Research on Retro-reflecting Modulation in Space Optical Communication System
NASA Astrophysics Data System (ADS)
Zhu, Yifeng; Wang, Guannan
2018-01-01
Retro-reflecting modulation space optical communication is a new type of free space optical communication technology. Unlike traditional free space optical communication system, it applys asymmetric optical systems to reduce the size, weight and power consumption of the system and can effectively solve the limits of traditional free space optical communication system application, so it can achieve the information transmission. This paper introduces the composition and working principle of retro-reflecting modulation optical communication system, analyzes the link budget of this system, reviews the types of optical system and optical modulator, summarizes this technology future research direction and application prospects.
Space photovoltaic modules based on reflective optics
NASA Technical Reports Server (NTRS)
Andreev, V. M.; Larionov, V. R.; Rumyantsev, V. D.; Shvarts, M. Z.
1995-01-01
The conceptual design and experimental results for two types of space application concentrator photovoltaic modules, employing reflective optical elements, are presented. The first type is based on the use of compound parabolic concentrators, the second type is based on the use of line-focus parabolic troughs. Lightweight concentrators are formed with nickel foil coated silver with a diamond-like carbon layer protection. Secondary optical elements, including lenses and cones, are introduced for a better matching of concentrators and solar cells. Both types of modules are characterized by concentration ratios in the range 20x to 30x, depending on the chosen range of misorientation angles. The estimated specific parameters of these modules operating with single junction AlGaAs/GaAs solar cells are 240 W/sq m and 3 kg/sq m.
NASA Technical Reports Server (NTRS)
Purves, Lloyd R. (Inventor)
1992-01-01
A robot serviced space facility includes multiple modules which are identical in physical structure, but selectively differing in function. and purpose. Each module includes multiple like attachment points which are identically placed on each module so as to permit interconnection with immediately adjacent modules. Connection is made through like outwardly extending flange assemblies having identical male and female configurations for interconnecting to and locking to a complementary side of another flange. Multiple rows of interconnected modules permit force, fluid, data and power transfer to be accomplished by redundant circuit paths. Redundant modules of critical subsystems are included. Redundancy of modules and of interconnections results in a space complex with any module being removable upon demand, either for module replacement or facility reconfiguration. without eliminating any vital functions of the complex. Module replacement and facility assembly or reconfiguration are accomplished by a computer controlled articulated walker type robotic manipulator arm assembly having two identical end-effectors in the form of male configurations which are identical to those on module flanges and which interconnect to female configurations on other flanges. The robotic arm assembly moves along a connected set or modules by successively disconnecting, moving and reconnecting alternate ends of itself to a succession of flanges in a walking type maneuver. To transport a module, the robot keeps the transported module attached to one of its end-effectors and uses another flange male configuration of the attached module as a substitute end-effector during walking.
Solaris: Orbital station: Automatic laboratory for outer space rendezvous and operations
NASA Technical Reports Server (NTRS)
Runavot, J. J.
1981-01-01
The preliminary design for a modular orbital space station (unmanned) is outlined. The three main components are a support module, an experiment module, and an orbital transport vehicle. The major types of missions (assembly, materials processing, and Earth observation) that could be performed are discussed.
NASA Technical Reports Server (NTRS)
Iucci, N.; Parisi, M.; Signorini, C.; Storini, M.; Villoresi, G.
1985-01-01
Investigations have shown that Forbush decreases (Fds) are produced by the propagation into the interplanetary space of a strong perturbation originating from a solar flare (Sf) accompanied by Type IV radioemission. As the front of the perturbation propagates into the interplanetary space, the region in which the galactic cosmic rays are modulated (Fd-modulated region) rotates westward with the Sun and is generally included between two boundary streams; therefore the Fds not associated with observed type IV Sfs (N.Ass.Fds) are likely to be produced by type IV Sfs occurred on the Sun's backside: these vents can be observed when the Earth crosses the corotating Western boundary of the modulated region.
NASA Astrophysics Data System (ADS)
Iucci, N.; Parisi, M.; Signorini, C.; Storini, M.; Villoresi, G.
1985-08-01
Investigations have shown that Forbush decreases (Fds) are produced by the propagation into the interplanetary space of a strong perturbation originating from a solar flare (Sf) accompanied by Type IV radioemission. As the front of the perturbation propagates into the interplanetary space, the region in which the galactic cosmic rays are modulated (Fd-modulated region) rotates westward with the Sun and is generally included between two boundary streams; therefore the Fds not associated with observed type IV Sfs (N.Ass.Fds) are likely to be produced by type IV Sfs occurred on the Sun's backside: these vents can be observed when the Earth crosses the corotating Western boundary of the modulated region.
Space Station Freedom - Status of the U.S. segment
NASA Technical Reports Server (NTRS)
Bartoe, John David F.
1990-01-01
An overview of the Space Station Freedom program is given. The results of a technical audit of the U.S. program, and the reorganization taking place at NASA HQ are discussed. Some areas resolved in the past year such as the type of power to be delivered to each pressurized module and the definition of common payload interfaces within all modules are reviewed. The utility of the Space Station Freedom is emphasized.
Consideration of adding a commercial module to the International Space Station
NASA Astrophysics Data System (ADS)
Friefeld, J.; Fugleberg, D.; Patel, J.; Subbaraman, G.
1999-01-01
The National Aeronautics and Space Administration (NASA) is currently assembling the International Space Station in Low Earth Orbit. One of NASA's program objectives is to encourage space commercialization. Through NASA's Engineering Research and Technology Development program, Boeing is conducting a study to ascertain the feasibility of adding a commercial module to the International Space Station. This module (facility) that can be added, following on-orbit assembly is described. The facility would have the capability to test large, engineering scale payloads in a space environment. It would also have the capability to provide services to co-orbiting space vehicles as well as gathering data for commercial terrestrial applications. The types of industries to be serviced are described as are some of the technical and business considerations that need to be addressed in order to achieve commercial viability.
NASA Technical Reports Server (NTRS)
Wells, Nathan D.; Madaras, Eric I.
2017-01-01
Expandable modules for use in space and on the Moon or Mars offer a great opportunity for volume and mass savings in future space exploration missions. This type of module can be compressed into a relatively small shape on the ground, allowing them to fit into space vehicles with a smaller cargo/fairing size than a traditional solid, metallic structure based module would allow. In April 2016, the Bigelow Expandable Activity Module (BEAM) was berthed to the International Space Station (ISS). BEAM is the first human-rated expandable habitat/module to be deployed and crewed in space. BEAM is a NASA managed ISS payload project in partnership with Bigelow Aerospace. BEAM is intended to stay attached to ISS for an operational period of 2 years to help advance the technology readiness for future expandable modules. BEAM has been instrumented with a suite of space flight certified sensors systems which will help characterize the module's performance for thermal, radiation shielding and impact monitoring against potential Micro Meteoroid/Orbital Debris (MM/OD) providing fundamental information on the BEAM environment for potential health monitoring requirements and capabilities. This paper will provide an overview of how the sensors/instrumentation systems were developed, tested, installed and an overview of the current sensor system operations. It will also discuss how the MM/OD impact detection system referred to as the Distributed Impact Detection System (DIDS) data is being processed and reviewed on the ground by the principle investigators.
Business Context of Space Tourism
NASA Astrophysics Data System (ADS)
Schmitt, Harrison H.
2003-01-01
Broadly speaking, two types of potential commercial activity in space can be defined. First, there are those activities that represent an expansion and improvement on services with broad existing commercial foundations such as telecommunications. The second type of potential commercial activity in space is one that may offer a type of service with few or any existing commercial foundations such as space-based remote sensing. Space tourism clearly belongs in the first category of potential commercial activity in space. Roles in cooperation with the private sector that might be considered for NASA include 1) acceleration of the ``Professional-in Space'' initiative, 2) research and technology developments related to a) a ``Tourist Destination Module'' for the Space Station, b) an ``Extra Passengers Module'' for the payload bay of the Space Shuttle, and c) a ``Passenger-rated Expendable Launch Vehicle,'' 3) definition of criteria for qualifying candidate space tourists, and 4) initiatives to protect space tourism from unreasonable tort litigation. As baseline information for establishing fees, the cost of a possible tourist flight should be fully and objectively delineated. If it is correct that the marginal cost of each Space Shuttle flight to Earth-orbit is about $100 million and the effective Shuttle payload is about 50,000 pounds, then the marginal cost would be roughly $2,000 per pound.
Space applicable DOE photovoltaic technology: An update
NASA Technical Reports Server (NTRS)
Scott-Monck, J.; Stella, P.; Berman, P.
1981-01-01
Photovoltaic development projects applicable to space power are identified. When appropriate, the type of NASA support that would be necessary to implement these technologies for space use is indicated. It is conducted that the relatively small market and divergent operational requirements for space power are mainly responsible for the limited transfer of terrestrial technology to space applications. Information on the factors which control the cost and type of technology is provided. Terrestrial modules using semiconductor materials are investigated.
Zero-gravity open-type urine receptacle
NASA Technical Reports Server (NTRS)
Girala, A. S.
1972-01-01
The development of the zero-gravity open-type urine receptacle used in the Apollo command module is described. This type receptacle eliminates the need for a cuff-type urine collector or for the penis to circumferentially contact the receptacle in order to urinate. This device may be used in a gravity environment, varying from zero gravity to earth gravity, such as may be experienced in a space station or space base.
NASA Technical Reports Server (NTRS)
Crouch, Myscha; Carswell, Bill; Farmer, Jeff; Rose, Fred; Tidwell, Paul
2000-01-01
The Material Science Research Rack I (MSRR-1) of the Material Science Research Facility (MSRF) contains an Experiment Module (EM) being developed collaboratively by NASA and the European Space Agency (ESA). This NASA/ESA EM will accommodate several different removable and replaceable Module Inserts (MIs) which are installed on orbit NASA's planned inserts include the Quench Module Insert (QMI) and the Diffusion Module Insert (DMI). The QMI is a high-gradient Bridgman-type vacuum furnace with quench capabilities used for experiments on directional solidification of metal alloys. The DMI is a vacuum Bridgman-Stockbarger-type furnace for experiments on Fickian and Soret diffusion in liquids. This paper discusses specific design features and performance capabilities of each insert. The paper also presents current prototype QMI hardware analysis and testing activities and selected results.
Indoorgml - a Standard for Indoor Spatial Modeling
NASA Astrophysics Data System (ADS)
Li, Ki-Joune
2016-06-01
With recent progress of mobile devices and indoor positioning technologies, it becomes possible to provide location-based services in indoor space as well as outdoor space. It is in a seamless way between indoor and outdoor spaces or in an independent way only for indoor space. However, we cannot simply apply spatial models developed for outdoor space to indoor space due to their differences. For example, coordinate reference systems are employed to indicate a specific position in outdoor space, while the location in indoor space is rather specified by cell number such as room number. Unlike outdoor space, the distance between two points in indoor space is not determined by the length of the straight line but the constraints given by indoor components such as walls, stairs, and doors. For this reason, we need to establish a new framework for indoor space from fundamental theoretical basis, indoor spatial data models, and information systems to store, manage, and analyse indoor spatial data. In order to provide this framework, an international standard, called IndoorGML has been developed and published by OGC (Open Geospatial Consortium). This standard is based on a cellular notion of space, which considers an indoor space as a set of non-overlapping cells. It consists of two types of modules; core module and extension module. While core module consists of four basic conceptual and implementation modeling components (geometric model for cell, topology between cells, semantic model of cell, and multi-layered space model), extension modules may be defined on the top of the core module to support an application area. As the first version of the standard, we provide an extension for indoor navigation.
NASA Astrophysics Data System (ADS)
Hang, Shuang; Liu, Yunpeng; Li, Huan; Tang, Xiaobin; Chen, Da
2018-04-01
X-ray communication (XCOM) is a new communication type and is expected to realize high-speed data transmission in some special communication scenarios, such as deep space communication and blackout communication. This study proposes a high-speed modulated X-ray source scheme based on the laser-to-X-ray conversion. The temporal characteristics of the essential components of the proposed laser-modulated pulsed X-ray source (LMPXS) were analyzed to evaluate its pulse emission performance. Results show that the LMPXS can provide a maximum modulation rate up to 100 Mbps which is expected to significantly improve the data rate of XCOM.
Experiment module concepts study. Volume 3: Module and subsystem design
NASA Technical Reports Server (NTRS)
Hunter, J. R.; Chiarappa, D. J.
1970-01-01
The final common module set exhibiting wide commonality is described. The set consists of three types of modules: one free flying module and two modules that operate attached to the space station. The common module designs provide for the experiment program as defined. The feasibility, economy, and practicality of these modules hinges on factors that do not affect the approach or results of the commonality process, but are important to the validity of the common module concepts. Implementation of the total experiment program requires thirteen common modules: five CM-1, five CM-3, and three CM-4 modules.
A Flexible VHDL Floating Point Module for Control Algorithm Implementation in Space Applications
NASA Astrophysics Data System (ADS)
Padierna, A.; Nicoleau, C.; Sanchez, J.; Hidalgo, I.; Elvira, S.
2012-08-01
The implementation of control loops for space applications is an area with great potential. However, the characteristics of this kind of systems, such as its wide dynamic range of numeric values, make inadequate the use of fixed-point algorithms.However, because the generic chips available for the treatment of floating point data are, in general, not qualified to operate in space environments and the possibility of using an IP module in a FPGA/ASIC qualified for space is not viable due to the low amount of logic cells available for these type of devices, it is necessary to find a viable alternative.For these reasons, in this paper a VHDL Floating Point Module is presented. This proposal allows the design and execution of floating point algorithms with acceptable occupancy to be implemented in FPGAs/ASICs qualified for space environments.
Space Environmental Viewing and Analysis Network (SEVAN)
NASA Astrophysics Data System (ADS)
Chilingarian, Ashot
A network of particle detectors located at middle to low latitudes, SEVAN (Space Environ-mental Viewing and Analysis Network), aims to improve fundamental research of the particle acceleration in the vicinity of the sun and the space environment. The new type of particle detectors will simultaneously measure changing fluxes of most species of secondary cosmic rays, thus turning into a powerful integrated device used for exploration of solar modulation effects. The first SEVAN modules are under test operation at Aragats Space Environmental Center in Armenia, in Bulgaria and Croatia. We present the first results of SEVAN operation, as well as some characteristics of the detector setup.
Development of optical modulators for measurements of solar magnetic fields
NASA Technical Reports Server (NTRS)
West, E. A.; Smith, J. E.
1987-01-01
The measurement of polarized light allows solar astronomers to infer the magnetic field on the Sun. The accuracy of these measurements is dependent on the stable retardation characteristics of the polarization modulators used to minimize the atmospheric effects seen in ground-based observations. This report describes the work by the Space Science Laboratory at Marshall Space Flight Center to improve two types of polarization modulators. As a result, the timing characteristics for both electrooptic crystals (KD*Ps) and liquid crystal devices (LCDs) have been studied and will be used to enhance the capabilities of the MSFC Vector Magnetograph.
Usachev typing while in sleep station in the Service Module
2001-03-23
ISS002-E-5730 (23 March 2001) --- Cosmonaut Yury V. Usachev, Expedition Two commander, works at a laptop computer in his crew compartment in the Zvezda Service Module aboard the International Space Station (ISS). The image was recorded with a digital still camera.
Environmental analysis of the chemical release module. [space shuttle payload
NASA Technical Reports Server (NTRS)
Heppner, J. P.; Dubin, M.
1980-01-01
The environmental analysis of the Chemical Release Module (a free flying spacecraft deployed from the space shuttle to perform chemical release experiments) is reviewed. Considerations of possible effects of the injectants on human health, ionosphere, weather, ground based optical astronomical observations, and satellite operations are included. It is concluded that no deleterious environmental effects of widespread or long lasting nature are anticipated from chemical releases in the upper atmosphere of the type indicated for the program.
Full complex spatial filtering with a phase mostly DMD. [Deformable Mirror Device
NASA Technical Reports Server (NTRS)
Florence, James M.; Juday, Richard D.
1991-01-01
A new technique for implementing fully complex spatial filters with a phase mostly deformable mirror device (DMD) light modulator is described. The technique combines two or more phase-modulating flexure-beam mirror elements into a single macro-pixel. By manipulating the relative phases of the individual sub-pixels within the macro-pixel, the amplitude and the phase can be independently set for this filtering element. The combination of DMD sub-pixels into a macro-pixel is accomplished by adjusting the optical system resolution, thereby trading off system space bandwidth product for increased filtering flexibility. Volume in the larger dimensioned space, space bandwidth-complex axes count, is conserved. Experimental results are presented mapping out the coupled amplitude and phase characteristics of the individual flexure-beam DMD elements and demonstrating the independent control of amplitude and phase in a combined macro-pixel. This technique is generally applicable for implementation with any type of phase modulating light modulator.
Combinatorial FSK modulation for power-efficient high-rate communications
NASA Technical Reports Server (NTRS)
Wagner, Paul K.; Budinger, James M.; Vanderaar, Mark J.
1991-01-01
Deep-space and satellite communications systems must be capable of conveying high-rate data accurately with low transmitter power, often through dispersive channels. A class of noncoherent Combinatorial Frequency Shift Keying (CFSK) modulation schemes is investigated which address these needs. The bit error rate performance of this class of modulation formats is analyzed and compared to the more traditional modulation types. Candidate modulator, demodulator, and digital signal processing (DSP) hardware structures are examined in detail. System-level issues are also discussed.
Space station internal environmental and safety concerns
NASA Technical Reports Server (NTRS)
Cole, Matthew B.
1987-01-01
Space station environmental and safety concerns, especially those involving fires, are discussed. Several types of space station modules and the particular hazards associated with each are briefly surveyed. A brief history of fire detection and suppression aboard spacecraft is given. Microgravity fire behavior, spacecraft fire detector systems, space station fire suppression equipment and procedures, and fire safety in hyperbaric chambers are discussed.
NASA Astrophysics Data System (ADS)
Wicht, A.; Bawamia, A.; Krüger, M.; Kürbis, Ch.; Schiemangk, M.; Smol, R.; Peters, A.; Tränkle, G.
2017-02-01
We present the status of our efforts to develop very compact and robust diode laser modules specifically suited for quantum optics experiments in the field and in space. The paper describes why hybrid micro-integration and GaAs-diode laser technology is best suited to meet the needs of such applications. The electro-optical performance achieved with hybrid micro-integrated, medium linewidth, high power distributed-feedback master-oscillator-power-amplifier modules and with medium power, narrow linewidth extended cavity diode lasers emitting at 767 nm and 780 nm are briefly described and the status of space relevant stress tests and space heritage is summarized. We also describe the performance of an ECDL operating at 1070 nm. Further, a novel and versatile technology platform is introduced that allows for integration of any type of laser system or electro-optical module that can be constructed from two GaAs chips. This facilitates, for the first time, hybrid micro-integration, e.g. of extended cavity diode laser master-oscillator-poweramplifier modules, of dual-stage optical amplifiers, or of lasers with integrated, chip-based phase modulator. As an example we describe the implementation of an ECDL-MOPA designed for experiments on ultra-cold rubidium and potassium atoms on board a sounding rocket and give basic performance parameters.
NASA Technical Reports Server (NTRS)
Shumka, A.; Sollock, S. G.
1981-01-01
This paper represents the first comprehensive survey of the Mount Laguna Photovoltaic Installation. The novel techniques used for performing the field tests have been effective in locating and characterizing defective modules. A comparative analysis on the two types of modules used in the array indicates that they have significantly different failure rates, different distributions in degradational space and very different failure modes. A life cycle model is presented to explain a multimodal distribution observed for one module type. A statistical model is constructed and it is shown to be in good agreement with the field data.
NASA Astrophysics Data System (ADS)
Fu, Yuming; Liu, Hui; Shao, Lingzhi; Wang, Minjuan; Berkovich, Yu A.; Erokhin, A. N.; Liu, Hong
2013-07-01
Vegetable cultivation plays a crucial role in dietary supplements and psychosocial benefits of the crew during manned space flight. Here we developed a ground-based prototype of horn-type sequential vegetable production facility, named Horn-type Producer (HTP), which was capable of simulating the microgravity effect and the continuous cultivation of leaf-vegetables on root modules. The growth chamber of the facility had a volume of 0.12 m3, characterized by a three-stage space expansion with plant growth. The planting surface of 0.154 m2 was comprised of six ring-shaped root modules with a fibrous ion-exchange resin substrate. Root modules were fastened to a central porous tube supplying water, and moved forward with plant growth. The total illuminated crop area of 0.567 m2 was provided by a combination of red and white light emitting diodes on the internal surfaces. In tests with a 24-h photoperiod, the productivity of the HTP at 0.3 kW for lettuce achieved 254.3 g eatable biomass per week. Long-term operation of the HTP did not alter vegetable nutrition composition to any great extent. Furthermore, the efficiency of the HTP, based on the Q-criterion, was 7 × 10-4 g2 m-3 J-1. These results show that the HTP exhibited high productivity, stable quality, and good efficiency in the process of planting lettuce, indicative of an interesting design for space vegetable production.
1981-01-01
Spacelab was a versatile laboratory carried in the Space Shuttle's cargo bay for special research flights. Its various elements could be combined to accommodate the many types of scientific research that could best be performed in space. Spacelab consisted of an enclosed, pressurized laboratory module and open U-shaped pallets located at the rear of the laboratory module. The laboratory module contained utilities, computers, work benches, and instrument racks to conduct scientific experiments in astronomy, physics, chemistry, biology, medicine, and engineering. Equipment, such as telescopes, anternas, and sensors, was mounted on pallets for direct exposure to space. A 1-meter (3.3-ft.) diameter aluminum tunnel, resembling a z-shaped tube, connected the crew compartment (mid deck) to the module. The reusable Spacelab allowed scientists to bring experiment samples back to Earth for post-flight analysis. Spacelab was a cooperative venture of the European Space Agency (ESA) and NASA. ESA was responsible for funding, developing, and building of Spacelab, while NASA was responsible for the launch and operational use of Spacelab. Spacelab missions were cooperative efforts between scientists and engineers from around the world. Teams from NASA centers, universities, private industry, government agencies and international space organizations designed the experiments. The Marshall Space Flight Center was NASA's lead center for monitoring the development of Spacelab and managing the program.
Omicron space habitat—research stage II
NASA Astrophysics Data System (ADS)
Doule, Ondřej; Šálený, Vratislav; Hérin, Benoît; Rousek, Tomáš
2012-01-01
The design presented in this paper is in response to the revolution in private space activities, the increasing public interest in commercial flights to space and the utilization of structures such as space hotels or private orbital habitats. The baseline for the Omicron design concept is the Russian Salyut derived space station module. Salyut was the first space station to orbit the Earth. Its unique design and technical features were what made the development of space stations Salyut 1-7, MIR and the International Space Station (ISS) Zwezda service module possible. Due to its versatility and the reliable operating launch vehicle Proton, this space module series has the potential to be adapted for space hotel development. This paper proposes a conceptual design of the space habitat called Omicron, with particular focus on interior design for the microgravity environment. The Omicron concepts address the needs of space tourism with a strong emphasis on the safety and comfort of the spaceflight participants. The Omicron habitat supports three inhabitants in nominal conditions (e.g., two passengers and one astronaut). The habitat provides a flexible interior, facilities and spaces dynamically transforming in order to accommodate various types of activities, which will be performed in an organically formed interior supporting spatial orientation and movement in microgravity. The future development potential of Omicron is also considered. The baseline version is composed solely of one rigid module with an inverted cupola for observations. An alternative version offers more space using an inflatable structure. Finally, a combination of multiple Omicron modules enables the creation of a larger orbital habitat. The Omicron's subsystems support a few days visit by trained passengers. The transport to the habitat would be provided e.g., by the Soyuz TMA spacecraft carried by the Soyuz launch vehicle in the early stage of Omicron's development, before a fully reusable spacecraft would be available.
2016-01-26
ISS046e024411 (01/26/2016) --- European Space Agency (ESA) astronaut Timothy Peake prepares to install a space acceleration measurement system sensor inside the European Columbus module aboard the International Space Station. The device is used in an ongoing study of the small forces (vibrations and accelerations) on the International Space Station resulting from the operation of hardware, crew activities, dockings and maneuvering. Results generalize the types of vibrations affecting vibration-sensitive experiments.
Space Station Freedom electric power system availability study
NASA Technical Reports Server (NTRS)
Turnquist, Scott R.
1990-01-01
The results are detailed of follow-on availability analyses performed on the Space Station Freedom electric power system (EPS). The scope includes analyses of several EPS design variations, these are: the 4-photovoltaic (PV) module baseline EPS design, a 6-PV module EPS design, and a 3-solar dynamic module EPS design which included a 10 kW PV module. The analyses performed included: determining the discrete power levels that the EPS will operate at upon various component failures and the availability of each of these operating states; ranking EPS components by the relative contribution each component type gives to the power availability of the EPS; determining the availability impacts of including structural and long-life EPS components in the availability models used in the analyses; determining optimum sparing strategies, for storing space EPS components on-orbit, to maintain high average-power-capability with low lift-mass requirements; and analyses to determine the sensitivity of EPS-availability to uncertainties in the component reliability and maintainability data used.
2002-08-10
Space Shuttle Orbiter Discovery lifted off for the STS-105 mission on August 10, 2001. The main purpose of the mission was the rotation of the International Space Station (ISS) Expedition Two crew with the Expedition Three crew, and the delivery of supplies utilizing the Italian-built Multipurpose Logistics Module (MPLM) Leonardo. Another payload was the Materials International Space Station Experiment (MISSE). The MISSE experiment was to fly materials and other types of space exposure experiments on the Space Station and was the first externally mounted experiment conducted on the ISS.
2001-08-19
Space Shuttle Orbiter Discovery lifted off for the STS-105 mission on August 10, 2001. The main purpose of the mission was the rotation of the International Space Station (ISS) Expedition Two crew with the Expedition Three crew and the delivery of supplies utilizing the Italian-built Multipurpose Logistics Module (MPLM) Leonardo. Another payload was the Materials International Space Station Experiment (MISSE). The MISSE experiment was to fly materials and other types of space exposure experiments on the Space Station and was the first externally mounted experiment conducted on the ISS.
Conceptual design of the Space Station combustion module
NASA Technical Reports Server (NTRS)
Morilak, Daniel P.; Rohn, Dennis W.; Rhatigan, Jennifer L.
1994-01-01
The purpose of this paper is to describe the conceptual design of the Combustion Module for the International Space Station Alpha (ISSA). This module is part of the Space Station Fluids/Combustion Facility (SS FCF) under development at the NASA Lewis Research Center. The Fluids/Combustion Facility is one of several science facilities which are being developed to support microgravity science investigations in the US Laboratory Module of the ISSA. The SS FCF will support a multitude of fluids and combustion science investigations over the lifetime of the ISSA and return state-of-the-art science data in a timely and efficient manner to the scientific communities. This will be accomplished through modularization of hardware, with planned, periodic upgrades; modularization of like scientific investigations that make use of common facility functions; and through the use of orbital replacement units (ORU's) for incorporation of new technology and new functionality. The SS FCF is scheduled to become operational on-orbit in 1999. The Combustion Module is presently scheduled for launch to orbit and integration with the Fluids/Combustion Facility in 1999. The objectives of this paper are to describe the history of the Combustion Module concept, the types of combustion science investigations which will be accommodated by the module, the hardware design heritage, the hardware concept, and the hardware breadboarding efforts currently underway.
Conceptual Design of the Space Station Fluids Module
NASA Technical Reports Server (NTRS)
Rohn, Dennis W.; Morilak, Daniel P.; Rhatigan, Jennifer L.; Peterson, Todd T.
1994-01-01
The purpose of this paper is to describe the conceptual design of the Fluids Module for the International Space Station Alpha (ISSA). This module is part of the Space Station Fluids/Combustion Facility (SS FCF) under development at the NASA Lewis Research Center. The Fluids/Combustion Facility is one of several science facilities which are being developed to support microgravity science investigations in the US Laboratory Module of the ISSA. The SS FCF will support a multitude of fluids and combustion science investigations over the lifetime of the ISSA and return state-of-the-art science data in a timely and efficient manner to the scientific communities. This will be accomplished through modularization of hardware, with planned, periodic upgrades; modularization of like scientific investigations that make use of common facility functions; and use of orbital replacement units (ORU's) for incorporation of new technology and new functionality. Portions of the SS FCF are scheduled to become operational on-orbit in 1999. The Fluids Module is presently scheduled for launch to orbit and integration with the Fluids/Combustion Facility in 2001. The objectives of this paper are to describe the history of the Fluids Module concept, the types of fluids science investigations which will be accommodated by the module, the hardware design heritage, the hardware concept, and the hardware breadboarding efforts currently underway.
Polyimide based amorphous silicon solar modules
NASA Technical Reports Server (NTRS)
Jeffrey, Frank R.; Grimmer, Derrick P.; Martens, Steven A.; Abudagga, Khaled; Thomas, Michael L.; Noak, Max
1993-01-01
Requirements for space power are increasingly emphasizing lower costs and higher specific powers. This results from new fiscal constraints, higher power requirements for larger applications, and the evolution toward longer distance missions such as a Lunar or Mars base. The polyimide based a-Si modules described are being developed to meet these needs. The modules consist of tandem a-Si solar cell material deposited directly on a roll of polyimide. A laser scribing/printing process subdivides the deposition into discrete cell strips which are series connected to produce the required voltage without cutting the polymer backing. The result is a large, monolithic, blanket type module approximately 30 cm wide and variable in length depending on demand. Current production modules have a specific power slightly over 500 W/Kg with room for significant improvement. Costs for the full blanket modules range from $30/Watt to $150/Watt depending on quantity and engineering requirements. Work to date focused on the modules themselves and adjusting them for the AMO spectrum. Work is needed yet to insure that the modules are suitable for the space environment.
NASA Technical Reports Server (NTRS)
1978-01-01
Four types of Spacelab payloads were analyzed; these were considered to be representative of the Spacelab traffic model. The payloads were: (1) space processing - a single pallet payload; (2) combined astronomy - a five pallet payload; (3) life sciences - a long module payload; and (4) advanced technology lab - a short module plus train payload.
Variable Coded Modulation software simulation
NASA Astrophysics Data System (ADS)
Sielicki, Thomas A.; Hamkins, Jon; Thorsen, Denise
This paper reports on the design and performance of a new Variable Coded Modulation (VCM) system. This VCM system comprises eight of NASA's recommended codes from the Consultative Committee for Space Data Systems (CCSDS) standards, including four turbo and four AR4JA/C2 low-density parity-check codes, together with six modulations types (BPSK, QPSK, 8-PSK, 16-APSK, 32-APSK, 64-APSK). The signaling protocol for the transmission mode is based on a CCSDS recommendation. The coded modulation may be dynamically chosen, block to block, to optimize throughput.
Astronauts Working in Spacelab
NASA Technical Reports Server (NTRS)
1999-01-01
This Quick Time movie captures astronaut Jan Davis and her fellow crew members working in the Spacelab, a versatile laboratory carried in the Space Shuttle's cargo bay for special research flights. Its various elements can be combined to accommodate the many types of scientific research that can best be performed in space. Spacelab consisted of an enclosed, pressurized laboratory module and open U-shaped pallets located at the rear of the laboratory module. The laboratory module contained utilities, computers, work benches, and instrument racks to conduct scientific experiments in astronomy, physics, chemistry, biology, medicine, and engineering. Equipment, such as telescopes, antennas, and sensors, is mounted on pallets for direct exposure to space. A 1-meter (3.3-ft.) diameter aluminum tunnel, resembling a z-shaped tube, connected the crew compartment (mid deck) to the module. The reusable Spacelab allowed scientists to bring experiment samples back to Earth for post-flight analysis. Spacelab was a cooperative venture of the European Space Agency (ESA) and NASA. ESA was responsible for funding, developing, and building Spacelab, while NASA was responsible for the launch and operational use of Spacelab. Spacelab missions were cooperative efforts between scientists and engineers from around the world. Teams from NASA centers, universities, private industry, government agencies and international space organizations designed the experiments. The Marshall Space Flight Center was NASA's lead center for monitoring the development of Spacelab and managing the program.
NASA Astrophysics Data System (ADS)
Lo, Mei-Chun; Hsieh, Tsung-Hsien; Perng, Ruey-Kuen; Chen, Jiong-Qiao
2010-01-01
The aim of this research is to derive illuminant-independent type of HDR imaging modules which can optimally multispectrally reconstruct of every color concerned in high-dynamic-range of original images for preferable cross-media color reproduction applications. Each module, based on either of broadband and multispectral approach, would be incorporated models of perceptual HDR tone-mapping, device characterization. In this study, an xvYCC format of HDR digital camera was used to capture HDR scene images for test. A tone-mapping module was derived based on a multiscale representation of the human visual system and used equations similar to a photoreceptor adaptation equation, proposed by Michaelis-Menten. Additionally, an adaptive bilateral type of gamut mapping algorithm, using approach of a multiple conversing-points (previously derived), was incorporated with or without adaptive Un-sharp Masking (USM) to carry out the optimization of HDR image rendering. An LCD with standard color space of Adobe RGB (D65) was used as a soft-proofing platform to display/represent HDR original RGB images, and also evaluate both renditionquality and prediction-performance of modules derived. Also, another LCD with standard color space of sRGB was used to test gamut-mapping algorithms, used to be integrated with tone-mapping module derived.
STS-74 liftoff (front view across water with bird)
NASA Technical Reports Server (NTRS)
1995-01-01
The Space Shuttle Atlantis breaks free from its Earthly ties and soars toward the stars. The five astronauts assigned to Mission STS-74 are headed for an historic rendezvous in space: the second docking of the U.S. Space Shuttle with the Russian Space Station Mir. Atlantis lifted off from Launch Pad 39A at 7:30:43.071 a.m. EST, Nov. 12. The mission commander is Kenneth D. Cameron; James D. Halsell Jr. is the pilot, and the three mission specialists are Jerry L. Ross, William S. 'Bill' McArthur Jr., and Chris A. Hadfield, who represents the Canadian Space Agency. The profile of Mission STS-74 represents a direct precursor to the types of activities flight crews will carry out during assembly and operation of the international space station later this decade. During their eight-day spaceflight, the crew will deliver a Russian-built Docking Module to Mir. The Docking Module will be attached to the docking port on Mir's Kristall module to serve as a permanent extension to the station to simplify future linkups with the Shuttle. The Shuttle astronauts and the three cosmonauts on Mir also will transfer logistics materials to and from Mir.
Elliptic complexes over C∗-algebras of compact operators
NASA Astrophysics Data System (ADS)
Krýsl, Svatopluk
2016-03-01
For a C∗-algebra A of compact operators and a compact manifold M, we prove that the Hodge theory holds for A-elliptic complexes of pseudodifferential operators acting on smooth sections of finitely generated projective A-Hilbert bundles over M. For these C∗-algebras and manifolds, we get a topological isomorphism between the cohomology groups of an A-elliptic complex and the space of harmonic elements of the complex. Consequently, the cohomology groups appear to be finitely generated projective C∗-Hilbert modules and especially, Banach spaces. We also prove that in the category of Hilbert A-modules and continuous adjointable Hilbert A-module homomorphisms, the property of a complex of being self-adjoint parametrix possessing characterizes the complexes of Hodge type.
