrix method and including into analysis the additional layer make it possible to obtain the best fitting of the experimental spectrum, which follows in the evaluation of GaN layer thicknesses which are in good agreement with the SEM and SIMS data. Spectral dependence of plasmon-LO-phonon coupled modes for each GaN layer is obtained from the spectral dependence of dielectric of Si doping impurity, which is attributed to compensation effects by the acceptor states.

  3. Identification of cattle, llama and horse meat by near infrared reflectance or transflectance spectroscopy.

    PubMed

    Mamani-Linares, L W; Gallo, C; Alomar, D

    2012-02-01

    Visible and near infrared reflectance spectroscopy (VIS-NIRS) was used to discriminate meat and meat juices from three livestock species. In a first trial, samples of Longissimus lumborum muscle, corresponding to beef (31) llamas (21) and horses (27), were homogenised and their spectra collected in reflectance (NIRSystems 6500 scanning monochromator, in the range of 400-2500 nm). In the second trial, samples of meat juice (same muscle) from the same species (20 beef, 19 llama and 19 horse) were scanned in folded transmission (transflectance). Discriminating models (PLS regression) were developed against "dummy" variables, testing different mathematical treatments of the spectra. Best models indentified the species of almost all samples by their meat (reflectance) or meat juice (transflectance) spectra. A few (three of beef and one of llama, for meat samples; one of beef and one of horse, for juice samples) were classified as uncertain. It is concluded that NIRS is an effective tool to recognise meat and meat juice from beef, llama and horses.

  4. Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.

    1995-01-01

    Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrite and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O, and adsorbed H2O. The spectral character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micron, 2.2 micron, 2.7 micron, 3 micron, and 6 microns are reported here in spectra measured under a Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micron band depth is 8-17%; this band is much stronger under moist conditions. Under Marslike atmospheric conditions the 1.9-micron feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micron feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3-micron band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micron band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural OH features observed in these materials

  5. Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.

    1995-01-01

    Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrate and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O and adsorbed H2O. The spectal character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micrometers, 2.2 micrometers, 2.7 micrometers, 3 micrometers, and 6 micrometers are reported here in spetra measured under Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micrometer band depth is 8-17%; this band is much stonger under moist conditions. Under Marslike atmospheric conditions the 1.9-micrometer feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micrometer feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3- micrometer band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micromter band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural

  6. Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.

    1995-01-01

    Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrate and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O and adsorbed H2O. The spectal character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micrometers, 2.2 micrometers, 2.7 micrometers, 3 micrometers, and 6 micrometers are reported here in spetra measured under Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micrometer band depth is 8-17%; this band is much stonger under moist conditions. Under Marslike atmospheric conditions the 1.9-micrometer feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micrometer feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3- micrometer band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micromter band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural

  7. Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.

    1995-01-01

    Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrite and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O, and adsorbed H2O. The spectral character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micron, 2.2 micron, 2.7 micron, 3 micron, and 6 microns are reported here in spectra measured under a Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micron band depth is 8-17%; this band is much stronger under moist conditions. Under Marslike atmospheric conditions the 1.9-micron feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micron feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3-micron band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micron band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural OH features observed in these materials

  8. Instrument Reflections and Scene Amplitude Modulation in a Polychromatic Microwave Quadrature Interferometer

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Jones, Jonathan E.; Chavers, Greg

    2003-01-01

    A polychromatic microwave quadrature interferometer has been characterized using several laboratory plasmas. Reflections between the transmitter and the receiver have been observed, and the effects of including reflection terms in the data reduction equation have been examined. An error analysis which includes the reflections, modulation of the scene beam amplitude by the plasma, and simultaneous measurements at two frequencies has been applied to the empirical database, and the results are summarized. For reflection amplitudes around 1096, the reflection terms were found to reduce the calculated error bars for electron density measurements by about a factor of 2. The impact of amplitude modulation is also quantified. In the complete analysis, the mean error bar for high- density measurements is 7.596, and the mean phase shift error for low-density measurements is 1.2". .

  9. Diffuse reflectance near infrared-chemometric methods development and validation of amoxicillin capsule formulations

    PubMed Central

    Khan, Ahmed Nawaz; Khar, Roop Krishen; Ajayakumar, P. V.

    2016-01-01

    Objective: The aim of present study was to establish near infrared-chemometric methods that could be effectively used for quality profiling through identification and quantification of amoxicillin (AMOX) in formulated capsule which were similar to commercial products. In order to evaluate a large number of market products easily and quickly, these methods were modeled. Materials and Methods: Thermo Scientific Antaris II near infrared analyzer with TQ Analyst Chemometric Software were used for the development and validation of the identification and quantification models. Several AMOX formulations were composed with four excipients microcrystalline cellulose, magnesium stearate, croscarmellose sodium and colloidal silicon dioxide. Development includes quadratic mixture formulation design, near infrared spectrum acquisition, spectral pretreatment and outlier detection. According to prescribed guidelines by International Conference on Harmonization (ICH) and European Medicine Agency (EMA) developed methods were validated in terms of specificity, accuracy, precision, linearity, and robustness. Results: On diffuse reflectance mode, an identification model based on discriminant analysis was successfully processed with 76 formulations; and same samples were also used for quantitative analysis using partial least square algorithm with four latent variables and 0.9937 correlation of coefficient followed by 2.17% root mean square error of calibration (RMSEC), 2.38% root mean square error of prediction (RMSEP), 2.43% root mean square error of cross-validation (RMSECV). Conclusion: Proposed model established a good relationship between the spectral information and AMOX identity as well as content. Resulted values show the performance of the proposed models which offers alternate choice for AMOX capsule evaluation, relative to that of well-established high-performance liquid chromatography method. Ultimately three commercial products were successfully evaluated using developed

  10. [Testing of germination rate of hybrid rice seeds based on near-infrared reflectance spectroscopy].

    PubMed

    Li, Yi-nian; Jiang, Dan; Liu, Ying-ying; Ding, Wei-min; Ding, Qi-shuo; Zha, Liang-yu

    2014-06-01

    Germination rate of rice seeds was measured according to technical stipulation of germination testing for agricultural crop seeds at present. There existed many faults for this technical stipulation such as long experimental period, more costing and higher professional requirement. A rapid and non-invasive method was put forward to measure the germination rate of hybrid rice seeds based on near-infrared reflectance spectroscopy. Two varieties of hybrid rice seeds were aged artificially at temperature 45 degrees C and humidity 100% condition for 0, 24, 48, 72, 96, 120 and 144 h. Spectral data of 280 samples for 2 varieties of hybrid rice seeds with different aging time were acquired individually by near-infrared spectra analyzer. Spectral data of 280 samples for 2 varieties of hybrid rice seeds were randomly divided into calibration set (168 samples) and prediction set (112 samples). Gormination rate of rice seed with different aging time was tested. Regression model was established by using partial least squares (PLS). The effect of the different spectral bands on the accuracy of models was analyzed and the effect of the different spectral preprocessing methods on the accuracy of models was also compared. Optimal model was achieved under the whole bands and by using standardization and orthogonal signal correction (OSC) preprocessing algorithms with CM2000 software for spectral data of 2 varieties of hybrid rice seeds, the coefficient of determination of the calibration set (Rc) and that of the prediction set (Rp) were 0.965 and 0.931 individually, standard error of calibration set (SEC) and that of prediction set (SEP) were 1.929 and 2.899 respectively. Relative error between tested value and predicted value for prediction set of rice seeds is below 4.2%. The experimental results show that it is feasible that rice germination rate is detected rapidly and nondestructively by using the near-infrared spectroscopy analysis technology.

  11. Feasibility of conventional and Roundup Ready® soybeans discrimination by different near infrared reflectance technologies.

    PubMed

    Esteve Agelet, Lidia; Gowen, Aoife A; Hurburgh, Charles R; O'Donell, Colm P

    2012-09-15

    Identification and proper labelling of genetically modified organisms is required and increasingly demanded by legislation and consumers worldwide. In this study, the feasibility of three near infrared reflectance technologies (a chemical imaging unit, a commercial diode array instrument, and a light tube non-commercial instrument) were compared for discriminating Roundup Ready® and not genetically modified soybean seeds. Over 200 seeds of each class (Roundup Ready® and conventional) were used. Principal Component Analysis with Artificial Neural Networks (PCA-ANN) and Locally Weighted Principal Component Regression (LW-PCR) were used for creating the discrimination models. Discrimination accuracies when new tested seeds belonged to samples included in the training sets achieved accuracies over 90% of correctly classified seeds for LW-PCR models. The light tube performed the best, while the imaging unit showed the worse accuracies overall. Models validated with new seeds from samples not included in the training set had accuracies of 72-79%.

  12. Determination of moisture in Cheddar cheese by near infrared reflectance spectroscopy.

    PubMed

    Wehling, R L; Pierce, M M

    1988-01-01

    Near infrared reflectance (NIR) spectroscopy was used to determine the moisture content of Cheddar cheese. Through multiple linear regression analysis, a 3-wavelength calibration was developed for use with a commercial filter monochromator instrument. For a validation set of 47 samples, the correlation coefficient squared (r2) between the NIR and oven moisture methods was 0.92, with a standard error of performance (SEP) of 0.38%. Sample temperature was found to significantly affect the spectral response; therefore, it was necessary to equilibrate all samples to a uniform temperature prior to NIR analysis. Aging may also affect the NIR characteristics of cheese, although it was possible to develop a successful calibration that encompassed a wide range of aging times.

  13. Reflection-absorption infrared spectroscopy of thin films using an external cavity quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Phillips, Mark C.; Craig, Ian M.; Blake, Thomas A.

    2013-01-01

    We present experimental demonstrations using a broadly tunable external cavity quantum cascade laser (ECQCL) to perform Reflection-Absorption InfraRed Spectroscopy (RAIRS) of thin layers and residues on surfaces. The ECQCL compliance voltage was used to measure fluctuations in the ECQCL output power and improve the performance of the RAIRS measurements. Absorption spectra from self-assembled monolayers of a fluorinated alkane thiol and a thiol carboxylic acid were measured and compared with FTIR measurements. RAIRS spectra of the explosive compounds PETN, RDX, and tetryl deposited on gold substrates were also measured. Rapid measurement times and low noise were demonstrated, with <1E-3 absorbance noise for a 10 second measurement time.

  14. Evaluation of apparent viscosity of Para rubber latex by diffuse reflection near-infrared spectroscopy.

    PubMed

    Sirisomboon, Panmanas; Chowbankrang, Rawiphan; Williams, Phil

    2012-05-01

    Near-infrared spectroscopy in diffuse reflection mode was used to evaluate the apparent viscosity of Para rubber field latex and concentrated latex over the wavelength range of 1100 to 2500 nm, using partial least square regression (PLSR). The model with ten principal components (PCs) developed using the raw spectra accurately predicted the apparent viscosity with correlation coefficient (r), standard error of prediction (SEP), and bias of 0.974, 8.6 cP, and -0.4 cP, respectively. The ratio of the SEP to the standard deviation (RPD) and the ratio of the SEP to the range (RER) for the prediction were 4.4 and 16.7, respectively. Therefore, the model can be used for measurement of the apparent viscosity of field latex and concentrated latex in quality assurance and process control in the factory.

  15. Fast determination of total ginsenosides content in ginseng powder by near infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Hua-cai; Chen, Xing-dan; Lu, Yong-jun; Cao, Zhi-qiang

    2006-01-01

    Near infrared (NIR) reflectance spectroscopy was used to develop a fast determination method for total ginsenosides in Ginseng (Panax Ginseng) powder. The spectra were analyzed with multiplicative signal correction (MSC) correlation method. The best correlative spectra region with the total ginsenosides content was 1660 nm~1880 nm and 2230nm~2380 nm. The NIR calibration models of ginsenosides were built with multiple linear regression (MLR), principle component regression (PCR) and partial least squares (PLS) regression respectively. The results showed that the calibration model built with PLS combined with MSC and the optimal spectrum region was the best one. The correlation coefficient and the root mean square error of correction validation (RMSEC) of the best calibration model were 0.98 and 0.15% respectively. The optimal spectrum region for calibration was 1204nm~2014nm. The result suggested that using NIR to rapidly determinate the total ginsenosides content in ginseng powder were feasible.

  16. Diffuse-reflectance infrared Fourier transform spectroscopy: new technique of sample preparation

    NASA Astrophysics Data System (ADS)

    Hrebičík, M.; Budínová, G.; Godarská, T.; Vláčil, D.; Vogenseh, Stine B.; Volka, K.

    1997-06-01

    A new technique of measurement of the diffuse-reflectance infrared FT spectra, based on the preparation of a cylinder from the mixture of the sample and powdered KBr under pressure of about 5.85 MPa, has been tested. During the measurement, the axis of the formed cylinder is perpendicular to the direction of the incident light. A repeatability of the measurement of selected bands and also of the background was investigated for hydroquinone, nicotinamide, silica gel, rice, tea and also lyophilized human aqueous humour. The relative standard deviations of log( {1}/{R}) showed a dependence on the character of the measured compound, but in general were comparable or slightly better than those obtained by the standard method of loosely packed cups. The values were better than 1.5% in the most cases. The main advantage of the proposed technique lies in its simplicity and rapidity of obtaining statistically significant data.

  17. Diffuse reflectance near infrared spectroscopy can distinguish normal from enzymatically digested cartilage

    NASA Astrophysics Data System (ADS)

    Brown, C. P.; Bowden, J. C.; Rintoul, L.; Meder, R.; Oloyede, A.; Crawford, R. W.

    2009-09-01

    A non-destructive, diffuse reflectance near infrared spectroscopy (DR-NIRS) approach is considered as a potential tool for determining the component-level structural properties of articular cartilage. To this end, DR-NIRS was applied in vitro to detect structural changes, using principal component analysis as the statistical basis for characterization. The results show that this technique, particularly with first-derivative pretreatment, can distinguish normal, intact cartilage from enzymatically digested cartilage. Further, this paper establishes that the use of DR-NIRS enables the probing of the full depth of the uncalcified cartilage matrix, potentially allowing the assessment of degenerative changes in joint tissue, independent of the site of initiation of the osteoarthritic process.

  18. Pectin functionalised by fatty acids: Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic characterisation

    NASA Astrophysics Data System (ADS)

    Kamnev, Alexander A.; Calce, Enrica; Tarantilis, Petros A.; Tugarova, Anna V.; De Luca, Stefania

    2015-01-01

    Chemically modified pectin derivatives obtained by partial esterification of its hydroxyl moieties with fatty acids (FA; oleic, linoleic and palmitic acids), as well as the initial apple peel pectin were comparatively characterised using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. Characteristic changes observed in DRIFT spectra in going from pectin to its FA esters are related to the corresponding chemical modifications. Comparing the DRIFT spectra with some reported data on FTIR spectra of the same materials measured in KBr or NaCl matrices has revealed noticeable shifts of several polar functional groups both in pectin and in its FA-esterified products induced by the halide salts. The results obtained have implications for careful structural analyses of biopolymers with hydrophilic functional groups by means of different FTIR spectroscopic methodologies.

  19. Rapid and nondestructive analysis of pharmaceutical products using near-infrared diffuse reflectance spectroscopy.

    PubMed

    Li, Pao; Du, Guorong; Cai, Wensheng; Shao, Xueguang

    2012-11-01

    Near-infrared diffuse reflectance spectroscopy (NIRDRS) was applied to classification and quantification of azithromycin tablets with the aid of chemometric multivariate analysis. Repeatability was investigated by repeated measurements, and the effect of morphology was examined by preparing the tablets in four forms, i.e. tablet product, tablet without coating, powder of tablet without coating, and powder of tablet. Furthermore, baseline elimination by continuous wavelet transform (CWT) and wavenumber selection was discussed for improving the repeatability and accuracy of the method. The results show that the spectra of the samples in the four forms can be measured with an acceptable repeatability, and classification of manufacture sites and quantitative analysis of the active pharmaceutical ingredient (API) can be achieved by principal component analysis (PCA) and partial least squares (PLS) regression, respectively. More importantly, baseline elimination and wavenumber selection can significantly simplify the calculation and improve the results.

  20. Prediction of Japanese green tea ranking by fourier transform near-infrared reflectance spectroscopy.

    PubMed

    Ikeda, Tatsuhiko; Kanaya, Shigehiko; Yonetani, Tsutomu; Kobayashi, Akio; Fukusaki, Eiichiro

    2007-11-28

    A rapid and easy determination method of green tea's quality was developed by using Fourier transform near-infrared (FT-NIR) reflectance spectroscopy and metabolomics techniques. The method is applied to an online measurement and an online prediction of green tea's quality. FT-NIR was employed to measure green tea metabolites' alteration affected by green tea varieties and manufacturing processes. A set of ranked green tea samples from a Japanese commercial tea contest was analyzed to create a reliable quality-prediction model. As multivariate analyses, principal component analysis (PCA) and partial least-squares projections to latent structures (PLS) were used. It was indicated that the wavenumber region from 5500 to 5200 cm(-1) had high correlation with the quality of the tea. In this study, a reliable quality-prediction model of green tea has been achieved.

  1. Detection of whitening agents in illegal cosmetics using attenuated total reflectance-infrared spectroscopy.

    PubMed

    Deconinck, E; Bothy, J L; Desmedt, B; Courselle, P; De Beer, J O

    2014-09-01

    Cosmetic products containing illegal whitening agents are still found on the European market. They represent a considerable risk to public health, since they are often characterised by severe side effects when used chronically. The detection of such products at customs is not always simple, due to misleading packaging and the existence of products containing only legal components. Therefore there is a need for easy to use equipment and techniques to perform an initial screening of samples. The use of attenuated total reflectance-infrared (ATR-IR) spectroscopy, combined with chemometrics, was evaluated for that purpose. It was found that the combination of ATR-IR with the simple chemometric technique k-nearest neighbours gave good results. A model was obtained in which a minimum of illegal samples was categorised as legal. The correctly classified illegal samples could be attributed to the illegal components present.

  2. Determination of mean-particle size by diffuse reflectance infrared transform spectrometry

    SciTech Connect

    Tsuge, A.; Uwamino, Y.; Ishizuku, T.; Suzuki, K. )

    1993-01-01

    The mean particle diameter of a powder was measured by diffuse reflectance infrared Fourier transform (DRIFT) spectrometry, using a calibration curve relating the spectral intensity, plotted in Kubelka-Munk units, to the mean particle diameter. The particle sizes of three commercially available Si[sub 3]N[sub 4] powders were determined, using the calibration curve. The analytical results agreed well with the results obtained with a light diffraction and scattering particle counter, i.e., a microtrack analyzer, only with the two powders which had a narrow particle-size distribution. The method can, thus, be used to determine the mean particle size of the Si[sub 3]N[sub 4] in an Si[sub 3]N[sub 4]-alumina mixture.

  3. Electrically controlled infrared optical transmission and reflection through metallic grating using NEMS technology

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Kenzo; Fujii, Masamitsu

    2015-12-01

    The enhanced optical properties of metallic subwavelength gratings with very narrow slits have recently been extensively studied in the field of plasmonics. The optical transmission and reflection of such nanostructures, which act as nano-electro-mechanical systems (NEMS) actuators, can be electrically controlled by varying their geometrical parameters, giving them great flexibility for numerous applications in photonics, opto-electronics, and sensing. The previous challenges in controlling the optical properties were overcome by forming a metallic subwavelength grating with an NEMS actuator in mid-air, allowing the grating to be physically moved with the bias voltage. The device can shift the plasmon resonance wavelength with an electrical signal. The resonance wavelength for Wood's anomaly at the infrared region is predicted through simulations to shift by approximately 150 nm. We discuss the effect of polarization on the optical properties and grating mechanism. The reported effect may be used to achieve active spectral tuning and switching in a wide range of applications.

  4. Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS).

    PubMed

    Brunet, Didier; Woignier, Thierry; Lesueur-Jannoyer, Magalie; Achard, Raphaël; Rangon, Luc; Barthès, Bernard G

    2009-11-01

    Chlordecone is a toxic organochlorine insecticide that was used in banana plantations until 1993 in the French West Indies. This study aimed at assessing the potential of near infrared reflectance spectroscopy (NIRS) for determining chlordecone content in Andosols, Nitisols and Ferralsols from Martinique. Using partial least square regression, chlordecone content conventionally determined through gas chromatography-mass spectrometry could be correctly predicted by NIRS (Q(2) = 0.75, R(2) = 0.82 for the total set), especially for samples with chlordecone content <12 mg kg(-1) or when the sample set was rather homogeneous (Q(2) = 0.91, R(2) = 0.82 for the Andosols). Conventional measures and NIRS predictions were poorly correlated for chlordecone content >12 mg kg(-1), nevertheless ca. 80% samples were correctly predicted when the set was divided into three or four classes of chlordecone content. Thus NIRS could be considered a time- and cost-effective method for characterising soil contamination by chlordecone.

  5. Minimally invasive screening for colitis using attenuated total internal reflectance fourier transform infrared spectroscopy.

    PubMed

    Titus, Jitto; Viennois, Emilie; Merlin, Didier; Unil Perera, A G

    2017-03-01

    This article describes a rapid, simple and cost-effective technique that could lead to a screening method for colitis without the need for biopsies or in vivo measurements. This screening technique includes the testing of serum using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy for the colitis-induced increased presence of mannose. Chronic (Interleukin 10 knockout) and acute (Dextran Sodium Sulphate-induced) models for colitis are tested using the ATR-FTIR technique. Arthritis (Collagen Antibody Induced Arthritis) and metabolic syndrome (Toll like receptor 5 knockout) models are also tested as controls. The marker identified as mannose uniquely screens and distinguishes the colitic from the non-colitic samples and the controls. The reference or the baseline spectrum could be the pooled and averaged spectra of non-colitic samples or the subject's previous sample spectrum. This shows the potential of having individualized route maps of disease status, leading to personalized diagnosis and drug management.

  6. Infrared Reflection-Absorption Spectroscopy: Principles and Applications to Lipid-Protein Interaction in Langmuir Films

    PubMed Central

    Mendelsohn, Richard; Mao, Guangru; Flach, Carol R.

    2010-01-01

    Infrared reflection-absorption spectroscopy (IRRAS) of lipid/protein monolayer films in situ at the air/water interface provides unique molecular structure and orientation information from the film constituents. The technique is thus well suited for studies of lipid/protein interaction in a physiologically relevant environment. Initially, the nature of the IRRAS experiment is described and the molecular structure information that may be obtained is recapitulated. Subsequently, several types of applications, including the determination of lipid chain conformation and tilt as well as elucidation of protein secondary structure are reviewed. The current article attempts to provide the reader with an understanding of the current capabilities of IRRAS instrumentation and the type of results that have been achieved to date from IRRAS studies of lipids, proteins and lipid/protein films of progressively increasing complexity. Finally, possible extensions of the technology are briefly considered. PMID:20004639

  7. Reflection-Absorption Infrared Spectroscopy of Thin Films Using an External Cavity Quantum Cascade Laser

    SciTech Connect

    Phillips, Mark C.; Craig, Ian M.; Blake, Thomas A.

    2013-02-04

    We present experimental demonstrations using a broadly tunable external cavity quantum cascade laser (ECQCL) to perform Reflection-Absorption InfraRed Spectroscopy (RAIRS) of thin layers and residues on surfaces. The ECQCL compliance voltage was used to measure fluctuations in the ECQCL output power and improve the performance of the RAIRS measurements. Absorption spectra from self-assembled monolayers of a fluorinated alkane thiol and a thiol carboxylic acid were measured and compared with FTIR measurements. RAIRS spectra of the explosive compounds PETN, RDX, and tetryl deposited on gold substrates were also measured. Rapid measurement times and low noise were demonstrated, with < 1E-3 absorbance noise for a 10 second measurement time.

  8. Studying substrate binding to reconstituted secondary transporters by attenuated total reflection infrared difference spectroscopy.

    PubMed

    Lórenz-Fonfría, Víctor A; León, Xavier; Padrós, Esteve

    2012-01-01

    The determination of protein conformational changes induced by the interaction of substrates with secondary transporters is an important step toward the elucidation of their transport mechanism. Since conformational changes in a protein alter its vibrational patterns, they can be detected with high sensitivity by infrared difference (IR(diff)) spectroscopy without the need for external probes. We describe a general procedure to obtain substrate-induced IR(diff) spectra by alternating perfusion of buffers over an attenuated total reflection (ATR) crystal containing an adhered film of a membrane protein reconstituted in lipids. As an example, we provide specific protocols to obtain melibiose and Na(+)-induced ATR-IR(diff) spectra of reconstituted melibiose permease, a sodium/melibiose co-transporter from E. coli. The presented methodology is applicable in principle to any membrane protein, provided that it can be purified and reconstituted in functional form, and appropriate substrates are available.

  9. Diffuse reflectance mid-infrared spectroscopy as a tool for the identification of surface contamination on sandblasted metals

    SciTech Connect

    Powell, G.L.; Barber, T.E.; Neu, J.T.; Nerren, B.H.

    1996-07-30

    The SOC 400 Surface Inspection Machine/Infrared (SIMIR) is a small, ruggedized Fourier transform infrared spectrometer having dedicated diffuse reflectance optics. The SOC 400 was designed for the purpose of detecting (qualitatively and quantitatively) oil stains on the inside surface of solid rocket motor casings in the as-sandblasted and cleaned condition at levels approaching 1 mg ft{sup {minus}2}. The performance of this instrument is described using spectral mapping techniques.

  10. Diffuse Reflectance Mid-Infrared Spectroscopy as a Tool for the Identification of Surface Contamination on Sandblasted Metals

    NASA Technical Reports Server (NTRS)

    Powell, Louis G.; Barber, Tye E.; Neu, John T.; Nerren, Billy H.

    1997-01-01

    The SOC 400 Surface Inspection Machine/Infrared (SIMIR) is a small, ruggedized Fourier transform infrared spectrometer having dedicated diffuse reflectance optics. The SOC 400 was designed for the purpose of detecting (qualitatively and quantitatively) oil stains on the inside surface of solid rocket motor casings in the as-sandblasted and cleaned condition at levels approaching 1 mg. sq ft. The performance of this instrument is described using spectral mapping techniques.

  11. Diffuse Reflectance Mid-Infrared Spectroscopy as a Tool for the Identification of Surface Contamination on Sandblasted Metals

    NASA Technical Reports Server (NTRS)

    Powell, Louis G.; Barber, Tye E.; Neu, John T.; Nerren, Billy H.

    1997-01-01

    The SOC 400 Surface Inspection Machine/Infrared (SIMIR) is a small, ruggedized Fourier transform infrared spectrometer having dedicated diffuse reflectance optics. The SOC 400 was designed for the purpose of detecting (qualitatively and quantitatively) oil stains on the inside surface of solid rocket motor casings in the as-sandblasted and cleaned condition at levels approaching 1 mg. sq ft. The performance of this instrument is described using spectral mapping techniques.

  12. Detection of citrus Huanglongbing by Fourier transform infrared-attenuated total reflection spectroscopy.

    PubMed

    Hawkins, Samantha A; Park, Bosoon; Poole, Gavin H; Gottwald, Timothy; Windham, William R; Lawrence, Kurt C

    2010-01-01

    Citrus Huanglongbing (HLB, also known as citrus greening disease) was discovered in Florida in 2005 and is spreading rapidly amongst the citrus growing regions of the state. Detection via visual symptoms of the disease is not a long-term viable option. New techniques are being developed to test for the disease in its earlier presymptomatic stages. Fourier transform infrared-attenuated total reflection (FT-IR-ATR) spectroscopy is a candidate for rapid, inexpensive, early detection of the disease. The mid-infrared region of the spectrum reveals dramatic changes that take place in the infected leaves when compared to healthy non-infected leaves. The carbohydrates that give rise to peaks in the 900-1180 cm(-1) range are reliable in distinguishing leaves from infected plants versus non-infected plants. A model based on chemometrics was developed using the spectra from 179 plants of known disease status. This model then correctly predicted the status of >95% of the plants tested.

  13. Attenuated Total Internal Reflectance Infrared Spectroscopy (ATR-FTIR): A Quantitative Approach for Kidney Stone Analysis

    PubMed Central

    Gulley-Stahl, Heather J.; Haas, Jennifer A.; Schmidt, Katherine A.; Evan, Andrew P.; Sommer, André J.

    2011-01-01

    The impact of kidney stone disease is significant worldwide, yet methods for quantifying stone components remain limited. A new approach requiring minimal sample preparation for the quantitative analysis of kidney stone components has been investigated utilizing attenuated total internal reflectance infrared spectroscopy (ATR-FTIR). Calcium oxalate monohydrate (COM) and hydroxylapatite (HAP), two of the most common constituents of urinary stones, were used for quantitative analysis. Calibration curves were constructed using integrated band intensities of four infrared absorptions versus concentration (weight %). The correlation coefficients of the calibration curves range from 0.997 to 0.93. The limits of detection range from 0.07 ± 0.02% COM/HAP where COM is the analyte and HAP the matrix to 0.26 ± 0.07% HAP/COM where HAP is the analyte and COM the matrix. This study shows that linear calibration curves can be generated for the quantitative analysis of stone mixtures provided the system is well understood especially with respect to particle size. PMID:19589213

  14. Recent progress in noninvasive diabetes screening by diffuse reflectance near-infrared skin spectroscopy

    NASA Astrophysics Data System (ADS)

    Heise, H. M.; Haiber, S.; Licht, M.; Ihrig, D. F.; Moll, C.; Stuecker, M.

    2006-02-01

    Near infrared spectroscopy exhibits a tremendous potential for clinical chemistry and tissue pathology. Owing to its penetration depth into human skin, near infrared radiation can probe chemical and structural information non-invasively. Metabolic diseases such as diabetes mellitus increase nonenzymatic glycation with the effect of glucose molecules bonding chemically to proteins. In addition, glycation accumulates on tissue proteins with the clearest evidence found in extracellular skin collagen, affecting also covalent crosslinking between adjacent protein strands, which reduces their flexibility, elasticity, and functionality. Non-enzymatically glycated proteins in human skin and following chemical and structural skin changes were our spectroscopic target. We carried out measurements on 109 subjects using two different NIR-spectrometers equipped with diffuse reflection accessories. Spectra of different skin regions (finger and hand/forearm skin) were recorded for comparison with clinical blood analysis data and further patient information allowing classification into diabetics and non-diabetics. Multivariate analysis techniques for supervised classification such as linear discriminant analysis (LDA) were applied using broad spectral interval data or a number of optimally selected wavelengths. Based on fingertip skin spectra recorded by fiber-optics, it was possible to classify diabetics and non-diabetics with a maximum accuracy of 87.8 % using leave-5-out cross-validation (sensitivity of 87.5. %, specificity of 88.2 %). With the results of this study, it can be concluded that ageing and glycation at elevated levels cannot always be separated from each other.

  15. Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation.

    PubMed

    Alonso-Ramos, Carlos; Nedeljkovic, Milos; Benedikovic, Daniel; Penadés, Jordi Soler; Littlejohns, Callum G; Khokhar, Ali Z; Pérez-Galacho, Diego; Vivien, Laurent; Cheben, Pavel; Mashanovich, Goran Z

    2016-09-15

    A broad transparency range of its constituent materials and compatibility with standard fabrication processes make germanium-on-silicon (Ge-on-Si) an excellent platform for the realization of mid-infrared photonic circuits. However, the comparatively large Ge waveguide thickness and its moderate refractive index contrast with the Si substrate hinder the implementation of efficient fiber-chip grating couplers. We report for the first time, to the best of our knowledge, a single-etch Ge-on-Si grating coupler with an inversely tapered access stage, operating at a 3.8 μm wavelength. Optimized grating excitation yields a coupling efficiency of -11  dB (7.9%), the highest value reported for a mid-infrared Ge-on-Si grating coupler, with reflectivity below -15  dB (3.2%). The large periodicity of our higher-order grating design substantially relaxes the fabrication constraints. We also demonstrate that a focusing geometry allows a 10-fold reduction in inverse taper length, from 500 to 50 μm.