Logistics resupply and emergency crew return system for Space Station Freedom
NASA Technical Reports Server (NTRS)
Ahne, D.; Caldwell, D.; Davis, K.; Delmedico, S.; Heinen, E.; Ismail, S.; Sumner, C.; Bock, J.; Buente, B.; Gliane, R.
1989-01-01
Sometime in the late 1990's, if all goes according to plan, Space Station Freedom will allow the United States and its cooperating partners to maintain a permanent presence in space. Acting as a scientific base of operations, it will also serve as a way station for future explorations of the Moon and perhaps even Mars. Systems onboard the station will have longer lifetimes, higher reliability, and lower maintenance requirements than seen on any previous space flight vehicle. Accordingly, the station will have to be resupplied with consumables (air, water, food, etc.) and other equipment changeouts (experiments, etc.) on a periodic basis. Waste materials and other products will also be removed from the station for return to Earth. The availability of a Logistics Resupply Module (LRM), akin to the Soviet's Progress vehicle, would help to accomplish these tasks. Riding into orbit on an expendable launch vehicle, the LRM would be configured to rendezvous autonomously and dock with the space station. After the module is emptied of its cargo, waste material from the space station would be loaded back into it. The module would then begin its descent to a recovery point on Earth. Logistics Resupply Modules could be configured in a variety of forms depending on the type of cargo being transferred. If the LRM's were cycled to the space station in such a way that at least one vehicle remained parked at the station at all times, the modules could serve double duty as crew emergency return capsules. A pressurized LRM could then bring two or more crew-persons requiring immediate return (because of health problems, system failure, or unavoidable catastrophes) back to Earth. Large cost savings would be accrued by combining the crew return function with a logistics resupply system.
NASA Technical Reports Server (NTRS)
Tucker, Michael; Meredith, Oliver; Brothers, Bobby
1986-01-01
Several concepts of chemical-propulsion Space Vehicles (SVs) for manned Mars landing missions are presented. For vehicle sizing purposes, several specific missions were chosen from opportunities in the late 1990's and early 2000's, and a vehicle system concept is then described which is applicable to the full range of missions and opportunities available. In general, missions utilizing planetary opposition alignments can be done with smaller vehicles than those utilizing planetary opposition alignments. The conjunction missions have a total mission time of about 3 years, including a required stay-time of about 60 days. Both types of missions might be desirable during a Mars program, the opposition type for early low-risk missions and/or for later unmanned cargo missions, and the conjunction type for more extensive science/exploration missions and/or for Mars base activities. Since the opposition missions appeared to drive the SV size more severely, there were probably more cases examined for them. Some of the concepts presented utilize all-propulsive braking, some utilize and all aerobraking approach, and some are hybrids. Weight statements are provided for various cases. Most of the work was done on 0-g vehicle concepts, but partial-g and 1-g concepts are also provided and discussed. Several options for habitable elements are shown, such as large-diameter modules and space station (SS) types of modules.
1999 Shuttle Small Payloads Symposium
NASA Technical Reports Server (NTRS)
Daelemans, Gerard (Editor); Mosier, Frances L. (Editor)
1999-01-01
The 1999 Shuttle Small Payloads Symposium is a combined symposia of the Get Away Special (GAS), Space Experiment Module (SEM), and Hitchhiker programs, and is proposed to continue as an annual conference. The focus of this conference is to educate potential Space Shuttle Payload Bay users as to the types of carrier systems provided and for current users to share experiment concepts.
ERIC Educational Resources Information Center
Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION AND OPERATION OF DIESEL ENGINE STARTING ENGINES AND BRAKE SYSTEMS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) GENERAL DESCRIPTION, (2) OPERATION, (3) COMBUSTION SPACE AND VALVE ARRANGEMENT (STARTING ENGINES), (4) TYPES OF BRAKES, AND (5) DOUBLE…
CCSDS - SFCG Efficient Modulation Methods Study at NASA/JPL - Phase 4: Interference Susceptibility
NASA Technical Reports Server (NTRS)
Martin, W.; Yan, T. Y.; Gray, A.; Lee, D.
1999-01-01
Susceptibility to two types of interfering signals was requested by the SFCG: a pure carrier (single frequency tone)and wide-band RFI (characteristics unspecified). Selecting a broad-band interfering signal is diffuclt because it should represent the types of interference to be found in the space science service bands.
Variance Analysis of Unevenly Spaced Time Series Data
NASA Technical Reports Server (NTRS)
Hackman, Christine; Parker, Thomas E.
1996-01-01
We have investigated the effect of uneven data spacing on the computation of delta (sub chi)(gamma). Evenly spaced simulated data sets were generated for noise processes ranging from white phase modulation (PM) to random walk frequency modulation (FM). Delta(sub chi)(gamma) was then calculated for each noise type. Data were subsequently removed from each simulated data set using typical two-way satellite time and frequency transfer (TWSTFT) data patterns to create two unevenly spaced sets with average intervals of 2.8 and 3.6 days. Delta(sub chi)(gamma) was then calculated for each sparse data set using two different approaches. First the missing data points were replaced by linear interpolation and delta (sub chi)(gamma) calculated from this now full data set. The second approach ignored the fact that the data were unevenly spaced and calculated delta(sub chi)(gamma) as if the data were equally spaced with average spacing of 2.8 or 3.6 days. Both approaches have advantages and disadvantages, and techniques are presented for correcting errors caused by uneven data spacing in typical TWSTFT data sets.
Ishioka, Noriaki; Suzuki, Hiromi; Asashima, Makoto; Kamisaka, Seiichiro; Mogami, Yoshihiro; Ochiai, Toshimasa; Aizawa-Yano, Sachiko; Higashibata, Akira; Ando, Noboru; Nagase, Mutsumu; Ogawa, Shigeyuki; Shimazu, Toru; Fukui, Keiji; Fujimoto, Nobuyoshi
2004-03-01
Japan Aerospace Exploration Agency (JAXA) has developed a cell biology experiment facility (CBEF) and a clean bench (CB) as a common hardware in which life science experiments in the Japanese Experiment Module (JEM known as "Kibo") of the International Space Station (ISS) can be performed. The CBEF, a CO2 incubator with a turntable that provides variable gravity levels, is the basic hardware required to carry out the biological experiments using microorganisms, cells, tissues, small animals, plants, etc. The CB provides a closed aseptic operation area for life science and biotechnology experiments in Kibo. A phase contrast and fluorescence microscope is installed inside CB. The biological experiment units (BEU) are designed to run individual experiments using the CBEF and the CB. A plant experiment unit (PEU) and two cell experiment units (CEU type1 and type2) for the BEU have been developed.
Plewan, Thorsten; Rinkenauer, Gerhard
2016-01-01
Reaction time (RT) can strongly be influenced by a number of stimulus properties. For instance, there was converging evidence that perceived size rather than physical (i.e., retinal) size constitutes a major determinant of RT. However, this view has recently been challenged since within a virtual three-dimensional (3D) environment retinal size modulation failed to influence RT. In order to further investigate this issue in the present experiments response force (RF) was recorded as a supplemental measure of response activation in simple reaction tasks. In two separate experiments participants’ task was to react as fast as possible to the occurrence of a target located close to the observer or farther away while the offset between target locations was increased from Experiment 1 to Experiment 2. At the same time perceived target size (by varying the retinal size across depth planes) and target type (sphere vs. soccer ball) were modulated. Both experiments revealed faster and more forceful reactions when targets were presented closer to the observers. Perceived size and target type barely affected RT and RF in Experiment 1 but differentially affected both variables in Experiment 2. Thus, the present findings emphasize the usefulness of RF as a supplement to conventional RT measurement. On a behavioral level the results confirm that (at least) within virtual 3D space perceived object size neither strongly influences RT nor RF. Rather the relative position within egocentric (body-centered) space presumably indicates an object’s behavioral relevance and consequently constitutes an important modulator of visual processing. PMID:28018273
2001-01-24
Interior of a Spacehab module showing the type of rack mounting that will be used, and crew working space that will be available, on the STS-107 Research 1 mission in 2002. Experiments plarned for the mission include soil mechanics, combustion physics, and cell science.
Multi-optimization Criteria-based Robot Behavioral Adaptability and Motion Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pin, Francois G.
2002-06-01
Robotic tasks are typically defined in Task Space (e.g., the 3-D World), whereas robots are controlled in Joint Space (motors). The transformation from Task Space to Joint Space must consider the task objectives (e.g., high precision, strength optimization, torque optimization), the task constraints (e.g., obstacles, joint limits, non-holonomic constraints, contact or tool task constraints), and the robot kinematics configuration (e.g., tools, type of joints, mobile platform, manipulator, modular additions, locked joints). Commercially available robots are optimized for a specific set of tasks, objectives and constraints and, therefore, their control codes are extremely specific to a particular set of conditions. Thus,more » there exist a multiplicity of codes, each handling a particular set of conditions, but none suitable for use on robots with widely varying tasks, objectives, constraints, or environments. On the other hand, most DOE missions and tasks are typically ''batches of one''. Attempting to use commercial codes for such work requires significant personnel and schedule costs for re-programming or adding code to the robots whenever a change in task objective, robot configuration, number and type of constraint, etc. occurs. The objective of our project is to develop a ''generic code'' to implement this Task-space to Joint-Space transformation that would allow robot behavior adaptation, in real time (at loop rate), to changes in task objectives, number and type of constraints, modes of controls, kinematics configuration (e.g., new tools, added module). Our specific goal is to develop a single code for the general solution of under-specified systems of algebraic equations that is suitable for solving the inverse kinematics of robots, is useable for all types of robots (mobile robots, manipulators, mobile manipulators, etc.) with no limitation on the number of joints and the number of controlled Task-Space variables, can adapt to real time changes in number and type of constraints and in task objectives, and can adapt to changes in kinematics configurations (change of module, change of tool, joint failure adaptation, etc.).« less
2003-06-12
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) joins others for a tour. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
Plant Growth Research for Food Production: Development and Testing of Expandable Tuber Growth Module
NASA Technical Reports Server (NTRS)
Cordova, Brennan A.
2017-01-01
Controlled and reliable growth of a variety of vegetable crops is an important capability for manned deep space exploration systems for providing nutritional supplementation and psychological benefits to crew members. Because current systems have been limited to leafy vegetables that require minimal root space, a major goal for these systems is to increase their ability to grow new types of crops, including tuber plants and root vegetables that require a large root space. An expandable root zone module and housing was developed to integrate this capability into the Vegetable Production System (Veggie). The expandable module uses a waterproof, gas-permeable bag with a structure that allows for root space to increase vertically throughout the growth cycle to accommodate for expanding tuber growth, while minimizing the required media mass. Daikon radishes were chosen as an ideal tuber crop for their subterraneous tuber size and rapid growth cycle, and investigations were done to study expanding superabsorbent hydrogels as a potential growth media. These studies showed improved water retention, but restricted oxygen availability to roots with pure gel media. It was determined that these hydrogels could be integrated in lower proportions into standard soil to achieve media expansion and water retention desired. Using the constructed module prototype and ideal gel and soil media mixture, daikon radishes are being grown in the system to test the capability and success of the system through a full growth cycle.
Plant Growth Research for Food Production: Development and Testing of Expandable Tuber Growth Module
NASA Technical Reports Server (NTRS)
Cordova, Brennan A.
2017-01-01
Controlled and reliable growth of a variety of vegetable crops is an important capability for manned deep space exploration systems for providing nutritional supplementation and psychological benefits to crew members. Because current systems have been limited to leafy vegetables that require minimal root space, a major goal for these systems is to increase their ability to grow new types of crops, including tuber plants and root vegetables that require a large root space. An expandable root zone module and housing was developed to integrate this capability into the Veggie growth system. The expandable module uses a waterproof, gas-permeable bag with a structure that allows for root space to increase vertically throughout the growth cycle to accommodate for expanding tuber growth, while minimizing the required media mass. Daikon radishes were chosen as an ideal tuber crop for their subterraneous tuber size and rapid growth cycle, and investigations were done to study expanding superabsorbent hydrogels as a potential growth media. These studies showed improved water retention, but restricted oxygen availability to roots with pure gel media. It was determined that these hydrogels could be integrated in lower proportions into standard soil to achieve media expansion and water retention desired. Using the constructed module prototype and ideal gel and soil media mixture, Daikon radishes were grown in the system to test the capability and success of the system through a full growth cycle.
Space Applications Industrial Laser System (SAILS)
NASA Technical Reports Server (NTRS)
Mccay, T. D.; Bible, J. B.; Mueller, R. E.
1993-01-01
A program is underway to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. This workstation, called Space Applications Industrial Laser System (SAILS), will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use in constructing the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1996, will be constructed as three modules using standard Get-Away-Special (GAS) canisters. The first module holds the laser head and cooling system, while the second contains a high peak power electrical supply. The third module houses the materials processing workstation and the command and data acquisition subsystems. The laser head and workstation cansisters are linked by a fiber-optic cable to transmit the laser light. The team assembled to carry out this project includes Lumonics Industrial Products (laser), Tennessee Technological University (structural analysis and fabrication), Auburn University Center for Space Power (electrical engineering), University of Waterloo (low-g laser process consulting), and CSTAR/UTSI (data acquisition, control, software, integration, experiment design). This report describes the SAILS program and highlights recent activities undertaken at CSTAR.
Alternative designs for space x-ray telescopes
NASA Astrophysics Data System (ADS)
Hudec, R.; Pína, L.; Maršíková, Veronika; Černá, Daniela; Inneman, A.; Tichý, V.
2017-11-01
The X-ray optics is a key element of space X-ray telescopes, as well as other X-ray imaging instruments. The grazing incidence X-ray lenses represent the important class of X-ray optics. Most of grazing incidence (reflective) X-ray imaging systems used in astronomy but also in other (laboratory) applications are based on the Wolter 1 (or modified) arrangement. But there are also other designs and configurations proposed, used and considered for future applications both in space and in laboratory. The Kirkpatrick-Baez (K-B) lenses as well as various types of Lobster-Eye optics and MCP/Micropore optics serve as an example. Analogously to Wolter lenses, the X-rays are mostly reflected twice in these systems to create focal images. Various future projects in X-ray astronomy and astrophysics will require large segments with multiple thin shells or foils. The large Kirkpatrick-Baez modules, as well as the large Lobster-Eye X-ray telescope modules in Schmidt arrangement may serve as examples. All related space projects will require high quality and light segmented shells (bent or flat foils) with high X-ray reflectivity and excellent mechanical stability. The Multi Foil Optics (MFO) approach represent a promising alternative for both LE and K-B X-ray optical modules. Several types of reflecting substrates may be considered for these applications, with emphasis on thin float glass sheets and, more recently, high quality silicon wafers. This confirms the importance of non-Wolter X-ray optics designs for the future. The alternative designs require novel reflective substrates which are also discussed in the paper.
NASA Technical Reports Server (NTRS)
Vogl, J. L.
1973-01-01
Current work aimed at identifying the active magnetospheric experiments that can be performed from the Space Shuttle, and designing a laboratory to carry out these experiments is described. The laboratory, known as the PPEPL (Plasma Physics and Environmental Perturbation Laboratory) consists of 35-ft pallet of instruments connected to a 25-ft pressurized control module. The systems deployed from the pallet are two 50-m booms, two subsatellites, a high-power transmitter, a multipurpose accelerator, a set of deployable canisters, and a gimbaled instrument platform. Missions are planned to last seven days, during which two scientists will carry out experiments from within the pressurized module. The type of experiments to be performed are outlined.
The SEVAN Worldwide network of particle detectors: 10 years of operation
NASA Astrophysics Data System (ADS)
Chilingarian, A.; Babayan, V.; Karapetyan, T.; Mailyan, B.; Sargsyan, B.; Zazyan, M.
2018-05-01
The Space Environment Viewing and Analysis Network (SEVAN) aims to improve the fundamental research on particle acceleration in the vicinity of the sun, on space weather effects and on high-energy physics in the atmosphere and lightning initiation. This new type of a particle detector setup simultaneously measures fluxes of most species of secondary cosmic rays, thus being a powerful integrated device for exploration of solar modulation effects and electron acceleration in the thunderstorm atmosphere. The SEVAN modules are operating at the Aragats Space Environmental Center (ASEC) in Armenia, in Croatia, Bulgaria, Slovakia, the Czech Republic (from 2017) and in India. In this paper, we present the most interesting results of the SEVAN network operation during the last decade. We present this review on the occasion of the 10th anniversary of the International Heliophysical Year in 2007.
High-frequency ac power distribution in Space Station
NASA Technical Reports Server (NTRS)
Tsai, Fu-Sheng; Lee, Fred C. Y.
1990-01-01
A utility-type 20-kHz ac power distribution system for the Space Station, employing resonant power-conversion techniques, is presented. The system converts raw dc voltage from photovoltaic cells or three-phase LF ac voltage from a solar dynamic generator into a regulated 20-kHz ac voltage for distribution among various loads. The results of EASY5 computer simulations of the local and global performance show that the system has fast response and good transient behavior. The ac bus voltage is effectively regulated using the phase-control scheme, which is demonstrated with both line and load variations. The feasibility of paralleling the driver-module outputs is illustrated with the driver modules synchronized and sharing a common feedback loop. An HF sinusoidal ac voltage is generated in the three-phase ac input case, when the driver modules are phased 120 deg away from one another and their outputs are connected in series.
The Future of New Discoveries on the International Space Station
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald; Trach, Brian
2000-01-01
The Materials Science program is one of the five Microgravity research disciplines in NASA's Human Exploration and Development of Space (HEDS). This research uses the low gravity environment to obtain the fundamental understanding of various phenomena effects and it's relationship to structure, processing, and properties of materials. The International Space Station (ISS) will complete the first major assembly phase within the next year thus providing the opportunity for on-orbit research and scientific utilization in early 2001. Research will become routine as the final Space Station configuration is completed. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules. This paper addresses the current scope of the flight investigator program that will utilize the various capabilities on ISS. The type of research and classification of materials that are addressed using multiple types of flight apparatus will be explained. The various flight and ground facilities that are used to support the NASA program are described. The early utilization schedule for the materials science payloads with associated hardware will be covered. The Materials Science Research Facility and related international experiment modules serves as the foundation for this capability. The potential applications and technologies obtained from the Materials Science program are described.
1997-05-01
KSC payload processing employees in Orbiter Processing Facility 1 prepare the Space Shuttle Orbiter Columbia’s crew airlock and payload bay for the reinstallation of the Spacelab long transfer tunnel that leads from the airlock to the Microgravity Science Laboratory-1 (MSL-1) Spacelab module. The tunnel was taken out after the STS-83 mission to allow better access to the MSL-1 module during reservicing operations to prepare it for for the STS-94 mission. That space flight is now scheduled to lift off in early July. This was the first time that this type of payload was reserviced without removing it from the payload bay. This new procedure pioneers processing efforts for quick relaunch turnaround times for future payloads. The Spacelab module was scheduled to fly again with the full complement of STS-83 experiments after that mission was cut short due to a faulty fuel cell. During the scheduled 16-day STS-94 mission, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments
2003-07-18
KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman look at the Japanese Experiment Module (JEM) Pressurized Module located in the Space Station Processing Facility. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the JEM, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.
2003-07-18
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Piers Sellers looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.
2003-07-18
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Michael Foreman looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.
1997-05-01
KENNEDY SPACE CENTER, FLA. -- KSC payloads processing employees work to reservice the Microgravity Science Laboratory-1 (MSL-1) Spacelab module in the Space Shuttle Orbiter Columbia’s payload bay for the STS-94 mission in Orbiter Processing Facility 1. That mission is now scheduled to lift off in early July. This was the first time that this type of payload was reserviced without removing it from the payload bay. This new procedure pioneers processing efforts for quick relaunch turnaround times for future payloads. The Spacelab module was scheduled to fly again with the full complement of STS-83 experiments after that mission was cut short due to a faulty fuel cell. During the scheduled 16-day STS-94 mission, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments
1997-05-01
KENNEDY SPACE CENTER, FLA. -- KSC payloads processing employees work to reservice the Microgravity Science Laboratory-1 (MSL-1) Spacelab module in the Space Shuttle Orbiter Columbia’s payload bay for the STS-94 mission in Orbiter Processing Facility 1. That mission is now scheduled to lift off in early July. This was the first time that this type of payload was reserviced without removing it from the payload bay. This new procedure pioneers processing efforts for quick relaunch turnaround times for future payloads. The Spacelab module was scheduled to fly again with the full complement of STS-83 experiments after that mission was cut short due to a faulty fuel cell. During the scheduled 16-day STS-94 mission, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments
2003-06-09
KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew take a look at the Japanese Experiment Module (JEM) pressure module in the Space Station Processing Facility. A research laboratory, the pressurized module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo and is Japan's primary contribution to the Station. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
NASA Technical Reports Server (NTRS)
Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Blacknall, Carolyn; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry
1989-01-01
The differences in rack requirements for Spacelab, the Shuttle Orbiter, and the United States (U.S.) laboratory module, European Space Agency (ESA) Columbus module, and the Japanese Experiment Module (JEM) of Space Station Freedom are identified. The feasibility of designing standardized mechanical, structural, electrical, data, video, thermal, and fluid interfaces to allow space flight hardware designed for use in the U.S. laboratory module to be used in other locations is assessed.
Nattrass, C; Ireland, A J; Sherriff, M
1997-05-01
This in vitro investigation was designed to establish not only how clinicians apply forces for space closure when using the straight wire appliance and sliding mechanics, but also to quantify the initial force levels produced. A single typodont, with residual extraction space in each quadrant, was set up to simulate space closure using sliding mechanics. On two occasions, at least 2 months apart, 18 clinicians were asked to apply three force delivery systems to the typodont, in the manner in which they would apply it in a clinical situation. The three types of force delivery system investigated were elastomeric chain, an elastomeric module on a steel ligature, and a nickel-titanium closed coil spring. A choice of spaced or unspaced elastomeric chain produced by a single manufacturer was provided. The amount of stretch which was placed on each type of system was measured and, using an Instron Universal Testing Machine, the initial force which would be generated by each force delivery system was established. Clinicians were assessed to examine their consistency in the amount of stretch which each placed on the force delivery systems, their initial force application and their ability to apply equivalent forces with the different types of force delivery system. The clinicians were found to be consistent in their method of application of the force delivery systems and, therefore, their force application, as individuals, but there was a wide range of forces applied as a group. However, most clinicians applied very different forces when using different force delivery systems. When using the module on a ligature the greatest force was applied, whilst the nickel titanium coil springs provided the least force.
Code of Federal Regulations, 2011 CFR
2011-07-01
... protection requirements for accommodation spaces and modules? 149.641 Section 149.641 Navigation and... the structural fire protection requirements for accommodation spaces and modules? (a) Accommodation spaces and modules must be designed, located, and constructed so as to minimize the effects of flame...
RoboLab and virtual environments
NASA Technical Reports Server (NTRS)
Giarratano, Joseph C.
1994-01-01
A useful adjunct to the manned space station would be a self-contained free-flying laboratory (RoboLab). This laboratory would have a robot operated under telepresence from the space station or ground. Long duration experiments aboard RoboLab could be performed by astronauts or scientists using telepresence to operate equipment and perform experiments. Operating the lab by telepresence would eliminate the need for life support such as food, water and air. The robot would be capable of motion in three dimensions, have binocular vision TV cameras, and two arms with manipulators to simulate hands. The robot would move along a two-dimensional grid and have a rotating, telescoping periscope section for extension in the third dimension. The remote operator would wear a virtual reality type headset to allow the superposition of computer displays over the real-time video of the lab. The operators would wear exoskeleton type arms to facilitate the movement of objects and equipment operation. The combination of video displays, motion, and the exoskeleton arms would provide a high degree of telepresence, especially for novice users such as scientists doing short-term experiments. The RoboLab could be resupplied and samples removed on other space shuttle flights. A self-contained RoboLab module would be designed to fit within the cargo bay of the space shuttle. Different modules could be designed for specific applications, i.e., crystal-growing, medicine, life sciences, chemistry, etc. This paper describes a RoboLab simulation using virtual reality (VR). VR provides an ideal simulation of telepresence before the actual robot and laboratory modules are constructed. The easy simulation of different telepresence designs will produce a highly optimum design before construction rather than the more expensive and time consuming hardware changes afterwards.
NASA Technical Reports Server (NTRS)
1972-01-01
The modular space station comprising small, shuttle-launched modules, and characterized by low initial cost and incremental manning, is described. The initial space station is designed to be delivered into orbit by three space shuttles and assembled in space. The three sections are the power/subsystems module, the crew/operations module, and the general purpose laboratory module. It provides for a crew of six. Subsequently duplicate/crew/operations and power/subsystems modules will be mated to the original modules, and provide for an additional six crewmen. A total of 17 research and applications modules is planned, three of which will be free-flying modules. Details are given on the program plan, modular characteristics, logistics, experiment support capability and requirements, operations analysis, design support analyses, and shuttle interfaces.
the role of shock waves in modulation of galactic cosmic rays
NASA Technical Reports Server (NTRS)
Gall, R.; Thomas, B. T.; Durand, H.
1985-01-01
The understanding of modulation of the galactic cosmic rays has considerably progressed by the exploration by space probes of major heliospheric structures, such as the Corotating Interaction Regions, the neutral sheet, and the compression regions of intense heliospheric magnetic fields. Also relevant in this context were the detections in the outer heliosphere of long lasting Forbush type decreases of cosmic ray intensity. The results of recent theoretical studies on the changes in intensity and energy, at different location from the Sun, induced by the passage of shocks across the heliosphere are presented. In this version of the research, the simplest cases of modulation of uGV and 2GV particles by single or several shocks during periods of positive and negative solar field polarity are reviewed. The results of the theoretical aspects of the search is reported. The comparison of the theoretical predictions with space probe data allows conclusions to be drawn on the role of shocks on the modulation on both the 11 and 22 year galactic cosmic ray cycles in the outer heliosphere and on the plausibility of the models and parameters used.
Modular space station mass properties
NASA Technical Reports Server (NTRS)
1972-01-01
An update of the space station mass properties is presented. Included are the final status update of the Initial Space Station (ISS) modules and logistic module plus incorporation of the Growth Space Station (GSS) module additions.
1983-01-01
This photograph shows the Spacelab-1 module and Spacelab access turnel being installed in the cargo bay of orbiter Columbia for the STS-9 mission. The oribiting laboratory, built by the European Space Agency, is capable of supporting many types of scientific research that can best be performed in space. The Spacelab access tunnel, the only major piece of Spacelab hardware made in the U.S., connects the module with the mid-deck level of the orbiter cabin. The first Spacelab mission, Spacelab-1, sponsored jointly and shared equally by NASA and the European Space Agency, was a multidisciplinary mission; that is, investigations were performed in several different fields of scientific research. The overall goal of the mission was to verify Spacelab performance through a variety of scientific experiments. The disciplines represented by these experiments were: astronomy and solar physics, earth observations, space plasma physics, materials sciences, atmospheric physics, and life sciences. International in nature, Spacelab-1 conducted experiments from the United States, Japan, the Netherlands, United Kingdom, Beluga, France, Germany, Italy, and Switzerland. Spacelab-1, was launched from the Kennedy Space Center on November 28, 1983 aboard the orbiter Columbia (STS-9). The Marshall Space Flight Center was responsible for managing the Spacelab missions.
Research and Applications Modules (RAM), phase B study
NASA Technical Reports Server (NTRS)
1972-01-01
The research and applications modules (RAM) system is discussed. The RAM is a family of payload carrier modules that can be delivered to and retrieved from earth orbit by the space shuttle. The RAM's capability for implementing a wide range of manned and man-tended missions is described. The rams have evolved into three types; (1) pressurized RAMs, (2) unpressurized RAMs, and (3) pressurizable free-flying RAMs. A reference experiment plan for use as a baseline in the derivation and planning of the RAM project is reported. The plan describes the number and frequency of shuttle flights dedicated to RAM missions and the RAM payloads for the identified flights.
Coded Modulation in C and MATLAB
NASA Technical Reports Server (NTRS)
Hamkins, Jon; Andrews, Kenneth S.
2011-01-01
This software, written separately in C and MATLAB as stand-alone packages with equivalent functionality, implements encoders and decoders for a set of nine error-correcting codes and modulators and demodulators for five modulation types. The software can be used as a single program to simulate the performance of such coded modulation. The error-correcting codes implemented are the nine accumulate repeat-4 jagged accumulate (AR4JA) low-density parity-check (LDPC) codes, which have been approved for international standardization by the Consultative Committee for Space Data Systems, and which are scheduled to fly on a series of NASA missions in the Constellation Program. The software implements the encoder and decoder functions, and contains compressed versions of generator and parity-check matrices used in these operations.
Japanese Experiment Module arrival
2007-03-29
Several components for delivery to the International Space Station sit in test stands inside the Space Station Processing Facility highbay. To the right, from back to front, are the Japanese Experiment Module, the Raffaello multi-purpose logistics module, and the European Space Agency's Columbus scientific research module. To the left in front is the starboard truss segment S5. Behind it is the test stand that will hold the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
Outreach Education Modules on Space Sciences in Taiwan
NASA Astrophysics Data System (ADS)
Lee, I.-Te; Tiger Liu, Jann-Yeng; Chen, Chao-Yen
2013-04-01
The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Meanwhile, scientific camps are given to lead students a better understanding and interesting on space science. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.
NASA Astrophysics Data System (ADS)
Zhang, Fangliu; He, Jing; Deng, Rui; Chen, Qinghui; Chen, Lin
2016-10-01
A modulation format, orthogonal pulse amplitude modulation and discrete multitone modulation (O-PAM-DMT), is experimentally demonstrated in a hybrid fiber-visible laser light communication (fiber-VLLC) system using a cost-effective directly modulated laser and blue laser diode. In addition, low overhead is achieved by utilizing only one training sequence to implement synchronization and channel estimation. Through adjusting the ratio of PAM and DMT signal, three types of O-PAM-DMT signals are investigated. After transmission over a 20-km standard single-mode fiber and 5-m free-space VLLC, the receiver sensitivity for 4.36-Gbit/s O-PAM-DMT signals can be improved by 0.4, 1.4, and 2.7 dB, respectively, at a bit error rate of 1×10-3, compared with a conventional DMT signal.
2003-06-12
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto points to other Space Station elements. Behind him is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.
2003-06-12
KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (left) accompanies Executive Director of NASDA Koji Yamamoto (third from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
2003-06-06
KENNEDY SPACE CENTER, FLA. - The container with the Japanese Experiment Module (JEM)’s pressurized module is inside the Space Station Processing Facility. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
2003-06-04
KENNEDY SPACE CENTER, FLA. - The truck transporting the Pressurized Module of the Japanese Experiment Module (JEM) to KSC’s Space Station Processing Facility arrives on Center. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
2007-03-13
KENNEDY SPACE CENTER, FLA. -- A flat bed truck hauls the container with the Experiment Logistics Module Pressurized Section inside away from the Trident wharf. The logistics module is part of the Japanese Experiment Module. The logistics module is being transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
2007-03-13
KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers help guide the container with the Experiment Logistics Module Pressurized Section inside toward the dock. The logistics module is part of the Japanese Experiment Module. The logistics module will be transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
Japanese Experiment Module arrival
2007-03-29
The Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Space Station Processing Facility. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
Japanese Experiment Module arrival
2007-03-29
The Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Space Station Processing Facility for uncrating. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
Japanese Experiment Module (JEM)
NASA Technical Reports Server (NTRS)
2003-01-01
The Japanese Experiment Module (JEM) pressure module is removed from its shipping crate and moved across the floor of the Space Station Processing Facility at Kennedy Space Center (KSC) to a work stand. A research laboratory, the pressurized module is the first element of the JEM, named 'Kibo' (Hope) to arrive at KSC. Japan's primary contribution to the International Space Station, the module will enhance unique research capabilities of the orbiting complex by providing an additional environment in which astronauts will conduct experiments. The JEM also includes an exposed facility or platform for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
2007-03-13
KENNEDY SPACE CENTER, FLA. -- A flat bed truck hauls the container with the Experiment Logistics Module Pressurized Section inside away from the Trident wharf. The logistics module is part of the Japanese Experiment Module, known as Kibo. The logistics module is being transported to the Space Station Processing Facility at NASA's Kennedy Space Center. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Lux, James P.; Taylor, Gregory H.; Lang, Minh; Stern, Ryan A.
2011-01-01
An FPGA module leverages the previous work from Goddard Space Flight Center (GSFC) relating to NASA s Space Telecommunications Radio System (STRS) project. The STRS SpaceWire FPGA Module is written in the Verilog Register Transfer Level (RTL) language, and it encapsulates an unmodified GSFC core (which is written in VHDL). The module has the necessary inputs/outputs (I/Os) and parameters to integrate seamlessly with the SPARC I/O FPGA Interface module (also developed for the STRS operating environment, OE). Software running on the SPARC processor can access the configuration and status registers within the SpaceWire module. This allows software to control and monitor the SpaceWire functions, but it is also used to give software direct access to what is transmitted and received through the link. SpaceWire data characters can be sent/received through the software interface, as well as through the dedicated interface on the GSFC core. Similarly, SpaceWire time codes can be sent/received through the software interface or through a dedicated interface on the core. This innovation is designed for plug-and-play integration in the STRS OE. The SpaceWire module simplifies the interfaces to the GSFC core, and synchronizes all I/O to a single clock. An interrupt output (with optional masking) identifies time-sensitive events within the module. Test modes were added to allow internal loopback of the SpaceWire link and internal loopback of the client-side data interface.
NASA Astrophysics Data System (ADS)
Taravati, Sajjad
2018-06-01
This article presents a class of space-time-varying media with giant linear nonreciprocity, zero space-time local reflections, and zero photonic band gap. This is achieved via equilibrium in the electric and magnetic properties of unidirectionally space-time-modulated media. The enhanced nonreciprocity is accompanied by a larger sonic regime interval which provides extra design freedom for achieving strong nonreciprocity by a weak pumping strength. We show that the width of photonic band gaps in general periodic space-time permittivity- and permeability-modulated media is proportional to the absolute difference between the electric and magnetic pumping strengths. We derive a rigorous analytical solution for investigation of wave propagation and scattering from general periodic space-time permittivity- and permeability-modulated media. In contrast with weak photonic transitions, from the excited mode to its two adjacent modes, in conventional space-time permittivity-modulated media, in an equilibrated space-time-varying medium, strong photonic transitions occur from the excited mode to its four adjacent modes. We study the enhanced nonreciprocity and zero band gap in equilibrated space-time-modulated media by analysis of their dispersion diagrams. In contrast to conventional space-time permittivity-modulated media, equilibrated space-time media exhibit different phase and group velocities for forward and backward harmonics. Furthermore, the numerical simulation scheme of general space-time permittivity- and permeability-modulated media is presented, which is based on the finite-difference time-domain technique. Our analytical and numerical results provide insights into general space-time refractive-index-modulated media, paving the way toward optimal isolators, nonreciprocal integrated systems, and subharmonic frequency generators.
Comparison of cyclic correlation and the wavelet method for symbol rate detection
NASA Astrophysics Data System (ADS)
Carr, Richard; Whitney, James
Software defined radio (SDR) is a relatively new technology that holds a great deal of promise in the communication field in general, and, in particular the area of space communications. Tra-ditional communication systems are comprised of a transmitter and a receiver, where through prior planning and scheduling, the transmitter and receiver are pre-configured for a particu-lar communication modality. For any particular modality the radio circuitry is configured to transmit, receive, and resolve one type of modulation at a certain data rate. Traditional radio's are limited by the fact that the circuitry is fixed. Software defined radios on the other hand do not suffer from this limitation. SDR's are comprised mainly of software modules which allow them to be flexible, in that they can resolve various types of modulation types that occur at different data rates. This ability is of very high importance in space where parameters of the communications link may need to be changed due to channel fading, reduced power, or other unforeseen events. In these cases the ability to autonomously change aspects of the radio's con-figuration becomes an absolute necessity in order to maintain communications. In order for the technology to work the receiver has to be able to determine the modulation type and the data rate of the signal. The data rate of the signal is one of the first parameters to be resolved, as it is needed to find the other signal parameters such as modulation type and the signal-to-noise ratio. There are a number of algorithms that have been developed to detect or estimate the data rate of a signal. This paper will investigate two of these algorithms, namely, the cyclic correlation algorithm and a wavelet-based detection algorithm. Both of these algorithms are feature-based algorithms, meaning that they make their estimations based on certain inherent features of the signals to which they are applied. The cyclic correlation algorithm takes advan-tage of the cyclostationary nature of MPSK signals, while the wavelet-based algorithms take advantage of the fact of being able to detect transient changes in the signal, i.e., transitions from `1' to'0'. Both of these algorithms are tested under various signal-to-noise conditions to see which has the better performance, and the results are presented in this paper.
Automated power distribution system hardware. [for space station power supplies
NASA Technical Reports Server (NTRS)
Anderson, Paul M.; Martin, James A.; Thomason, Cindy
1989-01-01
An automated power distribution system testbed for the space station common modules has been developed. It incorporates automated control and monitoring of a utility-type power system. Automated power system switchgear, control and sensor hardware requirements, hardware design, test results, and potential applications are discussed. The system is designed so that the automated control and monitoring of the power system is compatible with both a 208-V, 20-kHz single-phase AC system and a high-voltage (120 to 150 V) DC system.
Doppler and range determination for deep space vehicles using active optical transponders.
Kinman, P W; Gagliardi, R M
1988-11-01
This paper describes and analyzes two types of laser system employing active transponders that could accurately determine Doppler and range to deep space vehicles from earth-orbiting satellites. The first is a noncoherent optical system in which the Doppler effect on an intensity-modulating subcarrier is measured. The second is a coherent optical system in which the Doppler effect of the optical carrier itself is measured. Doppler and range measurement errors are mathematically modeled and, for three example systems, numerically evaluated.
Doppler and range determination for deep space vehicles using active optical transponders
NASA Technical Reports Server (NTRS)
Kinman, Peter W.; Gagliardi, Robert M.
1988-01-01
This paper describes and analyzes two types of laser system employing active transponders that could accurately determine Doppler and range to deep space vehicles from earth-orbiting satellites. The first is a noncoherent optical system in which the Doppler effect on an intensity-modulating subcarrier is measured. The second is a coherent optical system in which the Doppler effect of the optical carrier itself is measured. Doppler and range measurement errors are mathematically modeled and, for three example systems, numerically evaluated.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Scott Higginbotham, payload manager for the International Space Station, stands in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The module will be delivered to the space station on mission STS-123. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the logistics module. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
2003-06-12
KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (second from left) accompanies Executive Director of NASDA Koji Yamamoto (fourth from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
Andreev, Alexander L; Andreeva, Tatiana B; Kompanets, Igor N; Zalyapin, Nikolay V
2018-02-20
Spatially inhomogeneous modulation of a phase delay with the depth of the order π or more makes it possible to destroy phase relations in a laser beam passing through an electro-optical cell with the ferroelectric liquid crystal (FLC) and, as a consequence, to suppress speckle noise in images formed by this beam. Such a modulation is a consequence of chaotic changes in the position of the scattering indicatrix of helix-free FLC, when an electro-optical cell is simultaneously supplied with a low-frequency and high-frequency bipolar control voltage. In this work, the phase modulation and effective suppressing of the speckles are realized using a new type of helix-free FLC material with periodic deformations of smectic layers.
Unity connecting module in the Space Station Processing Facility
NASA Technical Reports Server (NTRS)
1998-01-01
Unity connecting module, part of the International Space Station, awaits processing in the Space Station Processing Facility (SSPF). On the end at the right can be seen the Pressurized Mating Adapter 2, which provides entry into the module. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station.
Advanced thermionic energy conversion
NASA Technical Reports Server (NTRS)
1979-01-01
Developments towards space and terrestrial applications of thermionic energy conversion are presented. Significant accomplishments for the three month period include: (1) devised a blade-type distributed lead design with many advantages compared to the stud-type distributed lead; (2) completed design of Marchuk tube test apparatus; (3) concluded, based on current understanding, that residual hydrogen should not contribute to a negative space charge barrier at the collector; (4) modified THX design program to include series-coupled designs as well as inductively-coupled designs; (5) initiated work on the heat transfer technology, THX test module, output power transfer system, heat transfer system, and conceptual plant design tasks; and (6) reached 2200 hours of operation in JPL-5 cylindrical converter envelope test.
2007-03-13
KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers help guide the container with the Experiment Logistics Module Pressurized Section inside toward a flat bed on the dock. The logistics module is part of the Japanese Experiment Module. The logistics module will be transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
2007-03-13
KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers help guide the container with the Experiment Logistics Module Pressurized Section inside onto a flat bed on the dock. The logistics module is part of the Japanese Experiment Module. The logistics module will be transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
2007-03-13
KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers in the hold of a ship attach a crane to the shipping container with the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The ship brought the module from Yokohama, Japan. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
Space station thermal control surfaces. [space radiators
NASA Technical Reports Server (NTRS)
Maag, C. R.; Millard, J. M.; Jeffery, J. A.; Scott, R. R.
1979-01-01
Mission planning documents were used to analyze the radiator design and thermal control surface requirements for both space station and 25-kW power module, to analyze the missions, and to determine the thermal control technology needed to satisfy both sets of requirements. Parameters such as thermal control coating degradation, vehicle attitude, self eclipsing, variation in solar constant, albedo, and Earth emission are considered. Four computer programs were developed which provide a preliminary design and evaluation tool for active radiator systems in LEO and GEO. Two programs were developed as general programs for space station analysis. Both types of programs find the radiator-flow solution and evaluate external heat loads in the same way. Fortran listings are included.
First Materials Science Research Rack Capabilities and Design Features
NASA Technical Reports Server (NTRS)
Schaefer, D.; King, R.; Cobb, S.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The first Materials Science Research Rack (MSRR-1) will accommodate dual Experiment Modules (EM's) and provide simultaneous on-orbit processing operations capability. The first international Materials Science Experiment Module for the MSRR-1 is an international cooperative research activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center. (ESTEC). This International Standard Payload Rack (ISPR) will contain the Materials Science Laboratory (MSL) developed by ESA as an Experiment Module. The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts. Module Inserts currently planned are a Quench Module Insert, Low Gradient Furnace, Solidification with Quench Furnace, and Diffusion Module Insert. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Department (SPD). It includes capabilities for vapor transport processes and liquid metal sintering. This Experiment Module will be replaced on-orbit with other NASA Materials Science EMs.
Development of fire resistant electronic configurations for use in oxygen enriched environments
NASA Technical Reports Server (NTRS)
Smith, F. J.
1975-01-01
Design concepts for electronic black boxes and modules were tested in oxygen enriched atmospheres, and it was found that various types of sealed configurations would generally eliminate any flammability hazard. The type of configuration and its construction was found to be of more importance in the elimination of flammability hazards in electronic configurations than the types of materials utilized in them. The design concepts developed for fire hazard free electronic configurations for use in manned space programs are applicable for the design of electronic hardware for any use or environment.
U.S. Laboratory Module (Destiny) for the International Space Station
NASA Technical Reports Server (NTRS)
1998-01-01
This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), in the Space Station manufacturing facility at the Marshall Space Flight Center, being readied for shipment to the Kennedy Space Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
1995-11-01
This is a view of the Russian Mir Space Station photographed by a crewmember of the second Shuttle/Mir docking mission, STS-74. The image shows: top - Progress supply vehicle, Kvant-1 module, and the Core module; middle left - Spektr module; middle center - Kristall module and Docking module; middle right - Kvant-2 module; and bottom - Soyuz. The Progress was an unmarned, automated version of the Soyuz crew transfer vehicle, designed to resupply the Mir. The Kvant-1 provided research in the physics of galaxies, quasars, and neutron stars by measuring electromagnetic spectra and x-ray emissions. The Core module served as the heart of the space station and contained the primary living and working areas, life support, and power, as well as the main computer, communications, and control equipment. The Spektr module provided Earth observation. It also supported research into biotechnology, life sciences, materials science, and space technologies. American astronauts used the Spektr as their living quarters. A main purpose of the Kristall module was to develop biological and materials production technologies in the space environment. The Docking module made it possible for the Space Shuttle to dock easily with the Mir. Kvant-2 was a scientific and airlock module, providing biological research, Earth observations, and EVA (extravehicular activity) capability. The Soyuz typically ferried three crewmembers to and from the Mir. The journey of the 15-year-old Russian Mir Space Station ended March 23, 2001, as the Mir re-entered the Earth's atmosphere and fell into the south Pacific Ocean.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- The Experiment Logistics Module Pressurized Section of the Japanese Experiment Module sits on top of a stand in the Space Station Processing Facility. Earlier, NASA and Japanese Space Agency (JAXA) officials welcomed the arrival of the logistics module, which will be delivered to the space station on mission STS-123. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
2007-03-12
KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
2007-03-12
KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
2007-03-12
KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
2007-03-12
KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module is tied up at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
Japanese Experiment Module arrival
2007-03-29
Inside the Space Station Processing Facility, workers monitor progress as a huge crane is used to remove the top of the crate carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
Japanese Experiment Module arrival
2007-03-29
Inside the Space Station Processing Facility, the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module is revealed after the top of the crate is removed. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
JEM Experiment Logistics Module Pressurized Section
2007-04-02
In the Space Station Processing Facility, the JEM Experiment Logistics Module Pressurized Section is lowered onto a scale for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. At the podium is Dr. Kichiro Imagawa, project manager of the JEM Development Project Team for JAXA. Seated at right are Russ Romanella, director of International Space Station and Spacecraft Processing; Bill Parsons, director of Kennedy Space Center; Melanie Saunders, associate manager of the International Space Station Program at Johnson Space Center; and Dominic Gorie, commander on mission STS-123 that will deliver the module to the space station. The logistics module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Hu-Rong; Wang, Peng-Fei; Gong, Yue
As promising high-capacity cathode materials for Na-ion batteries, O 3-type Na-based metal oxides always suffer from their poor air stability originating from the spontaneous extraction of Na and oxidation of transition metals when exposed to air. Here, a combined structure modulation is proposed to tackle concurrently the two handicaps via reducing Na layers spacing and simultaneously increasing valence state of transition metals. Guided by density functional theory calculations, we demonstrate such a modulation can be subtly realized through cosubstitution of one kind of heteroatom with comparable electronegativity and another one with substantially different Fermi level, by adjusting the structure ofmore » NaNi 0.5Mn 0.5O 2 via Cu/Ti codoping. The as-obtained NaNi 0.45Cu 0.05Mn 0.4Ti 0.1O 2 exhibits an increase of 20 times in stable air-exposure period and 9 times in capacity retention after 500 cycles, and even retains its structure and capacity after being soaked in water. In such a simple and effective structure modulation reveals a new avenue for high-performance O 3-type cathodes and pushes the large-scale industrialization of Na-ion batteries a decisive step forward.« less
Yao, Hu-Rong; Wang, Peng-Fei; Gong, Yue; ...
2017-06-09
As promising high-capacity cathode materials for Na-ion batteries, O 3-type Na-based metal oxides always suffer from their poor air stability originating from the spontaneous extraction of Na and oxidation of transition metals when exposed to air. Here, a combined structure modulation is proposed to tackle concurrently the two handicaps via reducing Na layers spacing and simultaneously increasing valence state of transition metals. Guided by density functional theory calculations, we demonstrate such a modulation can be subtly realized through cosubstitution of one kind of heteroatom with comparable electronegativity and another one with substantially different Fermi level, by adjusting the structure ofmore » NaNi 0.5Mn 0.5O 2 via Cu/Ti codoping. The as-obtained NaNi 0.45Cu 0.05Mn 0.4Ti 0.1O 2 exhibits an increase of 20 times in stable air-exposure period and 9 times in capacity retention after 500 cycles, and even retains its structure and capacity after being soaked in water. In such a simple and effective structure modulation reveals a new avenue for high-performance O 3-type cathodes and pushes the large-scale industrialization of Na-ion batteries a decisive step forward.« less
2003-06-12
KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (center, foreground) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
2003-06-12
KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (third from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
2003-06-12
KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (left) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (second from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
2003-06-12
KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (second from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
2003-06-12
KENNEDY SPACE CENTER, FLA. - Executive Director of NASDA Koji Yamamoto (left) is welcomed to KSC by Center Director Roy Bridges Jr. (right). Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module. His visit includes a tour of the Columbia Debris Hangar.
1997-01-01
This is a view of the Russian Mir Space Station photographed by a crewmember of the fifth Shuttle/Mir docking mission, STS-81. The image shows: upper center - Progress supply vehicle, Kvant-1 module, and Core module; center left - Priroda module; center right - Spektr module; bottom left - Kvant-2 module; bottom center - Soyuz; and bottom right - Kristall module and Docking module. The Progress was an unmarned, automated version of the Soyuz crew transfer vehicle, designed to resupply the Mir. The Kvant-1 provided research in the physics of galaxies, quasars, and neutron stars, by measuring electromagnetic spectra and x-ray emissions. The Core module served as the heart of the space station and contained the primary living and working areas, life support, and power, as well as the main computer, communications, and control equipment. Priroda's main purpose was Earth remote sensing. The Spektr module provided Earth observation. It also supported research into biotechnology, life sciences, materials science, and space technologies. American astronauts used the Spektr as their living quarters. Kvant-2 was a scientific and airlock module, providing biological research, Earth observations, and EVA (extravehicular activity) capability. The Soyuz typically ferried three crewmembers to and from the Mir. A main purpose of the Kristall module was to develop biological and materials production technologies in the space environment. The Docking module made it possible for the Space Shuttle to dock easily with the Mir. The journey of the 15-year-old Russian Mir Space Station ended March 23, 2001, as the Mir re-entered the Earth's atmosphere and fell into the south Pacific Ocean.
Manned Mission Space Exploration Utilizing a Flexible Universal Module
NASA Astrophysics Data System (ADS)
Humphries, P.; Barez, F.; Gowda, A.
2018-02-01
The proposed ASMS, Inc. "Flexible Universal Module" is in support of NASA's Deep Space Gateway project. The Flexible Universal Module provides a possible habitation or manufacturing environment in support of Manned Mission for Space Exploration.
2003-07-18
KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman are in the Space Station Processing Facility for hardware familiarization. The mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.
Job, Xavier E; de Fockert, Jan W; van Velzen, José
2016-08-01
Behavioural and electrophysiological evidence has demonstrated that preparation of goal-directed actions modulates sensory perception at the goal location before the action is executed. However, previous studies have focused on sensory perception in areas of peripersonal space. The present study investigated visual and tactile sensory processing at the goal location of upcoming movements towards the body, much of which is not visible, as well as visible peripersonal space. A motor task cued participants to prepare a reaching movement towards goals either in peripersonal space in front of them or personal space on the upper chest. In order to assess modulations of sensory perception during movement preparation, event-related potentials (ERPs) were recorded in response to task-irrelevant visual and tactile probe stimuli delivered randomly at one of the goal locations of the movements. In line with previous neurophysiological findings, movement preparation modulated visual processing at the goal of a movement in peripersonal space. Movement preparation also modulated somatosensory processing at the movement goal in personal space. The findings demonstrate that tactile perception in personal space is subject to similar top-down sensory modulation by motor preparation as observed for visual stimuli presented in peripersonal space. These findings show for the first time that the principles and mechanisms underlying adaptive modulation of sensory processing in the context of action extend to tactile perception in unseen personal space. Copyright © 2016 Elsevier Ltd. All rights reserved.
2008-10-15
ISS017-E-018411 (15 Oct. 2008) --- Russian Federal Space Agency cosmonaut Yury Lonchakov, Expedition 18 flight engineer, looks over a procedures checklist while holding Space Science P/L Crystallizer Module-1 experiment hardware in the Zvezda Service Module of the International Space Station.
2003-06-12
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (right) looks at the newly arrived Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.
2003-06-12
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (left) looks at the newly arrived Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.
2003-08-12
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility can be seen the U.S. Node 2 (at left) and the Japanese Experiment Module (JEM)’s Pressurized Module (at right). The Italian-built Node 2, the second of three Space Station connecting modules, attaches to the end of the U.S. Lab and will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet. The Pressurized Module is the first element of the JEM to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
Laser transmitter for Lidar In-Space Technology Experiment
NASA Technical Reports Server (NTRS)
Chang, John; Cimolino, Marc; Petros, Mulugeta
1991-01-01
The Lidar In-Space Technology Experiment (LITE) Laser Transmitter Module (LTM) flight laser optical architecture has been space qualified by extensive testing at the system, subsystem and component level. The projected system output performance has been verified using an optically and electrically similar breadboard version of the laser. Parasitic lasing was closely examined and completely suppressed after design changes were implemented and tested. Oscillator and amplifier type heads were separately tested to 150 million shots. Critical subassemblies have undergone environmental testing to Shuttle qualification levels. A superior three color anti-reflection coating was developed and tested for use on 14 surfaces after the final amplifier.
Potential propellant storage and feed systems for space station resistojet propulsion options
NASA Technical Reports Server (NTRS)
Bader, Clayton H.
1987-01-01
The resistojet system has been defined as part of the baseline propulsion system for the initial Operating Capability Space Station. The resistojet propulsion module will perform a reboost function using a wide variety of fluids as propellants. There are many optional propellants and propellant combinations for use in the resistojet including (but not limited to): hydrazine, hydrogen, oxygen, nitrogen, water, carbon dioxide, and methane. Many different types of propulsion systems have flown or have been conceptualized that may have application for use with resistojets. This paper describes and compares representative examples of these systems that may provide a basis for space station resistojet system design.
2003-06-12
KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (second from left) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (fourth from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
Education and Outreach on Space Sciences and Technologies in Taiwan
NASA Astrophysics Data System (ADS)
Tiger Liu, Jann-Yeng; Chen, hao-Yen; Lee, I.-Te
2014-05-01
The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Regarding the space technologies, we focus on remote sensing of Earth's surface by FORMOSAT-2 and occultation sounding by FORMOSAT-3/COSMIC of Taiwan space mission. Moreover, scientific camps are given to lead students a better understanding and interesting on space sciences/ technologies. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.
Global Interior Robot Localisation by a Colour Content Image Retrieval System
NASA Astrophysics Data System (ADS)
Chaari, A.; Lelandais, S.; Montagne, C.; Ahmed, M. Ben
2007-12-01
We propose a new global localisation approach to determine a coarse position of a mobile robot in structured indoor space using colour-based image retrieval techniques. We use an original method of colour quantisation based on the baker's transformation to extract a two-dimensional colour pallet combining as well space and vicinity-related information as colourimetric aspect of the original image. We conceive several retrieving approaches bringing to a specific similarity measure [InlineEquation not available: see fulltext.] integrating the space organisation of colours in the pallet. The baker's transformation provides a quantisation of the image into a space where colours that are nearby in the original space are also nearby in the output space, thereby providing dimensionality reduction and invariance to minor changes in the image. Whereas the distance [InlineEquation not available: see fulltext.] provides for partial invariance to translation, sight point small changes, and scale factor. In addition to this study, we developed a hierarchical search module based on the logic classification of images following rooms. This hierarchical module reduces the searching indoor space and ensures an improvement of our system performances. Results are then compared with those brought by colour histograms provided with several similarity measures. In this paper, we focus on colour-based features to describe indoor images. A finalised system must obviously integrate other type of signature like shape and texture.
A Software Architecture for Adaptive Modular Sensing Systems
Lyle, Andrew C.; Naish, Michael D.
2010-01-01
By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge representation scheme that has been developed to support this type of flexible and reconfigurable modular sensing system. Template algorithms are used to embed intelligence within each module. As modules are added or removed, the composite sensor is able to automatically determine its overall geometry and assume an appropriate collective identity. A virtual machine-based middleware layer runs on top of a real-time operating system with a pre-emptive kernel, enabling platform-independent template algorithms to be written once and run on any module, irrespective of its underlying hardware architecture. Applications that may benefit from easily reconfigurable modular sensing systems include flexible inspection, mobile robotics, surveillance, and space exploration. PMID:22163614
A software architecture for adaptive modular sensing systems.
Lyle, Andrew C; Naish, Michael D
2010-01-01
By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge representation scheme that has been developed to support this type of flexible and reconfigurable modular sensing system. Template algorithms are used to embed intelligence within each module. As modules are added or removed, the composite sensor is able to automatically determine its overall geometry and assume an appropriate collective identity. A virtual machine-based middleware layer runs on top of a real-time operating system with a pre-emptive kernel, enabling platform-independent template algorithms to be written once and run on any module, irrespective of its underlying hardware architecture. Applications that may benefit from easily reconfigurable modular sensing systems include flexible inspection, mobile robotics, surveillance, and space exploration.
Robust free-space optical communication for indoor information environment
NASA Astrophysics Data System (ADS)
Nakada, Toyohisa; Itoh, Hideo; Kunifuji, Susumu; Nakashima, Hideyuki
2003-10-01
The purpose of our study is to establish a robust communication, while keeping security and privacy, between a handheld communicator and the surrounding information environment. From the viewpoint of low power consumption, we have been developing a reflectivity modulating communication module composed of a liquid crystal light modulator and a corner-reflecting mirror sheet. We installed a corner-reflecting sheet instead of light scattering sheet in a handheld videogame machine with a display screen with a reflection-type liquid crystal. Infrared (IR) LED illuminator attached next to the IR camera of a base station illuminates all the room, and the terminal send their data to the base station by switching ON and OFF of the reflected IR beam. Intensity of reflected light differs with the position and the direction of the terminal, and sometimes the intensity of OFF signal at a certain condition is brighter than that of ON signal at another condition. To improve the communication quality, use of machine learning technique is a possibility of the solution. In this paper, we compare various machine learning techniques for the purpose of free space optical communication, and propose a new algorithm that improves the robustness of the data link. Evaluation using an actual free-space communication system is also described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Our Python module, colormap_module, presented here can be used to analyze and manipulate colormaps and has two main aims: (i) compare existing and new custom colormaps quantitatively by comparing their values in a color space, called CAM02-UCS, that directly shows how a human perceives their hue, saturation, and lightness values and (ii) create isoluminant colormaps from existing or custom colormaps and (iii) mix isoluminant colormap data with a 4th dimension of data by manipulating lightness values across the image and present the new image. Our module was designed to be a tool for the community to use as a whole,more » allowing scientists to present, analyze, and manipulate colormaps they have created and/or decided to use for a particular type of data. By being able to do this, the scientific community as a whole will think more about the colormaps they choose, see why particular colormaps are bad to use for certain types of data, and move toward using colormaps our eyes can interpret much more efficiently.« less
2003-05-30
KENNEDY SPACE CENTER, FLA. - The JEM Pressurized Module is seen in the hold of the ship that carried it from Japan. The National Space Development Agency of Japan (NASDA) built the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, Japan’s primary contribution to the space station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. The JEM also includes two logistics modules, an exposed pallet for space environment experiments and a robotic manipulator system that are still under construction in Japan. The various JEM components will be assembled in space over the course of three space shuttle missions.
2007-03-13
KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, the shipping container with the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module is ready for lifting out of the hold of the ship that brought it from Yokohama, Japan. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
MHD Electrode and wall constructions
Way, Stewart; Lempert, Joseph
1984-01-01
Electrode and wall constructions for the walls of a channel transmitting the hot plasma in a magnetohydrodynamic generator. The electrodes and walls are made of a plurality of similar modules which are spaced from one another along the channel. The electrodes can be metallic or ceramic, and each module includes one or more electrodes which are exposed to the plasma and a metallic cooling bar which is spaced from the plasma and which has passages through which a cooling fluid flows to remove heat transmitted from the electrode to the cooling bar. Each electrode module is spaced from and electrically insulated from each adjacent module while interconnected by the cooling fluid which serially flows among selected modules. A wall module includes an electrically insulating ceramic body exposed to the plasma and affixed, preferably by mechanical clips or by brazing, to a metallic cooling bar spaced from the plasma and having cooling fluid passages. Each wall module is, similar to the electrode modules, electrically insulated from the adjacent modules and serially interconnected to other modules by the cooling fluid.
Working Safety in Confined Spaces. Module SH-32. Safety and Health.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This student module on working safely in confined spaces in one of 50 modules concerned with job safety and health. This module explains how to recognize potential hazards in confined spaces, how to deal with these hazards, and how planning can prevent accidents. Following the introduction, 17 objectives (each keyed to a page in the text) the…
JEM Experiment Logistics Module Pressurized Section
2007-04-02
An overhead crane moves the JEM Experiment Logistics Module Pressurized Section above the floor of the Space Station Processing Facility to a scale for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
JEM Experiment Logistics Module Pressurized Section
2007-04-02
In the Space Station Processing Facility, an overhead crane moves the JEM Experiment Logistics Module Pressurized Section toward a scale (at left) for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
JEM Experiment Logistics Module Pressurized Section
2007-04-02
The JEM Experiment Logistics Module Pressurized Section is lifted from its shipping crate in the Space Station Processing Facility. The module will be moved to a scale for weight and center-of-gravity measurements and then to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
JEM Experiment Logistics Module Pressurized Section
2007-04-02
In the Space Station Processing Facility, an overhead crane lifts the JEM Experiment Logistics Module Pressurized Section from its shipping container and moves it toward a scale for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) joins others for a tour. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) joins others for a tour. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
Photovoltaic module mounting clip with integral grounding
Lenox, Carl J.
2010-08-24
An electrically conductive mounting/grounding clip, usable with a photovoltaic (PV) assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending from the central portion. Each arm has first and second outer portions with frame surface-disrupting element at the outer portions.
2018-04-11
iss055e018653 (April 11, 2018) --- NASA astronaut Scott Tingle performs research operations with the Microgravity Sciences Glovebox inside the U.S. Destiny laboratory module. Tingle was working on the Metabolic Tracking experiment that looks at a particular type of medicine and how it interacts with human tissue cultures. Results could improve therapies in space and lead to better, cheaper drugs on Earth.
2018-04-13
iss055e035338 (April 13, 2018) --- NASA astronaut Scott Tingle performs research operations with the Microgravity Sciences Glovebox inside the U.S. Destiny laboratory module. Tingle was working on the Metabolic Tracking experiment that looks at a particular type of medicine and how it interacts with human tissue cultures. Results could improve therapies in space and lead to better, cheaper drugs on Earth.
U.S. Laboratory Module (Destiny) for the International Space Station
NASA Technical Reports Server (NTRS)
1997-01-01
In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
U.S. Laboratory Module (Destiny) for the International Space Station
NASA Technical Reports Server (NTRS)
1997-01-01
This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), under construction in the Space Station manufacturing facility at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two end cones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
Space-time-modulated stochastic processes
NASA Astrophysics Data System (ADS)
Giona, Massimiliano
2017-10-01
Starting from the physical problem associated with the Lorentzian transformation of a Poisson-Kac process in inertial frames, the concept of space-time-modulated stochastic processes is introduced for processes possessing finite propagation velocity. This class of stochastic processes provides a two-way coupling between the stochastic perturbation acting on a physical observable and the evolution of the physical observable itself, which in turn influences the statistical properties of the stochastic perturbation during its evolution. The definition of space-time-modulated processes requires the introduction of two functions: a nonlinear amplitude modulation, controlling the intensity of the stochastic perturbation, and a time-horizon function, which modulates its statistical properties, providing irreducible feedback between the stochastic perturbation and the physical observable influenced by it. The latter property is the peculiar fingerprint of this class of models that makes them suitable for extension to generic curved-space times. Considering Poisson-Kac processes as prototypical examples of stochastic processes possessing finite propagation velocity, the balance equations for the probability density functions associated with their space-time modulations are derived. Several examples highlighting the peculiarities of space-time-modulated processes are thoroughly analyzed.
International Space Station in Orbit
NASA Technical Reports Server (NTRS)
2001-01-01
This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-105 mission from the Shuttle Orbiter Discovery after deparating from the ISS. The STS-105 mission was the 11th ISS assembly flight and its goals were the rotation of the ISS Expedition Two crew with the Expedition Three crew, and the delivery of supplies utilizing the Italian-built Multipurpose Logistics Module (MPLM) Leonardo. Aboard Leonardo were six resupply stowage racks, four resupply stowage supply platforms, and two new scientific experiment racks, EXPRESS (Expedite the Processing of Experiments to the Space Station) Racks 4 and 5, which added science capabilities to the ISS. Another payload was the Materials International Space Station Experiment (MISSE), which included materials and other types of space exposure experiments mounted on the exterior of the ISS.
International Space Station (ISS)
2001-08-20
This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-105 mission from the Shuttle Orbiter Discovery after separating from the ISS. The STS-105 mission was the 11th ISS assembly flight and its goals were the rotation of the ISS Expedition Two crew with Expedition Three crew, and the delivery of supplies utilizing the Italian-built Multipurpose Logistic Module (MPLM) Leonardo. Aboard Leonardo were six resupply stowage racks, four resupply stowage supply platforms, and two new scientific experiment racks, EXPRESS (Expedite the Processing of Experiments to the Space Station) Racks 4 and 5, which added science capabilities to the ISS. Another payload was the Materials International Space Station Experiment (MISSE), which included materials and other types of space exposure experiments mounted on the exterior of the ISS.
Officials welcome the arrival of the Japanese Experiment Module
2007-04-17
In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. At the podium is Russ Romanella, director of International Space Station and Spacecraft Processing. Seated at right are Bill Parsons, director of Kennedy Space Center; Dr. Kichiro Imagawa, project manager of the JEM Development Project Team for JAXA; Melanie Saunders, associate manager of the International Space Station Program at Johnson Space Center; and Dominic Gorie, commander on mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.
Officials welcome the arrival of the Japanese Experiment Module
2007-04-17
In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. At the podium is Bill Parsons, director of Kennedy Space Center. Seated at right are Russ Romanella, director of International Space Station and Spacecraft Processing; Dr. Kichiro Imagawa, project manager of the JEM Development Project Team for JAXA; Melanie Saunders, associate manager of the International Space Station Program at Johnson Space Center; and Dominic Gorie, commander on mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D. (Inventor); Mankins, John C. (Inventor)
2004-01-01
A space module has an outer structure designed for traveling in space, a docking mechanism for facilitating a docking operation therewith in space, a first storage system storing a first propellant that burns as a result of a chemical reaction therein, a second storage system storing a second propellant that burns as a result of electrical energy being added thereto, and a bi-directional transfer interface coupled to each of the first and second storage systems to transfer the first and second propellants into and out thereof. The space module can be part of a propellant supply architecture that includes at least two of the space modules placed in an orbit in space.
Preliminary study of TEC application in cooling system
NASA Astrophysics Data System (ADS)
Sulaiman, A. C.; Amin, N. A. M.; Saidon, M. S.; Majid, M. S. A.; Rahman, M. T. A.; Kazim, M. N. F. M.
2017-10-01
Integration of thermoelectric cooling (TEC) within a space cooling system in the lecturer room is studied. The studied area (air conditioned surrounding) is encapsulated with wall, floor, roof, and glass window. TEC module is placed on the glass window. The prototype of the studied compartment is designed using cabin container. The type and number of TEC module are studied and the effects on the cooling performance are analyzed as it is assumed to be tested within an air conditioned lecturer room. The experimental and mathematical modeling of the cooling system developed. It is expected that the mathematical modeling derived from this study will be used to estimate the use of the number of TEC module to be integrated with air conditioner unit where possible.
1969-01-01
This 1969 artist's concept illustrates the use of three major elements of NASA's Integrated program, as proposed by President Nixon's Space Task Group. In Phases I and II, a Space Tug with a manipulator-equipped crew module removes a cargo module from an early Space Shuttle Orbiter and docks with it. In Phases III and IV, the Space Tug with attached cargo module flys toward a Nuclear Shuttle. As a result of the Space Task Group's recommendations for more commonality and integration in the American space program, Marshall Space Flight Center engineers studied many of the spacecraft depicted here.
International Space Station (ISS)
1998-11-01
This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), in the Space Station manufacturing facility at the Marshall Space Flight Center, being readied for shipment to the Kennedy Space Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
2003-06-12
KENNEDY SPACE CENTER, FLA. - Executive Director of NASDA Koji Yamamoto (left) and Center Director Roy Bridges Jr. (right) exchange mementos during Mr. Yamamoto’s visit to KSC. Mr. Bridges also holds the logo of the new Japan Aerospace Exploration Agency, a merger of three Japanese aeronautical and space agencies effective Oct.1, 2003. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module. His visit includes a tour of the Columbia Debris Hangar.
2003-06-12
KENNEDY SPACE CENTER, FLA. - Executive Director of NASDA Koji Yamamoto (left) is welcomed to KSC by Center Director Roy Bridges Jr. (right). On the table between them is the logo of the new Japan Aerospace Exploration Agency, a merger of three Japanese aeronautical and space agencies effective Oct.1, 2003. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module. His visit includes a tour of the Columbia Debris Hangar.
NASA Technical Reports Server (NTRS)
Brodell, Charles L.
1999-01-01
The Space Experiment Module (SEM) Program is an education initiative sponsored by the National Aeronautics and Space Administration (NASA) Shuttle Small Payloads Project. The program provides nationwide educational access to space for Kindergarten through University level students. The SEM program focuses on the science of zero-gravity and microgravity. Within the program, NASA provides small containers or "modules" for students to fly experiments on the Space Shuttle. The experiments are created, designed, built, and implemented by students with teacher and/or mentor guidance. Student experiment modules are flown in a "carrier" which resides in the cargo bay of the Space Shuttle. The carrier supplies power to, and the means to control and collect data from each experiment.
1997-04-17
The Spacelab long transfer tunnel that leads from the Space Shuttle Orbiter Columbia’s crew airlock to the Microgravity Science Laboratory-1 (MSL-1) Spacelab module in the spaceplane’s payload bay is removed by KSC paylaod processing employees in Orbiter Processing Facility 1. The tunnel was taken out to allow better access to the MSL-1 module during reservicing operations to prepare it for its reflight as MSL-1R. That mission is now scheduled to lift off July 1. This was the first time that this type of payload was reserviced without removing it from the payload bay. This new procedure pioneers processing efforts for quick relaunch turnaround times for future payloads. The Spacelab module was scheduled to fly again with the full complement of STS-83 experiments after that mission was cut short due to a faulty fuel cell. During the scheduled 16-day reflight, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments
1997-04-17
The Spacelab long transfer tunnel that leads from the Space Shuttle Orbiter Columbia’s crew airlock to the Microgravity Science Laboratory-1 (MSL-1) Spacelab module in the spaceplane’s payload bay is removed in Orbiter Processing Facility 1. The tunnel was taken out to allow better access to the MSL-1 module during reservicing operations to prepare it for its reflight as MSL-1R. That mission is now scheduled to lift off July 1. This was the first time that this type of payload was reserviced without removing it from the payload bay. This new procedure pioneers processing efforts for quick relaunch turnaround times for future payloads. The Spacelab module was scheduled to fly again with the full complement of STS-83 experiments after that mission was cut short due to a faulty fuel cell. During the scheduled 16-day reflight, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments
A bioreactor system for the nitrogen loop in a Controlled Ecological Life Support System
NASA Technical Reports Server (NTRS)
Saulmon, M. M.; Reardon, K. F.; Sadeh, W. Z.