  16. Quantitative diffuse reflectance infrared fourier transform spectrometric studies of cementitious blends

    SciTech Connect

    Rebagay, T.V.; Dodd, D.A.

    1989-07-01

    The effective immobilization of low-level radioactive liquid wastes in the form of grout depends on the quality of the dry cementitious blends used in the grout formulation. Variation in the mix ratios of the components of the blend can cause detrimental effects on the processing behavior of the grout slurry and the final properties of the cured grout. Thus the blends require thorough chemical characterization and monitoring by strict quality control protocols. In an earlier work at our laboratories, Fourier transform infrared- transmission method has been successfully applied in the analysis of blends of cement, fly ash, and clays. However, this method involved time-consuming sample preparation resulting in slow turnaround for repetitive sampling. A practical approach to quality control required a fast and simple method for the analysis of the blends. This paper describes a diffuse reflectance infrared Fourier transform (DRIFT) spectrometric procedure for the routine examination of neat blends consisting of cement, fly ash, clays and/or blast furnace slags. (1 ref., 10 figs., 4 tabs.)

  17. Attenuated total reflectance Fourier-transform infrared spectroscopy of carboxylic acids adsorbed onto mineral surfaces

    NASA Astrophysics Data System (ADS)

    Kubicki, J. D.; Schroeter, L. M.; Itoh, M. J.; Nguyen, B. N.; Apitz, S. E.

    1999-09-01

    A suite of naturally-occurring carboxylic acids (acetic, oxalic, citric, benzoic, salicylic and phthalic) and their corresponding sodium salts were adsorbed onto a set of common mineral substrates (quartz, albite, illite, kaolinite and montmorillonite) in batch slurry experiments. Solution pH's of approximately 3 and 6 were used to examine the effects of pH on sorption mechanisms. Attenuated total reflectance Fourier-transform infrared (ATR FTIR) spectroscopy was employed to obtain vibrational frequencies of the organic ligands on the mineral surfaces and in solution. UV/visible spectroscopy on supernatant solutions was also employed to confirm that adsorption from solution had taken place for benzoic, salicylic and phthalic acids. Molecular orbital calculations were used to model possible surface complexes and interpret the experimental spectra. In general, the tectosilicates, quartz and albite feldspar, did not chemisorb (i.e., strong, inner-sphere adsorption) the carboxylate anions in sufficient amounts to produce infrared spectra of the organics after rinsing in distilled water. The clays (illite, kaolinite and montmorillonite) each exhibited similar ATR FTIR spectra. However, the illite sample used in this study reacted to form strong surface and aqueous complexes with salicylic acid before being treated to remove free Fe-hydroxides. Chemisorption of carboxylic acids onto clays is shown to be limited without the presence of Fe-hydroxides within the clay matrix.

  18. Development of an ultra-compact mid-infrared attenuated total reflectance spectrophotometer

    NASA Astrophysics Data System (ADS)

    Kim, Dong Soo; Lee, Tae-Ro; Yoon, Gilwon

    2014-07-01

    Mid-infrared spectroscopy has been an important tool widely used for qualitative analysis in various fields. However, portable or personal use is size and cost prohibitive for either Fourier transform infrared or attenuated total reflectance (ATR) spectrophotometers. In this study, we developed an ultra-compact ATR spectrophotometer whose frequency band was 5.5-11.0 μm. We used miniature components, such as a light source fabricated by semiconductor technology, a linear variable filter, and a pyro-electric array detector. There were no moving parts. Optimal design based on two light sources, a zippered configuration of the array detector and ATR optics could produce absorption spectra that might be used for qualitative analysis. A microprocessor synchronized the pulsed light sources and detector, and all the signals were processed digitally. The size was 13.5×8.5×3.5 cm3 and the weight was 300 grams. Due to its low cost, our spectrophotometer can replace many online monitoring devices. Another application could be for a u-healthcare system installed in the bathroom or attached to a smartphone for monitoring substances in body fluids.

  19. [Determination of degree of polymerization of natural cellulose pulp using near-infrared diffuse reflectance spectroscopy].

    PubMed

    Yi, Ying; Song, Chun-Feng; Yuan, Hong-Fu; Xie, Jin-Chun; Du, Jun-Qi; Li, Xiao-Yu

    2014-09-01

    A new method of near-infrared (NIR) diffuse reflectance spectroscopy is proposed to rapidly determine the degree of polymerization (DP) of natural cellulose (cotton and wood) pulp produced by a new clean pulping process. One hundred and ninety five samples were collected and their DP data were determined by standard method GB/T 9107-1999. The spectroscopy measurement method of the samples was studied and their near-infrared diffuse reflectance spectra were collected. The quantitative DP calibration models of one mixed cotton & wood and two separate cotton and wood pulps were established by partial least squares (PLS). The optimum models were developed using the spectra pretreated by derivative, autoscaling and mean-centering, and their performance is as follows: correlation coefficient of 0.980, 0.993 and 0.886, and RMSEP of 147, 143 and 53, respectively. The accuracy of NIR method was also studied. The results show that the accuracy of the two separate models of cotton and wood is better than that of the mixed model, and the precision of the two separate models is better than that of GB/T9107-1999. The identification model of cotton and wood was also established using principal component analysis (PCA). The result shows that the spectra of cotton and wood pulp have obvious difference, and the model can identify successfully the two kinds of pulp. The result indicates that the new NIR method is feasible to realize the on-line analysis of polymerization degree of natural cellulose pulp with its advantage of rapidness and easy operation.

  20. Near-infrared reflectance and autofluorescence imaging characteristics of choroidal nevi.

    PubMed

    Vallabh, N A; Sahni, J N; Parkes, C K; Czanner, G; Heimann, H; Damato, B

    2016-12-01

    PurposeTo report near-infrared reflectance (NIR-R), near-infrared autofluorescence (NIR-AF) and blue wave autofluorescence (BW-AF) appearance of choroidal nevi using a confocal scanning laser ophthalmoscope (cSLO).Patients and methodsNIR-R, NIR-AF and BW-AF images of choroidal nevi were compared with color fundus photos (CF). Images were graded as hyperreflective if reflectance was much greater than background, hyporeflective if less than background, and isoreflective if the same as the background.ResultsForty-two nevi of 39 patients were imaged. When compared with CF, nevi could be identified on 95% (40/42) NIR-R images (95% CI: 83.5-99.3). On NIR-R 71% (30/42) demonstrated hyperreflectance and 24% (10/42) were hyporeflective. Hyperreflectivity was demonstrated in 96% (23/24) of NIR-AF images (95% CI: 79.1-99.9) and 34% (14/41) of BW-AF images (95% CI: 20.0-50.5). On NIR-R, 29/40 (73%) were apparently smaller in comparison with CF and 11/40 (28%) had the same area. A correlation was found between NIR-R and NIR-AF (P=0.02) but not with BW-AF (P=0.15).ConclusionsNevi can be visualized well using NIR-R and NIR-AF imaging modalities, but are less frequently visible using BW-AF. These changes may be related to melanin within the choroid or chronic changes of the overlying retinal pigment epithelium.

  1. Analysis of visible and near infrared spectral reflectance for assessing metals in soil.

    PubMed

    Rathod, Paresh H; Müller, Ingo; Van der Meer, Freek D; de Smeth, Boudewijn

    2015-10-01

    Visible and near infrared reflectance (VNIR; 350-2500 nm) spectroscopy has greatly been used in soils, especially for studying variability in spectrally active soil components (e.g., organic carbon, clays, and Fe/Al oxides) based on their diagnostic spectral features. In recent years, this technique has also been applied to assess soil metallic ions. In this research, the feasibility of VNIR spectroscopy for determination of soil metals was investigated with two soil data sets: (i) artificially metal-spiked and (ii) in situ metal-contaminated soils. Results showed that reflectance spectra of neither metal-spiked soils with Cd, As, and Pb even at their higher concentrations of 20, 900, and 1200 mg kg(-1), respectively, nor in situ metal-contaminated soils (with concentrations of 30 mg Cd, 3019 mg As, and 5725 mg Pb kg(-1) soil) showed any recognized absorption peaks that correspond to soil metal concentrations. We observed variations in reflectance intensity for in situ metal-contaminated soils only, showing higher reflectance across the entire spectrum for strongly and lower for less metal-contaminated soils. A significant correlation was found between surface soil metals' concentrations and continuum removed spectra, while soil metals were also found significantly associated with soil organic matter and total Fe. A partial least square regression with cross-validation approach produced an acceptable prediction of metals (R (2) = 0.58-0.94) for both soil data sets, metal-spiked and in situ metal-contaminated soils. However, high values of root mean square error ruled out practical application of the achieved prediction models.

  2. Chemical morphology of Areca nut characterized directly by Fourier transform near-infrared and mid-infrared microspectroscopic imaging in reflection modes.

    PubMed

    Chen, Jian-Bo; Sun, Su-Qin; Zhou, Qun

    2016-12-01

    Fourier transform near-infrared (NIR) and mid-infrared (MIR) imaging techniques are essential tools to characterize the chemical morphology of plant. The transmission imaging mode is mostly used to obtain easy-to-interpret spectra with high signal-to-noise ratio. However, the native chemical compositions and physical structures of plant samples may be altered when they are microtomed for the transmission tests. For the direct characterization of thick plant samples, the combination of the reflection NIR imaging and the attenuated total reflection (ATR) MIR imaging is proposed in this research. First, the reflection NIR imaging method can explore the whole sample quickly to find out typical regions in small sizes. Next, each small typical region can be measured by the ATR-MIR imaging method to reveal the molecular structures and spatial distributions of compounds of interest. As an example, the chemical morphology of Areca nut section is characterized directly by the above approach.

  3. The effect of encapsulation on the reflectance of photovoltaic modules using textured multicrystalline-silicon solar cells

    SciTech Connect

    Gee, J.M.; Schubert, W.K.; Tardy, H.L.; Hund, T.D.; Robison, G.

    1995-01-01

    Texturing multicrystalline-silicon cells is a promising technique for reducing reflectance losses. We investigated two methods for texturing multicrystalline-silicon solar cells - anisotropic chemical etch and mechanical dicing saw. Our work emphasized reducing reflectance in the encapsulated module by using optical confinement in the module. We found that optical confinement in the module is very important in the optimization of texture geometries.

  4. The effect of encapsulation on the reflectance of photovoltaic modules using textured multicrystalline-silicon solar cells

    NASA Astrophysics Data System (ADS)

    Gee, James M.; Schubert, W. Kent; Tardy, Herbert L.; Hund, Thomas D.; Robison, Gary

    Texturing multicrystalline-silicon cells is a promising technique for reducing reflectance losses. We investigated two methods for texturing multicrystalline-silicon solar cells - anisotropic chemical etch and mechanical dicing saw. Our work emphasized reducing reflectance in the encapsulated module by using optical confinement in the module. We found that optical confinement in the module is very important in the optimization of texture geometries.

  5. Infrared microscope inspection apparatus

    DOEpatents

    Forman, S.E.; Caunt, J.W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface. 4 figs.

  6. Infrared microscope inspection apparatus

    DOEpatents

    Forman, Steven E.; Caunt, James W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface.

  7. Reflectance control for multicrystalline-silicon photovoltaic modules using textured-dielectric coatings

    SciTech Connect

    Gee, J.M.; Tardy, H.L.; Hund, T.D.; Gordon, R.; Liang, H.

    1995-01-01

    The authors describe a new approach for controlling the reflectance of photovoltaic modules with planar-surface solar cells. The new approach uses an optically thick, dielectric coating with a large refractive index and a textured surface; this dielectric coating is deposited on the planar-surface solar cell. The textured-dielectric coating works optically with the module encapsulation to promote optical confinement of rays inside the module encapsulation structure, which reduces the net reflectance of the photovoltaic module. The advantage of this approach is that deposition of a textured-dielectric film may be less costly and less intrusive on the cell manufacturing process than texturing multicrystalline-silicon substrates. The authors present detailed optical models and experimental confirmation of the new approach.

  8. Modulated surface nanostructures for enhanced light trapping and reduced surface reflection of crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Tayagaki, Takeshi; Hoshi, Yusuke; Hirai, Yuji; Matsuo, Yasutaka; Usami, Noritaka

    2016-05-01

    We demonstrated the fabrication of modulated surface nanostructures as a new surface texture design for thin wafer solar cells. Using a combination of conventional alkali etching and colloidal lithography, we fabricated surface textures with micrometer and nanometre scales on a Si substrate. These modulated surface nanostructures exhibit reduced surface reflection in a broad spectral range, compared with conventional micrometer textures. We investigated optical absorption using a rigorous coupled wave analysis simulation, which revealed a significant reduction in surface reflection over a broad spectral range and efficient light trapping (comparable to that of conventional micrometer-scale textures) for the modulated nanostructures. We found that the modulated surface nanostructures have a high potential of improving the performance of thin wafer crystalline Si solar cells.

  9. A near-infrared methane detection system using a 1.654 μm wavelength-modulated diode laser

    NASA Astrophysics Data System (ADS)

    Fu, Yang; Liu, Hui-fang; Sui, Yue; Li, Bin; Ye, Wei-lin; Zheng, Chuan-tao; Wang, Yi-ding

    2016-03-01

    By adopting a distributed feedback laser (DFBL) centered at 1.654 μm, a near-infrared (NIR) methane (CH4) detection system based on tunable diode laser absorption spectroscopy (TDLAS) is experimentally demonstrated. A laser temperature control as well as wavelength modulation module is developed to control the laser's operation temperature. The laser's temperature fluctuation can be limited within the range of -0.02—0.02 °C, and the laser's emitting wavelength varies linearly with the temperature and injection current. An open reflective gas sensing probe is realized to double the absorption optical path length from 0.2 m to 0.4 m. Within the detection range of 0—0.01, gas detection experiments were conducted to derive the relation between harmonic amplitude and gas concentration. Based on the Allan deviation at an integral time of 1 s, the limit of detection ( LoD) is decided to be 2.952×10-5 with a path length of 0.4 m, indicating a minimum detectable column density of ~1.2×10-5 m. Compared with our previously reported NIR CH4 detection system, this system exhibits some improvement in both optical and electrical structures, including the analogue temperature controller with less software consumption, simple and reliable open reflective sensing probe.

  10. Assessment of Various Organic Matter Properties by Infrared Reflectance Spectroscopy of Sediments and Filters

    NASA Astrophysics Data System (ADS)

    Alaoui, G.; Leger, M.; Gagne, J.; Tremblay, L.

    2009-05-01

    The goal of this work was to evaluate the capability of infrared reflectance spectroscopy for a fast quantification of the elemental and molecular compositions of sedimentary and particulate organic matter (OM). A partial least-squares (PLS) regression model was used for analysis and values were compared to those obtained by traditional methods (i.e., elemental, humic and HPLC analyses). PLS tools are readily accessible from software such as GRAMS (Thermo-Fisher) used in spectroscopy. This spectroscopic-chemometric approach has several advantages including its rapidity and use of whole unaltered samples. To predict properties, a set of infrared spectra from representative samples must first be fitted to form a PLS calibration model. In this study, a large set (180) of sediments and particles on GFF filters from the St. Lawrence estuarine system were used. These samples are very heterogenous (e.g., various tributaries, terrigenous vs. marine, events such as landslides and floods) and thus represent a challenging test for PLS prediction. For sediments, the infrared spectra were obtained with a diffuse reflectance, or DRIFT, accessory. Sedimentary carbon, nitrogen, humic substance contents as well as humic substance proportions in OM and N:C ratios were predicted by PLS. The relative root mean square error of prediction (%RMSEP) for these properties were between 5.7% (humin content) and 14.1% (total humic substance yield) using the cross-validation, or leave-one out, approach. The %RMSEP calculated by PLS for carbon content was lower with the PLS model (7.6%) than with an external calibration method (11.7%) (Tremblay and Gagné, 2002, Anal. Chem., 74, 2985). Moreover, the PLS approach does not require the extraction of POM needed in external calibration. Results highlighted the importance of using a PLS calibration set representative of the unknown samples (e.g., same area). For filtered particles, the infrared spectra were obtained using a novel approach based on

  11. Extension of long wavelength response by modulation doping in extrinsic germanium infrared detectors

    NASA Technical Reports Server (NTRS)

    Hadek, V.; Farhoomand, J.; Beichman, C. A.; Watson, D. M.; Jack, M. D.

    1985-01-01

    A new concept for infrared detectors based on multilayer epitaxy and modulation doping has been investigated. This permits a high doping concentration and lower excitation energy in the photodetecting layer as is necessary for longer wavelength response, without incurring the detrimental effects of increased dark current and noise as would be the case with conventional detector designs. Germanium photodetectors using conventional materials and designs have a long wavelength cutoff in the infrared at 138 microns, which can only be extended through the inconvenient application of mechanical stress or magnetic fields. As a result of this approach which was arrived at from theoretical considerations and subsequently demonstrated experimentally, the long wavelength cutoff for germanium extrinsic detectors was extended beyond 200 microns, as determined by direct infrared optical measurements.

  12. Improved depth resolution in near-infrared diffuse reflectance spectroscopy using obliquely oriented fibers

    NASA Astrophysics Data System (ADS)

    Thilwind, Rachel Estelle; 't Hooft, Gert; Uzunbajakava, Natallia E.

    2009-03-01

    We demonstrate a significant improvement of depth selectivity when using obliquely oriented fibers for near-infrared (NIR) diffuse reflectance spectroscopy. This is confirmed by diffuse reflectance measurements of a two-layer tissue-mimicking phantom across the spectral range from 1000 to 1940 nm. The experimental proof is supported by Monte Carlo simulations. The results reveal up to fourfold reduction in the mean optical penetration depth, twofold reduction in its variation, and a decrease in the number of scattering events when a single fiber is oriented at an angle of 60 deg. The effect of reducing the mean optical penetration depth is enhanced by orienting both fibers inwardly. Using outwardly oriented fibers enables more selective probing of deeper layers, while reducing the contribution from surface layers. We further demonstrate that the effect of an inward oblique arrangement can be approximated to a decrease in fiber-to-fiber separation in the case of a perpendicular fiber arrangement. This approximation is valid in the weak- or absorption-free regime. Our results assert the advantages of using obliquely oriented fibers when attempting to specifically address superficial tissue layers, for example, for skin cancer detection, or in noninvasive glucose monitoring. Such flexibility could be further advantageous in a range of minimally invasive applications, including catheter-based interventions.

  13. Rapid estimation of nutritional elements on citrus leaves by near infrared reflectance spectroscopy.

    PubMed

    Galvez-Sola, Luis; García-Sánchez, Francisco; Pérez-Pérez, Juan G; Gimeno, Vicente; Navarro, Josefa M; Moral, Raul; Martínez-Nicolás, Juan J; Nieves, Manuel

    2015-01-01

    Sufficient nutrient application is one of the most important factors in producing quality citrus fruits. One of the main guides in planning citrus fertilizer programs is by directly monitoring the plant nutrient content. However, this requires analysis of a large number of leaf samples using expensive and time-consuming chemical techniques. Over the last 5 years, it has been demonstrated that it is possible to quantitatively estimate certain nutritional elements in citrus leaves by using the spectral reflectance values, obtained by using near infrared reflectance spectroscopy (NIRS). This technique is rapid, non-destructive, cost-effective and environmentally friendly. Therefore, the estimation of macro and micronutrients in citrus leaves by this method would be beneficial in identifying the mineral status of the trees. However, to be used effectively NIRS must be evaluated against the standard techniques across different cultivars. In this study, NIRS spectral analysis, and subsequent nutrient estimations for N, K, Ca, Mg, B, Fe, Cu, Mn, and Zn concentration, were performed using 217 leaf samples from different citrus trees species. Partial least square regression and different pre-processing signal treatments were used to generate the best estimation against the current best practice techniques. It was verified a high proficiency in the estimation of N (Rv = 0.99) and Ca (Rv = 0.98) as well as achieving acceptable estimation for K, Mg, Fe, and Zn. However, no successful calibrations were obtained for the estimation of B, Cu, and Mn.

  14. Characterization of historic silk by polarized attenuated total reflectance Fourier transform infrared spectroscopy for informed conservation.

    PubMed

    Garside, Paul; Lahlil, Sophia; Wyeth, Paul

    2005-10-01

    When assessing historic textiles and considering appropriate conservation, display, and storage strategies, characterizing the physical condition of the textiles is essential. Our work has concentrated on developing nondestructive or micro-destructive methodologies that will permit this. Previously, we have demonstrated a correlation between the physical deterioration of unweighted and "pink" tin (IV) chloride weighted silk and certain measurable spectroscopic and chromatographic signatures, derived from polarized Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy (Pol-ATR) and high-performance liquid chromatography (HPLC) microsampling analyses. The application of the Pol-ATR technique to aged silk characterization has now been extended to include a more comprehensive range of weighting methods and aging regimes. This was intended to replicate the full spectrum of states of deterioration observed in silk textiles, from pristine to heavily degraded. Breaking strength was employed as a measure of the physical integrity of the fibers, and, as expected, decreased with aging. An orientational crystallinity parameter, reflecting the microstructural ordering of the fibroin polymer within the fibers, was derived from the Pol-ATR spectra. A good correlation was observed between the breaking strength of the variety of fibers and this parameter. This suggests that the physical state of historic silk fabrics might be adequately characterized for conservation purposes by such indirect micromethodology.

  15. Rapid estimation of nutritional elements on citrus leaves by near infrared reflectance spectroscopy

    PubMed Central

    Galvez-Sola, Luis; García-Sánchez, Francisco; Pérez-Pérez, Juan G.; Gimeno, Vicente; Navarro, Josefa M.; Moral, Raul; Martínez-Nicolás, Juan J.; Nieves, Manuel

    2015-01-01

    Sufficient nutrient application is one of the most important factors in producing quality citrus fruits. One of the main guides in planning citrus fertilizer programs is by directly monitoring the plant nutrient content. However, this requires analysis of a large number of leaf samples using expensive and time-consuming chemical techniques. Over the last 5 years, it has been demonstrated that it is possible to quantitatively estimate certain nutritional elements in citrus leaves by using the spectral reflectance values, obtained by using near infrared reflectance spectroscopy (NIRS). This technique is rapid, non-destructive, cost-effective and environmentally friendly. Therefore, the estimation of macro and micronutrients in citrus leaves by this method would be beneficial in identifying the mineral status of the trees. However, to be used effectively NIRS must be evaluated against the standard techniques across different cultivars. In this study, NIRS spectral analysis, and subsequent nutrient estimations for N, K, Ca, Mg, B, Fe, Cu, Mn, and Zn concentration, were performed using 217 leaf samples from different citrus trees species. Partial least square regression and different pre-processing signal treatments were used to generate the best estimation against the current best practice techniques. It was verified a high proficiency in the estimation of N (Rv = 0.99) and Ca (Rv = 0.98) as well as achieving acceptable estimation for K, Mg, Fe, and Zn. However, no successful calibrations were obtained for the estimation of B, Cu, and Mn. PMID:26257767

  16. Synchrotron Infrared Reflectance Microspectroscopy Study of Film Formation and Breakdown on Copper

    SciTech Connect

    Hahn, F.; Melendres, C

    2010-01-01

    This work demonstrates the utility of synchrotron infrared reflectance microspectroscopy in the far- and mid-IR for the determination of the composition of electrogenerated surface films formed during the general and localized corrosion of copper in alkaline and bicarbonate solutions. Back-reflection geometry has been employed to identify the anodic film formed on copper in 0.1 M NaOH solution at 0.3 V (versus a Ag/AgCl reference) to be mainly CuO. In 0.01 M NaHCO{sub 3} solution general corrosion occurs with passive film formation below 0.2 V. The surface film at 0.2 V consisted mainly of bicarbonate, copper carbonate dihydroxide or malachite [CuCO{sub 3} {center_dot} Cu(OH){sub 2}], Cu(OH){sub 2} and possibly some CuO. At higher potentials the passive film breaks down and localized corrosion occurs leading to the formation of pits. The composition of the surface films inside the pits formed at 0.6 V was found to be essentially the same as that outside but the relative amount of Cu(OH){sub 2} appears to be higher.

  17. Water sorption on martian regolith analogs: Thermodynamics and near-infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Pommerol, Antoine; Schmitt, Bernard; Beck, Pierre; Brissaud, Olivier

    2009-11-01

    The near-infrared reflectance spectra of the martian surface present strong absorption features attributed to hydration water present in the regolith. In order to characterize the relationships between this water and atmospheric vapor and decipher the physical state of water molecules in martian regolith analogs, we designed and built an experimental setup to measure near-IR reflectance spectra under martian atmospheric conditions. Six samples were studied that cover part of the diversity of Mars surface mineralogy: a hydrated ferric oxide (ferrihydrite), two igneous samples (volcanic tuff, and dunite sand), and three potential water rich soil materials (Mg-sulfate, smectite powder and a palagonitic soil, the JSC Mars-1 regolith stimulant). Sorption and desorption isotherms were measured at 243 K for water vapor pressure varying from 10 -5 to ˜0.3 mbar (relative humidity: 10 -4 to 75%). These measurements reveal a large diversity of behavior among the sample suite in terms of absolute amount of water adsorbed, shape of the isotherm and hysteresis between the adsorption and desorption branches. Simultaneous in situ spectroscopic observations permit a detailed analysis of the spectral signature of adsorbed water and also point to clear differences between the samples. Ferric (oxy)hydroxides like ferrihydrite or other phases present in palagonitic soils are very strong water adsorbent and may play an important role in the current martian water cycle by allowing large exchange of water between dust-covered regions and atmosphere at diurnal and seasonal scales.

  18. Simulation of attenuated total reflection infrared absorbance spectra: applications to automotive clear coat forensic analysis.

    PubMed

    Lavine, Barry K; Fasasi, Ayuba; Mirjankar, Nikhil; Nishikida, Koichi; Campbell, Jay

    2014-01-01

    Attenuated total reflection (ATR) is a widely used sampling technique in infrared (IR) spectroscopy because minimal sample preparation is required. Since the penetration depth of the ATR analysis beam is quite shallow, the outer layers of a laminate or multilayered paint sample can be preferentially analyzed with the entire sample intact. For this reason, forensic laboratories are taking advantage of ATR to collect IR spectra of automotive paint systems that may consist of three or more layers. However, the IR spectrum of a paint sample obtained by ATR will exhibit distortions, e.g., band broadening and lower relative intensities at higher wavenumbers, compared with its transmission counterpart. This hinders library searching because most library spectra are measured in transmission mode. Furthermore, the angle of incidence for the internal reflection element, the refractive index of the clear coat, and surface contamination due to inorganic contaminants can profoundly influence the quality of the ATR spectrum obtained for automotive paints. A correction algorithm to allow ATR spectra to be searched using IR transmission spectra of the paint data query (PDQ) automotive database is presented. The proposed correction algorithm to convert transmission spectra from the PDQ library to ATR spectra is able to address distortion issues such as the relative intensities and broadening of the bands, and the introduction of wavelength shifts at lower frequencies, which prevent library searching of ATR spectra using archived IR transmission data.

  19. Infrared

    NASA Astrophysics Data System (ADS)

    Vollmer, M.

    2013-11-01

    techniques such as attenuated total reflectance [6]. The two final papers deal with what seem to be wholly different scientific fields [7, 8]. One paper describes SOFIA, an aeroplane-based astronomical observatory covering the whole IR range [7], while the other represents a small review of the quite new topic of terahertz physics at the upper end of the IR spectral range, from around 30 µm to 3 mm wavelength, and its many applications in science and industry [8]. Although artificially separated, all these fields use similar kinds of detectors, similar kinds of IR sources and similar technologies, while the instruments use the same physical principles. We are convinced that the field of infrared physics will develop over the next decade in the same dynamic way as during the last, and this special issue may serve as starting point for regular submissions on the topic. At any rate, it shines a light on this fascinating and many-faceted subject, which started more than 200 years ago. References [1] Mangold K, Shaw J A and Vollmer M 2013 The physics of near-infrared photography Eur. J. Phys. 34 S51-71 [2] Vollmer M and Möllmann K-P 2013 Characterization of IR cameras in student labs Eur. J. Phys. 34 S73-90 [3] Ibarra-Castanedo C, Tarpani J R and Maldague X P V 2013 Nondestructive testing with thermography Eur. J. Phys. 34 S91-109 [4] Shaw J A and Nugent P W 2013 Physics principles in radiometric infrared imaging of clouds in the atmosphere Eur. J. Phys. 34 S111-21 [5] Möllmann K-P and Vollmer M 2013 Fourier transform infrared spectroscopy in physics laboratory courses Eur. J. Phys. 34 S123-37 [6] Heise H M, Fritzsche J, Tkatsch H, Waag F, Karch K, Henze K, Delbeck S and Budde J 2013 Recent advances in mid- and near-infrared spectroscopy with applications for research and teaching, focusing on petrochemistry and biotechnology relevant products Eur. J. Phys. 34 S139-59 [7] Krabbe A, Mehlert D, Röser H-P and Scorza C 2013 SOFIA, an airborne observatory for infrared astronomy

  20. Variable-delay Polarization Modulators (VPMs) for Far-infrared through Millimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2008-01-01

    This viewgraph presentation reviews the use of Variable-delay Polarization Modulators (VPMs) for Far-infrared through Millimeter Astronomy. The two science goals are to use polarized emission from the partially-aligned dust that provides a probe of the role of magnetic fields in star formation and to use the polarization of the cosmic microwave background radiation CMB to test theories of the very early universe and provide a probe of fundamental physics.

  1. Exploiting total internal reflection geometry for efficient optical modulation of terahertz light

    NASA Astrophysics Data System (ADS)

    Liu, Xudong; Parrott, Edward P. J.; Ung, Benjamin S.-Y.; Pickwell-MacPherson, Emma

    2016-10-01

    Efficient methods to modulate terahertz (THz) light are essential for realizing rapid THz imaging and communication applications. Here we report a novel THz modulator which utilizes the evanescent wave in a total internal reflection setup coupled with a conductive interface to enhance the attenuation efficiency of THz light. This approach makes it possible to achieve close to 100% modulation with a small interface conductivity of 12 mS. The frequency dependence of this technique is linked to the optical properties of the materials: a material with close to frequency independent conductivity that is also controllable will result in an achromatic modulation response, and the device performance can be optimized further by tuning the internal reflection angle. In this work, we focus on applying the technique in the terahertz frequency range. Using an LED array with a pump intensity of 475 mW/cm2 to produce carriers in a silicon wafer, we have achieved a modulation depth of up to 99.9% in a broad frequency range of 0.1 THz-0.8 THz. The required pumping power for the generation of the required free carriers is low because the sheet conductivity needed is far less than required for traditional transmission techniques. Consequently, the device can be modulated by an LED making it a very practical, low cost, and scalable solution for THz modulation.

  2. Near- and mid-infrared reflectance spectra of hydrated oxychlorine salts with implications for Mars

    NASA Astrophysics Data System (ADS)

    Hanley, Jennifer; Chevrier, Vincent F.; Barrows, R. Scott; Swaffer, Chase; Altheide, Travis S.

    2015-08-01

    The presence and distribution of oxychlorine salts (e.g., chlorates and perchlorates) on Mars have implications for the stability of water, most notably, that they lower the freezing temperature. To date, elemental chlorine has been measured by all lander missions, with the perchlorate ion identified at both the Phoenix and Curiosity landing sites, but detection by near-infrared (NIR) and mid-infrared (MIR) remote sensing has been limited to deposits of anhydrous chlorides. Given that oxychlorine salts can form numerous hydrated phases, we have measured their NIR and MIR reflectance spectra from 1 to 25 µm for comparison to data collected from orbiting spectrometers. Anhydrous oxychlorine salts show almost no features in the NIR, except for small bands of residual adsorbed water. However, hydrated oxychlorine salts show numerous features due to water in the NIR, specifically at ~1.4 and ~1.9 µm. Increasing the hydration state increases the depth and width of the water bands. All oxychlorine salts exhibit an additional feature at ~2.2 µm due to a Cl-O combination or overtone feature, although it is less prominent in the hydrated perchlorate salts, likely overwhelmed by the ClO4-H2O feature at 2.14 µm. All oxychlorine salts show features in the MIR due to the fundamental vibrations of Cl-O longward of ~8 µm. The NIR spectral features of hydrated oxychlorine salts are similar to other hydrated salts, especially hydrated sulfates; thus, identification from orbit may be ambiguous. However by utilizing the NIR and MIR laboratory data presented here for comparison, oxychlorine salts may be detectable by orbiting spectrometers.