1996-01-01
As space missions become longer in duration, the need to recycle waste into useful compounds rises dramatically. This problem can be addressed by the development of Controlled Ecological Life Support Systems (CELSS) (i.e., Engineered Closed/Controlled Eco-Systems (ECCES)), consisting of human and plant modules. One of the waste streams leaving the human module is urine. In addition to the reclamation of water from urine, recovery of the nitrogen is important because it is an essential nutrient for the plant module. A 3-step biological process for the recycling of nitrogenous waste (urea) is proposed. A packed-bed bioreactor system for this purpose was modeled, and the issues of reaction step segregation, reactor type and volume, support particle size, and pressure drop were addressed. Based on minimization of volume, a bioreactor system consisting of a plug flow immobilized urease reactor, a completely mixed flow immobilized cell reactor to convert ammonia to nitrite, and a plug flow immobilized cell reactor to produce nitrate from nitrite is recommended. It is apparent that this 3-step bioprocess meets the requirements for space applications.
NASA Astrophysics Data System (ADS)
Khan, Mansoor; Yong, Wang; Mustafa, Ehtasham
2017-07-01
After the rapid advancement in the field of power electronics devices and drives for last few decades, there are different kinds of Pulse Width Modulation techniques which have been brought to the market. The applications ranging from industrial appliances to military equipment including the home appliances. The vey common application for the PWM is three phase voltage source inverter, which is used to convert DC to AC in the homes to supply the power to the house in case electricity failure, usually named as Un-interrupted Power Supply. In this paper Space Vector Pulse Width Modulation techniques is discussed and analysed under the control technique named as Field Oriented Control. The working and implementation of this technique has been studied by implementing on the three phase bridge inverter. The technique is used to control the Permanente Magnet Synchronous Motor. The drive system is successfully implemented in MATLAB/Simulink using the mathematical equation and algorithm to achieve the satisfactory results. PI type of controller is used to tuned ers of the motothe parametr i.e. torque and current.
A modulation wave approach to the order hidden in disorder
Withers, Ray
2015-01-01
The usefulness of a modulation wave approach to understanding and interpreting the highly structured continuous diffuse intensity distributions characteristic of the reciprocal spaces of the very large family of inherently flexible materials which exhibit ordered ‘disorder’ is pointed out. It is shown that both longer range order and truly short-range order are simultaneously encoded in highly structured diffuse intensity distributions. The long-range ordered crystal chemical rules giving rise to such diffuse distributions are highlighted, along with the existence and usefulness of systematic extinction conditions in these types of structured diffuse distributions. PMID:25610629
Recent developments in electroabsorption modulators at Acreo Swedish ICT
NASA Astrophysics Data System (ADS)
Wang, Qin; Zhang, Andy Z.; Almqvist, Susanne; Junique, Stephane; Noharet, Bertrand; Platt, Duncan; Salter, Michael; Andersson, Jan Y.
2015-03-01
Three types of electroabsorption modulators (EAMs) based on III-V semiconductor multiple quantum wells (MQW) are presented in this work. One is a novel monolithic integration traveling-wave EAM for an analog optical transmitter/transceiver to achieve integrated photonic mm-wave functions for broadband connectivity. Another one is composed of an integrated EAM 1D array in a photonic beam-former as a Ku-band phased array antenna for seamless aeronautical networking through integration of data links, radios, and antennas. The third one addresses the use of MQW EAMs in free space optical links through biological tissue for transcutaneous communication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Piot, P.
2015-06-01
In a cascaded longitudinal space-charge amplifier (LSCA), initial density noise in a relativistic e-beam is amplified via the interplay of longitudinal space charge forces and properly located dispersive sections. This type of amplification process was shown to potentially result in large final density modulations [1] compatible with the production of broadband electromagnetic radiation. The technique was recently demonstrated in the optical domain [2]. In this paper we investigate, via numerical simulations, the performances of a cascaded LSCA beamline at the Fermilab’s Advanced Superconducting Test Accelerator (ASTA). We especially explore the properties of the produced broadband radiation. Our studies have beenmore » conducted with a grid-less three-dimensional space-charge algorithm.« less
Russian Docking Module is lowered
NASA Technical Reports Server (NTRS)
1995-01-01
The Russian-built Docking Module (DM) is lowered for installation into the payload bay of the Space Shuttle Orbiter Atlantis while the spaceplane is in Orbiter Processing Facility bay 2. The module will fly as a primary payload on the second Space Shuttle/Mir space station docking mission, STS-74, which is now scheduled for liftoff in the fall of 1995. During the mission, the module will first be attached with the orbiter's robot arm to the Orbiter Docking System (ODS) in the payload bay of the orbiter Atlantis and then be docked with the Mir. When Atlantis undocks from the Mir, it will leave the new docking module permanently attached to the space station for use during future Shuttle Mir docking missions. The new module will simplify future Shuttle linkups with Mir by improving orbiter clearances when it serves as a bridge between the two space vehicles. The white structures attached to the module's sides are solar panels that will be attached to the Mir after the conclusion of the STS-74 mission.
2003-06-04
KENNEDY SPACE CENTER, FLA. - At Port Canaveral, the Pressurized Module of the Japanese Experiment Module (JEM) is lifted out of the ship’s cargo hold. The container transport ship carrying JEM departed May 2 from Yokohama Harbor in Japan for the voyage to the United States. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
NASA Astrophysics Data System (ADS)
Racca, Giuseppe D.; Laureijs, René; Stagnaro, Luca; Salvignol, Jean-Christophe; Lorenzo Alvarez, José; Saavedra Criado, Gonzalo; Gaspar Venancio, Luis; Short, Alex; Strada, Paolo; Bönke, Tobias; Colombo, Cyril; Calvi, Adriano; Maiorano, Elena; Piersanti, Osvaldo; Prezelus, Sylvain; Rosato, Pierluigi; Pinel, Jacques; Rozemeijer, Hans; Lesna, Valentina; Musi, Paolo; Sias, Marco; Anselmi, Alberto; Cazaubiel, Vincent; Vaillon, Ludovic; Mellier, Yannick; Amiaux, Jérôme; Berthé, Michel; Sauvage, Marc; Azzollini, Ruyman; Cropper, Mark; Pottinger, Sabrina; Jahnke, Knud; Ealet, Anne; Maciaszek, Thierry; Pasian, Fabio; Zacchei, Andrea; Scaramella, Roberto; Hoar, John; Kohley, Ralf; Vavrek, Roland; Rudolph, Andreas; Schmidt, Micha
2016-07-01
Euclid is a space-based optical/near-infrared survey mission of the European Space Agency (ESA) to investigate the nature of dark energy, dark matter and gravity by observing the geometry of the Universe and on the formation of structures over cosmological timescales. Euclid will use two probes of the signature of dark matter and energy: Weak gravitational Lensing, which requires the measurement of the shape and photometric redshifts of distant galaxies, and Galaxy Clustering, based on the measurement of the 3-dimensional distribution of galaxies through their spectroscopic redshifts. The mission is scheduled for launch in 2020 and is designed for 6 years of nominal survey operations. The Euclid Spacecraft is composed of a Service Module and a Payload Module. The Service Module comprises all the conventional spacecraft subsystems, the instruments warm electronics units, the sun shield and the solar arrays. In particular the Service Module provides the extremely challenging pointing accuracy required by the scientific objectives. The Payload Module consists of a 1.2 m three-mirror Korsch type telescope and of two instruments, the visible imager and the near-infrared spectro-photometer, both covering a large common field-of-view enabling to survey more than 35% of the entire sky. All sensor data are downlinked using K-band transmission and processed by a dedicated ground segment for science data processing. The Euclid data and catalogues will be made available to the public at the ESA Science Data Centre.
External Payload Interfaces on the International Space Station
NASA Astrophysics Data System (ADS)
Voels, S. A.; Eppler, D. B.; Park, B.
2000-12-01
The International Space Station (ISS) includes multiple payload locations that are external to the pressurized environment and that are suitable for astronomical and space science observations. These external or attached payload accommodation locations allow direct access to the space environment and fields of view that include the earth and/or space. NASA sponsored payloads will have access to several different types of standard external locations; the S3/P3 Truss Sites (with an EXPRESS Pallet interface), the Columbus Exposed Payload Facility (EPF), and the Japanese Experiment Module Exposed Facility (JEM-EF). Payload accommodations at each of the standard locations named above will be described, as well as transport to and retrieval from the site. The Office of Space Science's ISS Research Program Office has an allocation equivalent to 25% of the external space and opportunities for proposing to use this allocation will be as Missions of Opportunity through the normal Explorer (UNEX, SMEX, MIDEX) Announcements of Opportunity.
Cloud Atlas: Rotational Modulations in the L/T Transition Brown Dwarf Companion HN Peg B
NASA Technical Reports Server (NTRS)
Zhou, Yifan; Apai, Daniel; Metchev, Stanimir; Lew, Ben W. P.; Schneider, Glenn; Marley, Mark S.; Karalidi, Theodora; Manjavacas, Elena; Bedin, Luigi R.; Cowan, Nicolas B.;
2018-01-01
Time-resolved observations of brown dwarfs' rotational modulations provide powerful insights into the properties of condensate clouds in ultra-cool atmospheres. Multi-wavelength light curves reveal cloud vertical structures, condensate particle sizes, and cloud morphology, which directly constrain condensate cloud and atmospheric circulation models. We report results from Hubble Space Telescope/Wide Field Camera 3 (WFC3) near-infrared G141 taken in six consecutive orbits observations of HNPeg B, an L/T transition brown dwarf companion to a G0V type star. The best-fit sine wave to the 1.1 to 1.7 micron broadband light curve has the amplitude of and period of hour. The modulation amplitude has no detectable wavelength dependence except in the 1.4 micron water absorption band, indicating that the characteristic condensate particle sizes are large (greater than 1 micron). We detect significantly (4.4 sigma) lower modulation amplitude in the 1.4 micron water absorption band, and find that HN Peg B's spectral modulation resembles those of early T type brown dwarfs. We also describe a new empirical interpolation method to remove spectral contamination from the bright host star. This method may be applied in other high-contrast time-resolved observations with WFC3.
Cloud Atlas: Rotational Modulations in the L/T Transition Brown Dwarf Companion HN Peg B
NASA Astrophysics Data System (ADS)
Zhou, Yifan; Apai, Dániel; Metchev, Stanimir; Lew, Ben W. P.; Schneider, Glenn; Marley, Mark S.; Karalidi, Theodora; Manjavacas, Elena; Bedin, Luigi R.; Cowan, Nicolas B.; Miles-Páez, Paulo A.; Lowrance, Patrick J.; Radigan, Jacqueline; Burgasser, Adam J.
2018-03-01
Time-resolved observations of brown dwarfs’ rotational modulations provide powerful insights into the properties of condensate clouds in ultra-cool atmospheres. Multi-wavelength light curves reveal cloud vertical structures, condensate particle sizes, and cloud morphology, which directly constrain condensate cloud and atmospheric circulation models. We report results from Hubble Space Telescope/Wide Field Camera 3 near-infrared G141 taken in six consecutive orbits observations of HN Peg B, an L/T transition brown dwarf companion to a G0V type star. The best-fit sine wave to the 1.1–1.7 μm broadband light curve has an amplitude of 1.206% ± 0.025% and period of 15.4 ± 0.5 hr. The modulation amplitude has no detectable wavelength dependence except in the 1.4 μm water absorption band, indicating that the characteristic condensate particle sizes are large (>1 μm). We detect significantly (4.4σ) lower modulation amplitude in the 1.4 μm water absorption band and find that HN Peg B’s spectral modulation resembles those of early T type brown dwarfs. We also describe a new empirical interpolation method to remove spectral contamination from the bright host star. This method may be applied in other high-contrast time-resolved observations with WFC3.
Node 2 and Japanese Experimental Module (JEM) In Space Station Processing Facility
NASA Technical Reports Server (NTRS)
2003-01-01
Lining the walls of the Space Station Processing Facility at the Kennedy Space Center (KSC) are the launch awaiting U.S. Node 2 (lower left). and the first pressurized module of the Japanese Experimental Module (JEM) (upper right), named 'Kibo' (Hope). Node 2, the 'utility hub' and second of three connectors between International Space Station (ISS) modules, was built in the Torino, Italy facility of Alenia Spazio, an International contractor based in Rome. Japan's major contribution to the station, the JEM, was built by the Space Development Agency of Japan (NASDA) at the Tsukuba Space Center near Tokyo and will expand research capabilities aboard the station. Both were part of an agreement between NASA and the European Space Agency (ESA). The Node 2 will be the next pressurized module installed on the Station. Once the Japanese and European laboratories are attached to it, the resulting roomier Station will expand from the equivalent space of a 3-bedroom house to a 5-bedroom house. The Marshall Space Center in Huntsville, Alabama manages the Node program for NASA.
Psychoacoustic Testing of Modulated Blade Spacing for Main Rotors
NASA Technical Reports Server (NTRS)
Edwards, Bryan; Booth, Earl R., Jr. (Technical Monitor)
2002-01-01
Psychoacoustic testing of simulated helicopter main rotor noise is described, and the subjective results are presented. The objective of these tests was to evaluate the potential acoustic benefits of main rotors with modulated (uneven) blade spacing. Sound simulations were prepared for six main rotor configurations. A baseline 4-blade main rotor with regular blade spacing was based on the Bell Model 427 helicopter. A 5-blade main rotor with regular spacing was designed to approximate the performance of the 427, but at reduced tipspeed. Four modulated rotors - one with "optimum" spacing and three alternate configurations - were derived from the 5 bladed regular spacing rotor. The sounds were played to 2 subjects at a time, with care being taken in the speaker selection and placement to ensure that the sounds were identical for each subject. A total of 40 subjects participated. For each rotor configuration, the listeners were asked to evaluate the sounds in terms of noisiness. The test results indicate little to no "annoyance" benefit for the modulated blade spacing. In general, the subjects preferred the sound of the 5-blade regular spaced rotor over any of the modulated ones. A conclusion is that modulated blade spacing is not a promising design feature to reduce the annoyance for helicopter main rotors.
2017-12-08
Goddard's Ritsko Wins 2011 SAVE Award The winner of the 2011 SAVE Award is Matthew Ritsko, a Goddard financial manager. His tool lending library would track and enable sharing of expensive space-flight tools and hardware after projects no longer need them. This set of images represents the types of tools used at NASA. To read more go to: www.nasa.gov/topics/people/features/ritsko-save.html The engineering mockup of the Robotic Refueling Mission (RRM) module is currently on display within the press building at the Kennedy Space Center in Florida. The RRM mission is a joint effort between NASA and the Canadian Space Agency designed to demonstrate and test the tools, technologies, and techniques needed to robotically refuel satellites in space. Reporters have the opportunity to get a close-up view of the replica module and tools that are a part of the final shuttle mission payload. SSCO engineers test an RRM tool. To learn more about the RRM go to: ssco.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Find us on Instagram
A Subjective Test of Modulated Blade Spacing for Helicopter Main Rotors
NASA Technical Reports Server (NTRS)
Sullivan, Brenda M.; Edwards, Bryan D.; Brentner, Kenneth S.; Booth, Earl R., Jr.
2002-01-01
Analytically, uneven (modulated) spacing of main rotor blades was found to reduce helicopter noise. A study was performed to see if these reductions transferred to improvements in subjective response. Using a predictive computer code, sounds produced by six main rotor configurations: 4 blades evenly spaced, 5 blades evenly spaced and four configurations with 5 blades with modulated spacing of varying amounts, were predicted. These predictions were converted to audible sounds corresponding to the level flyover, takeoff and approach flight conditions. Subjects who heard the simulations were asked to assess the overflight sounds in terms of noisiness on a scale of 0 to 10. In general the evenly spaced configurations were found less noisy than the modulated spacings, possibly because the uneven spacings produced a perceptible pulsating sound due to the very low fundamental frequency.
2003-06-04
KENNEDY SPACE CENTER, FLA. - At Port Canaveral, the Pressurized Module of the Japanese Experiment Module (JEM) is lifted out of the ship’s cargo hold. It will be loaded onto the truck bed in the background for transfer to KSC’s Space Station Processing Facility. The container transport ship carrying JEM departed May 2 from Yokohama Harbor in Japan for the voyage to the United States. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
The incommensurately modulated(1 - x)Ta 2O 5· xWO 3, 0 ≤ x ≤ 0.267 solid solution
NASA Astrophysics Data System (ADS)
Schmid, Siegbert; Withers, Ray L.; Thompson, John G.
1992-08-01
The phase(1 - x)Ta 2O 5 · WO 3, 0 ≤ x ≤ 0.267 has been studied by X-ray powder diffraction and transmission electron microscopy. It was previously described as an infinite series of anion-deficient, α-UO 3-type "line phases," with compositions resulting from intergrowths of different blocks made up by small numbers of α-UO 3-type cells. More correctly(1 - x)Ta 2O 5· xWO 3, 0 ≤ x ≤ 0.267 is described as an incommensurately modulated structure with a linearly composition-dependent primary modulation wave-vector qprim. = qb*. The underlying orthorhombically distorted α-UO 3-type parent structure has space group symmetry Cmmm ( a ≈ 6.20-6.14, b ≈ 3.66, c ≈ 3.89-3.85Å). Characteristic extinction conditions imply a superspace group symmetry of P : Cmmmm : s, -1,1. The four previously reported crystal structures in the solid solution field are examined by means of apparent valence calculations. Crystal chemical reasons are proposed for the width of the composition range,0 ≤ x ≤ 0.267, observed for the title phase.
Continuous Beam Steering From a Segmented Liquid Crystal Optical Phased Array
NASA Technical Reports Server (NTRS)
Titus, Charles M.; Pouch, John; Nguyen, Hung; Miranda, Felix; Bos, Philip J.
2002-01-01
Optical communications to and from deep space probes will require beams possessing divergence on the order of a microradian, and must be steered with sub-microradian precision. Segmented liquid crystal spatial phase modulators, a type of optical phased array, are considered for this ultra-high resolution beam steering. It is shown here that in an ideal device of this type, there are ultimately no restrictions on the angular resolution. Computer simulations are used to obtain that result, and to analyze the influence of beam truncation and substrate flatness on the performance of this type of device.
Continuous Beam Steering From A Segmented Liquid Crystal Optical Phased Array
NASA Technical Reports Server (NTRS)
Pouch, John; Nguyen, Hung; Miranda, Felix; Titus, Charles M.; Bos, Philip J.
2002-01-01
Optical communications to and from deep space probes will require beams possessing divergence on the order of a microradian, and must be steered with sub-microradian precision. Segmented liquid crystal spatial phase modulators, a type of optical phased array, are considered for this ultra-high resolution beam steering. It is shown here that in an ideal device of this type, there are ultimately no restrictions on the angular resolution. Computer simulations are used to obtain that result, and to analyze the influence of beam truncation and substrate flatness on the performance of this type of device.
International Space Station (ISS)
2001-03-11
STS-102 mission astronaut Susan J. Helms translates along the longerons of the Space Shuttle Discovery during the first of two space walks. During this walk, the Pressurized Mating Adapter 3 was prepared for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo multipurpose Logistics Module (MPLM), supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
STS-102 Astronaut Susan Helms Participates in Space Walk
NASA Technical Reports Server (NTRS)
2001-01-01
STS-102 mission astronaut Susan J. Helms translates along the longerons of the Space Shuttle Discovery during the first of two space walks. During this walk, the Pressurized Mating Adapter 3 was prepared for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo multipurpose Logistics Module (MPLM), supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
International Space Station (ISS)
1997-06-01
This Boeing photograph shows the Node 1, Unity module, Flight Article (at right) and the U.S. Laboratory module, Destiny, Flight Article for the International Space Station (ISS) being manufactured in the High Bay Clean Room of the Space Station Manufacturing Facility at the Marshall Space Flight Center. The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The U.S. Laboratory/Destiny was launched aboard the orbiter Atlantis (STS-98 mission) on February 7, 2001. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
Russian RSC Energia employees attach trunnions to DM
NASA Technical Reports Server (NTRS)
1995-01-01
Employees of the Russian aerospace company RSC Energia attach trunnions to the Russian-built docking module in the Space Station Processing Facility at KSC so that it can be mounted in the payload bay of the Space Shuttle orbiter Atlantis. The module will fly as a primary payload on the second Space Shuttle/Mir space station docking mission, STS-74, which is now scheduled for liftoff in the fall of 1995. During the mission, the module will first be attached with the orbiter's robot arm to the Orbiter Docking System (ODS) in the payload bay of the orbiter Atlantis and then be docked with the Mir. When Atlantis undocks from the Mir, it will leave the new docking module permanently attached to the space station for use during future Shuttle Mir docking missions. The new module will simplify future Shuttle linkups with Mir by improving orbiter clearances when it serves as a bridge between the two space vehicles.
Whole Module Offgas Test Report: Space-Xl Dragon Module
NASA Technical Reports Server (NTRS)
James, John T.
2012-01-01
On September 26 and September 28,2012 a chemist from the JSC Toxicology Group acquired samples of air in 500 m1 evacuated canisters from the sealed Space-Xl Dragon Module. One sample was also acquired from Space-X Facility near the module at the start of the test. Samples of the module air were taken in triplicate once the module had been sealed, and then taken again in triplicate 1.98 days later. Ofthe triplicate samples, the first served as a line purge, and the last two were analyzed. The results of 5 samples are reported.
OA-7 Cargo Module Hatch Closure and Rotate to Vertical at SSPF
2017-02-12
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the hatch is closed on the Cygnus spacecraft's pressurized cargo module (PCM) for the Orbital ATK CRS-7 mission to the International Space Station. The module is then rotated to vertical for mating to the service module. Scheduled to launch on March 19, 2017, the commercial resupply services mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station.
NASA Astrophysics Data System (ADS)
Chaichenets, Leonid; Hundertmark, Dirk; Kunstmann, Peer; Pattakos, Nikolaos
2017-10-01
We prove global existence for the one-dimensional cubic nonlinear Schrödinger equation in modulation spaces Mp,p‧ for p sufficiently close to 2. In contrast to known results, [9] and [14], our result requires no smallness condition on initial data. The proof adapts a splitting method inspired by work of Vargas-Vega, Hyakuna-Tsutsumi and Grünrock to the modulation space setting and exploits polynomial growth of the free Schrödinger group on modulation spaces.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) is being moved to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians move the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) into a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians move the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) toward a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
OA-7 Mate Service Module to Cargo Module
2017-02-14
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians and engineers mate a Cygnus spacecraft's pressurized cargo module to its service module. Cygnus is being prepared to deliver thousands of pounds of supplies, equipment and scientific research materials on the Orbital ATK CRS-7 mission to the International Space Station. Scheduled to launch on March 19, 2017, the commercial resupply services mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station.
2003-10-22
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (second from left, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.
2003-10-22
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (center, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.
1997-05-01
KSC payloads processing employees work to reservice the Microgravity Science Laboratory-1 (MSL-1) Spacelab module in the Space Shuttle Orbiter Columbia’s payload bay for the STS-94 mission in Orbiter Processing Facility 1. That mission is now scheduled to lift off in early July. This was the first time that this type of payload was reserviced without removing it from the payload bay. This new procedure pioneers processing efforts for quick relaunch turnaround times for future payloads. The Spacelab module was scheduled to fly again with the full complement of STS-83 experiments after that mission was cut short due to a faulty fuel cell. During the scheduled 16-day STS-94 mission, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments
NASA Technical Reports Server (NTRS)
Begley, David L. (Editor); Seery, Bernard D. (Editor)
1992-01-01
Papers included in this volume are grouped under topics of receivers; laser transmitters; components; system analysis, performance, and applications; and beam control (pointing, acquisition, and tracking). Papers are presented on an experimental determination of power penalty contributions in an optical Costas-type phase-locked loop receiver, a resonant laser receiver for free-space laser communications, a simple low-loss technique for frequency-locking lasers, direct phase modulation of laser diodes, and a silex beacon. Particular attention is given to experimental results on an optical array antenna for nonmechanical beam steering, a potassium Faraday anomalous dispersion optical filter, a 100-Mbps resonant cavity phase modulator for coherent optical communications, a numerical simulation of a 325-Mbit/s QPPM optical communication system, design options for an optical multiple-access data relay terminal, CCD-based optical tracking loop design trades, and an analysis of a spatial-tracking subsystem for optical communications.
2003-06-18
KENNEDY SPACE CENTER, FLA. - At ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency and NASA. Shaking hands after the signing are Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA). At right is NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
Lunar Module 4 moved for mating with Lunar Module Adapter at KSC
NASA Technical Reports Server (NTRS)
1969-01-01
Lunar Module 4 in the Kennedy Space Center's Manned Spacecraft Operations Bldg being moved into position for mating with Spacecraft Lunar Module Adapter (SLA) 13 (17809);Lunar Module 4 being moved for mating with the Spacecraft Lunar Module Adapter in the Kennedy Space Center's (KSC) Manned Spacecraft Operations Building. Lunar module 4 will be flown on the Apollo 10 (Spacecraft 106/Saturn 505) lunar orbit mission (17810).
2006-06-02
KENNEDY SPACE CENTER, FLA. - The European Space Agency's Columbus module rests on a work stand in view of media representatives and invited guests following a ceremony to welcome the module into the Space Station Processing Facility (SSPF). Columbus is the European Space Agency's research laboratory for the International Space Station. The module will be prepared in the SSPF for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the life, physical and materials sciences. Photo credit: NASA/Amanda Diller
2006-06-01
KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, the Columbus module waits to be lifted out of its transportation canister. An overhead crane is being lowered toward the module, which is the European Space Agency's research laboratory for the International Space Station. The module will be moved to a work stand and prepared for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judd, Stephen; Dallmann, Nicholas; Seitz, Daniel
A modular space vehicle chassis may facilitate convenient access to internal components of the space vehicle. Each module may be removable from the others such that each module may be worked on individually. Multiple panels of at least one of the modules may swing open or otherwise be removable, exposing large portions of the internal components of the space vehicle. Such chassis architectures may reduce the time required for and difficulty of performing maintenance or modifications, may allow multiple space vehicles to take advantage of a common chassis design, and may further allow for highly customizable space vehicles.
2003-06-12
KENNEDY SPACE CENTER, FLA. - On a KSC visit, Executive Director of NASDA Koji Yamamoto (kneeling, left) reaches out to a piece of Columbia debris in the Columbia Debris Hangar. At right is Shuttle Launch Director Mike Leinbach, who is explaining recovery and reconstruction efforts. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
NASA Technical Reports Server (NTRS)
Evans, S.; Lewis, H.; Williamsen, J.; Evans, H.; Bohl, W.; Parker, Nelson (Technical Monitor)
2002-01-01
Orbital debris impacts on the International Space Station occur frequently. To date, none of the impacting particles has been sufficiently large to penetrate manned pressurized volumes. We used the Manned Spacecraft Crew Survivability code to evaluate the risk to crew of penetrations of pressurized modules at two assembly stages: after Flight lJ, when the pressurized elements of Kibo, the Japanese Experiment Module, are present, and after Flight lE, when the European Columbus Module is present. Our code is a Monte Carlo simulation of impacts on the Station that considers several potential event types that could lead to crew loss. Among the statistics tabulated by the program is the probability of death of one or more crew members, expressed as the risk factor, R. This risk factor is dependent on details of crew operations during both ordinary circumstances and decompression emergencies, as well as on details of internal module configurations. We conducted trade studies considering these procedure and configuration details to determine the bounds on R at the 1J and 1E stages in the assembly sequence. Here we compare the R-factor bounds, and procedures and configurations that reduce R at these stages.
LDPC-PPM Coding Scheme for Optical Communication
NASA Technical Reports Server (NTRS)
Barsoum, Maged; Moision, Bruce; Divsalar, Dariush; Fitz, Michael
2009-01-01
In a proposed coding-and-modulation/demodulation-and-decoding scheme for a free-space optical communication system, an error-correcting code of the low-density parity-check (LDPC) type would be concatenated with a modulation code that consists of a mapping of bits to pulse-position-modulation (PPM) symbols. Hence, the scheme is denoted LDPC-PPM. This scheme could be considered a competitor of a related prior scheme in which an outer convolutional error-correcting code is concatenated with an interleaving operation, a bit-accumulation operation, and a PPM inner code. Both the prior and present schemes can be characterized as serially concatenated pulse-position modulation (SCPPM) coding schemes. Figure 1 represents a free-space optical communication system based on either the present LDPC-PPM scheme or the prior SCPPM scheme. At the transmitting terminal, the original data (u) are processed by an encoder into blocks of bits (a), and the encoded data are mapped to PPM of an optical signal (c). For the purpose of design and analysis, the optical channel in which the PPM signal propagates is modeled as a Poisson point process. At the receiving terminal, the arriving optical signal (y) is demodulated to obtain an estimate (a^) of the coded data, which is then processed by a decoder to obtain an estimate (u^) of the original data.
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail V.; Ramsey, B.; ODell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.
2012-01-01
The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART-XC instrument on board the Spectrum-Roentgen Gamma Mission under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) ART-XC will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Currently, four of the modules are being fabricated by the Marshall Space Flight Center (MSFC.) Each MSFC module consist of 28 nested Ni/Co thin shells giving an effective area of 65 sq cm at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. Delivery of these modules to the IKI is scheduled for summer 2013. We present a status of the ART x-ray modules development at the MSFC.
NASA Astrophysics Data System (ADS)
Gubarev, M.; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.
2012-09-01
The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART-XC instrument on board the Spectrum-Roentgen-Gamma Mission under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) ART-XC will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Currently, four of the modules are being fabricated by the Marshall Space Flight Center (MSFC.) Each MSFC module consist of 28 nested Ni/Co thin shells giving an effective area of 65 cm2 at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. Delivery of these modules to the IKI is scheduled for summer 2013. We present a status of the ART x-ray modules development at the MSFC.
2003-06-06
KENNEDY SPACE CENTER, FLA. - An overview of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.
2003-06-06
KENNEDY SPACE CENTER, FLA. - A view of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.
Launch - Apollo XV Space Vehicle - KSC
1971-07-26
S71-41356 (26 July 1971) --- The huge, 363-feet tall Apollo 15 (Spacecraft 112/Lunar Module 10/Saturn 510) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida, at 9:34:00:79 a.m. (EDT), July 26, 1971, on a lunar landing mission. Aboard the Apollo 15 spacecraft were astronauts David R. Scott, commander; Alfred M. Worden, command module pilot; and James B. Irwin, lunar module pilot. Apollo 15 is the National Aeronautics and Space Administration's (NASA) fourth manned lunar landing mission. While astronauts Scott and Irwin will descend in the Lunar Module (LM) to explore the moon, astronaut Worden will remain with the Command and Service Modules (CSM) in lunar orbit.
1998-08-27
KENNEDY SPACE CENTER, FLA. -- Unity connecting module, part of the International Space Station, awaits processing in the Space Station Processing Facility (SSPF). On the end at the right can be seen the Pressurized Mating Adapter 2, which provides entry into the module. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station
Nanotopographical Modulation of Cell Function through Nuclear Deformation
Wang, Kai; Bruce, Allison; Mezan, Ryan; Kadiyala, Anand; Wang, Liying; Dawson, Jeremy; Rojanasakul, Yon; Yang, Yong
2016-01-01
Although nanotopography has been shown to be a potent modulator of cell behavior, it is unclear how the nanotopographical cue, through focal adhesions, affects the nucleus, eventually influencing cell phenotype and function. Thus, current methods to apply nanotopography to regulate cell behavior are basically empirical. We, herein, engineered nanotopographies of various shapes (gratings and pillars) and dimensions (feature size, spacing and height), and thoroughly investigated cell spreading, focal adhesion organization and nuclear deformation of human primary fibroblasts as the model cell grown on the nanotopographies. We examined the correlation between nuclear deformation and cell functions such as cell proliferation, transfection and extracellular matrix protein type I collagen production. It was found that the nanoscale gratings and pillars could facilitate focal adhesion elongation by providing anchoring sites, and the nanogratings could orient focal adhesions and nuclei along the nanograting direction, depending on not only the feature size but also the spacing of the nanogratings. Compared with continuous nanogratings, discrete nanopillars tended to disrupt the formation and growth of focal adhesions and thus had less profound effects on nuclear deformation. Notably, nuclear volume could be effectively modulated by the height of nanotopography. Further, we demonstrated that cell proliferation, transfection, and type I collagen production were strongly associated with the nuclear volume, indicating that the nucleus serves as a critical mechanosensor for cell regulation. Our study delineated the relationships between focal adhesions, nucleus and cell function and highlighted that the nanotopography could regulate cell phenotype and function by modulating nuclear deformation. This study provides insight into the rational design of nanotopography for new biomaterials and the cell–substrate interfaces of implants and medical devices. PMID:26844365
2007-04-17
KENNEDY SPACE CENTER, FLA. -- After a welcoming ceremony for the Experiment Logistics Module Pressurized Section of the Japanese Experiment Module, STS-123 Commander Dominic Gorie talks to the media. Earlier, NASA and Japanese Space Agency (JAXA) officials welcomed the arrival of the logistics module, which will be delivered to the space station on mission STS-123. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Scott Higginbotham and Chuong Nguyen, payload manager and deputy payload manager respectively for the International Space Station, stand in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the logistics module. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
Experiment module concepts study. Volume 1: Management summary
NASA Technical Reports Server (NTRS)
1970-01-01
The minimum number of standardized (common) module concepts that will satisfy the experiment program for manned space stations at least cost is investigated. The module interfaces with other elements such as the space shuttle, ground stations, and the experiments themselves are defined. The total experiment module program resource and test requirements are also considered. The minimum number of common module concepts that will satisfy the program at least cost is found to be three, plus a propulsion slice and certain experiment-peculiar integration hardware. The experiment modules rely on the space station for operational, maintenance, and logistic support. They are compatible with both expendable and shuttle launch vehicles, and with servicing by shuttle, tug, or directly from the space station. A total experiment module program cost of approximately $2319M under the study assumptions is indicated. This total is made up of $838M for experiment module development and production, $806M for experiment equipment, and $675M for interface hardware, experiment integration, launch and flight operations, and program management and support.
International Space Station (ISS)
1997-01-01
In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
International Space Station (ISS)
1997-11-01
In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
International Space Station (ISS)
1997-11-26
This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), under construction in the Space Station manufacturing facility at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two end cones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
International Space Station (ISS)
2001-03-10
This in-orbit close up shows the Italian Space Agency-built multipurpose Logistics Module (MPLM), Leonardo, the primary cargo of the STS-102 mission, resting in the payload bay of the Space Shuttle Orbiter Discovery. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight and NASA's 103rd overall flight, STS-102 launched March 8, 2001 for an almost 13 day mission.
First Materials Science Research Facility Rack Capabilities and Design Features
NASA Technical Reports Server (NTRS)
Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)
2002-01-01
The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.
Multipurpose Logistics Module, Leonardo, Rests in Discovery's Payload Bay
NASA Technical Reports Server (NTRS)
2001-01-01
This in-orbit close up shows the Italian Space Agency-built multipurpose Logistics Module (MPLM), Leonardo, the primary cargo of the STS-102 mission, resting in the payload bay of the Space Shuttle Orbiter Discovery. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight and NASA's 103rd overall flight, STS-102 launched March 8, 2001 for an almost 13 day mission.
2003-06-18
KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency (ESA) and NASA. Shaking hands after the signing are Alan Thirkettle (center), International Space Station Program manager for Node 2, ESA; and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
Pressurized solid oxide fuel cell integral air accumular containment
Gillett, James E.; Zafred, Paolo R.; Basel, Richard A.
2004-02-10
A fuel cell generator apparatus contains at least one fuel cell subassembly module in a module housing, where the housing is surrounded by a pressure vessel such that there is an air accumulator space, where the apparatus is associated with an air compressor of a turbine/generator/air compressor system, where pressurized air from the compressor passes into the space and occupies the space and then flows to the fuel cells in the subassembly module, where the air accumulation space provides an accumulator to control any unreacted fuel gas that might flow from the module.
2003-06-12
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) gets information about the facility while on a tour of KSC. Behind the group is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians begin to move the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, Lockheed Martin technicians secure a protective cover around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a Lockheed Martin technician secures a protective cover around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean room The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians secure a protective cover around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a protective cover is installed around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians are preparing the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for the move into a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, Lockheed Martin technicians secure a protective cover around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) is in a clean room with protective walls secured around it. The adapter will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
New Generation Power System for Space Applications
NASA Technical Reports Server (NTRS)
Jones, Loren; Carr, Greg; Deligiannis, Frank; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treicler, John; Wester, Gene; Sauers, Jim;
2004-01-01
The Deep Space Avionics (DSA) Project is developing a new generation of power system building blocks. Using application specific integrated circuits (ASICs) and power switching modules a scalable power system can be constructed for use on multiple deep space missions including future missions to Mars, comets, Jupiter and its moons. The key developments of the DSA power system effort are five power ASICs and a mod ule for power switching. These components enable a modular and scalab le design approach, which can result in a wide variety of power syste m architectures to meet diverse mission requirements and environments . Each component is radiation hardened to one megarad) total dose. The power switching module can be used for power distribution to regular spacecraft loads, to propulsion valves and actuation of pyrotechnic devices. The number of switching elements per load, pyrotechnic firin gs and valve drivers can be scaled depending on mission needs. Teleme try data is available from the switch module via an I2C data bus. The DSA power system components enable power management and distribution for a variety of power buses and power system architectures employing different types of energy storage and power sources. This paper will describe each power ASIC#s key performance characteristics as well a s recent prototype test results. The power switching module test results will be discussed and will demonstrate its versatility as a multip urpose switch. Finally, the combination of these components will illu strate some of the possible power system architectures achievable fro m small single string systems to large fully redundant systems.
Ion Transport by Ameloblasts during Amelogenesis.
Bronckers, A L J J
2017-03-01
Hypomineralization of developing enamel is associated with changes in ameloblast modulation during the maturation stage. Modulation (or pH cycling) involves the cyclic transformation of ruffle-ended (RE) ameloblasts facing slightly acidic enamel into smooth-ended (SE) ameloblasts near pH-neutral enamel. The mechanism of ameloblast modulation is not clear. Failure of ameloblasts of Cftr-null and anion exchanger 2 ( Ae2)-null mice to transport Cl - into enamel acidifies enamel, prevents modulation, and reduces mineralization. It suggests that pH regulation is critical for modulation and for completion of enamel mineralization. This report presents a review of the major types of transmembrane molecules that ameloblasts express to transport calcium to form crystals and bicarbonates to regulate pH. The type of transporter depends on the developmental stage. Modulation is proposed to be driven by the pH of enamel fluid and the compositional and/or physicochemical changes that result from increased acidity, which may turn RE ameloblasts into SE mode. Amelogenins delay outgrowth of crystals and keep the intercrystalline space open for diffusion of mineral ions into complete depth of enamel. Modulation enables stepwise removal of amelogenins from the crystal surface, their degradation, and removal from the enamel. Removal of matrix allows slow expansion of crystals. Modulation also reduces the stress that ameloblasts experience when exposed to high acid levels generated by mineral formation or by increased intracellular Ca 2+ . By cyclically interrupting Ca 2+ transport by RE ameloblasts and their transformation into SE ameloblasts, proton production ceases shortly and enables the ameloblasts to recover. Modulation also improves enamel crystal quality by selectively dissolving immature Ca 2+ -poor crystals, removing impurities as Mg 2+ and carbonates, and recrystallizing into more acid-resistant crystals.
NASA Astrophysics Data System (ADS)
Ghigo, Mauro; Proserpio, Laura; Basso, Stefano; Citterio, Oberto; Civitani, Marta M.; Pareschi, Giovanni; Salmaso, Bianca; Sironi, Giorgia; Spiga, Daniele; Tagliaferri, Giampiero; Vecchi, Gabriele; Zambra, Alberto; Parodi, Giancarlo; Martelli, Francesco; Gallieni, Daniele; Tintori, Matteo; Bavdaz, Marcos; Wille, Eric; Ferrario, Ivan; Burwitz, Vadim
2013-09-01
The Astronomical Observatory of Brera (INAF-OAB, Italy), with the financing support of the European Space Agency (ESA), has concluded a study regarding a glass shaping technology for the production of grazing incidence segmented x-ray optics. This technique uses a hot slumping phase, in which pressure is actively applied on thin glass foils being shaped, to form a cylindrical approximation of Wolter I x-ray segments, and a subsequent cold slumping phase, in which the final Wolter I profile is then freeze into the glass segments during their integration in elemental X-ray Optical Units. The final goal of this study was the manufacturing of a prototype containing a number of slumped pair plates (meaning parabola and hyperbola couples) having representative dimensions to be tested both in UV light and in x-rays at the Panter facility (Germany). In this paper, the INAF-OAB slumping technique, comprising a shaping step and an integration step is described, together with the results obtained on the manufactured prototype modules: the first prototype was aimed to test the ad-hoc designed and built semi-automatic Integration MAchine (IMA) and debug its control software. The most complete module comprises 40 slumped segments of Schott D263 glass type of dimension 200 mm x 200 mm and thickness of 0.4 mm, slumped on Zerodur K20 mould and stacked together through glued BK7 glass structural ribs to form the first entire x-ray optical module ever built totally composed by glass. A last prototype was aimed at demonstrate the use of Schott glass AF32 type instead of D263. In particular, a new hot slumping experimental set-up is described whose advantage is to permit a better contact between mould and glass during the shaping process. The integration procedure of the slumped segments into the elemental module is also reviewed.
1995-09-11
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the Russian-built Docking Module is lowered for installation into the payload bay of the space shuttle Atlantis while it is in bay 2 of the Orbiter Processing Facility. The module will fly as a primary payload on the second Space Shuttle/Mir space station docking mission, STS-74. During the mission, the module will first be attached with the orbiter's robot arm to the Orbiter Docking System in the payload bay of the orbiter Atlantis and then be docked with the Mir. When Atlantis undocks from the Mir, it will leave the new docking module permanently attached to the space station for use during future shuttle Mir docking missions. The new module will simplify future Shuttle linkups with Mir by improving orbiter clearances when it serves as a bridge between the two spacecraft. The white structures attached to the module's sides are solar panels that will be attached to the Mir after the conclusion of the STS-74 mission. Photo Credit: NASA
Proposal for an optical multicarrier generator based on single silicon micro-ring modulator
NASA Astrophysics Data System (ADS)
Bhowmik, Bishanka Brata; Gupta, Sumanta
2015-08-01
We propose an optical multicarrier generation technique using silicon micro-ring modulator (MRM) and analyze the scheme. Numerical studies have been done for three types MRMs having different power coupling coefficients. The proposed scheme is found to generate four optical carriers having 12.5 GHz spacing. According to simulation, the maximum side-mode-suppression ratio (SMSR) of ~16.3 dB with flatness of ~0.2 dB is achieved by using this scheme. The minimum extinction ratio (ER) of the generated carriers is found to be more than 35 dB. We also propose modulator driver circuit to generate RF signal, which is needed to generate multicarrier using MRM. The effect of coupling coefficient on the SMSR of the generated carriers is also investigated.
Ballistics Analysis of Orion Crew Module Separation Bolt Cover
NASA Technical Reports Server (NTRS)
Howard, Samuel A.; Konno, Kevin E.; Carney, Kelly S.; Pereira, J. Michael
2013-01-01
NASA is currently developing a new crew module to replace capabilities of the retired Space Shuttles and to provide a crewed vehicle for exploring beyond low earth orbit. The crew module is a capsule-type design, which is designed to separate from the launch vehicle during launch ascent once the launch vehicle fuel is expended. The separation is achieved using pyrotechnic separation bolts, wherein a section of the bolt is propelled clear of the joint at high velocity by an explosive charge. The resulting projectile must be contained within the fairing structure by a containment plate. This paper describes an analytical effort completed to augment testing of various containment plate materials and thicknesses. The results help guide the design and have potential benefit for future similar applications.
2001-06-05
This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101830, and TBD).
2001-06-05
This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830).
2001-06-05
This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. A larger image is available without labels (No. 0101755).
2001-06-05
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).
International Space Station (ISS)
2001-03-11
STS-102 mission astronaut Susan J. Helms works outside the International Space Station (ISS) while holding onto a rigid umbilical and her feet anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Helms in tandem with James S. Voss (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
International Space Station (ISS)
2001-03-11
STS-102 astronaut and mission specialist James S. Voss works outside Destiny, the U.S. Laboratory (shown in lower frame) on the International Space Station (ISS), while anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Voss in tandem with Susan Helms (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, the STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
STS-102 Astronaut James Voss Participates in Space Walk
NASA Technical Reports Server (NTRS)
2001-01-01
STS-102 astronaut and mission specialist James S. Voss works outside Destiny, the U.S. Laboratory (shown in lower frame) on the International Space Station (ISS), while anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Voss in tandem with Susan Helms (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, the STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
STS-102 Astronaut Susan Helms Participates in Space Walk
NASA Technical Reports Server (NTRS)
2001-01-01
STS-102 mission astronaut Susan J. Helms works outside the International Space Station (ISS) while holding onto a rigid umbilical and her feet anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Helms in tandem with James S. Voss (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
Space construction base support requirements for environmental control and life support systems
NASA Technical Reports Server (NTRS)
Thiele, R. J.; Secord, T. C.; Murphy, G. L.
1977-01-01
A Space Station analysis study is being performed for NASA which identifies cost-effective Space Station options that can provide a space facility capable of performing space construction, space manufacturing, cosmological research, earth services, and other functions. A space construction base concept for the construction of large structures, such as those needed to implement satellite solar power for earth usage, will be used as a basis for discussing requirements that impact the design selection, level of integration, and operation of environmental control and life support systems (ECLSS). The space construction base configuration also provides a basic Space Station facility that can accommodate biological manufacturing modules, ultrapure glasses manufacturing modules, and modules for other services in a building-block fashion. Examples of special problems that could dictate hardware required to augment the basic ECLSS for autonomous modules will be highlighted. Additionally, overall intravehicular (IVA) and extravehicular (EVA) activities and requirements that could impact the basic station ECLSS degree of closure are discussed.
Liulin-type spectrometry-dosimetry instruments.
Dachev, Ts; Dimitrov, Pl; Tomov, B; Matviichuk, Yu; Spurny, F; Ploc, O; Brabcova, K; Jadrnickova, I
2011-03-01
The main purpose of Liulin-type spectrometry-dosimetry instruments (LSDIs) is cosmic radiation monitoring at the workplaces. An LSDI functionally is a low mass, low power consumption or battery-operated dosemeter. LSDIs were calibrated in a wide range of radiation fields, including radiation sources, proton and heavy-ion accelerators and CERN-EC high-energy reference field. Since 2000, LSDIs have been used in the scientific programmes of four manned space flights on the American Laboratory and ESA Columbus modules and on the Russian segment of the International Space Station, one Moon spacecraft and three spacecraft around the Earth, one rocket, two balloons and many aircraft flights. In addition to relative low price, LSDIs have proved their ability to qualify the radiation field on the ground and on the above-mentioned carriers.
Unity connecting module viewed from above in the Space Station Processing Facility
NASA Technical Reports Server (NTRS)
1998-01-01
The Unity connecting module is viewed from above while it awaits processing in the Space Station Processing Facility (SSPF). On the side can be seen the connecting hatch. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station.
Space Station Freedom solar array panels plasma interaction test facility
NASA Technical Reports Server (NTRS)
Martin, Donald F.; Mellott, Kenneth D.
1989-01-01
The Space Station Freedom Power System will make extensive use of photovoltaic (PV) power generation. The phase 1 power system consists of two PV power modules each capable of delivering 37.5 KW of conditioned power to the user. Each PV module consists of two solar arrays. Each solar array is made up of two solar blankets. Each solar blanket contains 82 PV panels. The PV power modules provide a 160 V nominal operating voltage. Previous research has shown that there are electrical interactions between a plasma environment and a photovoltaic power source. The interactions take two forms: parasitic current loss (occurs when the currect produced by the PV panel leaves at a high potential point and travels through the plasma to a lower potential point, effectively shorting that portion of the PV panel); and arcing (occurs when the PV panel electrically discharges into the plasma). The PV solar array panel plasma interaction test was conceived to evaluate the effects of these interactions on the Space Station Freedom type PV panels as well as to conduct further research. The test article consists of two active solar array panels in series. Each panel consists of two hundred 8 cm x 8 cm silicon solar cells. The test requirements dictated specifications in the following areas: plasma environment/plasma sheath; outgassing; thermal requirements; solar simulation; and data collection requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, Jordan; Ansanelli, Eric; Henderson, Hugh
Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperaturemore » modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.« less
Officials welcome the arrival of the Japanese Experiment Module
2007-04-17
In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. Seen here at right are JAXA representatives, including Japanese astronaut Takao Doi (center of front row), who is a crew member for mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.
2003-08-27
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the U.S. Node 2 (center) and the Japanese Experiment Module (JEM), background right, await a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the International Space Station and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The National Space Development Agency of Japan (NASDA) developed their laboratory at the Tsukuba Space Center near Tokyo. It is the first element, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
Apollo Spacecraft 020 Command Module readied for mating with Service Module
1967-12-06
S68-17301 (6 Dec. 1967) --- Apollo Spacecraft 020 Command Module is hoisted into position for mating with Service Module in the Kennedy Space Center's Manned Spacecraft Operations Building. Spacecraft 020 will be flown on the Apollo 6 (Spacecraft 020/Saturn 502) unmanned, Earth-orbital space mission.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-120 Mission Specialists Michael Foreman (third from right) and STS-115 Mission Specialists Joseph Tanner (second from right) and Heidemarie Stefanyshyn-Piper (right) look over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. STS-115 will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. STS-120 will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.
2007-10-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew learn more about the mission payload, the Kibo Experiment Logistics Module Pressurized Section. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis
Research Possibilities Beyond Deep Space Gateway
NASA Astrophysics Data System (ADS)
Smitherman, D. V.; Needham, D. H.; Lewis, R.
2018-02-01
This abstract explores the possibilities for a large research facilities module attached to the Deep Space Gateway, using the same large module design and basic layout planned for the Deep Space Transport.
A clinical study of space closure with nickel-titanium closed coil springs and an elastic module.
Samuels, R H; Rudge, S J; Mair, L H
1998-07-01
A previous study has shown that a 150-gram nickel-titanium closed coil spring (Sentalloy, GAC International Inc.) closed spaces more quickly and more consistently than an elastic module (Alastik, Unitec/3M). This study used the same friction sensitive sliding mechanics of pitting the six anterior teeth against the second bicuspid and first molars, to examine the rate of space closure of 100-gram and 200-gram nickel-titanium closed coil springs. The results for the three springs and elastic module were compared. The nickel-titanium closed coil springs produced a more consistent space closure than the elastic module. The 150- and 200-gram springs produced a faster rate of space closure than the elastic module or the 100-gram spring. No significant difference was noted between the rates of closure for the 150- and the 200-gram springs.
Russian RSC Energia employees inspect DM in SSPF
NASA Technical Reports Server (NTRS)
1995-01-01
Employees of the Russian aerospace company RSC Energia prepare to conduct final inspections of the Russian-built Docking Module in the Space Station Processing Facility at KSC. The module will fly as a primary payload on the second Space Shuttle/Mir space station docking mission, STS-74, which is now scheduled for liftoff in the fall of 1995. During the mission, the module will first be attached with the orbiter's robot arm to the Orbiter Docking System (ODS) in the payload bay of the orbiter Atlantis and then be docked with the Mir. When Atlantis undocks from the Mir, it will leave the new docking module permanently attached to the space station for use during future Shuttle Mir docking missions. The new module will simplify future Shuttle linkups with Mir by improving orbiter clearances when it serves as a bridge between the two space vehicles.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, journalists and photographers ask Japanese astronaut Takao Doi about the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, that he will accompany on mission STS-123 to the International Space Station. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the logistics module. The logistics module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
Development of Japanese experiment module remote manipulator system
NASA Technical Reports Server (NTRS)
Matsueda, Tatsuo; Kuwao, Fumihiro; Motohasi, Shoichi; Okamura, Ryo
1994-01-01
National Space Development Agency of Japan (NASDA) is developing the Japanese Experiment Module (JEM), as its contribution to the International Space Station. The JEM consists of the pressurized module (PM), the exposed facility (EF), the experiment logistics module pressurized section (ELM-PS), the experiment logistics module exposed section (ELM-ES) and the Remote Manipulator System (RMS). The JEMRMS services for the JEM EF, which is a space experiment platform, consists of the Main Arm (MA), the Small Fine Arm (SFA) and the RMS console. The MA handles the JEM EF payloads, the SFA and the JEM element, such as ELM-ES.
Life sciences on-line: A study in hypermedia application
NASA Technical Reports Server (NTRS)
Christman, Linda A.; Hoang, Nam V.; Proctor, David R.
1990-01-01
The main objective was to determine the feasibility of using a computer-based interactive information recall module for the Life Sciences Project Division (LSPD) at NASA, Johnson Space Center. LSPD personnel prepare payload experiments to test and monitor physiological functions in zero gravity. Training refreshers and other types of online help are needed to support personnel in their tasks during mission testing and in flight. Results of a survey of other hypermedia and multimedia developers and lessons learned by the developer of the LSPD prototype module are presented. Related issues and future applications are also discussed and further hypermedia development within the LSPD is recommended.
NASA Technical Reports Server (NTRS)
Mccutchen, D. K.; Brose, J. F.; Palm, W. E.
1982-01-01
One nemesis of the structural dynamist is the tedious task of reviewing large quantities of data. This data, obtained from various types of instrumentation, may be represented by oscillogram records, root-mean-squared (rms) time histories, power spectral densities, shock spectra, 1/3 octave band analyses, and various statistical distributions. In an attempt to reduce the laborious task of manually reviewing all of the space shuttle orbiter wideband frequency-modulated (FM) analog data, an automated processing system was developed to perform the screening process based upon predefined or predicted threshold criteria.
International Space Station (ISS)
2001-02-16
The International Space Station (ISS), with its newly attached U.S. Laboratory, Destiny, was photographed by a crew member aboard the Space Shuttle Orbiter Atlantis during a fly-around inspection after Atlantis separated from the Space Station. The Laboratory is shown in the foreground of this photograph. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
Successful Space Flight of High-Speed InGaAs Photodiode Onboard the International Space Station
NASA Technical Reports Server (NTRS)
Joshi, Abhay; Prasad, Narasimha; Datta, Shubbashish
2017-01-01
Photonic systems are required for several space applications, including satellite communication links and lidar sensors. Although such systems are ubiquitous in terrestrial applications, deployment in space requires the constituent components to withstand extreme environmental conditions, including wide operating temperature range, mechanical shock and vibration, and radiation. These conditions are significantly more stringent than alternative standards, namely Bellcore GR-468 and MIL-STD 883, which may be satisfied by typical, commercially available, photonic components. Furthermore, it is very difficult to simultaneously reproduce several aspects of space environment, including exposure to galactic cosmic rays (GCR), in a laboratory. Therefore, it is necessary to operate key photonic components in space to achieve a technology readiness level of 7 and beyond. Accordingly, the International Space Station (ISS) provides an invaluable test bed for qualifying such components for space missions. We present a fiber-pigtailed photodiode module, having a -3 dB bandwidth of 16.8 GHz, that survived 18 months on the ISS as part of the Materials International Space Station Experiment (MISSE) 7 mission. This module was launched by NASA Langley Research Center on November 16, 2009 on the Space Shuttle Atlantis (STS-129), as part of their lidar transceiver components. While orbiting on the ISS in a passive experiment container, the photodiode module was exposed to extreme temperature cycling from -157 degrees Celsius to +121 degrees Celsius 16 times a day, proton radiation from the inner Van Allen belt at the South Atlantic Anomaly, and galactic cosmic rays. The module returned to Earth on the Space Shuttle Endeavor (STS-134) on June 1, 2011 for further characterization. The post flight test of the photodiode module, shown in Fig. 1a, demonstrates no change in the module's performance, thus proving its survivability during launch and in space environment.
The payload canister leaves the O&C with the Joint Airlock Module inside
NASA Technical Reports Server (NTRS)
2000-01-01
The payload canister, with the Joint Airlock Module inside, backs out of the Operations and Checkout Building for a short trip to the Space Station Processing Facility. There the module will undergo more preflight processing for the STS-104 mission scheduled for launch aboard Space Shuttle Atlantis May 17, 2001. The Joint Airlock Module is the gateway from which crew members aboard the International Space Station will enter and exit the 470-ton orbiting research facility.
International Space Station (ISS)
2003-03-08
The Space Shuttle Discovery, STS-102 mission, clears launch pad 39B at the Kennedy Space Center as the sun peers over the Atlantic Ocean on March 8, 2001. STS-102's primary cargo was the Leonardo, the Italian Space Agency built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall flight and the eighth assembly flight, STS-102 was also the first flight involved with Expedition Crew rotation. The Expedition Two crew was delivered to the station while Expedition One was returned home to Earth.
International Space Station (ISS)
2001-03-08
STS-102 astronaut and mission specialist, Andrew S.W. Thomas, gazes through an aft window of the Space Shuttle Orbiter Discovery as it approaches the docking bay of the International Space Station (ISS). Launched March 8, 2001, STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
Development of Mirror Modules for the ART-XC Instrument
NASA Technical Reports Server (NTRS)
Gubarev, M.; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Lapshov, I.
2012-01-01
The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART -XC instrument on board the Spectrum-Roentgen-Gamma Mission under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) ART-XC will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Currently, four of the modules are being fabricated by the Marshall Space Flight Center (MSFC.) Each MSFC module provides an effective area of 65 cm2 at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. We will present a status of the ART x-ray module development at MSFC.
NASA Astrophysics Data System (ADS)
Withers, Ray L.; Höche, Thomas; Liu, Yun; Esmaeilzadeh, Saeid; Keding, Ralf; Sales, Brian
2004-10-01
High-purity Rb2V3O8 has been grown and temperature-dependent electron and single-crystal X-ray diffraction used to carefully investigate its fresnoite-type reciprocal lattice. In contrast to other recently investigated representatives of the fresnoite family of compounds, Rb2V3O8 is not incommensurately modulated with an incommensurate basal plane primary modulation wave vector given by q∼0.3 <110>*. A careful low-temperature electron diffraction study has, however, revealed the existence of weak incommensurate satellite reflections characterized by the primitive primary modulation wave vector q1∼0.16c*. The reciprocal space positioning of these incommensurate satellite reflections, the overall (3+1)-d superspace group symmetry, as well as the shapes of the refined displacement ellipsoids determined from single-crystal XRD refinement, are all consistent with their arising from a distinct type of condensed rigid unit modes (RUMs) of distortion of the Rb2V3O8 parent structure.
Apollo 10 astronauts in space suits in front of Command Module
NASA Technical Reports Server (NTRS)
1968-01-01
Three astronauts named as the prime crew of the Apollo 10 space mission. Left to right, are Eugene A. Cernan, lunar module pilot; John W. Young, command module pilot; and Thomas P. Stafford, commander.
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. A larger image is available without labels (No. 0101755).
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101830, and TBD).
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830).
2001-06-05
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Here the transparent furnace is extracted for servicing. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).
A panoramic view of the Space Station Processing Facility with Unity connecting module
NASA Technical Reports Server (NTRS)
1998-01-01
In this panoramic view of the Space Station Processing Facility (SSPF) can be seen (left to right) Unity connecting module, the Rack Insertion Device and the first Multi-Purpose Launch Module, the Leonardo. Windows at the right above Leonardo allow visitors on tour to watch the activities in the SSPF. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station. The Italian-built MPLM, scheduled to be launched on STS-100 on Dec. 2, 1999, will be carried in the payload bay of the Shuttle orbiter, and will provide storage and additional work space for up to two astronauts when docked to the International Space Station.
Space station group activities habitability module study
NASA Technical Reports Server (NTRS)
Nixon, David
1986-01-01
This study explores and analyzes architectural design approaches for the interior of the Space Station Habitability Module (originally defined as Habitability Module 1 in Space Station Reference Configuration Decription, JSC-19989, August 1984). In the Research Phase, architectural program and habitability design guidelines are specified. In the Schematic Design Phase, a range of alternative concepts is described and illustrated with drawings, scale-model photographs and design analysis evaluations. Recommendations are presented on the internal architectural, configuration of the Space Station Habitability Module for such functions as the wardroom, galley, exercise facility, library and station control work station. The models show full design configurations for on-orbit performance.
Numeric invariants from multidimensional persistence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skryzalin, Jacek; Carlsson, Gunnar
2017-05-19
In this paper, we analyze the space of multidimensional persistence modules from the perspectives of algebraic geometry. We first build a moduli space of a certain subclass of easily analyzed multidimensional persistence modules, which we construct specifically to capture much of the information which can be gained by using multidimensional persistence over one-dimensional persistence. We argue that the global sections of this space provide interesting numeric invariants when evaluated against our subclass of multidimensional persistence modules. Lastly, we extend these global sections to the space of all multidimensional persistence modules and discuss how the resulting numeric invariants might be usedmore » to study data.« less
International Space Station (ISS)
2001-03-01
A crewmember of Expedition One, cosmonaut Yuri P. Gidzenko, is dwarfed by transient hardware aboard Leonardo, the Italian Space Agency-built Multi-Purpose Logistics Module (MPLM), a primary cargo of the STS-102 mission. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS's) moving vans, carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo into 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth Shuttle mission to visit the ISS, the STS-102 mission served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
1970-01-01
As part of the Space Task Group's recommendations for more commonality and integration in America's space program, Marshall Space Flight Center engineers proposed the use of a Nuclear Shuttle in conjunction with a space station module, illustrated in this 1970 artist's concept, as the basis for a Mars excursion module.
NASA Technical Reports Server (NTRS)
Perez, Hector P.
2010-01-01
The Multi-Purpose Logistics Module (MPLM) are pressurized modules for transporting equipment, supplies and experimental devices to and from the International Space Station (ISS). An MPLM is carried in the cargo bay of a Shuttle and attached to the Unity or Harmony modules on the ISS for the duration of a mission, usually about 10 days. From there, supplies are offloaded, and finished experiments and waste are reloaded. The MPLM is then returned to the Space Shuttle payload bay for return to Earth. Three modules were built, Leonardo, Raffaello and Donatello. The modules were provided to NASA under contract by the Italian Space Agency. Each MPLM was built to be on-orbit a maximum of one month at a time. The MPLM Leonardo is being modified to turn it into the Pressurized Multipurpose Module (PMM), which will remain permanently attached to the ISS following the STS- 133 mission. The Space Shuttle is the only vehicle or rocket that has the capacity to carry the MPLM to the ISS. With the planned retirement of the Space Shuttle in 2011, NASA has found another use for the MPLM. With the modifications of the MPLM into a PMM the ISS will have another permanent module as part of the ISS that will be used as a storage module
NASA Technical Reports Server (NTRS)
Woolford, Barbara J.; Mount, Frances
2005-01-01
After forty years of experience with human space flight (Table 1), the current emphasis is on the design of space vehicles, habitats, and missions to ensure mission success. What lessons have we learned that will affect the design of spacecraft for future space exploration, leading up to exploring Mars? This chapter addresses this issue in four sections: Anthropometry and Biomechanics; Environmental Factors; Habitability and Architecture; and Crew Personal Sustenance. This introductory section introduces factors unique to space flight. A unique consideration for design of a habitable volume in a space vehicle is the lack of gravity during a space flight, referred to as microgravity. This affects all aspects of life, and drives special features in the habitat, equipment, tools, and procedures. The difference in gravity during a space mission requires designing for posture and motion differences. In Earth s gravity, or even with partial gravity, orientation is not a variable because the direction in which gravity acts defines up and down. In a microgravity environment the working position is arbitrary; there is no gravity cue. Orientation is defined primarily through visual cues. The orientation within a particular crew station or work area is referred to as local vertical, and should be consistent within a module to increase crew productivity. Equipment was intentionally arranged in various orientations in one module on Skylab to assess the efficiency in use of space versus the effects of inconsistent layout. The effects of that arrangement were confusion on entering the module, time spent in re-orientation, and conflicts in crew space requirements when multiple crew members were in the module. Design of a space vehicle is constrained by the three major mission drivers: mass, volume and power. Each of these factors drives the cost of a mission. Mass and volume determine the size of the launch vehicle directly; they can limit consumables such as air, water, and propellant; and they impact crew size and the types of activities the crew performs. Power is a limiting factor for a space vehicle. All environmental features (e.g., atmosphere, temperature, lighting) require power to maintain them. Power can be generated from batteries, from fuel cells, or from solar panels. Each of these sources requires lifting mass and volume from Earth, driving mission cost. All engineering decisions directly impact the design for habitation design and usage. For instance, if fuel cells are used they produce water, which is used for drinking and food preparation. If a different power source is used water has to be carried and stored on the vehicle which then directly impacts the food system choice as well as the launch weight of the vehicle.
1970-01-01
Managed by Marshall Space Flight Center, the Space Tug was a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug was capable of numerous space applications. This 1970 artist's concept depicts the Tug's propulsion module launching a space probe into lunar orbit.
Concepts for the evolution of the Space Station Program
NASA Technical Reports Server (NTRS)
Michaud, Roger B.; Miller, Ladonna J.; Primeaux, Gary R.
1986-01-01
An evaluation is made of innovative but pragmatic waste management, interior and exterior orbital module construction, Space Shuttle docking, orbital repair operation, and EVA techniques applicable to the NASA Space Station program over the course of its evolution. Accounts are given of the Space Shuttle's middeck extender module, an on-orbit module assembly technique employing 'Pringles' stack-transportable conformal panels, a flexible Shuttle/Space Station docking tunnel, an 'expandable dome' for transfer of objects into the Space Station, and a Space Station dual-hatch system. For EVA operations, pressurized bubbles with articulating manipulator arms and EVA hard suits incorporating maneuvering, life support and propulsion capabilities, as well as an EVA gas propulsion system, are proposed. A Space Station ultrasound cleaning system is also discussed.
STS-102 Onboard Photograph-Multi-Purpose Logistics Module, Leonardo
NASA Technical Reports Server (NTRS)
2001-01-01
A crewmember of Expedition One, cosmonaut Yuri P. Gidzenko, is dwarfed by transient hardware aboard Leonardo, the Italian Space Agency-built Multi-Purpose Logistics Module (MPLM), a primary cargo of the STS-102 mission. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS's) moving vans, carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo into 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth Shuttle mission to visit the ISS, the STS-102 mission served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
International Space Station (ISS)
2001-02-10
Cosmonaut Yuri P. Gidzenko, Expedition One Soyuz commander, stands near the hatch leading from the Unity node into the newly-attached Destiny laboratory aboard the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S.-built Unity module was launched aboard the Orbiter Endeavour (STS-88 mission) on December 4, 1998, and connected to Zarya, the Russian-built Functional Cargo Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity in space. The Destiny Module was launched aboard the Space Shuttle Orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, astronaut Takao Doi (left) and Commander Dominic Gorie pose in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, that recently arrived at Kennedy. Doi and Gorie are crew members for mission STS-123 that will deliver the logistics module to the International Space Station. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, astronaut Takao Doi (left) and Commander Dominic Gorie pose in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, that recently arrived at Kennedy. Doi and Gorie are crew members for mission STS-123 that will deliver the logistics module to the International Space Station. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
View of Apollo 15 space vehicle on way from VAB to Pad A, Launch Complex 39
1971-05-11
S71-33781 (11 May 1971) --- High angle view showing the Apollo 15 (Spacecraft 112/Lunar Module 10/Saturn 510) space vehicle on the way from the Vehicle Assembly Building (VAB) to Pad A, Launch Complex 39, Kennedy Space Center (KSC). The Saturn V stack and its mobile launch tower are atop a huge crawler-transporter. Apollo 15 is scheduled as the fourth manned lunar landing mission by the National Aeronautics and Space Administration (NASA). The crew men will be astronauts David R. Scott, commander; Alfred M. Worden, command module pilot; and James B. Irwin, lunar module pilot. While astronauts Scott and Irwin descend in the Lunar Module (LM) to explore the moon, astronaut Worden will remain with the Command and Service Modules (CSM) in lunar orbit.
International Space Station (ISS)
2001-03-13
Astronaut Paul W. Richards, STS-102 mission specialist, works in the cargo bay of the Space Shuttle Discovery during the second of two scheduled space walks. Richards, along with astronaut Andy Thomas, spent 6.5 hours outside the International Space Station (ISS), continuing work to outfit the station and prepare for delivery of its robotic arm. STS-102 delivered the first Multipurpose Logistics Modules (MPLM) named Leonardo, which was filled with equipment and supplies to outfit the U.S. Destiny Laboratory Module. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
STS-102 Astronaut Paul Richards Participates in Space Walk
NASA Technical Reports Server (NTRS)
2001-01-01
Astronaut Paul W. Richards, STS-102 mission specialist, works in the cargo bay of the Space Shuttle Discovery during the second of two scheduled space walks. Richards, along with astronaut Andy Thomas, spent 6.5 hours outside the International Space Station (ISS), continuing work to outfit the station and prepare for delivery of its robotic arm. STS-102 delivered the first Multipurpose Logistics Modules (MPLM) named Leonardo, which was filled with equipment and supplies to outfit the U.S. Destiny Laboratory Module. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
Combustion Module-2 Achieved Scientific Success on Shuttle Mission STS-107
NASA Technical Reports Server (NTRS)
Over, Ann P.