  3. The Infrared Reflection Nebula Around the Protostellar System in S140

    NASA Technical Reports Server (NTRS)

    Harker, D.; Bregman, J.; Tielens, A. G. G. M.; Temi, P.; Rank, D.; Morrison, David (Technical Monitor)

    1994-01-01

    We have studied the protostellar system in S140 at 2.2, 3.1 and 3.45 microns using a 128x128 InSb array at the Lick Observatory 3m telescope. Besides the protostellar sources, the data reveal a bright infrared reflection nebula. We have developed a simple model of this region and derived the physical conditions. IRSI is surrounded by a dense dusty disk viewed almost edge-on. Photons leaking out through the poles illuminate almost directly north and south the inner edge of a surrounding shell of molecular gas, Analysis of the observed colors and intensities of the NIR light, using Mie scattering theory, reveal that the dust grains in the molecular cloud are somewhat larger than in the general diffuse interstellar medium. Moreover, the incident light has a "cool" color temperature, approximately equals 800K, and likely originates from a dust photosphere close to the protostar. Finally, we find little H2O ice associated with the dusty disk around IRSI. Most of the 3.1 micron ice extinction arises instead from cool intervening molecular cloud material. We have compared our infrared dust observations with millimeter and radio observations of molecular gas associated with this region. The large scale structure observable in the molecular gas is indicative of the interaction between the protostellar wind and the surrounding molecular cloud rather than the geometry of the protostellar disk. We conclude that S140 is a young blister formed by this outflow on the side of a molecular cloud and viewed edge-on.

  4. Infrared attenuated total reflection (IR-ATR) spectroscopy for detecting drugs in human saliva.

    PubMed

    Hans, Kerstin M-C; Müller, Susanne; Sigrist, Markus W

    2012-06-01

    The consumption of drugs is of great concern worldwide. Various drug tests for humans have been developed but there is no compact and easy-to-use test device available yet for direct semi-quantitative drug testing in the field. We suggest using attenuated total reflection (ATR) infrared spectroscopy as a sensing method to analyze human saliva samples with respect to drugs. In this paper, we present ATR spectra in the infrared range between 2300 and 900 cm(-1) as a first step towards such a device. We emphasize the common drug cocaine and its metabolites and investigate the problems of spectral interferences of selected diluents, masking agents, common medication, and soft drinks. Furthermore, spectra of saliva samples are recorded and a time-dependent change of the spectral signatures after alcohol consumption is presented. To the best of our knowledge, it is the first time that not only spectra of the drug of interest (cocaine) dissolved in water and in saliva but also spectra of interfering compounds possibly present in the saliva sample of a tested subject are discussed. This paper presents the most appropriate spectral range for strong cocaine absorption (including its metabolites) and minimum interference by the investigated substances. This spectral window is found to be between 1800 and 1710 cm(-1). In addition, we demonstrate the feasibility to identify cocaine in saliva at a concentration of 0.020 mg/ml with IR-ATR-spectroscopy without any separation or extraction procedures. For example, this technique could also be applied for drug detection in waste water. Copyright © 2011 John Wiley & Sons, Ltd.

  5. The Infrared Reflection Nebula Around the Protostellar System in S140

    NASA Technical Reports Server (NTRS)

    Harker, D.; Bregman, J.; Tielens, A. G. G. M.; Temi, P.; Rank, D.; Morrison, David (Technical Monitor)

    1994-01-01

    We have studied the protostellar system in S140 at 2.2, 3.1 and 3.45 microns using a 128x128 InSb array at the Lick Observatory 3m telescope. Besides the protostellar sources, the data reveal a bright infrared reflection nebula. We have developed a simple model of this region and derived the physical conditions. IRSI is surrounded by a dense dusty disk viewed almost edge-on. Photons leaking out through the poles illuminate almost directly north and south the inner edge of a surrounding shell of molecular gas, Analysis of the observed colors and intensities of the NIR light, using Mie scattering theory, reveal that the dust grains in the molecular cloud are somewhat larger than in the general diffuse interstellar medium. Moreover, the incident light has a "cool" color temperature, approximately equals 800K, and likely originates from a dust photosphere close to the protostar. Finally, we find little H2O ice associated with the dusty disk around IRSI. Most of the 3.1 micron ice extinction arises instead from cool intervening molecular cloud material. We have compared our infrared dust observations with millimeter and radio observations of molecular gas associated with this region. The large scale structure observable in the molecular gas is indicative of the interaction between the protostellar wind and the surrounding molecular cloud rather than the geometry of the protostellar disk. We conclude that S140 is a young blister formed by this outflow on the side of a molecular cloud and viewed edge-on.

  6. Feedstock and Web Analysis Using Mid-Infrared Diffuse Reflectance Spectroscopy and Imaging Spectroradiometry

    SciTech Connect

    G.L. Powell; J.E. Parks II

    1997-09-15

    Potential applications of mid-infrared (MIR) spectroscopy in the forest products industry include on-line analysis of feedstock and web materials; these applications differ dramatically in purpose, speed, and overall chemical heterogeneity. Characterization of feedstock will enable sorting of the stock and/or wet chemistry adjustment prior to the web stage of paper production. Sorting will require imaging of the stock as well as classification of the wide variety of chemistry found in recycled stock. At the opposite end of the manufacturing process, on-line analysis of the web will enable adjustment of machine parameters to maximize product quality and minimize waste. Spectroscopic requirements for web analysis include high-speed capability and measurement precision. If successful, both applications could result in a reduction of resource waste, a reduction of plant pollution, and a reduction of energy use while simultaneously improving product quality. Here the progress towards feedstock and web analysis with MIR spectroscopy is presented. To date, work has progressed in three main areas: Diffuse Reflectance mid-Infrared Fourier Transform (DRIFT) spectroscopy of cellulose-based materials, chemometrics analysis, and research of MIR instrumentation for prototype development. The DRIFT spectroscopy data represents a database of the chemistries and spectroscopic signatures of interest to the applications discussed here. Over 50,000 spectra were obtained from cellulose-based materials infised with a wide variety of non-cellulose chemistry. Chemometrics analysis was performed on the DRIFT database to determine the quantitative and qualitative limits of the technique. Emphasis was placed on qualitative evaluation of spectroscopic signatures unique to the particular classes of cellulose-based material; thus, the degree to which classes could be sorted was determined. Finally, investigations of MIR instrumentation suitable for transfer of the technique from the lab

  7. Mid-infrared bi-directional reflectance spectroscopy of impact melt glasses and tektites

    NASA Astrophysics Data System (ADS)

    Morlok, Andreas; Stojic, Aleksandra; Weber, Iris; Hiesinger, Harald; Zanetti, Michael; Helbert, Joern

    2016-11-01

    We have analyzed 14 impact melt glass samples, covering the compositional range from highly felsic to mafic/basaltic, as part of our effort to provide mid-infrared spectra (7-14 μm) for MERTIS (Mercury Radiometer and Thermal Infrared Spectrometer), an instrument onboard of the ESA/JAXA BepiColombo mission. Since Mercury was exposed to many impacts in its history, and impact glasses are also common on other bodies, powders of tektites (Irghizite, Libyan Desert Glass, Moldavite, Muong Nong, Thailandite) and impact glasses (from the Dellen, El'gygytgyn, Lonar, Mien, Mistastin, and Popigai impact structures) were analyzed in four size fractions of (0-25, 25-63, 93-125 and 125-250 μm) from 2.5 to 19 μm in bi-directional reflectance. The characteristic Christiansen Feature (CF) is identified between 7.3 μm (Libyan Desert Glass) and 8.2 μm (Dellen). Most samples show mid-infrared spectra typical of highly amorphous material, dominated by a strong Reststrahlen Band (RB) between 8.9 μm (Libyan Desert Glass) and 10.3 μm (Dellen). Even substantial amounts of mineral fragments hardly affect this general band shape. Comparisons of the SiO2 content representing the felsic/mafic composition of the samples with the CF shows felsic/intermediate glass and tektites forming a big group, and comparatively mafic samples a second one. An additional sign of a highly amorphous state is the lack of features at wavelengths longer than ∼15 μm. The tektites and two impact glasses, Irghizite and El'gygytgyn respectively, have much weaker water features than most of the other impact glasses. For the application in remote sensing, spectral features have to be correlated with compositional characteristics of the materials. The dominating RB in the 7-14 μm range correlates well with the SiO2 content, the Christiansen Feature shows similar dependencies. To distinguish between glass and crystalline phases of the same chemical composition, a comparison between CF the SCFM index (SiO2/(SiO2

  8. Near-infrared reflectance spectroscopy predictions as indicator traits in breeding programs for enhanced beef quality.

    PubMed

    Cecchinato, A; De Marchi, M; Penasa, M; Albera, A; Bittante, G

    2011-09-01

    The aims of this study were 1) to investigate the potential application of near-infrared spectroscopy (NIRS) to predict beef quality (BQ) traits, 2) to assess genetic variations of BQ measures and their predictions obtained by NIRS, and 3) to infer the genetic relationship between measures of BQ and their predictions. Young Piedmontese bulls (n = 1,230) were raised and fattened on 124 farms and slaughtered at the same commercial abattoir. The BQ traits evaluated were shear force (SF, kg), cooking loss (CL, %), drip loss (DL, %), lightness (L*), redness (a*), yellowness (b*), saturation index (SI), and hue angle. Near-infrared spectra were collected using a Foss NIRSystems 5000 instrument over a spectral range of 1,100 to 2,498 nm every 2 nm, in reflectance mode. After editing, prediction models were developed on a calibration subset (n = 268) using partial least squares regressions, followed by application of these models to the validation subset (n = 940). Estimations of (co)variance for measures of BQ and NIRS-based predictions were obtained through a set of bivariate Bayesian analyses on the validation subset. Near-infrared predictions were satisfactory for measurements of L* (R(2) = 0.64), a* (R(2) = 0.68), hue angle (R(2) = 0.81), and saturation index (R(2) = 0.59), but not for b*, DL, CL, and SF. The loss of additive genetic variance of predicted vs. measured L*, a*, DL, CL, and SF was generally high and was similar to the loss of residual variance, being a function of the calibration parameter R(2). As a consequence, estimated heritabilities of measures and predictions of BQ were similar for traits with high calibration R(2) values. Genetic correlations between BQ measures and predictions were high for all color traits and DL, and were greater than the corresponding phenotypic correlations, whereas both the phenotypic and genetic correlations for SF and CL were nil. Results suggest that NIRS-based predictions for color features and DL may be used as

  9. Reflections on Supporting a Visually Impaired Student Complete a Biological Psychology Module

    ERIC Educational Resources Information Center

    Betts, Lucy R.; Cross, Amanda

    2010-01-01

    While there are a number of technologies that have been used, with varying levels of success, to support visually impaired students, the purpose of this article is to reflect upon the authors' experiences of supporting a visually impaired student through a nine-month level two undergraduate biological psychology module. The authors developed a…

  10. [Determination of isorhamnetin in Hippophae rhamnoides Linn from West Sichuan plateau using near infrared diffuse reflectance spectroscopy].

    PubMed

    Ye, Li-Ming; Zhou, Min; Zhang, Hao; Chen, Chu; Li, Zhang-Wan; Chen, Cong; Wang, Yan-Ping

    2008-02-01

    The objective of this study was to develop a method for the determination of isorhamnetin in Hippophae rhamnoides Linn from West Sichuan plateau using near infrared diffuse reflectance spectroscopy. Applying the method of mixing with SiO2, the near infrared spectra (NIS) with the range of 12 000-4 000 cm(-1) were recorded for the Hippophae rhamnoides Linn containing isorhamnetin with the content of 0.1%-0.8%. Calibration models were established using the PLS (partial least squares). Different spectra pretreatments methods were compared. The study showed that spectral information can be extracted thoroughly by constant offset elimination (COE) pretreatments method with the correlation coefficient (r2) of 0.739 8, SEC of 0.107 (standard deviation of the calibration sets) and SEP of 0.073 (standard deviation of the prediction sets). The results indicate that near infrared diffuse reflectance spectroscopy is more rapid and convenient than conventional methods.

  11. Enhanced single seed trait predictions in soybean (Glycine max) and robust calibration model transfer with near infrared reflectance spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Single seed near infrared reflectance (NIR) spectroscopy predicts soybean (Glycine max) seed quality traits of moisture, oil, and protein. We tested the accuracy of transferring calibrations between different single seed NIR analyzers of the same design by collecting NIR spectra and analytical trait...

  12. Secondary cell wall development in cotton fibers as examined with attenuated total reflection Fourier transform infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy. The selected harvesting points coincide with secondary cell wall (SCW) development in the fibers. Progressive but moderat...

  13. Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy as a Method of Characterizing Changes in Soil Organic Matter

    USDA-ARS?s Scientific Manuscript database

    Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy (FTIR) can be used quickly and non destructively to identify and quantify the presence of important organic functional groups in environmental samples. However, soils contain myriad organic and inorganic components that absorb in the M...

  14. Characterization of southern yellow pine bark layers by Attenuated Total Reflectance (ATR) and Fourier Transform Infrared (FT-IR) Spectroscopy

    Treesearch

    Thomas L. Eberhardt

    2009-01-01

    The outer bark (rhytidome) of the southern yellow pines is a complex structure comprised of alternating layers of obliterated phloem and periderm tissues, with the latter comprised of three layers, those being phellem, phellogen, and phelloderm. An attenuated total reflectance (ATR) sampling accessory, coupled with a Fourier transform infrared (FTIR) spectrometer,...

  15. High-Throughput Near-Infrared Reflectance Spectroscopy for Predicting Quantitative and Qualitative Composition Phenotypes of Individual Maize Kernels

    USDA-ARS?s Scientific Manuscript database

    Near-infrared reflectance (NIR) spectroscopy can be used for fast and reliable prediction of organic compounds in complex biological samples. We used a recently developed NIR spectroscopy instrument to predict starch, protein, oil, and weight of individual maize (Zea mays) seeds. The starch, prote...

  16. Quantification of betaglucans, lipid and protein contents in whole oat groats (Avena sativa L.) using near infrared reflectance spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Whole oat has been described as an important healthy food for humans due to its beneficial nutritional components. Near infrared reflectance spectroscopy (NIRS) is a powerful, fast, accurate and non-destructive analytical tool that can be substituted for some traditional chemical analysis. A total o...

  17. Diffuse-reflectance fourier-transform mid-infrared spectroscopy as a method of characterizing changes in soil organic matter

    USDA-ARS?s Scientific Manuscript database

    Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy (MidIR) can identify the presence of important organic functional groups in soil organic matter (SOM). Soils contain myriad organic and inorganic components that absorb in the MidIR so spectral interpretation needs to be validated in or...

  18. Self-reflection modulates the outcome evaluation process: Evidence from an ERP study.

    PubMed

    Zhu, Xiangru; Gu, Ruolei; Wu, Haiyan; Luo, Yuejia

    2015-12-01

    Recent research demonstrated structural overlap between reward and self processing, but the functional relationship that explains how self processing influences reward processing remains unclear. The present study used an experimentally constrained reflection task to investigate whether individuals' outcome evaluations in a gambling task are modulated by task-unrelated self- and other-reflection processes. The self- and other-reflection task contained descriptions of the self or others, and brain event-related potentials (ERPs) were recorded while 16 normal adults performed a gambling task. The ERP analysis focused on the feedback-related negativity (FRN) component. We found that the difference wave of FRN increased in the self-reflection condition compared with the other-reflection condition. The present findings provide direct evidence that self processing can influence reward processing.

  19. Reflected wavefronts modulation with acoustic metasurface based on double-split hollow sphere

    NASA Astrophysics Data System (ADS)

    Ding, Changlin; Zhao, Xiaopeng; Chen, Huaijun; Zhai, Shilong; Shen, Fangliang

    2015-08-01

    Metasurfaces with sub-wavelength thickness and planar profile have exhibited abnormal manipulation to waves that could not be realized by traditional materials. Here, we present an acoustic metasurface (AMS) model composed of double-split hollow sphere (DSHS) resonator arrays with the functionality of modulating reflected wavefronts at will. By tailoring the split-hole diameter of DSHS, the AMS can be designed to cover 2 π phase shifts with a step of π/4. The acoustic waves perpendicularly and obliquely incident on the AMS can be reflected at any angle, including anomalous reflection and negative reflection. These anomalous manipulations of the reflected wave are simulated to fulfill the generalized Snell's law by projecting suitable phase gradient. Such AMS provides another path to acoustic applications such as acoustic imaging, cloaking, beam steering devices.

  20. Prediction of alpaca fibre quality by near-infrared reflectance spectroscopy.

    PubMed

    Canaza-Cayo, A W; Alomar, D; Quispe, E

    2013-07-01

    Rapid and efficient methods to evaluate variables associated with fibre quality are essential in animal breeding programs and fibre trade. Near-infrared reflectance spectroscopy (NIRS) combined with multivariate analysis was evaluated to predict textile quality attributes of alpaca fibre. Raw samples of fibres taken from male and female Huacaya alpacas (n = 291) of different ages and colours were scanned and their visible-near-infrared (NIR; 400 to 2500 nm) reflectance spectra were collected and analysed. Reference analysis of the samples included mean fibre diameter (MFD), standard deviation of fibre diameter (SDFD), coefficient of variation of fibre diameter (CVFD), mean fibre curvature (MFC), standard deviation of fibre curvature (SDFC), comfort factor (CF), spinning fineness (SF) and staple length (SL). Patterns of spectral variation (loadings) were explored by principal component analysis (PCA), where the first four PC's explained 99.97% and the first PC alone 95.58% of spectral variability. Calibration models were developed by modified partial least squares regression, testing different mathematical treatments (derivative order, subtraction gap, smoothing segment) of the spectra, with or without applying spectral correction algorithms (standard normal variate and detrend). Equations were selected through one-out cross-validation according to the proportion of explained variance (R 2CV), root mean square error in cross-validation (RMSECV) and the residual predictive deviation (RPD), which relates the standard deviation of the reference data to RMSECV. The best calibration models were accomplished when using the NIR region (1100 to 2500 nm) for the prediction of MFD and SF, with R 2CV = 0.90 and 0.87; RMSECV = 1.01 and 1.08 μm and RPD = 3.13 and 2.73, respectively. Models for SDFD, CVFD, MFC, SDFC, CF and SL had lower predictive quality with R 2CV < 0.65 and RPD < 1.5. External validation performed for MFD and SF on 91 samples was slightly poorer than cross

  1. [Purity measurement of hybrid rice seed Yixiang 725 with visible-near infrared reflectance spectra].

    PubMed

    Liang, Liang; Yang, Min-Hua; Liu, Zhi-Xiao; Xu, Hai-Wei; Liu, Fu-Hui; He, Qi-Zhuang; Luo, Yun-Fei

    2009-11-01

    A rapid and non-invasive method was put forward to measure the purity of hybrid rice seed by visible-near infrared reflectance spectra. Ninety hybrid rice seed samples (Yixiang 725) with the purity of 90%-99% were collected using a FieldSpec 3 visible-near infrared spectometer. All samples were divided randomly into two groups, one group with 75 samples used as calibrated set, and the other with 15 samples used as validated set. Based on the spectra in the range of 380-2 400 nm, the regression model was established using the PLS (partial least square), and different spectra pretreatment methods were compared. The study showed that spectra information can be extracted thoroughly by the pretreatment method of first derivative combined with standard normal variate, with the SEC (standard error of calibration) of 0.002 5, SEP (standard error of prediction) of 0.006 6, and determination coefficients of 0.988 4 (calibration set) and 0.922 7 (validation set) respectively. The spectra, which were pretreated with the method of first derivative combined standard normal variate, were analyzed by principal component analysis (PCA). The top 20 principal components, which were computed by PCA and accounted for 86.09% variation of the original spectral information, were used to build BP-ANN model for measuring the purity of hybrid rice seed as the new variables. The study showed that the SEC and SEP of BP-ANN model were 0.001 7 and 0.006 1, and the determination coefficients of that were 0.995 2 (calibration set) and 0.936 9 (validation set) respectively. Therefore, the predictive power of BP-ANN model was better than that of PLS model. Results indicated that it was feasible to measure the purity of the hybrid rice seed by visible-near reflectance spectra as a rapid and non-contact way, and PCA combined with BP-ANN was a preferred method.

  2. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators.

    PubMed

    Yao, Yu; Shankar, Raji; Kats, Mikhail A; Song, Yi; Kong, Jing; Loncar, Marko; Capasso, Federico

    2014-11-12

    Dynamically reconfigurable metasurfaces open up unprecedented opportunities in applications such as high capacity communications, dynamic beam shaping, hyperspectral imaging, and adaptive optics. The realization of high performance metasurface-based devices remains a great challenge due to very limited tuning ranges and modulation depths. Here we show that a widely tunable metasurface composed of optical antennas on graphene can be incorporated into a subwavelength-thick optical cavity to create an electrically tunable perfect absorber. By switching the absorber in and out of the critical coupling condition via the gate voltage applied on graphene, a modulation depth of up to 100% can be achieved. In particular, we demonstrated ultrathin (thickness < λ0/10) high speed (up to 20 GHz) optical modulators over a broad wavelength range (5-7 μm). The operating wavelength can be scaled from the near-infrared to the terahertz by simply tailoring the metasurface and cavity dimensions.

  3. Total reflection infrared spectroscopy of water-ice and frozen aqueous NaCl solutions

    SciTech Connect

    Walker, Rachel L.; Searles, Keith; Willard, Jesse A.; Michelsen, Rebecca R. H.

    2013-12-28

    Liquid-like and liquid water at and near the surface of water-ice and frozen aqueous sodium chloride films were observed using attenuated total reflection infrared spectroscopy (ATR-IR). The concentration of NaCl ranged from 0.0001 to 0.01 M and the temperature varied from the melting point of water down to 256 K. The amount of liquid brine at the interface of the frozen films with the germanium ATR crystal increased with salt concentration and temperature. Experimental spectra are compared to reflection spectra calculated for a simplified morphology of a uniform liquid layer between the germanium crystal and the frozen film. This morphology allows for the amount of liquid observed in an experimental spectrum to be converted to the thickness of a homogenous layer with an equivalent amount of liquid. These equivalent thickness ranges from a nanometer for water-ice at 260 K to 170 nm for 0.01 M NaCl close to the melting point. The amounts of brine observed are over an order of magnitude less than the total liquid predicted by equilibrium thermodynamic models, implying that the vast majority of the liquid fraction of frozen solutions may be found in internal inclusions, grain boundaries, and the like. Thus, the amount of liquid and the solutes dissolved in them that are available to react with atmospheric gases on the surfaces of snow and ice are not well described by thermodynamic equilibrium models which assume the liquid phase is located entirely at the surface.

  4. Comparison of visible and near infrared reflectance spectroscopy on fat to authenticate dietary history of lambs.

    PubMed

    Huang, Y; Andueza, D; de Oliveira, L; Zawadzki, F; Prache, S

    2015-11-01

    Since consumers are showing increased interest in the origin and method of production of their food, it is important to be able to authenticate dietary history of animals by rapid and robust methods used in the ruminant products. Promising breakthroughs have been made in the use of spectroscopic methods on fat to discriminate pasture-fed and concentrate-fed lambs. However, questions remained on their discriminatory ability in more complex feeding conditions, such as concentrate-finishing after pasture-feeding. We compared the ability of visible reflectance spectroscopy (Vis RS, wavelength range: 400 to 700 nm) with that of visible-near-infrared reflectance spectroscopy (Vis-NIR RS, wavelength range: 400 to 2500 nm) to differentiate between carcasses of lambs reared with three feeding regimes, using partial least square discriminant analysis (PLS-DA) as a classification method. The sample set comprised perirenal fat of Romane male lambs fattened at pasture (P, n = 69), stall-fattened indoors on commercial concentrate and straw (S, n = 55) and finished indoors with concentrate and straw for 28 days after pasture-feeding (PS, n = 65). The overall correct classification rate was better for Vis-NIR RS than for Vis RS (99.0% v. 95.1%, P < 0.05). Vis-NIR RS allowed a correct classification rate of 98.6%, 100.0% and 98.5% for P, S and PS lambs, respectively, whereas Vis RS allowed a correct classification rate of 98.6%, 94.5% and 92.3% for P, S and PS lambs, respectively. This study suggests the likely implication of molecules absorbing light in the non-visible part of the Vis-NIR spectra (possibly fatty acids), together with carotenoid and haem pigments, in the discrimination of the three feeding regimes.

  5. Analysis of total oil and fatty acids composition by near infrared reflectance spectroscopy in edible nuts

    NASA Astrophysics Data System (ADS)

    Kandala, Chari V.; Sundaram, Jaya

    2014-10-01

    Near Infrared (NIR) Reflectance spectroscopy has established itself as an important tool in quantifying water and oil present in various food materials. It is rapid and nondestructive, easier to use, and does not require processing the samples with corrosive chemicals that would render them non-edible. Earlier, the samples had to be ground into powder form before making any measurements. With the development of new soft ware packages, NIR techniques could now be used in the analysis of intact grain and nuts. While most of the commercial instruments presently available work well with small grain size materials such as wheat and corn, the method present here is suitable for large kernel size products such as shelled or in-shell peanuts. Absorbance spectra were collected from 400 nm to 2500 nm using a NIR instrument. Average values of total oil contents (TOC) of peanut samples were determined by standard extraction methods, and fatty acids were determined using gas chromatography. Partial least square (PLS) analysis was performed on the calibration set of absorption spectra, and models were developed for prediction of total oil and fatty acids. The best model was selected based on the coefficient of determination (R2), Standard error of prediction (SEP) and residual percent deviation (RPD) values. Peanut samples analyzed showed RPD values greater than 5.0 for both absorbance and reflectance models and thus could be used for quality control and analysis. Ability to rapidly and nondestructively measure the TOC, and analyze the fatty acid composition, will be immensely useful in peanut varietal improvement as well as in the grading process of grain and nuts.

  6. Diffuse Reflectance Infrared Spectroscopic Identification of Dispersant/Particle Bonding Mechanisms in Functional Inks

    PubMed Central

    Deiner, L. Jay; Farjami, Elaheh

    2015-01-01

    In additive manufacturing, or 3D printing, material is deposited drop by drop, to create micron to macroscale layers. A typical inkjet ink is a colloidal dispersion containing approximately ten components including solvent, the nano to micron scale particles which will comprise the printed layer, polymeric dispersants to stabilize the particles, and polymers to tune layer strength, surface tension and viscosity. To rationally and efficiently formulate such an ink, it is crucial to know how the components interact. Specifically, which polymers bond to the particle surfaces and how are they attached? Answering this question requires an experimental procedure that discriminates between polymer adsorbed on the particles and free polymer. Further, the method must provide details about how the functional groups of the polymer interact with the particle. In this protocol, we show how to employ centrifugation to separate particles with adsorbed polymer from the rest of the ink, prepare the separated samples for spectroscopic measurement, and use Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS) for accurate determination of dispersant/particle bonding mechanisms. A significant advantage of this methodology is that it provides high level mechanistic detail using only simple, commonly available laboratory equipment. This makes crucial data available to almost any formulation laboratory. The method is most useful for inks composed of metal, ceramic, and metal oxide particles in the range of 100 nm or greater. Because of the density and particle size of these inks, they are readily separable with centrifugation. Further, the spectroscopic signatures of such particles are easy to distinguish from absorbed polymer. The primary limitation of this technique is that the spectroscopy is performed ex-situ on the separated and dried particles as opposed to the particles in dispersion. However, results from attenuated total reflectance spectra of the wet separated

  7. Total reflection infrared spectroscopy of water-ice and frozen aqueous NaCl solutions

    NASA Astrophysics Data System (ADS)

    Walker, Rachel L.; Searles, Keith; Willard, Jesse A.; Michelsen, Rebecca R. H.

    2013-12-01

    Liquid-like and liquid water at and near the surface of water-ice and frozen aqueous sodium chloride films were observed using attenuated total reflection infrared spectroscopy (ATR-IR). The concentration of NaCl ranged from 0.0001 to 0.01 M and the temperature varied from the melting point of water down to 256 K. The amount of liquid brine at the interface of the frozen films with the germanium ATR crystal increased with salt concentration and temperature. Experimental spectra are compared to reflection spectra calculated for a simplified morphology of a uniform liquid layer between the germanium crystal and the frozen film. This morphology allows for the amount of liquid observed in an experimental spectrum to be converted to the thickness of a homogenous layer with an equivalent amount of liquid. These equivalent thickness ranges from a nanometer for water-ice at 260 K to 170 nm for 0.01 M NaCl close to the melting point. The amounts of brine observed are over an order of magnitude less than the total liquid predicted by equilibrium thermodynamic models, implying that the vast majority of the liquid fraction of frozen solutions may be found in internal inclusions, grain boundaries, and the like. Thus, the amount of liquid and the solutes dissolved in them that are available to react with atmospheric gases on the surfaces of snow and ice are not well described by thermodynamic equilibrium models which assume the liquid phase is located entirely at the surface.

  8. [Determination of protein and gossypol content in cotton kernel powder with near infrared reflectance spectroscopy].

    PubMed

    Qin, Li; Shen, Xiao-Jia; Chen, Jin-Hong; Zhu, Shui-Jin

    2010-03-01

    Near-infrared reflectance spectroscopy (NIRS) was used as a rapid and nondestructive method to determine the protein content and gossypol content in cotton kernel powder samples, using 49 upland cotton (Gossypium hirsutum L.) germplasms and 188 recombinant inbred lines (RILs). The cottonseed samples harvested from the upland cotton germplasms and RILs grown in different cotton growing regions in different years were analyzed chemically for protein and gossypol contents, as well as scanned in the reflectance mode of a scanning monochromator. Using ISI software for scanning and data analysis, protein and gossypol calibration equations were obtained with a standard normal variate + detrending scatter correction and a 2, 4, 4, 1 math treatment and modified partial least square (MPLS) as the regression method. The protein content calibration results revealed that the multiple correlation coefficients (RSQ) and statistic 1--variance ratio (1-VR) for the determination of protein content in cottonseed kernels were 0.933 and 0.929, respectively, and its standard error of calibration (SEC) and standard error of cross validation (SECV) were 0.623 and 0.638, respectively. As the calibration equations were judged by the calibration RSQ (or 1-VR) and SEC (or SECV), the results indicated that NIRS is comparable to chemical methods in both accuracy and prediction and is reliable in the determination of protein content in cottonseed kernels. However, the RSQ, SEC, 1-VR and SECV for gossypol content determination of NIRS were 0.836, 0.811, 0.074 and 0.079, respectively. Although it was weaker than that of protein content, the NIRS method is still good enough for the determination and prediction of the gossypol content in cottonseed kernels. Therefore, NIRS models were successfully developed for protein content and gossypol content analysis of cotton kernel powder sample in the present study and they could be introduced into the cotton germplasm evaluation and breeding program for

  9. Quantitative determination of band distortions in diamond attenuated total reflectance infrared spectra.

    PubMed

    Boulet-Audet, Maxime; Buffeteau, Thierry; Boudreault, Simon; Daugey, Nicolas; Pézolet, Michel

    2010-06-24

    Due to its unmatched hardness and chemical inertia, diamond offers many advantages over other materials for extreme conditions and routine analysis by attenuated total reflection (ATR) infrared spectroscopy. Its low refractive index can offer up to a 6-fold absorbance increase compared to germanium. Unfortunately, it also results for strong bands in spectral distortions compared to transmission experiments. The aim of this paper is to present a methodological approach to determine quantitatively the degree of the spectral distortions in ATR spectra. This approach requires the determination of the optical constants (refractive index and extinction coefficient) of the investigated sample. As a typical example, the optical constants of the fibroin protein of the silk worm Bombyx mori have been determined from the polarized ATR spectra obtained using both diamond and germanium internal reflection elements. The positions found for the amide I band by germanium and diamond ATR are respectively 6 and 17 cm(-1) lower than the true value dtermined from the k(nu) spectrum, which is calculated to be 1659 cm(-1). To determine quantitatively the effect of relevant parameters such as the film thickness and the protein concentration, various spectral simulations have also been performed. The use of a thinner film probed by light polarized in the plane of incidence and diluting the protein sample can help in obtaining ATR spectra that are closer to their transmittance counterparts. To extend this study to any system, the ATR distortion amplitude has been evaluated using spectral simulations performed for bands of various intensities and widths. From these simulations, a simple empirical relationship has been found to estimate the band shift from the experimental band height and width that could be of practical use for ATR users. This paper shows that the determination of optical constants provides an efficient way to recover the true spectrum shape and band frequencies of

  10. [DWT-iPLS applied in the infrared diffuse reflection spectrum of hydrocarbon source rocks].