2004-01-01
The familiar teardrop shape of a candle is caused by hot, spent air rising and cool fresh air flowing behind it. This type of airflow obscures many of the fundamental processes of combustion and is an impediment to our understanding and modeling of key combustion controls used for manufacturing, transportation, fire safety, and pollution. Conducting experiments in the microgravity environment onboard the space shuttles eliminates these impediments. NASA Glenn Research Center's Combustion Module-2 (CM-2) and its three experiments successfully flew on STS-107/Columbia in the SPACEHAB module and provided the answers for many research questions. However, this research also opened up new questions. The CM-2 facility was the largest and most complex pressurized system ever flown by NASA and was a precursor to the Glenn Fluids and Combustion Facility planned to fly on the International Space Station. CM-2 operated three combustion experiments: Laminar Soot Processes (LSP), Structure of Flame Balls at Low Lewis-Number (SOFBALL), and Water Mist Fire Suppression Experiment (Mist). Although Columbia's mission ended in tragedy with the loss of her crew and much data, most of the CM-2 results were sent to the ground team during the mission.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), points to data on the console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.
2003-09-03
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), stands inside the Japanese Experiment Module (JEM) that is undergoing a Multi-Element Integrated Test (MEIT) with the U.S. Node 2. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.
2003-06-03
KENNEDY SPACE CENTER, FLA. - An overhead crane in the Space Station Processing Facility lifts the U.S. Node 2 out of its shipping container. The node will be moved to a workstand. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.
Exercise of the SSM/PMAD Breadboard. [Space Station Module/Power Management And Distribution
NASA Technical Reports Server (NTRS)
Walls, Bryan
1989-01-01
The Space Station Module Power Management and Distribution (SSM/PMAD) Breadboard is a test facility designed for advanced development of space power automation. Originally designed for 20-kHz power, the system is being converted to work with direct current (dc). Power levels are on a par with those expected for a Space Station module. Some of the strengths and weaknesses of the SSM/PMAD system in design and function are examined, and the future directions foreseen for the system are outlined.
High-efficiency GaAs solar concentrator cells for space and terrestrial applications
NASA Technical Reports Server (NTRS)
Hamaker, H. C.; Werthen, J. G.; Ford, C. W.; Virshup, G. F.; Kaminar, N. R.
1986-01-01
High-efficiency Al(x)Ga(1-x)As/GaAs heteroface solar concentrator cells have been developed for both space and terrestrial applications. The cells, which were grown using metalorganic chemical vapor deposition, have been fabricated in both the p-n and n-p configurations. Magnesium and zinc are used as p-type dopants, and Se is used as the n-type dopant. The space cells, which are designed for use in a Cassegrainian concentrator operating at 100 suns, AMO, have a circular illuminated area 4 mm in diameter on a 5 mm x 5 mm cell. These cells have exhibited flash-tested efficiencies as high as 23.6 percent at 28 C and 21.6 percent at 80 C. The terrestrial cells have a circular illuminated area 0.2 inches in diameter and are intended for use in a module which operates at 940 suns, AM1.5. These cells have shown a peak efficiency of 26 percent at 753 suns and over 25 percent at greater than 1000 suns.
Thermal breeder fuel enrichment zoning
Capossela, Harry J.; Dwyer, Joseph R.; Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.
1992-01-01
A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Alan Thirkettle (center), International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
Concept of adaptability in space modules.
Cooper, M
1990-10-01
The space program is aiming towards the permanent use of space; to build and establish an orbital space station, a Moon base and depart to Mars and beyond. We must look after the total independency from the Earth's natural resources and work in the design of a modular space base in which each module is capable of duplicating one natural process, and that all these modules in combination take us to conceive a space base capable of sustaining life. Every area of human knowledge must be involved. This modular concept will let us see other space goals as extensions of the primary project. The basic technology has to be defined, then relatively minor adjustments will let us reach new objectives such as a first approach for a lunar base and for a Mars manned mission. This concept aims towards an open technology in which standards and recommendations will be created to assemble huge space bases and spaceships from specific modules that perform certain functions, that in combination will let us reach the status of permanent use and exploration of space.
Work continues on Destiny, the U.S. Lab module, in the Space Station Processing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
In the Space Station Processing Facility (SSPF), work continues on the U.S. Lab module, Destiny, which is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Destiny shares space in the SSPF with the Shuttle Radar Topography Mission (SRTM) and Leonardo, the Multipurpose Logistics Module (MPLM) built by the Agenzia Spaziale Italiana (ASI). The SRTM is targeted for launch on mission STS-99 in September 1999. Leonardo is scheduled to launch on mission STS- 102 in June 2000.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. Seen here at right are JAXA representatives, including Japanese astronaut Takao Doi (center of front row), who is a crew member for mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
2003-06-18
KENNEDY SPACE CENTER, FLA. - Lisa Malone, deputy director of External Relations and Business Development at KSC, emcees a ceremony in the Space Station Processing Facility to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Speakers at the ceremony included KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. The signing was part of a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
International Space Station (ISS)
1997-07-20
Photograph shows the International Space Station Laboratory Module under fabrication at Marshall Space Flight Center (MSFC), Building 4708 West High Bay. Although management of the U.S. elements for the Station were consolidated in 1994, module and node development continued at MSFC by Boeing Company, the prime contractor for the Space Station.
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD). This image is from a digital still camera; higher resolution is not available.
2001-06-05
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, and TBD). This composite is from a digital still camera; higher resolution is not available.
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Here the transparent furnace is extracted for servicing. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).
2001-06-05
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD). This image is from a digital still camera; higher resolution is not available.
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, and TBD). This composite is from a digital still camera; higher resolution is not available.
2003-09-24
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata looks over the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
2003-09-24
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians on the floor watch as a tray is extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
2007-03-15
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility, William Gerstenmaier, NASA's associate administrator for Space Operations, talks to members of the media during a ceremony to unveil the Node 2 module's new name, Harmony. The name, Harmony, was chosen from an academic competition involving thousands of students in kindergarten through high school. The Node 2 Challenge required students to learn about the International Space Station, build a scale model of the module, and write an essay explaining their proposed name. This will be the first U.S. piece of the space station named by someone other than a NASA official. Node 2 is a pressurized module that will act as a connecting port and passageway to additional international science labs and supply spacecraft. It also will be a work platform for the station's robotic arm. The module is scheduled to fly on mission STS-120 aboard Space Shuttle Atlantis targeted for later this year. Photo credit: NASA/Jim Grossmann
2007-10-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew get hands-on experience with the mission payload, the Kibo Experiment Logistics Module Pressurized Section. They are at the center for a crew equipment interface test, which allows familiarization with equipment they will use during the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis
2007-10-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew get hands-on experience with the mission payload, the Kibo Experiment Logistics Module Pressurized Section. They are at the center for a crew equipment interface test, which allows familiarization with equipment they will use during the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis
2007-10-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew learn more about the mission payload, the Kibo Experiment Logistics Module Pressurized Section. They are at the center for a crew equipment interface test, which allows familiarization with equipment they will use during the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis
Evans, S; Lewis, H; Williamsen, J; Evans, H; Bohl, W
2004-01-01
Orbital debris impacts on the International Space Station occur frequently. To date, none of the impacting particles has been large enough to penetrate manned pressurized volumes. We used the Manned Spacecraft Crew Survivability code to evaluate the risk to crew of penetrations of pressurized modules at two assembly stages: after Flight 1J, when the pressurized elements of Kibo, the Japanese Experiment Module, are present, and after Flight 1E, when the European Columbus Module is present. Our code is a Monte-Carlo simulation of impacts on the Station that considers several potential event types that could lead to crew loss. Among the statistics tabulated by the program is the probability of death of one or more crew members in the event of a penetration, expressed as the risk factor, R. This risk factor is dependent on details of crew operations during both ordinary circumstances and decompression emergencies, as well as on details of internal module configurations. We conducted trade studies considering these procedure and configuration details to determine the bounds on R at the 1J and 1E stages in the assembly sequence. Here we compare the R-factor bounds, and procedures could that reduce R at these stages. Published by Elsevier Ltd on behalf of COSPAR.
NASA Technical Reports Server (NTRS)
Evans, S.; Lewis, H.; Williamsen, J.; Evans, H.; Bohl, W.
2004-01-01
Orbital debris impacts on the International Space Station occur frequently. To date, none of the impacting particles has been large enough to penetrate manned pressurized volumes. We used the Manned Spacecraft Crew Survivability code to evaluate the risk to crew of penetrations of pressurized modules at two assembly stages: after Flight 1J, when the pressurized elements of Kibo, the Japanese Experiment Module, are present, and after Flight 1E, when the European Columbus Module is present. Our code is a Monte-Carlo simulation of impacts on the Station that considers several potential event types that could lead to crew loss. Among the statistics tabulated by the program is the probability of death of one or more crew members in the event of a penetration, expressed as the risk factor, R. This risk factor is dependent on details of crew operations during both ordinary circumstances and decompression emergencies, as well as on details of internal module configurations. We conducted trade studies considering these procedure and configuration details to determine the bounds on R at the 1J and 1E stages in the assembly sequence. Here we compare the R-factor bounds, and procedures could that reduce R at these stages. Published by Elsevier Ltd on behalf of COSPAR.
A feasibility assessment of magnetic bearings for free-piston Stirling space power converters
NASA Technical Reports Server (NTRS)
Curwen, Peter W.; Rao, Dantam K.; Wilson, Donald R.
1992-01-01
This report describes a design and analysis study performed by Mechanical Technology Incorporated (MTI) under NASA Contract NAS3-26061. The objective of the study was to assess the feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery of the type currently being evaluated for possible use in long-term space missions. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) system consisting of two 25-kWe free-piston Stirling engine modules. Two different versions of the RSSPC engine modules have been defined under NASA Contract NAS3-25463. These modules currently use hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Results of this study show that active magnetic bearings of the attractive electromagnetic type are technically feasible for RSSPC application provided that wire insulation with 60,000-hr life capability at 300 C can be developed for the bearing coils. From a design integration standpoint, both versions of the RSSPC were found to be conceptually amenable to magnetic support of the power piston assembly. However, only one version of the RSSPC was found to be amendable to magnetic support of the displacer assembly. Unacceptable changes to the basic engine design would be required to incorporate magnetic displacer bearings into the second version. Complete magnetic suspension of the RSSPC can potentially increase overall efficiency of the Stirling cycle power converter by 0.53 to 1.4 percent (0.15 to 0.4 efficiency points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. However, these advantages are accompanied by a 5 to 8 percent increase in specific mass of the RSSPC, depending on the RSSPC version employed. Additionally, magnetic bearings are much more complex, both mechanically and particularly electronically, than hydrostatic bearings. Accordingly, long-term stability and reliability represent areas of uncertainty for magnetic bearings. Considerable development effort will be required to establish the long-term suitability of these bearings for Stirling space power applications.
The Joint Airlock Module is moved to a payload canister in the O&C
NASA Technical Reports Server (NTRS)
2000-01-01
The Joint Airlock Module is suspended by an overhead crane in the Operations and Checkout Building before being moved and placed into the payload canister for transfer to the Space Station Processing Facility. There the module will undergo more preflight processing for the STS-104 mission scheduled for launch aboard Space Shuttle Atlantis May 17, 2001. The Joint Airlock Module is the gateway from which crew members aboard the International Space Station will enter and exit the 470-ton orbiting research facility.
SPACEHAB module is placed in payload canister in SSPF
NASA Technical Reports Server (NTRS)
2000-01-01
Workers in the Space Station Processing Facility check the progress of the SPACEHAB module as it is lowered toward the payload canister below. The module, part of the payload on mission STS-106, will be placed in the payload canister for transport to the launch pad. STS-106 is scheduled to launch Sept. 8 at 8:31 a.m. EDT. During the mission to the International Space Station, the crew will complete service module support tasks on orbit, transfer supplies and outfit the Space Station for the first long-duration crew.
European Service Module-Structural Test Article Load onto Transp
2017-06-21
The Orion service module structural test article for Exploration Mission-1 (EM-1), built by the European Space Agency, is prepared for shipment to Lockheed Martin's Denver facility to undergo testing. Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, workers secure the protective covering around the module and a crane lifts the module, secured on stand, for the move to the transport truck. The Orion spacecraft will launch atop the agency's Space Launch System rocket on EM-1 in 2019.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Scott Higginbotham, payload manager for the International Space Station, discusses the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module (JEM), with Dr. Hidetaka Tanaka, the JEM Project Team resident manager at KSC for the Japanese Aerospace and Exploration Agency (JAXA). Earlier, NASA and JAXA officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
Dynamic loading and stress life analysis of permanent space station modules
NASA Astrophysics Data System (ADS)
Anisimov, A. V.; Krokhin, I. A.; Likhoded, A. I.; Malinin, A. A.; Panichkin, N. G.; Sidorov, V. V.; Titov, V. A.
2016-11-01
Some methodological approaches to solving several key problems of dynamic loading and structural strength analysis of Permanent Space Station (PSS)modules developed on the basis of the working experience of Soviet and Russian PSS and the International Space station (ISS) are presented. The solutions of the direct and semi-inverse problems of PSS structure dynamics are mathematically stated. Special attention is paid to the use of the results of ground structural strength tests of space station modules and the data on the actual flight actions on the station and its dynamic responses in the orbital operation regime. The procedure of determining the dynamics and operation life parameters of elements of the PSS modules is described.
Post-Flight Test Results of Seed Laser Module Subjected to Space Exposure. Paper No. 8876-9
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.
2013-01-01
The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 module was brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in space environment for more than one and a half year included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the results of performance testing of a laser diode module sent by NASA Langley Research Center on MISSE 7 mission will be discussed. This paper will present the comparison of pre-flight and post-flight performance curves and discuss the effect of space exposure on the laser diode module. Preliminary findings on output power measurements show that the COTS laser diode characteristics did not undergo any significant performance degradation.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), stands next to the Japanese Experiment Module after its arrival at Port Canaveral, Fla. Built by the Tsukuba Space Center near Tokyo, the pressurized module is the first element of the JEM, Japans primary contribution to the space station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. The JEM also includes two logistics modules, an exposed pallet for space environment experiments and a robotic manipulator system that are still under construction in Japan. The various JEM components will be assembled in space over the course of three space shuttle missions.
View of Apollo 15 space vehicle leaving VAB to Pad A, Launch Complex 39
1971-05-11
S71-33786 (11 May 1971) --- The 363-feet tall Apollo (Spacecraft 112/Lunar Module 10/Saturn 510) space vehicle which leaves the Vehicle Assembly Building (VAB) to Pad A, Launch Complex 39, Kennedy Space Center (KSC). The Saturn V stack and its mobile launch tower are atop a huge crawler-transporter. Apollo 15 is scheduled as the fourth manned lunar landing mission by the National Aeronautics and Space Administration (NASA) and is scheduled to lift off on July 26, 1971. The crew men will be astronauts David R. Scott, commander; Alfred M. Worden, command module pilot; and James B. Irwin, lunar module pilot. While astronaut Scott and Irwin will descend in the Lunar Module (LM) to explore the moon, astronaut Worden will remain with the Command and Service Modules (CSM) in lunar orbit.
Space Experiment Module: A new low-cost capability for education payloads
NASA Technical Reports Server (NTRS)
Goldsmith, Theodore C.; Lewis, Ruthan
1995-01-01
The Space Experiment Module (SEM) concept is one of a number of education initiatives being pursued by the NASA Shuttle Small Payloads Project (SSPP) in an effort to increase educational access to space by means of Space Shuttle Small Payloads and associated activities. In the SEM concept, NASA will provide small containers ('modules') which can accommodate small zero-gravity experiments designed and constructed by students. A number, (nominally ten), of the modules will then be flown in an existing Get Away Special (GAS) carrier on the Shuttle for a flight of 5 to 10 days. In addition to the module container, the NASA carrier system will provide small amounts of electrical power and a computer system for controlling the operation of the experiments and recording experiment data. This paper describes the proposed SEM carrier system and program approach.
International Space Station (ISS)
2001-02-11
This STS-98 mission photograph shows astronauts Thomas D. Jones (foreground) and Kerneth D. Cockrell floating inside the newly installed Laboratory aboard the International Space Station (ISS). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
Wayne, Chris J; Velayudhan, Ajoy
2018-03-31
For proteins and other biological macromolecules, SMB chromatography is best operated non-isocratically. However, traditional modes of non-isocratic SMB operation generate significant mobile-phase modulator dynamics. The mechanisms by which these modulator dynamics affect a separation's success, and thus frame the design space, have yet to be explained quantitatively. Here, the dynamics of the modulator (e.g., salts in ion exchange and hydrophobic interaction chromatography) are explicitly accounted for. This leads to the elucidation of two new design constraints, presented as dimensionless numbers, which quantify the effects of the modulator phenomena and thus predict the success of a non-isocratic SMB separation. Consequently, these two new design constraints re-define the SMB design space. Computational and experimental studies at the boundaries of this design space corroborate the theoretical predictions. The design of efficient and robust operating conditions through use of the new design space is also demonstrated. © 2018 The Authors. Biotechnology Journal Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Variable Coding and Modulation Experiment Using NASA's Space Communication and Navigation Testbed
NASA Technical Reports Server (NTRS)
Downey, Joseph A.; Mortensen, Dale J.; Evans, Michael A.; Tollis, Nicholas S.
2016-01-01
National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques in an operational system. The experimental nature of the Testbed allows for rapid demonstrations while using flight hardware in a deployed system within NASA's networks. One example is variable coding and modulation, which is a method to increase data-throughput in a communication link. This paper describes recent flight testing with variable coding and modulation over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options. The experiment was conducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Performance of the variable coding and modulation system is evaluated and compared to the capacity of the link, as well as standard NASA waveforms.
Work continues on Leonardo, the Multi-Purpose Logistics Module, in the Space Station Processing Faci
NASA Technical Reports Server (NTRS)
1999-01-01
Workers in the Space Station Processing Facility work on Leonardo, the Multipurpose Logistics Module (MPLM) built by the Agenzia Spaziale Italiana (ASI). The MPLM, a reusable logistics carrier, will be the primary delivery system used to resupply and return International Space Station cargo requiring a pressurized environment. Leonardo is the first of three MPLM carriers for the International Space Station. It is scheduled to be launched on Space Shuttle Mission STS-102, targeted for June 2000. Leonardo shares space in the SSPF with the Shuttle Radar Topography Mission (SRTM), targeted for launch in September 1999, and Destiny, the U.S. Lab module, targeted for mission STS-98 in late April 2000.
GRASS GIS: The first Open Source Temporal GIS
NASA Astrophysics Data System (ADS)
Gebbert, Sören; Leppelt, Thomas
2015-04-01
GRASS GIS is a full featured, general purpose Open Source geographic information system (GIS) with raster, 3D raster and vector processing support[1]. Recently, time was introduced as a new dimension that transformed GRASS GIS into the first Open Source temporal GIS with comprehensive spatio-temporal analysis, processing and visualization capabilities[2]. New spatio-temporal data types were introduced in GRASS GIS version 7, to manage raster, 3D raster and vector time series. These new data types are called space time datasets. They are designed to efficiently handle hundreds of thousands of time stamped raster, 3D raster and vector map layers of any size. Time stamps can be defined as time intervals or time instances in Gregorian calendar time or relative time. Space time datasets are simplifying the processing and analysis of large time series in GRASS GIS, since these new data types are used as input and output parameter in temporal modules. The handling of space time datasets is therefore equal to the handling of raster, 3D raster and vector map layers in GRASS GIS. A new dedicated Python library, the GRASS GIS Temporal Framework, was designed to implement the spatio-temporal data types and their management. The framework provides the functionality to efficiently handle hundreds of thousands of time stamped map layers and their spatio-temporal topological relations. The framework supports reasoning based on the temporal granularity of space time datasets as well as their temporal topology. It was designed in conjunction with the PyGRASS [3] library to support parallel processing of large datasets, that has a long tradition in GRASS GIS [4,5]. We will present a subset of more than 40 temporal modules that were implemented based on the GRASS GIS Temporal Framework, PyGRASS and the GRASS GIS Python scripting library. These modules provide a comprehensive temporal GIS tool set. The functionality range from space time dataset and time stamped map layer management over temporal aggregation, temporal accumulation, spatio-temporal statistics, spatio-temporal sampling, temporal algebra, temporal topology analysis, time series animation and temporal topology visualization to time series import and export capabilities with support for NetCDF and VTK data formats. We will present several temporal modules that support parallel processing of raster and 3D raster time series. [1] GRASS GIS Open Source Approaches in Spatial Data Handling In Open Source Approaches in Spatial Data Handling, Vol. 2 (2008), pp. 171-199, doi:10.1007/978-3-540-74831-19 by M. Neteler, D. Beaudette, P. Cavallini, L. Lami, J. Cepicky edited by G. Brent Hall, Michael G. Leahy [2] Gebbert, S., Pebesma, E., 2014. A temporal GIS for field based environmental modeling. Environ. Model. Softw. 53, 1-12. [3] Zambelli, P., Gebbert, S., Ciolli, M., 2013. Pygrass: An Object Oriented Python Application Programming Interface (API) for Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS). ISPRS Intl Journal of Geo-Information 2, 201-219. [4] Löwe, P., Klump, J., Thaler, J. (2012): The FOSS GIS Workbench on the GFZ Load Sharing Facility compute cluster, (Geophysical Research Abstracts Vol. 14, EGU2012-4491, 2012), General Assembly European Geosciences Union (Vienna, Austria 2012). [5] Akhter, S., Aida, K., Chemin, Y., 2010. "GRASS GIS on High Performance Computing with MPI, OpenMP and Ninf-G Programming Framework". ISPRS Conference, Kyoto, 9-12 August 2010
Post-Flight Test Results of Acousto-Optic Modulator Devices Subjected to Space Exposure
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Trivedi, Sudhir; Rosemeier, Jolanta; Diestler, Mark
2014-01-01
The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 module was brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in a space environment for more than one and a half years included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the results of performance testing of a laser diode module sent by NASA Langley Research Center on MISSE 7 mission will be discussed. This paper will present the comparison of pre-flight and post-flight performance of two different COTS acousto-optic modulator (AOM) devices. Post-flight measurements indicate that these two devices did not undergo any significant performance degradation.
NASA Astrophysics Data System (ADS)
Girouard, Peter D.
The microwave, optical, and electro-optic properties of epitaxial barium titanate thin films grown on (100) MgO substrates and photonic crystal electro-optic modulators fabricated on these films were investigated to demonstrate the applicability of these devices for telecommunication and data networks. The electrical and electro-optical properties were characterized up to modulation frequencies of 50 GHz, and the optical properties of photonic crystal waveguides were determined for wavelengths spanning the optical C band between 1500 and 1580 nm. Microwave scattering parameters were measured on coplanar stripline devices with electrode gap spacings between 5 and 12 mum on barium titanate films with thicknesses between 230 and 680 nm. The microwave index and device characteristic impedance were obtained from the measurements. Larger (lower) microwave indices (impedances) were obtained for devices with narrower electrode gap spacings and on thicker films. Thinner film devices have both lower index mismatch between the co-propagating microwave and optical signals and lower impedance mismatch to a 50O system, resulting in a larger predicted electro-optical 3 dB bandwidth. This was experimentally verified with electro-optical frequency response measurements. These observations were applied to demonstrate a record high 28 GHz electro-optic bandwidth measured for a BaTiO3 conventional ridge waveguide modulator having 1mm long electrodes and 12 mum gap spacing on a 260nm thick film. The half-wave voltage and electro-optic coefficients of barium titanate modulators were measured for films having thicknesses between 260 and 500 nm. The half-wave voltage was directly measured at low frequencies using a polarizer-sample-compensator-analyzer setup by over-driving waveguide integrated modulators beyond their linear response regime. Effective in-device electro-optic coefficients were obtained from the measured half-wave voltages. The effective electro-optic coefficients were found to increase with both applied electrical dc bias and with film thickness. A record low 0.39V ˙ cm (0.45V ˙ cm) voltage-length product was measured for barium titanate modulators operating at telecommunication wavelengths on a device with 5 ?m electrode gap spacing on a 500nm thick film modulated at a frequency of 100 Hz (1 MHz). This measured voltage-length product is more than a factor of 5 lower than that reported for state-of-the-art silicon conventional waveguide modulators. The electro-optical characterization of BaTiO3 films revealed a trade-off that exists for traveling wave BaTiO3 modulators: lower voltages are obtained in thicker film devices with narrow electrode gap spacing while larger bandwidths are obtained in thinner film devices with wider electrode gap spacing. These findings were supported by calculations of the film thickness dependent half-wave voltage and electro-optic bandwidth. In order to demonstrate modulators having simultaneously low voltage operation and high electro-optic bandwidth, photonic crystal waveguide modulators with large group index were investigated through theory and experiment. The theory for slow light phase delay in linear optical materials was extended for second order nonlinear optical materials. This theory was incorporated into a detailed model for predicting photonic crystal modulator performance in terms of voltage-length product and electro-optic bandwidth. Modeling shows that barium titanate photonic crystal modulators with sub-millimeter length, sub-volt operation, and greater than 40 GHz electro-optic bandwidth are achievable in a single device. Two types of photonic crystal waveguides (PC) on BaTiO3 films were designed, fabricated, and characterized: waveguides with hexagonal lattice symmetry and waveguides with hexagonal symmetry having a line defect oriented in the direction of light propagation. Excellent agreement was obtained between the simulated and measured transmission for hexagonal lattice PC waveguides. An extinction of 20 dB was measured across a 9.9 nm stop band edge, yielding a record large band edge sharpness of 2 dB/nm for all photonic crystal waveguides on ferroelectric films. A 12-fold enhancement of the electro-optic coefficient was measured via optical spectral analysis in a line defect BaTiO3 modulator, yielding an effective electro-optic coefficient of 900 pm/V in the photonic crystal region at a modulation frequency of 10 GHz. This enhancement was demonstrated over a 48 nm range, demonstrating the wideband operation of these devices.
Plant experiments with light-emitting diode module in Svet space greenhouse
NASA Astrophysics Data System (ADS)
Ilieva, Iliyana; Ivanova, Tania; Naydenov, Yordan; Dandolov, Ivan; Stefanov, Detelin
Light is necessary for photosynthesis and shoot orientation in the space plant growth facilities. Light modules (LM) must provide sufficient photosynthetic photon flux for optimal efficiency of photosynthetic processes and also meet the constraints for power, volume and mass. A new LM for SVET Space Greenhouse using Cree R XLamp R 7090 XR light-emitting diodes (LEDs) is developed. Three types of monochromic LEDs emitting in the red, green, and blue region of the spectrum are used. The new LM contains 36 LED spots - 30 LED spots with one red, green and blue LED and 6 LED spots with three red LEDs. DMX programming device controls the LED spots and can set 231 levels of light intensity thus achieving Photosynthetic Photon Flux Density (PPFD) in the range 0-400 µmol.m-2 .s-1 and different percentages of the red, green and blue light, depending on the experimental objectives. Two one-month experiments with "salad-type" plants - lettuce and chicory were carried at 400 µmol.m-2 .s-1 PPFD (high light - HL) and 220 µmol.m-2 .s-1 PPFD (low light - LL) and composition 70% red, 20% green and 10% blue light. In vivo modulated chlorophyll fluorescence was measured by a PAM fluorometer on leaf discs and the following parameters: effective quantum yield of Photosystem II (ΦP SII ) and non-photochemical quenching (NPQ) were calculated. Both lettuce and chicory plants grown at LL express higher photochemical activity of Photosystem II (PSII) than HL grown plants, evaluated by the actual PSII quantum yield, ΦP SII . The calculated steady state NPQ values did not differ significantly in lettuce and chicory. The rapid phase of the NPQ increase was accelerated in all studied LL leaves. In conclusion low light conditions ensured more effective functioning of PSII than HL when lettuce and chicory plants were grown at 70% red, 20% green and 10% blue light composition.
Batching alternatives for Phase I retrieval wastes to be processed in WRAP Module 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayancsik, B.A.
1994-10-13
During the next two decades, the transuranic (TRU) waste now stored in the 200 Area burial trenches and storage buildings is to be retrieved, processed in the Waste Receiving and Processing (WRAP) Module 1 facility, and shipped to a final disposal facility. The purpose of this document is to identify the criteria that can be used to batch suspect TRU waste, currently in retrievable storage, for processing through the WRAP Module 1 facility. These criteria are then used to generate a batch plan for Phase 1 Retrieval operations, which will retrieve the waste located in Trench 4C-04 of the 200more » West Area burial ground. The reasons for batching wastes for processing in WRAP Module 1 include reducing the exposure of workers and the environment to hazardous material and ionizing radiation; maximizing the efficiency of the retrieval, processing, and disposal processes by reducing costs, time, and space throughout the process; reducing analytical sampling and analysis; and reducing the amount of cleanup and decontamination between process runs. The criteria selected for batching the drums of retrieved waste entering WRAP Module 1 are based on the available records for the wastes sent to storage as well as knowledge of the processes that generated these wastes. The batching criteria identified in this document include the following: waste generator; type of process used to generate or package the waste; physical waste form; content of hazardous/dangerous chemicals in the waste; radiochemical type and quantity of waste; drum weight; and special waste types. These criteria were applied to the waste drums currently stored in Trench 4C-04. At least one batching scheme is shown for each of the criteria listed above.« less
2003-08-27
KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and next to it at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility observe consoles during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Technicians in the Space Station Processing Facility work on a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-06-03
KENNEDY SPACE CENTER, FLA. - An overhead crane in the Space Station Processing Facility is attached to the U.S. Node 2 to lift it out of its shipping container. The node will be moved to a workstand. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.
NASA Astrophysics Data System (ADS)
Kovit, B.
The development and establishment of a manned space station represents the next major U.S. space program after the Space Shuttle. If all goes according to plan, the space station could be in orbit around the earth by 1992. A 'power tower' station configuration has been selected as a 'reference' design. This configuration involves a central truss structure to which various elements are attached. An eight-foot-square truss forms the backbone of a structure about 400 feet long. At its lower end, nearest the earth, are attached pressurized manned modules. These modules include two laboratory modules and two so-called 'habitat/command' modules, which provide living and working space for the projected crew of six persons. Later, the station's pressurized space would be expanded to accommodate up to 18 persons. By comparison, the Soviets will provide habitable space for 12 aboard a 300-ton station which they are expected to place in orbit. According to current plans the six U.S. astronauts will work in two teams of three persons each. A ninety-day tour of duty is considered.
1970-01-01
Managed by Marshall Space Flight Center, the Space Tug was intended to be a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug would have been capable of numerous space applications. This 1970 artist's concept illustrates a Space Tug Concept, crew module attached, in conjunction with other space vehicles. The Space Tug program was cancelled and did not become a reality.
2003-08-27
KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 is undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.
2007-03-15
KENNEDY SPACE CENTER, FLA. -- NASA Node 2 module sits inside the Space Station Processing Facility highbay with its new name, Harmony, revealed. The name, Harmony, was chosen from an academic competition involving thousands of students in kindergarten through high school. The Node 2 Challenge required students to learn about the International Space Station, build a scale model of the module, and write an essay explaining their proposed name. This will be the first U.S. piece of the space station named by someone other than a NASA official. Node 2 is a pressurized module that will act as a connecting port and passageway to additional international science labs and supply spacecraft. It also will be a work platform for the station's robotic arm. The module is scheduled to fly on mission STS-120 aboard Space Shuttle Atlantis targeted for later this year. Photo credit: NASA/Jim Grossmann
Charge modulation as fingerprints of phase-string triggered interference
NASA Astrophysics Data System (ADS)
Zhu, Zheng; Tian, Chushun; Jiang, Hong-Chen; Qi, Yang; Weng, Zheng-Yu; Zaanen, Jan
2015-07-01
Charge order appears to be an ubiquitous phenomenon in doped Mott insulators, which is currently under intense experimental and theoretical investigations particularly in the high Tc cuprates. This phenomenon is conventionally understood in terms of Hartree-Fock-type mean-field theory. Here we demonstrate a mechanism for charge modulation which is rooted in the many-particle quantum physics arising in the strong coupling limit. Specifically, we consider the problem of a single hole in a bipartite t -J ladder. As a remnant of the fermion signs, the hopping hole picks up subtle phases pending the fluctuating spins, the so-called phase-string effect. We demonstrate the presence of charge modulations in the density matrix renormalization group solutions which disappear when the phase strings are switched off. This form of charge modulation can be understood analytically in a path-integral language with a mean-field-like approximation adopted, showing that the phase strings give rise to constructive interferences leading to self-localization. When the latter occurs, left- and right-moving propagating modes emerge inside the localization volume and their interference is responsible for the real space charge modulation.
Officials welcome the arrival of the Japanese Experiment Module
2007-04-17
In the Space Station Processing Facility, Scott Higginbotham, payload manager for the International Space Station, discusses the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module (JEM), with Dr. Hidetaka Tanaka, the JEM Project Team resident manager at KSC for the Japanese Aerospace and Exploration Agency (JAXA). Earlier, NASA and JAXA officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.
NASA Technical Reports Server (NTRS)
Armstrong, T. W.; Colborn, B. L.
2001-01-01
As part of a study funded by NASA MSFC to assess thecontribution of secondary particles in producing radiation damage to optoelectronics devices located on the International Space Station (IS), Monte Carlo calculations have been made to predict secondary spectra vs. shielding inside ISS modules and in electronics boxes attached on the truss (Armstrong and Colborn, 1998). The calculations take into account secondary neutron, proton, and charged pion production from the ambient galactic cosmic-ray (GCR) proton, trapped proton, and neutron albedo environments. Comparisons of the predicted neutron spectra with measurments made on the Mir space station and other spacecraft have also been made (Armstrong and Colborn, 1998). In this paper, some initial results from folding the predicted neutron spectrum inside ISS modules from Armstrong and Colborn (1998) with several types of radiation effects response functions related to electronics damage and astronaut-dose are given. These results provide an estimate of the practical importance of neutrons compared to protons in assessing radiation effects for the ISS. Also, the important neutron energy ranges for producing these effects have been estimated, which provides guidance for onboard neutron measurement requirements.
Officials welcome the arrival of the Japanese Experiment Module
2007-04-17
In the Space Station Processing Facility, astronaut Takao Doi (left) and Commander Dominic Gorie pose in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, that recently arrived at Kennedy. Doi and Gorie are crew members for mission STS-123 that will deliver the logistics module to the International Space Station. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.
2017-02-01
The Orbital ATK OA-7 Cygnus spacecraft's service module arrives inside the Space Station Processing Facility of NASA's Kennedy Space Center in Florida. The service module is sealed in an environmentally controlled shipping container, pulled in by truck on a low-boy flatbed trailer. Scheduled to launch on March 19, 2017, the Orbital ATK OA-7 mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperaturemore » modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7 percent after implementing the demand control technique, 2 percent after implementing temperature modulation, and 15 percent after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8 percent, 1 percent, and 14 percent for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Dentz; E. Ansanelli, H. Henderson, Jr.; K. Varshney
Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperaturemore » modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.« less
Control Strategies to Reduce the Energy Consumption of Central Domestic Hot Water Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, Jordan; Ansanelli, Eric; Henderson, Hugh
Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperaturemore » modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.« less
Effect of high fluence neutron irradiation on transport properties of thermoelectrics
NASA Astrophysics Data System (ADS)
Wang, H.; Leonard, K. J.
2017-07-01
Thermoelectric materials were subjected to high fluence neutron irradiation in order to understand the effect of radiation damage on transport properties. This study is relevant to the NASA Radioisotope Thermoelectric Generator (RTG) program in which thermoelectric elements are exposed to radiation over a long period of time in space missions. Selected n-type and p-type bismuth telluride materials were irradiated at the High Flux Isotope Reactor with a neutron fluence of 1.3 × 1018 n/cm2 (E > 0.1 MeV). The increase in the Seebeck coefficient in the n-type material was partially off-set by an increase in electrical resistivity, making the power factor higher at lower temperatures. For the p-type materials, although the Seebeck coefficient was not affected by irradiation, electrical resistivity decreased slightly. The figure of merit, zT, showed a clear drop in the 300-400 K range for the p-type material and an increase for the n-type material. Considering that the p-type and n-type materials are connected in series in a module, the overall irradiation damages at the device level were limited. These results, at neutron fluences exceeding a typical space mission, are significant to ensure that the radiation damage to thermoelectrics does not affect the performance of RTGs.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Shuttle Launch Director Mike Leinbach (left) accompanies Executive Director of NASDA Koji Yamamoto (third from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
Smith-Purcell terahertz radiation from laser modulated electron beam over a metallic grating
NASA Astrophysics Data System (ADS)
Kumar, Pawan; Bhasin, Lalita; Tripathi, V. K.; Kumar, Ashok; Kumar, Manoj
2016-09-01
We propose a novel scheme of terahertz (THz) radiation generation from the beat frequency modulation of an electron beam by two co-propagating lasers and the generation of terahertz radiation by the modulated beam passing over a periodic metallic grating. The lasers cause velocity modulation of the beam by exerting a longitudinal ponderomotive force on it. In the drift space between the modulator and metallic grating, the velocity modulation translates into density and current modulation. The modulated beam, propagating over the grating of specific wave number, induces space periodic image current in the conductor that emits beat frequency Smith-Purcell radiation. With 1 μm, 4 × 1016 W/cm2 lasers, beam current modulation of the order of 50% can be achieved at optimum lengths of the modulator and drift space. Employing 10 mA, 0.5 MeV short-period electron beam, propagating at a height of 50 μ m above the grating of period 150 μm, one may obtain THz radiated power of the order of 6 mW at 10 THz.
LAUNCH - APOLLO XIII - LUNAR LANDING MISSION - KSC
1970-04-11
S70-34855 (11 April 1970) --- The Apollo 13 (Spacecraft 109/Lunar Module 7/Saturn 508) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), at 2:13 p.m. (EST), April 11, 1970. The crew of the National Aeronautics and Space Administration's (NASA) third lunar landing mission are astronauts James A., Lovell Jr., commander; John L. Swigert Jr., command module pilot; and Fred W. Haise Jr., lunar module pilot.
LAUNCH - APOLLO 13 - LUNAR LANDING MISSION - KSC
1970-04-11
S70-34852 (11 April 1970) --- The Apollo 13 (Spacecraft 109/Lunar Module 7/Saturn 508) space vehicle is launched from Pad A Launch Complex 39, Kennedy Space Center (KSC), at 2:13 p.m. (EST), April 11, 1970. The crew of the National Aeronautics and Space Administration's (NASA) third lunar landing mission are astronauts James A. Lovell Jr., commander; John L. Swigert Jr., command module pilot; and Fred W. Haise Jr., lunar module pilot.
European Service Module Structural Test Article Load onto Guppy for Transport to Denver Colorado
2017-06-23
At Kennedy Space Center's Shuttle Landing Facility in Florida, workers move the Orion service module structural test article for Exploration Mission-1 (EM-1), built by the European Space Agency, inside NASA's Super Guppy aircraft. The module is secured inside the aircraft and shipped to Lockheed Martin's Denver facility to undergo testing. The Orion spacecraft will launch atop the agency's Space Launch System rocket on EM-1 in 2019
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto points to other Space Station elements. Behind him is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- The Japanese Experiment Module (JEM) sits on top of a stand in the Space Station Processing Facility. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the Experiment Logistics Module Pressurized Section of the JEM, which will be delivered to the space station on mission STS-123. The JEM will fly on mission STS-124. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
The Unity connecting module is moved to payload canister
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility, workers attach the overhead crane that will lift the Unity connecting module from its workstand to move the module to the payload canister. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.
2007-10-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, STS-123 Mission Specialist Takao Doi (left) and Commander Dominic Gorie confer about the mission payload, the Kibo Experiment Logistics Module Pressurized Section, they are looking over. They are at the center for a crew equipment interface test, which allows familiarization with equipment they will use during the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis
2006-06-01
KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane settles the Columbus module onto a work stand. Columbus is the European Space Agency's research laboratory for the International Space Station. The module will be prepared for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann
2006-06-01
KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane lowers the Columbus module toward a work stand. Columbus is the European Space Agency's research laboratory for the International Space Station. The module will be prepared for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann
International Space Station (ISS)
2001-03-10
STS-102 mission astronauts James S. Voss and James D. Weatherbee share a congratulatory handshake as the Space Shuttle Orbiter Discovery successfully docks with the International Space Station (ISS). Photographed from left to right are: Astronauts Susan J. Helms, mission specialist; James S. Voss, Expedition 2 crew member; James D. Weatherbee, mission commander; Andrew S.W. Thomas, mission specialist; and nearly out of frame is James M. Kelley, Pilot. Launched March 8, 2001, STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Shuttle Launch Director Mike Leinbach (second from left) accompanies Executive Director of NASDA Koji Yamamoto (fourth from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
International Space Station (ISS)
2001-02-16
With its new U.S. Laboratory, Destiny, contrasted over a blue and white Earth, the International Space Station (ISS) was photographed by one of the STS-98 crew members aboard the Space Shuttle Atlantis following separation of the Shuttle and Station. The Laboratory is shown at the lower right of the Station. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
International Space Station (ISS)
2001-02-01
In the grasp of the Shuttle's Remote Manipulator System (RMS) robot arm, the U.S. Laboratory, Destiny, is moved from its stowage position in the cargo bay of the Space Shuttle Atlantis. This photograph was taken by astronaut Thomas D. Jones during his Extravehicular Activity (EVA). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
International Space Station (ISS)
2001-02-01
In the grasp of the Shuttle's Remote Manipulator System (RMS) robot arm, the U.S. Laboratory, Destiny, is moved from its stowage position in the cargo bay of the Space Shuttle Atlantis. This photograph was taken by astronaut Thomas D. Jones during his Extravehicular Activity (EVA). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
2003-09-24
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata, dressed in blue protective clothing (at right), looks at the inside of the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM), along with technicians. The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-115 Mission Specialists Joseph Tanner (left) and Heidemarie Stefanyshyn-Piper (right) look over the Japanese Experiment Module (JEM) Pressurized Module located in the Space Station Processing Facility. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.
2003-09-24
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata (top left) and technicians watch as a tray is extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
2003-09-24
KENNEDY SPACE CENTER, FLA. - Japanese astronaut Koichi Wakata (left) releases a tray extended from inside the Pressurized Module, or PM, that he was working with. Part of the Japanese Experiment Module (JEM), the PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions. The JEM/PM is in the Space Station Processing Facility.
2007-03-15
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Mission STS-120 Pilot George Zamka (left) and Commander Pam Melroy begin to unveil the Node 2 module's new name, Harmony, as Russ Romanella, director of International Space Station and Spacecraft Processing presides over the ceremony. The name, Harmony, was chosen from an academic competition involving thousands of students in kindergarten through high school. The Node 2 Challenge required students to learn about the International Space Station, build a scale model of the module, and write an essay explaining their proposed name. This will be the first U.S. piece of the space station named by someone other than a NASA official. Node 2 is a pressurized module that will act as a connecting port and passageway to additional international science labs and supply spacecraft. It also will be a work platform for the station's robotic arm. The module is scheduled to fly on mission STS-120 aboard Space Shuttle Atlantis targeted for later this year. Photo credit: NASA/Jim Grossmann
2003-06-18
KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.
2003-06-18
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, media and guests listen intently to remarks during a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony included these speakers: KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left) , deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
2003-06-18
KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.
2003-06-18
KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, William Gerstenmaier, International Space Station Program manager, points to one of the components as he speaks to guests and the media gathered in the Space Station Processing Facility. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.
NASA Technical Reports Server (NTRS)
1972-01-01
The Reference Design Document, of the Preliminary Safety Analysis Report (PSAR) - Reactor System provides the basic design and operations data used in the nuclear safety analysis of the Rector Power Module as applied to a Space Base program. A description of the power module systems, facilities, launch vehicle and mission operations, as defined in NASA Phase A Space Base studies is included. Each of two Zirconium Hydride Reactor Brayton power modules provides 50 kWe for the nominal 50 man Space Base. The INT-21 is the prime launch vehicle. Resupply to the 500 km orbit over the ten year mission is provided by the Space Shuttle. At the end of the power module lifetime (nominally five years), a reactor disposal system is deployed for boost into a 990 km high altitude (long decay time) earth orbit.
Retired Astronaut John Blaha at opening of new International Space Station Center at KSC
NASA Technical Reports Server (NTRS)
1998-01-01
Retired Astronaut John Blaha celebrates the official opening of the new International Space Station (ISS) Center at Kennedy Space Center as he steps out of a full-scale mockup of one of the station modules. Modules through which visitors can walk that are included in the new tour attraction are the Habitation Unit, where station crew members will live, sleep, and work; a Laboratory Module; and the Pressurized Logistics Module, where racks and supplies will be transported back and forth from KSC to space. Guests also can take an elevated walkway to a gallery overlooking the work area where actual ISS hardware is prepared for flight into space. This new tour site, in addition to a new Launch Complex 39 Observation Gantry, are part of a comprehensive effort by NASA and Delaware North to expand and improve the KSC public tour and visitor facilities.
2007-03-15
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Mission STS-120 Pilot George Zamka (left) and Commander Pam Melroy stand in front of the Node 2 module with it's new name, Harmony, unveiled. The name, Harmony, was chosen from an academic competition involving thousands of students in kindergarten through high school. The Node 2 Challenge required students to learn about the International Space Station, build a scale model of the module, and write an essay explaining their proposed name. This will be the first U.S. piece of the space station named by someone other than a NASA official. Node 2 is a pressurized module that will act as a connecting port and passageway to additional international science labs and supply spacecraft. It also will be a work platform for the station's robotic arm. The module is scheduled to fly on mission STS-120 aboard Space Shuttle Atlantis targeted for later this year. Photo credit: NASA/Jim Grossmann
2007-03-15
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Mission STS-120 Commander Pam Melroy speaks to members of the press and guests during a ceremony to unveil the new name of NASA's Node 2 module, Harmony. The name, Harmony, was chosen from an academic competition involving thousands of students in kindergarten through high school. The Node 2 Challenge required students to learn about the International Space Station, build a scale model of the module, and write an essay explaining their proposed name. This will be the first U.S. piece of the space station named by someone other than a NASA official. Node 2 is a pressurized module that will act as a connecting port and passageway to additional international science labs and supply spacecraft. It also will be a work platform for the station's robotic arm. The module is scheduled to fly on mission STS-120 aboard Space Shuttle Atlantis targeted for later this year. Photo credit: NASA/Jim Grossmann
International Space Station (ISS)
1999-01-01
The International Space Station (ISS) is an unparalleled international scientific and technological cooperative venture that will usher in a new era of human space exploration and research and provide benefits to people on Earth. On-Orbit assembly began on November 20, 1998, with the launch of the first ISS component, Zarya, on a Russian Proton rocket. The Space Shuttle followed on December 4, 1998, carrying the U.S.-built Unity cornecting Module. Sixteen nations are participating in the ISS program: the United States, Canada, Japan, Russia, Brazil, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. The ISS will include six laboratories and be four times larger and more capable than any previous space station. The United States provides two laboratories (United States Laboratory and Centrifuge Accommodation Module) and a habitation module. There will be two Russian research modules, one Japanese laboratory, referred to as the Japanese Experiment Module (JEM), and one European Space Agency (ESA) laboratory called the Columbus Orbital Facility (COF). The station's internal volume will be roughly equivalent to the passenger cabin volume of two 747 jets. Over five years, a total of more than 40 space flights by at least three different vehicles - the Space Shuttle, the Russian Proton Rocket, and the Russian Soyuz rocket - will bring together more than 100 different station components and the ISS crew. Astronauts will perform many spacewalks and use new robotics and other technologies to assemble ISS components in space.
International Space Station Assembly
NASA Technical Reports Server (NTRS)
1999-01-01
The International Space Station (ISS) is an unparalleled international scientific and technological cooperative venture that will usher in a new era of human space exploration and research and provide benefits to people on Earth. On-Orbit assembly began on November 20, 1998, with the launch of the first ISS component, Zarya, on a Russian Proton rocket. The Space Shuttle followed on December 4, 1998, carrying the U.S.-built Unity cornecting Module. Sixteen nations are participating in the ISS program: the United States, Canada, Japan, Russia, Brazil, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. The ISS will include six laboratories and be four times larger and more capable than any previous space station. The United States provides two laboratories (United States Laboratory and Centrifuge Accommodation Module) and a habitation module. There will be two Russian research modules, one Japanese laboratory, referred to as the Japanese Experiment Module (JEM), and one European Space Agency (ESA) laboratory called the Columbus Orbital Facility (COF). The station's internal volume will be roughly equivalent to the passenger cabin volume of two 747 jets. Over five years, a total of more than 40 space flights by at least three different vehicles - the Space Shuttle, the Russian Proton Rocket, and the Russian Soyuz rocket - will bring together more than 100 different station components and the ISS crew. Astronauts will perform many spacewalks and use new robotics and other technologies to assemble ISS components in space.
2007-10-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew get hands-on experience with some of the equipment related to the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis
2007-10-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew get hands-on experience with some of the equipment related to the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis
2007-10-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew get hands-on experience with some of the equipment related to the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis
2007-10-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew get hands-on experience with some of the equipment related to the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis
2007-10-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew get hands-on experience with some of the equipment related to the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis
2003-09-03
KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility look over paperwork during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), rests inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), signals success during a Multi-Element Integrated Test (MEIT ) of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
1971-01-01
Managed by Marshall Space Flight Center, the Space Tug concept was intended to be a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug would have been capable of numerous space applications. This 1971 image shows the basic Propulsion Module and attached elements in their functional configurations. The Space Tug program was cancelled and did not become a reality.
2014-05-07
View of the High Definition Earth Viewing (HDEV) flight assembly installed on the exterior of the Columbus European Laboratory module. Image was released by astronaut on Twitter. The High Definition Earth Viewing (HDEV) experiment places four commercially available HD cameras on the exterior of the space station and uses them to stream live video of Earth for viewing online. The cameras are enclosed in a temperature specific housing and are exposed to the harsh radiation of space. Analysis of the effect of space on the video quality, over the time HDEV is operational, may help engineers decide which cameras are the best types to use on future missions. High school students helped design some of the cameras' components, through the High Schools United with NASA to Create Hardware (HUNCH) program, and student teams operate the experiment.
Laboratory racks are installed in the MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
Workers in the Space Station Processing Facility watch as a laboratory rack moves into the Multi-Purpose Logistics Module Leonardo. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Leonardo will be launched March 1, 2001, on Shuttle mission STS-102 On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
2007-11-06
KENNEDY SPACE CENTER, FLA. -- With umbilical lines still attached, the payload canister containing the Columbus Laboratory module and integrated cargo carrier-lite is lifted up toward the payload changeout room on Launch Pad 39A at NASA's Kennedy Space Center. Once in place, the canister will be opened and the module transferred inside the payload changeout room. The payload will be installed in space shuttle Atlantis' payload bay. The canister contains the Columbus Lab module and integrated cargo carrier-lite payloads for space shuttle Atlantis on mission STS-122. Atlantis is targeted to launch on Dec. 6. Photo credit: NASA/Dimitri Gerondidakis
Lightweight, direct-radiating nickel hydrogen batteries
NASA Technical Reports Server (NTRS)
Metcalfe, J. R.
1986-01-01
Two battery module configurations were developed which, in addition to integrating cylindrical nickel hydrogen (NiH2) cells into batteries, provide advances in the means of mounting, monitoring and thermal control of these cells. The main difference between the two modules is the physical arrangement of the cells: vertical versus horizontal. Direct thermal radiation to deep space is accomplished by substituting the battery structure for an exterior spacecraft panel. Unlike most conventional nickel-cadmium (NiCd) and NiH2 batteries, the cells are not tightly packed together; therefore ancillary heat conducting media to outside radiating areas, and spacecraft deck reinforcements for high mass concentration are not necessary. Testing included electrical characterization and a comprehensive regime of environmental exposures. The designs are flexible with respect to quantity and type of cells, orbit altitude and period, power demand profile, and the extent of cell parameter monitoring. This paper compares the characteristics of the two battery modules and summarizes their performance.
STS-98 Onboard Photograph-U.S. Laboratory, Destiny
NASA Technical Reports Server (NTRS)
2001-01-01
This closer image of the International Space Station (ISS) showing the newly installed U.S. Laboratory, Destiny (left), was taken from the departing Space Shuttle Atlantis. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
NASA Technical Reports Server (NTRS)
1998-01-01
This video is a collection of computer animations and live footage showing the construction and assembly of the International Space Station (ISS). Computer animations show the following: (1) ISS fly around; (2) ISS over a sunrise seen from space; (3) the launch of the Zarya Control Module; (4) a Proton rocket launch; (5) the Space Shuttle docking with Zarya and attaching Zarya to the Unity Node; (6) the docking of the Service Module, Zarya, and Unity to Soyuz; (7) the Space Shuttle docking to ISS and installing the Z1 Truss segment and the Pressurized Mating Adapter (PMA); (8) Soyuz docking to the ISS; (9) the Transhab components; and (10) a complete ISS assembly. Live footage shows the construction of Zarya, the Proton rocket, Unity Node, PMA, Service Module, US Laboratory, Italian Multipurpose Logistics Module, US Airlock, and the US Habitation Module. STS-88 Mission Specialists Jerry Ross and James Newman are seen training in the Neutral Buoyancy Laboratory (NBL). The Expedition 1 crewmembers, William Shepherd, Yuri Gidzenko, and Sergei Krikalev, are shown training in the Black Sea and at Johnson Space Flight Center for water survival.
2008-10-21
CAPE CANAVERAL, Fla. - The Multi-Purpose Logistics Module Leonardo is moved across the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Leonardo is part of space shuttle Endeavour's payload on the STS-126 mission to the International Space Station. The module will be installed in the waiting payload canister for transfer to Launch Pad 39A. At the pad, the payload canister will release its cargo into the Payload Changeout Room. Later, the payload will be installed in space shuttle Endeavour's payload bay. The module contains supplies and equipment, including additional crew quarters, equipment for the regenerative life support system and spare hardware. Endeavour is targeted for launch on Nov. 14. Photo credit: NASA/Troy Cryder
2008-10-21
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Multi-Purpose Logistics Module Leonardo is moved toward the payload canister at right. Leonardo is part of space shuttle Endeavour's payload on the STS-126 mission to the International Space Station. The payload canister will transfer the module to Launch Pad 39A. At the pad, the payload canister will release its cargo into the Payload Changeout Room. Later, the payload will be installed in space shuttle Endeavour's payload bay. The module contains supplies and equipment, including additional crew quarters, equipment for the regenerative life support system and spare hardware. Endeavour is targeted for launch on Nov. 14. Photo credit: NASA/Troy Cryder
Radio Science Measurements with Suppressed Carrier
NASA Technical Reports Server (NTRS)
Asmar, Sami; Divsalar, Dariush; Oudrhiri, Kamal
2013-01-01
Radio Science started when it became apparent with early Solar missions that occultations by planetary atmospheres would affect the quality of radio communications. Since then the atmospheric properties and other aspects of planetary science, solar science, and fundamental physics were studied by scientists. Radio Science data was always extracted from a received pure residual carrier (without data modulation). For some missions, it is very desirable to obtain Radio Science data from a suppressed carrier modulation. In this paper we propose a method to extract Radio Science data when a coded suppressed carrier modulation is used in deep space communications. Type of modulation can be BPSK, QPSK, OQPSK, MPSK or even GMSK. However we concentrate mostly on BPSK modulation. The proposed method for suppressed carrier simply tries to wipe out data that acts as an interference for Radio Science measurements. In order to measure the estimation errors in amplitude and phase of the Radio Science data we use Cramer-Rao bound (CRB). The CRB for the suppressed carrier modulation with non-ideal data wiping is then compared with residual carrier modulation under the same noise condition. The method of derivation of CRB for non-ideal data wiping is an innovative method that presented here. Some numerical results are provided for coded system.
Tyurin and Reiter in the Zvezda Module
2006-11-03
ISS014-E-07142 (3 Nov. 2006) --- Cosmonaut Mikhail Tyurin (foreground) representing Russia's Federal Space Agency, and European Space Agency (ESA) astronaut Thomas Reiter, both Expedition 14 flight engineers, install and connect onboard equipment control system cables in the Zvezda Service Module of the International Space Station.
Apollo 12 crewmembers shown in Apollo Lunar Module Mission Simulator
1969-11-04
S69-56699 (22 Oct. 1969) --- Astronauts Charles Conrad Jr. (left), Apollo 12 commander; and Alan L. Bean, lunar module pilot, are shown in the Apollo Lunar Module Mission Simulator during simulator training at the Kennedy Space Center (KSC). Apollo 12 will be the National Aeronautics and Space Administration's (NASA) second lunar landing mission. The third Apollo 12 crewmember will be astronaut Richard F. Gordon Jr., command module pilot.
Cosmonaut Gidzenko Near Hatch Between Unity and Destiny
NASA Technical Reports Server (NTRS)
2001-01-01
Cosmonaut Yuri P. Gidzenko, Expedition One Soyuz commander, stands near the hatch leading from the Unity node into the newly-attached Destiny laboratory aboard the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S.-built Unity module was launched aboard the Orbiter Endeavour (STS-88 mission) on December 4, 1998, and connected to Zarya, the Russian-built Functional Cargo Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity in space. The Destiny Module was launched aboard the Space Shuttle Orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments.
Honeycomb Betavoltaic Battery for Space Applications
NASA Astrophysics Data System (ADS)
Lee, Jin R.; Ulmen, Ben; Miley, George H.
2008-01-01
Radioisotopic batteries offer advantages relative to conventional chemical batteries for applications requiring a long lifetime with minimum maintenance. Thus, thermoelectric type cells fueled with Pu have been used extensively on NASA space missions. The design for a small beta battery using nickel-63 (Ni-63) and a vacuum direct collection method is described here. A honeycomb nickel wire structure is employed to achieve bi-directional direct collection by seeding Ni-63 onto honeycomb shaped wires that will provide structural support as well. The battery design is intended to power low power electronics and distribute power needs in space probes as well as space colonies. Ni-63 is chosen as the source emitter because it has a long half-life and ease of manufacturing. The use of vacuum is especially well mated to space use; hence, vacuum insulation is employed to gain a higher efficiency than prior beta batteries with a dielectric insulator. A unique voltage down-converter is incorporated to efficiently reduce the inherent output voltage from 17.4 kV to ~17.4 V. This converter operates like a ``reverse'' Marx circuit where capacitor charging occurs in series but the discharge is in parallel. The reference battery module described here is about 100 cm×100 cm×218 cm and has a power of ~10 W with a conversion efficiency of ~15.8%. These modules can be stacked for higher powers and are very attractive for various applications in space colonization due to their long life (half-life for Ni-63~100 yrs) and low maintenance.
1971-01-01
This is an artist's concept of the Research and Applications Modules (RAM). Evolutionary growth was an important consideration in space station plarning, and another project was undertaken in 1971 to facilitate such growth. The RAM study, conducted through a Marshall Space Flight Center contract with General Dynamics Convair Aerospace, resulted in the conceptualization of a series of RAM payload carrier-sortie laboratories, pallets, free-flyers, and payload and support modules. The study considered two basic manned systems. The first would use RAM hardware for sortie mission, where laboratories were carried into space and remained attached to the Shuttle for operational periods up to 7 days. The second envisioned a modular space station capability that could be evolved by mating RAM modules to the space station core configuration. The RAM hardware was to be built by Europeans, thus fostering international participation in the space program.
Mitra, Rajat; Londhe, S M; Kumar, Prasanna
2011-04-01
Aim of this study was to compare the rate of space closure between E-chain mechanics in one side of upper arch and by elastomeric module with ligature wire on the contralateral side in same patient. Thirty bimaxillary dentoalveolar protrusion cases were taken up for comprehensive fixed orthodontic treatment after extraction of all first premolars to retract both upper and lower anterior teeth. After initial alignment and levelling, alginate impressions were made for upper and lower arches and models constructed. In the upper arch model a vernier caliper was used to measure the extraction space in both sides from middle point of distal surface of canine to the middle most point of mesial surface of second premolar. This is the amount of space present before the onset of retraction mechanics. During space closure procedure two different retracting components were applied in right and left sides of each case. On right side elastic chain (E-chain) applied in both upper and lower arches and on left side elastomeric module with steel ligature (0.010") stretched double its diameter fixed in both arches. Both the mechanisms produced approximately 250-300 g of force as measured by a tension gauge. After onset of retraction mechanism all patients were recalled after every six weeks for three visits. In all these three visits modules and E-chains were changed. In all three visits impression was made, models constructed, and the remaining available space was measured by a vernier caliper up to 0.1 mm level variations. Mean value for total space closure in case of E-chain was 2.777 mm whereas in case of module with ligature wire the value increased to 3.017 mm. Mean value for rate of space closure in case of E-chain was 0.2143 mm, whereas in case of module with ligature wire the value increased to 0.2343 mm with a standard deviation of 0.001104 and 0.001194, respectively. The standard deviation for total space closure was 0.1305 for E-chain and 0.1487 for module with ligature wire. Space closure by elastomeric module with ligature wire is better than the E-chain.
NASA Technical Reports Server (NTRS)
Sours, Thomas J.
1989-01-01
A concept is described for the assembly of the outboard PV modules for Space Station Freedom. Analysis of the on-orbit assembly operations was performed using CADAM design graphics software. A scenario for assembly using the various assembly equipment, as currently defined, is described in words, tables and illustrations. This work is part of ongoing studies in the area of space station assembly. The outboard PV module and the assembly equipment programs are all in definition and preliminary design phases. An input is provided to the design process of assembly equipment programs. It is established that the outboard PV module assembly operations can be performed using the assembly equipment currently planned in the Space Station Freedom Program.
The Node 1 (or Unity) Module for the International Space Station
NASA Technical Reports Server (NTRS)
1997-01-01
This photograph, taken by the Boeing Company, shows Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS), with its hatch door installed. The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Executive Director of NASDA Koji Yamamoto (left) is welcomed to KSC by Center Director Roy Bridges Jr. (right). Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module. His visit includes a tour of the Columbia Debris Hangar.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (second from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (third from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (center, foreground) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Shuttle Launch Director Mike Leinbach (left) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (second from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
International Space Station (ISS)
1997-10-01
The Zvezda Service Module, the first Russian contribution and third element to the International Space Station (ISS), is shown under construction in the Krunichev State Research and Production Facility (KhSC) in Moscow. Russian technicians work on the module shortly after it completed a pressurization test. In the foreground is the forward portion of the module, including the spherical transfer compartment and its three docking ports. The forward port docked with the cornected Functional Cargo Block, followed by Node 1. Launched via a three-stage Proton rocket on July 12, 2000, the Zvezda Service Module serves as the cornerstone for early human habitation of the Station, providing living quarters, life support system, electrical power distribution, data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.
Incommensurate crystallography without additional dimensions.
Kocian, Philippe
2013-07-01
It is shown that the Euclidean group of translations, when treated as a Lie group, generates translations not only in Euclidean space but on any space, curved or not. Translations are then not necessarily vectors (straight lines); they can be any curve compatible with the parameterization of the considered space. In particular, attention is drawn to the fact that one and only one finite and free module of the Lie algebra of the group of translations can generate both modulated and non-modulated lattices, the modulated character being given only by the parameterization of the space in which the lattice is generated. Moreover, it is shown that the diffraction pattern of a structure is directly linked to the action of that free and finite module. In the Fourier transform of a whole structure, the Fourier transform of the electron density of one unit cell (i.e. the structure factor) appears concretely, whether the structure is modulated or not. Thus, there exists a neat separation: the geometrical aspect on the one hand and the action of the group on the other, without requiring additional dimensions.
Item Description: ISS TransHab Restraint Sample and Photo Documentation
NASA Technical Reports Server (NTRS)
Adams, Constance
2000-01-01
The yellow strap seen in the display is a piece of the main restraint layer of a test article for the ISS TransHab spacecraft, First conceived as a technology which is capable of supporting a [human] crew of six on an extended space journey such as the six-month trip to Mars, TransHab (short for "Transit habitat") is the first space inflatable module ever designed. As this text is written it is being considered as a replacement for the Habitation module on the International Space Station (ISS). It constitutes a major breakthrough both in technology and in tectonics: capable of tight packaging at light weight for efficient launch, the vehicle can then be inflated to its full size on orbit via its own inflation tanks. This is made possible by the separation of its main structural elements from its pressure-shell. In other words, all spacecraft flown to date have been of an exoskeletal type---i.e., its hard outer shell acts both as a pressure container and as its main channel for structural loading This includes the ISS, which is currently under construction in Low Earth Orbit [275 miles above the Earth]. By contrast TransHab is the first endoskeletal space Habitat, consisting of a dual system: a light, reconfigurable central structure of graphite composite and a multilayered, deployable pressure shell.
A rack is installed in MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
Workers inside the Multi-Purpose Logistics Module Leonardo check installation of a laboratory rack inside the Multi-Purpose Logistics Module Leonardo. The pressurized module is the first of three that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Approximately 21 feet long and 15 feet in diameter, Leonardo will be launched on Shuttle mission STS-102 March 1, 2001. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
Parmitano with checklist in Service module
2013-11-08
ISS037-E-028305 (8 Nov. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 37 flight engineer, reads a procedures checklist in the Zvezda Service Module of the International Space Station.
Modular space station Phase B extension preliminary performance specification. Volume 2: Project
NASA Technical Reports Server (NTRS)
1971-01-01
The four systems of the modular space station project are described, and the interfaces between this project and the shuttle project, the tracking and data relay satellite project, and an arbitrarily defined experiment project are defined. The experiment project was synthesized from internal experiments, detached research and application modules, and attached research and application modules to derive a set of interface requirements which will support multiple combinations of these elements expected during the modular space station mission. The modular space station project element defines a 6-man orbital program capable of growth to a 12-man orbital program capability. The modular space station project element specification defines the modular space station system, the premission operations support system, the mission operations support system, and the cargo module system and their interfaces.
Nespolia moving the Neurospat Hardware in the Columbus Module during Expedition 26
2010-12-20
ISS026-E-012919 (20 Dec. 2010) --- European Space Agency astronaut Paolo Nespoli, Expedition 26 flight engineer, moves the Neurospat hardware (including light shield and frame) used for the Bodies in the Space Environment (BISE) experiment, in the Columbus Module aboard the International Space Station.
1984-01-01
The Space Shuttle Challenger, making its fourth space flight, highlights the 41B insignia. The reusable vehicle is flanked in the oval by an illustration of a Payload Assist Module-D solid rocket motor (PAM-D) for assisted satellite deployment; an astronaut making the first non-tethered extravehicular activity (EVA); and eleven stars.
2005-08-05
S114-E-7139 (5 August 2005) --- Astronaut Eileen M. Collins, STS-114 commander, floats in the Zvezda Service Module of the International Space Station while Space Shuttle Discovery was docked to the Station. Astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, is visible at bottom right.
ORIGEN-based Nuclear Fuel Inventory Module for Fuel Cycle Assessment: Final Project Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skutnik, Steven E.
The goal of this project, “ORIGEN-based Nuclear Fuel Depletion Module for Fuel Cycle Assessment" is to create a physics-based reactor depletion and decay module for the Cyclus nuclear fuel cycle simulator in order to assess nuclear fuel inventories over a broad space of reactor operating conditions. The overall goal of this approach is to facilitate evaluations of nuclear fuel inventories for a broad space of scenarios, including extended used nuclear fuel storage and cascading impacts on fuel cycle options such as actinide recovery in used nuclear fuel, particularly for multiple recycle scenarios. The advantages of a physics-based approach (compared tomore » a recipe-based approach which has been typically employed for fuel cycle simulators) is in its inherent flexibility; such an approach can more readily accommodate the broad space of potential isotopic vectors that may be encountered under advanced fuel cycle options. In order to develop this flexible reactor analysis capability, we are leveraging the Origen nuclear fuel depletion and decay module from SCALE to produce a standalone “depletion engine” which will serve as the kernel of a Cyclus-based reactor analysis module. The ORIGEN depletion module is a rigorously benchmarked and extensively validated tool for nuclear fuel analysis and thus its incorporation into the Cyclus framework can bring these capabilities to bear on the problem of evaluating long-term impacts of fuel cycle option choices on relevant metrics of interest, including materials inventories and availability (for multiple recycle scenarios), long-term waste management and repository impacts, etc. Developing this Origen-based analysis capability for Cyclus requires the refinement of the Origen analysis sequence to the point where it can reasonably be compiled as a standalone sequence outside of SCALE; i.e., wherein all of the computational aspects of Origen (including reactor cross-section library processing and interpolation, input and output processing, and depletion/decay solvers) can be self-contained into a single executable sequence. Further, to embed this capability into other software environments (such as the Cyclus fuel cycle simulator) requires that Origen’s capabilities be encapsulated into a portable, self-contained library which other codes can then call directly through function calls, thereby directly accessing the solver and data processing capabilities of Origen. Additional components relevant to this work include modernization of the reactor data libraries used by Origen for conducting nuclear fuel depletion calculations. This work has included the development of new fuel assembly lattices not previously available (such as for CANDU heavy-water reactor assemblies) as well as validation of updated lattices for light-water reactors updated to employ modern nuclear data evaluations. The CyBORG reactor analysis module as-developed under this workscope is fully capable of dynamic calculation of depleted fuel compositions from all commercial U.S. reactor assembly types as well as a number of international fuel types, including MOX, VVER, MAGNOX, and PHWR CANDU fuel assemblies. In addition, the Origen-based depletion engine allows for CyBORG to evaluate novel fuel assembly and reactor design types via creation of Origen reactor data libraries via SCALE. The establishment of this new modeling capability affords fuel cycle modelers a substantially improved ability to model dynamically-changing fuel cycle and reactor conditions, including recycled fuel compositions from fuel cycle scenarios involving material recycle into thermal-spectrum systems.« less
Orion Crew Module Adapter-Structural Test Article and European S
2017-05-09
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, operations are underway to lower the Orion crew module adapter structural test article onto the European Space Agency's service module structural test article. After the hardware is attached, the structure will be packed and shipped to Lockheed Martin's Denver facility to undergo testing. The Orion spacecraft will launch atop the agency's Space Launch System rocket on Exploration Mission-1 in 2019.
1971-07-26
S71-41810 (26 July 1971) --- The 363-feet tall Apollo 15 (Spacecraft 112/Lunar Module 10/Saturn 510) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center, Florida, at 9:34:00.79 a.m., July 26, 1971, on a lunar landing mission. Aboard the Apollo 15 spacecraft were astronauts David R. Scott, commander; Alfred M. Worden, commander module pilot; and James B. Irwin, lunar module pilot. Apollo 15 is the National Aeronautics and Space Administration's (NASA) fourth manned lunar landing mission.