    PubMed

    Song, Ning; Xu, Xiao-xuan; Wu, Zhong-chen; Zhang, Cun-zhou; Wang, Bin

    2008-08-01

    Infrared spectroscopy is useful to monitor the quality of products on-line, or to quality multivariate properties simultaneously. The IR spectrometer satisfies the requirements of users who want to have quantitative product information in real-time because the instrument provides the information promptly and easily. However, Samples that are measured using diffuse reflectance often exhibit significant differences in the spectra due to the non-homogeneous distribution of the particles. In fact, multiple spectral measurements of the same sample can look completely different. In many cases, the scattering can be an overpowering contributor to the spectrum, sometimes accounting for most of the variance in the data. Although the degree of scattering is dependent on the wavelength of the light that is used and the particle size and refractive index of the sample, the scattering is not uniform throughout the spectrum. Typically, this appears as a baseline shift, tilt and sometimes curvature, where the degree of influence is more pronounced at the longer-wavelength end of the spectrum. The diffuse reflection spectrum is unsatisfactory and the calibration may provide unsatisfactory prediction results. So we must use some methods to remove the effects of the scattering for multivariate calibration of IR spectral signals. Discrete wavelet transform (DWT) is a good method to remove the effects of the scattering for multivariate calibration of IR spectral signals. By using DWT on individual signals as a preprocessing method in regression modeling on IR spectra, good compression is achieved with almost no loss of information, the low-frequency varying background and the high-frequency noise be removed simultaneously. In this report, we use the iPLS method to establish the calibration models of hydrocarbon source rocks. iPLS is a new regression method and the authors can get better results by using DTW- iPLS.

  11. All-optical modulation in Mid-Wavelength Infrared using porous Si membranes

    NASA Astrophysics Data System (ADS)

    Park, Sung Jin; Zakar, Ammar; Zerova, Vera L.; Chekulaev, Dimitri; Canham, Leigh T.; Kaplan, Andre

    2016-07-01

    We demonstrate for the first time the possibility of all-optical modulation of self-standing porous Silicon (pSi) membrane in the Mid-Wavelength Infrared (MWIR) range using femtosecond pump-probe techniques. To study optical modulation, we used pulses of an 800 nm, 60 femtosecond for pump and a MWIR tunable probe in the spectral range between 3.5 and 4.4 μm. We show that pSi possesses a natural transparency window centred around 4 μm. Yet, about 55% of modulation contrast can be achieved by means of optical excitation at the pump power of 60 mW (4.8 mJ/cm2). Our analysis shows that the main mechanism of the modulation is interaction of the MWIR signal with the free charge carrier excited by the pump. The time-resolved measurements showed a sub-picosecond rise time and a recovery time of about 66 ps, which suggests a modulation speed performance of ~15 GHz. This optical modulation of pSi membrane in MWIR can be applied to a variety of applications such as thermal imaging and free space communications.

  12. All-optical modulation in Mid-Wavelength Infrared using porous Si membranes

    PubMed Central

    Park, Sung Jin; Zakar, Ammar; Zerova, Vera L.; Chekulaev, Dimitri; Canham, Leigh T.; Kaplan, Andre

    2016-01-01

    We demonstrate for the first time the possibility of all-optical modulation of self-standing porous Silicon (pSi) membrane in the Mid-Wavelength Infrared (MWIR) range using femtosecond pump-probe techniques. To study optical modulation, we used pulses of an 800 nm, 60 femtosecond for pump and a MWIR tunable probe in the spectral range between 3.5 and 4.4 μm. We show that pSi possesses a natural transparency window centred around 4 μm. Yet, about 55% of modulation contrast can be achieved by means of optical excitation at the pump power of 60 mW (4.8 mJ/cm2). Our analysis shows that the main mechanism of the modulation is interaction of the MWIR signal with the free charge carrier excited by the pump. The time-resolved measurements showed a sub-picosecond rise time and a recovery time of about 66 ps, which suggests a modulation speed performance of ~15 GHz. This optical modulation of pSi membrane in MWIR can be applied to a variety of applications such as thermal imaging and free space communications. PMID:27440224

  13. Detection and characterisation of delamination in PV modules by active infrared thermography

    NASA Astrophysics Data System (ADS)

    Sinha, A.; Sastry, O. S.; Gupta, R.

    2016-01-01

    The paper presents a fast and efficient method for the detection and characterisation of delamination in photovoltaic (PV) modules by using active infrared thermography approach. A discrete part of PV module was irradiated by step heating and its thermal image sequence was used to detect and analyse delamination. Different types of heating source for thermal excitation for this application have been studied. An electro-thermal model was developed to simulate the active thermography approach for the characterisation of delamination in PV module by equivalent resistance-capacitance (RC) network using a circuit simulator. This simulation approach was used to estimate the extent of delamination in the module and to determine the optimum parameters for the characterisation of delamination. Different applications based on front and backsides of heating the module were also proposed in this paper. The proposed method has the potential to be employed for the quality check of PV modules during inline production as well as for the predictive maintenance of outdoor PV plants.

  14. All-optical modulation in Mid-Wavelength Infrared using porous Si membranes.

    PubMed

    Park, Sung Jin; Zakar, Ammar; Zerova, Vera L; Chekulaev, Dimitri; Canham, Leigh T; Kaplan, Andre

    2016-07-21

    We demonstrate for the first time the possibility of all-optical modulation of self-standing porous Silicon (pSi) membrane in the Mid-Wavelength Infrared (MWIR) range using femtosecond pump-probe techniques. To study optical modulation, we used pulses of an 800 nm, 60 femtosecond for pump and a MWIR tunable probe in the spectral range between 3.5 and 4.4 μm. We show that pSi possesses a natural transparency window centred around 4 μm. Yet, about 55% of modulation contrast can be achieved by means of optical excitation at the pump power of 60 mW (4.8 mJ/cm(2)). Our analysis shows that the main mechanism of the modulation is interaction of the MWIR signal with the free charge carrier excited by the pump. The time-resolved measurements showed a sub-picosecond rise time and a recovery time of about 66 ps, which suggests a modulation speed performance of ~15 GHz. This optical modulation of pSi membrane in MWIR can be applied to a variety of applications such as thermal imaging and free space communications.

  15. Fast computation of the Narcissus reflection coefficient for the Herschel far-infrared/submillimeter-wave Cassegrain telescope

    NASA Astrophysics Data System (ADS)

    Lucke, Robert L.; Fischer, Jacqueline; Polegre, Arturo M.; Beintema, Douwe A.

    2005-10-01

    Placement of a scatter cone at the center of the secondary of a Cassegrain telescope greatly reduces Narcissus reflection. To calculate the remaining Narcissus reflection, a time-consuming physical optics code such as GRASP8 is often used to model the effects of reflection and diffraction. Fortunately, the Cassegrain geometry is sufficiently simple that a combination of theoretical analysis and Fourier propagation can yield rapid, accurate results at submillimeter wavelengths. We compare these results with those from GRASP8 for the heterodyne instrument for the far-infrared on the Herschel Space Observatory and confirm the effectiveness of the chosen scatter cone design.

  16. Fast computation of the narcissus reflection coefficient for the Herschel far-infrared/submillimeter-wave Cassegrain telescope.

    PubMed

    Lucke, Robert L; Fischer, Jacqueline; Polegre, Arturo M; Beintema, Douwe A

    2005-10-01

    Placement of a scatter cone at the center of the secondary of a Cassegrain telescope greatly reduces Nareissus reflection. To calculate the remaining Narcissus reflection, a time-consuming physical optics code/such as GRASP8 is often used to model the effects of reflection and diffraction. Fortunately, the Cassegrain geometry is sufficiently simple that a combination of theoretical analysis and Fourier propagation can yield rapid, accurate results at submillimeter wavelengths. We compare these results with those from GRASP8 for the heterodyne instrument for the far-infrared on the Herschel Space Observatory and confirm the effectiveness of the chosen scatter cone design.

  17. Self-anti-reflective density-modulated thin films by HIPS technique

    NASA Astrophysics Data System (ADS)

    Keles, Filiz; Badradeen, Emad; Karabacak, Tansel

    2017-08-01

    A critical factor for an efficient light harvesting device is reduced reflectance in order to achieve high optical absorptance. In this regard, refractive index engineering becomes important to minimize reflectance. In this study, a new fabrication approach to obtain density-modulated CuIn x Ga(1-x)Se2 (CIGS) thin films with self-anti-reflective properties has been demonstrated. Density-modulated CIGS samples were fabricated by utilizing high pressure sputtering (HIPS) at Ar gas pressure of 2.75 × 10-2 mbar along with conventional low pressure sputtering (LPS) at Ar gas pressure of 3.0 × 10-3 mbar. LPS produces conventional high density thin films while HIPS produces low density thin films with approximate porosities of ˜15% due to a shadowing effect originating from the wide-spread angular atomic of HIPS. Higher pressure conditions lower the film density, which also leads to lower refractive index values. Density-modulated films that incorporate a HIPS layer at the side from which light enters demonstrate lower reflectance thus higher absorptance compared to conventional LPS films, although there is not any significant morphological difference between them. This result can be attributed to the self-anti-reflective property of the density-modulated samples, which was confirmed by the reduced refractive index calculated for HIPS layer via an envelope method. Therefore, HIPS, a simple and scalable approach, can provide enhanced optical absorptance in thin film materials and eliminate the need for conventional light trapping methods such as anti-reflective coatings of different materials or surface texturing.

  18. Self-anti-reflective density-modulated thin films by HIPS technique.

    PubMed

    Keles, Filiz; Badradeen, Emad; Karabacak, Tansel

    2017-08-18

    A critical factor for an efficient light harvesting device is reduced reflectance in order to achieve high optical absorptance. In this regard, refractive index engineering becomes important to minimize reflectance. In this study, a new fabrication approach to obtain density-modulated CuIn x Ga(1-x)Se2 (CIGS) thin films with self-anti-reflective properties has been demonstrated. Density-modulated CIGS samples were fabricated by utilizing high pressure sputtering (HIPS) at Ar gas pressure of 2.75 × 10(-2) mbar along with conventional low pressure sputtering (LPS) at Ar gas pressure of 3.0 × 10(-3) mbar. LPS produces conventional high density thin films while HIPS produces low density thin films with approximate porosities of ∼15% due to a shadowing effect originating from the wide-spread angular atomic of HIPS. Higher pressure conditions lower the film density, which also leads to lower refractive index values. Density-modulated films that incorporate a HIPS layer at the side from which light enters demonstrate lower reflectance thus higher absorptance compared to conventional LPS films, although there is not any significant morphological difference between them. This result can be attributed to the self-anti-reflective property of the density-modulated samples, which was confirmed by the reduced refractive index calculated for HIPS layer via an envelope method. Therefore, HIPS, a simple and scalable approach, can provide enhanced optical absorptance in thin film materials and eliminate the need for conventional light trapping methods such as anti-reflective coatings of different materials or surface texturing.

  19. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    PubMed

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  20. Histological validation of near-infrared reflectance multispectral imaging technique for caries detection and quantification

    NASA Astrophysics Data System (ADS)

    Salsone, Silvia; Taylor, Andrew; Gomez, Juliana; Pretty, Iain; Ellwood, Roger; Dickinson, Mark; Lombardo, Giuseppe; Zakian, Christian

    2012-07-01

    Near infrared (NIR) multispectral imaging is a novel noninvasive technique that maps and quantifies dental caries. The technique has the ability to reduce the confounding effect of stain present on teeth. The aim of this study was to develop and validate a quantitative NIR multispectral imaging system for caries detection and assessment against a histological reference standard. The proposed technique is based on spectral imaging at specific wavelengths in the range from 1000 to 1700 nm. A total of 112 extracted teeth (molars and premolars) were used and images of occlusal surfaces at different wavelengths were acquired. Three spectral reflectance images were combined to generate a quantitative lesion map of the tooth. The maximum value of the map at the corresponding histological section was used as the NIR caries score. The NIR caries score significantly correlated with the histological reference standard (Spearman's Coefficient=0.774, p<0.01). Caries detection sensitivities and specificities of 72% and 91% for sound areas, 36% and 79% for lesions on the enamel, and 82% and 69% for lesions in dentin were found. These results suggest that NIR spectral imaging is a novel and promising method for the detection, quantification, and mapping of dental caries.

  1. Characterization of NPP Visible/Infrared Imager Radiometer Suite (VIIRS) Reflective Solar Bands Dual Gain Anomaly

    NASA Technical Reports Server (NTRS)

    Lee, Shihyan; McIntire, Jeff; Oudari, Hassan

    2012-01-01

    The Visible/Infrared Imager Radiometer Suite (VIIRS) contains six dual gain bands in the reflective solar spectrum. The dual gain bands are designed to switch gain mode at pre-defined thresholds to achieve high resolution at low radiances while maintaining the required dynamic range for science. During pre-launch testing, an anomaly in the electronic response before transitioning from high to low gain was discovered and characterized. On-orbit, the anomaly was confirmed using MODIS data collected during Simultaneous Nadir Overpasses (SNOs). The analysis of the Earth scene data shows that dual gain anomaly can be determined at the orbital basis. To characterize the dual gain anomaly, the anomaly region and electronic offsets were tracked per week during the first 8 month of VIIRS operation. The temporal analysis shows the anomaly region can drift 20 DN and is impacted by detectors DC Restore. The estimated anomaly flagging regions cover 2.5 % of the high gain dynamic range and are consistent with prelaunch and on-orbit LUT. The prelaunch results had a smaller anomaly range (30-50 DN) and are likely the results of more stable electronics from the shorter data collection time. Finally, this study suggests future calibration efforts to focus on the anomaly's impact on science products and possible correction method to reduce uncertainties.

  2. Characterization of ultrathin silicon oxide films with mirror-enhanced polarized reflectance Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Cui, Zhenjiang; Takoudis, Christos G.

    2001-05-01

    Ultrathin silicon oxide films thermally grown on Si (100) are characterized with mirror-enhanced polarized reflectance Fourier transform infrared spectroscopy (MEPR-FTIR). MEPR-FTIR is proposed to effectively probe properties of ultrathin films. Using a mirror and a polarizer, MEPR-FTIR overcomes the difficulty of weak IR intensities normally encountered in ultrathin gate dielectrics such as SiO2; the intensity of the silicon oxide longitudinal optical (LO) mode is found to increase by a factor of about 20. Therefore, FTIR spectrometers with sensitivity down to 0.01% may allow even submonolayer probing of silicon oxide on Si substrates. The relationship between film thickness and IR intensity of the LO mode at 1252 cm-1 is presented for silicon oxide films as thin as a few Å thick. Independent measurements with ellipsometry, cross-sectional transmission electron microscopy, and x-ray photoelectron spectroscopy as well as theoretical predictions using the general Fresnel function are utilized. Although nonlinear overall, the theoretically predicted relationship between the MEPR-FTIR intensity and film thickness is almost linear within the range 0-50 Å. Experimental data are shown to agree very well with the theoretical calculations for two different kinds of oxides: thermal oxides grown at 1050 °C and native oxides. Such results suggest that the MEPR-FTIR can be useful as an ex situ or in situ technique for thickness measurements and, in fact, for other properties of ultrathin gate dielectrics.

  3. Early detection of cell activation events by means of attenuated total reflection Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Titus, Jitto; Filfili, Chadi; Hilliard, Julia K.; Ward, John A.; Unil Perera, A. G.

    2014-06-01

    Activation of Jurkat T-cells in culture following treatment with anti-CD3 (Cluster of Differentiation 3) antibody is detectable by interrogating the treated T-cells using the Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) Spectroscopy technique. Cell activation was detected within 75 min after the cells encountered specific immunoglobulin molecules. Spectral markers noted following ligation of the CD3 receptor with anti CD3 antibody provides proof-of-concept that ATR-FTIR spectroscopy is a sensitive measure of molecular events subsequent to cells interacting with anti-CD3 Immunoglobulin G. The resultant ligation of the CD3 receptor results in the initiation of well defined, specific signaling pathways that parallel the measurable molecular events detected using ATR-FTIR. Paired t-test with post-hoc Bonferroni corrections for multiple comparisons has resulted in the identification of statistically significant spectral markers (p < 0.02) at 1367 and 1358 cm-1. Together, these data demonstrate that early treatment-specific cellular events can be measured by ATR-FTIR and that this technique can be used to identify specific agents via the responses of the cell biosensor at different time points postexposure.

  4. Rapid evaluation of the quality of chestnuts using near-infrared reflectance spectroscopy.

    PubMed

    Hu, Jiaqi; Ma, Xiaochen; Liu, Lingling; Wu, Yanwen; Ouyang, Jie

    2017-09-15

    Near-infrared (NIR) diffuse reflectance spectroscopy was used to evaluate the quality of fresh chestnuts, which can be affected by mildew, water, and levels of water-soluble sugars. The NIR spectra were determined and then modeling was performed including principal component analysis - discriminant analysis (PCA-DA), soft independent modeling of class analogy (SIMCA), linear discriminant analysis (LDA), and partial least squares (PLS) methods. LDA model was better than PCA-DA model for the discrimination of normal and mildewed chestnuts, and the accuracy rates of calibration and validation were 100% and 96.37%, respectively. Normal and mildewed chestnuts were easily distinguished by the SIMCA classification and showed only 4.7% overlap. A PLS model was established to determine the water and water-soluble sugars in chestnuts. The R(2) of calibration and validation were all higher than 0.9, while the root mean square errors (RMSE) were all lower than 0.05, indicating that the established models were successful. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Quantitative orientation measurements in thin lipid films by attenuated total reflection infrared spectroscopy.

    PubMed Central

    Picard, F; Buffeteau, T; Desbat, B; Auger, M; Pézolet, M

    1999-01-01

    Quantitative orientation measurements by attenuated total reflectance (ATR) infrared spectroscopy require the accurate knowledge of the dichroic ratio and of the mean-square electric fields along the three axes of the ATR crystal. In this paper, polarized ATR spectra of single supported bilayers of the phospholipid dimyristoylphosphatidic acid covered by either air or water have been recorded and the dichroic ratio of the bands due to the methylene stretching vibrations has been calculated. The mean-square electric field amplitudes were calculated using three formalisms, namely the Harrick thin film approximation, the two-phase approximation, and the thickness- and absorption-dependent one. The results show that for dry bilayers, the acyl chain tilt angle varies with the formalism used, while no significant variations are observed for the hydrated bilayers. To test the validity of the different formalisms, s- and p-polarized ATR spectra of a 40-A lipid layer were simulated for different acyl chain tilt angles. The results show that the thickness- and absorption-dependent formalism using the mean values of the electric fields over the film thickness gives the most accurate values of acyl chain tilt angle in dry lipid films. However, for lipid monolayers or bilayers, the tilt angle can be determined with an acceptable accuracy using the Harrick thin film approximation. Finally, this study shows clearly that the uncertainty on the determination of the tilt angle comes mostly from the experimental error on the dichroic ratio and from the knowledge of the refractive index. PMID:9876167

  6. Characterization of early stage cartilage degradation using diffuse reflectance near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Brown, C. P.; Jayadev, C.; Glyn-Jones, S.; Carr, A. J.; Murray, D. W.; Price, A. J.; Gill, H. S.

    2011-04-01

    Interest in localized and early stage treatment technologies for joint conditions such as osteoarthritis is growing rapidly. It has therefore become important to develop objective measures capable of characterizing the earliest (non-visible) changes associated with degeneration to aid treatment procedures. In addition to assessing tissue before treatment, it is further important to develop an effective, non-destructive means of monitoring post-treatment tissue healing, and of providing the high-quality data needed for trials of developing treatment methods. To investigate its ability to detect the early stages of degeneration in cartilage-on-bone, diffuse reflectance near infrared spectroscopy was applied to normal and osteoarthritic joints. A discriminating function was developed to relate absorbance peaks of interest and track degradation around focal osteoarthritic defects. The function could distinguish between normal and degraded tissue (100% separation of normal tissue from that within 25 mm of a defect) and between different stages of osteoarthritic progression (p < 0.05). This technique allows simple, practical and non-destructive assessment of component-level properties over the full depth of the tissue. It has the potential to increase our understanding of the underlying etiologic and pathogenic processes in early stage degeneration, to assist classification and the development of new treatment methods.

  7. Detection of canine skin and subcutaneous tumors by visible and near-infrared diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cugmas, Blaž; Plavec, Tanja; Bregar, Maksimilijan; Naglič, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2015-03-01

    Cancer is the main cause of canine morbidity and mortality. The existing evaluation of tumors requires an experienced veterinarian and usually includes invasive procedures (e.g., fine-needle aspiration) that can be unpleasant for the dog and the owner. We investigate visible and near-infrared diffuse reflectance spectroscopy (DRS) as a noninvasive optical technique for evaluation and detection of canine skin and subcutaneous tumors ex vivo and in vivo. The optical properties of tumors and skin were calculated in a spectrally constrained manner, using a lookup table-based inverse model. The obtained optical properties were analyzed and compared among different tumor groups. The calculated parameters of the absorption and reduced scattering coefficients were subsequently used for detection of malignant skin and subcutaneous tumors. The detection sensitivity and specificity of malignant tumors ex vivo were 90.0% and 73.5%, respectively, while corresponding detection sensitivity and specificity of malignant tumors in vivo were 88.4% and 54.6%, respectively. The obtained results show that the DRS is a promising noninvasive optical technique for detection and classification of malignant and benign canine skin and subcutaneous tumors. The method should be further investigated on tumors with common origin.

  8. Correcting attenuated total reflection-Fourier transform infrared spectra for water vapor and carbon dioxide.

    PubMed

    Bruun, Susanne W; Kohler, Achim; Adt, Isabelle; Sockalingum, Ganesh D; Manfait, Michel; Martens, Harald

    2006-09-01

    Fourier transform infrared (FT-IR) spectroscopy is a valuable technique for characterization of biological samples, providing a detailed fingerprint of the major chemical constituents. However, water vapor and CO(2) in the beam path often cause interferences in the spectra, which can hamper the data analysis and interpretation of results. In this paper we present a new method for removal of the spectral contributions due to atmospheric water and CO(2) from attenuated total reflection (ATR)-FT-IR spectra. In the IR spectrum, four separate wavenumber regions were defined, each containing an absorption band from either water vapor or CO(2). From two calibration data sets, gas model spectra were estimated in each of the four spectral regions, and these model spectra were applied for correction of gas absorptions in two independent test sets (spectra of aqueous solutions and a yeast biofilm (C. albicans) growing on an ATR crystal, respectively). The amounts of the atmospheric gases as expressed by the model spectra were estimated by regression, using second-derivative transformed spectra, and the estimated gas spectra could subsequently be subtracted from the sample spectra. For spectra of the growing yeast biofilm, the gas correction revealed otherwise hidden variations of relevance for modeling the growth dynamics. As the presented method improved the interpretation of the principle component analysis (PCA) models, it has proven to be a valuable tool for filtering atmospheric variation in ATR-FT-IR spectra.

  9. [Attenuated Total Reflection Infrared Spectroscopy for Degradation Profile of High Density Polyethylene after Weathering Aging].

    PubMed

    Guo, Jun-jun; Yan, Hua; Bao, He-bin; Wang, Xue-mei; Hu, Zhi-de; Yang, Jian-jian

    2015-06-01

    High density polyethylene (HDPE) was widely used as rotational packaging case in the material reserve field. The chemical changes of HDPE, exposed to particular climatic conditions of tropic marine atmosphere for one year-long in Wanning Hainan, were elucidated by the attenuated total reflection infrared spectroscopy (ATR-FTIR). The structural changes were studied qualitatively, mainly from the polymeric chain breaking, branching and oxidation to distinguish the degradation profile. The variations of crystallinity & carbonyl index were also studied quantitatively according to the characteristic peaks intensity & area ratio. Finally, the relationships between structural changes and mechanical properties were investigated. The results showed that the polymeric chain breaking & branching play a leading role before 3 months in the aging progress. Then oxidation phenomena gradually takes place during 3-6 months. The chain branching & oxidation were predominant factors after 6 months. Nine months later, the oxidation was saturated gradually. Furthermore, the aging process is positively correlated to the temperature and irradiation. After 12 months aging, the carbonyl index increased by 112 times and crystallinity was 10% higher than before. The tensile/bending modulus deceased faster than tensile/bending strength of HDPE. The linear degree of tensile modulus and carbonyl index was 0.97. The degree of linearity of tensile strength and crystallinity calculated by feature bands (720-730 cm(-1)) was 0.96. It showed that the mechanical properties of HDPE can be speculated from the structural changes by ATR-FTIR.

  10. Effects of oxidative irrigants on root dentin structure: Attenuated Total Reflection Fourier Transform Infrared Spectroscopy study.

    PubMed

    Atabek, Didem; Bodur, Haluk; Yalçin, Gözde; Kalayci, Şükrü

    2014-09-01

    The aim of this study was to compare the effect of oxidative irrigants on the organic and inorganic structure of root canal dentin. Fifty human 2nd premolar roots were used in the study. The dentin specimens prepared from those teeth were immersed in liquid nitrogen for 15 min. The frozen composition was titrated in a mixer and the obtained dentin powder was kept frozen at -70°C until use. Ten groups of 50mg dentin powder were immersed in agents (A: Ozone for 100 or 200 sec, B: 5.25% NaOCl, C: 2.25% NaOCl, D: 2% Chlorhexidine, E: 0.9% NaCl (control)) for 5 or 10 min. An Attenuated Total Reflection Fourier Transform Infrared Spectrophotometer (ATR FT-IR) was used to analyze dentin powder. The data were statistically analyzed by using Kruskall-Wallis analysis of variance. In all groups, collagen degradation was significantly increased compared to the control and 2% CHX groups (p<0.05). The use of ozone increased collagen degradation significantly compared to the use of 2.25% NaOCl and 2% Chlorhexidine for 5 min (p < 0.05). No significant differences were observed between ozone and 5.25% NaOCl-treated groups (p > 0.05). The structural composition of human dentin was significantly affected by the use of oxidative irrigants at higher concentrations.

  11. Analysis of grass silage from Northwestern Spain by near-infrared reflectance spectroscopy.

    PubMed

    Villamarín, Begoña; Fernández, Esperanza; Mendéz, Jests

    2002-01-01

    Near-infrared reflectance spectroscopy (NIRS) was evaluated for the determination of protein, crude fiber (CF), acid detergent fiber (ADF), and neutral detergent fiber (NDF) in grass silage. Calibration equations were based on analyses of 366 samples of grass silage produced in Northwestern Spain over 4 consecutive years (1992-1995) and validated by analyses of a set of 72 silage samples harvested during 1996. Dried and ground samples were analyzed by chemical and NIRS procedures. The spectral data were analyzed by regression against a range of chemical parameters, using modified partial least-squares (MPLS) multivariate analysis in conjunction with different mathematical treatments of the spectra. For each parameter, the optimum calibration was evaluated on the basis of the coefficient of multiple determination (R2), the coefficient of simple correlation (r2), the standard error of calibration (SEC), the standard error of cross-validation (SECV), and the standard error of validation (SEV). R2 and r2 were >0.90; SEC values were 0.58, 1.04, 1.40, and 1.75; SECV values were 0.64,1.15,1.50, and 2.04; and SEV values were 0.56,1.02, 1.42, and 1.80 for protein, CF, ADF, and NDF, respectively. The ratio of the standard deviation of the reference data to the SEV was >3.0 for each of the 4 parameters, which indicates that the equations can be used in routine analysis.

  12. Crop/weed discrimination using near-infrared reflectance spectroscopy (NIRS)

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; He, Yong

    2006-09-01

    The traditional uniform herbicide application often results in an over chemical residues on soil, crop plants and agriculture produce, which have imperiled the environment and food security. Near-infrared reflectance spectroscopy (NIRS) offers a promising means for weed detection and site-specific herbicide application. In laboratory, a total of 90 samples (30 for each species) of the detached leaves of two weeds, i.e., threeseeded mercury (Acalypha australis L.) and fourleafed duckweed (Marsilea quadrfolia L.), and one crop soybean (Glycine max) was investigated for NIRS on 325- 1075 nm using a field spectroradiometer. 20 absorbance samples of each species after pretreatment were exported and the lacked Y variables were assigned independent values for partial least squares (PLS) analysis. During the combined principle component analysis (PCA) on 400-1000 nm, the PC1 and PC2 could together explain over 91% of the total variance and detect the three plant species with 98.3% accuracy. The full-cross validation results of PLS, i.e., standard error of prediction (SEP) 0.247, correlation coefficient (r) 0.954 and root mean square error of prediction (RMSEP) 0.245, indicated an optimum model for weed identification. By predicting the remaining 10 samples of each species in the PLS model, the results with deviation presented a 100% crop/weed detection rate. Thus, it could be concluded that PLS was an available alternative of for qualitative weed discrimination on NTRS.

  13. Infrared diffuse reflectance spectra of carbonaceous chondrites: Amount of hydrous minerals

    NASA Technical Reports Server (NTRS)

    Miyamoto, M.; Zolensky, M. E.

    1994-01-01

    Infrared diffuse reflectance spectra (2.53-25 microns) of some carbonaceous (C) chondrites were measured. The integrated intensity of the absorption bands near 3 microns caused by hydrous minerals were compared with the modal content of hydrous minerals for the meteorites. The CM and CI chondrites show larger values of the intergated intensity than those of the unique C chondrites Y82162, Y86720 and B7904, suggesting that the amount of hydrous minerals in the CM and CI chondrites is larger, which supports the contention that hydrous minerals were dehydrated by thermal metamorphism in the unique chondrites. Orgueil (CI) has the largest value of the integrated intensity among the C chondrites we measured and shows a sharp absorption band at 3685/cm (2.71 microns) that is not seen in the spectra of the CM chondrites. There is an excellent correlation between the observed hydrogen content in C chondrites and the integrated intensity. The CM chondrites show a wide variation in the strength of absorption bands at 1470/cm (6.8 microns), despite the similarity in absorption features near 3 micron for all CM chondites. The 1470/cm band could be due to the presence of some hydrocarbons but may also be a result of terrestrial alteration processes.

  14. Detection of canine skin and subcutaneous tumors by visible and near-infrared diffuse reflectance spectroscopy.

    PubMed

    Cugmas, Blaž; Plavec, Tanja; Bregar, Maksimilijan; Naglič, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2015-03-01

    Cancer is the main cause of canine morbidity and mortality. The existing evaluation of tumors requires an experienced veterinarian and usually includes invasive procedures (e.g., fine-needle aspiration) that can be unpleasant for the dog and the owner. We investigate visible and near-infrared diffuse reflectance spectroscopy (DRS) as a noninvasive optical technique for evaluation and detection of canine skin and subcutaneous tumors ex vivo and in vivo. The optical properties of tumors and skin were calculated in a spectrally constrained manner, using a lookup table-based inverse model. The obtained optical properties were analyzed and compared among different tumor groups. The calculated parameters of the absorption and reduced scattering coefficients were subsequently used for detection of malignant skin and subcutaneous tumors. The detection sensitivity and specificity of malignant tumors ex vivo were 90.0% and 73.5%, respectively, while corresponding detection sensitivity and specificity of malignant tumors in vivo were 88.4% and 54.6%, respectively. The obtained results show that the DRS is a promising noninvasive optical technique for detection and classification of malignant and benign canine skin and subcutaneous tumors. The method should be further investigated on tumors with common origin.

  15. Micro-analysis by near-infrared diffuse reflectance spectroscopy with chemometric methods.

    PubMed

    Liu, Yan; Ning, Yu; Cai, Wensheng; Shao, Xueguang

    2013-11-07

    Great attention has been paid to near-infrared diffuse reflectance spectroscopy (NIRDRS) due to its practicability in analyzing real complex samples. However, the application of the technique in micro-analysis is badly restricted by its low sensitivity or high detection limit. In this study, the possibility of achieving the sensitive detection of micro-components using NIRDRS with the help of chemometric methods is studied with two experimental datasets. The results show that a very high sensitivity can be obtained when the noise and the variant background are minimized. Quantitative determination of low concentrations of pesticides and trace Cr(3+) in solutions is achieved by using preconcentration and chemometric approaches to minimize the noise and background. The absolute prediction error of the method can be as low as 7.6 μg for the pesticide and 28.6 μg for Cr(3+). These quantities are equivalent to 76 ng mL(-1) and 286 ng mL(-1) if 100 mL of solution are used for the analysis.

  16. Identification of species' blood by attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy.

    PubMed

    Mistek, Ewelina; Lednev, Igor K

    2015-09-01

    Blood is one of the most common and informative forms of biological evidence found at a crime scene. A very crucial step in forensic investigations is identifying a blood stain's origin. The standard methods currently employed for analyzing blood are destructive to the sample and time-consuming. In this study, attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy is used as a confirmatory, nondestructive, and rapid method for distinction between human and animal (nonhuman) blood. Partial least squares-discriminant analysis (PLS-DA) models were built and demonstrated complete separation between human and animal donors, as well as distinction between three separate species: human, cat, and dog. Classification predictions of unknown blood donors were performed by the model, resulting in 100 % accuracy. This study demonstrates ATR FT-IR spectroscopy's great potential for blood stain analysis and species discrimination, both in the lab and at a crime scene since portable ATR FT-IR instrumentation is commercially available.

  17. Rapid phytochemical analysis of birch (Betula) and poplar (Populus) foliage by near-infrared reflectance spectroscopy.

    PubMed

    Rubert-Nason, Kennedy F; Holeski, Liza M; Couture, John J; Gusse, Adam; Undersander, Daniel J; Lindroth, Richard L

    2013-02-01

    Poplar (Populus) and birch (Betula) species are widely distributed throughout the northern hemisphere, where they are foundation species in forest ecosystems and serve as important sources of pulpwood. The ecology of these species is strongly linked to their foliar chemistry, creating demand for a rapid, inexpensive method to analyze phytochemistry. Our study demonstrates the feasibility of using near-infrared reflectance spectroscopy (NIRS) as an inexpensive, high-throughput tool for determining primary (e.g., nitrogen, sugars, starch) and secondary (e.g., tannins, phenolic glycosides) foliar chemistry of Populus and Betula species, and identifies conditions necessary for obtaining reliable quantitative data. We developed calibrations with high predictive power (residual predictive deviations ≤ 7.4) by relating phytochemical concentrations determined with classical analytical methods (e.g., spectrophotometric assays, liquid chromatography) to NIR spectra, using modified partial least squares regression. We determine that NIRS, although less sensitive and precise than classical methods for some compounds, provides useful predictions in a much faster, less expensive manner than do classical methods.

  18. Optimisation of near-infrared reflectance model in measuring protein and amylose content of rice flour.

    PubMed

    Xie, L H; Tang, S Q; Chen, N; Luo, J; Jiao, G A; Shao, G N; Wei, X J; Hu, P S

    2014-01-01

    Near-infrared reflectance spectroscopy (NIRS) has been used to predict the cooking quality parameters of rice, such as the protein (PC) and amylose content (AC). Using brown and milled flours from 519 rice samples representing a wide range of grain qualities, this study was to compare the calibration models generated by different mathematical, preprocessing treatments, and combinations of different regression algorithm. A modified partial least squares model (MPLS) with the mathematic treatment "2, 8, 8, 2" (2nd order derivative computed based on 8 data points, and 8 and 2 data points in the 1st and 2nd smoothing, respectively) and inverse multiplicative scattering correction preprocessing treatment was identified as the best model for simultaneously measurement of PC and AC in brown flours. MPLS/"2, 8, 8, 2"/detrend preprocessing was identified as the best model for milled flours. The results indicated that NIRS could be useful in estimation of PC and AC of breeding lines in early generations of the breeding programs, and for the purposes of quality control in the food industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Tracing the acetalization of cyclohexanone in CO2-expanded alcohols by attenuated total reflection infrared spectroscopy.

    PubMed

    Seki, Tsunetake; Andanson, Jean-Michel; Jutz, Fabian; Baiker, Alfons

    2009-09-01

    The CO(2)-catalyzed acetalization is regarded as a promising alternative to the conventional acid-catalyzed method from a viewpoint of green chemistry (C. A. Eckert et al., Ind. Eng. Chem. Res. 43, 2605 (2004)). We have applied in situ attenuated total reflection infrared (ATR-IR) spectroscopy for elucidating and monitoring the acetalization of cyclohexanone in CO(2)-expanded ethylene glycol and methanol at 50 degrees C and 3 MPa. The ATR-IR spectra of the reaction mixtures periodically recorded with a ZnSe crystal demonstrate that ATR-IR spectroscopy is a practical tool for tracing the kinetics of acetalizations in situ. In addition, the rate of CO(2) dissolution as well as CO(2) solubility into the cyclohexanone-alcohol mixtures could be evaluated from the CO(2)-nu(3)-antisymmetric stretching band. The ZnSe ATR crystal, however, was corroded during longer use under the acidic conditions realized by the dissolution of CO(2) in the alcohols. In contrast, the corrosion did not occur when a Ge crystal was used instead of a ZnSe crystal, and therefore the application of a Ge ATR crystal is recommended for continuous long-term experiments with these media.

  20. Far infrared reflectance of sintered nickel manganite samples for negative temperature coefficient thermistors

    SciTech Connect

    Nikolic, M.V. . E-mail: maria@mi.sanu.ac.yu; Paraskevopoulos, K.M.; Aleksic, O.S.; Zorba, T.T.; Savic, S.M.; Lukovic, D.T.

    2007-08-07

    Single phase complex spinel (Mn, Ni, Co, Fe){sub 3}O{sub 4} samples were sintered at 1050, 1200 and 1300 deg. C for 30 min and at 1200 deg. C for 120 min. Morphological changes of the obtained samples with the sintering temperature and time were analyzed by X-ray diffraction and scanning electron microscope (SEM). Room temperature far infrared reflectivity spectra for all samples were measured in the frequency range between 50 and 1200 cm{sup -1}. The obtained spectra for all samples showed the presence of the same oscillators, but their intensities increased with the sintering temperature and time in correlation with the increase in sample density and microstructure changes during sintering. The measured spectra were numerically analyzed using the Kramers-Kroenig method and the four-parameter model of coupled oscillators. Optical modes were calculated for six observed ionic oscillators belonging to the spinel structure of (Mn, Ni, Co, Fe){sub 3}O{sub 4} of which four were strong and two were weak.

  1. Predicting glycogen concentration in the foot muscle of abalone using near infrared reflectance spectroscopy (NIRS).

    PubMed

    Fluckiger, Miriam; Brown, Malcolm R; Ward, Louise R; Moltschaniwskyj, Natalie A

    2011-06-15

    Near infrared reflectance spectroscopy (NIRS) was used to predict glycogen concentrations in the foot muscle of cultured abalone. NIR spectra of live, shucked and freeze-dried abalones were modelled against chemically measured glycogen data (range: 0.77-40.9% of dry weight (DW)) using partial least squares (PLS) regression. The calibration models were then used to predict glycogen concentrations of test abalone samples and model robustness was assessed from coefficient of determination of the validation (R2(val)) and standard error of prediction (SEP) values. The model for freeze-dried abalone gave the best prediction (R2(val) 0.97, SEP=1.71), making it suitable for quantifying glycogen. Models for live and shucked abalones had R2(val) of 0.86 and 0.90, and SEP of 3.46 and 3.07 respectively, making them suitable for producing estimations of glycogen concentration. As glycogen is a taste-active component associated with palatability in abalone, this study demonstrated the potential of NIRS as a rapid method to monitor the factors associated with abalone quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. [Maize Hybrid Seed Purity Identification Based on Near Infrared Reflectance (NIR) and Transmittance (NIT) Spectra].

    PubMed

    Li, Tian-xin; Jia, Shi-qiang; Liu, Xu; Zhao, Sheng-yi; Ran, Hang; Yan, Yan-lu; An, Dong

    2015-12-01

    This article explore the feasibility of using Near Infrared Reflectance (NIR) and Transmittance (NIT) Spectroscopy (908.1-1677.2 nm wavelength range) to identify maize hybrid purity, and compare the performance of NIR and NIT spectroscopy. Principle Component Analysis (PCA) and Orthogonal Linear Discriminant Analysis (OLDA) were used to reduce the dimension of spectra which have been pretreated by first derivative and vector normalization. The hybrid purity identification model of Nonghua101 and Jingyu16 were built by SVM. Models based on NIR spectra obtained correct identification rate as 100% and 90% for Nonghua101 and Jingyu16 respectively. But NIR spectra were greatly influenced by the placement of seeds, and there existed significant difference between NIR spectra of embryo and non-embryo side. Models based on NIT spectroscopy yielded correct identification rate as 98% both for Nonghua101 and Jingyu16. NIT spectra of embryo and non-embryo side were highly similar. The results indicate that it is feasible to identify maize hybrid purity based on NIR and NIT spectroscopy, and NIT spectroscopy is more suitable to analyze single seed kernel than NIR spectroscopy.

  3. [Discriminant Analysis of Lavender Essential Oil by Attenuated Total Reflectance Infrared Spectroscopy].

    PubMed

    Tang, Jun; Wang, Qing; Tong, Hong; Liao, Xiang; Zhang, Zheng-fang

    2016-03-01

    This work aimed to use attenuated total reflectance Fourier transform infrared spectroscopy to identify the lavender essential oil by establishing a Lavender variety and quality analysis model. So, 96 samples were tested. For all samples, the raw spectra were pretreated as second derivative, and to determine the 1 750-900 cm(-1) wavelengths for pattern recognition analysis on the basis of the variance calculation. The results showed that principal component analysis (PCA) can basically discriminate lavender oil cultivar and the first three principal components mainly represent the ester, alcohol and terpenoid substances. When the orthogonal partial least-squares discriminant analysis (OPLS-DA) model was established, the 68 samples were used for the calibration set. Determination coefficients of OPLS-DA regression curve were 0.959 2, 0.976 4, and 0.958 8 respectively for three varieties of lavender essential oil. Three varieties of essential oil's the root mean square error of prediction (RMSEP) in validation set were 0.142 9, 0.127 3, and 0.124 9, respectively. The discriminant rate of calibration set and the prediction rate of validation set had reached 100%. The model has the very good recognition capability to detect the variety and quality of lavender essential oil. The result indicated that a model which provides a quick, intuitive and feasible method had been built to discriminate lavender oils.

  4. Monitoring the sorption of propanoic acid by montmorillonite using Diffuse Reflectance Fourier Transform Infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Parker, R. W.; Frost, R. L.

    1998-06-01

    This paper describes how Diffuse Reflectance Fourier Transform Infrared (DRIFT) spectroscopy was used to monitor the sorption behavior of a short chain fatty acid, propanoic acid, on the clay mineral, montmorillonite. Organic acids bind to montmorillonite in two ways, either by dipole interaction with the oxygens in the interlayer space, or by bonding of the carboxylate anions to exposed aluminum ions. The DRIFT spectra of propanoic acid-montmorillonite complexes have bands at 1728 and 1554 cm-1, which are attributed to the symmetric, and antisymmetric stretching vibrations, respectively, of the C=O, ν(C=O)s, and O-C-O, ν(O-C-O)a, bonds of the carboxylic acid group. Each band represents one of the two different binding modes. These bands can be used to monitor the physical and chemical adsorption of the acid by the montmorillonite. When the peak area of each vibration is plotted against increasing acid concentration, both increase to a maximum. However the peak area for the ν(O-C-O)a vibration reaches a maximum at a much lower acid concentration than the ν(O=O)s vibration. The former maximum corresponds to saturation of the available binding sites on the edge surface aluminum ions. This concentration can be used to calculate the number of binding sites on the clay crystal. Where propanoic acid is allowed to diffuse from the clay, the bound fraction remains on the montmorillonite reducing the available acid that can be desorbed or leached from the clay.

  5. Detection of sibutramine in adulterated dietary supplements using attenuated total reflectance-infrared spectroscopy.

    PubMed

    Deconinck, E; Cauwenbergh, T; Bothy, J L; Custers, D; Courselle, P; De Beer, J O

    2014-11-01

    Sibutramine is one of the most occurring adulterants encountered in dietary supplements with slimming as indication. These adulterated dietary supplements often contain a herbal matrix. When customs intercept these kind of supplements it is almost impossible to discriminate between the legal products and the adulterated ones, due to misleading packaging. Therefore in most cases these products are confiscated and send to laboratories for analysis. This results inherently in the confiscation of legal, non-adulterated products. Therefore there is a need for easy to use equipment and techniques to perform an initial screening of samples. Attenuated total reflectance-infrared (ATR-IR) spectroscopy was evaluated for the detection of sibutramine in adulterated dietary supplements. Data interpretation was performed using different basic chemometric techniques. It was found that the use of ATR-IR combined with the k-Nearest Neighbours (k-NN) was able to detect all adulterated dietary supplements in an external test set and this with a minimum of false positive results. This means that a small amount of legal products will still be confiscated and analyzed in a laboratory to be found negative, but no adulterated samples will pass the initial ATR-IR screening. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Histological validation of near-infrared reflectance multispectral imaging technique for caries detection and quantification.

    PubMed

    Salsone, Silvia; Taylor, Andrew; Gomez, Juliana; Pretty, Iain; Ellwood, Roger; Dickinson, Mark; Lombardo, Giuseppe; Zakian, Christian

    2012-07-01

    Near infrared (NIR) multispectral imaging is a novel noninvasive technique that maps and quantifies dental caries. The technique has the ability to reduce the confounding effect of stain present on teeth. The aim of this study was to develop and validate a quantitative NIR multispectral imaging system for caries detection and assessment against a histological reference standard. The proposed technique is based on spectral imaging at specific wavelengths in the range from 1000 to 1700 nm. A total of 112 extracted teeth (molars and premolars) were used and images of occlusal surfaces at different wavelengths were acquired. Three spectral reflectance images were combined to generate a quantitative lesion map of the tooth. The maximum value of the map at the corresponding histological section was used as the NIR caries score. The NIR caries score significantly correlated with the histological reference standard (Spearman's Coefficient=0.774, p<0.01). Caries detection sensitivities and specificities of 72% and 91% for sound areas, 36% and 79% for lesions on the enamel, and 82% and 69% for lesions in dentin were found. These results suggest that NIR spectral imaging is a novel and promising method for the detection, quantification, and mapping of dental caries.

  7. Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging.

    PubMed

    Rees, Catherine A; Provis, John L; Lukey, Grant C; van Deventer, Jannie S J

    2007-07-17

    Structural changes in fly ash geopolymers activated with different sodium hydroxide and silicate concentrations are investigated using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy over a period of 200 days. A strong correlation is found between the concentration of silicate monomer in the activating solution and the position of the main Si-O-T stretching band in the FTIR spectrum, which gives an indication of the relative changes in the gel Si/Al ratio. The FTIR spectra of geopolymer samples with activating solution concentrations of up to 1.2 M SiO2 indicate that an Al-rich gel forms before the final gel composition is reached. The time required for the system to reach a steady gel composition depends on the silicate activating solution concentration and speciation. Geopolymers activated with solutions containing predominantly high-order silicate species rapidly reach a steady gel composition without first forming an Al-rich gel. A minimum silicate monomer concentration of approximately 0.6 M is required to shift the geopolymer synthesis mechanism from hydroxide activation to silicate activation. Silicate speciation in the activating solutions also affects zeolite formation and geopolymer microstructures, with a more homogeneous microstructure and less zeolite formation observed at a higher SiO2 content.

  8. Measurement of evapotranspiration with combined reflective and thermal infrared radiance observations

    NASA Technical Reports Server (NTRS)

    Hope, Allen S.

    1993-01-01

    The broad goal of the research summarized in this report was 'To facilitate the evaluation of regional evapotranspiration (ET) through the combined use of solar reflective and thermal infrared radiance observations.' The specific objectives stated by Goward and Hope (1986) were to: (1) investigate the nature of the relationship between surface temperature (T(sub S)) and the normalized difference vegetation index (NDVI) and develop an understanding of this relationship in terms of energy exchange processes, particularly latent flux heat (LE); (2) develop procedures to estimate large area LE using combined T(sub S) and NDVI observations obtained from AVHRR data; and (3) determine whether measurements derived from satellite observations relate directly to measurements made at the surface or from aircraft platforms. Both empirical and modeling studies were used to develop an understanding of the T(sub S)-NDVI relationship. Most of the modeling was based on the Tergra model as originally proposed by Goward. This model, and modified versions developed in this project, simulates the flows of water and energy in the soil-plant-atmosphere system using meteorological, soil and vegetation inputs. Model outputs are the diurnal course of soil moisture, T(sub S), LE and the other individual components of the surface energy balance.

  9. Quantifying amyloid fibrils in protein mixtures via infrared attenuated-total-reflection spectroscopy.

    PubMed

    Wang, Pei; Bohr, Wilhelm; Otto, Markus; Danzer, Karin M; Mizaikoff, Boris

    2015-05-01

    Amyloid aggregation of proteins is usually associated with amyloid diseases. A distinct feature of protein aggregation is the increase of crossed β-sheet structures. Infrared attenuated-total-reflectance (IR-ATR) spectroscopy is a sensitive optical technique that has the potential to provide secondary structure characteristics of proteins even in complex biological samples. In this study we report the analysis of secondary structures of proteins, using the amide I band for the detection and quantification of amyloid fibrils in protein mixtures by use of IR-ATR techniques, at comparatively low sample concentrations. From the experimental results, an analytical model of the relationship between the IR spectra of protein mixtures and the individual mixture components was established using spectral-deconvolution procedures and curve-fitting methods. On the basis of this model, four ratios were shown to provide direct information on amyloid aggregated fibrils via the increase of crossed β-sheet structures in protein-mixture samples. In conclusion, this study confirms the utility of IR spectroscopy for analyzing protein mixtures and for identifying amyloid fibril information within such complex multi-component samples.

  10. [Characterization of oxidation on pyrite by in situ attenuated total reflection-Fourier transform infrared spectroscopy].

    PubMed

    Zhang, Ping; Chen, Yong-Heng; Liu, Juan; Wang, Chun-Lin

    2008-11-01

    Pyrite is one of common natural minerals in the environment, which is easily oxidated and is the main source of acidity mine drainage (AMD). The study on the oxidation of pyrite is helpful to comprehend the mechanism of its pollution. In the present paper, the oxidation of pyrite under the condition of air and water was respectively investigated by the attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) through the designing experiment on the formation of carbon dioxide by the reaction of carbonate in pyrite with sulfuric acid formed by the oxidation of pyrite. The CO2 measurement by in situ ATR indicated that the oxidation rate of pyrite both in the air and in water both reduced by time and the latter reduced more obviously than the former, which indicates that the oxidation rate of pyrite in water is slower than that in the air. In the ATR measurement, the double absorption peaks at 2 350 cm(-1) that indicates CO2 have high selectivity, and permits the in situ analysis.

  11. Coherent infrared radiation from the ALS generated via femtosecond laser modulation of the electron beam

    SciTech Connect

    Byrd, J.M.; Hao, Z.; Martin, M.C.; Robin, D.S.; Sannibale, F.; Schoenlein, R.W.; Venturini, M.; Zholents, A.A.; Zolotorev, M.S.

    2004-07-01

    Interaction of an electron beam with a femtosecond laser pulse co-propagating through a wiggler at the ALS produces large modulation of the electron energies within a short {approx}100 fs slice of the electron bunch. Propagating around the storage ring, this bunch develops a longitudinal density perturbation due to the dispersion of electron trajectories. The length of the perturbation evolves with a distance from the wiggler but is much shorter than the electron bunch length. This perturbation causes the electron bunch to emit short pulses of temporally and spatially coherent infrared light which are automatically synchronized to the modulating laser. The intensity and spectra of the infrared light were measured in two storage ring locations for a nominal ALS lattice and for an experimental lattice with the higher momentum compaction factor. The onset of instability stimulated by laser e-beam interaction had been discovered. The infrared signal is now routinely used as a sensitive monitor for a fine tuning of the laser beam alignment during data accumulation in the experiments with femtosecond x-ray pulses.

  12. Double-modulation reflection-type terahertz ellipsometer for measuring the thickness of a thin paint coating.

    PubMed

    Iwata, Tetsuo; Uemura, Hiroaki; Mizutani, Yasuhiro; Yasui, Takeshi

    2014-08-25

    We constructed a double-modulation, reflection-type terahertz (THz) ellipsometer for precise measurement of the thickness of a paint film which is coated on a metal surface and which is not transparent to visible or mid-infrared light. The double-modulation technique enabled us to directly obtain two ellipsometric parameters, Δ(ω) and Ψ(ω), as a function of angular frequency, ω, with a single measurement while reducing flicker noise due to a pump laser. The bias voltage of a photoconductive antenna (PCA) used as a THz pulse emitter was modulated at 100 kHz, and a first lock-in amplifier (LA1) was connected to the output of an electro-optic (EO) signal-sampling unit. In addition, a wire-grid polarizer (WGP) was rotated at 100 Hz to conduct polarization modulation with a frequency of 200 Hz. The output signal from LA1 was fed into a second lock-in amplifier (LA2) that worked in synchronization with the rotating WGP (RWGP). By operating LA2 in a quadrature phase-detection mode, we were able to obtain in-phase and out-of-phase signals simultaneously, from which the two ellipsometric parameters for an isotropic sample could be derived at the same time while cancelling common-mode noise. The lower detection limit of the thickness measurement and the relative standard deviation (RSD) of a black paint film coated on an aluminum substrate were 4.3 µm and 1.4%, respectively. The possibility of determining all elements of the Jones matrix for an anisotropic material is also discussed.

  13. Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy.

    PubMed

    Monico, Letizia; Rosi, Francesca; Miliani, Costanza; Daveri, Alessia; Brunetti, Brunetto G

    2013-12-01

    In this work a reflection mid-infrared spectroscopy study of twelve metal-oxalate complexes, of interest in art conservation science as alteration compounds, was performed. Spectra of the reference materials highlighted the presence of derivative-like and/or inverted features for the fundamental vibrational modes as result of the main contribution from the surface component of the reflected light. In order to provide insights in the interpretation of theses spectral distortions, reflection spectra were compared with conventional transmission ones. The Kramers-Kronig (KK) algorithm, employed to correct for the surface reflection distortions, worked properly only for the derivative-like bands. Therefore, to pay attention to the use of this algorithm when interpreting the reflection spectra is recommended. The outcome of this investigation was exploited to discriminate among different oxalates on thirteen polychrome artworks analyzed in situ by reflection mid-infrared spectroscopy. The visualization of the νs(CO) modes (1400-1200 cm(-1)) and low wavenumber bands (below 900 cm(-1)) in the raw reflection profiles allowed Ca, Cu and Zn oxalates to be identified. Further information about the speciation of different hydration forms of calcium oxalates were obtained by using the KK transform. The work proves reflection mid-infrared spectroscopy to be a reliable and sensitive spectro-analytical method for identifying and mapping different metal-oxalate alteration compounds on the surface of artworks, thus providing conservation scientists with a non-invasive tool to obtain information on the state of conservation and causes of alteration of artworks.

  14. Size, weight, and power reduction of mercury cadmium telluride infrared detection modules

    NASA Astrophysics Data System (ADS)

    Breiter, Rainer; Ihle, Tobias; Wendler, Joachim C.; Lutz, Holger; Rutzinger, Stefan; Schallenberg, Timo; Hofmann, Karl C.; Ziegler, Johann

    2011-06-01

    Application requirements driving present IR technology development activities are improved capability to detect and identify a threat as well as the need to reduce size weight and power consumption (SWaP) of thermal sights. In addition to the development of 3rd Gen IR modules providing dual-band or dual-color capability, AIM is focused on IR FPAs with reduced pitch and high operating temperature for SWaP reduction. State-of-the-art MCT technology allows AIM the production of mid-wave infrared (MWIR) detectors operating at temperatures exceeding 120 K without any need to sacrifice the 5-μm cut-off wavelength. These FPAs allow manufacturing of low cost IR modules with minimum size, weight, and power for state-of-the-art high performance IR systems. AIM has realized full TV format MCT 640×512 mid-wave and long-wave IR detection modules with a 15-μm pitch to meet the requirements of critical military applications like thermal weapon sights or thermal imagers in unmanned aerial vehicles applications. In typical configurations like an F/4.6 cold shield for the 640×512 MWIR module an noise equivalent temperature difference (NETD) <25 mK @ 5 ms integration time is achieved, while the long-wavelength infrared (LWIR) modules achieve an NETD <38 mK @ F/2 and 180 μs integration time. For the LWIR modules, FPAs with a cut-off up to 10 μm have been realized. The modules are available either with different integral rotary cooler configurations for portable applications that require minimum cooling power or a new split linear cooler providing long lifetime with a mean time to failure (MTTF) > 20000, e.g., for warning sensors in 24/7 operation. The modules are available with optional image processing electronics providing nonuniformity correction and further image processing for a complete IR imaging solution. The latest results and performance of those modules and their applications are presented.

  15. Study of imaging radar using ultra-wideband microwave-modulated infrared laser

    NASA Astrophysics Data System (ADS)

    Mase, Atsushi; Kogi, Yuichiro; Ikezi, Hiroyuki; Inutake, Masaaki; Wang, Xiaolong

    2016-09-01

    In this paper, we present an ultra-wideband microwave-modulated laser radar which is designed and fabricated for improvement of the spatial resolution both in the range direction and the azimuth direction. The amplitude modulation in a range of 0.01-18 GHz is applied to an infrared laser source of 1550 nm wavelength. The frequency and the bandwidth are assigned by the Administration of Radio under the Ministry of Internal Affairs and Communications in Japan. However, there is no bandwidth limitation in the infrared region. Considering the influence of radiation pattern for microwave antennas case, there is no side lobe in laser beam transmission. Ambiguous signal and interferences which are returned from the ground can be suppressed. A prototype of laser-radar system with a fiber collimator for both transmitting and receiving optics has been fabricated. A vector network analyzer is used to obtain S21 signal between the microwave modulation input and that of received signal. The system is, at first, applied to the measurement of the distance (position) of an object. It is proved that the spatial resolution is less than 1 cm during 5-10 m. As an initial experiment, we have succeeded to obtain 3D image of object by scanning a laser beam in two dimensions.

  16. High-Performance Modulation-Doped Heterostructure-Thermopiles for Uncooled Infrared Image-Sensor Application

    NASA Astrophysics Data System (ADS)

    Abe, Masayuki; Kogushi, Noriaki; Ang, Kian Siong; Hofstetter, René; Manoj, Kumar; Retnam, Louis Nicholas; Wang, Hong; Ng, Geok Ing; Jin, Chon; Pavlidis, Dimitris

    Novel thermopiles based on modulation doped AlGaAs/InGaAs and AlGaN/GaN heterostructures are proposed and developed for the first time, for uncooled infrared FPA (Focal Plane Array) image sensor application. The high responsivity with the high speed response time are designed to 4,900V/W with 110µs for AlGaAs/InGaAs, and to 460V/W with 9µs for AlGaN/GaN thermopiles, respectively. Based on integrated HEMT-MEMS technology, the AlGaAs/InGaAs 32×32 matrix FPAs are fabricated to demonstrate its enhanced performances by black body measurement. The technology presented here demonstrates the potential of this approach for low-cost uncooled infrared FPA image sensor application.

  17. Tunable directly modulated fiber ring laser using a reflective semiconductor optical amplifier for WDM access networks.

    PubMed

    Lin, Zih-Rong; Liu, Cheng-Kuang; Jhang, Yu-Jhu; Keiser, Gerd

    2010-08-16

    We have proposed a stable, wideband, and tunable directly modulated fiber ring laser (TDMFRL) by using a reflective semiconductor optical amplifier (RSOA) and an optical tunable filter (OTF). For use in a bidirectional access network, the TDMFRL not only generates downstream data traffic but also serves as the wavelength-selecting injection light source for the Fabry-Pérot laser diode (FP-LD) located at the subscriber site. We experimentally demonstrated a bidirectional transmission at 1.25-Gb/s direct modulation over a 25-km single-mode fiber (SMF), thereby showing good performance in a wavelength division multiplexing (WDM) access network.

  18. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: organic carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2014-11-01

    Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, the organic carbon concentration is measured using thermal methods such as Thermal-Optical Reflectance (TOR) from quartz fiber filters. Here, methods are presented whereby Fourier Transform Infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters are used to accurately predict TOR OC. Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filters. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites sampled during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to artifact-corrected TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date which leads to precise and accurate OC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), low bias (0.02 μg m-3, all μg m-3 values based on the nominal IMPROVE sample volume of 32.8 m-3), low error (0.08 μg m-3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. FT-IR spectra are also divided into calibration and test sets by OC mass and by OM / OC which reflects the organic composition of the particulate matter and is obtained from organic functional group composition; this division also leads to precise and accurate OC predictions. Low OC concentrations have higher bias and normalized error due to TOR analytical errors and artifact correction errors, not due to the range of OC mass of the samples in the calibration set. However, samples with low OC mass can be used to predict samples with high OC mass indicating that the

  19. Assessing spatial variability of soil petroleum contamination using visible near-infrared diffuse reflectance spectroscopy.

    PubMed

    Chakraborty, Somsubhra; Weindorf, David C; Zhu, Yuanda; Li, Bin; Morgan, Cristine L S; Ge, Yufeng; Galbraith, John

    2012-11-01

    Visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) is a rapid, non-destructive method for sensing the presence and amount of total petroleum hydrocarbon (TPH) contamination in soil. This study demonstrates the feasibility of VisNIR DRS to be used in the field to proximally sense and then map the areal extent of TPH contamination in soil. More specifically, we evaluated whether a combination of two methods, penalized spline regression and geostatistics could provide an efficient approach to assess spatial variability of soil TPH using VisNIR DRS data from soils collected from an 80 ha crude oil spill in central Louisiana, USA. Initially, a penalized spline model was calibrated to predict TPH contamination in soil by combining lab TPH values of 46 contaminated and uncontaminated soil samples and the first-derivative of VisNIR reflectance spectra of these samples. The r(2), RMSE, and bias of the calibrated penalized spline model were 0.81, 0.289 log(10) mg kg(-1), and 0.010 log(10) mg kg(-1), respectively. Subsequently, the penalized spline model was used to predict soil TPH content for 128 soil samples collected over the 80 ha study site. When assessed with a randomly chosen validation subset (n = 10) from the 128 samples, the penalized spline model performed satisfactorily (r(2) = 0.70; residual prediction deviation = 2.0). The same validation subset was used to assess point kriging interpolation after the remaining 118 predictions were used to produce an experimental semivariogram and map. The experimental semivariogram was fitted with an exponential model which revealed strong spatial dependence among soil TPH [r(2) = 0.76, nugget = 0.001 (log(10) mg kg(-1))(2), and sill 1.044 (log(10) mg kg(-1))(2)]. Kriging interpolation adequately interpolated TPH with r(2) and RMSE values of 0.88 and 0.312 log(10) mg kg(-1), respectively. Furthermore, in the kriged map, TPH distribution matched with the expected TPH variability of the study site. Since the

  20. Mapping iron oxides and the color of Australian soil using visible-near-infrared reflectance spectra

    NASA Astrophysics Data System (ADS)

    Viscarra Rossel, R. A.; Bui, E. N.; de Caritat, P.; McKenzie, N. J.

    2010-12-01

    Iron (Fe) oxide mineralogy in most Australian soils is poorly characterized, even though Fe oxides play an important role in soil function. Fe oxides reflect the conditions of pH, redox potential, moisture, and temperature in the soil environment. The strong pigmenting effect of Fe oxides gives most soils their color, which is largely a reflection of the soil's Fe mineralogy. Visible-near-infrared (vis-NIR) spectroscopy can be used to identify and measure the abundance of certain Fe oxides in soil, and the visible range can be used to derive tristimuli soil color information. The aims of this paper are (1) to measure the abundance of hematite and goethite in Australian soils from their vis-NIR spectra, (2) to compare these results to measurements of soil color, and (3) to describe the spatial variability of hematite, goethite, and soil color and map their distribution across Australia. We measured the spectra of 4606 surface soil samples from across Australia using a vis-NIR spectrometer with a wavelength range of 350-2500 nm. We determined the Fe oxide abundance for each sample using the diagnostic absorption features of hematite (near 880 nm) and goethite (near 920 nm) and derived a normalized iron oxide difference index (NIODI) to better discriminate between them. The NIODI was generalized across Australia with its spatial uncertainty using sequential indicator simulation, which resulted in a map of the probability of the occurrence of hematite and goethite. We also derived soil RGB color from the spectra and mapped its distribution and uncertainty across the country using sequential Gaussian simulations. The simulated RGB color values were made into a composite true color image and were also converted to Munsell hue, value, and chroma. These color maps were compared to the map of the NIODI, and both were used to interpret our results. The work presented here was validated by randomly splitting the data into training and test data sets, as well as by comparing

  1. Determination of nitrogen dioxide in ambient air employing diffuse reflectance Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Verma, Santosh Kumar; Deb, Manas Kanti; Verma, Devsharan

    2008-10-01

    This paper presents the development of a simple and precise analytical method for the determination of nitrogen dioxide in ambient air. In this method nitrogen dioxide is determined in the form of nitrite. The determination of nitrogen dioxide needs no reagents except for a solution of sodium hydroxide mixed with sodium arsenite (NaOH-Na 2As 2O 3) which is used as an absorbing reagent for trapping the nitrogen dioxide from the atmosphere in the form of nitrite, i.e., a prior analysis step. The determination of submicrogram levels of nitrogen dioxide is based on the selection of a strong and sharp quantitative analytical peak at 1380 cm - 1 using diffuse reflectance infrared spectroscopy (DRS-FTIR). The limit of detection (LOD) and the limit of quantification of the method are found to be 0.008 μg g - 1 NO 2- and 0.05 μg g - 1 NO 2-, respectively. The precision in terms of standard deviation and relative standard deviation value at a level of 2 μg NO 2- / 0.1 g KBr for n = 10 is found to be 0.036 μg NO 2- and 1.8%, respectively. The relative standard deviation ( n = 10) for the determination of nitrogen dioxide in ambient air was observed to be in the range 2.6-3.8%. The method proposed is time-saving and eliminates the slow and cumbersome steps of pH maintenance of the reaction mixture and color formation of the EPA recommended spectrophotometric and other methods for quantitative determination of nitrogen dioxide.

  2. Prediction of Soil Salinity Using Near-Infrared Reflectance Spectroscopy with Nonnegative Matrix Factorization.

    PubMed

    Chen, Hongyan; Zhao, Gengxing; Sun, Li; Wang, Ruiyan; Liu, Yaqiu

    2016-09-01

    As a key, yet difficult, issue currently in the quantitative remote sensing analysis of soil, the accurate and stable monitoring of soil salinity content (SSC) in situ should be studied and improved. The purpose of this study is to explore the method of fusing spectra outdoors with spectra indoors and improve the estimation precision of SSC based on near-infrared (NIR) reflectance hyper-spectra. First, samples of saline soil from the Yellow River delta of China were collected and analyzed. We measured three groups of sample spectra using a spectrometer: (1) situ-spectra, measured at sampling points in situ; (2) out-spectra, measured outdoors on air-dried samples; and, (3) lab-spectra, measured in a dark laboratory with the above air-dried samples. Second, four algorithms (multiplicative update, alternating least-squares, sparse affine non-negative matrix factorization (NMF), and gradient projection algorithms) of NMF were used to fuse the situ-spectra or out-spectra with the lab-spectra for the calibration of SSC. Finally, estimation models of SSC were built using the multiple linear regression method based on the first derivatives of the un-fused and fused spectra. The results indicate that using the NMF method to fuse the situ-spectra or out-spectra with the lab-spectra can heighten the correlation between SSC and the outdoor spectra in most wavelength ranges and improve the accuracy of the prediction model. The gradient projection algorithm shows the best performance with fewer variables and highest accuracy of the SSC model based on the NIR spectra. © The Author(s) 2016.

  3. Combined optical and near infrared reflectance measurements of vasomotion in both skin and underlying muscle

    NASA Astrophysics Data System (ADS)

    Thorn, Clare E.; Shore, Angela C.; Matcher, Stephen J.

    2007-02-01

    The cardiovascular system is designed to deliver oxygen to every cell in the body through the microcirculation. Optical Reflectance Spectroscopy (ORS) is a powerful tool used to study oxygen delivery through vessels less than 50 μm in diameter. Depth analysis can be achieved by varying the geometry of the incident light source and the detector of the back-scattered light. A fibre optic probe has been designed with spacings to study the capillary loops and microvessels of the skin. Similarly, Near Infrared Spectroscopy (NIRS) can directly measure haemodynamics in muscle. A combined study of ORS and NIRS is currently investigating the relationship of vasomotion in the skin and underlying muscle. Vasomotion is usually defined as rhythmic changes in the diameter of the small blood vessels and has been linked to both endothelial and sympathetic activity. It has been suggested that vasomotion in the muscle preserves nutritive perfusion not only in the muscle itself but also to neighbouring tissue i.e. skin. ORS and NIRS can provide a direct measure of these changes in blood volume. At frequencies linked with endothelial and sympathetic activity, rhythmical oscillations in blood volume of the same magnitude, were demonstrated in both skin and muscle, 15.3(4.0)% skin vs 16.3(5.3)% muscle for endothelial frequencies, (mean(SD), t-test, p=0.633) and 10.9(3.8)% skin and 12.4(5.5)% muscle for sympathetic frequencies (p=0.354). These data demonstrate the potential of these optical techniques to enable simultaneous examination of microvascular haemodynamics in two tissue types.

  4. Discerning some Tylenol brands using attenuated total reflection Fourier transform infrared data and multivariate analysis techniques.

    PubMed

    Msimanga, Huggins Z; Ollis, Robert J

    2010-06-01

    Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to classify acetaminophen-containing medicines using their attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectra. Four formulations of Tylenol (Arthritis Pain Relief, Extra Strength Pain Relief, 8 Hour Pain Relief, and Extra Strength Pain Relief Rapid Release) along with 98% pure acetaminophen were selected for this study because of the similarity of their spectral features, with correlation coefficients ranging from 0.9857 to 0.9988. Before acquiring spectra for the predictor matrix, the effects on spectral precision with respect to sample particle size (determined by sieve size opening), force gauge of the ATR accessory, sample reloading, and between-tablet variation were examined. Spectra were baseline corrected and normalized to unity before multivariate analysis. Analysis of variance (ANOVA) was used to study spectral precision. The large particles (35 mesh) showed large variance between spectra, while fine particles (120 mesh) indicated good spectral precision based on the F-test. Force gauge setting did not significantly affect precision. Sample reloading using the fine particle size and a constant force gauge setting of 50 units also did not compromise precision. Based on these observations, data acquisition for the predictor matrix was carried out with the fine particles (sieve size opening of 120 mesh) at a constant force gauge setting of 50 units. After removing outliers, PCA successfully classified the five samples in the first and second components, accounting for 45.0% and 24.5% of the variances, respectively. The four-component PLS-DA model (R(2)=0.925 and Q(2)=0.906) gave good test spectra predictions with an overall average of 0.961 +/- 7.1% RSD versus the expected 1.0 prediction for the 20 test spectra used.

  5. Predicting herbivore faecal nitrogen using a multispecies near-infrared reflectance spectroscopy calibration

    PubMed Central

    Serrano, Emmanuel; Espunyes, Johan; Fernández, Néstor; López-Olvera, Jorge R.; Garel, Mathieu; Santos, João; Parra-Aguado, María Ángeles; Ramanzin, Maurizio; Fernández-Aguilar, Xavier; Colom-Cadena, Andreu; Marco, Ignasi; Lavín, Santiago; Bartolomé, Jordi

    2017-01-01

    Optimal management of free-ranging herbivores requires the accurate assessment of an animal’s nutritional status. For this purpose ‘near-infrared reflectance spectroscopy’ (NIRS) is very useful, especially when nutritional assessment is done through faecal indicators such as faecal nitrogen (FN). In order to perform an NIRS calibration, the default protocol recommends starting by generating an initial equation based on at least 50–75 samples from the given species. Although this protocol optimises prediction accuracy, it limits the use of NIRS with rare or endangered species where sample sizes are often small. To overcome this limitation we tested a single NIRS equation (i.e., multispecies calibration) to predict FN in herbivores. Firstly, we used five herbivore species with highly contrasting digestive physiologies to build monospecies and multispecies calibrations, namely horse, sheep, Pyrenean chamois, red deer and European rabbit. Secondly, the equation accuracy was evaluated by two procedures using: (1) an external validation with samples from the same species, which were not used in the calibration process; and (2) samples from different ungulate species, specifically Alpine ibex, domestic goat, European mouflon, roe deer and cattle. The multispecies equation was highly accurate in terms of the coefficient of determination for calibration R2 = 0.98, standard error of validation SECV = 0.10, standard error of external validation SEP = 0.12, ratio of performance to deviation RPD = 5.3, and range error of prediction RER = 28.4. The accuracy of the multispecies equation to predict other herbivore species was also satisfactory (R2 > 0.86, SEP < 0.27, RPD > 2.6, and RER > 8.1). Lastly, the agreement between multi- and monospecies calibrations was also confirmed by the Bland-Altman method. In conclusion, our single multispecies equation can be used as a reliable, cost-effective, easy and powerful analytical method to assess FN in a wide range of herbivore

  6. Tethered bilayer lipid membranes studied by simultaneous attenuated total reflectance infrared spectroscopy and electrochemical impedance spectroscopy

    PubMed Central

    Erbe, Andreas; Bushby, Richard J.; Evans, Stephen D.; Jeuken, Lars J. C.

    2013-01-01

    The formation of tethered lipid bilayer membranes (tBLMs) from unilamelar vesicles of egg yolk phosphatidylcholine (EggPC) on mixed self–assembled monolayers (SAMs) from varying ratios of 6-mercaptohexanol and EO3Cholesteryl on gold has been monitored by simultaneous attenuated total reflectance fourier transform infrared (ATR–FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS). The influence of the lipid orientation (and hence the anisotropy) of lipids on a gold film on the dichroic ratio was studied by simulations of spectra with a matrix method for anisotropic layers. It is shown that for certain tilt angles of the dielectric tensor of the adsorbed anisotropic layer dispersive and negative absorption bands are possible. The experimental data indicates that the structure of the assemblies obtained varies with varying SAM composition. On SAMs with a high content of EO3Cholesteryl, tBLMs with reduced fluidity are formed. For SAMs with high content of 6-mercaptohexanol, the results are consistent with the adsorption of flattened vesicles, while spherical vesicles have been found in a small range of surface compositions. The kinetics of the adsorption process is consistent with the assumption of spherical vesicles as long–living intermediates for surfaces of high 6-mercaptohexanol content. No long–living spherical vesicles have been detected for surfaces with large fraction of EO3Cholesteryl tethers. The observed differences between the surfaces suggest that for the formation of tBLMs (unlike supported BLMs) no critical surface coverage of vesicles is needed prior to lipid bilayer formation. PMID:17388505

  7. Nutritional evaluation of commercial dry dog foods by near infrared reflectance spectroscopy.

    PubMed

    Alomar, D; Hodgkinson, S; Abarzúa, D; Fuchslocher, R; Alvarado, C; Rosales, E

    2006-06-01

    Near infrared reflectance spectroscopy (NIRS) was used to predict the nutritional value of dog foods sold in Chile. Fifty-nine dry foods for adult and growing dogs were collected, ground and scanned across the visible/NIR range and subsequently analysed for dry matter (DM), crude protein (CP), crude fibre (CF), total fat, linoleic acid, gross energy (GE), estimated metabolizable energy (ME) and several amino acids and minerals. Calibration equations were developed by modified partial least squares regression, and tested by cross-validation. Standard error of cross validation (SE(CV)) and coefficient of determination of cross validation (SE(CV)) were used to select best equations. Equations with good predicting accuracy were obtained for DM, CF, CP, GE and fat. Corresponding values for and SE(CV) were 0.96 and 1.7 g/kg, 0.91 and 3.1 g/kg, 0.99 and 5.0 g/kg, 0.93 and 0.26 MJ/kg, 0.89 and 12.4 g/kg. Several amino acids were also well predicted, such as arginine, leucine, isoleucine, phenylalanine-tyrosine (combined), threonine and valine, with values for and SE(CV) (g/kg) of 0.89 and 0.9, 0.94 and 1.3, 0.91 and 0.5, 0.95 and 0.9, 0.91 and 0.5, 0.93 and 0.5. Intermediate values, appropriate for ranking purposes, were obtained for ME, histidine, lysine and methionine-cysteine. Tryptophan, minerals or linoleic acid were not acceptably predicted, irrespective of the mathematical treatment applied. It is concluded that NIR can be successfully used to predict important nutritional characteristics of commercial dog foods.

  8. Evaluation of various polyethylene as potential dosimeters by attenuated total reflectance-Fourier-transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Halperin, Fred; Collins, Greta; DiCicco, Michael; Logar, John

    2014-12-01

    Various types of polyethylene (PE) have been evaluated in the past for use as a potential dosimeter, chiefly via the formation of an unsaturated transvinylene (TV) double-bond resulting from exposure to ionizing radiation. The utilization of attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy in characterizing TV formation in irradiated PE for a potential dosimeter has yet to be fully developed. In this initial investigation, various PE films/sheets were exposed to ionizing radiation in a high-energy 5 megaelectron volt (MeV) electron beam accelerator in the 10-500 kilogray (kGy) dose range, followed by ATR-FTIR analysis of TV peak formation at the 965 cm-1 wavenumber. There was an upward trend in TV formation for low-density polyethylene (LDPE) films and high-density polyethylene (HDPE) sheets as a function of absorbed dose in the 10-50 kGy dose range, however, the TV response could not be equated to a specific absorbed dose. LDPE film displayed a downward trend from 50 kGy to 250 kGy and then scattering up to 500 kGy; HDPE sheets demonstrated an upward trend in TV formation up to 500 kGy. For ultra-high molecular weight polyethylene (UHMWPE) sheets irradiated up to 150 kGy, TV response was equivalent to non-irradiated UHMWPE, and a minimal upward trend was observed for 200 kGy to 500 kGy. The scatter of the data for the irradiated PE films/sheets is such that the TV response could not be equated to a specific absorbed dose. A better correlation of the post-irradiation TV response to absorbed dose may be attained through a better understanding of variables.

  9. [Attenuated total reflection-fourier transform infrared spectroscopic study of dried shark fin products].

    PubMed

    Han, Wan-qing; Luo, Hai-ying; Xian, Yan-ping; Luo, Dong-hui; Mu, Torng-na; Guo, Xin-dong

    2015-02-01

    Sixty-four pieces of shark fin dried products (including real, fake and artificial shark fin products) and real products coated with gelatin were rapidly and nondestructively analyzed by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). The characteristic of IR spectrograms among the above four kinds of samples were systematically studied and comparied, the results showed that the spectrograms of the same kind of samples were repeatable, and different kinds of shark fin products presented significant differences in the spectrograms, which mainly manifested as the specific absorption peaks of amido bonds in protein (1650, 1544 cm(-1)) and skeletal vibration in polysaccharide (1050 cm(-1)). The spectrograms of real shark fins were characterized by the strong absorption peaks of protein characteristic amide I and II absorbent (1650, 1544 cm(-1)) and relatively weak C--O--C vibration absorbent (1050 cm(-1)) owing to the high content of protein and relatively low level of polysaccharide. For fake shark fin products that were molded form by mixing together with the offcut of shark, collagen and other substances, the introduction of non-protein materials leaded to the weaker amido bonds absorbent than real products along with a 30 cm(-1) blue shift of amide I absorbent. Opposite to the real sample, the relatively strong absorption peak of polysaccharide (approximately 1047 cm(-1)) and barely existed amide absorbent were the key features of the spectrogram of artificial samples, which was synthersized by polysaccharide like sodium alginate. Real samples coated with gelatin, the peak strength of protein and polysaccharide were decreased simultaneously when the data collection was taken at the surface of sample, while the spectrogram presented no significant difference to real samples when the data was collected in the section. The results above indicated that by analyzing the characteristic of IR spectrograms and the value range of Apro

  10. Near infrared reflectance spectroscopy for the fast identification of PVC-based films.

    PubMed

    Laasonen, M; Rantanen, J; Harmia-Pulkkinen, T; Michiels, E; Hiltunen, R; Räsänen, M; Vuorela, H

    2001-07-01

    Near infrared (NIR) reflectance spectroscopy was used to develop a non-destructive and rapid qualitative method for the analysis of plastic films used by the pharmaceutical industry for blistering. Three types of films were investigated: 250 microm PVC [poly(vinyl chloride)] films, 250 microm PVC films coated with 40 g m(-2) of PVDC [poly(vinylidene dichloride)] and 250 microm PVC films coated with 5 g m(-2) of TE (Thermoelast) and 90 g m(-2) of PVDC. Three analyses were carried out using different pre-treatment options and a PLS (partial least squares) algorithm. Each analysis was aimed at identifying one type of film and rejecting all types of false sample (different thickness, colour or layer). True and false samples from four plastics manufacturers were included in the calibration sets in order to obtain robust methods that were suitable regardless of the supplier. Specificity was demonstrated by testing validation sets against the methods. The tests showed 0% of type I (false negative identification) and 1% of type II errors (false positive identification) for the PVC method, 13 and 3%, respectively, for the PVC-PVDC method and no error for the PVC-TE-PVDC method. Type II errors, mostly due to the slight sensitivity of the methods to film thickness, are easily corrected by simple thickness measurements. This study demonstrates that NIR spectroscopy is an excellent tool for the identification of PVC-based films. The three methods can be used by the pharmaceutical industry or plastics manufacturers for the quality control of films used in blister packaging.

  11. Determining the mineral composition in Cucurbita pepo fruit using near infrared reflectance spectroscopy.

    PubMed

    Martínez-Valdivieso, Damián; Font, Rafael; Gómez, Pedro; Blanco-Díaz, Teresa; Del Río-Celestino, Mercedes

    2014-12-01

    Efforts through conventional breeding to improve the mineral content in horticultural crops have not always been successful mainly due to the fact that standard analytical methods are both costly and time-consuming. We investigated the feasibility of applying near infrared reflectance spectroscopy (NIRS) to the estimation of essential mineral composition in the skin and flesh of summer squash fruits (Cucurbita pepo subsp. pepo) using a 200-sample set from diverse morphotypes. The coefficients of determination in the external validation (R(2) VAL) obtained for the skin and flesh of the fruit were: total mineral content, 0.84 and 0.70; P, 0.74 and 0.62; K, 0.83 and 0.67; Ca, 0.57 and 0.60; Mg, 0.78 and 0.45; Fe, 0.78 and 0.65; Cu, 0.67 and 0.66; Mn, 0.67 and 0.64; Zn, 0.80 and 0.79 and Na, 0.33 and 0.33; respectively. NIRS combined with different spectral transformations by modified partial least-squares (MPLS) regression has shown to be useful in determining the mineral composition of summer squash fruit, being a fast and low-cost analytical technique. Components such as chlorophyll, starch and lipids were used by MPLS for modelling the predicting equations. The promotion of micronutrient-rich summer squash varieties could have a significant long-term beneficial impact on the health of mineral deficient human populations. © 2014 Society of Chemical Industry.

  12. Quantification of bovine immunoglobulin G using transmission and attenuated total reflectance infrared spectroscopy.

    PubMed

    Elsohaby, Ibrahim; McClure, J Trenton; Riley, Christopher B; Shaw, R Anthony; Keefe, Gregory P

    2016-01-01

    In this study, we evaluated and compared the performance of transmission and attenuated total reflectance (ATR) infrared (IR) spectroscopic methods (in combination with quantification algorithms previously developed using partial least squares regression) for the rapid measurement of bovine serum immunoglobulin G (IgG) concentration, and detection of failure of transfer of passive immunity (FTPI) in dairy calves. Serum samples (n = 200) were collected from Holstein calves 1-11 days of age. Serum IgG concentrations were measured by the reference method of radial immunodiffusion (RID) assay, transmission IR (TIR) and ATR-IR spectroscopy-based assays. The mean IgG concentration measured by RID was 17.22 g/L (SD ±9.60). The mean IgG concentrations predicted by TIR and ATR-IR spectroscopy methods were 15.60 g/L (SD ±8.15) and 15.94 g/L (SD ±8.66), respectively. RID IgG concentrations were positively correlated with IgG levels predicted by TIR (r = 0.94) and ATR-IR (r = 0.92). The correlation between 2 IR spectroscopic methods was 0.94. Using an IgG concentration <10 g/L as the cut-point for FTPI cases, the overall agreement between TIR and ATR-IR methods was 94%, with a corresponding kappa value of 0.84. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy for identifying FTPI by TIR were 0.87, 0.97, 0.91, 0.95, and 0.94, respectively. Corresponding values for ATR-IR were 0.87, 0.95, 0.86, 0.95, and 0.93, respectively. Both TIR and ATR-IR spectroscopic approaches can be used for rapid quantification of IgG level in neonatal bovine serum and for diagnosis of FTPI in dairy calves.

  13. An innovative spectroelectrochemical reflection cell for rapid protein electrochemistry and ultraviolet/visible/infrared spectroscopy.

    PubMed

    Bernad, Sophie; Mäntele, Werner

    2006-04-15

    A novel electrochemical reflection cell combining electrochemical techniques and spectroscopy which uses a solid gold working electrode as an optical mirror is described. This cell can be used at path lengths as low as a few micrometers and thus is suitable for ultraviolet/visible (UV/Vis) and infrared spectroscopy even for aqueous solutions and suspensions. The cell was designed for small sample volumes of only a few microliters, thus reducing the effort for sample preparation. Due to the short path length of some micrometers, the entire volume is within the Nernst diffusion layer, hence resulting in fast equilibration. Evaluation of the technique is described with direct electrochemistry of horse heart cytochrome c at the gold electrode modified with 4,4'-dithiodipyridine. Cyclic voltammograms indicate rapid and reversible electrochemistry with the correct midpoint potential (52 mV vs Ag/AgCl/3 M KCl). Chronoamperometry and coulometry confirm rapid and complete oxidation and reduction; the cell volume can be entirely fully reduced within less than 10-20 s. Spectroscopy in the UV/Vis region, with potentials at the working electrode stepped between -390 and 390 mV, show perfect titration of the cytochrome c heme bands. A Nernst fit of the alpha band absorption, with redox potential Em and number of electrons n left as parameters, yields a midpoint potential of 49 mV and n=0.9. The potential of this cell in the investigation of biological electron transfer reactions and in the study of bioenergetic systems is discussed.

  14. Infrared microspectroscopic imaging using a large radius germanium internal reflection element and a focal plane array detector.

    PubMed

    Patterson, Brian M; Havrilla, George J; Marcott, Curtis; Story, Gloria M

    2007-11-01

    Previously, we established the ability to collect infrared microspectroscopic images of large areas using a large radius hemisphere internal reflection element (IRE) with both a single point and a linear array detector. In this paper, preliminary work in applying this same method to a focal plane array (FPA) infrared imaging system is demonstrated. Mosaic tile imaging using a large radius germanium hemispherical IRE on a FPA Fourier transform infrared microscope imaging system can be used to image samples nearly 1.5 mm x 2 mm in size. A polymer film with a metal mask is imaged using this method for comparison to previous work. Images of hair and skin samples are presented, highlighting the complexity of this method. Comparisons are made between the linear array and FPA methods.

  15. Pressure-modulation dynamic attenuated-total-reflectance (ATR) FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Marcott, C.; Story, G. M.; Noda, I.; Bibby, A.; Manning, C. J.

    1998-06-01

    A single-reflectance attenuated-total-reflectance (ATR) accessory with a diamond internal-reflection element was modified by the addition of a piezoelectric transducer. Initial dynamic pressure-modulation experiments have been performed in the sample compartment of a step-scanning FT-IR spectrometer. A sinusoidal pressure modulation applied to samples of isotactic polypropylene and linear low density polyethylene resulted in dynamic responses which appear to be similar to those observed in previous dynamic 2D IR experiments. Preliminary pressure-modulation dynamic ATR results are also reported for a styrene-butadiene-styrene triblock copolymer. The new method has the advantages that a much wider variety of sample types and geometries can be studied and less sample preparation is required. Dynamic 2D IR experiments carried out by ATR no longer require thin films of large area and sufficient strength to withstand the dynamic strain applied by a rheometer. The ability to obtain dynamic IR spectroscopic information from a wider variety of sample types and thicknesses would greatly expand the amount of useful information that could be extracted from normally complicated, highly overlapped IR spectra.

  16. Application of transparent nanostructured electrodes for modulation of total internal reflection

    NASA Astrophysics Data System (ADS)

    Hrudey, P. C. P.; Martinuk, M. A.; Mossman, M. A.; van Popta, A. C.; Brett, M. J.; Dunbar, T. D.; Huizinga, J. S.; Whitehead, L. A.

    2007-09-01

    We present a novel method of modulating total internal reflection (TIR) from an optical surface using a solution of dye ions in combination with a nanostructured electrode. Previous work using the electrophoretic movement of pigment particles to modulate TIR was limited by agglomeration of the pigment over time. Dye ions do not suffer from this limitation, but because of their small size they have significantly smaller absorption cross-section per unit charge than pigment particles which are generally two orders of magnitude larger. This significantly limits the maximum absorption caused by electrostatic attraction of the ions to a transparent conductive electrode. This can be overcome by using a transparent conductive nanoporous thin film as the electrode in which the porosity increases the effective surface area, allowing more dye ions to move into the evanescent wave region near the nanoporous transparent electrode and thus substantially increases the amount of absorption. In this paper, we demonstrate the modulation of TIR by observing the time-dependent variation of the reflectance as the dye ions are moved into and out of the evanescent wave region. This approach may have applications in reflective displays and active diffractive devices.

  17. Applicability of a Diffuse Reflectance Infrared Fourier Transform handheld spectrometer to perform in situ analyses on Cultural Heritage materials

    NASA Astrophysics Data System (ADS)

    Arrizabalaga, Iker; Gómez-Laserna, Olivia; Aramendia, Julene; Arana, Gorka; Madariaga, Juan Manuel

    2014-08-01

    This work studies the applicability of a Diffuse Reflectance Infrared Fourier Transform handheld device to perform in situ analyses on Cultural Heritage assets. This portable diffuse reflectance spectrometer has been used to characterise and diagnose the conservation state of (a) building materials of the Guevara Palace (15th century, Segura, Basque Country, Spain) and (b) different 19th century wallpapers manufactured by the Santa Isabel factory (Vitoria-Gasteiz, Basque Country, Spain) and by the well known Dufour and Leroy manufacturers (Paris, France), all of them belonging to the Torre de los Varona Castle (Villanañe, Basque Country, Spain). In all cases, in situ measurements were carried out and also a few samples were collected and measured in the laboratory by diffuse reflectance spectroscopy (DRIFT) in order to validate the information obtained by the handheld instrument. In the analyses performed in situ, distortions in the diffuse reflectance spectra can be observed due to the presence of specular reflection, showing the inverted bands caused by the Reststrahlen effect, in particular on those IR bands with the highest absorption coefficients. This paper concludes that the results obtained in situ by a diffuse reflectance handheld device are comparable to those obtained with laboratory diffuse reflectance spectroscopy equipment and proposes a few guidelines to acquire good spectra in the field, minimising the influence caused by the specular reflection.

  18. Applicability of a Diffuse Reflectance Infrared Fourier Transform handheld spectrometer to perform in situ analyses on Cultural Heritage materials.

    PubMed

    Arrizabalaga, Iker; Gómez-Laserna, Olivia; Aramendia, Julene; Arana, Gorka; Madariaga, Juan Manuel

    2014-08-14

    This work studies the applicability of a Diffuse Reflectance Infrared Fourier Transform handheld device to perform in situ analyses on Cultural Heritage assets. This portable diffuse reflectance spectrometer has been used to characterise and diagnose the conservation state of (a) building materials of the Guevara Palace (15th century, Segura, Basque Country, Spain) and (b) different 19th century wallpapers manufactured by the Santa Isabel factory (Vitoria-Gasteiz, Basque Country, Spain) and by the well known Dufour and Leroy manufacturers (Paris, France), all of them belonging to the Torre de los Varona Castle (Villanañe, Basque Country, Spain). In all cases, in situ measurements were carried out and also a few samples were collected and measured in the laboratory by diffuse reflectance spectroscopy (DRIFT) in order to validate the information obtained by the handheld instrument. In the analyses performed in situ, distortions in the diffuse reflectance spectra can be observed due to the presence of specular reflection, showing the inverted bands caused by the Reststrahlen effect, in particular on those IR bands with the highest absorption coefficients. This paper concludes that the results obtained in situ by a diffuse reflectance handheld device are comparable to those obtained with laboratory diffuse reflectance spectroscopy equipment and proposes a few guidelines to acquire good spectra in the field, minimising the influence caused by the specular reflection.

  19. Accuracy and uncertainty in random speckle modulation transfer function measurement of infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Barnard, Kenneth J.; Jacobs, Eddie L.; Plummer, Philip J.

    2016-12-01

    This paper expands upon a previously reported random speckle technique for measuring the modulation transfer function of midwave infrared focal plane arrays by considering a number of factors that impact the accuracy of the estimated modulation transfer function. These factors arise from assumptions in the theoretical derivation and bias in the estimation procedure. Each factor is examined and guidelines are determined to maintain accuracy within 2% of the true value. The uncertainty of the measurement is found by applying a one-factor ANOVA analysis and confidence intervals are established for the results. The small magnitude of the confidence intervals indicates a very robust technique capable of distinguishing differences in modulation transfer function among focal plane arrays on the order of a few percent. This analysis directly indicates the high quality of the random speckle modulation transfer function measurement technique. The methodology is applied to a focal plane array and results are presented that emphasize the need for generating independent random speckle realizations to accurately assess measured values.

  20. Near-infrared reflectance spectra of mixtures of kaolin-group minerals: use in clay mineral studies

    USGS Publications Warehouse

    Crowley, J.K.; Vergo, N.

    1988-01-01

    Near-infrared (NIR) reflectance spectra for mixtures of ordered kaolinite and ordered dickite have been found to simulate the spectral response of disordered kaolinite. The amount of octahedral vacancy disorder in nine disordered kaolinite samples was estimated by comparing the same spectra to the spectra of reference mixtures. The resulting estimates are consistent with previously published estimates of vacancy disorder for similar kaolin minerals that were modeled from calculated X-ray diffraction patterns. -from Authors

  1. Geographical differentiation of dried lentil seed (Lens culinaris) samples using diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) and discriminant analysis.

    PubMed

    Kouvoutsakis, G; Mitsi, C; Tarantilis, P A; Polissiou, M G; Pappas, C S

    2014-02-15

    Diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) and discriminant analysis were used for the geographical differentiation of dried lentil seed (Lens culinaris) samples. Specifically, 18 Greek samples and nine samples imported from other countries were distinguished using the 2250-1720 and 1275-955 cm⁻¹ spectral regions. The differentiation is complete. The combination of DRIFTS and discriminant analysis enables simple, rapid, cheap and accurate differentiation of commercial lentil seeds in terms of geographical origin.

  2. Near-infrared Light Responsive Synthetic c-di-GMP Module for Optogenetic Applications

    PubMed Central

    2015-01-01

    Enormous potential of cell-based therapeutics is hindered by the lack of effective means to control genetically engineered cells in mammalian tissues. Here, we describe a synthetic module for remote photocontrol of engineered cells that can be adapted for such applications. The module involves photoactivated synthesis of cyclic dimeric GMP (c-di-GMP), a stable small molecule that is not produced by higher eukaryotes and therefore is suitable for orthogonal regulation. The key component of the photocontrol module is an engineered bacteriophytochrome diguanylate cyclase, which synthesizes c-di-GMP from GTP in a light-dependent manner. Bacteriophytochromes are particularly attractive photoreceptors because they respond to light in the near-infrared window of the spectrum, where absorption by mammalian tissues is minimal, and also because their chromophore, biliverdin IXα, is naturally available in mammalian cells. The second component of the photocontrol module, a c-di-GMP phosphodiesterase, maintains near-zero background levels of c-di-GMP in the absence of light, which enhances the photodynamic range of c-di-GMP concentrations. In the E. coli model used in this study, the intracellular c-di-GMP levels could be upregulated by light by >50-fold. Various c-di-GMP-responsive proteins and riboswitches identified in bacteria can be linked downstream of the c-di-GMP-mediated photocontrol module for orthogonal regulation of biological activities in mammals as well as in other organisms lacking c-di-GMP signaling. Here, we linked the photocontrol module to a gene expression output via a c-di-GMP-responsive transcription factor and achieved a 40-fold photoactivation of gene expression. PMID:24926804

  3. Modulation of an optical needle's reflectivity alters the average photon path through scattering media.

    PubMed

    Simonson, Paul; D'Amico, Enrico; Gratton, Enrico

    2006-01-01

    We introduce the concept of deliberate placement of absorbers to alter the average path of photons through tissue for a biomedical optical device. By changing the reflectivity of a needle that separates a source and detector, the average photon path through a turbid medium can be changed. Totally reflective needles have photon scattering density functions similar to a point source and detector in an infinite medium. An absorbing needle moves the average photon path of photons that reach the detector away from the needle. Thus, by modulating the reflectivity of the needle, it is possible to modify the sensitive volume, and simple tomography data should be possible. These results are confirmed by Monte Carlo simulations and experiment. Experiments include moving a black target relative to an optical "needle" and measuring the resulting intensity and phase lag of light reaching a detector at the distal end of the needle.

  4. Reflectance infrared spectroscopy for in-line monitoring of nicotine during a coating process for an oral thin film.

    PubMed

    Hammes, Florian; Hille, Thomas; Kissel, Thomas

    2014-02-01

    A process analytical method using reflectance infrared spectrometry was developed for the in-line monitoring of the amount of the active pharmaceutical ingredient (API) nicotine during a coating process for an oral thin film (OTF). In-line measurements were made using a reflectance infrared (RI) sensor positioned after the last drying zone of the coating line. Real-time spectra from the coating process were used for modelling the nicotine content. Partial least squares (PLS1) calibration models with different data pre-treatments were generated. The calibration model with the most comparable standard error of calibration (SEC) and the standard error of cross validation (SECV) was selected for an external validation run on the production coating line with an independent laminate. Good correlations could be obtained between values estimated from the reflectance infrared data and the reference HPLC test method, respectively. With in-line measurements it was possible to allow real-time adjustments during the production process to keep product specifications within predefined limits hence avoiding loss of material and batch. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. The Advantages of an Attenuated Total Internal Reflection Infrared Microspectroscopic Imaging Technique for the Analysis of Polymer Laminates.

    PubMed

    Ling, Chen; Sommer, André J

    2015-06-01

    Until recently, the analysis of polymer laminates using infrared microspectroscopy involved the painstaking separation of individual layers by dissection or by obtaining micrometer thin cross-sections. The latter usually requires the expertise of an individual trained in microtomy and even then, the very structure of the laminate could affect the outcome of the spectral results. The recent development of attenuated total internal reflection (ATR) infrared microspectroscopy imaging has provided a new avenue for the analysis of these multilayer structures. This report compares ATR infrared microspectroscopy imaging with conventional transmission infrared microspectroscopy imaging. The results demonstrate that the ATR method offers improved spatial resolution, eliminates a variety of competing optical processes, and requires minimal sample preparation relative to transmission measurements. These advantages were illustrated using a polymer laminate consisting of 11 different layers whose thickness ranged in size from 4-20 μm. The spatial resolution achieved by using an ATR-FTIR (Fourier transform infrared spectroscopy) imaging technique was diffraction limited. Contrast in the ATR images was enhanced by principal component analysis.

  6. Variance in radiance recorded from heterogeneous targets in the optical-reflective, middle-infrared, and thermal-infrared regions

    NASA Astrophysics Data System (ADS)

    Duggin, Michael J.

    1986-12-01

    In this paper, the variance in radiance recorded from heterogeneous scenes in the optical-reflective, middle-IR, and thermal-IR regions is considered. The impact of this variance on feature discrimination is considered. Equations are presented, by which the efficacy of standard analytical techniques for given feature mapping tasks may be evaluated using available data. It is also suggested that these equations may be helpful in development of mission-oriented sensors.

  7. Deriving remote sensing reflectance from turbid Case II waters using green-shortwave infrared bands based model

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Yin, Shoujing; Xiao, Rulin; Xu, Qianxiang; Lin, Changsong

    2014-04-01

    The objectives of this study are to validate the applicability of a shortwave infrared atmospheric correction model (SWIR-based model) in deriving remote sensing reflectance in turbid Case II waters, and to improve that model using a proposed green-shortwave infrared model (GSWIR-based model). In a GSWIR-based model, the aerosol type is determined by a SWIR-based model and the reflectance due to aerosol scattering is calculated using spectral slope technology. In this study, field measurements collected from three independent cruises from two different Case II waters were used to compare models. The results indicate that both SWIR- and GSWIR-based models can be used to derive the remote sensing reflectance at visible wavelengths in turbid Case II waters, but GSWIR-based models are superior to SWIR-based models. Using the GSWIR-based model decreases uncertainty in remote sensing reflectance retrievals in turbid Case II waters by 2.6-12.1%. In addition, GSWIR-based model’s sensitivity to user-supplied parameters was determined using the numerical method, which indicated that the GSWIR-based model is more sensitive to the uncertainty of spectral slope technology than to that of aerosol type retrieval methodology. Due to much lower noise tolerance of GSWIR-based model in the blue and near-infrared regions, the GSWIR-based model performs poorly in determining remote sensing reflectance at these wavelengths, which is consistent with the GSWIR-based model’s accuracy evaluation results.

  8. Tracing sources of sediments during flood events by Diffuse Reflectance Infrared Fourier-Transform (DRIFT)

    NASA Astrophysics Data System (ADS)

    Poulenard, J.; Legout, C.; Némery, J.; Bramorski, J.; Navratil, O.; Estèves, M.; Fanget, B.; Perrette, Y.

    2009-04-01

    The identification and the quantification of the source of the suspended sediment transported by a river is becoming an increasingly important requirement in sediment investigations. An increasing number of works used "fingerprinting" to identify and trace one or more distinctive characteristics of the source material that can be recognized in the final sediment. As sediment fingerprints are often a combination of two or more characteristics, fingerprinting frequently requires a multi-tracer, composite or multi-proxy approach. The most commonly used tracers are radionuclides (137Cs, unsupported 210Pb, 7Be), chemical extracts of reactive elements and total chemical analyses. However, current sediment fingerprinting techniques are very selective and they are not always practical for catchment area monitoring because of their high cost (time and money) and because of the complexity of the analyses required. As consequences such approach is rarely used to compute the sources of sediment during flood events. Hence, the challenge is to develop methods (experimental and instrumental) that can be applied to large numbers of samples, that involve minimal sample preparation and that provide an acceptable level of sediment source selectivity. In the framework of the STREAMS project aiming at understanding and modelling the sediment transport in mountainous areas (Bleone River, Southern French Alps), we study the potential use of a combination of Diffuse Reflectance Infra-red Fourier Transform (DRIFT) and multivariate analysis (Partial Least Squared) to quantify the main sources of suspended sediments during flood events. The objectives of this study were i) to identify the sediment sources areas in the Galabre sub-catchment (20 km²) for various rainstorm events and ii) to quantify the contribution of each sediment source in the suspended sediment flux at the outlet of the sub-catchment during floods. A set of 38 soil samples were collected on the Galabre sub-catchment in

  9. Determination of airborne wood dust in Button samples by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS).

    PubMed

    Kwon, Cheol-Woong; Chirila, Madalina M; Lee, Taekhee; Harper, Martin; Rando, Roy J

    2013-01-01

    Emerging concerns regarding the toxicity of inhaled wood dust support the need for techniques to quantitate wood content of mixed industrial dusts. The diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis technique was applied to the determination of wood content of 181 inhalable dust samples (geometric mean concentration: 0.895 mg/m(3); geometric standard deviation: 2.73) collected from six wood product industry factories using 25mm glass fibre filters with the Button aerosol sampler. Prior to direct DRIFTS analysis the filter samples were treated with ethyl acetate and re-deposited uniformly. Standards ranging from 125 μg to 4000 μg were prepared for red oak, southern yellow pine, and red cedar and used for quantitation of samples depending upon the wood materials present at a given factory. The oak standards spectra were quantitated by linear regression of response in Kubelka-Munk units at 1736 cm(-1), whereas the pine standards and the cedar standards spectra were quantitated by polynomial regression of response in log 1/R units at 1734 cm(-1), with the selected wavenumbers corresponding to stretching vibration of free C=O from cellulose and hemicelluloses. For one factory which used both soft- and hardwoods, a separate polynomial standard curve was created by proportionally combining the oak and pine standards polynomial regression equations based on response (log 1/R) at 1734 cm(-1). The analytical limits of detection were approximately 52 μg of oak, 20 μg of pine, 30 μg of cedar, and 16 μg of mixed oak and pine for the factory with mixed woods. Overall, the average of dry wood dust percentage of inhalable dust was approximately 56% and the average dry wood dust weight was 0.572mg for the Button samples. Across factories, there were statistically significant differences (p<0.001) for the percentage of dry wood dust in inhalable dust with factory averages ranging from 33.5 to 97.6%.

  10. Determination of airborne wood dust in Button samples by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS)

    PubMed Central

    Kwon, Cheol-Woong; Chirila, Madalina M.; Lee, Taekhee; Harper, Martin; Rando, Roy J.

    2015-01-01

    Emerging concerns regarding the toxicity of inhaled wood dust support the need for techniques to quantitate wood content of mixed industrial dusts. The diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis technique was applied to the determination of wood content of 181 inhalable dust samples (geometric mean concentration: 0.895 mg/m3; geometric standard deviation: 2.73) collected from six wood product industry factories using 25mm glass fibre filters with the Button aerosol sampler. Prior to direct DRIFTS analysis the filter samples were treated with ethyl acetate and re-deposited uniformly. Standards ranging from 125 μg to 4000 μg were prepared for red oak, southern yellow pine, and red cedar and used for quantitation of samples depending upon the wood materials present at a given factory. The oak standards spectra were quantitated by linear regression of response in Kubelka-Munk units at 1736 cm−1, whereas the pine standards and the cedar standards spectra were quantitated by polynomial regression of response in log 1/R units at 1734 cm−1, with the selected wavenumbers corresponding to stretching vibration of free C=O from cellulose and hemicelluloses. For one factory which used both soft- and hardwoods, a separate polynomial standard curve was created by proportionally combining the oak and pine standards polynomial regression equations based on response (log 1/R) at 1734 cm−1. The analytical limits of detection were approximately 52 μg of oak, 20 μg of pine, 30 μg of cedar, and 16 μg of mixed oak and pine for the factory with mixed woods. Overall, the average of dry wood dust percentage of inhalable dust was approximately 56% and the average dry wood dust weight was 0.572mg for the Button samples. Across factories, there were statistically significant differences (p<0.001) for the percentage of dry wood dust in inhalable dust with factory averages ranging from 33.5 to 97.6%. PMID:26526539

  11. Predicting ambient aerosol thermal-optical reflectance (TOR) measurements from infrared spectra: organic carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2015-03-01

    Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, organic carbon is measured from a quartz fiber filter that has been exposed to a volume of ambient air and analyzed using thermal methods such as thermal-optical reflectance (TOR). Here, methods are presented that show the feasibility of using Fourier transform infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters to accurately predict TOR OC. This work marks an initial step in proposing a method that can reduce the operating costs of large air quality monitoring networks with an inexpensive, non-destructive analysis technique using routinely collected PTFE filter samples which, in addition to OC concentrations, can concurrently provide information regarding the composition of organic aerosol. This feasibility study suggests that the minimum detection limit and errors (or uncertainty) of FT-IR predictions are on par with TOR OC such that evaluation of long-term trends and epidemiological studies would not be significantly impacted. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least-squares regression is used to calibrate sample FT-IR absorbance spectra to TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date. The calibration produces precise and accurate TOR OC predictions of the test set samples by FT-IR as indicated by high coefficient of variation (R2; 0.96), low bias (0.02 μg m-3, the nominal IMPROVE sample volume is 32.8 m3), low error (0.08 μg m-3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision to collocated TOR measurements. FT-IR spectra are also

  12. Electromagnetic radiation energy arrangement. [coatings for solar energy absorption and infrared reflection

    NASA Technical Reports Server (NTRS)

    Lipkis, R. R.; Vehrencamp, J. E. (Inventor)

    1965-01-01

    A solar energy collector and infrared energy reflector is described which comprises a vacuum deposited layer of aluminum of approximately 200 to 400 Angstroms thick on one side of a substrate. An adherent layer of titanium with a thickness of between 800 and 1000 Angstroms is vacuum deposited on the aluminum substrate and is substantially opaque to solar energy and substantially transparent to infrared energy.

  13. Visible and near-infrared (0.4-2.5 μm) reflectance spectra of playa evaporite minerals

    USGS Publications Warehouse

    Crowley, James K.

    1991-01-01

    Visible and near-infrared (VNIR; 0.4–2.4 μm) reflectance spectra were recorded for 35 saline minerals that represent the wide range of mineral and brine chemical compositions found in playa evaporite settings. The spectra show that many of the saline minerals exhibit diagnostic near-infrared absorption bands, chiefly attributable to vibrations of hydrogen-bonded structural water molecules. VNIR reflectance spectra can be used to detect minor hydrate phases present in mixtures dominated by anhydrous halite or thenardite, and therefore will be useful in combination with X ray diffraction data for characterizing natural saline mineral assemblages. In addition, VNIR reflectance spectra are sensitive to differences in sample hydration state and should facilitate in situ studies of minerals that occur as fragile, transitory dehydration products in natural salt crusts. The use of spectral reflectance measurements in playa studies should aid in mapping evaporite mineral distributions and may provide insight into the geochemical and hydrological controls on playa mineral and brine development.

  14. Near- versus mid-infrared diffuse reflectance spectroscopy for determination of minerals in dried poultry manure.

    PubMed

    Reeves, J B

    2001-10-01

    The objective of this study was to determine if accurate calibrations for mineral content in dried poultry manures could be developed using near- or mid-infrared spectra. Samples (n = 124) were obtained from a commercial testing laboratory along with conventionally determined values for Ca, Cu, K, Mg, Mn, P, S, and Zn. Samples were blended in a food blender, dried at 60 C, ground to 20 mesh, and scanned in the near-infrared (rotating sample cup) on a scanning monochromator. Samples were also scanned in the mid-infrared on a Fourier transform spectrometer using a custom-made sample transport. Results showed that calibrations based on nearor mid-infrared spectra were not satisfactory for the accurate determination of Ca, Cu, K, Mg, Mn, P, S, or Zn in dried poultry manures. At best, most of the calibrations would be suitable for only gross estimates, although the mid-infrared calibration for P might be suitable for some needs in which only a limited degree of accuracy was needed. Either spectral range could be used to separate dried poultry manure samples into those containing less than 3% and greater than 8% Ca but not to accurately differentiate samples within those two groupings. Finally, although the mid-infrared calibrations were the more accurate for five of the eight minerals studied, the differences between the two sets of calibrations were so varied that it would be difficult to say that one region is better for mineral content measurement.

  15. Effect of leaf variables on visible, near-infrared and mid-infrared reflectance of excised leaves

    NASA Technical Reports Server (NTRS)

    Bell, R.; Labovitz, M. L.; Ludwig, R. W.

    1983-01-01

    Effects of an imposed (excised) leaf orientation, differing species and differing venation patterns on reflectance measurements in the LANDSAT-4 thematic mapper (TM) channels TM3 (0.63 to 0.69 microns), TM4 (0.76 to 0.90 microns), and TM5 (1.55 to 1.75 microns) were investigated. Orientation of leaves (random vs. systematic placement) was found to affect measurements in the TM4 channel, but not the TM3 and TM5 measurements. Venation caused no significant changes for any band. Azimuth of incident radiation was not a significant main effect, but in conjunction with changes in orientation, angle did have a significant effect on reflectance values in TM3, TM4 and TM5. Specific differences were highly significant (P f or = 0.006) in all but one borderline (P F or = 0.0222) case for TM5. For spectral examination of excised leaves, the sampling arrangement of the leaves should as closely approximate in situ positioning as possible (with respect to remote sensing instrumentation). This dictates a random rather than aligned arrangement.

  16. Visible and near-infrared reflectance spectroscopy of planetary analog materials. Experimental facility at Laboratoire de Planetologie de Grenoble.

    NASA Astrophysics Data System (ADS)

    Pommerol, A.; Brissaud, O.; Schmitt, B.; Quirico, E.; Doute, S.

    2007-08-01

    We have developed an original experimental facility designed to measure the bidirectional reflectance spectra of planetary analog materials. These measurements are helpful to interpret the observations of the spectrometers on board space probes in orbit around various Solar System bodies. The central part of the facility is the LPG spectrogonio- radiometer (Brissaud et al., 2004). This instrument provides measurements of samples BRDF (Bidirectional Reflectance Distribution Function) with high photometric and spectrometric accuracy in the spectral range of visible and near-infrared (0.3 - 4.8 microns). Measurements can be made at any value of incidence and emergence angle up to 80°. Azimuth angle is allowed to vary between 0 and 180°. The instrument was recently installed in a cold room allowing ambient temperatures as low as -20°C. This makes possible the measurements on different kinds of water ice samples (slab ice, frost, snow...) and mixtures of minerals and water ice with unprecedented accuracy. We also have designed and built a simulation chamber to measure spectra of samples (water ice and/or minerals) under an atmosphere with perfectly controlled temperature, pressure and composition. The main objective of this last improvement is the study of water exchange between planetary regolith analogs and atmosphere (adsorption/ desorption, condensation/sublimation). Experimental results will mainly apply to Martian water cycle and hydrated mineralogy. This simulation chamber also provides an efficient way to obtain bidirectional reflectance spectra of dry materials (removal of adsorbed water) with implications for planetary bodies without atmospheric or surface water (Titan, asteroids...). The reflectance spectroscopy facility is part of a large panel of instruments and techniques available at Laboratoire de Planetologie de Grenoble that provide complementary measurements on the same samples: infrared transmission spectroscopy of thin ice films, thick liquid and

  17. Mid-infrared transmitter and receiver modules for free-space optical communication.

    PubMed

    Hao, Qiang; Zhu, Guoshen; Yang, Song; Yang, Kangwen; Duan, Tao; Xie, Xiaoping; Huang, Kun; Zeng, Heping

    2017-03-10

    We report on the experimental implementation of single-frequency fiber-laser pumped mid-infrared (mid-IR) transmitter and receiver modules for free-space communications. These modules enable frequency upconversion and downconversion between the 1550-nm telecom wavelength and the mid-IR, thus providing essential free-space transmission links with mid-IR single-frequency lasers in the 3.6 μm region. Specifically, based on difference frequency generation (DFG) in MgO-doped periodically poled LiNbO3 (MgO:PPLN), the mid-IR transmitter produces 9.3-mW power at 3594 nm with 5-W pump power at 1083 nm (<10  kHz linewidth) and 3-W signal power at 1550 nm (<10  kHz linewidth), and the mid-IR receiver reproduces 12-μW power at 1550 nm with 4.7-W pump power at 1083 nm and 5-mW laser at 3594 nm. The whole modules are integrated into portable and compact devices by incorporating single-frequency fiber lasers, fiber amplifiers, DFG units, and related electronic circuits. In addition, the uses of all polarization-maintaining fiber configuration and well-controlled heat dissipation make the mid-IR transmitter and receiver exhibit a long-term stability.

  18. Attenuated Total Reflection Surface-Enhanced Infrared Absorption (ATR SEIRA) Spectroscopy for the Analysis of Fatty Acids on Silver Nanoparticles.

    PubMed

    Kato, Yuichi; Kikugawa, Masashi; Sudo, Eiichi

    2017-09-01

    The application of attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR SEIRA) to the analysis of fatty acids on silver nanoparticles was investigated. Attenuated total reflection measurements using four types of internal reflection elements (IREs)-zinc selenide, diamond, silicon, and germanium-were performed for silver nanoparticles modified with fatty acids, and germanium IRE was shown to be suitable for the analysis of silver nanoparticles, even when the sample had a high refractive index. Fatty acids coating the silver nanoparticles could be directly identified by SEIRA enhancement, because both symmetric carboxylate stretching vibration and methylene wagging vibration were strongly detected. Furthermore, the peak positions for methylene wagging vibration differed depending on the carbon number of the fatty acid, so that information from the ATR SEIRA spectra makes it possible to identify substances coating silver nanoparticles. Therefore, ATR SEIRA would appear to have significant potential as a technique for the identification of substances coated on metal nanoparticle surfaces.

  19. Blood glucose measurement in vivo using hollow-fiber based, mid-infrared ATR probe with multi-reflection prism

    NASA Astrophysics Data System (ADS)

    Kino, Saiko; Omori, Suguru; Matsuura, Yuji

    2016-03-01

    An attenuated-total-reflection (ATR), mid-infrared spectroscopy system that consists of hollow optical fibers, a trapezoidal multi-reflection ATR prism, and a conventional FT-IR spectrometer has been developed to measure blood glucose levels. Owing to the low transmission loss and high flexibility of the hollow-optical fiber, the system can measure any sites of the human body where blood capillaries are close to the surface of mucosa, such as inner lips. Using a multi-reflection prism brought about higher sensitivity, and the flat and wide contact surface of the prism resulted in higher measurement reproducibility. The results of in-vivo measurement of human inner lips showed the feasibility of the proposed system, and the measurement errors were within 20%.

  20. General theory of frequency modulated selective reflection. Influence of atom surface interactions

    NASA Astrophysics Data System (ADS)

    Ducloy, M.; Fichet, M.

    1991-12-01

    We calculate the modulation of the reflection coefficient for a frequency-modulated (FM) light beam incident on the interface between a dielectric and an atomic vapor. The vapor is described as a gas of resonant, Doppler-broadened, two-level systems, with transition frequency and linewidth arbitrarily depending on the atom-dielectric distance. The atoms are supposed to get deexcited at collisions with the surface. The transient atomic response is calculated to first order in the incident field, for both incoming and desorbed atoms. The reflection coefficient, evaluated to first order in the vapor dipole polarization, leads to a formal expression of the reflectivity modulation, valid for arbitrary atom-surface interaction potentials. One first discusses the reflection signal in absence of wall interactions, for arbitrary modulation frequencies. At large frequencies, it allows one to monitor both vapor absorption and dispersion. Second, the formal theory is applied to the case of a Van der Waals-London surface attraction exerted on the atomic vapor. Both normal and oblique beam incidences are considered. One shows how the vapor dispersion signal is red-shifted and strongly distorted by the appearance of vapor-surface long-range interactions, and how it can be used to monitor these interactions. At non-normal incidences, the lineshapes get Doppler-broadened. On calcule le coefficient de réflexion d'un faisceau lumineux, modulé en fréquence, incident sur une interface entre un milieu diélectrique et une vapeur atomique. Cette vapeur est décrite comme un ensemble de systèmes à deux niveaux, présentant un élargissement Doppler, et dont la fréquence de transition et la largeur de raie sont supposées dépendre de la distance au milieu diélectrique. On suppose par ailleurs que les atomes sont déexcités sur la paroi. La réponse transitoire des atomes est analysée au premier ordre en fonction du champ électromagnétique incident. Du coefficient de r

  1. Cure characterization of an unsaturated polyester resin using near-infrared, fluorescence and UV/visible reflection spectroscopies

    NASA Astrophysics Data System (ADS)

    Grunden, Bradley Lyn

    This dissertation seeks to characterize the cure reaction of an unsaturated polyester resin using near-infrared, fluorescence and UV/Visible reflection spectroscopies. The results will provide a foundation for developing fiber-optic in-situ cure monitoring techniques based on near-infrared, fluorescence, and UV/Visible reflection spectroscopies for an unsaturated polyester resin system. Near-infrared spectra of the unsaturated polyester resin during cure showed a decrease in absorption at 1629, 2087, 2117, and 2227 nm. Model compounds representing the reactants and products of the cure reaction were characterized, and assignment of peaks in the NIR were made. Conversion of styrene and vinylene, determined from NIR measurements, were compared with values obtained using conventional FTIR measurements. Discrepancies between conversion values determined from NIR and FTIR measurements were attributed to a difference in sample sizes used for measurement. Using a microgel based reaction mechanism, the effects of temperature on the conversion of styrene and vinylene was discussed. A strong fluorescence emission was found during cure of the unsaturated polyester resin. As the reaction proceeded, the emission intensity at 306 nm increased. Model compound studies confirmed that the unsaturated polyester vinylene component exhibits negligible fluorescence when excited at 250 nm. The fluorescence emission at 306 nm was attributed to a reduced self-quenching effect of styrene monomer. In-situ fluorescence characterization of the cure reaction was also attempted. Fiber-optic fluorescence measurements taken in-situ at 75°C were found to be higher than those taken by fiber-optics at room temperature, indicating a temperature effect on the fluorescence emission. These results may be a consequence of the static quenching behavior of styrene monomer. UV/Visible reflection spectra of styrene showed a decrease in the % Reflectance at 255 nm with reaction time. This decrease was

  2. Enhanced 10 Gb/s operations of directly modulated reflective semiconductor optical amplifiers without electronic equalization.

    PubMed

    Presi, M; Chiuchiarelli, A; Corsini, R; Choudury, P; Bottoni, F; Giorgi, L; Ciaramella, E

    2012-12-10

    We report enhanced 10 Gb/s operation of directly modulated bandwidth-limited reflective semiconductor optical amplifiers. By using a single suitable arrayed waveguide grating we achieve simultaneously WDM demultiplexing and optical equalization. Compared to previous approaches, the proposed system results significantly more tolerant to seeding wavelength drifts. This removes the need for wavelength lockers, additional electronic equalization or complex digital signal processing. Uniform C-band operations are obtained experimentally with < 2 dB power penalty within a wavelength drift of 10 GHz (which doubles the ITU-T standard recommendations).

  3. Symmetric reflection line resonator and its quality factor modulation by a two-dimensional electron gas

    SciTech Connect

    Zhang, Miao-Lei; Deng, Guang-Wei; Li, Shu-Xiao; Li, Hai-Ou; Cao, Gang; Tu, Tao; Xiao, Ming; Guo, Guang-Can; Guo, Guo-Ping; Jiang, Hong-Wen; Siddiqi, Irfan

    2014-02-24

    We have designed and fabricated a half-wavelength reflection line resonator that consists of a pair of coupled microstrip lines on a GaAs/AlGaAs heterostructure. By changing the top gate voltage on a small square with a two-dimensional electron gas under the resonator, the quality factor was tuned over a large range from 2700 to below 600. Apart from being of fundamental interest, this gate modulation technique has the potential for use in on-chip resonator applications.

  4. High-sensitivity polarization modulation reflectance spectroscopy of cavity polaritons in a ZnO microcavity

    NASA Astrophysics Data System (ADS)

    Hasegawa, Takayuki; Kishimoto, Ryo; Takagi, Yoshihiro; Kawase, Toshiki; Kim, DaeGwi; Nakayama, Masaaki

    2014-03-01

    We report that polarization modulation reflectance (PMR) spectroscopy is highly sensitive to the cavity polaritons in a ZnO microcavity with HfO2/SiO2 distributed Bragg reflectors. We demonstrate that the cavity-polariton dispersion, even in the energy region of strong absorption by exciton continuum states, is clearly observed by PMR spectroscopy. The PMR spectra were quantitatively analyzed by a transfer-matrix method taking into account three types of excitons labeled A, B, and C. Line-shape analysis of the PMR spectra indicates that the anisotropy of the excitonic transitions is considerable in treating the cavity polariton in the ZnO microcavity.

  5. Iron variation within a granitic pluton as determined by near-infrared reflectance

    NASA Technical Reports Server (NTRS)

    Baird, A. K.

    1984-01-01

    One-hundred fifty-one previously chemically analyzed samples of tonalite from the Lakeview Mountains pluton, southern California batholith, were analyzed for their iron content using near-infrared spectrophotometry. Compared to the earlier analyses of the same sample set by X-ray fluorescence spectrography, the infrared data have higher analytical variance but clearly define patterns of compositional zonation in the pluton which are closely similar to those patterns obtained from X-ray data; petrogenetic interpretations for the pluton would be the same from either data set. Infrared spectral data can be obtained directly in the field with relatively simple instruments and field measurements can be made to average local heterogeneities that often mask significant plutonic variations.

  6. Application of infrared reflection and Raman spectroscopy for quantitative determination of fat in potato chips

    NASA Astrophysics Data System (ADS)

    Mazurek, Sylwester; Szostak, Roman; Kita, Agnieszka

    2016-12-01

    Potato chips are important products in the snack industry. The most significant parameter monitored during their quality control process is fat content. The Soxhlet method, which is applied for this purpose, is time consuming and expensive. We demonstrate that both infrared and Raman spectroscopy can effectively replace the extraction method. Raman, mid-infrared (MIR) and near-infrared (NIR) spectra of the homogenised laboratory-prepared chips were recorded. On the basis of obtained spectra, partial least squares (PLS) calibration models were constructed. They were characterised by the values of relative standard errors of prediction (RSEP) in the 1.0-1.9% range for both calibration and validation data sets. Using the developed models, six commercial products were successfully quantified with recovery in the 98.5-102.3% range against the AOAC extraction method. The proposed method for fat quantification in potato chips based on Raman spectroscopy can be easily adopted for on-line product analysis.

  7. Iron variation within a granitic pluton as determined by near-infrared reflectance

    NASA Technical Reports Server (NTRS)

    Baird, A. K.

    1984-01-01

    One-hundred fifty-one previously chemically analyzed samples of tonalite from the Lakeview Mountains pluton, southern California batholith, were analyzed for their iron content using near-infrared spectrophotometry. Compared to the earlier analyses of the same sample set by X-ray fluorescence spectrography, the infrared data have higher analytical variance but clearly define patterns of compositional zonation in the pluton which are closely similar to those patterns obtained from X-ray data; petrogenetic interpretations for the pluton would be the same from either data set. Infrared spectral data can be obtained directly in the field with relatively simple instruments and field measurements can be made to average local heterogeneities that often mask significant plutonic variations.

  8. Strain-Modulated Electronic Structure and Infrared Light Adsorption in Palladium Diselenide Monolayer

    NASA Astrophysics Data System (ADS)

    Liu, Xiaobiao; Zhou, Hongcai; Yang, Bo; Qu, Yuanyuan; Zhao, Mingwen

    2017-01-01

    Two-dimensional (2D) transition-metal dichalcogenides (TMDs) exhibit intriguing properties for both fundamental research and potential application in fields ranging from electronic devices to catalysis. Based on first-principles calculations, we proposed a stable form of palladium diselenide (PdSe2) monolayer that can be synthesized by selenizing Pd(111) surface. It has a moderate band gap of about 1.10 eV, a small in-plane stiffness, and electron mobility larger than that of monolayer black phosphorus by more than one order. Additionally, tensile strain can modulate the band gap of PdSe2 monolayer and consequently enhance the infrared light adsorption ability. These interesting properties are quite promising for application in electronic and optoelectronic devices.

  9. Strain-Modulated Electronic Structure and Infrared Light Adsorption in Palladium Diselenide Monolayer

    PubMed Central

    Liu, Xiaobiao; Zhou, Hongcai; Yang, Bo; Qu, Yuanyuan; Zhao, Mingwen

    2017-01-01

    Two-dimensional (2D) transition-metal dichalcogenides (TMDs) exhibit intriguing properties for both fundamental research and potential application in fields ranging from electronic devices to catalysis. Based on first-principles calculations, we proposed a stable form of palladium diselenide (PdSe2) monolayer that can be synthesized by selenizing Pd(111) surface. It has a moderate band gap of about 1.10 eV, a small in-plane stiffness, and electron mobility larger than that of monolayer black phosphorus by more than one order. Additionally, tensile strain can modulate the band gap of PdSe2 monolayer and consequently enhance the infrared light adsorption ability. These interesting properties are quite promising for application in electronic and optoelectronic devices. PMID:28051184

  10. A seam tracking modulated infrared optical sensor for use in welding

    NASA Astrophysics Data System (ADS)

    Wu, Minsheng; Chen, Wuzhu; He, Fangdian; Yan, Bingyi; Su, Yong

    1991-12-01

    This article describes a weld seam tracking sensor which has a type of pulse modulated infrared beam as its signal light source. Going through signal reception filters and 'adaptive elimination of noise' processing, it is possible to effectively overcome interference from electric arc light. Making use of the light source pulse driven characteristics, the instantaneous signal power is greatly added to, improving the adaptation of optical sensors to the surfaces of pieces of work. The sensors' structure is simple. Their volume is small. Their sensitivity is high. Additionally, they are capable of realizing, at the same time, automatic tracking of weld seams in the two horizontal and altitude directions. It is capable of precision tracking in both submerged arc and open arc automatic welding.

  11. Reflection-type spatial amplitude modulation of visible light based on a sub-wavelength plasmonic absorber.

    PubMed

    Hwang, Chi-Young; Yi, Yoonsik; Choi, Choon-Gi

    2016-03-01

    We present a method for reflection-type spatial amplitude modulation using a sub-wavelength plasmonic absorber structure that can operate in the visible region. We utilize a pixelated array of absorbing elements based on a two-dimensional sub-wavelength metal grating, and the reflectance of each pixel is controlled by simple structural modification. For the purpose of validation, numerical simulations were performed on an amplitude modulation hologram fabricated using our method.

  12. Predicting ambient aerosol thermal-optical reflectance measurements from infrared spectra: elemental carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2015-10-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as thermal-optical reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier transform infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive and nondestructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FT-IR spectra are divided into calibration and test sets. Two calibrations are developed: one developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a uniform distribution of Low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the Low EC calibration to Low EC samples and the Uniform EC calibration to all other samples is used to produce predictions for Low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), no bias (0.00 μg m-3, a

  13. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: elemental carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2015-06-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as Thermal-Optical Reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier Transform Infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure tested and developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FTIR spectra are divided into calibration and test sets. Two calibrations are developed, one which is developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a~uniform distribution of low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the low EC calibration to low EC samples and the Uniform EC calibration to all other samples is used to produces predictions for low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of variation (R2; 0.96), no

  14. Diagnosis of colon cancer by attenuated total reflectance-Fourier transform infrared microspectroscopy and soft independent modeling of class analogy.

    PubMed

    Khanmohammadi, Mohammadreza; Garmarudi, Amir Bagheri; Ghasemi, Keyvan; Jaliseh, Hadigheh Kazemi; Kaviani, Ahmad

    2009-01-01

    This study tries to demonstrate that attenuated total reflectance-fourier transform infrared (ATR-FTIR) microspectroscopy in combination with chemometric methods can reliably distinguish malignant colon tissues from healthy ones. It is important to explore a noninvasive and rapid method for detection of colon cancer biopsies. Initially, principal component analysis was applied to examine the degree of separation between tissue samples. Soft independent modeling of class analogy (SIMCA) was also employed to evaluate the prediction accuracy of ATR-FTIR microspectroscopy for the diagnosis of colon cancer. There were significant differences in the fourier transform infrared spectra of normal and cancerous colon biopsies in the 1,800-900 cm(-1) spectral region. The SIMCA results demonstrated that the accuracy, specificity, and sensitivity of the proposed diagnostic method were 93.3, 100, and 88.2%, respectively, which could help satisfy clinical diagnostic requirements.

  15. Application of linear discriminant analysis and Attenuated Total Reflectance Fourier Transform Infrared microspectroscopy for diagnosis of colon cancer.

    PubMed

    Khanmohammadi, Mohammadreza; Bagheri Garmarudi, Amir; Samani, Simin; Ghasemi, Keyvan; Ashuri, Ahmad

    2011-06-01

    Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) microspectroscopy was applied for detection of colon cancer according to the spectral features of colon tissues. Supervised classification models can be trained to identify the tissue type based on the spectroscopic fingerprint. A total of 78 colon tissues were used in spectroscopy studies. Major spectral differences were observed in 1,740-900 cm(-1) spectral region. Several chemometric methods such as analysis of variance (ANOVA), cluster analysis (CA) and linear discriminate analysis (LDA) were applied for classification of IR spectra. Utilizing the chemometric techniques, clear and reproducible differences were observed between the spectra of normal and cancer cases, suggesting that infrared microspectroscopy in conjunction with spectral data processing would be useful for diagnostic classification. Using LDA technique, the spectra were classified into cancer and normal tissue classes with an accuracy of 95.8%. The sensitivity and specificity was 100 and 93.1%, respectively.

  16. From curdlan powder to the triple helix gel structure: an attenuated total reflection-infrared study of the gelation process.

    PubMed

    Gagnon, Marc-André; Lafleur, Michel

    2007-04-01

    Infrared spectroscopy was used to probe the hydration and gelation of curdlan, a linear polysaccharide built from repeating units of (1-->3)-beta-D-glucose. The spectra have been recorded using a temperature-controlled attenuated total reflection (ATR) device. Thermal gelation of curdlan could therefore be followed in situ and in real time. The transformation of the low-set gel, mainly formed with single helices, into a high-set gel, associated with a triple helix structure, could be directly observed. The relative intensities and positions of characteristic absorption bands in the C-O region (1200-850 cm-1) were found to be representative of the gel structure, as they are believed to be sensitive to the helical conformation of the polymer chains. Infrared (IR) spectroscopy is shown to be a useful tool for rapid and efficient characterization of curdlan gels.

  17. Chemometric analysis of attenuated total reflectance infrared spectra of Proteus mirabilis strains with defined structures of LPS.

    PubMed

    Zarnowiec, Paulina; Mizera, Andrzej; Chrapek, Magdalena; Urbaniak, Mariusz; Kaca, Wieslaw

    2016-07-01

    Proteus spp. strains are some of the most important pathogens associated with complicated urinary tract infections and bacteremia affecting patients with immunodeficiency and long-term urinary catheterization. For epidemiological purposes, various molecular typing methods have been developed for this pathogen. However, these methods are labor intensive and time consuming. We evaluated a new method of differentiation between strains. A collection of Proteus spp. strains was analyzed by attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy in the mid-infrared region. ATR FT-IR spectroscopy used in conjunction with a diamond ATR accessory directly produced the biochemical profile of the surface chemistry of bacteria. We conclude that a combination of ATR FT-IR spectroscopy and mathematical modeling provides a fast and reliable alternative for discrimination between Proteus isolates, contributing to epidemiological research. © The Author(s) 2016.

  18. Historical perspective and modern applications of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR).

    PubMed

    Blum, Marc-Michael; John, Harald

    2012-01-01

    Vibrational spectroscopy has a long history as an important spectroscopic method in chemical and pharmaceutical analysis. Instrumentation for infrared (IR) spectroscopy was revolutionized by the introduction of Fourier Transform Infrared (FTIR) spectrometers. In addition, easier sampling combined with better sample-to-sample reproducibility and user-to-user spectral variation became available with attenuated total reflectance (ATR) probes and their application for in situ IR spectroscopy. These innovations allow many new applications in chemical and pharmaceutical analysis, such as the use of IR spectroscopy in Process Analytical Chemistry (PAC), the quantitation of drugs in complex matrix formulations, the analysis of protein binding and function and in combination with IR microscopy to the emergence of IR imaging technologies. The use of ATR-FTIR instruments in forensics and first response to 'white powder' incidents is also discussed. A short overview is given in this perspective article with the aim to renew and intensify interest in IR spectroscopy.

  19. Rapid discrimination of granitic rock compositions by low-resolution near-infrared reflectance

    NASA Technical Reports Server (NTRS)

    Baird, A. K.

    1984-01-01

    The slopes of near-infrared spectra between approximately 1 and 2 microns from quartz-bearing plutonic rocks are strongly correlated with rock chemistry determined by X-ray spectrometry. The empirically derived predictive equations provide compositional data of adequate precision and resolution to discern patterns of regional geochemical variation in granitic batholithic rocks of southern California. As an analytical method, infrared spectrometry is rapid and inexpensive, and the method has potential in applications to direct field measurements and to data from aircraft and spacecraft scanner systems of relatively low spectral and spatial resolution, provided vegetative cover and surface alteration are not prohibitively masking.

  20. Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Lay, Christopher C.; Mathews, Marlon S.; Linskey, Mark E.; Frostig, Ron D.; Tromberg, Bruce J.

    2009-03-01

    We describe a technique that uses spatially modulated near-infrared (NIR) illumination to detect and map changes in both optical properties (absorption and reduced scattering parameters) and tissue composition (oxy- and deoxyhemoglobin, total hemoglobin, and oxygen saturation) during acute ischemic injury in the rat barrel cortex. Cerebral ischemia is induced using an open vascular occlusion technique of the middle cerebral artery (MCA). Diffuse reflected NIR light (680 to 980 nm) from the left parietal somatosensory cortex is detected by a CCD camera before and after MCA occlusion. Monte Carlo simulations are used to analyze the spatial frequency dependence of the reflected light to predict spatiotemporal changes in the distribution of tissue absorption and scattering properties in the brain. Experimental results from seven rats show a 17+/-4.7% increase in tissue concentration of deoxyhemoglobin and a 45+/-3.1, 23+/-5.4, and 21+/-2.2% decrease in oxyhemoglobin, total hemoglobin concentration and cerebral tissue oxygen saturation levels, respectively, 45 min following induction of cerebral ischemia. An ischemic index (Iisch=ctHHb/ctO2Hb) reveals an average of more then twofold contrast after MCAo. The wavelength-dependence of the reduced scattering (i.e., scatter power) decreased by 35+/-10.3% after MCA occlusion. Compared to conventional CCD-based intrinsic signal optical imaging (ISOI), the use of structured illumination and model-based analysis allows for generation of separate maps of light absorption and scattering properties as well as tissue hemoglobin concentration. This potentially provides a powerful approach for quantitative monitoring and imaging of neurophysiology and metabolism with high spatiotemporal resolution.

  1. Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination

    PubMed Central

    Abookasis, David; Lay, Christopher C.; Mathews, Marlon S.; Linskey, Mark E.; Frostig, Ron D.; Tromberg, Bruce J.

    2010-01-01

    We describe a technique that uses spatially modulated near-infrared (NIR) illumination to detect and map changes in both optical properties (absorption and reduced scattering parameters) and tissue composition (oxy- and deoxyhemoglobin, total hemoglobin, and oxygen saturation) during acute ischemic injury in the rat barrel cortex. Cerebral ischemia is induced using an open vascular occlusion technique of the middle cerebral artery (MCA). Diffuse reflected NIR light (680 to 980 nm) from the left parietal somatosensory cortex is detected by a CCD camera before and after MCA occlusion. Monte Carlo simulations are used to analyze the spatial frequency dependence of the reflected light to predict spatiotemporal changes in the distribution of tissue absorption and scattering properties in the brain. Experimental results from seven rats show a 17±4.7% increase in tissue concentration of deoxyhemoglobin and a 45±3.1, 23±5.4, and 21±2.2% decrease in oxyhemoglobin, total hemoglobin concentration and cerebral tissue oxygen saturation levels, respectively, 45 min following induction of cerebral ischemia. An ischemic index (Iisch=ctHHb/ctO2Hb) reveals an average of more then twofold contrast after MCAo. The wavelength-dependence of the reduced scattering (i.e., scatter power) decreased by 35±10.3% after MCA occlusion. Compared to conventional CCD-based intrinsic signal optical imaging (ISOI), the use of structured illumination and model-based analysis allows for generation of separate maps of light absorption and scattering properties as well as tissue hemoglobin concentration. This potentially provides a powerful approach for quantitative monitoring and imaging of neurophysiology and metabolism with high spatiotemporal resolution. PMID:19405762

  2. Optimum combinations of visible and near-infrared reflectances for estimating the fraction of photosynthetically available radiation absorbed by plants

    NASA Technical Reports Server (NTRS)

    Podaire, Alain; Deschamps, Pierre-Yves; Frouin, R.; Asrar, Ghassem

    1991-01-01

    A useful parameter to estimate terrestrial primary productivity, that can be sensed from space, is the daily averaged fraction of Photosynthetically Available Radiation (PAR) absorbed by plants. To evaluate this parameter, investigators have relied on the fact that the relative amount of radiation reflected by a vegetated surface in the visible and near infrared depends on the fraction of the surface covered by the vegetation and therefore, correlates with absorbed PAR. They have used vegetation indices, namely normalized difference and simple ratio, to derive absorbed PAR. The problem with normalized difference and simple ratio is first, they are non linear functions of radiance or reflectance and therefore, cannot be readily applied to heterogeneous targets, second, they are used in generally nonlinear relationships, which make time integrals of the indices not proportional to primary productivity, and third, the relationships depend strongly on the type of canopy and background. To remove these limitations, linear combinations of visible and near infrared reflectances at optimum (one or two) viewing zenith angles are proposed.

  3. Diffuse Reflectance Spectroscopy of Hidden Objects, Part I: Interpretation of the Reflection-Absorption-Scattering Fractions in Near-Infrared (NIR) Spectra of Polyethylene Films.

    PubMed

    Pomerantsev, Alexey L; Rodionova, Oxana Ye; Skvortsov, Alexej N

    2017-01-01

    Investigation of a sample covered by an interfering layer is required in many fields, e.g., for process control, biochemical analysis, and many other applications. This study is based on the analysis of spectra collected by near-infrared (NIR) diffuse reflectance spectroscopy. Each spectrum is a composition of a useful, target spectrum and a spectrum of an interfering layer. To recover the target spectrum, we suggest using a new phenomenological approach, which employs the multivariate curve resolution (MCR) method. In general terms, the problem is very complex. We start with a specific problem of analyzing a system, which consists of several layers of polyethylene (PE) film and underlayer samples with known spectral properties. To separate information originating from PE layers and the target, we modify the system versus both the number of the PE layers as well as the reflectance properties of the target sample. We consider that the interfering spectrum of the layer can be modeled using three components, which can be tentatively called transmission, absorption, and scattering contributions. The novelty of our approach is that we do not remove the reflectance and scattering effects from the spectra, but study them in detail aiming to use this information to recover the target spectrum.

  4. Use of Near Infrared Reflectance Spectroscopy to Predict Intake and Digestibility in Bulls and Steers

    USDA-ARS?s Scientific Manuscript database

    Fecal samples were collected from 282 growing Angus bulls over 4 yr to predict DMI of corn-silage-based diet. Contemporaneous digestion trials were conducted with the same diet in 12 steers for 3 yr and 12 bulls in 1 yr. Near-infrared spectra (n = 735 for growing bulls, n= = 240 for digestion trials...

  5. Chemical differences in soil organic matter fractions determined by diffuse-reflectance mid-infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    We carried out mid-infrared (MidIR) spectral interpretation of fractionated fresh and incubated agricultural soils to determine changes in soil organic matter (SOM) chemistry during long-term incubation. Soils cores from four long-term sites under continuous corn in the US Corn Belt were obtained fr...

  6. Spectral reflectance from plant canopies and optimum spectral channels in the near infrared

    NASA Technical Reports Server (NTRS)

    Allen, W. A.; Gausman, H. W.; Wiegand, C. L.

    1970-01-01

    Theoretical and experimental aspects of the interaction of light with a typical plant canopy are considered. Both theoretical and experimental results are used to establish optimum electromagnetic wavelength channels for remote sensing in agriculture. The spectral range considered includes half of the visible and much of the near-infrared regions.

  7. Diffuse Reflectance Fourier Transform Mid-Infrared Spectral Properties of Forages with Varied Fatty Acid Content

    USDA-ARS?s Scientific Manuscript database

    Ruminant diet can affect the fatty acid (FA) content of meat and dairy products, which indicates that managing forage consumption is important in determining the quality of the animal products. Mid-infrared spectroscopy is sensitive to changes in forage FA and has been used successfully to quantify ...

  8. A preliminary evaluation of attenuated total reflection Fourier transform infrared spectroscopy for the hematological analysis of thalassemias.

    PubMed

    Wan, Jun-Hui; Tian, Pei-Ling; Yin, Hao; Han, Yun; Wei, Xiang-Cai; Pan, Tao

    2013-01-01

    The effectiveness of attenuated total reflection Fourier transform infrared spectroscopy for the hematological analysis of thalassemias was evaluated. The correlations of hemoglobin, mean corpuscular volume and mean corpuscular hemoglobin between routine method and attenuated total reflection Fourier transform infrared spectroscopy were analyzed using linear regression analysis. Appropriate cut-off values of predicted mean corpuscular volume and predicted mean corpuscular hemoglobin in screening of thalassemias were derived from the receiver operator characteristic curve conducted on 103 subjects. Obvious positive correlations of hemoglobin (beta=0.876, R(2)=0.791, P<0.001), mean corpuscular volume (beta=0.656, R(2)=0.516, P<0.001) and mean corpuscular hemoglobin (beta=0.674, R(2)=0.583, P<0.001) were observed between routine method and attenuated total reflection Fourier transform infrared spectroscopy. Based on the receiver operator characteristic curve analysis, the best cut off value of predicted mean corpuscular volume for the phenotype-positive subjects was found to be 79.9 fl with a sensitivity of 100.0% and a specificity of 97.8%, and the proposed cut off value of predicted mean corpuscular hemoglobin was 27.3 pg with a sensitivity of 100.0% and a specificity of 96.8%. The area under curve was 0.996 for predicted mean corpuscular volume and 0.992 for predicted mean corpuscular hemoglobin, respectively. The established method could be an additional potentially promising tool for the preliminary screening of thalassemias in population prevention and control program. The main advantage of this method is no unwanted chemical regents compared with conventional method. Strategy for the development of this method could be of use for the other important parameters of thalassemias. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  9. Identification of crops in Central Arkansas using visual and infrared spectral reflectance signatures

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The spectral reflectance signatures of principle crops of central Arkansas were calibrated. Data were collected by conducting ground based reflectance signatures at well controlled test sites. Data collected were primarily for soybeans, therefore, additional measurements are essential to the acquisition of significant results.

  10. Experimental study on the influence of the contact pressure to transmittance and reflectance spectra by near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Jingying; Li, Si; Wang, Tianpei; Li, Lin; Liu, Jiajia; Xu, Kexin

    2017-03-01

    Near Infrared Spectroscopy (NIRS) technology has been recognized as one of the most promising non-invasive blood glucose measurement methods due to its convenience, high efficiency, noninvasiveness, and real-time monitoring. We build a system to measure transmittance and reflectance within NIR range simultaneously. And contact measuring method has been performed in order to reduce the influence of specular reflectance of the measured skin tissue. However, in this way, the optical probe could press the skin tissue and make it distorted, which might make the internal structure and the constituent distribution of tissue changed and further the tissue optical parameter changed. This could eventually change the distribution of transmittance spectra and reflectance spectra. In this talk, we collect the transmittance spectra and the diffused reflectance spectra of human earlobe within the wavelength of 900-1700nm under the different contact pressures. The results show that the diffused reflectance spectra decrease and the diffused transmittance spectra increase with the increase of the contact pressure between the probe and the earlobe. In order to improve the precision and stability of NIRS, the contact position of the deformation of 0.75mm is determined to be an optimal contact state measurement position.

  11. Reflectivity Measurements for Copper and Aluminumin the Far Infrared and the Resistive Wall Impedance in the LCLSUndulator

    SciTech Connect

    Bane, K.L.F.; Stupakov, G.; Tu, J.J.; /City Coll., N.Y.

    2006-06-27

    Reflectivity measurements in the far infrared, performed on aluminum and copper samples, are presented and analyzed. Over a frequency range of interest for the LCLS bunch, the data is fit to the free-electron model, and to one including the anomalous skin effect. The models fit well, yielding parameters dc conductivity and relaxation times that are within 30-40% of expected values. We show that the induced energy in the LCLS undulator region is relatively insensitive to variations on this order, and thus we can have confidence that the wake effect will be close to what is expected.

  12. Use of Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy To Identify Microbial Metabolic Products on Carbonate Mineral Surfaces▿ †

    PubMed Central

    Bullen, Heather A.; Oehrle, Stuart A.; Bennett, Ariel F.; Taylor, Nicholas M.; Barton, Hazel A.

    2008-01-01

    This paper demonstrates the use of attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy to detect microbial metabolic products on carbonate mineral surfaces. By creating an ATR-FTIR spectral database for specific organic acids using ATR-FTIR spectroscopy we were able to distinguish metabolic acids on calcite surfaces following Escherichia coli growth. The production of these acids by E. coli was verified using high-performance liquid chromatography with refractive index detection. The development of this technique has allowed us to identify microbial metabolic products on carbonate surfaces in nutrient-limited cave environments. PMID:18502924

  13. High-throughput evaluation of olefin copolymer composition by means of attenuated total reflection Fourier tranform infrared spectroscopy.

    PubMed

    Tuchbreiter, A; Marquardt, J; Zimmermann, J; Walter, P; Mülhaupt, R; Kappler, B; Faller, D; Roths, T; Honerkamp, J

    2001-01-01

    As a consequence of developing fully automated reactors for organic and organometallic synthesis and polymerizations combined with rapid on-line analysis, databases, and data mining, the analysis of polymers with respect to composition and properties has been speeded up. High-throughput evaluation of olefin copolymers requires fast measurements and high accuracy without tedious sample preparation such as pressing KBr pellets. This has been achieved by using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR spectroscopy) in conjunction with multivariate calibration in order to determine the composition of olefin copolymers such as ethene/propene, ethene/1-hexene and ethene/1-octene copolymers.

  14. Resin characterization in cured graphite fiber reinforced composites using diffuse reflectance-FTIR. [Fourier transform infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Stein, B. A.; Chang, A. C.

    1983-01-01

    The feasibility of using diffuse reflectance in combination with Fourier transform infrared spectroscopy to obtain information on cured graphite fiber reinforced polymeric matrix resin composites was investigated. Several graphite/epoxy, polysulfone, and polyimide composites exposed to thermal or radiation environments were examined. An experimental polyimide-sulfone adhesive tape was also studied during processing. In each case, significant changes in resin molecular structure was observed due to environmental exposure. These changes in molecular structure were correlated with previously observed changes in material properties providing new insights into material behavior.

  15. Fiber-based modulated optical reflectance configuration allowing for offset pump and probe beams

    NASA Astrophysics Data System (ADS)

    Fleming, A.; Folsom, C.; Jensen, C.; Ban, H.

    2016-12-01

    A new fiber-based modulated optical reflectance configuration is developed in this work. The technique maintains the fiber-based heating laser (pump) and detection laser (probe) in close proximity at a fixed separation distance in a ceramic ferrule. The pump beam periodically heats the sample inducing thermal waves into the sample. The probe beam measures the temperature response at a known distance from the pump beam over a range of heating modulation frequencies. The thermal diffusivity of the sample may be calculated from the phase response between the input heat flux and the temperature response of a sample having a reflective surface. The unique measurement configuration is ideal for in situ measurements and has many advantages for laboratory-based systems. The design and development of the system are reported along with theoretical justification for the experimental design. The thermal diffusivities of Ge and SiC are measured and found to be within 10% of reported literature values. The diffusivity for SiO2 is measured with a relative difference of approximately 100% from the literature value when the ferrule is in contact with the sample. An additional measurement was made on the SiO2 sample with the ferrule not in contact resulting in a difference of less than 2% from the literature value. The difference in the SiO2 measurement when the ferrule is in contact with the sample is likely due to a parallel heat transfer path through the dual-fiber ferrule assembly.

  16. Photothermal self-phase-modulation technique for absorption measurements on high-reflective coatings.

    PubMed

    Steinlechner, Jessica; Jensen, Lars; Krüger, Christoph; Lastzka, Nico; Steinlechner, Sebastian; Schnabel, Roman

    2012-03-10

    We propose and demonstrate a new measurement technique for the optical absorption of high-reflection coatings. Our technique is based on photothermal self-phase modulation and exploits the deformation of cavity Airy peaks that occurs due to coating absorption of intracavity light. The mirror whose coating is under investigation needs to be the input mirror of a high-finesse cavity. Our example measurements were performed on a high-reflection SiO2-Ta2O5 coating in a three-mirror ring-cavity setup at a wavelength of 1064 nm. The optical absorption of the coating was determined to be α=(23.9±2.0)·10(-6) per coating. Our result is in excellent agreement with an independently performed laser calorimetry measurement that gave a value of α=(24.4±3.2)·10(-6) per coating. Since the self-phase modulation in our coating-absorption measurement affects mainly the propagation through the cavity input mirror, our measurement result is practically uninfluenced by the optical absorption of the other cavity mirrors.

  17. Design of practicable phase-change metadevices for near-infrared absorber and modulator applications.

    PubMed

    Carrillo, Santiago García-Cuevas; Nash, Geoffrey R; Hayat, Hasan; Cryan, Martin J; Klemm, Maciej; Bhaskaran, Harish; Wright, C David

    2016-06-13

    Phase-change chalcogenide alloys, such as Ge2Sb2Te5 (GST), have very different optical properties in their amorphous and crystalline phases. The fact that such alloys can be switched, optically or electrically, between such phases rapidly and repeatedly means that they have much potential for applications as tunable photonic devices. Here we incorporate chalcogenide phase-change films into a metal-dielectric-metal metamaterial electromagnetic absorber structure and design absorbers and modulators for operation at technologically important near-infrared wavelengths, specifically 1550 nm. Our design not only exhibits excellent performance (e.g. a modulation depth of ~77% and an extinction ratio of ~20 dB) but also includes a suitable means for protecting the GST layer from environmental oxidation and is well-suited, as confirmed by electro-thermal and phase-transformation simulations, to in situ electrical switching. We also present a systematic study of design optimization, including the effects of expected manufacturing tolerances on device performance and, by means of a sensitivity analysis, identify the most critical design parameters.

  18. An almost 'perfectly' diffuse, 'perfect' reflector for far-infrared reflectance calibration

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon M.

    1993-01-01

    Specular and diffuse reflectance measurements made near normal incidence of two very rough, solid aluminum surfaces are presented for the wavelength range from 2.2 to 512 microns. The diffuse measurements made at nonspecular angles by two different detectors indicate that between 33 and 201 microns the reflectance of one surface is nearly Lambertian (isotropic) with a bidirectional reflectance distribution function (BRDF) value within 32 percent of the theoretical value of (1/pi)/sr for a perfectly diffuse, perfect reflector. Photometric reflectance spectra at the specular angle show that between 6.9 and 100 microns the specular BRDF of these surfaces is within 5 percent of the theoretical value of (1/pi)/sr. At longer wavelengths of 235, 320, and 512 microns the specular reflectance rapidly departs from that of a perfectly diffuse, perfect reflector. The two samples studied have rms surface roughnesses of 44 and 60 microns. A durable metal surface with these near perfect reflectance characteristics can be advantageously used in the FIR as a black-body source, the interior surface of an integrating sphere, and most especially as an absolute calibration standard. BRDF measurements at 40 deg incidence, though still highly diffuse, show a significant departure from Lambertian reflectance.

  19. Nanocomposites for high-speed optical modulators and plasmonic thermal mid-infrared emitters

    NASA Astrophysics Data System (ADS)

    Demir, Veysi

    Demand for high-speed optical modulators and narrow-bandwidth infrared thermal emitters for numerous applications continues to rise and new optical devices are needed to deal with massive data flows, processing powers, and fabrication costs. Conventional techniques are usually hindered by material limitations or electronic interconnects and advances in organic nanocomposite materials and their integration into photonic integrated circuits (PICs) have been acknowledged as a promising alternative to single crystal techniques. The work presented in this thesis uses plasmonic and magneto-optic effects towards the development of novel optical devices for harnessing light and generating high bandwidth signals (>40GHz) at room and cryogenic temperatures (4.2°K). Several publications have resulted from these efforts and are listed at the end of the abstract. In our first published research we developed a narrow-bandwidth mid-infrared thermal emitter using an Ag/dielectric/Ag thin film structure arranged in hexagonal planar lattice structures. PECVD produced nanoamorphous carbon (NAC) is used as a dielectric layer. Spectrally tunable (>2 mum) and narrow bandwidth (<0.5 mum) emission peaks in the range of 4-7 mum were demonstrated by decreasing the resistivity of NAC from 1012 and 109 O.cm with an MoSi2 dopant and increasing the emitter lattice constant from 4 to 7 mum. This technique offers excellent flexibility for developing cost-effective mid-IR sources as compared to costly fiber and quantum cascade lasers (QCLs). Next, the effect of temperature on the Verdet constant for cobalt-ferrite polymer nanocomposites was measured for a series of temperatures ranging from 40 to 200°K with a Faraday rotation polarimeter. No visual change was observed in the films during thermal cycling, and ˜4x improvement was achieved at 40°K. The results are promising and further analysis is merited at 4.2°K to assess the performance of this material for cryogenic magneto-optic modulators

  20. Evaluation of the moisture prediction capability of near-infrared and attenuated total reflectance fourier transform infrared spectroscopy using superdisintegrants as model compounds.

    PubMed

    Uppaluri, Sai G; Bompelliwar, Sai K; Johnson, Paul R; Gupta, Mali R; Al-Achi, Antoine; Stagner, William C; Haware, Rahul V

    2014-12-01

    The superdisintegrants (SDs) moisture content measurement by near-infrared (NIR) spectroscopy and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy has been evaluated against thermogravimetric analysis as a reference method. SDs with varying moisture content were used to build calibration and independent model verification data sets. Calibration models were developed based on the water-specific NIR and ATR-FTIR spectral regions using partial least-square regression methods. Because of the NIR water low molar absorptivity, NIR spectroscopy handled higher moisture content (∼81%, w/w) than ATR-FTIR (∼25%, w/w). A two-way ANOVA test was performed to compare R(2) values obtained from measured and predicted moisture content (5%-25%, w/w) of SDs. No statistically significant difference was observed between the predictability of NIR and ATR-FTIR methods (p = 0.3504). However, the interactions between the two independent variables, SDs, and analytical methods were statistically significant (p = 0.0002), indicating that the predictability of the analytical method is material dependent. Thus, it would be important to recognize this highly dependent material and analytical method interaction when using NIR moisture analysis in process analytical technology to analyze and control critical quality and performance attributes of raw materials during processing with the goal of ensuring final product quality attributes.