Starboard-Zenith (+YA, -ZA) side of Node 1/Unity and FGB/Zarya
1998-12-13
STS088-703-019 (4-15 Dec. 1998) --- The U.S.-built Unity connecting module (bottom) and the Russian-built Zarya module are backdropped against the blackness of space in this 70mm photograph taken from the Space Shuttle Endeavour. After devoting the major portion of its mission time to various tasks to ready the two docked modules for their International Space Station (ISS) roles, the six-member STS-88 crew released the tandem and performed a fly-around survey of the hardware.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Executive Director of NASDA Koji Yamamoto (left) is welcomed to KSC by Center Director Roy Bridges Jr. (right). On the table between them is the logo of the new Japan Aerospace Exploration Agency, a merger of three Japanese aeronautical and space agencies effective Oct.1, 2003. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module. His visit includes a tour of the Columbia Debris Hangar.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Executive Director of NASDA Koji Yamamoto (left) and Center Director Roy Bridges Jr. (right) exchange mementos during Mr. Yamamotos visit to KSC. Mr. Bridges also holds the logo of the new Japan Aerospace Exploration Agency, a merger of three Japanese aeronautical and space agencies effective Oct.1, 2003. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module. His visit includes a tour of the Columbia Debris Hangar.
NASA Technical Reports Server (NTRS)
Wells, H. B.
1977-01-01
The preliminary data of the environmental control and life support subsystem for a space construction base manufacturing module was reported. A space processing module, which is capable of performing production biological experiments, was chosen as a baseline configuration. The primary assemblies and components considered for use were humidity and temperature control, ventilation fan, cabin fan, water separator, condensate storage, overboard dumping, distribution system, contaminant monitoring, cabin sensors, and fire and smoke detection.
Ground level view of Apollo 14 space vehicle leaving VAB for launch pad
1970-11-09
S70-54121 (9 Nov. 1970) --- A ground level view at Launch Complex 39, Kennedy Space Center (KSC), showing the Apollo 14 (Spacecraft 110/Lunar Module 8/Saturn 509) space vehicle leaving the Vehicle Assembly Building (VAB). The Saturn V stack and its mobile launch tower, atop a huge crawler-transporter, were rolled out to Pad A. The Apollo 14 crewmen will be astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot.
International Space Station (ISS)
2001-03-01
Pilot James M. Kelly (left) and Commander James D. Wetherbee for the STS-102 mission, participate in the movement of supplies inside Leonardo, the Italian Space Agency built Multipurpose Logistics Module (MPLM). In this particular photograph, the two are handling a film magazine for the IMAX cargo bay camera. The primary cargo of the STS-102 mission, the Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight, the STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
2006-06-01
KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane carries the Columbus module away from its transportation canister. Columbus is the European Space Agency's research laboratory for the International Space Station. The module is being moved to a work stand to prepare it for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann
1970-01-01
Managed by Marshall Space Flight Center, the Space Tug concept was intended to be a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug would have been capable of numerous space applications. This 1970 illustration depicts the primary modules of the Space Tug system along with some of the supplementary kits: lunar landing legs, extendable support arms, astrionics, and the satellite probe. The Space Tug program was cancelled and did not become a reality.
V-band integrated quadriphase modulator
NASA Technical Reports Server (NTRS)
Grote, A.; Chang, K.
1983-01-01
A V-band integrated circuit quadriphase shift keyed modulator/exciter for space communications systems was developed. Intersatellite communications systems require direct modulation at 60 GHz to enhance signal processing capability. For most systems, particularly space applications, small and lightweight components are essential to alleviate severe system design constraints. Thus to achieve wideband, high data rate systems, direct modulation techniques at millimeter waves using solid state integrated circuit technology are an integral part of the overall technology developments.
Task-discriminative space-by-time factorization of muscle activity
Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry; Berret, Bastien
2015-01-01
Movement generation has been hypothesized to rely on a modular organization of muscle activity. Crucial to this hypothesis is the ability to perform reliably a variety of motor tasks by recruiting a limited set of modules and combining them in a task-dependent manner. Thus far, existing algorithms that extract putative modules of muscle activations, such as Non-negative Matrix Factorization (NMF), identify modular decompositions that maximize the reconstruction of the recorded EMG data. Typically, the functional role of the decompositions, i.e., task accomplishment, is only assessed a posteriori. However, as motor actions are defined in task space, we suggest that motor modules should be computed in task space too. In this study, we propose a new module extraction algorithm, named DsNM3F, that uses task information during the module identification process. DsNM3F extends our previous space-by-time decomposition method (the so-called sNM3F algorithm, which could assess task performance only after having computed modules) to identify modules gauging between two complementary objectives: reconstruction of the original data and reliable discrimination of the performed tasks. We show that DsNM3F recovers the task dependence of module activations more accurately than sNM3F. We also apply it to electromyographic signals recorded during performance of a variety of arm pointing tasks and identify spatial and temporal modules of muscle activity that are highly consistent with previous studies. DsNM3F achieves perfect task categorization without significant loss in data approximation when task information is available and generalizes as well as sNM3F when applied to new data. These findings suggest that the space-by-time decomposition of muscle activity finds robust task-discriminating modular representations of muscle activity and that the insertion of task discrimination objectives is useful for describing the task modulation of module recruitment. PMID:26217213
Task-discriminative space-by-time factorization of muscle activity.
Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry; Berret, Bastien
2015-01-01
Movement generation has been hypothesized to rely on a modular organization of muscle activity. Crucial to this hypothesis is the ability to perform reliably a variety of motor tasks by recruiting a limited set of modules and combining them in a task-dependent manner. Thus far, existing algorithms that extract putative modules of muscle activations, such as Non-negative Matrix Factorization (NMF), identify modular decompositions that maximize the reconstruction of the recorded EMG data. Typically, the functional role of the decompositions, i.e., task accomplishment, is only assessed a posteriori. However, as motor actions are defined in task space, we suggest that motor modules should be computed in task space too. In this study, we propose a new module extraction algorithm, named DsNM3F, that uses task information during the module identification process. DsNM3F extends our previous space-by-time decomposition method (the so-called sNM3F algorithm, which could assess task performance only after having computed modules) to identify modules gauging between two complementary objectives: reconstruction of the original data and reliable discrimination of the performed tasks. We show that DsNM3F recovers the task dependence of module activations more accurately than sNM3F. We also apply it to electromyographic signals recorded during performance of a variety of arm pointing tasks and identify spatial and temporal modules of muscle activity that are highly consistent with previous studies. DsNM3F achieves perfect task categorization without significant loss in data approximation when task information is available and generalizes as well as sNM3F when applied to new data. These findings suggest that the space-by-time decomposition of muscle activity finds robust task-discriminating modular representations of muscle activity and that the insertion of task discrimination objectives is useful for describing the task modulation of module recruitment.
Recent Progress in CuInS2 Thin-Film Solar Cell Research at NASA Glenn
NASA Technical Reports Server (NTRS)
Jin, M. H.-C.; Banger, K. K.; Kelly, C. V.; Scofield, J. H.; McNatt, J. S.; Dickman, J. E.; Hepp, A. F.
2005-01-01
The National Aeronautics and Space Administration (NASA) is interested in developing low-cost highly efficient solar cells on light-weight flexible substrates, which will ultimately lower the mass-specific power (W/kg) of the cell allowing extra payload for missions in space as well as cost reduction. In addition, thin film cells are anticipated to have greater resistance to radiation damage in space, prolonging their lifetime. The flexibility of the substrate has the added benefit of enabling roll-to-roll processing. The first major thin film solar cell was the "CdS solar cell" - a heterojunction between p-type CuxS and n-type CdS. The research on CdS cells started in the late 1950s and the efficiency in the laboratory was up to about 10 % in the 1980s. Today, three different thin film materials are leading the field. They include amorphous Si, CdTe, and Cu(In,Ga)Se2 (CIGS). The best thin film solar cell efficiency of 19.2 % was recently set by CIGS on glass. Typical module efficiencies, however, remain below 15 %.
STS-98 Onboard Photograph-U.S. Laboratory, Destiny
NASA Technical Reports Server (NTRS)
2001-01-01
This STS-98 Shuttle mission image shows an overall interior view of the newly attached U.S. Laboratory, Destiny. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
What a car does to your perception: Distance evaluations differ from within and outside of a car.
Moeller, Birte; Zoppke, Hartmut; Frings, Christian
2016-06-01
Almost a century ago it was first suggested that cars can be interpreted as tools, but consequences of this assumption were never tested. Research on hand-held tools that are used to manipulate objects in the environment suggests that perception of near space is extended by using tools. Literature on environment perception finds perception of far space to be modulated by the observer's potential to act in the environment. Here we argue that a car increases the action potential and modulates perception of far space in a way similar to how hand-held tools modulate perception of near space. Five distances (4 to 20 meters) were estimated by pedestrians and drivers before and after driving/walking. Drivers underestimated all distances to a larger percentage than did pedestrians. Underestimation was even stronger after driving. We conclude that cars modulate the perception of far distances because they modulate the driver's perception, like a tool typically does, and change the perceived action potential.
NASA Astrophysics Data System (ADS)
Hitge, M.; Burger, R. A.
2010-01-01
The effect of a latitude-dependent solar wind speed on a Fisk heliospheric magnetic field [Fisk, L. A. Motion of the footpoints of heliospheric magnetic field lines at the Sun: implications for recurrent energetic particle events at high heliographic latitudes. J. Geophys. Res. 101, 15547-15553, 1996] was first discussed by Schwadron and Schwadron and McComas [Schwadron, N.A. An explanation for strongly underwound magnetic field in co-rotating rarefaction regions and its relationship to footpoint motion on the the sun. Geophys. Res. Lett. 29, 1-8, 2002. and Schwadron, N.A., McComas, D.J. Heliospheric “FALTS”: favored acceleration locations at the termination shock. Geophys. Res. Lett. 30, 41-1, 2003]. Burger and Sello [Burger, R.A., Sello, P.C. The effect on cosmic ray modulation of a Parker field modified by a latitudinal-dependent solar wind speed. Adv. Space Res. 35, 643-646, 2005] found a significant effect for a simplified 2D version of a latitude-dependent Fisk-type field while Miyake and Yanagita [Miyake, S., Yanagita, S. The effect of a modified Parker field on the modulation of the galactic cosmic rays. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, 445-448, 2007] found a smaller effect. The current report improves on a previous attempt Hitge and Burger [Hitge, M., Burger, R.A. The effect of a latitude-dependent solar wind speed on cosmic-ray modulation in a Fisk-type heliospheric magnetic field. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, pp. 449-450, 2007] where the global change in the solar wind speed and not the local speed gradient was emphasized. The sheared Fisk field of Schwadron and McComas [Schwadron, N.A., McComas, D.J. Heliospheric “FALTS”: Favored acceleration locations at the termination shock. Geophys. Res. Lett. 30, 41-1, 2003.) is similar to the current Schwadron-Parker hybrid field. Little difference is found between the effects of a Parker field and a Schwadron-Parker hybrid field on cosmic-ray modulation, in contrast to the results of Burger and Sello and Miyake and Yanagita [Burger, R.A., Sello, P.C. The effect on cosmic ray modulation of a Parker field modified by a latitudinal-dependent solar wind speed. Adv. Space Res. 35, 643-646, 2005 and Miyake, S., Yanagita, S. The effect of a modified Parker field on the modulation of the galactic cosmic rays. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, pp. 445-448, 2007]. The two-dimensional approximation used by these authors is therefore inadequate to model the complexities of the actual three-dimensional field. We also show that a Fisk-type field with a latitude-dependent solar wind speed (Schwadron-Parker hybrid field) decreases both the relative amplitude of recurrent cosmic ray intensity variations and latitude gradients and yields similar constants of proportionality for these quantities as for the constant solar wind speed case.
Introduction to Space Station Freedom
NASA Technical Reports Server (NTRS)
Kohrs, Richard
1992-01-01
NASA field centers and contractors are organized to develop 'work packages' for Space Station Freedom. Marshall Space Flight Center and Boeing are building the U.S. laboratory and habitation modules, nodes, and environmental control and life support system; Johnson Space Center and McDonnell Douglas are responsible for truss structure, data management, propulsion systems, thermal control, and communications and guidance; Lewis Research Center and Rocketdyne are developing the power system. The Canadian Space Agency (CSA) is contributing a Mobile Servicing Center, Special Dextrous Manipulator, and Mobile Servicing Center Maintenance Depot. The National Space Development Agency of Japan (NASDA) is contributing a Japanese Experiment Module (JEM), which includes a pressurized module, logistics module, and exposed experiment facility. The European Space Agency (ESA) is contributing the Columbus laboratory module. NASA ground facilities, now in various stages of development to support Space Station Freedom, include: Marshall Space Flight Center's Payload Operations Integration Center and Payload Training Complex (Alabama), Johnson Space Center's Space Station Control Center and Space Station Training Facility (Texas), Lewis Research Center's Power System Facility (Ohio), and Kennedy Space Center's Space Station Processing Facility (Florida). Budget appropriations impact the development of the Space Station. In Fiscal Year 1988, Congress appropriated only half of the funds that NASA requested for the space station program ($393 million vs. $767 million). In FY 89, NASA sought $967 million for the program, and Congress appropriated $900 million. NASA's FY 90 request was $2.05 billion compared to an appropriation of $1.75 billion; the FY 91 request was $2.45 billion, and the appropriation was $1.9 billion. After NASA restructured the Space Station Freedom program in response to directions from Congress, the agency's full budget request of $2.029 billion for Space Station Freedom in FY 92 was appropriated. For FY 93, NASA is seeking $2.25 billion for the program; the planned budget for FY 94 is $2.5 billion. Further alterations to the hardware configuration for Freedom would be a serious setback; NASA intends 'to stick with the current baseline' and continue planning for utilization.
Sek, Aleksander; Moore, Brian C J
2003-05-01
Two experiments were performed to test the concept that the auditory system contains a "modulation filter bank" (MFB). Experiment 1 examined the ability to "hear out" the modulation frequency of the central component of a three-component modulator applied to a 4-kHz sinusoidal carrier. On each trial, three modulated stimuli were presented. The modulator of the first stimulus contained three components. Within a run the frequencies of the outer two components were fixed and the frequency of the central ("target") component was drawn randomly from one of five values. The modulators of second and third stimuli contained one component. One had a frequency equal to that of the target and the other had a frequency randomly selected from one of the other possible values. Subjects indicated whether the target corresponded to the second or third stimulus. Scores were around 80% correct when the components in the three-component modulator were widely spaced and when the frequencies of the target and comparison differed sufficiently. Experiment 2 examined the ability to hear a change in the relative phase of the components in a three-component modulator with harmonically spaced components, using a 31FC task. The frequency of the central component, f(c), was either 50 or 100 Hz. Scores were 80%-90% correct when the component spacing was < or = 0.5 f(c), but decreased markedly for greater spacings. Performance was only slightly impaired by randomizing the overall modulation depth from one stimulus to the next. The results of both experiments are broadly consistent with what would be expected from a MFB with a Q value of 1 or slightly less.
Post-flight test results of acousto-optic modulator devices subjected to space exposure
NASA Astrophysics Data System (ADS)
Prasad, Narasimha S.; Trivedi, Sudhir; Rosemeier, Jolanta; Diestler, Mark
2014-09-01
The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 modulewas brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in space environment for more than one and a half year included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the results of performance testing of a laser diode module sent by NASA Langley Research Center on MISSE 7 mission will be discussed. This paper will present the comparison of pre-flight and post-flight performance of two different COTS acousto-optic modulator devices. Post-flight measurements indicate that these two devices did not undergo any significant performance degradation.
Automation of the space station core module power management and distribution system
NASA Technical Reports Server (NTRS)
Weeks, David J.
1988-01-01
Under the Advanced Development Program for Space Station, Marshall Space Flight Center has been developing advanced automation applications for the Power Management and Distribution (PMAD) system inside the Space Station modules for the past three years. The Space Station Module Power Management and Distribution System (SSM/PMAD) test bed features three artificial intelligence (AI) systems coupled with conventional automation software functioning in an autonomous or closed-loop fashion. The AI systems in the test bed include a baseline scheduler/dynamic rescheduler (LES), a load shedding management system (LPLMS), and a fault recovery and management expert system (FRAMES). This test bed will be part of the NASA Systems Autonomy Demonstration for 1990 featuring cooperating expert systems in various Space Station subsystem test beds. It is concluded that advanced automation technology involving AI approaches is sufficiently mature to begin applying the technology to current and planned spacecraft applications including the Space Station.
Propagation Characteristics of International Space Station Wireless Local Area Network
NASA Technical Reports Server (NTRS)
Sham, Catherine C.; Hwn, Shian U.; Loh, Yin-Chung
2005-01-01
This paper describes the application of the Uniform Geometrical Theory of Diffraction (UTD) for Space Station Wireless Local Area Networks (WLANs) indoor propagation characteristics analysis. The verification results indicate good correlation between UTD computed and measured signal strength. It is observed that the propagation characteristics are quite different in the Space Station modules as compared with those in the typical indoor WLANs environment, such as an office building. The existing indoor propagation models are not readily applicable to the Space Station module environment. The Space Station modules can be regarded as oversized imperfect waveguides. Two distinct propagation regions separated by a breakpoint exist. The propagation exhibits the guided wave characteristics. The propagation loss in the Space Station, thus, is much smaller than that in the typical office building. The path loss model developed in this paper is applicable for Space Station WLAN RF coverage and link performance analysis.
A modular Space Station/Base electrical power system - Requirements and design study.
NASA Technical Reports Server (NTRS)
Eliason, J. T.; Adkisson, W. B.
1972-01-01
The requirements and procedures necessary for definition and specification of an electrical power system (EPS) for the future space station are discussed herein. The considered space station EPS consists of a replaceable main power module with self-contained auxiliary power, guidance, control, and communication subsystems. This independent power source may 'plug into' a space station module which has its own electrical distribution, control, power conditioning, and auxiliary power subsystems. Integration problems are discussed, and a transmission system selected with local floor-by-floor power conditioning and distribution in the station module. This technique eliminates the need for an immediate long range decision on the ultimate space base power sources by providing capability for almost any currently considered option.
Space Station life sciences guidelines for nonhuman experiment accommodation
NASA Technical Reports Server (NTRS)
Arno, R.; Hilchey, J.
1985-01-01
Life scientists will utilize one of four habitable modules which constitute the initial Space Station configuration. This module will be initially employed for studies related to nonhuman and human life sciences. At a later date, a new module, devoted entirely to nonhuman life sciences will be launched. This report presents a description of the characteristics of a Space Station laboratory facility from the standpoint of nonhuman research requirements. Attention is given to the science rationale for experiments which support applied medical research and basic gravitational biology, mission profiles and typical equipment and subsystem descriptions, issues associated with the accommodation of nonhuman life sciences on the Space Station, and conceptual designs for the initial operational capability configuration and later Space Station life-sciences research facilities.
Stable homotopical algebra and [Gamma]-spaces
NASA Astrophysics Data System (ADS)
Schwede, Stefan
1999-03-01
In this paper we advertise the category of [Gamma]-spaces as a convenient framework for doing ‘algebra’ over ‘rings’ in stable homotopy theory. [Gamma]-spaces were introduced by Segal [Se] who showed that they give rise to a homotopy category equivalent to the usual homotopy category of connective (i.e. ([minus sign]1)-connected) spectra. Bousfield and Friedlander [BF] later provided model category structures for [Gamma]-spaces. The study of ‘rings, modules and algebras’ based on [Gamma]-spaces became possible when Lydakis [Ly] introduced a symmetric monoidal smash product with good homotopical properties. Here we develop model category structures for modules and algebras, set up (derived) smash products and associated spectral sequences and compare simplicial modules and algebras to their Eilenberg-MacLane spectra counterparts.
The U.S. Laboratory module arrives at KSC
NASA Technical Reports Server (NTRS)
1998-01-01
NASA's 'Super Guppy' aircraft arrives in KSC air space escorted by two T-38 aircraft after leaving Marshall Space Flight Center in Huntsville, Ala. The whale-like airplane carries the U.S. Laboratory module, considered the centerpiece of the International Space Station. The module will undergo final pre- launch preparations at KSC's Space Station Processing Facility. Scheduled for launch aboard the Shuttle Endeavour on mission STS- 98, the laboratory comprises three cylindrical sections with two end cones. Each end-cone contains a hatch opening for entering and exiting the lab. The lab will provide a shirtsleeve environment for research in such areas as life science, microgravity science, Earth science and space science. Designated Flight 5A, this mission is targeted for launch in early 2000.
Laboratory racks are installed in the MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
A worker in the Space Station Processing Facility watches as a laboratory rack moves into the Multi-Purpose Logistics Module Leonardo. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Leonardo will be launched March 1, 2001, on Shuttle mission STS-102 On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
Ghequire, Maarten G K; Kemland, Lieselore; Anoz-Carbonell, Ernesto; Buchanan, Susan K; De Mot, René
2017-02-21
Modular bacteriocins represent a major group of secreted protein toxins with a narrow spectrum of activity, involved in interference competition between Gram-negative bacteria. These antibacterial proteins include a domain for binding to the target cell and a toxin module at the carboxy terminus. Self-inhibition of producers is provided by coexpression of linked immunity genes that transiently inhibit the toxin's activity through formation of bacteriocin-immunity complexes or by insertion in the inner membrane, depending on the type of toxin module. We demonstrate strain-specific inhibitory activity for PmnH, a Pseudomonas bacteriocin with an unprecedented dual-toxin architecture, hosting both a colicin M domain, potentially interfering with peptidoglycan synthesis, and a novel colicin N-type domain, a pore-forming module distinct from the colicin Ia-type domain in Pseudomonas aeruginosa pyocin S5. A downstream-linked gene product confers PmnH immunity upon susceptible strains. This protein, ImnH, has a transmembrane topology similar to that of Pseudomonas colicin M-like and pore-forming immunity proteins, although homology with either of these is essentially absent. The enhanced killing activity of PmnH under iron-limited growth conditions reflects parasitism of the ferrichrome-type transporter for entry into target cells, a strategy shown here to be used as well by monodomain colicin M-like bacteriocins from pseudomonads. The integration of a second type of toxin module in a bacteriocin gene could offer a competitive advantage against bacteria displaying immunity against only one of both toxic activities. IMPORTANCE In their continuous struggle for ecological space, bacteria face a huge load of contenders, including phylogenetically related strains that compete for the same niche. One important group of secreted antibacterial proteins assisting in eliminating these rivals are modular bacteriocins of Gram-negative bacteria, comprising a domain for docking onto the cell envelope of a target cell, a translocation domain enabling subsequent cellular entry, and a toxin module that kills target cells via enzymatic or pore-forming activity. We here demonstrate the antagonistic function of a Pseudomonas bacteriocin with unique architecture that combines a putative enzymatic colicin M-like domain and a novel pore-forming toxin module. For target cell recognition and entry, this bacteriocin hybrid takes advantage of the ferrichrome transporter, also parasitized by enzymatic Pseudomonas bacteriocins devoid of the pore-forming module. Bacteriocins with an expanded toxin potential may represent an inventive bacterial strategy to alleviate immunity in target cells. Copyright © 2017 Ghequire et al.
NASA Astrophysics Data System (ADS)
Kiss, L. L.; Bódi, A.
2017-12-01
Context. RV Tauri-type variables are pulsating post-asymptotic giant branch (AGB) stars that evolve rapidly through the instability strip after leaving the AGB. Their light variability is dominated by radial pulsations. Members of the RVb subclass show an additional variability in the form of a long-term modulation of the mean brightness, for which the most popular theories all assume binarity and some kind of circumstellar dust. Here we assess whether or not the amplitude modulations are consistent with the dust obscuration model. Aims: We measure and interpret the overall changes of the mean amplitude of the pulsations along the RVb variability. Methods: We compiled long-term photometric data for RVb-type stars, including visual observations of the American Association of Variable Star Observers, ground-based CCD photometry from the OGLE and ASAS projects, and ultra-precise space photometry of one star, DF Cygni, from theKepler space telescope. After converting all the observations to flux units, we measure the cycle-to-cycle variations of the pulsation amplitude and correlate them to the actual mean fluxes. Results: We find a surprisingly uniform correlation between the pulsation amplitude and the mean flux; they scale linearly with each other for a wide range of fluxes and amplitudes. This means that the pulsation amplitude actually remains constant when measured relative to the system flux level. The apparent amplitude decrease in the faint states has long been noted in the literature but it was always claimed to be difficult to explain with the actual models of the RVb phenomenon. Here we show that when fluxes are used instead of magnitudes, the amplitude attenuation is naturally explained by periodic obscuration from a large opaque screen, one most likely corresponding to a circumbinary dusty disk that surrounds the whole system.
Interior view of KSC's Manned Spacecraft Operations Building
1969-01-31
S69-19197 (1969) --- Interior view of the Kennedy Space Center's (KSC) Manned Spacecraft Operations Building (MSOB) showing Apollo Spacecraft 106 Command and Service Modules (CSM) being moved to integrated work stand number one for mating to Spacecraft Lunar Module Adapter (SLA) 13. Spacecraft 106 will be flown on the Apollo 10 (Lunar Module 4/Saturn 505) space mission.
Interior view of KSC's Manned Spacecraft Operations Building
1969-01-31
S69-19190 (31 Jan. 1969) --- Interior view of the Kennedy Space Center's Manned Spacecraft Operations Building showing Apollo Spacecraft 106/Command/Service Module being moved to integrated work stand number one for mating to Spacecraft Lunar Module Adapter (SLA) 13. Spacecraft 106 will be flown on the Apollo 10 (Lunar Module 4/Saturn 505) space mission.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Shuttle Launch Director Mike Leinbach (second from left) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (fourth from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Geet, Otto D.; Fu, Ran; Horowitz, Kelsey A.
NREL studied a new type of photovoltaic (PV) module configuration wherein multiple narrow, tilted slats are mounted in a single frame. Each slat of the PV slat module contains a single row of cells and is made using ordinary crystalline silicon PV module materials and processes, including a glass front sheet and weatherproof polymer encapsulation. Compared to a conventional ballasted system, a system using slat modules offer higher energy production and lower weight at lower LCOE. The key benefits of slat modules are reduced wind loading, improved capacity factor and reduced installation cost. First, the individual slats allow air tomore » flow through, which reduce wind loading. Using PV performance modeling software, we compared the performance of an optimized installation of slats modules to a typical installation of conventional modules in a ballasted rack mounting system. Based on the results of the performance modeling two different row tilt and spacing were tested in a wind tunnel. Scaled models of the PV Slat modules were wind tunnel tested to quantify the wind loading of a slat module system on a commercial rooftop, comparing the results to conventional ballasted rack mounted PV modules. Some commercial roofs do not have sufficient reserve dead load capacity to accommodate a ballasted system. A reduced ballast system design could make PV system installation on these roofs feasible for the first time without accepting the disadvantages of penetrating mounts. Finally, technoeconomic analysis was conducted to enable an economic comparison between a conventional commercial rooftop system and a reduced-ballast slat module installation.« less
Hadfield performs regular maintenance on Biolab, in the Columbus Module
2013-02-20
ISS034-E-051715 (20 Feb. 2013) --- Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, performs routine maintenance on Biolab in the Columbus Module aboard the International Space Station.
2005-08-05
S114-E-7138 (5 August 2005) --- Astronaut Eileen M. Collins, STS-114 commander, waves while floating in the Zvezda Service Module of the international space station while Space Shuttle Discovery was docked to the station.
The Node 1 (or Unity) Module for the International Space Station
NASA Technical Reports Server (NTRS)
1997-01-01
This photograph, taken by the Boeing Company,shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
Unity connecting module placed in new site in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
The Unity connecting module, part of the International Space Station, is placed in a work station in the Space Station Processing Facility (SSPF). As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.
The Node 1 (or Unity) Module for the International Space Station
NASA Technical Reports Server (NTRS)
1997-01-01
This photograph, taken by the Boeing Company, shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
Spartan service module finite element modeling technique and analysis
NASA Technical Reports Server (NTRS)
Lindenmoyer, A. J.
1985-01-01
Sounding rockets have served as a relatively inexpensive and easy method of carrying experiments into the upper atmosphere. Limited observation time and pointing capabilities suggested the development of a new sounding rocket type carrier compatible with NASA's Space Transportation System. This concept evolved into the Spartan program, now credited with a successful Spartan 101 mission launched in June 1985. The next series of Spartans will use a service module primary structure. This newly designed reusable and universal component in the Spartan carrier system required thorough analysis and evaluation for flight certification. Using advanced finite element modeling techniques, the structure was analyzed and determined acceptable by meeting strict design goals and will be tested for verification of the analytical results.
A new conceptual design approach for habitative space modules
NASA Astrophysics Data System (ADS)
Burattini, C.; Bisegna, F.; Gugliermetti, F.; Marchetti, M.
2014-04-01
Existing Space modules were designed to meet the standards established by NASA, basically oriented to functionality. In future Space environments a high level of habitability in long duration missions will become a priority: besides comfort and ergonomics, these habitats will require the application of criteria to address human needs for living in confined environments.
Unity hatch closed in preparation for launch on STS-88
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Space Station Processing Facility hold part of the equipment to close the hatch to the Unity connecting module, part of the International Space Station, before its launch aboard Space Shuttle Endeavour on STS-88 in December. Unity will now undergo a series of leak checks before a final purge of clean, dry air inside the module to ready it for initial operations in space. Other testing includes the common berthing mechanism to which other space station elements will dock and the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. The next time the hatch will be opened it will be by astronauts on orbit. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.
Unity hatch closed in preparation for launch on STS-88
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Space Station Processing Facility close the access hatch to the Unity connecting module, part of the International Space Station, before its launch aboard Space Shuttle Endeavour on STS-88 in December. Unity will now undergo a series of leak checks before a final purge of clean, dry air inside the module to ready it for initial operations in space. Other testing includes the common berthing mechanism to which other space station elements will dock and the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. The next time the hatch will be opened it will be by astronauts on orbit. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.
Unity hatch closed in preparation for launch on STS-88
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Space Station Processing Facility make final preparations for closing the access hatch to the Unity connecting module, part of the International Space Station, before its launch aboard Space Shuttle Endeavour on STS-88 in December. Unity will now undergo a series of leak checks before a final purge of clean, dry air inside the module to ready it for initial operations in space. Other testing includes the common berthing mechanism to which other space station elements will dock and the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. The next time the hatch will be opened it will be by astronauts on orbit. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alber, Orly; Noach, Ilit; Lamed, Raphael
2008-02-01
The cloning, expression, purification, crystallization and preliminary X-ray characterization of a novel class of cohesin module (type III) from the R. flavefaciens ScaE anchoring scaffoldin are described. Ruminococcus flavefaciens is an anaerobic bacterium that resides in the gastrointestinal tract of ruminants. It produces a highly organized multi-enzyme cellulosome complex that plays a key role in the degradation of plant cell walls. ScaE is one of the critical structural components of its cellulosome that serves to anchor the complex to the cell wall. The seleno-l-methionine-labelled derivative of the ScaE cohesin module has been cloned, expressed, purified and crystallized. The crystals belongmore » to space group C2, with unit-cell parameters a = 155.6, b = 69.3, c = 93.0 Å, β = 123.4°, and contain four molecules in the asymmetric unit. Diffraction data were phased to 1.95 Å using the anomalous signal from the Se atoms.« less
Logistics Modeling for Lunar Exploration Systems
NASA Technical Reports Server (NTRS)
Andraschko, Mark R.; Merrill, R. Gabe; Earle, Kevin D.
2008-01-01
The extensive logistics required to support extended crewed operations in space make effective modeling of logistics requirements and deployment critical to predicting the behavior of human lunar exploration systems. This paper discusses the software that has been developed as part of the Campaign Manifest Analysis Tool in support of strategic analysis activities under the Constellation Architecture Team - Lunar. The described logistics module enables definition of logistics requirements across multiple surface locations and allows for the transfer of logistics between those locations. A key feature of the module is the loading algorithm that is used to efficiently load logistics by type into carriers and then onto landers. Attention is given to the capabilities and limitations of this loading algorithm, particularly with regard to surface transfers. These capabilities are described within the context of the object-oriented software implementation, with details provided on the applicability of using this approach to model other human exploration scenarios. Some challenges of incorporating probabilistics into this type of logistics analysis model are discussed at a high level.
Combining language and space: sentence bisection in unilateral spatial neglect.
Veronelli, Laura; Guasti, Maria T; Arduino, Lisa S; Vallar, Giuseppe
2014-10-01
In line bisection right-brain-damaged patients with left spatial neglect show a rightward deviation, with respect to the line's physical center. In word bisection ortho-phonological features of the stimulus' final (right-sided) part modulate performance of both patients and healthy participants (Veronelli, Vallar, Marinelli, Primativo, & Arduino, 2014). We investigated the role of linguistic factors in sentence bisection, in patients with and without neglect, and control participants. The effects of information in the right-sided part of the sentence (Experiment #1), and of lexical and syntactic violations (Experiment #2) were assessed. Neglect patients showed an overall rightward bias, larger than those of patients without neglect and controls. The neglect patients' bias was modulated by stimulus type, decreasing from lines, to letter strings and to all types of sentences. In sum, in visuo-manual sentence bisection a basic linguistic mechanism, such as sentence readability, brings about a more leftward appreciation of the stimulus, reducing the neglect patients' rightward bias. Copyright © 2014 Elsevier Inc. All rights reserved.
Space Operations Learning Center
NASA Technical Reports Server (NTRS)
Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng
2012-01-01
The Space Operations Learning Center (SOLC) is a tool that provides an online learning environment where students can learn science, technology, engineering, and mathematics (STEM) through a series of training modules. SOLC is also an effective media for NASA to showcase its contributions to the general public. SOLC is a Web-based environment with a learning platform for students to understand STEM through interactive modules in various engineering topics. SOLC is unique in its approach to develop learning materials to teach schoolaged students the basic concepts of space operations. SOLC utilizes the latest Web and software technologies to present this educational content in a fun and engaging way for all grade levels. SOLC uses animations, streaming video, cartoon characters, audio narration, interactive games and more to deliver educational concepts. The Web portal organizes all of these training modules in an easily accessible way for visitors worldwide. SOLC provides multiple training modules on various topics. At the time of this reporting, seven modules have been developed: Space Communication, Flight Dynamics, Information Processing, Mission Operations, Kids Zone 1, Kids Zone 2, and Save The Forest. For the first four modules, each contains three components: Flight Training, Flight License, and Fly It! Kids Zone 1 and 2 include a number of educational videos and games designed specifically for grades K-6. Save The Forest is a space operations mission with four simulations and activities to complete, optimized for new touch screen technology. The Kids Zone 1 module has recently been ported to Facebook to attract wider audience.
2007-10-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, STS-123 crew members get a close look at hardware related to the mission. They are at the center for a crew equipment interface test, which allows familiarization with equipment they will use during the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis
2007-10-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, STS-123 crew members get a close look at hardware related to the mission. They are at the center for a crew equipment interface test, which allows familiarization with equipment they will use during the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis