Sample records for modulation-doped field effect

  1. Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Sriram; Xia, Zhanbo; Joishi, Chandan; Zhang, Yuewei; McGlone, Joe; Johnson, Jared; Brenner, Mark; Arehart, Aaron R.; Hwang, Jinwoo; Lodha, Saurabh; Rajan, Siddharth

    2017-07-01

    Modulation-doped heterostructures are a key enabler for realizing high mobility and better scaling properties for high performance transistors. We report the realization of a modulation-doped two-dimensional electron gas (2DEG) at the β-(Al0.2Ga0.8)2O3/Ga2O3 heterojunction by silicon delta doping. The formation of a 2DEG was confirmed using capacitance voltage measurements. A modulation-doped 2DEG channel was used to realize a modulation-doped field-effect transistor. The demonstration of modulation doping in the β-(Al0.2Ga0.8)2O3/Ga2O3 material system could enable heterojunction devices for high performance electronics.

  2. Quadratic Electro-optic Effect in a Novel Nonconjugated Conductive Polymer, iodine-doped Polynorbornene

    NASA Astrophysics Data System (ADS)

    Narayanan, Ananthakrishnan; Thakur, Mrinal

    2009-03-01

    Quadratic electro-optic effect in a novel nonconjugated conductive polymer, iodine-doped polynorbornene has been measured using field-induced birefringence at 633 nm. The electrical conductivity^1 of polynorbornene increases by twelve orders of magnitude to about 0.01 S/cm upon doping with iodine. The electro-optic measurement has been made in a film doped at the medium doping-level. The electro-optic modulation signal was recorded using a lock-in amplifier for various applied ac voltages (4 kHz) and the quadratic dependence of the modulation on the applied voltage was observed. A modulation of about 0.01% was observed for an applied electric field of 3 V/micron for a 100 nm thick film The Kerr coefficient as determined is about 1.77x10-11m/V^2. This exceptionally large quadratic electro-optic effect has been attributed to the confinement of this charge-transfer system within a sub-nanometer dimension. 1. A. Narayanan, A. Palthi and M. Thakur, J. Macromol. Sci. -- PAC, accepted.

  3. Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping.

    PubMed

    Yu, Woo Jong; Liao, Lei; Chae, Sang Hoon; Lee, Young Hee; Duan, Xiangfeng

    2011-11-09

    The bilayer graphene has attracted considerable attention for potential applications in future electronics and optoelectronics because of the feasibility to tune its band gap with a vertical displacement field to break the inversion symmetry. Surface chemical doping in bilayer graphene can induce an additional offset voltage to fundamentally affect the vertical displacement field and the band gap opening in bilayer graphene. In this study, we investigate the effect of chemical molecular doping on band gap opening in bilayer graphene devices with single or dual gate modulation. Chemical doping with benzyl viologen molecules modulates the displacement field to allow the opening of a transport band gap and the increase of the on/off ratio in the bilayer graphene transistors. Additionally, Fermi energy level in the opened gap can be rationally controlled by the amount of molecular doping to obtain bilayer graphene transistors with tunable Dirac points, which can be readily configured into functional devices, such as complementary inverters.

  4. Study of InGaAs-based modulation doped field effect transistor structures using variable-angle spectroscopic ellipsometry

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Sieg, R. M.; Yao, H. D.; Snyder, P. G.; Woollam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.

    1991-01-01

    Variable-angle spectroscopic ellipsometry was used to estimate the thicknesses of all layers within the optical penetration depth of InGaAs-based modulation doped field effect transistor structures. Strained and unstrained InGaAs channels were made by molecular beam epitaxy (MBE) on InP substrates and by metal-organic chemical vapor deposition on GaAs substrates. In most cases, ellipsometrically determined thicknesses were within 10% of the growth-calibration results. The MBE-made InGaAs strained layers showed large strain effects, indicating a probable shift in the critical points of their dielectric function toward the InP lattice-matched concentration.

  5. Dual field effects in electrolyte-gated spinel ferrite: electrostatic carrier doping and redox reactions.

    PubMed

    Ichimura, Takashi; Fujiwara, Kohei; Tanaka, Hidekazu

    2014-07-24

    Controlling the electronic properties of functional oxide materials via external electric fields has attracted increasing attention as a key technology for next-generation electronics. For transition-metal oxides with metallic carrier densities, the electric-field effect with ionic liquid electrolytes has been widely used because of the enormous carrier doping capabilities. The gate-induced redox reactions revealed by recent investigations have, however, highlighted the complex nature of the electric-field effect. Here, we use the gate-induced conductance modulation of spinel ZnxFe₃₋xO₄ to demonstrate the dual contributions of volatile and non-volatile field effects arising from electronic carrier doping and redox reactions. These two contributions are found to change in opposite senses depending on the Zn content x; virtual electronic and chemical field effects are observed at appropriate Zn compositions. The tuning of field-effect characteristics via composition engineering should be extremely useful for fabricating high-performance oxide field-effect devices.

  6. Mixed Carrier Conduction in Modulation-doped Field Effect Transistors

    NASA Technical Reports Server (NTRS)

    Schacham, S. E.; Haugland, E. J.; Mena, R. A.; Alterovitz, S. A.

    1995-01-01

    The contribution of more than one carrier to the conductivity in modulation-doped field effect transistors (MODFET) affects the resultant mobility and complicates the characterization of these devices. Mixed conduction arises from the population of several subbands in the two-dimensional electron gas (2DEG), as well as the presence of a parallel path outside the 2DEG. We characterized GaAs/AlGaAs MODFET structures with both delta and continuous doping in the barrier. Based on simultaneous Hall and conductivity analysis we conclude that the parallel conduction is taking place in the AlGaAs barrier, as indicated by the carrier freezeout and activation energy. Thus, simple Hall analysis of these structures may lead to erroneous conclusions, particularly for real-life device structures. The distribution of the 2D electrons between the various confined subbands depends on the doping profile. While for a continuously doped barrier the Shubnikov-de Haas analysis shows superposition of two frequencies for concentrations below 10(exp 12) cm(exp -2), for a delta doped structure the superposition is absent even at 50% larger concentrations. This result is confirmed by self-consistent analysis, which indicates that the concentration of the second subband hardly increases.

  7. P-type field effect transistor based on Na-doped BaSnO3

    NASA Astrophysics Data System (ADS)

    Jang, Yeaju; Hong, Sungyun; Park, Jisung; Char, Kookrin

    We fabricated field effect transistors (FET) based on the p-type Na-doped BaSnO3 (BNSO) channel layer. The properties of epitaxial BNSO channel layer were controlled by the doping rate. In order to modulate the p-type FET, we used amorphous HfOx and epitaxial BaHfO3 (BHO) gate oxides, both of which have high dielectric constants. HfOx was deposited by atomic-layer-deposition and BHO was epitaxially grown by pulsed laser deposition. The pulsed laser deposited SrRuO3 (SRO) was used as the source and the drain contacts. Indium-tin oxide and La-doped BaSnO3 were used as the gate electrodes on top of the HfOx and the BHO gate oxides, respectively. We will analyze and present the performances of the BNSO field effect transistor such as the IDS-VDS, the IDS-VGS, the Ion/Ioff ratio, and the field effect mobility. Samsung Science and Technology Foundation.

  8. Quadratic Electro-Optic Effect and Electroabsorption in a Novel Nano-Optical Material based on the Nonconjugated Conductive Polymer, Poly(ethylenepyrrolediyl) Derivative

    NASA Astrophysics Data System (ADS)

    Swamy, R.; Vippa, P.; Rajagopalan, H.; Titus, J.; Thakur, M.; Sen, A.

    2005-03-01

    We report quadratic electro-optic effect and electroabsorption measurements in a novel nano-optical material based on the nonconjugated conductive polymer, iodine-doped poly(ethylenepyrrolediyl) derivative. Such effect has been recently reported in doped polyisoprene [1]. The measurement was made at 633 nm using field-induced birefringence. A modulation of 0.1% was observed for a field of 0.66 V/micron (film thickness 0.3 micron). The change in refractive index, δn, is 3.35x10-4 and the Kerr constant is 1.2x10-9 m/V^2 which is about 125 times that of nitrobenzene. Modulation due to electroabsorption was 0.05%. The exceptionally large electro-optic effect is most likely due to the specific structure and quantum confinement within a nanometer volume. In contrast, nonlinearity in a conjugated polymer is known to decrease upon iodine doping. [1] Thakur, Swamy and Titus, Macromolecules, Vol.37, 2677, (2004).

  9. Characterization of the transport properties of channel delta-doped structures by light-modulated Shubnikov-de Haas measurements

    NASA Technical Reports Server (NTRS)

    Mena, R. A.; Schacham, S. E.; Haugland, E. J.; Alterovitz, S. A.; Young, P. G.; Bibyk, S. B.; Ringel, S. A.

    1995-01-01

    The transport properties of channel delta-doped quantum well structures were characterized by conventional Hall effect and light-modulated Shubnikov-de Haas (SdH) effect measurements. The large number of carriers that become available due to the delta-doping of the channel, leads to an apparent degeneracy in the well. As a result of this degeneracy, the carrier mobility remains constant as a function of temperature from 300 K down to 1.4 K. The large amount of impurity scattering, associated with the overlap of the charge carriers and the dopants, resulted in low carrier mobilities and restricted the observation of the oscillatory magneto-resistance used to characterize the two-dimensional electron gas (2DEG) by conventional SdH measurements. By light-modulating the carriers, we were able to observe the SdH oscillation at low magnetic fields, below 1.4 tesla, and derive a value for the quantum scattering time. Our results for the ratio of the transport and quantum scattering times are lower than those previously measured for similar structures using much higher magnetic fields.

  10. Combined effects of dopants and electric field on interactions of dopamine with graphene

    NASA Astrophysics Data System (ADS)

    Wang, Qun; Wang, Meng-hao; Lu, Xiong; Wang, Ke-feng; Fang, Li-ming

    2017-10-01

    We utilized the density functional theory to study interactions in dopamine (DA)-graphene (G) systems. Graphene was modified with boron (B), nitrogen (N), calcium (Ca), and iron (Fe) atoms. Furthermore, an external electric field (E-field) between 0.005 and 0.020 au was applied between the DA and (Ca, Fe)-doped G. The study revealed that interactions can be modulated between the DA and doped G (especially the Ca- and Fe-doped G) due to the formation of metalsbnd O and Osbnd metalsbnd O covalent interactions. In addition, interactions are sensitive to the E-field applied to DA-Ca/Fe-G-lying models, there are the strongest interactions with the 0.015 au E-field.

  11. Comprehensive phase diagram of two-dimensional space charge doped Bi2Sr2CaCu2O8+x.

    PubMed

    Sterpetti, Edoardo; Biscaras, Johan; Erb, Andreas; Shukla, Abhay

    2017-12-12

    The phase diagram of hole-doped high critical temperature superconductors as a function of doping and temperature has been intensively studied with chemical variation of doping. Chemical doping can provoke structural changes and disorder, masking intrinsic effects. Alternatively, a field-effect transistor geometry with an electrostatically doped, ultra-thin sample can be used. However, to probe the phase diagram, carrier density modulation beyond 10 14  cm -2 and transport measurements performed over a large temperature range are needed. Here we use the space charge doping method to measure transport characteristics from 330 K to low temperature. We extract parameters and characteristic temperatures over a large doping range and establish a comprehensive phase diagram for one-unit-cell-thick BSCCO-2212 as a function of doping, temperature and disorder.

  12. Demonstration of β-(Al x Ga1- x )2O3/β-Ga2O3 modulation doped field-effect transistors with Ge as dopant grown via plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ahmadi, Elaheh; Koksaldi, Onur S.; Zheng, Xun; Mates, Tom; Oshima, Yuichi; Mishra, Umesh K.; Speck, James S.

    2017-07-01

    β-(Al x Ga1- x )2O3/β-Ga2O3 heterostructures were grown via plasma-assisted molecular beam epitaxy. The β-(Al x Ga1- x )2O3 barrier was partially doped by Ge to achieve a two-dimensional electron gas (2DEG) in Ga2O3. The formation of the 2DEG was confirmed by capacitance-voltage measurements. The impact of Ga-polishing on both the surface morphology and the reduction of the unintentionally incorporated Si at the growth interface was investigated using atomic force microscopy and secondary-ion mass spectrometry. Modulation doped field-effect transistors were fabricated. A maximum current density of 20 mA/mm with a pinch-off voltage of -6 V was achieved on a sample with a 2DEG sheet charge density of 1.2 × 1013 cm-2.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, J. C.; Li, Z.; Xu, X.

    We present a detailed investigation on the doping dependence of the upper critical field H{sub c2}(T) of FeSe{sub x}Te{sub 1−x} thin films (0.18 ≤ x ≤ 0.90) by measuring the electrical resistivity as a function of magnetic field. The H{sub c2}(T) curves exhibit a downturn behavior with decreasing temperature in all the samples, owing to the Pauli-limited effect (spin paramagnetic effect). The Pauli-limited effect on the upper critical field can be monotonically modulated by variation of the Se/Te composition. Our results show that Te-doping induced disorder and excess Fe atoms give rise to enhancement of the Pauli-limited effect.

  14. A reliable and controllable graphene doping method compatible with current CMOS technology and the demonstration of its device applications

    NASA Astrophysics Data System (ADS)

    Kim, Seonyeong; Shin, Somyeong; Kim, Taekwang; Du, Hyewon; Song, Minho; Kim, Ki Soo; Cho, Seungmin; Lee, Sang Wook; Seo, Sunae

    2017-04-01

    The modulation of charge carrier concentration allows us to tune the Fermi level (E F) of graphene thanks to the low electronic density of states near the E F. The introduced metal oxide thin films as well as the modified transfer process can elaborately maneuver the amounts of charge carrier concentration in graphene. The self-encapsulation provides a solution to overcome the stability issues of metal oxide hole dopants. We have manipulated systematic graphene p-n junction structures for electronic or photonic application-compatible doping methods with current semiconducting process technology. We have demonstrated the anticipated transport properties on the designed heterojunction devices with non-destructive doping methods. This mitigates the device architecture limitation imposed in previously known doping methods. Furthermore, we employed E F-modulated graphene source/drain (S/D) electrodes in a low dimensional transition metal dichalcogenide field effect transistor (TMDFET). We have succeeded in fulfilling n-type, ambipolar, or p-type field effect transistors (FETs) by moving around only the graphene work function. Besides, the graphene/transition metal dichalcogenide (TMD) junction in either both p- and n-type transistor reveals linear voltage dependence with the enhanced contact resistance. We accomplished the complete conversion of p-/n-channel transistors with S/D tunable electrodes. The E F modulation using metal oxide facilitates graphene to access state-of-the-art complimentary-metal-oxide-semiconductor (CMOS) technology.

  15. Calculation of the electron wave function in a graded-channel double-heterojunction modulation-doped field-effect transistor

    NASA Technical Reports Server (NTRS)

    Mui, D. S. L.; Patil, M. B.; Morkoc, H.

    1989-01-01

    Three double-heterojunction modulation-doped field-effect transistor structures with different channel composition are investigated theoretically. All of these transistors have an In(x)Ga(1-x)As channel sandwiched between two doped Al(0.3)Ga(0.7)As barriers with undoped spacer layers. In one of the structures, x varies from 0 from either heterojunction to 0.15 at the center of the channel quadratically; in the other two, constant values of x of 0 and 0.15 are used. The Poisson and Schroedinger equations are solved self-consistently for the electron wave function in all three cases. The results showed that the two-dimensional electron gas (2DEG) concentration in the channel of the quadratically graded structure is higher than the x = 0 one and slightly lower than the x = 0.15 one, and the mean distance of the 2DEG is closer to the center of the channel for this transistor than the other two. These two effects have important implications on the electron mobility in the channel.

  16. Coulomb-interaction induced coupling of Landau levels in intrinsic and modulation-doped quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, J.; Stevens, C. E.; Zhang, H.

    We have performed two-dimensional Fourier transform spectroscopy on intrinsic and modulation doped quantum wells in external magnetic fields up to 10 T. In the undoped sample, the strong Coulomb interactions and the increasing separations of the electron and hole charge distributions with increasing magnetic fields lead to a nontrivial in-plane dispersion of the magneto-excitons. Thus, the discrete and degenerate Landau levels are coupled to a continuum. The signature of this continuum is the emergence of elongated spectral line shapes at the Landau level energies, which are exposed by the multidimensional nature of our technique. Surprisingly, the elongation of the peaksmore » is completely absent in the lowest Landau level spectra obtained from the modulation doped quantum well at high fields.« less

  17. Coulomb-interaction induced coupling of Landau levels in intrinsic and modulation-doped quantum wells

    DOE PAGES

    Paul, J.; Stevens, C. E.; Zhang, H.; ...

    2017-06-28

    We have performed two-dimensional Fourier transform spectroscopy on intrinsic and modulation doped quantum wells in external magnetic fields up to 10 T. In the undoped sample, the strong Coulomb interactions and the increasing separations of the electron and hole charge distributions with increasing magnetic fields lead to a nontrivial in-plane dispersion of the magneto-excitons. Thus, the discrete and degenerate Landau levels are coupled to a continuum. The signature of this continuum is the emergence of elongated spectral line shapes at the Landau level energies, which are exposed by the multidimensional nature of our technique. Surprisingly, the elongation of the peaksmore » is completely absent in the lowest Landau level spectra obtained from the modulation doped quantum well at high fields.« less

  18. Coulomb-interaction induced coupling of Landau levels in intrinsic and modulation-doped quantum wells

    NASA Astrophysics Data System (ADS)

    Paul, J.; Stevens, C. E.; Zhang, H.; Dey, P.; McGinty, D.; McGill, S. A.; Smith, R. P.; Reno, J. L.; Turkowski, V.; Perakis, I. E.; Hilton, D. J.; Karaiskaj, D.

    2017-06-01

    We have performed two-dimensional Fourier transform spectroscopy on intrinsic and modulation doped quantum wells in external magnetic fields up to 10 T. In the undoped sample, the strong Coulomb interactions and the increasing separations of the electron and hole charge distributions with increasing magnetic fields lead to a nontrivial in-plane dispersion of the magneto-excitons. Thus, the discrete and degenerate Landau levels are coupled to a continuum. The signature of this continuum is the emergence of elongated spectral line shapes at the Landau level energies, which are exposed by the multidimensional nature of our technique. Surprisingly, the elongation of the peaks is completely absent in the lowest Landau level spectra obtained from the modulation doped quantum well at high fields.

  19. Modulation Doped GaAs/Al sub xGA sub (1-x)As Layered Structures with Applications to Field Effect Transistors.

    DTIC Science & Technology

    1982-02-15

    function of the doping density at 300 and 77 K for the classical Boltzmann statistics or depletion approximation (solid line) and for the approximate...Fermi-Dirac statistics (equation (19) dotted line)• This comparison demonstrates that the deviation from Boltzmann statistics is quite noticeable...tunneling Schottky barriers cannot be obtained at these doping levels. The dotted lines are obtained when Boltzmann statistics are used in the Al Ga

  20. Evaluation of modulating field of photoreflectance of surface-intrinsic-n+ type doped GaAs by using photoinduced voltage

    NASA Astrophysics Data System (ADS)

    Lee, W. Y.; Chien, J. Y.; Wang, D. P.; Huang, K. F.; Huang, T. C.

    2002-04-01

    Photoreflectance (PR) of surface-intrinsic-n+ type doped GaAs has been measured for various power densities of pump laser. The spectra exhibited many Franz-Keldysh oscillations, whereby the strength of electric field F in the undoped layer can be determined. The thus obtained Fs are subject to photovoltaic effect and are less than built-in field Fbi. In the previous work we have obtained the relation F≈Fbi-δF/2 when δF≪Fbi by using electroreflectance to simulate PR, where δF is the modulating field of the pump beam. In this work a method was devised to evaluate δF by using photoinduced voltages Vs and, hence, the relation can be verified by PR itself. The δFs obtained by Vs are also consistent with those of using imaginary part of fast Fourier transform of PR spectra.

  1. Mott-metal transition in layered perovskite iridate thin films via field-effect doping

    NASA Astrophysics Data System (ADS)

    Cheema, Suraj; Turcaud, Jeremy; Nelson, Chris; Salahuddin, Sayeef; Ramesh, Ramamoorthy

    We report on electrostatic gating of spin-orbit coupled Mott insulator Sr2IrO4 (Sr214) via ferroelectric field effect doping. Field effect doping has been used to modulate electronic phenomena in emerging 2D systems and strongly correlated oxides, but 5 d systems with large spin-orbit coupling have yet to be explored. Upon switching the polarization field of ferroelectric Pb(Zr20Ti80)O3 (PZT) to the down-poled (electron-accumulation) state, temperature-dependent resistivity measurements indicate extremely metallic behavior in the ultrathin Sr214 channel. This work successfully closes the Mott gap in Sr214 in a ''clean'' doping environment free of chemical disorder, thereby strengthening the link to the isostrucutral high-Tc cuprates, as Sr214 has been predicted to host d-wave superconductivity upon electron doping the parent antiferromagnetic insulating phase. Furthermore, the metallic behavior in Sr214 persists for thickness beyond the expected screening length, suggestive of a collective carrier delocalization mechanism. Electrostatically doped carriers prove to be a useful method for tuning the competition between spin-orbit and Coulomb interactions in order to trigger novel phase transitions, such as the Mott-metal crossover. This work was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231.

  2. Absorption coefficient and relative refractive index change for a double δ-doped GaAs MIGFET-like structure: Electric and magnetic field effects

    NASA Astrophysics Data System (ADS)

    Martínez-Orozco, J. C.; Rodríguez-Magdaleno, K. A.; Suárez-López, J. R.; Duque, C. A.; Restrepo, R. L.

    2016-04-01

    In this work we present theoretical results for the electronic structure as well as for the absorption coefficient and relative refractive index change for an asymmetric double δ-doped like confining potential in the active region of a Multiple Independent Gate Field Effect Transistor (MIGFET) system. We model the potential profile as a double δ-doped like potential profile between two Schottky (parabolic) potential barriers that are just the main characteristics of the MIGFET configuration. We investigate the effect of external electromagnetic fields in this kind of quantum structures, in particular we applied a homogeneous constant electric field in the growth direction z as well as a homogeneous constant magnetic field in the x-direction. In general we conclude that by applying electromagnetic fields we can modulate the resonant peaks of the absorption coefficient as well as their energy position. Also with such probes it is possible to control the nodes and amplitude of the relative refractive index changes related to resonant intersubband optical transitions.

  3. The effect of zinc diffusion on extinction ratio of MQW electroabsorption modulator integrated with DFB laser

    NASA Astrophysics Data System (ADS)

    Zhou, Daibing; Zhang, Ruikang; Wang, Huitao; Wang, Baojun; Bian, Jing; An, Xin; Zhao, Lingjuan; Zhu, Hongliang; Ji, Chen; Wang, Wei

    2014-11-01

    Monolithically integrated electroabsorption modulated lasers (EML) are widely being used in the optical fiber communication systems, due to their low chip, compact size and good compatible with the current communication systems. In this paper, we investigated the effect of Zinc diffusion on extinction ratio of electroabsorption modulator (EAM) integrated with distributed feedback laser (DFB). EML was fabricated by selective area growth (SAG) technology. The MQW structure of different quantum energy levels was grown on n-type InP buffer layer with 150nm thick SiO2 parallel stripes mask by selective area metal-organic chemical vapor deposition (MOCVD). A 35nm photoluminescence wavelength variation was observed between the laser area (λPL=1535nm) and modulator area (λPL=1500nm) by adjusting the dimension of parallel stripes. The grating (λ=1550nm) was fabricated in the selective area. The device was mesa ridge structure, which was constituted of the DFB laser, isolation gap and modulator. The length of every part is 300μm, 50μm, and 150μm respectively. Two samples were fabricated with the same structure and different p-type Zn-doped concentration, the extinction ratio of heavy Zn-doped device is 12.5dB at -6V. In contrast, the extinction ratio of light Zn-doped device is 20dB at -6V, that was improved for approximate 60%. The different Zn diffusion depth into the MQW absorption layer was observed by Secondary ion mass spectrometer (SIMS). The heavy Zn-doped device diffused into absorption layer deeper than the light Zn-doped device, which caused the large non-uniformity of the electric field in the MQW layer. So the extinction ratio characteristics can be improved by optimizing the Zn-doped concentration of p-type layer.

  4. Demonstration of β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Yuewei; Joishi, Chandan; Xia, Zhanbo; Brenner, Mark; Lodha, Saurabh; Rajan, Siddharth

    2018-06-01

    In this work, we demonstrate modulation-doped β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistors. The maximum sheet carrier density for a two-dimensional electron gas (2DEG) in a β-(AlxGa1-x)2O3/Ga2O3 heterostructure is limited by the conduction band offset and parasitic channel formation in the barrier layer. We demonstrate a double heterostructure to realize a β-(AlxGa1-x)2O3/Ga2O3/(AlxGa1-x)2O3 quantum well, where electrons can be transferred from below and above the β-Ga2O3 quantum well. The confined 2DEG charge density of 3.85 × 1012 cm-2 was estimated from the low-temperature Hall measurement, which is higher than that achievable in a single heterostructure. Hall mobilities of 1775 cm2/V.s at 40 K and 123 cm2/V.s at room temperature were measured. Modulation-doped double heterostructure field effect transistors showed a maximum drain current of IDS = 257 mA/mm, a peak transconductance (gm) of 39 mS/mm, and a pinch-off voltage of -7.0 V at room temperature. The three-terminal off-state breakdown measurement on the device with a gate-drain spacing (LGD) of 1.55 μm showed a breakdown voltage of 428 V, corresponding to an average breakdown field of 2.8 MV/cm. The breakdown measurement on the device with a scaled gate-drain spacing of 196 nm indicated an average breakdown field of 3.2 MV/cm. The demonstrated modulation-doped β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistor could act as a promising candidate for high power and high frequency device applications.

  5. Doped carbon nanostructure field emitter arrays for infrared imaging

    DOEpatents

    Korsah, Kofi [Knoxville, TN; Baylor, Larry R [Farragut, TN; Caughman, John B [Oak Ridge, TN; Kisner, Roger A [Knoxville, TN; Rack, Philip D [Knoxville, TN; Ivanov, Ilia N [Knoxville, TN

    2009-10-27

    An infrared imaging device and method for making infrared detector(s) having at least one anode, at least one cathode with a substrate electrically connected to a plurality of doped carbon nanostructures; and bias circuitry for applying an electric field between the anode and the cathode such that when infrared photons are adsorbed by the nanostructures the emitted field current is modulated. The detectors can be doped with cesium to lower the work function.

  6. Spatial modulation of the Fermi level by coherent illumination of undoped GaAs

    NASA Astrophysics Data System (ADS)

    Nolte, D. D.; Olson, D. H.; Glass, A. M.

    1989-11-01

    The Fermi level in undoped GaAs has been modulated spatially by optically quenching EL2 defects. The spatial gradient of the Fermi level produces internal electric fields that are much larger than fields generated by thermal diffusion alone. The resulting band structure is equivalent to a periodic modulation-doped p-i-p structure of alternating insulating and p-type layers. The internal fields are detected via the electro-optic effect by the diffraction of a probe laser in a four-wave mixing geometry. The direct control of the Fermi level distinguishes this phenomenon from normal photorefractive behavior and introduces a novel nonlinear optical process.

  7. Negative Photoconductance in Heavily Doped Si Nanowire Field-Effect Transistors.

    PubMed

    Baek, Eunhye; Rim, Taiuk; Schütt, Julian; Baek, Chang-Ki; Kim, Kihyun; Baraban, Larysa; Cuniberti, Gianaurelio

    2017-11-08

    We report the first observation of negative photoconductance (NPC) in n- and p-doped Si nanowire field-effect transistors (FETs) and demonstrate the strong influence of doping concentrations on the nonconventional optical switching of the devices. Furthermore, we show that the NPC of Si nanowire FETs is dependent on the wavelength of visible light due to the phonon-assisted excitation to multiple conduction bands with different band gap energies that would be a distinct optoelectronic property of indirect band gap semiconductor. We attribute the main driving force of NPC in Si nanowire FETs to the photogenerated hot electrons trapping by dopants ions and interfacial states. Finally, comparing back- and top-gate modulation, we derive the mechanisms of the transition between negative and positive photoconductance regimes in nanowire devices. The transition is decided by the competition between the light-induced interfacial trapping and the recombination of mobile carriers, which is dependent on the light intensity and the doping concentration.

  8. Modeling of Gate Bias Modulation in Carbon Nanotube Field-Effect-Transistor

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    The threshold voltages of a carbon-nanotube (CNT) field-effect transistor (FET) are studied. The CNT channel is so thin that there is no voltage drop perpendicular to the gate electrode plane, and this makes the device characteristics quite unique. The relation between the voltage and the electrochemical potentials, and the mass action law for electrons and holes are examined in the context of CNTs, and inversion and accumulation threshold voltages (V(sub Ti), and V(sub Ta)) are derived. V(sub Ti) of the CNTFETs has a much stronger doping dependence than that of the metal-oxide- semiconductor FETs, while V(sub Ta) of both devices depends weakly on doping with the same functional form.

  9. Capacitance-voltage analysis of electrical properties for WSe2 field effect transistors with high-k encapsulation layer

    NASA Astrophysics Data System (ADS)

    Ko, Seung-Pil; Shin, Jong Mok; Jang, Ho Kyun; You, Min Youl; Jin, Jun-Eon; Choi, Miri; Cho, Jiung; Kim, Gyu-Tae

    2018-02-01

    Doping effects in devices based on two-dimensional (2D) materials have been widely studied. However, detailed analysis and the mechanism of the doping effect caused by encapsulation layers has not been sufficiently explored. In this work, we present experimental studies on the n-doping effect in WSe2 field effect transistors (FETs) with a high-k encapsulation layer (Al2O3) grown by atomic layer deposition. In addition, we demonstrate the mechanism and origin of the doping effect. After encapsulation of the Al2O3 layer, the threshold voltage of the WSe2 FET negatively shifted with the increase of the on-current. The capacitance-voltage measurements of the metal insulator semiconductor (MIS) structure proved the presence of the positive fixed charges within the Al2O3 layer. The flat-band voltage of the MIS structure of Au/Al2O3/SiO2/Si was shifted toward the negative direction on account of the positive fixed charges in the Al2O3 layer. Our results clearly revealed that the fixed charges in the Al2O3 encapsulation layer modulated the Fermi energy level via the field effect. Moreover, these results possibly provide fundamental ideas and guidelines to design 2D materials FETs with high-performance and reliability.

  10. Pseudogap and electronic structure of electron-doped Sr2IrO4

    NASA Astrophysics Data System (ADS)

    Moutenet, Alice; Georges, Antoine; Ferrero, Michel

    2018-04-01

    We present a theoretical investigation of the effects of correlations on the electronic structure of the Mott insulator Sr2IrO4 upon electron doping. A rapid collapse of the Mott gap upon doping is found, and the electronic structure displays a strong momentum-space differentiation at low doping level: The Fermi surface consists of pockets centered around (π /2 ,π /2 ) , while a pseudogap opens near (π ,0 ) . Its physical origin is shown to be related to short-range spin correlations. The pseudogap closes upon increasing doping, but a differentiated regime characterized by a modulation of the spectral intensity along the Fermi surface persists to higher doping levels. These results, obtained within the cellular dynamical mean-field-theory framework, are discussed in comparison to recent photoemission experiments and an overall good agreement is found.

  11. Stability and magnetic properties of SnSe monolayer doped by transition metal atom (Mn, Fe, and Co): a first-principles study

    NASA Astrophysics Data System (ADS)

    Tang, Chao; Li, Qinwen; Zhang, Chunxiao; He, Chaoyu; Li, Jin; Ouyang, Tao; Li, Hongxing; Zhong, Jianxin

    2018-06-01

    Two dimensional (2D) tin selenium (SnSe) is an intriguing material with desired thermal and electric properties in nanoelectronics. In this paper, we carry on a density functional theory study on the stability and dilute magnetism of the 3d TM (Mn, Fe, and Co) doped 2D SnSe. Both the adsorption and substitution are in consideration here. We find that all the defects are electrically active and the cation substitutional doping (TM@Sn) is energetically favorable. The TM@Sn prefers to act as accepters and exhibits high-spin state with nonzero magnetic moment. The magnetic moment is mainly contributed by the spin-polarized charge density of the TM impurities. The magnetism is determined by the arrangement of the TM-3d orbitals, which is the result of the crystal field splitting and spin exchange splitting under specific symmetry. The magnetic and electronic properties of the TM@Sn are effectively modulated by external electric field (Eext) and charge doping. The Eext shifts the TM impurities relative to the SnSe host and then modifies the crystal field splitting. In particular, the magnetic moment is sensitive to the Eext in the Fe@Sn because the Eext induces distinct structure transformation. Based on the formation energy, doping electrons is a viable way to modulate the magnetic moment of TM@Sn. Doping electrons shift the 3d states towards low energy level, which induces the occupation of more 3d states and then the reduction of magnetism. These results render SnSe monolayer a promising 2D material for applications in future spintronics.

  12. Investigation of bandgap modulation, field emission and dielectric properties of cadmium doped CaCu3 Ti4O12

    NASA Astrophysics Data System (ADS)

    Maitra, S.; Mitra, R.; Bera, K. P.; Nath, T. K.

    2017-05-01

    We have prepared cadmium doped CCTO (Ca1-xCdxCu3Ti4O12 where x = 0.01, 0.02, 0.03, 0.04, 0.05) by Molten Salt Synthesis technique. It has exhibited high level of crystallinity and a well defined micrometre sized grains with uniform cubic morphology, as confirmed by a combination of X-ray diffraction and field emission scanning electron microscopy. Thereby we have found the modulation of its semiconducting bandgap as a function of doping from recorded UV-Vis reflectance spectra using Kubelka Munk (KM) method where with increasing Cadmium doping content the bandgap is found to increase. We have also carried out investigation on the field emission properties of CCTO crystals and it has exhibited poor field emission characteristics. Finally, we have investigated the dielectric properties of CCTO as a function of temperature. It has exhibited a giant dielectric property with low loss over a considerable temperature regime (50-300°C) and is found to exhibit Maxwell Wagner type dielectric relaxation.

  13. Electrically tunable magnetic configuration on vacancy-doped GaSe monolayer

    NASA Astrophysics Data System (ADS)

    Tang, Weiqing; Ke, Congming; Fu, Mingming; Wu, Yaping; Zhang, Chunmiao; Lin, Wei; Lu, Shiqiang; Wu, Zhiming; Yang, Weihuang; Kang, Junyong

    2018-03-01

    Group-IIIA metal-monochalcogenides with the enticing properties have attracted tremendous attention across various scientific disciplines. With the aim to satisfy the multiple demands of device applications, here we report a design framework on GaSe monolayer in an effort to tune the electronic and magnetic properties through a dual modulation of vacancy doping and electric field. A half-metallicity with a 100% spin polarization is generated in a Ga vacancy doped GaSe monolayer due to the nonbonding 4p electronic orbital of the surrounding Se atoms. The stability of magnetic moment is found to be determined by the direction of applied electric field. A switchable magnetic configuration in Ga vacancy doped GaSe monolayer is achieved under a critical electric field of 0.6 V/Å. Electric field induces redistribution of the electronic states. Finally, charge transfers are found to be responsible for the controllable magnetic structure in this system. The magnetic modulation on GaSe monolayer in this work offers some references for the design and fabrication of tunable two-dimensional spintronic device.

  14. Polarization-independent refractive index tuning using gold nanoparticle-stabilized blue phase liquid crystals.

    PubMed

    Yabu, Shuhei; Tanaka, Yuma; Tagashira, Kenji; Yoshida, Hiroyuki; Fujii, Akihiko; Kikuchi, Hirotsugu; Ozaki, Masanori

    2011-09-15

    Polarization-independent refractive index (RI) modulation can be achieved in blue phase (BP) liquid crystals (LCs) by applying an electric field parallel to the direction of light transmission. One of the problems limiting the achievable tuning range is the field-induced phase transition to the cholesteric phase, which is birefringent and chiral. Here we report the RI modulation capabilities of gold nanoparticle-doped BPs I and II, and we show that field-induced BP-cholesteric transition is suppressed in nanoparticle-doped BP II. Because the LC remains optically isotropic even at high applied voltages, a larger RI tuning range can be achieved.

  15. Nitrogen plasma-treated multilayer graphene-based field effect transistor fabrication and electronic characteristics

    NASA Astrophysics Data System (ADS)

    Su, Wei-Jhih; Chang, Hsuan-Chen; Honda, Shin-ichi; Lin, Pao-Hung; Huang, Ying-Sheng; Lee, Kuei-Yi

    2017-08-01

    Chemical doping with hetero-atoms is an effective method used to change the characteristics of materials. Nitrogen doping technology plays a critical role in regulating the electronic properties of graphene. Nitrogen plasma treatment was used in this work to dope nitrogen atoms to modulate multilayer graphene electrical properties. The measured I-V multilayer graphene-base field-effect transistor characteristics (GFETs) showed a V-shaped transfer curve with the hole and electron region separated from the measured current-voltage (I-V) minimum. GFETs fabricated with multilayer graphene from chemical vapor deposition (CVD) exhibited p-type behavior because of oxygen adsorption. After using different nitrogen plasma treatment times, the minimum in I-V characteristic shifted into the negative gate voltage region with increased nitrogen concentration and the GFET channel became an n-type semiconductor. GFETs could be easily fabricated using this method with potential for various applications. The GFET transfer characteristics could be tuned precisely by adjusting the nitrogen plasma treatment time.

  16. A spot laser modulated resistance switching effect observed on n-type Mn-doped ZnO/SiO2/Si structure.

    PubMed

    Lu, Jing; Tu, Xinglong; Yin, Guilin; Wang, Hui; He, Dannong

    2017-11-09

    In this work, a spot laser modulated resistance switching (RS) effect is firstly observed on n-type Mn-doped ZnO/SiO 2 /Si structure by growing n-type Mn-doped ZnO film on Si wafer covered with a 1.2 nm native SiO 2 , which has a resistivity in the range of 50-80 Ω∙cm. The I-V curve obtained in dark condition evidences the structure a rectifying junction, which is further confirmed by placing external bias. Compared to the resistance state modulated by electric field only in dark (without illumination), the switching voltage driving the resistance state of the structure from one state to the other, shows clear shift under a spot laser illumination. Remarkably, the switching voltage shift shows a dual dependence on the illumination position and power of the spot laser. We ascribe this dual dependence to the electric filed produced by the redistribution of photo-generated carriers, which enhance the internal barrier of the hetero-junction. A complete theoretical analysis based on junction current and diffusion equation is presented. The dependence of the switching voltage on spot laser illumination makes the n-type Mn-doped ZnO/SiO 2 /Si structure sensitive to light, which thus allows for the integration of an extra functionality in the ZnO-based photoelectric device.

  17. The effects of the magnitude of the modulation field on electroreflectance spectroscopy of undoped-n+ type doped GaAs

    NASA Astrophysics Data System (ADS)

    Wang, D. P.; Huang, K. M.; Shen, T. L.; Huang, K. F.; Huang, T. C.

    1998-01-01

    The electroreflectance (ER) spectra of an undoped-n+ type doped GaAs has been measured at various amplitudes of modulating fields (δF). Many Franz-Keldysh oscillations were observed above the band gap energy, thus enabling the electric field (F) in the undoped layer to be determined. The F is obtained by applying fast Fourier transformation to the ER spectra. When δF is small, the power spectrum can be clearly resolved into two peaks, which corresponds to heavy- and light-hole transitions. When δF is less than ˜1/8 of the built-in field (Fbi˜77 420 V/cm), the F deduced from the ER is almost independent of δF. However, when larger than this, F is increased with δF. Also, when δF is increased to larger than ˜1/8 of Fbi, a shoulder appears on the right side of the heavy-hole peak of the power spectrum. The separation between the main peak and the shoulder of the heavy-hole peak becomes wider as δF becomes larger.

  18. Spectral tuning of near-field radiative heat transfer by graphene-covered metasurfaces

    NASA Astrophysics Data System (ADS)

    Zheng, Zhiheng; Wang, Ao; Xuan, Yimin

    2018-03-01

    When two gratings are respectively covered by a layer of graphene sheet, the near-field radiative heat transfer between two parallel gratings made of silica (SiO2) could be greatly improved. As the material properties of doped silicon (n-type doping concentration is 1020 cm-3, marked as Si-20) and SiO2 differ greatly, we theoretically investigate the near-field radiative heat transfer between two parallel graphene-covered gratings made of Si-20 to explore some different phenomena, especially for modulating the spectral properties. The radiative heat flux between two parallel bulks made of Si-20 can be enhanced by using gratings instead of bulks. When the two gratings are respectively covered by a layer of graphene sheet, the radiative heat flux between two gratings made of Si-20 can be further enhanced. By tuning graphene chemical potential μ and grating filling factor f, due to the interaction between surface plasmon polaritons (SPPs) of graphene sheets and grating structures, the spectral properties of the radiative heat flux between two parallel graphene-covered gratings can be effectively regulated. This work will develop and supplement the effects of materials on the near-field radiative heat transfer for this kind of system configuration, paving a way to modulate the spectral properties of near-field radiative heat transfer.

  19. Nanoscience and Nanotechnology

    DTIC Science & Technology

    1992-05-05

    Stanford has fabricated gate lengths down to 65 nm, and are entering into consortia to fabricate modulation doped field effect transistors (MODFETs...and from the substrate exposes the resist over a greater area than the beam xpot size. Correcting for these effects (where possible) is computationally...the lithographic pattern (proximity effects ). The push to smaller dimensions is concentrated on controlling and understanding these phenomena rather

  20. Effect of modulating field on photoreflectance simulated by electroreflectance

    NASA Astrophysics Data System (ADS)

    Chiou, S. J.; Sung, Y. G.; Wang, D. P.; Huang, K. F.; Huang, T. C.; Chu, A. K.

    1999-04-01

    Photoreflectance (PR) of surface-intrinsic-n+ (s-i-n+) type doped GaAs has been simulated by electroreflectance (ER). The simulated spectra of the s-i-n+ sample have exhibited many Franz-Keldysh oscillations, which enable the electric field (F) to be determined. It is known that F's determined from PR are subjected to photovoltaic effect and the measured F is close to Fbi-δF/2 when the modulating field, δF≪Fbi, where Fbi is the built-in field of the sample and δF is the modulating field. In this work, we have investigated the relation between the measured F and δF not only for the region where δF≪Fbi holds, but also for a whole range of δF. In order to determine the magnitude of δF, we have used ER to simulate PR, that is, the measurements of ER under a forward bias, which is set to be equal to δF/2.

  1. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films.

    PubMed

    Yang, C-H; Seidel, J; Kim, S Y; Rossen, P B; Yu, P; Gajek, M; Chu, Y H; Martin, L W; Holcomb, M B; He, Q; Maksymovych, P; Balke, N; Kalinin, S V; Baddorf, A P; Basu, S R; Scullin, M L; Ramesh, R

    2009-06-01

    Many interesting materials phenomena such as the emergence of high-Tc superconductivity in the cuprates and colossal magnetoresistance in the manganites arise out of a doping-driven competition between energetically similar ground states. Doped multiferroics present a tantalizing evolution of this generic concept of phase competition. Here, we present the observation of an electronic conductor-insulator transition by control of band-filling in the model antiferromagnetic ferroelectric BiFeO3 through Ca doping. Application of electric field enables us to control and manipulate this electronic transition to the extent that a p-n junction can be created, erased and inverted in this material. A 'dome-like' feature in the doping dependence of the ferroelectric transition is observed around a Ca concentration of approximately 1/8, where a new pseudo-tetragonal phase appears and the electric modulation of conduction is optimized. Possible mechanisms for the observed effects are discussed on the basis of the interplay of ionic and electronic conduction. This observation opens the door to merging magnetoelectrics and magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom already present in the multiferroic BiFeO3.

  2. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films

    NASA Astrophysics Data System (ADS)

    Yang, C.-H.; Seidel, J.; Kim, S. Y.; Rossen, P. B.; Yu, P.; Gajek, M.; Chu, Y. H.; Martin, L. W.; Holcomb, M. B.; He, Q.; Maksymovych, P.; Balke, N.; Kalinin, S. V.; Baddorf, A. P.; Basu, S. R.; Scullin, M. L.; Ramesh, R.

    2009-06-01

    Many interesting materials phenomena such as the emergence of high-Tc superconductivity in the cuprates and colossal magnetoresistance in the manganites arise out of a doping-driven competition between energetically similar ground states. Doped multiferroics present a tantalizing evolution of this generic concept of phase competition. Here, we present the observation of an electronic conductor-insulator transition by control of band-filling in the model antiferromagnetic ferroelectric BiFeO3 through Ca doping. Application of electric field enables us to control and manipulate this electronic transition to the extent that a p-n junction can be created, erased and inverted in this material. A `dome-like' feature in the doping dependence of the ferroelectric transition is observed around a Ca concentration of ~1/8, where a new pseudo-tetragonal phase appears and the electric modulation of conduction is optimized. Possible mechanisms for the observed effects are discussed on the basis of the interplay of ionic and electronic conduction. This observation opens the door to merging magnetoelectrics and magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom already present in the multiferroic BiFeO3.

  3. Local switching of two-dimensional superconductivity using the ferroelectric field effect

    NASA Astrophysics Data System (ADS)

    Takahashi, K. S.; Gabay, M.; Jaccard, D.; Shibuya, K.; Ohnishi, T.; Lippmaa, M.; Triscone, J.-M.

    2006-05-01

    Correlated oxides display a variety of extraordinary physical properties including high-temperature superconductivity and colossal magnetoresistance. In these materials, strong electronic correlations often lead to competing ground states that are sensitive to many parameters-in particular the doping level-so that complex phase diagrams are observed. A flexible way to explore the role of doping is to tune the electron or hole concentration with electric fields, as is done in standard semiconductor field effect transistors. Here we demonstrate a model oxide system based on high-quality heterostructures in which the ferroelectric field effect approach can be studied. We use a single-crystal film of the perovskite superconductor Nb-doped SrTiO3 as the superconducting channel and ferroelectric Pb(Zr,Ti)O3 as the gate oxide. Atomic force microscopy is used to locally reverse the ferroelectric polarization, thus inducing large resistivity and carrier modulations, resulting in a clear shift in the superconducting critical temperature. Field-induced switching from the normal state to the (zero resistance) superconducting state was achieved at a well-defined temperature. This unique system could lead to a field of research in which devices are realized by locally defining in the same material superconducting and normal regions with `perfect' interfaces, the interface being purely electronic. Using this approach, one could potentially design one-dimensional superconducting wires, superconducting rings and junctions, superconducting quantum interference devices (SQUIDs) or arrays of pinning centres.

  4. Tuning on-off current ratio and field-effect mobility in a MoS(2)-graphene heterostructure via Schottky barrier modulation.

    PubMed

    Shih, Chih-Jen; Wang, Qing Hua; Son, Youngwoo; Jin, Zhong; Blankschtein, Daniel; Strano, Michael S

    2014-06-24

    Field-effect transistor (FET) devices composed of a MoS2-graphene heterostructure can combine the advantages of high carrier mobility in graphene with the permanent band gap of MoS2 for digital applications. Herein, we investigate the electron transfer, photoluminescence, and gate-controlled carrier transport in such a heterostructure. We show that the junction is a Schottky barrier, whose height can be artificially controlled by gating or doping graphene. When the applied gate voltage (or the doping level) is zero, the photoexcited electron-hole pairs in monolayer MoS2 can be split by the heterojunction, significantly reducing the photoluminescence. By applying negative gate voltage (or p-doping) in graphene, the interlayer impedance formed between MoS2 and graphene exhibits an 100-fold increase. For the first time, we show that the gate-controlled interlayer Schottky impedance can be utilized to modulate carrier transport in graphene, significantly depleting the hole transport, but preserving the electron transport. Accordingly, we demonstrate a new type of FET device, which enables a controllable transition from NMOS digital to bipolar characteristics. In the NMOS digital regime, we report a very high room temperature on/off current ratio (ION/IOFF ∼ 36) in comparison to graphene-based FET devices without sacrificing the field-effect electron mobilities in graphene. By engineering the source/drain contact area, we further estimate that a higher value of ION/IOFF up to 100 can be obtained in the device architecture considered. The device architecture presented here may enable semiconducting behavior in graphene for digital and analogue electronics.

  5. Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices

    NASA Astrophysics Data System (ADS)

    Li, Jinchai; Yang, Weihuang; Li, Shuping; Chen, Hangyang; Liu, Dayi; Kang, Junyong

    2009-10-01

    The internal electric field is modified by using Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices (SLs). The first-principles simulation results show that the internal electric field in SL has been significantly intensified due to the charge transferring from Si-doped interface to Mg-doped interface. Accordingly, the Mg- and Si-δ-codoped p-type Al0.2Ga0.8N/GaN SLs are grown by metalorganic vapor phase epitaxy and higher hole concentration as much as twice of that in modulation-doped SL has been achieved, as determined by Hall effect measurements. Furthermore, by applying Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN SLs with high Al content as the p-type layers, we have fabricated deep ultraviolet light emitting diodes with superior current-voltage characteristics by lowering Mg-acceptor activation energy.

  6. New materials and techniques for improved mm wave devices

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.

    1991-01-01

    Current research on microwave and mm wave three terminal semiconductor devices is summarized with particular attention given to the development of the pseudomorphic InGaAs modulation-doped field effect transistor (MODFET). Application of the high-indium-concentration MODFET grown on InP in the temperature range of 120-150 K is also described.

  7. Analysis of energy states in modulation doped multiquantum well heterostructures

    NASA Technical Reports Server (NTRS)

    Ji, G.; Henderson, T.; Peng, C. K.; Huang, D.; Morkoc, H.

    1990-01-01

    A precise and effective numerical procedure to model the band diagram of modulation doped multiquantum well heterostructures is presented. This method is based on a self-consistent iterative solution of the Schroedinger equation and the Poisson equation. It can be used rather easily in any arbitrary modulation-doped structure. In addition to confined energy subbands, the unconfined states can be calculated as well. Examples on realistic device structures are given to demonstrate capabilities of this procedure. The numerical results are in good agreement with experiments. With the aid of this method the transitions involving both the confined and unconfined conduction subbands in a modulation doped AlGaAs/GaAs superlattice, and in a strained layer InGaAs/GaAs superlattice are identified. These results represent the first observation of unconfined transitions in modulation doped multiquantum well structures.

  8. High performance unipolar MoTe2 field effect transistors enabled by doping and Al2O3 capping

    NASA Astrophysics Data System (ADS)

    Qu, Deshun; Liu, Xiaochi; Ahmed, Faisal; Yoo, Won Jong

    We carry out the first systematic experiment on carrier type modulation of MoTe2 FET in this work. unipolar p- and n-type MoTe2 FETs with 105 and 106 on-off ratios are achieved through rapid thermal annealing (RTA) and Benzyl Viologen (BV) doping respectively. By varying the vacuum level in RTA chamber before annealing and BV dopant concentration, annealing condition, both hole and electron doping concentration can be modulated in a wide range from slight doping to degenerate like doping. Furthermore, Al2O3 is deposited onto the device surfaces for the mobility engineering. Hole and electron mobilities are improved to 62 cm2/Vs and 82 cm2/Vs respectively after Al2O3 capping; they are among the highest carrier mobilities of MoTe2 transistors ever obtained. A lateral homogeneous MoTe2 p-n diode is fabricated combining the electron and hole doping techniques, the device displays excellent diode properties with a high rectification ratio of 104 at 0 gate bias and an ideality factor of 1.2. This work was supported by the Global Research Laboratory and Global Frontier R&D Programs at the Center for Hybrid Interface Materials, both funded by the Ministry of Science, ICT & Future Planning via the National Research Foundation of Korea (NRF).

  9. Optical Properties of Gallium Arsenide and Indium Gallium Arsenide Quantum Wells and Their Applications to Opto-Electronic Devices.

    NASA Astrophysics Data System (ADS)

    Huang, Daming

    1990-01-01

    In this thesis we investigate the optical properties of modulation doped GaAs/AlGaAs and strained-layer undoped InGaAs/GaAs multiple quantum well structures (MQWS). The phenomena studied are the effects of carrier, strain, and the electric field on the absorption of excitons. For GaAs/AlGaAs modulation doped MQWS, the quenching of excitons by free carriers has been demonstrated. The comparison of the experimental results with calculations which consider phase space filling, screening, and exchange interaction showed the phase space filling to be the dominant mechanism responsible for the change of oscillator strength and binding energy of excitons associated with partially filled subband. On the other hand, the screening and exchange interaction are equally important to excitons associated with empty subbands. For InGaAs/GaAs strained-layer MQWS, we have demonstrated that the band edges are dramatically modified by strain. We determined the band discontinuities at InGaAs/GaAs interfaces using optical absorption, and showed that in this structure the heavy holes are confined in InGaAs layers while the light holes are in GaAs layers, in contrast to GaAs/AlGaAs MQWS. We also explore applications of GaAs/AlGaAs and InGaAs/GaAs MQWS to opto-electronic devices. The principle of devices investigated is mainly based on the electric field effect on the excitonic absorption in MQWS (the quantum confined Stark effect). Two examples presented in this thesis are the strained-layer InGaAs/GaAs MQWS electroabsorption modulators grown on GaAs substrates and the GaAs/AlGaAs MQWS reflection modulators grown on Si substrates. The large modulation observed in the absorption coefficient by an electric field is expected to facilitate opto-electronic integration.

  10. Tensile Strain Effects on the Magneto-transport in Calcium Manganese Oxide Thin Films: Comparison with its Hole-doped Counterpart

    NASA Astrophysics Data System (ADS)

    Lawson, Bridget; Neubauer, Samuel; Chaudhry, Adeel; Hart, Cacie; Ferrone, Natalie; Houston, David; Yong, Grace; Kolagani, Rajeswari

    Magnetoresistance properties of the epitaxial thin films of doped rare earth manganites are known to be influenced by the effect of bi-axial strain induced by lattice mismatch with the substrate. In hole-doped manganites, the effect of both compressive and tensile strain is qualitatively consistent with the expected changes in unit cell symmetry from cubic to tetragonal, leading to Jahn-Teller strain fields that affect the energy levels of Mn3 + energy levels. Recent work in our laboratory on CaMnO3 thin films has pointed out that tetragonal distortions introduced by tensile lattice mismatch strain may also have the effect of modulating the oxygen content of the films in agreement with theoretical models that propose such coupling between strain and oxygen content. Our research focuses on comparing the magneto-transport properties of hole-doped manganite LaCaMnO3 thin films with that of its electron doped counter parts, in an effort to delineate the effects of oxygen stoichiometry changes on magneto-transport from the effects of Jahn-Teller type strain. Towson University Office of Undergraduate Research, Fisher Endowment Grant and Undergraduate Research Grant from the Fisher College of Science and Mathematics, Seed Funding Grant from the School of Emerging technologies and the NSF Grant ECCS 112856.

  11. A new approach for design and investigation of junction-less tunnel FET using electrically doped mechanism

    NASA Astrophysics Data System (ADS)

    Nigam, Kaushal; Kondekar, Pravin; Sharma, Dheeraj; Raad, Bhagwan Ram

    2016-10-01

    For the first time, a distinctive approach based on electrically doped concept is used for the formation of novel double gate tunnel field effect transistor (TFET). For this, the initially heavily doped n+ substrate is converted into n+-i-n+-i (Drain-Channel-Source) by the selection of appropriate work functions of control gate (CG) and polarity gate (PG) as 4.7 eV. Further, the formation of p+ region for source is performed by applying -1.2 V at PG. Hence, the structure behave like a n+-i-n+-p+ gated TFET, whereas, the control gate is used to modulate the effective tunneling barrier width. The physical realization of delta doped n+ layer near to source region is a challenging task for improving the device performance in terms of ON current and subthreshold slope. So, the proposed work will provide a better platform for fabrication of n+-i-n+-p+ TFET with low cost and suppressed random dopant fluctuation (RDF) effects. ATLAS TCAD device simulator is used to carry out the simulation work.

  12. Negative and positive magnetoresistance in GaInNAs/GaAs modulation-doped quantum well structures

    NASA Astrophysics Data System (ADS)

    Nutku, Ferhat; Donmez, Omer; Sarcan, Fahrettin; Erol, Ayşe; Puustinen, Janne; Arıkan, Mehmet Çetin; Guina, Mircea

    2015-03-01

    In this work, magnetoresistance of as-grown and annealed n- and p-type modulation-doped Ga0.68In0.32NyAs1-y/GaAs single quantum well structures with various nitrogen concentrations has been studied. At low temperatures and low magnetic fields, in n-type samples negative and in p-type samples positive, magnetoresistance has been observed. The observed negative magnetoresistance in n-type samples is an indication of enhanced backscattering of electrons due to the weak localization of the electrons as an effect of the N-induced defects. Nitrogen concentration and thermal annealing dependence of the magnetoresistance have been studied for both n- and p-type samples. The observed decrease in the negative magnetoresistance in n-type and enhanced positive magnetoresistance in p-type samples following thermal annealing have been explained by considering thermal annealing-induced improvement of mobility and the crystal quality in N-containing samples. After thermal annealing, the magnitude of negative magnetoresistance decreases and the breaking of the weak localization is achieved at lower magnetic fields in n-type samples. It is observed that as the mobility of the sample increases, critical magnetic field of negative to positive magnetoresistance transition becomes lower.

  13. Complex quantum transport in a modulation doped strained Ge quantum well heterostructure with a high mobility 2D hole gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, C., E-mail: c.morrison.2@warwick.ac.uk; Casteleiro, C.; Leadley, D. R.

    The complex quantum transport of a strained Ge quantum well (QW) modulation doped heterostructure with two types of mobile carriers has been observed. The two dimensional hole gas (2DHG) in the Ge QW exhibits an exceptionally high mobility of 780 000 cm{sup 2}/Vs at temperatures below 10 K. Through analysis of Shubnikov de-Haas oscillations in the magnetoresistance of this 2DHG below 2 K, the hole effective mass is found to be 0.065 m{sub 0}. Anomalous conductance peaks are observed at higher fields which deviate from standard Shubnikov de-Haas and quantum Hall effect behaviour due to conduction via multiple carrier types. Despite this complex behaviour,more » analysis using a transport model with two conductive channels explains this behaviour and allows key physical parameters such as the carrier effective mass, transport, and quantum lifetimes and conductivity of the electrically active layers to be extracted. This finding is important for electronic device applications, since inclusion of highly doped interlayers which are electrically active, for enhancement of, for example, room temperature carrier mobility, does not prevent analysis of quantum transport in a QW.« less

  14. Charge distribution and response time for a modulation-doped extrinsic infrared detector

    NASA Technical Reports Server (NTRS)

    Hadek, Victor

    1987-01-01

    The electric charge distribution and response time of a modulation-doped extrinsic infrared detector are determined. First, it is demonstrated theoretically that the photoconductive layer is effectively depleted of ionized majority-impurity charges so that scattering is small and mobility is high for photogenerated carriers. Then, using parameters appropriate to an actual detector, the predicted response time is 10 to the -8th to about 10 to the -9th s, which is much faster than comparable conventional detectors. Thus, the modulation-doped detector design would be valuable for heterodyne applications.

  15. PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Talapin, Dmitri V.; Murray, Christopher B.

    2005-10-01

    Initially poorly conducting PbSe nanocrystal solids (quantum dot arrays or superlattices) can be chemically ``activated'' to fabricate n- and p-channel field effect transistors with electron and hole mobilities of 0.9 and 0.2 square centimeters per volt-second, respectively; with current modulations of about 103 to 104; and with current density approaching 3 × 104 amperes per square centimeter. Chemical treatments engineer the interparticle spacing, electronic coupling, and doping while passivating electronic traps. These nanocrystal field-effect transistors allow reversible switching between n- and p-transport, providing options for complementary metal oxide semiconductor circuits and enabling a range of low-cost, large-area electronic, optoelectronic, thermoelectric, and sensing applications.

  16. Investigation of InP/InGaAs metamorphic co-integrated complementary doping-channel field-effect transistors for logic application

    NASA Astrophysics Data System (ADS)

    Tsai, Jung-Hui

    2014-01-01

    DC performance of InP/InGaAs metamorphic co-integrated complementary doping-channel field-effect transistors (DCFETs) grown on a low-cost GaAs substrate is first demonstrated. In the complementary DCFETs, the n-channel device was fabricated on the InxGa1-xP metamorphic linearly graded buffer layer and the p-channel field-effect transistor was stacked on the top of the n-channel device. Particularly, the saturation voltage of the n-channel device is substantially reduced to decrease the VOL and VIH values attributed that two-dimensional electron gas is formed and could be modulated in the n-InGaAs channel. Experimentally, a maximum extrinsic transconductance of 215 (17) mS/mm and a maximum saturation current density of 43 (-27) mA/mm are obtained in the n-channel (p-channel) device. Furthermore, the noise margins NMH and NML are up to 0.842 and 0.330 V at a supply voltage of 1.5 V in the complementary logic inverter application.

  17. Terahertz optoelectronics with surface plasmon polariton diode.

    PubMed

    Vinnakota, Raj K; Genov, Dentcho A

    2014-05-09

    The field of plasmonics has experience a renaissance in recent years by providing a large variety of new physical effects and applications. Surface plasmon polaritons, i.e. the collective electron oscillations at the interface of a metal/semiconductor and a dielectric, may bridge the gap between electronic and photonic devices, provided a fast switching mechanism is identified. Here, we demonstrate a surface plasmon-polariton diode (SPPD) an optoelectronic switch that can operate at exceedingly large signal modulation rates. The SPPD uses heavily doped p-n junction where surface plasmon polaritons propagate at the interface between n and p-type GaAs and can be switched by an external voltage. The devices can operate at transmission modulation higher than 98% and depending on the doping and applied voltage can achieve switching rates of up to 1 THz. The proposed switch is compatible with the current semiconductor fabrication techniques and could lead to nanoscale semiconductor-based optoelectronics.

  18. Low-Concentration Indium Doping in Solution-Processed Zinc Oxide Films for Thin-Film Transistors.

    PubMed

    Zhang, Xue; Lee, Hyeonju; Kwon, Jung-Hyok; Kim, Eui-Jik; Park, Jaehoon

    2017-07-31

    We investigated the influence of low-concentration indium (In) doping on the chemical and structural properties of solution-processed zinc oxide (ZnO) films and the electrical characteristics of bottom-gate/top-contact In-doped ZnO thin-film transistors (TFTs). The thermogravimetry and differential scanning calorimetry analysis results showed that thermal annealing at 400 °C for 40 min produces In-doped ZnO films. As the In content of ZnO films was increased from 1% to 9%, the metal-oxygen bonding increased from 5.56% to 71.33%, while the metal-hydroxyl bonding decreased from 72.03% to 9.63%. The X-ray diffraction peaks and field-emission scanning microscope images of the ZnO films with different In concentrations revealed a better crystalline quality and reduced grain size of the solution-processed ZnO thin films. The thickness of the In-doped ZnO films also increased when the In content was increased up to 5%; however, the thickness decreased on further increasing the In content. The field-effect mobility and on/off current ratio of In-doped ZnO TFTs were notably affected by any change in the In concentration. Considering the overall TFT performance, the optimal In doping concentration in the solution-processed ZnO semiconductor was determined to be 5% in this study. These results suggest that low-concentration In incorporation is crucial for modulating the morphological characteristics of solution-processed ZnO thin films and the TFT performance.

  19. Low-Concentration Indium Doping in Solution-Processed Zinc Oxide Films for Thin-Film Transistors

    PubMed Central

    Zhang, Xue; Lee, Hyeonju; Kim, Eui-Jik; Park, Jaehoon

    2017-01-01

    We investigated the influence of low-concentration indium (In) doping on the chemical and structural properties of solution-processed zinc oxide (ZnO) films and the electrical characteristics of bottom-gate/top-contact In-doped ZnO thin-film transistors (TFTs). The thermogravimetry and differential scanning calorimetry analysis results showed that thermal annealing at 400 °C for 40 min produces In-doped ZnO films. As the In content of ZnO films was increased from 1% to 9%, the metal-oxygen bonding increased from 5.56% to 71.33%, while the metal-hydroxyl bonding decreased from 72.03% to 9.63%. The X-ray diffraction peaks and field-emission scanning microscope images of the ZnO films with different In concentrations revealed a better crystalline quality and reduced grain size of the solution-processed ZnO thin films. The thickness of the In-doped ZnO films also increased when the In content was increased up to 5%; however, the thickness decreased on further increasing the In content. The field-effect mobility and on/off current ratio of In-doped ZnO TFTs were notably affected by any change in the In concentration. Considering the overall TFT performance, the optimal In doping concentration in the solution-processed ZnO semiconductor was determined to be 5% in this study. These results suggest that low-concentration In incorporation is crucial for modulating the morphological characteristics of solution-processed ZnO thin films and the TFT performance. PMID:28773242

  20. The effect of n- and p-type doping on coherent phonons in GaN.

    PubMed

    Ishioka, Kunie; Kato, Keiko; Ohashi, Naoki; Haneda, Hajime; Kitajima, Masahiro; Petek, Hrvoje

    2013-05-22

    The effect of doping on the carrier-phonon interaction in wurtzite GaN is investigated by pump-probe reflectivity measurements using 3.1 eV light in near resonance with the fundamental band gap of 3.39 eV. Coherent modulations of the reflectivity due to the E2 and A1(LO) modes, as well as the 2A1(LO) overtone are observed. Doping of acceptor and donor atoms enhances the dephasing of the polar A1(LO) phonon via coupling with plasmons, with the effect of donors being stronger. Doping also enhances the relative amplitude of the coherent A1(LO) phonon with respect to that of the high-frequency E2 phonon, though it does not affect the relative intensity in Raman spectroscopic measurements. We attribute this enhanced coherent amplitude to the transient depletion field screening (TDFS) excitation mechanism, which, in addition to impulsive stimulated Raman scattering (ISRS), contributes to the generation of coherent polar phonons even for sub-band gap excitation. Because the TDFS mechanism requires photoexcitation of carriers, we argue that the interband transition is made possible at a surface with photon energies below the bulk band gap through the Franz-Keldysh effect.

  1. Ferroelectricity-induced resistive switching in Pb(Zr0.52Ti0.48)O3/Pr0.7Ca0.3MnO3/Nb-doped SrTiO3 epitaxial heterostructure

    NASA Astrophysics Data System (ADS)

    Md. Sadaf, Sharif; Mostafa Bourim, El; Liu, Xinjun; Hasan Choudhury, Sakeb; Kim, Dong-Wook; Hwang, Hyunsang

    2012-03-01

    We investigated the effect of a ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thin film on the generation of resistive switching in a stacked Pr0.7Ca0.3MnO3 (PCMO)/Nb-doped SrTiO3 (Nb:STO) heterostructure forming a p-n junction. To promote the ferroelectric effect, the thin PZT active layer was deposited on an epitaxially grown p-type PCMO film on a lattice-matched n-type Nb:STO single crystal. It was concluded that the observed resistive switching behavior in the all-perovskite Pt/PZT/PCMO/Nb:STO heterostructure was related to the modulation of PCMO/Nb:STO p-n junction's depletion width, which was caused either by the PZT ferroelectric polarization field effect, the electrochemical drift of oxygen ions under an electric field, or both simultaneously.

  2. Doping induced carrier and band-gap modulation in bulk versus nano for topological insulators: A test case of Stibnite

    NASA Astrophysics Data System (ADS)

    Maji, Tuhin Kumar; Pal, Samir Kumar; Karmakar, Debjani

    2018-04-01

    We aim at comparing the electronic properties of topological insulator Sb2S3 in bulk and Nanorod using density-functional scheme and investigating the effects of Se-doping at chalcogen-site. While going from bulk to nano, there is a drastic change in the band gap due to surface-induced strain. However, the trend of band gap modulation with increased Se doping is more prominent in bulk. Interestingly, Se-doping introduces different type of carriers in bulk and nano.

  3. Trap-state-dominated suppression of electron conduction in carbon nanotube thin-film transistors.

    PubMed

    Qian, Qingkai; Li, Guanhong; Jin, Yuanhao; Liu, Junku; Zou, Yuan; Jiang, Kaili; Fan, Shoushan; Li, Qunqing

    2014-09-23

    The often observed p-type conduction of single carbon nanotube field-effect transistors is usually attributed to the Schottky barriers at the metal contacts induced by the work function differences or by the doping effect of the oxygen adsorption when carbon nanotubes are exposed to air, which cause the asymmetry between electron and hole injections. However, for carbon nanotube thin-film transistors, our contrast experiments between oxygen doping and electrostatic doping demonstrate that the doping-generated transport barriers do not introduce any observable suppression of electron conduction, which is further evidenced by the perfect linear behavior of transfer characteristics with the channel length scaling. On the basis of the above observation, we conclude that the environmental adsorbates work by more than simply shifting the Fermi level of the CNTs; more importantly, these adsorbates cause a poor gate modulation efficiency of electron conduction due to the relatively large trap state density near the conduction band edge of the carbon nanotubes, for which we further propose quantitatively that the adsorbed oxygen-water redox couple is responsible.

  4. A hole modulator for InGaN/GaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Zi-Hui; Kyaw, Zabu; Liu, Wei; Ji, Yun; Wang, Liancheng; Tan, Swee Tiam; Sun, Xiao Wei; Demir, Hilmi Volkan

    2015-02-01

    The low p-type doping efficiency of the p-GaN layer has severely limited the performance of InGaN/GaN light-emitting diodes (LEDs) due to the ineffective hole injection into the InGaN/GaN multiple quantum well (MQW) active region. The essence of improving the hole injection efficiency is to increase the hole concentration in the p-GaN layer. Therefore, in this work, we have proposed a hole modulator and studied it both theoretically and experimentally. In the hole modulator, the holes in a remote p-type doped layer are depleted by the built-in electric field and stored in the p-GaN layer. By this means, the overall hole concentration in the p-GaN layer can be enhanced. Furthermore, the hole modulator is adopted in the InGaN/GaN LEDs, which reduces the effective valance band barrier height for the p-type electron blocking layer from ˜332 meV to ˜294 meV at 80 A/cm2 and demonstrates an improved optical performance, thanks to the increased hole concentration in the p-GaN layer and thus the improved hole injection into the MQWs.

  5. Refractive index modulation in polymer film doped with diazo Meldrum's acid

    NASA Astrophysics Data System (ADS)

    Zanutta, Alessio; Villa, Filippo; Bertarelli, Chiara; Bianco, Andrea

    2016-08-01

    Diazo Meldrum's acid undergoes a photoreaction induced by UV light and it is used as photosensitizer in photoresists. Upon photoreaction, a change in refractive index occurs, which makes this system interesting for volume holography. We report on the sublimation effect at room temperature and the effect of photoirradiation on the refractive index in thin films of CAB (Cellulose acetate butyrate) doped with different amount of diazo Meldrum's acid. A net modulation of the refractive index of 0.01 is achieved with 40% of doping ratio together with a reduction of the film thickness.

  6. Modulation Doping of Silicon using Aluminium-induced Acceptor States in Silicon Dioxide

    PubMed Central

    König, Dirk; Hiller, Daniel; Gutsch, Sebastian; Zacharias, Margit; Smith, Sean

    2017-01-01

    All electronic, optoelectronic or photovoltaic applications of silicon depend on controlling majority charge carriers via doping with impurity atoms. Nanoscale silicon is omnipresent in fundamental research (quantum dots, nanowires) but also approached in future technology nodes of the microelectronics industry. In general, silicon nanovolumes, irrespective of their intended purpose, suffer from effects that impede conventional doping due to fundamental physical principles such as out-diffusion, statistics of small numbers, quantum- or dielectric confinement. In analogy to the concept of modulation doping, originally invented for III-V semiconductors, we demonstrate a heterostructure modulation doping method for silicon. Our approach utilizes a specific acceptor state of aluminium atoms in silicon dioxide to generate holes as majority carriers in adjacent silicon. By relocating the dopants from silicon to silicon dioxide, Si nanoscale doping problems are circumvented. In addition, the concept of aluminium-induced acceptor states for passivating hole selective tunnelling contacts as required for high-efficiency photovoltaics is presented and corroborated by first carrier lifetime and tunnelling current measurements. PMID:28425460

  7. Two-dimensional superconducting phase in LaTiO3/SrTiO3 heterostructures induced by high-mobility carrier doping.

    PubMed

    Biscaras, J; Bergeal, N; Hurand, S; Grossetête, C; Rastogi, A; Budhani, R C; LeBoeuf, D; Proust, C; Lesueur, J

    2012-06-15

    In this Letter, we show that a superconducting two-dimensional electron gas is formed at the LaTiO3/SrTiO3 interface whose transition temperature can be modulated by a back-gate voltage. The gas consists of two types of carriers: a majority of low-mobility carriers always present, and a few high-mobility ones that can be injected by electrostatic doping. The calculation of the electron spatial distribution in the confinement potential shows that the high-mobility electrons responsible for superconductivity set at the edge of the gas whose extension can be tuned by the field effect.

  8. An Organic Vertical Field-Effect Transistor with Underside-Doped Graphene Electrodes.

    PubMed

    Kim, Jong Su; Kim, Beom Joon; Choi, Young Jin; Lee, Moo Hyung; Kang, Moon Sung; Cho, Jeong Ho

    2016-06-01

    High-performance vertical field-effect transistors are developed, which are based on graphene electrodes doped using the underside doping method. The underside doping method enables effective tuning of the graphene work function while maintaining the surface properties of the pristine graphene. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effect of modulation p-doping level on multi-state lasing in InAs/InGaAs quantum dot lasers having different external loss

    NASA Astrophysics Data System (ADS)

    Korenev, V. V.; Savelyev, A. V.; Maximov, M. V.; Zubov, F. I.; Shernyakov, Yu. M.; Kulagina, M. M.; Zhukov, A. E.

    2017-09-01

    The influence of the modulation p-doping level on multi-state lasing in InAs/InGaAs quantum dot (QD) lasers is studied experimentally for devices having various external losses. It is shown that in the case of short cavities (high external loss), there is an increase in the lasing power component corresponding to the ground-state optical transitions of QDs as the p-doping level grows. However, in the case of long cavities (small external loss), higher dopant concentrations may have an opposite effect on the output power. Based on these observations, an optimal design of laser geometry and an optimal doping level are discussed.

  10. Single Schottky junction FETs based on Si:P nanowires with axially graded doping

    NASA Astrophysics Data System (ADS)

    Barreda, Jorge; Keiper, Timothy; Zhang, Mei; Xiong, Peng

    2015-03-01

    Si nanowires (NWs) with a systematic axial increase in phosphorus doping have been synthesized via a vapor-liquid-solid method. Silane and phosphine precursor gases are utilized for the growth and doping, respectively. The phosphorous doping profile is controlled by the flow ratio of the precursor gases. After the as-grown product is ultrasonically agitated into a solution, the Si NWs are dispersed on a SiO2 substrate with a highly doped Si back gate. Individual NWs are identified for the fabrication of field-effect transistors (FETs) with multiple Cr/Ag contacts along the NW. Two-probe and four-probe measurements are taken systematically under vacuum conditions at room temperature and the contribution from each contact and each NW section between adjacent contacts is determined. The graded doping level, produced by a systematic reduction in dopant density along the length of the NWs, is manifested in the regular increases in the channel and contact resistances. Our Si NWs facilitate the fabrication of asymmetric FETs with one ohmic and one Schottky contact. A significant increase in gate modulation is obtained due to the single Schottky-barrier contact. Characterization details and the applicability for sensing purposes will be discussed.

  11. Mapping Free-Carriers in Multijunction Silicon Nanowires Using Infrared Near-Field Optical Microscopy.

    PubMed

    Ritchie, Earl T; Hill, David J; Mastin, Tucker M; Deguzman, Panfilo C; Cahoon, James F; Atkin, Joanna M

    2017-11-08

    We report the use of infrared (IR) scattering-type scanning near-field optical microscopy (s-SNOM) as a nondestructive method to map free-carriers in axially modulation-doped silicon nanowires (SiNWs) with nanoscale spatial resolution. Using this technique, we can detect local changes in the electrically active doping concentration based on the infrared free-carrier response in SiNWs grown using the vapor-liquid-solid (VLS) method. We demonstrate that IR s-SNOM is sensitive to both p-type and n-type free-carriers for carrier densities above ∼1 × 10 19 cm -3 . We also resolve subtle changes in local conductivity properties, which can be correlated with growth conditions and surface effects. The use of s-SNOM is especially valuable in low mobility materials such as boron-doped p-type SiNWs, where optimization of growth has been difficult to achieve due to the lack of information on dopant distribution and junction properties. s-SNOM can be widely employed for the nondestructive characterization of nanostructured material synthesis and local electronic properties without the need for contacts or inert atmosphere.

  12. Interaction of solid organic acids with carbon nanotube field effect transistors

    NASA Astrophysics Data System (ADS)

    Klinke, Christian; Afzali, Ali; Avouris, Phaedon

    2006-10-01

    A series of solid organic acids were used to p-dope carbon nanotubes. The extent of doping is shown to be dependent on the pKa value of the acids. Highly fluorinated carboxylic acids and sulfonic acids are very effective in shifting the threshold voltage and making carbon nanotube field effect transistors to be more p-type devices. Weaker acids like phosphonic or hydroxamic acids had less effect. The doping of the devices was accompanied by a reduction of the hysteresis in the transfer characteristics. In-solution doping survives standard fabrication processes and renders p-doped carbon nanotube field effect transistors with good transport characteristics.

  13. Tunable magnetization of infrared epsilon-near-zero media via field-effect modulation

    NASA Astrophysics Data System (ADS)

    Salary, Mohammad Mahdi; Mosallaei, Hossein

    2018-04-01

    In this letter, we demonstrate that field effect modulation enables electrical tuning of the effective permeability of epsilon-near-zero (ENZ) media at infrared frequencies. In particular, hexagonal silicon carbide (6H-SiC) is incorporated as an epsilon-near-zero host in a gated 6H-SiC/SiO2/Si heterostructure. The change in the applied voltage leads to a change in the carrier concentration of the accumulation layer formed at the interface of 6H-SiC and SiO2 which can alter the effective permeability of the heterostructure by virtue of the photonic doping effect. We will rigorously model and analyze the structure by linking charge transport and electromagnetic models. The presented mechanism allows for tuning the impedance and magnetization of ENZ materials in real-time while capturing extreme cases of epsilon-and-mu-near-zero and magnetic conductor. As such, it can be used for various applications such as real-time engineering of thermal emission, dynamic switching, reconfigurable tunneling, and holography.

  14. 1940 nm all-fiber Q-switched fiber laser

    NASA Astrophysics Data System (ADS)

    Ahmadi, P.; Estrada, A.; Katta, N.; Lim, E.; McElroy, A.; Milner, T. E.; Mokan, V.; Underwood, M.

    2017-02-01

    We present development of a nanosecond Q-switched Tm3+-doped fiber laser with 16 W average power and 4.4 kW peak power operating at 1940 nm. The laser has a master oscillator power amplifier design, and uses large mode area Tm3+-doped fibers as the gain medium. Special techniques are used to splice Tm3+-doped fibers to minimize splice loss. The laser design is optimized to reduce non-linear effects, including modulation instability. Pulse width broadening due to high gain is observed and studied in detail. Medical surgery is a field of application where this laser may be able to improve clinical practice. The laser together with scanning galvanometer mirrors is used to cut precisely around small footprint vessels in tissue phantoms without leaving any visible residual thermal damage. These experiments provide proof-of-principle that this laser has promising potential in the laser surgery application space.

  15. High-performance multilayer WSe 2 field-effect transistors with carrier type control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pudasaini, Pushpa Raj; Oyedele, Akinola; Zhang, Cheng

    In this paper, high-performance multilayer WSe 2 field-effect transistor (FET) devices with carrier type control are demonstrated via thickness modulation and a remote oxygen plasma surface treatment. Carrier type control in multilayer WSe 2 FET devices with Cr/Au contacts is initially demonstrated by modulating the WSe 2 thickness. The carrier type evolves with increasing WSe 2 channel thickness, being p-type, ambipolar, and n-type at thicknesses <3, ~4, and >5 nm, respectively. The thickness-dependent carrier type is attributed to changes in the bandgap of WSe 2 as a function of the thickness and the carrier band offsets relative to the metalmore » contacts. Furthermore, we present a strong hole carrier doping effect via remote oxygen plasma treatment. It non-degenerately converts n-type characteristics into p-type and enhances field-effect hole mobility by three orders of magnitude. Finally, this work demonstrates progress towards the realization of high-performance multilayer WSe 2 FETs with carrier type control, potentially extendable to other transition metal dichalcogenides, for future electronic and optoelectronic applications.« less

  16. High-performance multilayer WSe 2 field-effect transistors with carrier type control

    DOE PAGES

    Pudasaini, Pushpa Raj; Oyedele, Akinola; Zhang, Cheng; ...

    2017-07-06

    In this paper, high-performance multilayer WSe 2 field-effect transistor (FET) devices with carrier type control are demonstrated via thickness modulation and a remote oxygen plasma surface treatment. Carrier type control in multilayer WSe 2 FET devices with Cr/Au contacts is initially demonstrated by modulating the WSe 2 thickness. The carrier type evolves with increasing WSe 2 channel thickness, being p-type, ambipolar, and n-type at thicknesses <3, ~4, and >5 nm, respectively. The thickness-dependent carrier type is attributed to changes in the bandgap of WSe 2 as a function of the thickness and the carrier band offsets relative to the metalmore » contacts. Furthermore, we present a strong hole carrier doping effect via remote oxygen plasma treatment. It non-degenerately converts n-type characteristics into p-type and enhances field-effect hole mobility by three orders of magnitude. Finally, this work demonstrates progress towards the realization of high-performance multilayer WSe 2 FETs with carrier type control, potentially extendable to other transition metal dichalcogenides, for future electronic and optoelectronic applications.« less

  17. Photoluminescence Studies of P-type Modulation Doped GaAs/AlGaAs Quantum Wells in the High Doping Regime

    NASA Astrophysics Data System (ADS)

    Wongmanerod, S.; Holtz, P. O.; Reginski, K.; Bugaiski, M.; Monemar, B.

    The influence of high Be-acceptor doping on the modulation-doped GaAs/Al0.3Ga0.7As quantum wells structures has been optically studied by using the low-temperature photoluminescence (PL) and photoluminescence excitation (PLE) techniques.The modulation doped samples were grown by the molecular-beam epitaxy technique with a varying Be acceptor concentration ranging from 1×1018 to 8×1018cm-3. Several novels physical effects were observed. The main effect is a significant shift of the main emission towards lower energies as the doping concentrations increase. There are two contradictory mechanisms, which determine the peak energy of the main emission; the shrinkage of the effective bandgap due to many body effects and the reduction of the exciton binding energy due to the carrier screening effect. We conclude that the first one is the dominating effect. At a sufficiently high doping concentration (roughly 2×1018cm-3), the lineshape of the main PL emission is modified, and a new feature, the so called Fermi-edge singularity (FES), appears on the high energy side of the PL emission and exhibits a blue-shift as a function of doping concentration. This feature has been found to be very sensitive to a temperature change, already in the range of 4.4-50K. In addition, PLE spectra with a suitable detection energy show that the absorption edge is blue-shifted with respect to the PL main emission. The resulting Stoke shift is due to phase-space-filling of the carriers, in agreement with the FES interpretation. Finally, we have found from the PLE spectra that the exciton quenching is initiated in the same doping regime. Compared to the exciton quenching in other p-type structures, the critical acceptor concentration required to quench the excitons is significantly lower than in the case of 2D structures with acceptor doping within the well, but larger than in the case of 3D bulk.

  18. Charge modulation as fingerprints of phase-string triggered interference

    NASA Astrophysics Data System (ADS)

    Zhu, Zheng; Tian, Chushun; Jiang, Hong-Chen; Qi, Yang; Weng, Zheng-Yu; Zaanen, Jan

    2015-07-01

    Charge order appears to be an ubiquitous phenomenon in doped Mott insulators, which is currently under intense experimental and theoretical investigations particularly in the high Tc cuprates. This phenomenon is conventionally understood in terms of Hartree-Fock-type mean-field theory. Here we demonstrate a mechanism for charge modulation which is rooted in the many-particle quantum physics arising in the strong coupling limit. Specifically, we consider the problem of a single hole in a bipartite t -J ladder. As a remnant of the fermion signs, the hopping hole picks up subtle phases pending the fluctuating spins, the so-called phase-string effect. We demonstrate the presence of charge modulations in the density matrix renormalization group solutions which disappear when the phase strings are switched off. This form of charge modulation can be understood analytically in a path-integral language with a mean-field-like approximation adopted, showing that the phase strings give rise to constructive interferences leading to self-localization. When the latter occurs, left- and right-moving propagating modes emerge inside the localization volume and their interference is responsible for the real space charge modulation.

  19. Reversible unidirectional reflection and absorption of PT-symmetry structure under electro-optical modulation

    NASA Astrophysics Data System (ADS)

    Fang, Yun-tuan; Zhang, Yi-chi; Xia, Jing

    2018-06-01

    In order to obtain tunable unidirectional device, we assumed an ideal periodic layered Parity-Time (PT) symmetry structure inserted by doped LiNbO3 (LN) interlayers. LN is a typical electro-optical material of which the refractive index depends on the external electric field. In our work, we theoretically investigate the modulation effect of the external electric field on the transmittance and reflectance of the structure through numerical method. Through selected structural parameters, the one-way enhanced reflection and high absorption (above 0.9) behaviors are found. Within a special frequency band (not a single frequency), our theoretical model performs enhanced reflection in one incidence direction and high absorption in the other direction. Furthermore, the directions of enhanced reflection and absorption can be reversed through reversing the direction of applied electric field. Such structure with reversible properties has the potential in designing new optical devices.

  20. Modulations of anisotropic optical transmission on alumina-doped zinc oxide surface by femtosecond laser induced ripples

    NASA Astrophysics Data System (ADS)

    Lu, Yanhui; Jiang, Lan; Sun, Jingya; Cao, Qiang; Wang, Qingsong; Han, Weina; Lu, Yongfeng

    2018-04-01

    This study demonstrated that femtosecond-laser-induced ripples on an alumina-doped zinc oxide (AZO) film with space intervals of approximately 340 and 660 nm exhibit modulations of anisotropic optical transmission. At low laser fluence, ripples can not affect the original absorption peak of AZO film, but at higher laser fluence, the absorption peak of AZO film is disappeared due to the modulation by femtosecond laser induced ripples. Moreover, the relationship between the anisotropic optical transmission and the features of nanostructures is discussed. Ripples with a space interval of approximately 660 nm have a higher ability to block light than nanostructures with a space interval of approximately 340 nm. These observations indicate that anisotropic optical transmission has potential applications in the field of optoelectronics.

  1. Band gap opening of bilayer graphene by F4-TCNQ molecular doping and externally applied electric field.

    PubMed

    Tian, Xiaoqing; Xu, Jianbin; Wang, Xiaomu

    2010-09-09

    The band gap opening of bilayer graphene with one side surface adsorption of F4-TCNQ is reported. F4-TCNQ doped bilayer graphene shows p-type semiconductor characteristics. With a F4-TCNQ concentration of 1.3 x 10(-10) mol/cm(2), the charge transfer between each F4-TCNQ molecule and graphene is 0.45e, and the built-in electric field, E(bi), between the graphene layers could reach 0.070 V/A. The charge transfer and band gap opening of the F4-TCNQ-doped graphene can be further modulated by an externally applied electric field (E(ext)). At 0.077 V/A, the gap opening at the Dirac point (K), DeltaE(K) = 306 meV, and the band gap, E(g) = 253 meV, are around 71% and 49% larger than those of the pristine bilayer under the same E(ext).

  2. Cubic to tetragonal phase transition of Tm{sup 3+} doped nanocrystals in oxyfluoride glass ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yiming; Fu, Yuting; Shi, Yahui

    2016-02-15

    Tm{sup 3+} ions doped β-PbF{sub 2} nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm{sup 3+} doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an O{sub h} to D{sub 4h} site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm{sup 3+} doped nanocrystals at 800more » nm was modulated by the phase transition of the surrounding crystal field.« less

  3. A hole modulator for InGaN/GaN light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zi-Hui; Kyaw, Zabu; Liu, Wei

    2015-02-09

    The low p-type doping efficiency of the p-GaN layer has severely limited the performance of InGaN/GaN light-emitting diodes (LEDs) due to the ineffective hole injection into the InGaN/GaN multiple quantum well (MQW) active region. The essence of improving the hole injection efficiency is to increase the hole concentration in the p-GaN layer. Therefore, in this work, we have proposed a hole modulator and studied it both theoretically and experimentally. In the hole modulator, the holes in a remote p-type doped layer are depleted by the built-in electric field and stored in the p-GaN layer. By this means, the overall holemore » concentration in the p-GaN layer can be enhanced. Furthermore, the hole modulator is adopted in the InGaN/GaN LEDs, which reduces the effective valance band barrier height for the p-type electron blocking layer from ∼332 meV to ∼294 meV at 80 A/cm{sup 2} and demonstrates an improved optical performance, thanks to the increased hole concentration in the p-GaN layer and thus the improved hole injection into the MQWs.« less

  4. Modulation doping at BaSnO3LaInO3

    NASA Astrophysics Data System (ADS)

    Char, Kookrin; Shin, Juyeon; Kim, Young Mo; Kim, Youjung

    We recently reported on the conductance enhancement at the interface between two band insulators: LaInO3 (LIO) and BaSnO3 (BSO). These two-dimensional electron gas-like (2DEG) states at the LIO/Ba1-xLaxSnO3 (BLSO) polar interface display the stability, the controllability of the local carrier concentration, and the high electron mobility of BLSO. Search for the origin of enhanced conductance at the interface has been carried out, and one of the findings is that the doping level of BSO is a critical parameter for the polar charge contribution . We have also investigated a new modulated heterostructure by inserting an undoped BSO spacer layer at the LIO/BLSO interface. As increasing the thickness of the spacer layer, the carrier concentration and the mobility continually decreased. We attribute the results to the modified band bending as the thickness of the spacer layer varies and to the dislocation-limited transport. However, when we controlled the band bending by field effect, improved mobility was observed in these modulated heterostructures. This new modulated heterostructures of the LIO/BSO polar interface look promising not only for higher electron mobility devices but also for elucidating the mechanism of the 2DEG-like behavior. Samsung science and technology foundation.

  5. Electrolyte-gated transistors based on conducting polymer nanowire junction arrays.

    PubMed

    Alam, Maksudul M; Wang, Jun; Guo, Yaoyao; Lee, Stephanie P; Tseng, Hsian-Rong

    2005-07-07

    In this study, we describe the electrolyte gating and doping effects of transistors based on conducting polymer nanowire electrode junction arrays in buffered aqueous media. Conducting polymer nanowires including polyaniline, polypyrrole, and poly(ethylenedioxythiophene) were investigated. In the presence of a positive gate bias, the device exhibits a large on/off current ratio of 978 for polyaniline nanowire-based transistors; these values vary according to the acidity of the gate medium. We attribute these efficient electrolyte gating and doping effects to the electrochemically fabricated nanostructures of conducting polymer nanowires. This study demonstrates that two-terminal devices can be easily converted into three-terminal transistors by simply immersing the device into an electrolyte solution along with a gate electrode. Here, the field-induced modulation can be applied for signal amplification to enhance the device performance.

  6. Optimization design on breakdown voltage of AlGaN/GaN high-electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Changchun, Chai; Chunlei, Shi; Qingyang, Fan; Yuqian, Liu

    2016-12-01

    Simulations are carried out to explore the possibility of achieving high breakdown voltage of GaN HEMT (high-electron mobility transistor). GaN cap layers with gradual increase in the doping concentration from 2 × 1016 to 5 × 1019 cm-3 of N-type and P-type cap are investigated, respectively. Simulation results show that HEMT with P-doped GaN cap layer shows more potential to achieve higher breakdown voltage than N-doped GaN cap layer under the same doping concentration. This is because the ionized net negative space charges in P-GaN cap layer could modulate the surface electric field which makes more contribution to RESURF effect. Furthermore, a novel GaN/AlGaN/GaN HEMT with P-doped GaN buried layer in GaN buffer between gate and drain electrode is proposed. It shows enhanced performance. The breakdown voltage of the proposed structure is 640 V which is increased by 12% in comparison to UID (un-intentionally doped) GaN/AlGaN/GaN HEMT. We calculated and analyzed the distribution of electrons' density. It is found that the depleted region is wider and electric field maximum value is induced at the left edge of buried layer. So the novel structure with P-doped GaN buried layer embedded in GaN buffer has the better improving characteristics of the power devices. Project supported by the National Basic Research Program of China (No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (No. 2015-0214.XY.K).

  7. Band structure of graphene modulated by Ti or N dopants and applications in gas sensoring.

    PubMed

    Zhang, Hong-Ping; Luo, Xue-Gang; Lin, Xiao-Yan; Zhang, Ya-Ping; Tang, Ping-Ping; Lu, Xiong; Tang, Youhong

    2015-09-01

    The exploration of novel sensors for NO2 detection is particularly important in material and environmental sciences. In this work, the HOMO-LUMO gap of graphene, Ti- or N-doped graphene is investigated by DFT methods. The adsorption of NO2, NO, and O2 on Ti- or N-doped graphene of different sizes is also explored. Results reveal that the interactions between gases (NO2, NO, and O2) and Ti- or N-doped graphenes is not affected by the size of graphene. The doped Ti greatly improves the interactions between gases and graphene whereas the doped N has no effect on those interactions. The HOMO- LUMO gap of Ti-doped graphene can be modulated by adsorption of the gases. The cross effect of the NO and O2 is also investigated, and it is demonstrated that Ti-doped graphene has specific interactions with NO2. Thus, Ti-doped graphene can be a candidate for NO2 sensor materials. Furthermore, doping the graphene with Ti or N improves the sensitivity of the sheets toward NO2, which can be trapped and detected by the intrinsic graphene. Efficient sensors are rationally designed to diversify their applications in environmental science and engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Charge carrier relaxation in InGaAs-GaAs quantum wire modulation-doped heterostructures

    NASA Astrophysics Data System (ADS)

    Kondratenko, S. V.; Iliash, S. A.; Mazur, Yu I.; Kunets, V. P.; Benamara, M.; Salamo, G. J.

    2017-09-01

    The time dependencies of the carrier relaxation in modulation-doped InGaAs-GaAs low-dimensional structures with quantum wires have been studied as functions of temperature and light excitation levels. The photoconductivity (PC) relaxation follows a stretched exponent with decay constant, which depends on the morphology of InGaAs epitaxial layers, presence of deep traps, and energy disorder due to inhomogeneous distribution of size and composition. A hopping model, where electron tunnels between bands of localized states, gives appropriate interpretation for temperature-independent PC decay across the temperature range 150-290 K. At low temperatures (T < 150 K), multiple trapping-retrapping via 1D states of InGaAs quantum wires (QWRs), sub-bands of two-dimensional electron gas of modulation-doped n-GaAs spacers, as well as defect states in the GaAs environment are the dominant relaxation mechanism. The PC and photoluminescence transients for samples with different morphologies of the InGaAs nanostructures are compared. The relaxation rates are found to be largely dependent on energy disorder due to inhomogeneous distribution of strain, nanostructure size and composition, and piezoelectric fields in and around nanostructures, which have a strong impact on efficiency of carrier exchange between bands of the InGaAs QWRs, GaAs spacers, or wetting layers; presence of local electric fields; and deep traps.

  9. A cost-effective process to prepare VO{sub 2} (M) powder and films with superior thermochromic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Xiudi; Zhang, Hua; Chai, Guanqi

    2014-03-01

    Graphical abstract: Combining codeposition and short time post annealing, VO{sub 2} (M) with high quality and excellent phase transition performance is obtained. After mixing the VO{sub 2} powder with acrylic resin, the composite films deposited on glass show superior visible transmission and solar modulation, which can be used as an excellent candidate of low cost smart window in energy saving field. - Highlights: • The VO{sub 2} powder obtained by short time thermolysis method is high purity and crystallinity with superior phase transition performance. • The maximum decreasing efficiency of phase transition temperature is about −30 K/at% with w =more » 0.4 at%. • After mixing VO{sub 2} powder with acrylic resin, the maximal visible transmission of the composite films is 48% and the transmission modulation at 2000 nm is 37.3% with phase transition temperature of 66.2 °C. • Though the phase transition performance is weakened by tungsten doping, the film prepared by 1.3 at% tungsten doped VO{sub 2} still show superior transmission modulation about 26.4%, which means that it is a potential candidate as smart windows. - Abstract: VO{sub 2} powder with superior phase transition performance was prepared by convenient thermolysis method. The results illustrated that VO{sub 2} powder show high purity and crystallinity. VO{sub 2} particles are transformed from cluster to quasi-sphere with the increase of annealing temperature. The DSC analysis proves that VO{sub 2} show superior phase transition performance around 68 °C. The phase transition temperature can be reduced to 33.5 °C by 1.8 at% tungsten doping. The maximum decreasing efficiency of phase transition temperature is about −30 K/at% with w = 0.4 at%. After mixing VO{sub 2} powder with acrylic resin, the maximal visible transmission of the composite thin films on glass is 48% and the transmission modulation at 2000 nm is 37.3% with phase transition temperature of 66.2 °C. Though the phase transition performance is weakened by tungsten doping, the film prepared by 1.3 at% tungsten doped VO{sub 2} still show superior transmission modulation about 26.4% at 2000 nm, which means that it is a potential candidate as smart windows.« less

  10. Modulating optical rectification, second and third harmonic generation of doped quantum dots: Interplay between hydrostatic pressure, temperature and noise

    NASA Astrophysics Data System (ADS)

    Ganguly, Jayanta; Saha, Surajit; Bera, Aindrila; Ghosh, Manas

    2016-10-01

    We examine the profiles of optical rectification (OR), second harmonic generation (SHG) and third harmonic generation (THG) of impurity doped QDs under the combined influence of hydrostatic pressure (HP) and temperature (T) in presence and absence of Gaussian white noise. Noise has been incorporated to the system additively and multiplicatively. In order to study the above nonlinear optical (NLO) properties the doped dot has been subjected to a polarized monochromatic electromagnetic field. Effect of application of noise is nicely reflected through alteration of peak shift (blue/red) and variation of peak height (increase/decrease) of above NLO properties as temperature and pressure are varied. All such changes again sensitively depends on mode of application (additive/multiplicative) of noise. The remarkable influence of interplay between noise strength and its mode of application on the said profiles has also been addressed. The findings illuminate fascinating role played by noise in tuning above NLO properties of doped QD system under the active presence of both hydrostatic pressure and temperature.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zheng; Tian, Chushun; Jiang, Hong-Chen

    Charge order appears to be an ubiquitous phenomenon in doped Mott insulators, which is currently under intense experimental and theoretical investigations particularly in the high T c cuprates. This phenomenon is conventionally understood in terms of Hartree-Fock-type mean-field theory. Here we demonstrate a mechanism for charge modulation which is rooted in the many-particle quantum physics arising in the strong coupling limit. Specifically, we consider the problem of a single hole in a bipartite t - J ladder. As a remnant of the fermion signs, the hopping hole picks up subtle phases pending the fluctuating spins, the so-called phase-string effect. Wemore » demonstrate the presence of charge modulations in the density matrix renormalization group solutions which disappear when the phase strings are switched off. This form of charge modulation can be understood analytically in a path-integral language with a mean-field-like approximation adopted, showing that the phase strings give rise to constructive interferences leading to self-localization. When the latter occurs, left- and right-moving propagating modes emerge inside the localization volume and their interference is responsible for the real space charge modulation.« less

  12. Electrochemical doping for lowering contact barriers in organic field effect transistors

    PubMed Central

    Schaur, Stefan; Stadler, Philipp; Meana-Esteban, Beatriz; Neugebauer, Helmut; Serdar Sariciftci, N.

    2012-01-01

    By electrochemically p-doping pentacene in the vicinity of the source-drain electrodes in organic field effect transistors the injection barrier for holes is decreased. The focus of this work is put on the influence of the p-doping process on the transistor performance. Cyclic voltammetry performed on a pentacene based transistor exhibits a reversible p-doping response. This doped state is evoked at the transistor injection electrodes. An improvement is observed when comparing transistor characteristics before and after the doping process apparent by an improved transistor on-current. This effect is reflected in the analysis of the contact resistances of the devices. PMID:23483101

  13. Experimental demonstration of all-optical weak magnetic field detection using beam-deflection of single-mode fiber coated with cobalt-doped nickel ferrite nanoparticles.

    PubMed

    Pradhan, Somarpita; Chaudhuri, Partha Roy

    2015-07-10

    We experimentally demonstrate single-mode optical-fiber-beam-deflection configuration for weak magnetic-field-detection using an optimized (low coercive-field) composition of cobalt-doped nickel ferrite nanoparticles. Devising a fiber-double-slit type experiment, we measure the surrounding magnetic field through precisely measuring interference-fringe yielding a minimum detectable field ∼100  mT and we procure magnetization data of the sample that fairly predicts SQUID measurement. To improve sensitivity, we incorporate etched single-mode fiber in double-slit arrangement and recorded a minimum detectable field, ∼30  mT. To further improve, we redefine the experiment as modulating fiber-to-fiber light-transmission and demonstrate the minimum field as 2.0 mT. The device will be uniquely suited for electrical or otherwise hazardous environments.

  14. Effects of aluminum substitution on the crystal structure and magnetic properties in Zn{sub 2}Y-type hexaferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wenfei; Yang, Jing, E-mail: jyang@ee.ecnu.edu.cn, E-mail: xdtang@sist.ecnu.edu.cn; Bai, Wei

    2015-05-07

    Crystal structure and magnetic properties of multiferroic Y-type hexaferrites Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}(Fe{sub 1−x}Al{sub x}){sub 12}O{sub 22} (x = 0, 0.04, 0.08, and 0.12) were investigated. The Z- and M-type impurity phases decrease with increasing Al content, and the pure phase samples can be obtained by modulating Al-doping. Lattice distortion exists in Al-doped samples due to the different radius of Al ion (0.535 Å) and Fe ion (0.645 Å). The microstructural morphologies show that the hexagonal shape grains can be observed in all the samples, and grain size decreases with increasing Al content. As for magnetic properties of Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}(Fe{sub 1−x}Al{sub x}){submore » 12}O{sub 22}, there exist rich thermal- and field-driven magnetic phase transitions. Temperature dependence of zero-field cooling magnetization curves from 5 K to 800 K exhibit three magnetic phase transitions involving conical spin phase, proper-screw spin phase, ferromagnetic phase, and paramagnetic phase, which can be found in all the samples. Furthermore, the phase-transition temperatures can be modulated by varying Al content. In addition, four kinds of typical hysteresis loops are observed in pure phase sample at different temperatures, which reveal different magnetization processes of above-motioned magnetic spin structures. Typically, triple hysteresis loops in low magnetic field range from 0 to 0.5 T can be observed at 5 K, which suggests low-field driven magnetic phase transitions from conical spin order to proper-screw spin order and further to ferrimagnetic spin order occur. Furthermore, the coercive field (H{sub C}) and the saturation magnetization (M{sub S}) enhance with increasing Al content from x = 0 to 0.08, and drop rapidly at x = 0.12, which could be attribute to that in initial Al-doped process the pitch of spin helix increases and therefore magnetization enhances, but conical spin phase eventually collapses in higher-concentration Al-doping.« less

  15. Enhanced Hole Mobility and Density in GaSb Quantum Wells

    DTIC Science & Technology

    2013-01-01

    Keywords: Molecular beam epitaxy Quantum wells Semiconducting III–V materials Field-effect transistors GaSb a b s t r a c t Modulation-doped quantum wells...QWs) of GaSb clad by AlAsSb were grown by molecular beam epitaxy on InP substrates. By virtue of quantum confinement and compressive strain of the...heterostructures studied here are grown by molecular beam epitaxy (MBE) on semi-insulating (001) InP substrates using a Riber Compact 21T MBE system. A cross

  16. High mobility La-doped BaSnO3 on non-perovskite MgO substrate

    NASA Astrophysics Data System (ADS)

    Kim, Youjung; Shin, Juyeon; Kim, Young Mo; Char, Kookrin

    (Ba,La)SnO3 is a transparent perovskite oxide with high electron mobility and excellent oxygen stability. Field effect device with (Ba,La)SnO3 channel was reported to show good output characteristics on STO substrate. Here, we fabricated (Ba,La)SnO3\\ films and field effect devices with (Ba,La)SnO3 channel on non-perovskite MgO substrates, which are available in large size wafers. X-ray diffraction and transmission electron microscope (TEM) images of (Ba,La)SnO3\\ films on MgO substrates show that the films are epitaxial with many threading dislocations. (Ba,La)SnO3 exhibits the high mobility with 97.2 cm2/Vs at 2 % La doping on top of 150 nm thick BaSnO3 buffer layer. Excellent carrier modulation was observed in field effect devices. FET performances on MgO substrates are slightly better than those on SrTiO3 substrates in spite of the higher dislocation density on MgO than on SrTiO3 substrates. These high mobility BaSnO3 thin films and transistors on MgO substrates will accelerate development for applications in high temperature and high power electronics. Samsung Science and Technology Foundation.

  17. Comparative analysis of full-gate and short-gate dielectric modulated electrically doped Tunnel-FET based biosensors

    NASA Astrophysics Data System (ADS)

    Sharma, Dheeraj; Singh, Deepika; Pandey, Sunil; Yadav, Shivendra; Kondekar, P. N.

    2017-11-01

    In this work, we have done a comprehensive study between full-gate and short-gate dielectrically modulated (DM) electrically doped tunnel field-effect transistor (SGDM-EDTFET) based biosensors of equivalent dimensions. However, in both the structures, dielectric constant and charge density are considered as a sensing parameter for sensing the charged and non-charged biomolecules in the given solution. In SGDM-EDTFET architecture, the reduction in gate length results a significant improvement in the tunneling current due to occurrence of strong coupling between gate and channel region which ensures higher drain current sensitivity for detection of the biomolecules. Moreover, the sensitivity of dual metal SGDM-EDTFET is compared with the single metal SGDM-EDTFET to analyze the better sensing capability of both the devices for the biosensor application. Further, the effect of sensing parameter i.e., ON-current (ION), and ION/IOFF ratio is analysed for dual metal SGDM-EDTFET in comparison with dual metal SGDM-EDFET. From the comparison, it is found that dual metal SGDM-EDTFET based biosensor attains relatively better sensitivity and can be utilized as a suitable candidate for biosensing applications.

  18. Modulation doping of quantum dot laser active area and its impact on lasing performance

    NASA Astrophysics Data System (ADS)

    Konoplev, S. S.; Savelyev, A. V.; Korenev, V. V.; Maximov, M. V.; Zhukov, A. E.

    2015-11-01

    We present a theoretical study of modulation doping of active region in the quantum dot (QD) laser and corresponding issues of QD charge neutrality violation, a band diagram of the laser and charge carriers distribution in the structure. Modulation doping is discussed as a possible technique to control laser output characteristics. It was shown that modulation doping leads to an increase of threshold current of lasing through excited QD optical transition together with power emission from QD ground state.

  19. Optical Peregrine rogue waves of self-induced transparency in a resonant erbium-doped fiber.

    PubMed

    Chen, Shihua; Ye, Yanlin; Baronio, Fabio; Liu, Yi; Cai, Xian-Ming; Grelu, Philippe

    2017-11-27

    The resonant interaction of an optical field with two-level doping ions in a cryogenic optical fiber is investigated within the framework of nonlinear Schrödinger and Maxwell-Bloch equations. We present explicit fundamental rational rogue wave solutions in the context of self-induced transparency for the coupled optical and matter waves. It is exhibited that the optical wave component always features a typical Peregrine-like structure, while the matter waves involve more complicated yet spatiotemporally balanced amplitude distribution. The existence and stability of these rogue waves is then confirmed by numerical simulations, and they are shown to be excited amid the onset of modulation instability. These solutions can also be extended, using the same analytical framework, to include higher-order dispersive and nonlinear effects, highlighting their universality.

  20. [Doping. High-tech cheating in sport].

    PubMed

    Striegel, H; Simon, P

    2007-07-01

    Today, doping is no longer limited to the classical drugs with well known effects and side effects. Older generation anabolic steroids are used mainly in fitness and recreational sports. In contrast, due to doping tests, substances used in competitive sports include peptide hormones, medications not yet approved, and even specially developed drugs, such as designer steroids. Of the peptide hormones, particularly growth hormones (human growth hormone), erythropoietin and generics, insulin, and presumably insulin-like growth factor 1 are used. Substance groups potentially relevant for doping are selective androgen receptor modulators and gene therapy drugs. For most of these, there is no knowledge about side effects in healthy individuals, and no adequate doping tests. Therefore, anti-doping measures cannot rely solely on the continual improvement of doping analyses, but should include increased measures for doping prevention. Not only sports organizations, but also governmental agencies should be involved in developing and implementing these measures.

  1. Investigation of continuous changes in the electric-field-induced electronic state in Bi(1-x)Ca(x)FeO(3-δ).

    PubMed

    Ikeda-Ohno, Atsushi; Lim, Ji Soo; Ohkochi, Takuo; Yang, Chan-Ho; Seidel, Jan

    2014-09-07

    Amongst the most interesting phenomena in correlated oxide systems are the doping-driven competitions between energetically similar ground states found in, e.g., high-Tc superconductors and colossal magnetoresistance manganites. It has recently been reported that doped multiferroics also exhibit this generic concept of phase competition. Here, we employ photoelectron emission microscopy (PEEM) to demonstrate evidence of systematic changes in the electronic structure of Bi(1-x)Ca(x)FeO(3-δ) treated by electrically controlled hole carrier doping, the outcome of which clearly correlates with the local modulation of electronic conductivity observed in the same material.

  2. Using carrier-depletion silicon modulators for optical power monitoring.

    PubMed

    Yu, Hui; Korn, Dietmar; Pantouvaki, Marianna; Van Campenhout, Joris; Komorowska, Katarzyna; Verheyen, Peter; Lepage, Guy; Absil, Philippe; Hillerkuss, David; Alloatti, Luca; Leuthold, Juerg; Baets, Roel; Bogaerts, Wim

    2012-11-15

    Defect-mediated subbandgap absorption is observed in ion-implanted silicon-on-oxide waveguides that experience a rapid thermal annealing at 1075°C. With this effect, general carrier-depletion silicon modulators exhibit the capability of optical power monitoring. Responsivity is measured to be 22 mA/W for a 3 mm long Mach-Zehnder modulator of 2×10(18) cm(-3) doping concentration at -7.1 V bias voltage and 5.9 mA/W for a ring modulator of 1×10(18) cm(-3) doping concentration at -10 V bias voltage. The former is used to demonstrate data detection of up to 35 Gbits/s.

  3. Ferromagnetic resonance induced large microwave magnetodielectric effect in cerium doped Y3Fe5O12 ferrites

    PubMed Central

    Chen, Fu; Wang, Xian; Nie, Yan; Li, Qifan; Ouyang, Jun; Feng, Zekun; Chen, Yajie; Harris, Vincent G.

    2016-01-01

    In recent years, multifunctional materials contained simultaneous ferroelectric and ferromagnetic ordering have been realized. Here, a real time room temperature adaptive materials system, which demonstrates an RF magnetodielectric (MD) response, i.e., CexY3−xFe5O12 (x = 0, 0.05, 0.1, 0.15, 0.2), is reported. The magnetic and dielectric properties of Ce-doped YIG microwave ferrites processed by a traditional ceramic route have been measured over a frequency range of 4–8 GHz (C-band). The substitution of Ce not only enhances the microwave electromagnetic properties of the YIG, but also modulates the magnetodielectric response. The maximum magnetodielectric response in Ce-doped YIG sample ranges in magnitude from approximately +5% to −5% under an applied field of 1.78 kOe. This effect was attributed to electron fluctuations on the Fe cation sites. Furthermore, the magnitude of the MD response was shown to be enhanced by the cerium content. It is believed that research of the magnetodielectric effect in YIG ferrites is of great importance to the development of next generation multifunctional adaptive microwave materials, devices and integrated circuits. PMID:27320039

  4. Ferromagnetic resonance induced large microwave magnetodielectric effect in cerium doped Y3Fe5O12 ferrites.

    PubMed

    Chen, Fu; Wang, Xian; Nie, Yan; Li, Qifan; Ouyang, Jun; Feng, Zekun; Chen, Yajie; Harris, Vincent G

    2016-06-20

    In recent years, multifunctional materials contained simultaneous ferroelectric and ferromagnetic ordering have been realized. Here, a real time room temperature adaptive materials system, which demonstrates an RF magnetodielectric (MD) response, i.e., CexY3-xFe5O12 (x = 0, 0.05, 0.1, 0.15, 0.2), is reported. The magnetic and dielectric properties of Ce-doped YIG microwave ferrites processed by a traditional ceramic route have been measured over a frequency range of 4-8 GHz (C-band). The substitution of Ce not only enhances the microwave electromagnetic properties of the YIG, but also modulates the magnetodielectric response. The maximum magnetodielectric response in Ce-doped YIG sample ranges in magnitude from approximately +5% to -5% under an applied field of 1.78 kOe. This effect was attributed to electron fluctuations on the Fe cation sites. Furthermore, the magnitude of the MD response was shown to be enhanced by the cerium content. It is believed that research of the magnetodielectric effect in YIG ferrites is of great importance to the development of next generation multifunctional adaptive microwave materials, devices and integrated circuits.

  5. Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1-x)2O3/Ga2O3 heterostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Yuewei; Neal, Adam; Xia, Zhanbo; Joishi, Chandan; Johnson, Jared M.; Zheng, Yuanhua; Bajaj, Sanyam; Brenner, Mark; Dorsey, Donald; Chabak, Kelson; Jessen, Gregg; Hwang, Jinwoo; Mou, Shin; Heremans, Joseph P.; Rajan, Siddharth

    2018-04-01

    In this work, we demonstrate a high mobility two-dimensional electron gas (2DEG) formed at the β-(AlxGa1-x)2O3/Ga2O3 interface through modulation doping. Shubnikov-de Haas (SdH) oscillations were observed in the modulation-doped β-(AlxGa1-x)2O3/Ga2O3 structure, indicating a high-quality electron channel formed at the heterojunction interface. The formation of the 2DEG channel was further confirmed by the weak temperature dependence of the carrier density, and the peak low temperature mobility was found to be 2790 cm2/Vs, which is significantly higher than that achieved in bulk-doped Beta-phase Gallium Oxide (β-Ga2O3). The observed SdH oscillations allowed for the extraction of the electron effective mass in the (010) plane to be 0.313 ± 0.015 m0 and the quantum scattering time to be 0.33 ps at 3.5 K. The demonstrated modulation-doped β-(AlxGa1-x)2O3/Ga2O3 structure lays the foundation for future exploration of quantum physical phenomena and semiconductor device technologies based on the β-Ga2O3 material system.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanana, Anuja; Mahapatra, Santanu, E-mail: santanu@dese.iisc.ernet.in

    Investigation of a transition metal dichalcogenide (TMD)-metal interface is essential for the effective functioning of monolayer TMD based field effect transistors. In this work, we employ the Density Functional Theory calculations to analyze the modulation of the electronic structure of monolayer WS{sub 2} with chlorine doping and the relative changes in the contact properties when interfaced with gold and palladium. We initially examine the atomic and electronic structures of pure and doped monolayer WS{sub 2} supercell and explore the formation of midgap states with band splitting near the conduction band edge. Further, we analyze the contact nature of the puremore » supercell with Au and Pd. We find that while Au is physiosorbed and forms n-type contact, Pd is chemisorped and forms p-type contact with a higher valence electron density. Next, we study the interface formed between the Cl-doped supercell and metals and observe a reduction in the Schottky barrier height (SBH) in comparison to the pure supercell. This reduction found is higher for Pd in comparison to Au, which is further validated by examining the charge transfer occurring at the interface. Our study confirms that Cl doping is an efficient mechanism to reduce the n-SBH for both Au and Pd, which form different types of contact with WS{sub 2}.« less

  7. The effect of p-doping on multi-state lasing in InAs/InGaAs quantum dot lasers for different cavity lengths

    NASA Astrophysics Data System (ADS)

    Korenev, V. V.; Savelyev, A. V.; Maximov, M. V.; Zubov, F. I.; Shernyakov, Yu M.; Zhukov, A. E.

    2017-11-01

    The effect of modulation p-doping on multi-state lasing in InAs/InGaAs quantum dot (QD) lasers is studied for different levels of acceptor concentration. It is shown that in case of the short laser cavities, p-doping results in higher output power of the ground-state optical transitions of InAs/InGaAs QDs whereas in longer samples p-doping may result in the decrease of this power component. On the basis of this observation, the optimal design of laser active region and optimal doping level are discussed in details.

  8. High Mobility SiGe/Si n-Type Structures and Field Effect Transistors on Sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Ponchak, George E.; Mueller, Carl H.; Croke, Edward T.

    2004-01-01

    SiGe/Si n-type modulation doped field effect transistors (MODFETs) fabricated on sapphire substrates have been characterized at microwave frequencies for the first time. The highest measured room temperature electron mobility is 1380 sq cm/V-sec at a carrier density of 1.8 x 10(exp 12)/sq cm for a MODFET structure, and 900 sq cm/V-sec at a carrier density of 1.3 x 10/sq cm for a phosphorus ion implanted sample. A two finger, 2 x 200 micron gate n-MODFET has a peak transconductance of 37 mS/mm at a drain to source voltage of 2.5 V and a transducer gain of 6.4 dB at 1 GHz.

  9. Chemically Conjugated Carbon Nanotubes and Graphene for Carrier Modulation.

    PubMed

    Kim, Ki Kang; Kim, Soo Min; Lee, Young Hee

    2016-03-15

    Nanocarbons such as fullerene and carbon nanotubes (CNT) in late 20th century have blossomed nanoscience and nanotechnology in 21st century, which have been further proliferated by the new finding of graphene and have indeed opened a new carbon era. Several new branches of research, for example, zero-dimensional nanoparticles, one-dimensional nanowires, and two-dimensional insulating hexagonal boron nitride, and semiconducting and metallic transition metal dichalcogenides including the recently emerging black phosphorus, have been explored and numerous unprecedented quantum mechanical features have been revealed, that have been hardly accessible otherwise. Extensive research has been done on devices and applications related to such materials. Many experimental instruments have been developed with high sensitivity and improved spatial and temporal resolution to detect such tiny objects. The need for multidisciplinary research has been growing stronger than ever, which will be the tradition in the next few decades. In this Account, we will demonstrate an example of multidisciplinary effort of utilizing CNTs and graphene for electronics by modulating electronic structures. While there are several methods of modifying electronic structures of nanocarbons such as gate bias, contact metal, and conventional substitutional doping, we focus on chemical doping approaches here. We first introduce the concept of chemical doping on CNTs and graphene in terms of electronegativity of molecules and electrochemical potential of CNTs and graphene. To understand the relationship of electrochemical potential of CNTs and graphene to electronegativity of molecules, we propose a simple water bucket model: how to fill or drain water (electrons in CNTs or graphene) in the bucket (density of states) by the chemical dopants. The doping concept is then demonstrated experimentally by tracking the absorption spectroscopy, X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, Raman spectroscopy, transmittance, and transport measurements and by relating them to the reduction potential of molecules relative to that of CNTs or graphene. Two effects of chemical doping in electronics, transparent conducting films, and field effect transistors are extensively discussed. One critical issue, the stability of chemical dopants under ambient conditions, is further discussed. We believe that the presented doping concept will be useful tools for other low dimensional materials such as recently emerging transition metal dichalcogenides and black phosphorus.

  10. Observation of Landau levels on nitrogen-doped flat graphite surfaces without external magnetic fields

    PubMed Central

    Kondo, Takahiro; Guo, Donghui; Shikano, Taishi; Suzuki, Tetsuya; Sakurai, Masataka; Okada, Susumu; Nakamura, Junji

    2015-01-01

    Under perpendicular external magnetic fields, two-dimensional carriers exhibit Landau levels (LLs). However, it has recently been reported that LLs have been observed on graphene and graphite surfaces without external magnetic fields being applied. These anomalous LLs have been ascribed primarily to a strain of graphene sheets, leading to in-plane hopping modulation of electrons. Here, we report the observation of the LLs of massive Dirac fermions on atomically flat areas of a nitrogen-doped graphite surface in the absence of external magnetic fields. The corresponding magnetic fields were estimated to be as much as approximately 100 T. The generation of the LLs at the area with negligible strain can be explained by inequivalent hopping of π electrons that takes place at the perimeter of high-potential domains surrounded by positively charged substituted graphitic-nitrogen atoms. PMID:26549618

  11. Biasing, operation and parasitic current limitation in single device equivalent to CMOS, and other semiconductor systems

    DOEpatents

    Welch, James D.

    2003-09-23

    Disclosed are semiconductor devices including at least one junction which is rectifying whether the semiconductor is caused to be N or P-type, by the presence of applied gate voltage field induced carriers in essentially intrinsic, essentially homogeneously simultaneously containing both N and P-type metallurgical dopants at substantially equal doping levels, essentially homogeneously simultaneously containing both N and P-type metallurgical dopants at different doping levels, and containing a single metallurgical doping type, and functional combinations thereof. In particular, inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to conventional multiple device CMOS systems, which can be operated as modulators, are disclosed as are a non-latching SCR and an approach to blocking parasitic currents utilizing material(s) which form rectifying junctions with both N and P-type semiconductor whether metallurigically or field induced.

  12. Electrically controlled magnetic circular dichroism and Faraday rotation in graphene

    NASA Astrophysics Data System (ADS)

    Kuzmenko, Alexey; Poumirol, Jean-Marie; Liu, Peter Q. Liu; Slipchenko, Tetiana; Nikitin, Alexey; Martin-Moreno, Luis; Faist, Jerome

    Magnetic circular dichroism (MCD) and Faraday rotation (FR) are the fundamental phenomena of great practical importance arising from the breaking of the time reversal symmetry by a magnetic field. In most materials the strength and the sign of these effects can be only controlled by the field value and its orientation. Using broadband terahertz magneto-electro-optical spectroscopy, we demonstrate that in graphene both the MCD and the FR can be modulated in intensity, tuned in frequency and, importantly, inverted using only electrostatic doping at a fixed magnetic field due to the unique properties of the Dirac fermions. Our results indicate the fundamental possibility of compact, efficient, electrically invertible and wavelength-tunable non-reciprocal passive terahertz elements based on graphene operating at ambient temperature.

  13. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions

    NASA Astrophysics Data System (ADS)

    Wen, Zheng; Li, Chen; Wu, Di; Li, Aidong; Ming, Naiben

    2013-07-01

    Ferroelectric tunnel junctions (FTJs), composed of two metal electrodes separated by an ultrathin ferroelectric barrier, have attracted much attention as promising candidates for non-volatile resistive memories. Theoretical and experimental works have revealed that the tunnelling resistance switching in FTJs originates mainly from a ferroelectric modulation on the barrier height. However, in these devices, modulation on the barrier width is very limited, although the tunnelling transmittance depends on it exponentially as well. Here we propose a novel tunnelling heterostructure by replacing one of the metal electrodes in a normal FTJ with a heavily doped semiconductor. In these metal/ferroelectric/semiconductor FTJs, not only the height but also the width of the barrier can be electrically modulated as a result of a ferroelectric field effect, leading to a greatly enhanced tunnelling electroresistance. This idea is implemented in Pt/BaTiO3/Nb:SrTiO3 heterostructures, in which an ON/OFF conductance ratio above 104, about one to two orders greater than those reported in normal FTJs, can be achieved at room temperature. The giant tunnelling electroresistance, reliable switching reproducibility and long data retention observed in these metal/ferroelectric/semiconductor FTJs suggest their great potential in non-destructive readout non-volatile memories.

  14. From Mahan excitons to Landau levels at high magnetic fields: 2DFT spectroscopy reveals hidden quantum correlations (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Karaiskaj, Denis

    2017-02-01

    Two-dimensional electron gases have been the subject of research for decades. Modulation doped GaAs quantum wells in the absence of magnetic fields exhibit interesting many-body physics such as the Fermi edge singularity or Mahan exciton and can be regarded as a collective excitation of the system. Under high magnetic fields Landau levels form which have been studied using transport and optical measurements. Nonlinear coherent two-dimensional Fourier transform (2DFT) spectroscopy however provides new insights into these systems. We present the 2DFT spectra of Mahan Excitons associated with the heavy-hole and light-hole resonances observed in a modulation doped GaAs/AlGaAs single quantum well [1]. These resonances are observed to be strongly coupled through many-body interactions. The 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations and reveal striking differences. Furthermore, 2DFT spectra at high magnetic fields performed at the National High Magnetic Field Lab (NHMFL) in Tallahassee, Florida will be discussed. The spectra exhibit new features and peculiar line shapes suggesting interesting underlying physics. [1] J. Paul, C. E. Stevens, C. Liu, P. Dey, C. McIntyre, V. Turkowski, J. L. Reno, D. J. Hilton, and D. Karaiskaj, Phys. Rev. Lett.116, 157401 (2016).

  15. The influence of p-doping on two-state lasing in InAs/InGaAs quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Maximov, M. V.; Shernyakov, Yu M.; Zubov, F. I.; Zhukov, A. E.; Gordeev, N. Yu; Korenev, V. V.; Savelyev, A. V.; Livshits, D. A.

    2013-10-01

    Two-state lasing in devices based on undoped and p-type modulation-doped InAs/InGaAs quantum dots is studied for various cavity lengths and temperatures. Modulation doping of the active region strongly enhances the threshold current of two-state lasing, preserves ground-state lasing up to higher temperatures and increases ground-state output power. The impact of modulation doping is especially strong in short cavities.

  16. Influence of damped propagation of dopant on the static and frequency-dependent third nonlinear polarizability of quantum dot

    NASA Astrophysics Data System (ADS)

    Pal, Suvajit; Ghosh, Manas

    2014-07-01

    We investigate the profiles of diagonal components of static and frequency-dependent third nonlinear (γxxxx and γyyyy) polarizability of repulsive impurity doped quantum dots. The dopant impurity potential takes a GAUSSIAN form. We have considered propagation of the dopant within an environment that damps the motion. The study focuses on role of damping strength on the diagonal components of both static and frequency-dependent third nonlinear polarizability of the doped system. The doped system is further exposed to an external electric field of given intensity. Damping subtly modulates the dot-impurity interaction and fabricates the polarizability components in a noticeable manner.

  17. Effect of carrier doping and external electric field on the optical properties of graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Basak, Tista; Basak, Tushima

    2018-02-01

    In this paper, we demonstrate that the optical properties of finite-sized graphene quantum dots can be effectively controlled by doping it with different types of charge carriers (electron/hole). In addition, the role played by a suitably directed external electric field on the optical absorption of charge-doped graphene quantum dots have also been elucidated. The computations have been performed on diamond-shaped graphene quantum dot (DQD) within the framework of the Pariser-Parr-Pople (PPP) model Hamiltonian, which takes into account long-range Coulomb interactions. Our results reveal that the energy band-gap increases when the DQD is doped with holes while it decreases on doping it with electrons. Further, the optical absorption spectra of DQD exhibits red/blue-shift on doping with electrons/holes. Our computations also indicate that the application of external transverse electric field results in a substantial blue-shift of the optical spectrum for charge-doped DQD. However, it is observed that the influence of charge-doping is more prominent in tuning the optical properties of finite-sized graphene quantum dots as compared to externally applied electric field. Thus, tailoring the optical properties of finite-sized graphene quantum dots by manipulative doping with charge carriers and suitably aligned external electric field can greatly enhance its potential application in designing nano-photonic devices.

  18. Variations of thermoelectric performance by electric fields in bilayer MX2 (M = W, Mo; X = S, Se).

    PubMed

    Wang, Rui-Ning; Dong, Guo-Yi; Wang, Shu-Fang; Fu, Guang-Sheng; Wang, Jiang-Long

    2017-02-22

    A gate electrode is usually used to controllably tune the carrier concentrations, further modulating the electrical conductivity and the Seebeck coefficient to obtain the optimum thermoelectric figure of merit (ZT) in two-dimensional materials. On the other hand, it is necessary to investigate how an electric field induced by a gate voltage affects the electronic structures, further determining the thermoelectric properties. Therefore, by using density functional calculations in combination with Boltzmann theory, the thermoelectric properties of bilayer MX 2 (M = W, Mo; X = S, Se) with or without a 1 V nm -1 perpendicular electric field are comparatively investigated. First of all, the variations of the electrical conductivity (σ), electron thermal conductivity and Seebeck coefficient (S) with the carrier concentration are studied. Due to the trade-off relationship between S and σ, there is an optimum concentration to obtain the maximum ZT, which increases with the temperature due to the enhancement of the Seebeck coefficient. Moreover, N-type bilayers have larger optimum ZTs than P-type bilayers. In addition, the electric field results in the increase of the Seebeck coefficient in low hole-doped MS 2 bilayers and high hole-doped MSe 2 bilayers, thus leading to similar variations in ZT. The optimum ZTs are reduced from 2.11 × 10 -2 , 3.19 × 10 -2 , 2.47 × 10 -2 , and 2.58 × 10 -2 to 1.57 × 10 -2 , 1.51 × 10 -2 , 2.08 × 10 -2 , and 1.43 × 10 -2 for the hole-doped MoS 2 , MoSe 2 , and WSe 2 bilayers, respectively. For N-type bilayers, the electric field shows a destructive effect, resulting in the obvious reduction of the Seebeck coefficient in the MSe 2 layers and the low electron-doped MS 2 bilayers. In electron-doped bilayers, the optimum ZTs will decrease from 3.03 × 10 -2 , 6.64 × 10 -2 , and 6.69 × 10 -2 to 2.81 × 10 -2 , 3.59 × 10 -2 , and 4.39 × 10 -2 for the MoS 2 , MoSe 2 , and WSe 2 bilayers, respectively.

  19. Characteristics of 0.8- and 0.2-microns gate length In(x)Ga(1-x) As/In(0.52)Al(0.48)As/InP (0.53 less than or equal to x less than or equal to 0.70) modulation-doped field-effect transistors at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Lai, Richard; Bhattacharya, Pallab K.; Yang, David; Brock, Timothy L.; Alterovitz, Samuel A.; Downey, Alan N.

    1993-01-01

    The performance characteristics of InP-based In(x)Ga(1-x)As/In(0.52)Al(0.48)As (0.53 is less than or equal to x is less than or equal to 0.70) pseudomorphic modulation-doped field-effect transistors (MODFET's) as a function of strain in the channel, gate, length, and temperature were investigated analytically and experimentally. The strain in the channel was varied by varying the In composition x. The temperature was varied in the range of 40-300 K and the devices have gate lengths L(sub g) of 0.8 and 0.2 microns. Analysis of the device was done using a one-dimensional self consistent solution of the Poisson and Schroedinger equations in the channel, a two-dimensional Poisson solver to obtain the channel electric field, and a Monte Carlo simulation to estimate the carrier transit times in the channel. An increase in the value of the cutoff frequency is predicted for an increase in In composition, a decrease in temperature, and a decrease in gate length. The improvements seen with decreasing temperature, decreasing gate length, and increased In composition were smaller than those predicted by analysis. The experimental results on pseudomorphic InGaAs/InAlAs MODFET's showed that there is a 15-30 percent improvement in cutoff frequency in both the 0.8- and 0.2-micron gate length devices when the temperature is lowered from 300 to 40 K.

  20. Modeling the effect of doping on the catalyst-assisted growth and field emission properties of plasma-grown graphene sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Neha; Sharma, Suresh C.; Sharma, Rinku

    A theoretical model describing the effect of doping on the plasma-assisted catalytic growth of graphene sheet has been developed. The model accounts the charging rate of the graphene sheet, kinetics of all the plasma species, including the doping species, and the growth rate of graphene nuclei and graphene sheet due to surface diffusion, and accretion of ions on the catalyst nanoparticle. Using the model, it is observed that nitrogen and boron doping can strongly influence the growth and field emission properties of the graphene sheet. The results of the present investigation indicate that nitrogen doping results in reduced thickness andmore » shortened height of the graphene sheet; however, boron doping increases the thickness and height of the graphene sheet. The time evolutions of the charge on the graphene sheet and hydrocarbon number density for nitrogen and boron doped graphene sheet have also been examined. The field emission properties of the graphene sheet have been proposed on the basis of the results obtained. It is concluded that nitrogen doped graphene sheet exhibits better field emission characteristics as compared to undoped and boron doped graphene sheet. The results of the present investigation are consistent with the existing experimental observations.« less

  1. Numerical analysis of band tails in nanowires and their effects on the performance of tunneling field-effect transistors

    NASA Astrophysics Data System (ADS)

    Tanaka, Takahisa; Uchida, Ken

    2018-06-01

    Band tails in heavily doped semiconductors are one of the important parameters that determine transfer characteristics of tunneling field-effect transistors. In this study, doping concentration and doing profile dependences of band tails in heavily doped Si nanowires were analyzed by a nonequilibrium Green function method. From the calculated band tails, transfer characteristics of nanowire tunnel field-effect transistors were numerically analyzed by Wentzel–Kramer–Brillouin approximation with exponential barriers. The calculated transfer characteristics demonstrate that the band tails induced by dopants degrade the subthreshold slopes of Si nanowires from 5 to 56 mV/dec in the worst case. On the other hand, surface doping leads to a high drain current while maintaining a small subthreshold slope.

  2. Doped Organic Transistors.

    PubMed

    Lüssem, Björn; Keum, Chang-Min; Kasemann, Daniel; Naab, Ben; Bao, Zhenan; Leo, Karl

    2016-11-23

    Organic field-effect transistors hold the promise of enabling low-cost and flexible electronics. Following its success in organic optoelectronics, the organic doping technology is also used increasingly in organic field-effect transistors. Doping not only increases device performance, but it also provides a way to fine-control the transistor behavior, to develop new transistor concepts, and even improve the stability of organic transistors. This Review summarizes the latest progress made in the understanding of the doping technology and its application to organic transistors. It presents the most successful doping models and an overview of the wide variety of materials used as dopants. Further, the influence of doping on charge transport in the most relevant polycrystalline organic semiconductors is reviewed, and a concise overview on the influence of doping on transistor behavior and performance is given. In particular, recent progress in the understanding of contact doping and channel doping is summarized.

  3. Highly Stable and Tunable Chemical Doping of Multilayer WS2 Field Effect Transistor: Reduction in Contact Resistance.

    PubMed

    Khalil, Hafiz M W; Khan, Muhammad Farooq; Eom, Jonghwa; Noh, Hwayong

    2015-10-28

    The development of low resistance contacts to 2D transition-metal dichalcogenides (TMDs) is still a big challenge for the future generation field effect transistors (FETs) and optoelectronic devices. Here, we report a chemical doping technique to achieve low contact resistance by keeping the intrinsic properties of few layers WS2. The transfer length method has been used to investigate the effect of chemical doping on contact resistance. After doping, the contact resistance (Rc) of multilayer (ML) WS2 has been reduced to 0.9 kΩ·μm. The significant reduction of the Rc is mainly due to the high electron doping density, thus a reduction in Schottky barrier height, which limits the device performance. The threshold voltage of ML-WS2 FETs confirms a negative shift upon the chemical doping, as further confirmed from the positions of E(1)2g and A1g peaks in Raman spectra. The n-doped samples possess a high drain current of 65 μA/μm, with an on/off ratio of 1.05 × 10(6) and a field effect mobility of 34.7 cm(2)/(V·s) at room temperature. Furthermore, the photoelectric properties of doped WS2 flakes were also measured under deep ultraviolet light. The potential of using LiF doping in contact engineering of TMDs opens new ways to improve the device performance.

  4. Two-dimensional superconductivity induced by high-mobility carrier doping in LaTiO3/SrTiO3 hetero-structures

    NASA Astrophysics Data System (ADS)

    Biscaras, Johan; Hurand, S.; Palma, C.; Lesueur, J.; Bergeal, N.; Leboeuf, D.; Proust, C.; Rastogi, A.; Budhani, R. C.

    2013-03-01

    Transition metal oxides display a great variety of quantum electronic behaviors where correlations often play an important role. The achievement of high quality epitaxial interfaces involving such materials gives a unique opportunity to engineer artificial materials where new electronic orders take place. It has been shown recently that a two-dimensional electron gas 2DEG could form at the interface of two insulators such as LaAlO3 and SrTiO3, or LaTiO3 (a Mott insulator) and SrTiO3. We show that a superconducting two-dimensional electron gas is formed at the LaTiO3/SrTiO3 interface whose properties can be modulated by field effect using a metallic gate on the back of the substrate. The gas consists of two types of carriers : a majority of low-mobility carriers always present, and a few high-mobility ones that can be injected by electrostatic doping. The calculation of the electrons spatial distribution in the confinement potential shows that the high-mobility electrons responsible for superconductivity set at the edge of the gas whose extension can be tuned by field effect.

  5. Effects of Lipid Composition on Bilayer Membranes Quantified by All-Atom Molecular Dynamics.

    PubMed

    Ding, Wei; Palaiokostas, Michail; Wang, Wen; Orsi, Mario

    2015-12-10

    Biological bilayer membranes typically contain varying amounts of lamellar and nonlamellar lipids. Lamellar lipids, such as dioleoylphosphatidylcholine (DOPC), are defined by their tendency to form the lamellar phase, ubiquitous in biology. Nonlamellar lipids, such as dioleoylphosphatidylethanolamine (DOPE), prefer instead to form nonlamellar phases, which are mostly nonbiological. However, nonlamellar lipids mix with lamellar lipids in biomembrane structures that remain overall lamellar. Importantly, changes in the lamellar vs nonlamellar lipid composition are believed to affect membrane function and modulate membrane proteins. In this work, we employ atomistic molecular dynamics simulations to quantify how a range of bilayer properties are altered by variations in the lamellar vs nonlamellar lipid composition. Specifically, we simulate five DOPC/DOPE bilayers at mixing ratios of 1/0, 3/1, 1/1, 1/3, and 0/1. We examine properties including lipid area and bilayer thickness, as well as the transmembrane profiles of electron density, lateral pressure, electric field, and dipole potential. While the bilayer structure is only marginally altered by lipid composition changes, dramatic effects are observed for the lateral pressure, electric field, and dipole potential profiles. Possible implications for membrane function are discussed.

  6. Doping Polymer Semiconductors by Organic Salts: Toward High-Performance Solution-Processed Organic Field-Effect Transistors.

    PubMed

    Hu, Yuanyuan; Rengert, Zachary D; McDowell, Caitlin; Ford, Michael J; Wang, Ming; Karki, Akchheta; Lill, Alexander T; Bazan, Guillermo C; Nguyen, Thuc-Quyen

    2018-04-24

    Solution-processed organic field-effect transistors (OFETs) were fabricated with the addition of an organic salt, trityl tetrakis(pentafluorophenyl)borate (TrTPFB), into thin films of donor-acceptor copolymer semiconductors. The performance of OFETs is significantly enhanced after the organic salt is incorporated. TrTPFB is confirmed to p-dope the organic semiconductors used in this study, and the doping efficiency as well as doping physics was investigated. In addition, systematic electrical and structural characterizations reveal how the doping enhances the performance of OFETs. Furthermore, it is shown that this organic salt doping method is feasible for both p- and n-doping by using different organic salts and, thus, can be utilized to achieve high-performance OFETs and organic complementary circuits.

  7. Switchable diode effect in oxygen vacancy-modulated SrTiO3 single crystal

    NASA Astrophysics Data System (ADS)

    Pan, Xinqiang; Shuai, Yao; Wu, Chuangui; Luo, Wenbo; Sun, Xiangyu; Zeng, Huizhong; Bai, Xiaoyuan; Gong, Chaoguan; Jian, Ke; Zhang, Lu; Guo, Hongliang; Tian, Benlang; Zhang, Wanli

    2017-09-01

    SrTiO3 (STO) single crystal wafer was annealed in vacuum, and co-planar metal-insulator-metal structure of Pt/Ti/STO/Ti/Pt were formed by sputtering Pt/Ti electrodes onto the surface of STO after annealing. The forming-free resistive switching behavior with self-compliance property was observed in the sample. The sample showed switchable diode effect, which is explained by a simple model that redistribution of oxygen vacancies (OVs) under the external electric field results in the formation of n-n+ junction or n+-n junction (n donated n-type semiconductor; n+ donated heavily doped n-type semiconductor). The self-compliance property is also interpreted by the formation of n-n+/n+-n junction caused by the migration of the OVs under the electric field.

  8. Electrostatic modulation of the electronic properties of Dirac semimetal Na3Bi thin films

    NASA Astrophysics Data System (ADS)

    Hellerstedt, Jack; Yudhistira, Indra; Edmonds, Mark T.; Liu, Chang; Collins, James; Adam, Shaffique; Fuhrer, Michael S.

    2017-10-01

    Large-area thin films of topological Dirac semimetal Na3Bi are grown on amorphous SiO2:Si substrates to realize a field-effect transistor with the doped Si acting as a back gate. As-grown films show charge carrier mobilities exceeding 7 000 cm2/V s and carrier densities below 3 ×1018cm-3 , comparable to the best thin-film Na3Bi . An ambipolar field effect and minimum conductivity are observed, characteristic of Dirac electronic systems. The results are quantitatively understood within a model of disorder-induced charge inhomogeneity in topological Dirac semimetals. The hole mobility is significantly larger than the electron mobility in Na3Bi which we ascribe to the inverted band structure. When present, these holes dominate the transport properties.

  9. Tuning the competition between ferromagnetism and antiferromagnetism in a half-doped manganite through magnetoelectric coupling.

    PubMed

    Yi, Di; Liu, Jian; Okamoto, Satoshi; Jagannatha, Suresha; Chen, Yi-Chun; Yu, Pu; Chu, Ying-Hao; Arenholz, Elke; Ramesh, R

    2013-09-20

    We investigate the possibility of controlling the magnetic phase transition of the heterointerface between a half-doped manganite La(0.5)Ca(0.5)MnO(3) and a multiferroic BiFeO(3) (BFO) through magnetoelectric coupling. Using macroscopic magnetometry and element-selective x-ray magnetic circular dichroism at the Mn and Fe L edges, we discover that the ferroelectric polarization of BFO controls simultaneously the magnetization of BFO and La(0.5)Ca(0.5)MnO(3) (LCMO). X-ray absorption spectra at the oxygen K edge and linear dichroism at the Mn L edge suggest that the interfacial coupling is mainly derived from the superexchange between Mn and Fe t(2g) spins. The combination of x-ray absorption spectroscopy and mean-field theory calculations reveals that the d-electron modulation of Mn cations changes the magnetic coupling in LCMO, which controls the enhanced canted moments of interfacial BFO via the interfacial coupling. Our results demonstrate that the competition between ferromagnetic and antiferromagnetic instability can be modulated by an electric field at the heterointerface, providing another pathway for the electrical field control of magnetism.

  10. A SiC LDMOS with electric field modulation by a step compound drift region

    NASA Astrophysics Data System (ADS)

    Bao, Meng-tian; Wang, Ying; Yu, Cheng-hao; Cao, Fei

    2018-07-01

    In this paper, we propose a SiC LDMOS structure with a step compound drift region (SC-LDMOS). The proposed device has a compound drift region which consists of an n-type top layer, a step p-type middle layer and an n-type bottom layer. The step p-type middle layer can introduce two new electric field peaks and uniform the distribution of the electric field in the n-type top layer, which can modulate the surface electric field and improve the breakdown voltage of the proposed structure. In addition, the n-type bottom layer is applied under the heavy doping p-type middle layer,which contributes to realize the charge balance. Furthermore, it can also increase the doping concentration of the n-type top layer, which can decrease the on resistance of the proposed device. As a simulated result, the proposed device obtain a high BV of 976 V and a low Rsp,on of 7.74 mΩ·cm2. Compared with the conventional single REUSRF LDMOS and triple RESURF LDMOS, BV of proposed device is enhanced by 42.5% and 14.7%, respectively and Rsp,on is reduced by 37.3% and 30.9%, respectively. Meanwhile, the switching delays of the proposed device are significantly shorter than the conventional triple RESURF LDMOS.

  11. Unusual strain glassy phase in Fe doped Ni2Mn1.5In0.5

    NASA Astrophysics Data System (ADS)

    Nevgi, R.; Priolkar, K. R.

    2018-01-01

    Fe doped Ni2Mn1.5In0.5, particularly, Ni2Mn1.4Fe0.1In0.5, despite having an incommensurate, modulated 7M martensitic structure at room temperature exhibits frequency dependent behavior of storage modulus and loss which obeys the Vogel-Fulcher law as well as shows ergodicity breaking between zero field cooled and field cooled strain measurements just above the transition temperature. Both frequency dependence and ergodicity breaking are characteristics of a strain glassy phase and occur due to the presence of strain domains which are large enough to present signatures of long range martensitic order in diffraction but are non-interacting with other strain domains due to the presence of Fe impurities.

  12. Development of a unit cell for a Ge:Ga detector array

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Two modules of gallium-doped germanium (Ge:Ga) infrared detectors with integrated multiplexing readouts and supporting drive electronics were designed and tested. This development investigated the feasibility of producing two-dimensional Ge:Ga arrays by stacking linear modules in a housing capable of providing uniaxial stress for enhanced long-wavelength response. Each module includes 8 detectors (1x1x2 mm) mounted to a sapphire board. The element spacing is 12 microns. The back faces of the detector elements are beveled with an 18 deg angle, which was proved to significantly enhance optical absorption. Each module includes a different silicon metal-oxide semiconductor field effect transistor (MOSFET) readout. The first circuit was built from discrete MOSFET components; the second incorporated devices taken from low-temperature integrated circuit multiplexers. The latter circuit exhibited much lower stray capacitance and improved stability. Using these switched-FET circuits, it was demonstrated that burst readout, with multiplexer active only during the readout period, could successfully be implemented at approximately 3.5 K.

  13. Metabolic modulators of the exercise response: doping control analysis of an agonist of the peroxisome proliferator-activated receptor δ (GW501516) and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR).

    PubMed

    Pokrywka, A; Cholbinski, P; Kaliszewski, P; Kowalczyk, K; Konczak, D; Zembron-Lacny, A

    2014-08-01

    In 2008, the team of Ronald Evans, a professor at the Salk Institute Gene Expression Laboratory, published an article about the effects of two metabolic modulators branded as GW501516 and AICAR on physical endurance of laboratory animals. Both substances, also called 'exercise pills' or 'exercise mimetics', showed the ability to cause multidirectional changes in muscle metabolism. In particular, they stimulated fatty acid oxidation and promoted muscle remodelling. These compounds were regarded as very promising drug candidates for the treatment of diseases such as obesity and type 2 diabetes. GW501516 and AICAR have received considerable attention in doping control due to assumed performance-enhancing properties and recent confiscations of illicitly distributed drugs containing AICAR. Therefore, the World Anti-Doping Agency added GW501516 and AICAR to the Prohibited List in 2009. This review covers the cellular and systemic effects of the metabolic modulators' administration with special emphasis on their role in exercise metabolism. It also presents the advancements in development of methodologies for the detection of their abuse by athletes.

  14. Electrical tuning of spin splitting in Bi-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Aras, Mehmet; Kılıç, ćetin

    2018-01-01

    The effect of applying an external electric field on doping-induced spin-orbit splitting of the lowest conduction-band states in a bismuth-doped zinc oxide nanowire is studied by performing electronic structure calculations within the framework of density functional theory. It is demonstrated that spin splitting in Bi-doped ZnO nanowires could be tuned and enhanced electrically via control of the strength and direction of the applied electric field, thanks to the nonuniform and anisotropic response of the ZnO:Bi nanowire to external electric fields. The results reported here indicate that a single ZnO nanowire doped with a low concentration of Bi could function as a spintronic device, the operation of which is controlled by applied lateral electric fields.

  15. Quantum oscillations and interference effects in strained n- and p-type modulation doped GaInNAs/GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Sarcan, F.; Nutku, F.; Donmez, O.; Kuruoglu, F.; Mutlu, S.; Erol, A.; Yildirim, S.; Arikan, M. C.

    2015-08-01

    We have performed magnetoresistance measurements on n- and p-type modulation doped GaInNAs/GaAs quantum well (QW) structures in both the weak (B  < 0.08 T) and the high magnetic field (up to 18 T) at 75 mK and 6 K. We observe that the quantum oscillations in {ρxx} and quantum Hall effect (QHE) plateaus in {ρxy} are affected from the presence of the nitrogen in the III-V lattice. The enhancement of N-related scatterings and electron effective mass with increasing nitrogen causes lower electron mobility and higher two-dimensional (2D) electron density, leading to suppressed QHE plateaus in {ρxy} up to 7 T at 6 K. The Shubnikov de Haas (SdH) oscillations develop at lower magnetic fields for higher mobility samples at 6 K and the amplitude of SdH oscillations decreases with increasing nitrogen composition. The well-pronounced QHE plateaus are observed at 75 mK and at higher magnetic fields up to 18 T, for the p-type sample. For n-type samples, the observed anomalies in the characteristic of QHE is attributed the nitrogen-related disorders and overlapping of fluctuating Landau levels. The low magnetic field measurements at 75 mK reveal that the n-type samples exhibit weak antilocalization, whereas weak localization is observed for the p-type sample. The observation of weak antilocalization is an indication of strong electron spin-orbit interactions. The low field magnetoresistance traces are used to extract the spin coherence, phase coherence and elastic scattering times as well Rashba parameters and spin-splitting energy. The calculated Rashba parameters for nitrogen containing samples reveal that the nitrogen composition is a significant parameter to determine the degree of the spin-orbit interactions. Consequently, GaInNAs-based QW structures with various nitrogen compositions can be beneficial to adjust the spin-orbit coupling strength and may be used as a candidate for spintronics applications.

  16. Charge movement in a GaN-based hetero-structure field effect transistor structure with carbon doped buffer under applied substrate bias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooth, Alexander, E-mail: a.pooth@bristol.ac.uk; IQE; Uren, Michael J.

    2015-12-07

    Charge trapping and transport in the carbon doped GaN buffer of a GaN-based hetero-structure field effect transistor (HFET) has been investigated under both positive and negative substrate bias. Clear evidence of redistribution of charges in the carbon doped region by thermally generated holes is seen, with electron injection and capture observed during positive bias. Excellent agreement is found with simulations. It is shown that these effects are intrinsic to the carbon doped GaN and need to be controlled to provide reliable and efficient GaN-based power HFETs.

  17. Improvement in the performance of graphene nanoribbon p-i-n tunneling field effect transistors by applying lightly doped profile on drain region

    NASA Astrophysics Data System (ADS)

    Naderi, Ali

    2017-12-01

    In this paper, an efficient structure with lightly doped drain region is proposed for p-i-n graphene nanoribbon field effect transistors (LD-PIN-GNRFET). Self-consistent solution of Poisson and Schrödinger equation within Nonequilibrium Green’s function (NEGF) formalism has been employed to simulate the quantum transport of the devices. In proposed structure, source region is doped by constant doping density, channel is an intrinsic GNR, and drain region contains two parts with lightly and heavily doped doping distributions. The important challenge in tunneling devices is obtaining higher current ratio. Our simulations demonstrate that LD-PIN-GNRFET is a steep slope device which not only reduces the leakage current and current ratio but also enhances delay, power delay product, and cutoff frequency in comparison with conventional PIN GNRFETs with uniform distribution of impurity and with linear doping profile in drain region. Also, the device is able to operate in higher drain-source voltages due to the effectively reduced electric field at drain side. Briefly, the proposed structure can be considered as a more reliable device for low standby-power logic applications operating at higher voltages and upper cutoff frequencies.

  18. Field Effect Modulation of Heterogeneous Charge Transfer Kinetics at Back-Gated Two-Dimensional MoS2 Electrodes.

    PubMed

    Wang, Yan; Kim, Chang-Hyun; Yoo, Youngdong; Johns, James E; Frisbie, C Daniel

    2017-12-13

    The ability to improve and to modulate the heterogeneous charge transfer kinetics of two-dimensional (2D) semiconductors, such as MoS 2 , is a major challenge for electrochemical and photoelectrochemical applications of these materials. Here we report a continuous and reversible physical method for modulating the heterogeneous charge transfer kinetics at a monolayer MoS 2 working electrode supported on a SiO 2 /p-Si substrate. The heavily doped p-Si substrate serves as a back gate electrode; application of a gate voltage (V BG ) to p-Si tunes the electron occupation in the MoS 2 conduction band and shifts the conduction band edge position relative to redox species dissolved in electrolyte in contact with the front side of the MoS 2 . The gate modulation of both charge density and energy band alignment impacts charge transfer kinetics as measured by cyclic voltammetry (CV). Specifically, cyclic voltammograms combined with numerical simulations suggest that the standard heterogeneous charge transfer rate constant (k 0 ) for MoS 2 in contact with the ferrocene/ferrocenium (Fc 0/+ ) redox couple can be modulated by over 2 orders of magnitude from 4 × 10 -6 to 1 × 10 -3 cm/s, by varying V BG . In general, the field effect offers the potential to tune the electrochemical properties of 2D semiconductors, opening up new possibilities for fundamental studies of the relationship between charge transfer kinetics and independently controlled electronic band alignment and band occupation.

  19. Electronic properties of BN-doped bilayer graphene and graphyne in the presence of electric field

    NASA Astrophysics Data System (ADS)

    Majidi, R.; Karami, A. R.

    2013-11-01

    In the present paper, we have used density functional theory to study electronic properties of bilayer graphene and graphyne doped with B and N impurities in the presence of electric field. It has been demonstrated that a band gap is opened in the band structures of the bilayer graphene and graphyne by B and N doping. We have also investigated influence of electric field on the electronic properties of BN-doped bilayer graphene and graphyne. It is found that the band gaps induced by B and N impurities are increased by applying electric field. Our results reveal that doping with B and N, and applying electric field are an effective method to open and control a band gap which is useful to design carbon-based next-generation electronic devices.

  20. Realizing up-conversion fluorescence tuning in lanthanide-doped nanocrystals by femtosecond pulse shaping method

    PubMed Central

    Zhang, Shian; Yao, Yunhua; Shuwu, Xu; Liu, Pei; Ding, Jingxin; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong

    2015-01-01

    The ability to tune color output of nanomaterials is very important for their applications in laser, optoelectronic device, color display and multiplexed biolabeling. Here we first propose a femtosecond pulse shaping technique to realize the up-conversion fluorescence tuning in lanthanide-doped nanocrystals dispersed in the glass. The multiple subpulse formation by a square phase modulation can create different excitation pathways for various up-conversion fluorescence generations. By properly controlling these excitation pathways, the multicolor up-conversion fluorescence can be finely tuned. This color tuning by the femtosecond pulse shaping technique is realized in single material by single-color laser field, which is highly desirable for further applications of the lanthanide-doped nanocrystals. This femtosecond pulse shaping technique opens an opportunity to tune the color output in the lanthanide-doped nanocrystals, which may bring a new revolution in the control of luminescence properties of nanomaterials. PMID:26290391

  1. Tuning diagonal components of static linear and first nonlinear polarizabilities of doped quantum dots by Gaussian white noise

    NASA Astrophysics Data System (ADS)

    Ganguly, Jayanta; Ghosh, Manas

    2015-07-01

    We investigate the modulation of diagonal components of static linear (αxx, αyy) and first nonlinear (βxxx, βyyy) polarizabilities of quantum dots by Gaussian white noise. Quantum dot is doped with impurity represented by a Gaussian potential and repulsive in nature. The study reveals the importance of mode of application of noise (additive/multiplicative) on the polarizability components. The doped system is further exposed to a static external electric field of given intensity. As important observation we have found that the strength of additive noise becomes unable to influence the polarizability components. However, the multiplicative noise influences them conspicuously and gives rise to additional interesting features. Multiplicative noise even enhances the magnitude of the polarizability components immensely. The present investigation deems importance in view of the fact that noise seriously affects the optical properties of doped quantum dot devices.

  2. Doped bottom-contact organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Liu, Shiyi; Billig, Paul; Al-Shadeedi, Akram; Kaphle, Vikash; Lüssem, Björn

    2018-07-01

    The influence of doping on doped bottom-gate bottom-contact organic field-effect transistors (OFETs) is discussed. It is shown that the inclusion of a doped layer at the dielectric/organic semiconductor layer leads to a significant reduction in the contact resistances and a fine control of the threshold voltage. Through varying the thickness of the doped layer, a linear shift of threshold voltage V T from ‑3.1 to ‑0.22 V is observed for increasing thickness of doped layer. Meanwhile, the contact resistance at the source and drain electrode is reduced from 138.8 MΩ at V GS = ‑10 V for 3 nm to 0.3 MΩ for 7 nm thick doped layers. Furthermore, an increase of charge mobility is observed for increasing thickness of doped layer. Overall, it is shown that doping can minimize injection barriers in bottom-contact OFETs with channel lengths in the micro-meter regime, which has the potential to increase the performance of this technology further.

  3. Enhancement of Hc2 and Jc by carbon-based chemical doping

    NASA Astrophysics Data System (ADS)

    Yeoh, W. K.; Dou, S. X.

    2007-06-01

    In the past 5 years, various kinds of doping of MgB 2, including single elements (metal and non-metal), silicates, various carbon sources, and other compounds have been investigated and reported. Most nanoparticle doping leads to improvement of critical current density, Jc( H), and performance, but some types show a negative effect. In this paper, the effect of carbon doping on Jc and the upper critical field, Hc2, of MgB 2 is reviewed. Carbon substitution effects make two distinguishable contributions to the enhancement of Jc field performance: increase of Hc2 and improvement of flux pinning, both because carbon substitutes for boron in the MgB 2 lattice. Among all the carbon sources so far, nano-SiC has been confirmed to be the most effective dopant to enhance the Jc in magnetic fields and Hc2. An irreversibility field, Hirr, of 10 T has been achieved with nano-SiC doping at 20 K, exceeding Hirr of NbTi at 4.2 K. Besides that, Hc2 of carbon alloyed MgB 2 film has reached the value of 71 T. The significant enhancement in Jc( H) and Hc2 via carbon substitution has provided great potential for practical applications of MgB 2. The dual reaction model proposed by the authors’ group provides a comprehensive understanding of the mechanism of enhancement in Jc and Hc2 by chemical doping. Further improvement in self-field Jc performance while maintaining the already achieved in-field performance remains as a major challenge in the development of MgB 2.

  4. Hydrothermal process assists undoped and Cr-doped semiconducting ZnO nanorods: Frontier of dielectric property

    NASA Astrophysics Data System (ADS)

    Debnath, Tanumoy; Saha, Papiya; Patra, Nesla; Das, Sukhen; Sutradhar, Soumyaditya

    2018-05-01

    The influence of the hydrothermal synthesis route on the grain morphology and thereby the modulation of dielectric response of undoped and Cr3+ ion doped semiconducting ZnO nanoparticles is investigated in this report. The X-ray diffraction study reveals that all the samples are in a polycrystalline single phase of a hexagonal wurtzite structure of ZnO. The field emission scanning electron microscopy study reveals the rod like structure of all the samples. The formation of synthesis route dependent morphology and the morphology dependent physical property of all the samples are the characteristic features of the present work and to date it has not been considered as the specific tool of dielectric property modulation by anyone else. The ultraviolet-visible measurement signifies the superior control over the charge density of the host semiconducting material due to the presence of Cr3+ ions in the structure of ZnO. In the photoluminescence measurement, no significant peak has been observed in the visible region. The frequency and temperature dependent dielectric constants of all the samples were investigated. The consequences of the dielectric measurement suggest that the hydrothermal synthesis route influences the growth mechanism of the semiconducting nanoparticles mostly towards the rod like structure and the doping element influences the charge density, nature of defects, and the defect densities inside the structure of ZnO nanomaterials. All these factors together make the semiconducting ZnO nanomaterials more effective for tailor made applications in magneto-dielectric devices.

  5. Photorefraction in the ultraviolet: Materials and effects

    NASA Astrophysics Data System (ADS)

    Laeri, F.; Jungen, R.; Angelow, G.; Vietze, U.; Engel, T.; Würtz, M.; Hilgenberg, D.

    1995-10-01

    Doped as well as nominally pure crystals of Lithium Niobate (LiNbO3), ι-Arginine Phosphate (LAP), Lithium Iodate (LiIO3), Potassium Dihydrogen Phosphate (KDP), Lithium Formate (LFM), Beta-Barium Borate (BBO), and lithium tetra borate were grown and investigated for photorefractive effects at ultraviolet wavelengths down to 333 nm. In nominally undoped LiNbO3 crystals strong beam coupling effects were observed. In contrast to the visible we revealed a diffusion-dominated charge transport mechanism based on holes, and a low photovoltaic field in the order of 550 V/cm. With such a crystal we investigated the modulation transfer function of a lensless image projection system based on a phase conjugation scheme. A spatial frequency response beyond 2800 line pairs per millimeter was observed. Photorefractive beam coupling was also obtained in LiIO3. Light-induced scattering was detected in iron-doped LiIO3 whereas as-grown LAP material did not exhibit any observable photorefractive effects. However, 100 kV X-ray irradiation seems to induce material defects which can lead to weak light-induced scattering at 351 nm. In all other above-mentioned materials, doped as well as undoped, light-induced scattering could not be observed. On the other hand, this is appreciated in all the applications where the crystals are used as nonlinear material for optical frequency conversion.

  6. Band-gap modulation via gallium substitution in cerium doped gadolinium aluminum garnet using a mixed fuel combustion approach

    NASA Astrophysics Data System (ADS)

    Tyagi, Mohit; Pitale, Shreyas S.; Ghosh, Manoranjan; Shinde, Seema

    2014-04-01

    Cerium doped Gadolinium garnets (Gd3AlxGa5-xO12 where 0≤x≤5) are synthesized via combustion synthesis using mixture of urea and glycine fuels. A 4h Post annealing at 1400 oC is found to be necessary for pure phase formation. Lattice spacing variation as a result of partial or total Ga substitution at Al site was mapped by X-ray diffraction. Photoluminescence emission of Ce shifts as a consequence of Ga substitution and therefore suggests a local re-adjustment of crystal field around activator site.

  7. Healing of voids in the aluminum metallization of integrated circuit chips

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F.; Lawton, Russell A.; Gavin, Thomas R.

    1990-01-01

    The thermal stability of GaAs modulation-doped field effect transistors (MODFETs) is evaluated in order to identify failure mechanisms and validate the reliability of these devices. The transistors were exposed to thermal step-stress and characterized at ambient temperatures to indicate device reliability, especially that of the transistor ohmic contacts with and without molybdenum diffusion barriers. The devices without molybdenum exhibited important transconductance deterioration. MODFETs with molybdenum diffusion barriers were tolerant to temperatures above 300 C. This tolerance indicates that thermally activated failure mechanisms are slow at operational temperatures. Therefore, high-reliability MODFET-based circuits are possible.

  8. A delta-doped amorphous silicon thin-film transistor with high mobility and stability

    NASA Astrophysics Data System (ADS)

    Kim, Pyunghun; Lee, Kyung Min; Lee, Eui-Wan; Jo, Younjung; Kim, Do-Hyung; Kim, Hong-jae; Yang, Key Young; Son, Hyunji; Choi, Hyun Chul

    2012-12-01

    Ultrathin doped layers, known as delta-doped layers, were introduced within the intrinsic amorphous silicon (a-Si) active layer to fabricate hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) with enhanced field-effect mobility. The performance of the delta-doped a-Si:H TFTs depended on the phosphine (PH3) flow rate and the distance from the n+ a-Si to the deltadoping layer. The delta-doped a-Si:H TFTs fabricated using a commercial manufacturing process exhibited an enhanced field-effect mobility of approximately ˜0.23 cm2/Vs (compared to a conventional a-Si:H TFT with 0.15 cm2/Vs) and a desirable stability under a bias-temperature stress test.

  9. Magnetic field effect in stripe-ordered 214 (La1.6 -xNd0.4) SrxCuO4 and La2 -xBaxCuO4 superconducting cuprates studied by resonant soft x-ray scattering

    NASA Astrophysics Data System (ADS)

    Blanco-Canosa, S.; Schierle, E.; Li, Z. W.; Guo, H.; Adachi, T.; Koike, Y.; Sobolev, O.; Weschke, E.; Komarek, A. C.; Schüßler-Langeheine, C.

    2018-05-01

    We present a study of the charge order of 214 stripe ordered superconducting cuprates (La1.6 -xNd0.4) SrxCuO4 and La2 -xBaxCuO4 for doping levels 0.11 ≤p ≤0.14 by means of resonant x-ray scattering. Up to 6 T, we find no field dependence on either the integrated intensity or the correlation length of the charge modulations, providing evidence for strong stability of charge order under applied fields. The magnetic field data support a strong pinning scenario induced by the low-temperature tetragonal distortion and static disorder, and they highlight the role of the symmetry of the lattice on the stabilization of electronic periodicities.

  10. Decoupling the Lattice Distortion and Charge Doping Effects on the Phase Transition Behavior of VO2 by Titanium (Ti4+) Doping

    PubMed Central

    Wu, Yanfei; Fan, Lele; Liu, Qinghua; Chen, Shi; Huang, Weifeng; Chen, Feihu; Liao, Guangming; Zou, Chongwen; Wu, Ziyu

    2015-01-01

    The mechanism for regulating the critical temperature (TC) of metal-insulator transition (MIT) in ions-doped VO2 systems is still a matter of debate, in particular, the unclear roles of lattice distortion and charge doping effects. To rule out the charge doping effect on the regulation of TC, we investigated Ti4+-doped VO2 (TixV1-xO2) system. It was observed that the TC of TixV1-xO2 samples first slightly decreased and then increased with increasing Ti concentration. X-ray absorption fine structure (XAFS) spectroscopy was used to explore the electronic states and local lattice structures around both Ti and V atoms in TixV1-xO2 samples. Our results revealed the local structure evolution from the initial anatase to the rutile-like structure around the Ti dopants. Furthermore, the host monoclinic VO2 lattice, specifically, the VO6 octahedra would be subtly distorted by Ti doping. The distortion of VO6 octahedra and the variation of TC showed almost the similar trend, confirming the direct effect of local structural perturbations on the phase transition behavior. By comparing other ion-doping systems, we point out that the charge doping is more effective than the lattice distortion in modulating the MIT behavior of VO2 materials. PMID:25950809

  11. Low-frequency dielectric properties of intrinsic and Al-doped rutile TiO{sub 2} thin films grown by the atomic layer deposition technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassmi, M.; LMOP, El Manar University, Tunis 2092; Pointet, J.

    2016-06-28

    Dielectric spectroscopy is carried out for intrinsic and aluminum-doped TiO{sub 2} rutile films which are deposited on RuO{sub 2} by the atomic layer deposition technique. Capacitance and conductance are measured in the 0.1 Hz–100 kHz range, for ac electric fields up to 1 MV{sub rms}/cm. Intrinsic films have a much lower dielectric constant than rutile crystals. This is ascribed to the presence of oxygen vacancies which depress polarizability. When Al is substituted for Ti, the dielectric constant further decreases. By considering Al-induced modification of polarizability, a theoretical relationship between the dielectric constant and the Al concentration is proposed. Al doping drastically decreasesmore » the loss in the very low frequency part of the spectrum. However, Al doping has almost no effect on the loss at high frequencies. The effect of Al doping on loss is discussed through models of hopping transport implying intrinsic oxygen vacancies and Al related centers. When increasing the ac electric field in the MV{sub rms}/cm range, strong voltage non-linearities are evidenced in undoped films. The conductance increases exponentially with the ac field and the capacitance displays negative values (inductive behavior). Hopping barrier lowering is proposed to explain high-field effects. Finally, it is shown that Al doping strongly improves the high-field dielectric behavior.« less

  12. Thermal lens and all optical switching of new organometallic compound doped polyacrylamide gel

    NASA Astrophysics Data System (ADS)

    Badran, Hussain Ali

    In this work thermal lens spectrometry (TLS) is applied to investigate the thermo-optical properties of new organometallic compound containing azomethine group, Dichloro bis [2-(2-hydroxybenzylideneamino)-5-methylphenyl] telluride platinum(II), doped polyacrylamide gel using transistor-transistor logic (TTL) modulated cw 532 nm laser beam as an excitation beam modulated at 10 Hz frequency and probe beam wavelength 635 nm at 14 mW. The technique is applied to determine the thermal diffusivities, ds/dT and the linear thermal expansion coefficient of the sample. All-optical switching effects with low background and high stability are demonstrated.

  13. Thermal spin filtering effect and giant magnetoresistance of half-metallic graphene nanoribbon co-doped with non-metallic Nitrogen and Boron

    NASA Astrophysics Data System (ADS)

    Huang, Hai; Zheng, Anmin; Gao, Guoying; Yao, Kailun

    2018-03-01

    Ab initio calculations based on density functional theory and non-equilibrium Green's function are performed to investigate the thermal spin transport properties of single-hydrogen-saturated zigzag graphene nanoribbon co-doped with non-metallic Nitrogen and Boron in parallel and anti-parallel spin configurations. The results show that the doped graphene nanoribbon is a full half-metal. The two-probe system based on the doped graphene nanoribbon exhibits various excellent spin transport properties, including the spin-filtering effect, the spin Seebeck effect, the single-spin negative differential thermal resistance effect and the sign-reversible giant magnetoresistance feature. Excellently, the spin-filtering efficiency can reach nearly 100% in the parallel configuration and the magnetoresistance ratio can be up to -1.5 × 1010% by modulating the electrode temperature and temperature gradient. Our findings indicate that the metal-free doped graphene nanoribbon would be a promising candidate for spin caloritronic applications.

  14. A uniform doping ultra-thin SOI LDMOS with accumulation-mode extended gate and back-side etching technology

    NASA Astrophysics Data System (ADS)

    Yan-Hui, Zhang; Jie, Wei; Chao, Yin; Qiao, Tan; Jian-Ping, Liu; Peng-Cheng, Li; Xiao-Rong, Luo

    2016-02-01

    A uniform doping ultra-thin silicon-on-insulator (SOI) lateral-double-diffused metal-oxide-semiconductor (LDMOS) with low specific on-resistance (Ron,sp) and high breakdown voltage (BV) is proposed and its mechanism is investigated. The proposed LDMOS features an accumulation-mode extended gate (AG) and back-side etching (BE). The extended gate consists of a P- region and two diodes in series. In the on-state with VGD > 0, an electron accumulation layer is formed along the drift region surface under the AG. It provides an ultra-low resistance current path along the whole drift region surface and thus the novel device obtains a low temperature distribution. The Ron,sp is nearly independent of the doping concentration of the drift region. In the off-state, the AG not only modulates the surface electric field distribution and improves the BV, but also brings in a charge compensation effect to further reduce the Ron,sp. Moreover, the BE avoids vertical premature breakdown to obtain high BV and allows a uniform doping in the drift region, which avoids the variable lateral doping (VLD) and the “hot-spot” caused by the VLD. Compared with the VLD SOI LDMOS, the proposed device simultaneously reduces the Ron,sp by 70.2% and increases the BV from 776 V to 818 V. Project supported by the National Natural Science Foundation of China (Grant Nos. 61176069 and 61376079).

  15. The fundamental science of nitrogen-doping of niobium superconducting cavities

    NASA Astrophysics Data System (ADS)

    Gonnella, Daniel Alfred

    Doping of niobium superconducting RF cavities with impurities has been demonstrated to have the ability to significantly improve the cryogenic efficiency of the accelerating structures. Doping SRF cavities with nitrogen is a relatively simple additional step to cavity preparation that can make drastic improvements in a cavity's intrinsic quality factor, Q0. Nitrogen-doping consists of treating SRF cavities at high temperatures in a low nitrogen-atmosphere. This leads to two important effects: an improvement in Q0 at low fields, and the presence of an "anti-Q slope" in which the cryogenic efficiency of doped cavities actually improves at higher fields. After its initial discovery, nitrogen-doping showed real promise but many fundamental scientific questions remained about the process. Nitrogen-doped cavities consistently quenched at lower fields than un-doped cavities, cooling the cavities through their critical temperature slowly led to poor performance, and the mechanism behind the Q0 improvement was not well understood. This dissertation focuses on addressing these issues. Single-cell 1.3 GHz cavities were prepared with different nitrogen-dopings and their effects studied systematically. It was found that nitrogen-doping drastically lowers the mean free path of the RF penetration layer of the niobium, leading to a lowering of the temperature-dependent BCS resistance, RBCS, at low fields. Theoretical work to predict the anti-Q slope was compared with experimental results to more fundamentally understand the nature of the field dependence of RBCS. Nitrogen-doped cavities were found to have a much larger sensitivity of residual resistance from trapped magnetic flux than un-doped cavities. Fast cool downs with large spatial temperature gradients through Tc were found to more efficiently expel magnetic flux. The full dependence of this sensitivity to trapped magnetic flux was studied as a function of changing mean free path and found to be in good agreement with theoretical predictions. The nature of the low-field quench in nitrogen-doped cavities was also studied with high power pulsed measurements and found to be related to a lowering of the lower critical field, Bc1 due to lowering of the mean free path. Finally, five cryomodule tests were carried out on nitrogen-doped 9-cell cavities to understand how the cryomodule environment affects the performance of doped cavities. This is the first demonstration that environmental factors can be controlled to achieve high Q0 of more than 2.7x10 10 at 16 MV/m and 2.0 K in a cryomodule, meeting and exceeding the specification for LCLS-II. The work presented here represents a significant leap forward in the understanding of the underlying science behind nitrogen-doped cavities and demonstrates their readiness for use in future particle accelerators.

  16. Landau levels from neutral Bogoliubov particles in two-dimensional nodal superconductors under strain and doping gradients

    NASA Astrophysics Data System (ADS)

    Nica, Emilian M.; Franz, Marcel

    2018-02-01

    Motivated by recent work on strain-induced pseudomagnetic fields in Dirac and Weyl semimetals, we analyze the possibility of analogous fields in two-dimensional nodal superconductors. We consider the prototypical case of a d -wave superconductor, a representative of the cuprate family, and find that the presence of weak, spatially varying strain leads to pseudomagnetic fields and Landau quantization of Bogoliubov quasiparticles in the low-energy sector. A similar effect is induced by the presence of generic, weak doping gradients. In contrast to genuine magnetic fields in superconductors, the strain- and doping-gradient-induced pseudomagnetic fields couple in a way that preserves time-reversal symmetry and is not subject to the screening associated with the Meissner effect. These effects can be probed by tuning weak applied supercurrents which lead to shifts in the energies of the Landau levels and hence to quantum oscillations in thermodynamic and transport quantities.

  17. Surface engineered two-dimensional and quasi-one-dimensional nanomaterials for electronic and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Du, Xiang

    As the sizes of individual components in electronic and optoelectronic devices approach nano scale, the performance of the devices is often determined by surface properties due to their large surface-to-volume ratio. Surface phenomena have become one of the cornerstones in nanoelectronic industry. For this reason, research on the surface functionalization has been tremendous amount of growth over the past decades, and promises to be an increasingly important field in the future. Surface functionalization, as an effective technique to modify the surface properties of a material through a physical or chemical approach, exhibits great potential to solve the problems and challenges, and modulate the performance of nanomaterials based functional devices. Surface functionalization drives the developments and applications of modern electronic and optoelectronic devices fabricated by nanomaterials. In this thesis, I demonstrate two surface functionalization approaches, namely, surface transfer doping and H2 annealing, to effectively solve the problems and significantly enhance the performance of 2D (single structure black phosphorus (BP) and heterostructure graphene/Si Schottky junction), and quasi-1D (molybdenum trioxide (MoO 3) nanobelt) nanomaterials based functional devices, respectively. In situ photoelectron spectroscopy (PES) measurements were also carried out to explore the interfacial charge transfer occurring at the interface between the nanostructures and doping layers, and the gap states in MoO 3 thin films, which provides the underlying mechanism to understand and support our device measurement results. In the first part of this thesis, I will discuss the first surface functionalization approach, namely, surface transfer doping, to effectively modulate the ambipolar characteristics of 2D few-layer BP flakes based FETs. The ambipolar characteristics of BP transistors were effectively modulated through in situ surface functionalization with cesium carbonate (Cs2CO3) and MoO3, respectively. Cs2CO3 was found to strongly electron dope black phosphorus. The electron mobility of black phosphorus was significantly enhanced to ˜27 cm2V-1s-1 after 10 nm Cs2CO3 modification, indicating a greatly improved electron transport behavior. In contrast, MoO3 decoration demonstrated a giant hole doping effect. In situ PES characterization confirms the interfacial charge transfer between black phosphorus and doping layers. This doping can also modulate the Schottky junctions formed between metal contacts and black phosphorus flakes, and hence to enhance the responsivity of black phosphorus based photodetectors. These findings coupled with the tunable nature of the surface transfer doping scheme ensure black phosphorus as a promising candidate for further complementary logic electronics. Following the same surface transfer doping technique, I will demonstrate a remarkable performance enhancement of graphene/Si Schottky junction based self-powered photodetectors via surface modification with MoO3 thin film. It was found that the photocurrent responsivity of MoO3 doped graphene/Si photodetectors was highly increased under a wide spectrum of illuminated light from ultraviolet to near infrared. The current on-off ratio reached up to ˜104 under illumination of 500 nm light with intensity of ˜62 muWcm-2. More importantly, the external quantum efficiency of graphene/Si devices was significantly enhanced up to ˜80% by almost four times in the visible light region after MoO3 functionalization. The largely improved photodetecting performance originates from the increased Schottky barrier height at the graphene/Si interface as well as the reduced series resistance after MoO3 modification, which was further corroborated by the in situ PES and electrical transport characterizations. These observations promise a simple method to effectively modify the graphene/Si Schottky junction based self-powered photodetectors and thus significantly enhance their photodetecting performance. After discussion of the first surface functionalization method, next I will introduce the second approach which is H2 annealing, to greatly extend the photoresponse range of single MoO3 nanobelt based photodetector from UV to visible light by introducing substantial gap states. After annealing, the conductance of MoO3 nanobelt was largely enhanced; at the same time, the photodetector possessed wide visible spectrum response. As corroborated by in situ PES investigations, such strong wide spectrum photoresponse arises from the largely enriched oxygen vacancies and gap states in MoO3 nanobelt after H2 annealing. These results open up a new avenue to extend the wide bandgap metal oxide nanomaterials based optoelectronics devices with efficient visible light response through surface modification, i.e. the introduction of the high density of carefully engineered gap states.

  18. Growth and Properties of MERCURY(1-X) Cadmium (x) Tellurium Alloys and Quantum Well Structures

    NASA Astrophysics Data System (ADS)

    Han, Jeong-Whan

    1990-01-01

    Photoassisted molecular beam epitaxy was employed to grow Hg-based films, which include Hg_{1-x}Cd_{x}Te alloys, modulation-doped HgCdTe, modulation-doped HgCdTe quantum well structures and HgCdTe heterostructures. The structural, electrical and optical properties of these films were studied. A series of Hg_{1 -x}Cd_{x}Te films were deposited on lattice-matched (111)B CdZnTe substrates. The rm Hg_{1-x}Cd_{x}Te films grown under the optimum growth conditions exhibited both high structural perfections and outstanding electrical properties, which can be attributed to the role played by the photons in the growth process. For the first time, conducting p-type and n-type modulation-doped HgCdTe were successfully prepared using arsenic and indium as the p-type and n-type dopants, respectively. Most of them exhibited both excellent structural qualities and very sharp interfaces. The hole concentrations of p-type samples showed no evidence of carrier freeze-out at low temperatures. The electron concentrations of n-type samples also exhibited temperature independence up to 300K. PL measurements exhibited two peaks due to the subband transitions. Many of the modulation-doped HgCdTe superlattices samples exhibited very bright and narrow PL peaks at 4.2K. Both electron and hole mobilities of modulation-doped HgCdTe superlattices increase monotonically with decreasing temperature. The electrical properties of n-type modulation-doped HgCdTe heterostructures having spacer layers were also studied. A series of p-type HgTe-Hg_ {0.15}Cd_{0.85}Te superlattices were grown on (100) CdTe substrates by MBE for an extensive study of the optical and electrical properties of such structures. The absorption coefficient versus photon energy spectra show consecutive rises and plateaus characteristic of two-dimensional quantum structures. Temperature-dependent free carrier mobilities and densities were obtained from a mixed-conduction analysis of the Hall and resistivity data as a function of magnetic field. The experimental results were compared with theoretical tight-binding calculation of the superlattice band structure. Hg-based quantum well structures were grown on (100) CdZnTe substrates at 170^circ C. Stimulated emission at 2.8 mu m was observed for the first time in these quantum well structures where the active regions are HgCdTe. A cw Nd:YAG laser was used as an optical pumping source for the laser cavities. Stimulated emission cavity modes were seen at cw laser power densities as low as 3.4 kW/cm ^2 and at temperatures >=q 60K.

  19. Band-gap modulation via gallium substitution in cerium doped gadolinium aluminum garnet using a mixed fuel combustion approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyagi, Mohit; Pitale, Shreyas S.; Ghosh, Manoranjan

    2014-04-24

    Cerium doped Gadolinium garnets (Gd{sub 3}Al{sub x}Ga{sub 5−x}O{sub 12} where 0≤x≤5) are synthesized via combustion synthesis using mixture of urea and glycine fuels. A 4h Post annealing at 1400 oC is found to be necessary for pure phase formation. Lattice spacing variation as a result of partial or total Ga substitution at Al site was mapped by X-ray diffraction. Photoluminescence emission of Ce shifts as a consequence of Ga substitution and therefore suggests a local re-adjustment of crystal field around activator site.

  20. Voltage-impulse-induced dual-range nonvolatile magnetization modulation in metglas/PZT heterostructure

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoli; Su, Hua; Zhang, Huaiwu; Sun, Nian X.

    2016-11-01

    Dual-range, nonvolatile magnetization modulation induced by voltage impulses was investigated in the metglas/lead zirconate titanate (PZT) heterostructure at room temperature. The heterostructure was obtained by bonding a square metglas ribbon on the top electrode of the PZT substrate, which contained defect dipoles resulting from acceptor doping. The PZT substrate achieved two strain hysteretic loops with the application of specific voltage impulse excitation modes. Through strain-mediated magnetoelectric coupling between the metglas ribbon and the PZT substrate, two strain hysteretic loops led to a dual-range nonvolatile magnetization modulation in the heterostructure. Reversible and stable voltage-impulse-induced nonvolatile modulation in the ferromagnetic resonance field and magnetic hysteresis characteristics were also realized. This method provides a promising approach in reducing energy consumption in magnetization modulation and other related devices.

  1. Doping- and irradiation-controlled pinning of vortices in BaFe 2 (As 1 - x P x ) 2 single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, L.; Jia, Y.; Schlueter, J. A.

    We report on the systematic evolution of vortex pinning behavior in isovalent doped single crystals of BaFe 2 (As 1 - x P x ) 2 . Proceeding from optimal doped to overdoped samples, we find a clear transformation of the magnetization hysteresis from a fishtail behavior to a distinct peak effect, followed by a reversible magnetization and Bean-Livingston surface barriers. Strong point pinning dominates the vortex behavior at low fields whereas weak collective pinning determines the behavior at higher fields. In addition to doping effects, we show that particle irradiation by energetic protons can tune vortex pinning in thesemore » materials.« less

  2. Doping- and irradiation-controlled pinning of vortices in BaFe{<_2}(As{<_1-x}P{<_x}){<_2} single crystals.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, L.; Jia, Y.; Schlueter, J. A.

    We report on the systematic evolution of vortex pinning behavior in isovalent doped single crystals of BaFe{sub 2}(As{sub 1-x}P{sub x}){sub 2}. Proceeding from optimal doped to overdoped samples, we find a clear transformation of the magnetization hysteresis from a fishtail behavior to a distinct peak effect, followed by a reversible magnetization and Bean-Livingston surface barriers. Strong point pinning dominates the vortex behavior at low fields whereas weak collective pinning determines the behavior at higher fields. In addition to doping effects, we show that particle irradiation by energetic protons can tune vortex pinning in these materials.

  3. Formaldehyde sensor based on Ni-doped tetrapod-shaped ZnO nanopowder induced by external magnetic field

    NASA Astrophysics Data System (ADS)

    Bai, Zikui; Xie, Changsheng; Hu, Mulin; Zhang, Shunping

    2008-12-01

    The sensors based on Ni-doped ZnO nanopowder with tetrapod-shape (T-ZnO) were fabricated by screen-printing technique with external magnetic field in different direction. The morphologies and crystal structures of the thick film were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), respectively. Gas-sensing property of sensors responded to 100 ppm formaldehyde was also detected. The results show that the direction of magnetic field has crucial effect on the sensor sensitivity. The sensors based on 5 wt% Ni-doped T-ZnO induced by magnetic field in parallel direction to the thick film surface, has the optimization sensitivity, the shortest response and recovery time, which are 10.6, 16 and 15 s, respectively. The magnetic-field induction model and the gas-sensing mechanism of the Ni-doped T-ZnO are proposed.

  4. Enhanced photoluminescence and field-emission behavior of vertically well aligned arrays of In-doped ZnO Nanowires.

    PubMed

    Ahmad, Mashkoor; Sun, Hongyu; Zhu, Jing

    2011-04-01

    Vertically oriented well-aligned Indium doped ZnO nanowires (NWs) have been successfully synthesized on Au-coated Zn substrate by controlled thermal evaporation. The effect of indium dopant on the optical and field-emission properties of these well-aligned ZnO NWs is investigated. The doped NWs are found to be single crystals grown along the c-axis. The composition of the doped NWs is confirmed by X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and X-ray photospectroscopy (XPS). The photoluminescence (PL) spectra of doped NWs having a blue-shift in the UV region show a prominent tuning in the optical band gap, without any significant peak relating to intrinsic defects. The turn-on field of the field emission is found to be ∼2.4 V μm(-1) and an emission current density of 1.13 mA cm(-2) under the field of 5.9 V μm(-1). The field enhancement factor β is estimated to be 9490 ± 2, which is much higher than that of any previous report. Furthermore, the doped NWs exhibit good emission current stability with a variation of less than 5% during a 200 s under a field of 5.9 V μm(-1). The superior field emission properties are attributed to the good alignment, high aspect ratio, and better crystallinity of In-doped NWs. © 2011 American Chemical Society

  5. Metal modulation epitaxy growth for extremely high hole concentrations above 1019 cm-3 in GaN

    NASA Astrophysics Data System (ADS)

    Namkoong, Gon; Trybus, Elaissa; Lee, Kyung Keun; Moseley, Michael; Doolittle, W. Alan; Look, David C.

    2008-10-01

    The free hole carriers in GaN have been limited to concentrations in the low 1018cm-3 range due to the deep activation energy, lower solubility, and compensation from defects, therefore, limiting doping efficiency to about 1%. Herein, we report an enhanced doping efficiency up to ˜10% in GaN by a periodic doping, metal modulation epitaxy growth technique. The hole concentrations grown by periodically modulating Ga atoms and Mg dopants were over ˜1.5×1019cm-3.

  6. Enhanced characteristics of blue InGaN /GaN light-emitting diodes by using selective activation to modulate the lateral current spreading length

    NASA Astrophysics Data System (ADS)

    Lin, Ray-Ming; Lu, Yuan-Chieh; Chou, Yi-Lun; Chen, Guo-Hsing; Lin, Yung-Hsiang; Wu, Meng-Chyi

    2008-06-01

    We have studied the characteristics of blue InGaN /GaN multiquantum-well light-emitting diodes (LEDs) after reducing the length of the lateral current path through the transparent layer through formation of a peripheral high-resistance current-blocking region in the Mg-doped GaN layer. To study the mechanism of selective activation in the Mg-doped GaN layer, we deposited titanium (Ti), gold (Au), Ti /Au, silver, and copper individually onto the Mg-doped GaN layer and investigated their effects on the hole concentration in the p-GaN layer. The Mg-doped GaN layer capped with Ti effectively depressed the hole concentration in the p-GaN layer by over one order of magnitude relative to that of the as-grown layer. This may suggest that high resistive regions are formed by diffusion of Ti and depth of high resistive region from the p-GaN surface depends on the capped Ti film thickness. Selective activation of the Mg-doped GaN layer could be used to modulate the length of the lateral current path. Furthermore, the external quantum efficiency of the LEDs was improved significantly after reducing the lateral current spreading length. In our best result, the external quantum efficiency was 52.3% higher (at 100mA) than that of the as-grown blue LEDs.

  7. Effect of doping on the intersubband absorption in Si- and Ge-doped GaN/AlN heterostructures

    NASA Astrophysics Data System (ADS)

    Ajay, A.; Lim, C. B.; Browne, D. A.; Polaczyński, J.; Bellet-Amalric, E.; Bleuse, J.; den Hertog, M. I.; Monroy, E.

    2017-10-01

    In this paper, we study band-to-band and intersubband (ISB) characteristics of Si- and Ge-doped GaN/AlN heterostructures (planar and nanowires) structurally designed to absorb in the short-wavelength infrared region, particularly at 1.55 μm. Regarding the band-to-band properties, we discuss the variation of the screening of the internal electric field by free carriers, as a function of the doping density and well/nanodisk size. We observe that nanowire heterostructures consistently present longer photoluminescence decay times than their planar counterparts, which supports the existence of an in-plane piezoelectric field associated to the shear component of the strain tensor in the nanowire geometry. Regarding the ISB characteristics, we report absorption covering 1.45-1.75 μm using Ge-doped quantum wells, with comparable performance to Si-doped planar heterostructures. We also report similar ISB absorption in Si- and Ge-doped nanowire heterostructures indicating that the choice of dopant is not an intrinsic barrier for observing ISB phenomena. The spectral shift of the ISB absorption as a function of the doping concentration due to many body effects confirms that Si and Ge efficiently dope GaN/AlN nanowire heterostructures.

  8. High Electron Mobility in SiGe/Si n-MODFET Structures on Sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; Croke, Edward T.; Alterovitz, Samuel A.

    2003-01-01

    For the first time, SiGe/Si n-Modulation Doped Field Effect Transistors (n-MODFET) structures have been grown on sapphire substrates. Room temperature electron mobility value of 1271 square centimeters N-sec at an electron carrier density (n(sub e) = 1.33x10(exp 12) per square centimeter)) of 1.6 x 10(exp 12) per square centimeter was obtained. At 250 mK, the mobility increases to 13,313 square centimeters/V-sec (n(sub e)=1.33x10(exp 12) per square centimeter)) and Shubnikov-de Haas oscillations appear, showing excellent confinement of the two-dimensional electron gas.

  9. Comparing Hall Effect and Field Effect Measurements on the Same Single Nanowire.

    PubMed

    Hultin, Olof; Otnes, Gaute; Borgström, Magnus T; Björk, Mikael; Samuelson, Lars; Storm, Kristian

    2016-01-13

    We compare and discuss the two most commonly used electrical characterization techniques for nanowires (NWs). In a novel single-NW device, we combine Hall effect and back-gated and top-gated field effect measurements and quantify the carrier concentrations in a series of sulfur-doped InP NWs. The carrier concentrations from Hall effect and field effect measurements are found to correlate well when using the analysis methods described in this work. This shows that NWs can be accurately characterized with available electrical methods, an important result toward better understanding of semiconductor NW doping.

  10. Suppression of the Hall number due to charge density wave order in high-Tc cuprates

    NASA Astrophysics Data System (ADS)

    Sharma, Girish; Nandy, S.; Taraphder, A.; Tewari, Sumanta

    2018-05-01

    Understanding the pseudogap phase in hole-doped high-temperature cuprate superconductors remains a central challenge in condensed-matter physics. From a host of recent experiments there is now compelling evidence of translational-symmetry-breaking charge density wave (CDW) order in a wide range of doping inside this phase. Two distinct types of incommensurate charge order, bidirectional at zero or low magnetic fields and unidirectional at high magnetic fields close to the upper critical field Hc 2, have been reported so far in approximately the same doping range between p ≃0.08 and p ≃0.16 . In concurrent developments, recent high-field Hall experiments have also revealed two indirect but striking signatures of Fermi surface reconstruction in the pseudogap phase, namely, a sign change of the Hall coefficient to negative values at low temperatures in the intermediate range of hole doping and a rapid suppression of the positive Hall number without a change in sign near optimal doping p ˜0.19 . We show that the assumption of a unidirectional incommensurate CDW (with or without a coexisting weak bidirectional order) at high magnetic fields near optimal doping and the coexistence of both types of orders of approximately equal magnitude at high magnetic fields in the intermediate range of doping may help explain the striking behavior of the low-temperature Hall effect in the entire pseudogap phase.

  11. High Electron Mobility SiGe/Si Transistor Structures on Sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Mueller, Carl H.; Croke, Edward T.; Ponchak, George E.

    2004-01-01

    SiGe/Si n-type modulation doped field effect structures and transistors (n-MODFETs) have been fabricated on r-plane sapphire substrates. The structures were deposited using molecular beam epitaxy, and antimony dopants were incorporated via a delta doping process. Secondary ion mass spectroscopy (SIMS) indicates that the peak antimony concentration was approximately 4 x 10(exp 19) per cubic centimeter. At these two temperatures, the electron carrier densities were 1.6 and 1.33 x 10(exp 12) per square centimeter, thus demonstrating that carrier confinement was excellent. Shubnikov-de Haas oscillations were observed at 0.25 K, thus confirming the two-dimensional nature of the carriers. Transistors, with gate lengths varying from 1 micron to 5 microns, were fabricated using these structures and dc characterization was performed at room temperature. The saturated drain current region extended over a wide source-to-drain voltage (V (sub DS)) range, with V (sub DS) knee voltages of approximately 0.5 V and increased leakage starting at voltages slightly higher than 4 V.

  12. Electric field induced metal-insulator transition in VO2 thin film based on FTO/VO2/FTO structure

    NASA Astrophysics Data System (ADS)

    Hao, Rulong; Li, Yi; Liu, Fei; Sun, Yao; Tang, Jiayin; Chen, Peizu; Jiang, Wei; Wu, Zhengyi; Xu, Tingting; Fang, Baoying

    2016-03-01

    A VO2 thin film has been prepared using a DC magnetron sputtering method and annealing on an F-doped SnO2 (FTO) conductive glass substrate. The FTO/VO2/FTO structure was fabricated using photolithography and a chemical etching process. The temperature dependence of the I-V hysteresis loop for the FTO/VO2/FTO structure has been analyzed. The threshold voltage decreases with increasing temperature, with a value of 9.2 V at 20 °C. The maximum transmission modulation value of the FTO/VO2/FTO structure is 31.4% under various temperatures and voltages. Optical modulation can be realized in the structure by applying an electric field.

  13. Experimental identification of p-type conduction in fluoridized boron nitride nanotube

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Li, Wuxia; Tang, Chengchun; Li, Lin; Lin, Jing; Gu, Changzhi

    2013-04-01

    The transport properties of F-doped boron nitride nanotube (BNNT) top-gate field effect devices were investigated to demonstrate the realization of p-type BNNTs by F-doping. The drain current was found to increase substantially with the applied negative gate voltage, suggesting these devices persist significant field effect with holes predominated; it also suggests that F-doping remarkably modified the band gap with F atoms preferred to be absorbed on B sites. Parameters, including the resistivity, charge concentration, and mobility, were further retrieved from the I-V curves. Our results indicate that device characterization is an effective method to reveal the specific properties of BNNTs.

  14. Extreme mobility enhancement of two-dimensional electron gases at oxide interfaces by charge-transfer-induced modulation doping

    NASA Astrophysics Data System (ADS)

    Chen, Y. Z.; Trier, F.; Wijnands, T.; Green, R. J.; Gauquelin, N.; Egoavil, R.; Christensen, D. V.; Koster, G.; Huijben, M.; Bovet, N.; Macke, S.; He, F.; Sutarto, R.; Andersen, N. H.; Sulpizio, J. A.; Honig, M.; Prawiroatmodjo, G. E. D. K.; Jespersen, T. S.; Linderoth, S.; Ilani, S.; Verbeeck, J.; van Tendeloo, G.; Rijnders, G.; Sawatzky, G. A.; Pryds, N.

    2015-08-01

    Two-dimensional electron gases (2DEGs) formed at the interface of insulating complex oxides promise the development of all-oxide electronic devices. These 2DEGs involve many-body interactions that give rise to a variety of physical phenomena such as superconductivity, magnetism, tunable metal-insulator transitions and phase separation. Increasing the mobility of the 2DEG, however, remains a major challenge. Here, we show that the electron mobility is enhanced by more than two orders of magnitude by inserting a single-unit-cell insulating layer of polar La1-xSrxMnO3 (x = 0, 1/8, and 1/3) at the interface between disordered LaAlO3 and crystalline SrTiO3 produced at room temperature. Resonant X-ray spectroscopy and transmission electron microscopy show that the manganite layer undergoes unambiguous electronic reconstruction, leading to modulation doping of such atomically engineered complex oxide heterointerfaces. At low temperatures, the modulation-doped 2DEG exhibits Shubnikov-de Haas oscillations and fingerprints of the quantum Hall effect, demonstrating unprecedented high mobility and low electron density.

  15. Photoinduced charge-carrier modulation of inkjet-printed carbon nanotubes via poly(vinyl acetate) doping and dedoping for thermoelectric generators

    NASA Astrophysics Data System (ADS)

    Horike, Shohei; Fukushima, Tatsuya; Saito, Takeshi; Koshiba, Yasuko; Ishida, Kenji

    2018-01-01

    Here, we studied the charge-carrier modulation of single-walled carbon nanotubes (SWCNTs) via poly(vinyl acetate) (PVAc) doping and dedoping under ultraviolet (UV) light irradiation with the aim of pairing several p- and n-type SWCNTs as thermoelectric (TE) elements. The Seebeck coefficient of the SWCNTs was first made negative by doping with PVAc and then made positive again through UV-induced PVAc dedoping. A possible TE module configuration and the process for its fabrication are proposed, wherein prints and photopatterns can be obtained without the use of additional electrodes. Our findings enable the fabrication of fine TE modules using simple materials and techniques.

  16. Biaxial tensile strain modulates magnetic properties of the 3d transition metal doped stanene

    NASA Astrophysics Data System (ADS)

    Dai, Xian-Qi; Zhao, Ming-Yu; Zhao, Ru-Meng; Li, Wei

    2017-06-01

    Utilizing first-principle calculations, the biaxial tensile strain modulating magnetic states and electronic structures of transition metal (TM) (i.e., Mn, Fe, Sc, Ni and Ti) atoms doped in stanene are investigated. It shows that Mn and Fe doped stanene systems are magnetic, while the Sc, Ti and Ni doped stanene systems are nonmagnetic. When the biaxial tensile strain increases, a weaker antiferromagnetic coupling between the nearest neighbor (NN) Sn atoms and Mn (Fe, Ti) atom is observed. For Sc and Ni doped stanene systems, the biaxial strain doesn't introduce spin polarization for the TM atoms. In a word, the TM atoms doped stanene systems may manifest potential applications in nanoelectronics, spintronics and magnetic storage devices.

  17. An All-Solid-State pH Sensor Employing Fluorine-Terminated Polycrystalline Boron-Doped Diamond as a pH-Insensitive Solution-Gate Field-Effect Transistor.

    PubMed

    Shintani, Yukihiro; Kobayashi, Mikinori; Kawarada, Hiroshi

    2017-05-05

    A fluorine-terminated polycrystalline boron-doped diamond surface is successfully employed as a pH-insensitive SGFET (solution-gate field-effect transistor) for an all-solid-state pH sensor. The fluorinated polycrystalline boron-doped diamond (BDD) channel possesses a pH-insensitivity of less than 3mV/pH compared with a pH-sensitive oxygenated channel. With differential FET (field-effect transistor) sensing, a sensitivity of 27 mv/pH was obtained in the pH range of 2-10; therefore, it demonstrated excellent performance for an all-solid-state pH sensor with a pH-sensitive oxygen-terminated polycrystalline BDD SGFET and a platinum quasi-reference electrode, respectively.

  18. Modulation of magnetism in transition-metal-doped two-dimensional GeS

    NASA Astrophysics Data System (ADS)

    Zhang, Chunxiao; Yang, Baoyong; Tang, Chao; He, Chaoyu; Li, Jin; Ouyang, Tao; Zhong, Jianxin

    2018-06-01

    Two-dimensional (2D) germanium monosulfide (GeS) is a promising nanoelectronic material with a desirable band gap, high carrier mobility, and anisotropic structures. In this work, we present a density functional theory study on the magnetism of 3d TM (TM  =  Fe, Co and Ni)-doped 2D GeS. We find that the TM atoms strongly bond to the GeS sheet with quite sizable binding energies due to the sp 3-like hybridization of 2D GeS. The Fe- and Co-doped GeS show nonzero magnetic ground states. Hubbard parameter U hardly affects the magnetic moment when U is no more than 6 eV. In particular, substitutional Fe (Fe@GeS) and substitutional Co (Co@GeS) present high-spin states with 4 μ B and 3 μ B. The magnetism of TM-doped 2D GeS mainly arises from the crystal field splitting and spin exchange splitting of TM-3d orbitals. The magnetic and electronic properties of the Fe@GeS and Co@GeS systems can be easily controlled in a small vertical external electric field (E ext). The underlying mechanism of spin crossover is that E ext affects the crystal field splitting and then shifts the relative positions of 3d orbitals, which tunes the spin configurations. These results render monolayer GeS a promising 2D material for applications in future spintronics.

  19. Luminescent down shifting effect of Ce-doped yttrium aluminum garnet thin films on solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Guojian; Lou, Chaogang; Kang, Jian

    2015-12-21

    Ce-doped yttrium aluminum garnet (YAG:Ce) thin films as luminescent down shifting (LDS) materials are introduced into the module of crystalline silicon solar cells. The films are deposited by RF magnetron sputtering on the lower surface of the quartz glass. They convert ultraviolet and blue light into yellow light. Experiments show that the introduction of YAG:Ce films improves the conversion efficiency from 18.45% of the cells to 19.27% of the module. The increasing efficiency is attributed to LDS effect of YAG:Ce films and the reduced reflection of short wavelength photons. Two intentionally selected samples with similar reflectivities are used to evaluatemore » roughly the effect of LDS alone on the solar cells, which leads to a relative increase by 2.68% in the conversion efficiency.« less

  20. Manipulating charge density waves in 1 T -TaS2 by charge-carrier doping: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Shao, D. F.; Xiao, R. C.; Lu, W. J.; Lv, H. Y.; Li, J. Y.; Zhu, X. B.; Sun, Y. P.

    2016-09-01

    The transition-metal dichalcogenide 1 T -TaS2 exhibits a rich set of charge-density-wave (CDW) orders. Recent investigations suggested that using light or an electric field can manipulate the commensurate CDW (CCDW) ground state. Such manipulations are considered to be determined by charge-carrier doping. Here we use first-principles calculations to simulate the carrier-doping effect on the CCDW in 1 T -TaS2 . We investigate the charge-doping effects on the electronic structures and phonon instabilities of the 1 T structure, and we analyze the doping-induced energy and distortion ratio variations in the CCDW structure. We found that both in bulk and monolayer 1 T -TaS2 , the CCDW is stable upon electron doping, while hole doping can significantly suppress the CCDW, implying different mechanisms of such reported manipulations. Light or positive perpendicular electric-field-induced hole doping increases the energy of the CCDW, so that the system transforms to a nearly commensurate CDW or a similar metastable state. On the other hand, even though the CCDW distortion is more stable upon in-plane electric-field-induced electron injection, some accompanied effects can drive the system to cross over the energy barrier from the CCDW to a nearly commensurate CDW or a similar metastable state. We also estimate that hole doping can introduce potential superconductivity with a Tc of 6-7 K. Controllable switching of different states such as a CCDW/Mott insulating state, a metallic state, and even a superconducting state can be realized in 1 T -TaS2 . As a result, this material may have very promising applications in future electronic devices.

  1. Magneto-optical spectrum and the effective excitonic Zeeman splitting energies of Mn and Co-doped CdSe nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Wen, E-mail: wenxiong@cqu.edu.cn; Chen, Wensuo

    2013-12-21

    The electronic structure of Mn and Co-doped CdSe nanowires are calculated based on the six-band k·p effective-mass theory. Through the calculation, it is found that the splitting energies of the degenerate hole states in Mn-doped CdSe nanowires are larger than that in Co-doped CdSe nanowires when the concentration of these two kinds of magnetic ions is the same. In order to analysis the magneto-optical spectrum of Mn and Co-doped CdSe nanowires, the four lowest electron states and the four highest hole states are sorted when the magnetic field is applied, and the 10 lowest optical transitions between the conduction subbandsmore » and the valence subbands at the Γ point in Mn and Co-doped CdSe nanowires are shown in the paper, it is found that the order of the optical transitions at the Γ point almost do not change although two different kinds of magnetic ions are doped in CdSe nanowires. Finally, the effective excitonic Zeeman splitting energies at the Γ point are found to increase almost linearly with the increase of the concentration of the magnetic ions and the magnetic field; meanwhile, the giant positive effective excitonic g factors in Mn and Co-doped CdSe nanowires are predicted based on our theoretical calculation.« less

  2. Performance enhancement of perovskite solar cells with Mg-doped TiO{sub 2} compact film as the hole-blocking layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Qin, Minchao; Tao, Hong

    2015-03-23

    In this letter, we report perovskite solar cells with thin dense Mg-doped TiO{sub 2} as hole-blocking layers (HBLs), which outperform cells using TiO{sub 2} HBLs in several ways: higher open-circuit voltage (V{sub oc}) (1.08 V), power conversion efficiency (12.28%), short-circuit current, and fill factor. These properties improvements are attributed to the better properties of Mg-modulated TiO{sub 2} as compared to TiO{sub 2} such as better optical transmission properties, upshifted conduction band minimum (CBM) and downshifted valence band maximum (VBM), better hole-blocking effect, and higher electron life time. The higher-lying CBM due to the modulation with wider band gap MgO and themore » formation of magnesium oxide and magnesium hydroxides together resulted in an increment of V{sub oc}. In addition, the Mg-modulated TiO{sub 2} with lower VBM played a better role in the hole-blocking. The HBL with modulated band position provided better electron transport and hole blocking effects within the device.« less

  3. Effect of heavy-ion irradiation on London penetration depth in overdoped Ba(Fe1-xCox)2As2

    NASA Astrophysics Data System (ADS)

    Murphy, J.; Tanatar, M. A.; Kim, Hyunsoo; Kwok, W.; Welp, U.; Graf, D.; Brooks, J. S.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.

    2013-08-01

    Irradiation with 1.4 GeV 208Pb ions was used to induce artificial disorder in single crystals of iron-arsenide superconductor Ba(Fe1-xCox)2As2 and to study its effects on the temperature-dependent London penetration depth and transport properties. A study was undertaken on overdoped single crystals with x=0.108 and x=0.127 characterized by notable modulation of the superconducting gap. Irradiation corresponding to the matching fields of Bϕ=6 T and 6.5 T with doses 2.22×1011 d/cm2 and 2.4×1011 d/cm2, respectively, suppresses the superconducting Tc by approximately 0.3 to 1 K. The variation of the low-temperature penetration depth in both pristine and irradiated samples is well described by the power law Δλ(T)=ATn. Irradiation increases the magnitude of the prefactor A and decreases the exponent n, similar to the effect of irradiation in optimally-doped samples. This finding supports universal s± pairing in Ba(Fe1-xCox)2As2 compounds for the entire Co doping range.

  4. Quantum oscillations from the reconstructed Fermi surface in electron-doped cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Higgins, J. S.; Chan, M. K.; Sarkar, Tarapada; McDonald, R. D.; Greene, R. L.; Butch, N. P.

    2018-04-01

    We have studied the electronic structure of electron-doped cuprate superconductors via measurements of high-field Shubnikov–de Haas oscillations in thin films. In optimally doped Pr2‑x Ce x CuO4±δ and La2‑x Ce x CuO4±δ , quantum oscillations indicate the presence of a small Fermi surface, demonstrating that electronic reconstruction is a general feature of the electron-doped cuprates, despite the location of the superconducting dome at very different doping levels. Negative high-field magnetoresistance is correlated with an anomalous low-temperature change in scattering that modifies the amplitude of quantum oscillations. This behavior is consistent with effects attributed to spin fluctuations.

  5. Integrated Photonic Orbital Angular Momentum Multiplexing and Demultiplexing on Chip

    DTIC Science & Technology

    2014-10-31

    OAM free space coherent communication link testbed. ECL: external cavity laser . EDFA: erbium-doped fiber amplifier. PC: polarization controller. ATT...wave (cw) laser centered at 1540 nm, followed by an erbium-doped fiber amplifier (EDFA), an I/Q modulator, and another EDFA. The I/Q modulator was...communication link testbed. ECL: external cavity laser . EDFA: erbium-doped fiber amplifier. PC: polarization controller. ATT: attenuator. BPF: bandpass filter

  6. Buffer transport mechanisms in intentionally carbon doped GaN heterojunction field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uren, Michael J.; Cäsar, Markus; Kuball, Martin

    2014-06-30

    Temperature dependent pulsed and ramped substrate bias measurements are used to develop a detailed understanding of the vertical carrier transport in the buffer layers in a carbon doped GaN power heterojunction field effect transistor. Carbon doped GaN and multiple layers of AlGaN alloy are used in these devices to deliver an insulating and strain relieved buffer with high breakdown voltage capability. However, understanding of the detailed physical mechanism for its operation is still lacking. At the lowest electric fields (<10 MV/m), charge redistribution within the C doped layer is shown to occur by hole conduction in the valence band withmore » activation energy 0.86 eV. At higher fields, leakage between the two-dimensional electron gas and the buffer dominates occurring by a Poole-Frenkel mechanism with activation energy ∼0.65 eV, presumably along threading dislocations. At higher fields still, the strain relief buffer starts to conduct by a field dependent process. Balancing the onset of these leakage mechanisms is essential to allow the build-up of positive rather than negative space charge, and thus minimize bulk-related current-collapse in these devices.« less

  7. Coherent Response of Two Dimensional Electron Gas probed by Two Dimensional Fourier Transform Spectroscopy

    NASA Astrophysics Data System (ADS)

    Paul, Jagannath

    Advent of ultrashort lasers made it possible to probe various scattering phenomena in materials that occur in a time scale on the order of few femtoseconds to several tens of picoseconds. Nonlinear optical spectroscopy techniques, such as pump-probe, transient four wave mixing (TFWM), etc., are very common to study the carrier dynamics in various material systems. In time domain, the transient FWM uses several ultrashort pulses separated by time delays to obtain the information of dephasing and population relaxation times, which are very important parameters that govern the carrier dynamics of materials. A recently developed multidimensional nonlinear optical spectroscopy is an enhanced version of TFWM which keeps track of two time delays simultaneously and correlate them in the frequency domain with the aid of Fourier transform in a two dimensional map. Using this technique, the nonlinear complex signal field is characterized both in amplitude and phase. Furthermore, this technique allows us to identify the coupling between resonances which are rather difficult to interpret from time domain measurements. This work focuses on the study of the coherent response of a two dimensional electron gas formed in a modulation doped GaAs/AlGaAs quantum well both at zero and at high magnetic fields. In modulation doped quantum wells, the excitons are formed as a result of the inter- actions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the formation of Mahan excitons, which is also referred to as Fermi edge singularity (FES). Polarization and temperature dependent rephasing 2DFT spectra in combination with TI-FWM measurements, provides insight into the dephasing mechanism of the heavy hole (HH) Mahan exciton. In addition to that strong quantum coherence between the HH and LH Mahan excitons is observed, which is rather surprising at this high doping concentration. The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence be destroyed as a result of the screening and electron-electron interactions. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum 2DFT spectra. Theoretical simulations based on the optical Bloch Equations (OBE) where many-body effects are included phenomenologically, corroborate the experimental results. Time-dependent density functional theory (TD-DFT) calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system. Furthermore, in semiconductors under the application of magnetic field, the energy states in conduction and valence bands become quantized and Landau levels are formed. We observe optical excitation originating from different Landau levels in the absorption spectra in an undoped and a modulation doped quantum wells. 2DFT measurements in magnetic field up to 25 Tesla have been performed and the spectra reveal distinct difference in the line shapes in the two samples. In addition, strong coherent coupling between landau levels is observed in the undoped sample. In order to gain deeper understanding of the observations, the experimental results are further supported with TD-DFT calculation.

  8. Enhanced role of Al or Ga-doped graphene on the adsorption and dissociation of N2O under electric field.

    PubMed

    Lv, Yong-an; Zhuang, Gui-lin; Wang, Jian-guo; Jia, Ya-bo; Xie, Qin

    2011-07-21

    To find an effective strategy for the capture and decomposition of nitrous oxide (N(2)O) is very important in order to protect the ozone layer and control the effects of global warming. Based on first-principles calculations, such a strategy is proposed by the systemic study of N(2)O interaction with pristine and Al (or Ga)-doped graphene, and N(2)O dissociation on the surface of Al (or Ga)-doped graphene in an applied electric field. The calculated adsorption energy value shows the N(2)O molecule more firmly adsorbs on the surface of Al (or Ga)-doped graphene than that of pristine graphene, deriving from a stronger covalent bond between the N(2)O molecule and the Al (or Ga) atom. Furthermore, our study suggests that N(2)O molecules can be easily decomposed to N(2) and O(2) with the appropriate electric field, which reveals that Al-doped graphene may be a new candidate for control of N(2)O. This journal is © the Owner Societies 2011

  9. Quantum plasmons with optical-range frequencies in doped few-layer graphene

    NASA Astrophysics Data System (ADS)

    Shirodkar, Sharmila N.; Mattheakis, Marios; Cazeaux, Paul; Narang, Prineha; Soljačić, Marin; Kaxiras, Efthimios

    2018-05-01

    Although plasmon modes exist in doped graphene, the limited range of doping achieved by gating restricts the plasmon frequencies to a range that does not include the visible and infrared. Here we show, through the use of first-principles calculations, that the high levels of doping achieved by lithium intercalation in bilayer and trilayer graphene shift the plasmon frequencies into the visible range. To obtain physically meaningful results, we introduce a correction of the effect of plasmon interaction across the vacuum separating periodic images of the doped graphene layers, consisting of transparent boundary conditions in the direction perpendicular to the layers; this represents a significant improvement over the exact Coulomb cutoff technique employed in earlier works. The resulting plasmon modes are due to local field effects and the nonlocal response of the material to external electromagnetic fields, requiring a fully quantum mechanical treatment. We describe the features of these quantum plasmons, including the dispersion relation, losses, and field localization. Our findings point to a strategy for fine-tuning the plasmon frequencies in graphene and other two-dimensional materials.

  10. Doping evolution of the anisotropic upper critical fields in the iron-based superconductor Ba 1-xK xFe 2As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanatar, Makariy A.; Liu, Yong; Jaroszynski, J.

    In-plane resistivity measurements as a function of temperature and magnetic field up to 35 T with precise orientation within the crystallographic ac plane were used to study the upper critical field H c2 of the hole-doped iron-based superconductor Ba 1–xK xFe 2As 2. Compositions of the samples studied spanned from under- doped x=0.17 (T c=12 K) and x=0.22 (T c=20 K), both in the coexistence range of stripe magnetism and superconductivity, through optimal doping x=0.39 (T c=38.4 K) and x=0.47 (T c=37.2 K), to overdoped x=0.65 (T c=22 K) and x=0.83 (T c=10 K). Here, we find notable doping asymmetrymore » of the shapes of the anisotropic H c2(T), suggesting the important role of paramagnetic limiting effects in the H∥a configuration in overdoped compositions and multiband effects in underdoped compositions.« less

  11. Doping evolution of the anisotropic upper critical fields in the iron-based superconductor Ba 1-xK xFe 2As 2

    DOE PAGES

    Tanatar, Makariy A.; Liu, Yong; Jaroszynski, J.; ...

    2017-11-14

    In-plane resistivity measurements as a function of temperature and magnetic field up to 35 T with precise orientation within the crystallographic ac plane were used to study the upper critical field H c2 of the hole-doped iron-based superconductor Ba 1–xK xFe 2As 2. Compositions of the samples studied spanned from under- doped x=0.17 (T c=12 K) and x=0.22 (T c=20 K), both in the coexistence range of stripe magnetism and superconductivity, through optimal doping x=0.39 (T c=38.4 K) and x=0.47 (T c=37.2 K), to overdoped x=0.65 (T c=22 K) and x=0.83 (T c=10 K). Here, we find notable doping asymmetrymore » of the shapes of the anisotropic H c2(T), suggesting the important role of paramagnetic limiting effects in the H∥a configuration in overdoped compositions and multiband effects in underdoped compositions.« less

  12. Physics and material science of ultra-high quality factor superconducting resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vostrikov, Alexander

    2015-08-01

    The nitrogen doping into niobium superconducting radio frequency cavity walls aiming to improve the fundamental mode quality factor is the subject of the research in the given work. Quantitative nitrogen diffusion into niobium model calculating the concentration profile was developed. The model estimations were confirmed with secondary ion mass spectrometry technique measurements. The model made controlled nitrogen doping recipe optimization possible. As a result the robust reproducible recipe for SRF cavity walls treatment with nitrogen doping was developed. The cavities produced with optimized recipe met LCLS–II requirements on quality factor of 2.7 ∙ 10 10 at acceleration field of 16more » MV/m. The microscopic effects of nitrogen doping on superconducting niobium properties were studied with low energy muon spin rotation technique and magnetometer measurements. No significant effect of nitrogen on the following features was found: electron mean free path, magnetic field penetration depth, and upper and surface critical magnetic fields. It was detected that for nitrogen doped niobium samples magnetic flux starts to penetrate inside the superconductor at lower external magnetic field value compared to the low temperature baked niobium ones. This explains lower quench field of SRF cavities treated with nitrogen. Quality factor improvement of fundamental mode forced to analyze the high order mode (HOM) impact on the particle beam dynamics. Both resonant and cumulative effects caused by monopole and dipole HOMs respectively are found to be negligible within the requirements for LCLS–II.« less

  13. Influence of small DC bias field on the electrical behaviour of Sr- and Mg-doped lanthanum gallate

    NASA Astrophysics Data System (ADS)

    Raghvendra; Singh, Rajesh Kumar; Singh, Prabhakar

    2014-09-01

    One of the promising electrolyte materials for solid oxide fuel cells application, Sr- and Mg-doped lanthanum gallate La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM), is synthesized by conventional solid state ceramic route. X-ray Rietveld analysis confirms the formation of main orthorhombic phase at room temperature along with a few minor secondary phases. SEM micrograph reveals the grain and grainboundary morphology of the system. Electrical conductivity of the LSGM sample is measured in the temperature range 573-873 K and in the frequency range 20 Hz-1 MHz at a few small DC bias fields (at 0.0, 0.5, 1.0, 1.5 and 2.0 V). The conductivity spectra show power-law behaviour. Electrical conductivity of the sample is found to be weakly dependent on DC bias field. This is attributed to field-dependent bulk and grainboundary conduction processes. In the present system, under investigated bias field range, the possibility of formation of Schottky barrier is ruled out. The concept of grainboundary channel (pathway) modulation on the application of bias field is proposed.

  14. Optical studies of the charge localization and delocalization in conducting polymers

    NASA Astrophysics Data System (ADS)

    Kim, Youngmin

    A systematic charge transport study on the thermochromism of polyaniline (PAN) doped with a plasticizing dopant, and on a field effect device using conducting poly (3,4-ethylenedioxythiophene) (PEDOT) as its active material, was made at optical (20--45,000 cm-1) frequencies to probe the charge localization and delocalization phenomena and the insulator to metal transition (IMT) in the inhomogeneous conducting polymer system. Temperature dependent reflectance [20--8000 cm -1 (2.5 meV--1eV)] of the PAN sample, together with absorbance and do transport study done by Dr. Pron at the Laboratoire de Physique des Metaux Synthetiques in Grenoble, France, shows spectral weight loss in the infrared region but the reflectance in the very low frequency (below 100 cm-1) remains unaffected. There are two localization transitions. The origin of the 200 K localization transition that affect >˜15% of the electrons is the glass transition emanating from the dopants. The transition principally affects the IR response in the range of 200--8000 cm -1. The low temperature (<75K) localization transition affects the few electrons that provide the high conductivity. It is suggested that these electrons are localized by disorder at the lowest temperature and become delocalized through phonon induced delocalization as the temperature increases to 75K. It is noted that this temperature is typical of a Debye temperature in many organic materials. The thermocromism is attributed to the weak localization to strong localization transition through the glass transition temperature. Below the glass transition temperature (Tg), the lattice is "frozen" in configuration that reduces the charge delocalization and lead to cause increase of strongly localized polarons. Time variation of source-drain current, real-time IR reflectance [20--8000 cm-1 (2.5 meV--1eV)] modulation, and real-time UV/VIS/NIR absorbance [380--2400 nm (0.5--3.3 eV)] modulation were measured to investigate the field induced charge localization of PEDOT field effect device. Layer by layer thin film analysis showed strong localization of free carriers. The temperature dependence of the do conductivity changes with application of the gate voltage demonstrating that the electric field effect has changed bulk charge transport in the active channel despite the expected screening due to mobile charge carriers. Mid IR (500--8000 cm-1) reflectance showed little change in the vibrational modes, which distinguish this phenomenon from the doping-dedoping induced electrochemical MIT. UV/Vis/NIR absorbance modulation clearly showed that the increase of the strong localization of charges with the pi-pi* bandgap transition unchanged. It is proposed that conducting polymer is near the metal to insulator transition and that the applied gate voltage leads to this transition through field induced ion motion.

  15. Semiconductor systems utilizing materials that form rectifying junctions in both N and P-type doping regions, whether metallurgically or field induced, and methods of use

    DOEpatents

    Welch, James D.

    2000-01-01

    Disclosed are semiconductor systems, such as integrated circuits utilizing Schotky barrier and/or diffused junction technology, which semiconductor systems incorporate material(s) that form rectifying junctions in both metallurgically and/or field induced N and P-type doping regions, and methods of their use. Disclosed are Schottky barrier based inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems and which can be operated as modulators, N and P-channel MOSFETS and CMOS formed therefrom, and (MOS) gate voltage controlled rectification direction and gate voltage controlled switching devices, and use of such material(s) to block parasitic current flow pathways. Simple demonstrative five mask fabrication procedures for inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.

  16. Synthesis and Photoluminescence Characteristics of Eu(3+)-Doped Molybdates Nanocrystals.

    PubMed

    Li, Fuhai; Yu, Lixin; Wei, Shuilin; Sun, Jiaju; Chen, Weiqing; Sun, Wei

    2015-12-01

    In this paper, the Eu(3+)-doped molybdate (CaMoO4, ZnMoO4 and BaMoO4) phosphors have been prepared by a hydrothermal method through modulating the pH value of the precursor solution (pH = 8, 10, and 12, respectively). The crystalline phase, morphology, photoluminescent properties of the prepared samples were systematically characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and photoluminescence (PL) spectra. The results indicate that the photoluminescence and morphology can be affected by the precursor solution. And the growth of the ZnMoO4 crystals also can be affected by the pH value of the precursor solution.

  17. Modeling of Gate Bias Modulation in Carbon Nanotube Field-Effect-Transistors

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Biegel, Bryan (Technical Monitor)

    2002-01-01

    The threshold voltages of a carbon nanotube (CNT) field-effect transistor (FET) are derived and compared with those of the metal oxide-semiconductor (MOS) FETs. The CNT channel is so thin that there is no voltage drop perpendicular to the gate electrode plane, which is the CNT diameter direction, and this makes the CNTFET characteristics quite different from those in MOSFETs. The relation between the voltage and the electrochemical potentials, and the mass action law for electrons and holes are examined in the context of CNTs, and it is shown that the familiar relations are still valid because of the macroscopic number of states available in the CNTs. This is in sharp contrast to the cases of quantum dots. Using these relations, we derive an inversion threshold voltage V(sub Ti) and an accumulation threshold voltage V(sub Ta) as a function of the Fermi level E(sub F) in the channel, where E(sub F) is a measure of channel doping. V(sub Ti) of the CNTFETs has a much stronger dependence than that of MOSFETs, while V(sub Ta)s of both CNTFETs and MOSFETs depend quite weakly on E(sub F) with the same functional form. This means the transition from normally-off mode to normally-on mode is much sharper in CNTFETs as the doping increases, and this property has to be taken into account in circuit design.

  18. Effect of Si-doping on InAs nanowire transport and morphology

    NASA Astrophysics Data System (ADS)

    Wirths, S.; Weis, K.; Winden, A.; Sladek, K.; Volk, C.; Alagha, S.; Weirich, T. E.; von der Ahe, M.; Hardtdegen, H.; Lüth, H.; Demarina, N.; Grützmacher, D.; Schäpers, Th.

    2011-09-01

    The effect of Si-doping on the morphology, structure, and transport properties of nanowires was investigated. The nanowires were deposited by selective-area metal organic vapor phase epitaxy in an N2 ambient. It is observed that doping systematically affects the nanowire morphology but not the structure of the nanowires. However, the transport properties of the wires are greatly affected. Room-temperature four-terminal measurements show that with an increasing dopant supply the conductivity monotonously increases. For the highest doping level the conductivity is higher by a factor of 25 compared to only intrinsically doped reference nanowires. By means of back-gate field-effect transistor measurements it was confirmed that the doping results in an increased carrier concentration. Temperature dependent resistance measurements reveal, for lower doping concentrations, a thermally activated semiconductor-type increase of the conductivity. In contrast, the nanowires with the highest doping concentration show a metal-type decrease of the resistivity with decreasing temperature.

  19. Resonator-Based Silicon Electro-Optic Modulator with Low Power Consumption

    NASA Astrophysics Data System (ADS)

    Xin, Maoqing; Danner, Aaron J.; Eng Png, Ching; Thor Lim, Soon

    2009-04-01

    This paper demonstrates, via simulation, an electro-optic modulator based on a subwavelength Fabry-Perot resonator cavity with low power consumption of 86 µW/µm. This is, to the best of our knowledge, the lowest power reported for silicon photonic bandgap modulators. The device is modulated at a doped p-i-n junction overlapping the cavity in a silicon waveguide perforated with etched holes, with the doping area optimized for minimum power consumption. The surface area of the entire device is only 2.1 µm2, which compares favorably to other silicon-based modulators. A modulation speed of at least 300 MHz is detected from the electrical simulator after sidewall doping is introduced which is suitable for sensing or fiber to the home (FTTH) technologies, where speed can be traded for low cost and power consumption. The device does not rely on ultra-high Q, and could serve as a sensor, modulator, or passive filter with built-in calibration.

  20. Influence of the dynamic lattice strain on the transport behavior of oxide heterojunctions

    NASA Astrophysics Data System (ADS)

    Wang, J.; Hu, F. X.; Chen, L.; Zhao, Y. Y.; Lu, H. X.; Sun, J. R.; Shen, B. G.

    2013-01-01

    All-perovskite oxide heterojunctions composed of electron-doped titanate LaxSr1 - xTiO3 (x = 0.1, 0.15) and hole-doped manganite La0.67Ca0.33MnO3 films were fabricated on piezoelectric substrate of (001)-0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT). Taking advantage of the excellent converse piezoelectric effect of PMN-PT, we investigated the influence of the dynamic lattice strain on transport properties of the heterojunctions by applying external bias electric fields on the PMN-PT substrate. Photovoltaic experiments were carried out to characterize the interfacial barrier of the heterojunction. A linear reduction in the barrier height was observed with the increase of the bias field applied on PMN-PT. The value of the barrier height reduces from ˜1.55 (˜1.30) to 1.02 (1.08) eV as the bias field increases from 0 to 12 kV/cm for the junction of La0.10Sr0.9TiO3/La0.67Ca0.33MnO3 (La0.15Sr0.85TiO3/La0.67Ca0.33MnO3). The observed dependency of barrier height on external field can be ascribed to the increasing release of trapped carriers by strain modulation, which results in a suppression of the depletion layer and increases the opportunity for electron tunneling across the depletion area.

  1. Dopant-Modulating Mechanism of Lithium Adsorption and Diffusion at the Graphene /Li2S Interface

    NASA Astrophysics Data System (ADS)

    Guo, Lichao; Li, Jiajun; Wang, Huayu; Zhao, Naiqin; Shi, Chunsheng; Ma, Liying; He, Chunnian; He, Fang; Liu, Enzuo

    2018-02-01

    Graphene modification is one of the most effective routes to enhance the electrochemical properties of the transition-metal sulfide anode for Li-ion batteries and the Li2S cathode for Li-S batteries. Boron, nitrogen, oxygen, phosphorus, and sulfur doping greatly affect the electrochemical properties of Li2S /graphene . Here, we investigate the interfacial binding energy, lithium adsorption energy, interface diffusion barrier, and electronic structure by first-principles calculations to unveil the diverse effects of different dopants during interfacial lithiation reactions. The interfacial lithium storage follows the pseudocapacitylike mechanism with intercalation character. Two different mechanisms are revealed to enhance the interfacial lithium adsorption and diffusion, which are the electron-deficiency host doping and the vacancylike structure evolutions with bond breaking. The synergistic effect between different dopants with diverse doping effects is also proposed. The results give a theoretical basis for the materials design with doped graphene as advanced materials modification for energy storage.

  2. Broadband, Spectrally Flat, Graphene-based Terahertz Modulators.

    PubMed

    Shi, Fenghua; Chen, Yihang; Han, Peng; Tassin, Philippe

    2015-12-02

    Advances in the efficient manipulation of terahertz waves are crucial for the further development of terahertz technology, promising applications in many diverse areas, such as biotechnology and spectroscopy, to name just a few. Due to its exceptional electronic and optical properties, graphene is a good candidate for terahertz electro-absorption modulators. However, graphene-based modulators demonstrated to date are limited in bandwidth due to Fabry-Perot oscillations in the modulators' substrate. Here, a novel method is demonstrated to design electrically controlled graphene-based modulators that can achieve broadband and spectrally flat modulation of terahertz beams. In our design, a graphene layer is sandwiched between a dielectric and a slightly doped substrate on a metal reflector. It is shown that the spectral dependence of the electric field intensity at the graphene layer can be dramatically modified by optimizing the structural parameters of the device. In this way, the electric field intensity can be spectrally flat and even compensate for the dispersion of the graphene conductivity, resulting in almost invariant absorption in a wide frequency range. Modulation depths up to 76% can be achieved within a fractional operational bandwidth of over 55%. It is expected that our modulator designs will enable the use of terahertz technology in applications requiring broadband operation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Yb-doped polarizing fiber

    NASA Astrophysics Data System (ADS)

    Gillooly, A.; Webb, A. S.; Favero, F. C.; Bouchan, T.; Cooper, L. J.; Read, D.; Hill, M.

    2017-02-01

    An ytterbium (Yb) doped polarizing fiber is demonstrated. The fiber offers the opportunity to build all-fiber lasers with single polarization output and without the need for free-space polarizing components. Traditional single polarization fiber lasers utilize polarization-maintaining (PM) gain fiber with a single polarization stimulation signal. Whilst this results in an approximation to a single polarization laser, the spontaneous emission from the unstimulated polarization state limits the polarization extinction ratio (PER). The PER is further limited as the stimulated signal is prone to crosstalk. Furthermore, controlling amplitude modulation of the stimulated signal is critical for maximizing the peak power of an optical pulse, particularly for high energy lasers. If light is allowed to leak in to the unstimulated axis it will travel at a different velocity to the stimulated axis and can cross-couple back into the signal axis, creating an interference effect which leads to amplitude modulation on the signal pulse. Single-polarization Yb-doped fiber ensures that light on the fast axis is constantly attenuated; ensuring that light on the unstimulated axis cannot propagate and thus cannot degrade the PER or create amplitude modulation. In this paper we report on, to the best of our knowledge, the first demonstration of a single polarization Yb-doped bowtie optical fiber manufactured using a combination of Modified Chemical Vapor Deposition (MCVD) and rare-earth solution doping technology. The fiber has a single-polarization window of 80nm at the operating wavelength of 1060nm and a PER of >18dB. The fabrication and characterization of the fiber is reported.

  4. Screening-Engineered Field-Effect Solar Cells

    DTIC Science & Technology

    2012-01-01

    virtually any semiconductor, including the promising but hard-to- dope metal oxides, sulfides, and phosphides.3 Prototype SFPV devices have been...MIS interface. Unfortu- nately, MIS cells, though sporting impressive efficiencies,4−6 typically have short operating lifetimes due to surface state...instability at the MIS interface.7 Methods aimed at direct field- effect “ doping ” of semiconductors, in which the voltage is externally applied to a gate

  5. Modulation of Jahn-Teller effect on magnetization and spontaneous electric polarization of CuFeO2

    NASA Astrophysics Data System (ADS)

    Xiao, Guiling; Xia, Zhengcai; Wei, Meng; Huang, Sha; Shi, Liran; Zhang, Xiaoxing; Wu, Huan; Yang, Feng; Song, Yujie; Ouyang, Zhongwen

    2018-03-01

    CuFe0.99Mn0.01O2 and CuFe0.99Co0.01O2 single crystal samples are grown by a floating zone technique and their magnetization and spontaneous electric polarization have been investigated. Similarly with pure CuFeO2, an obviously anisotropic magnetization and spontaneous electric polarization were observed in the both doped samples, and their phase transition critical fields and temperatures are directly doping ion dependent. Considering the different d-shell configuration and ionic size between Mn3+, Co3+ and Fe3+ ions, in which the Mn3+ ion with Jahn-Teller (J-T) effect has different distortion on the geometry frustration from both of Fe3+ and Co3+ ion. Since for Mn3+ ion, the orbital splitting results from the low-symmetry J-T distortion in a crystal-field environment leads to a distorted MnO6 octahedron, which different from undistorted FeO6 and CoO6 octahedrons. The strain between distorted and undistorted octahedrons produces different effects on the spin reorientation transition and spontaneous electric polarization. Although the pure CuFeO2 has a very strong and robust frustration, the presence of the strain due to the random distribution of distorted MnO6 octahedron and undistorted CoO6 (FeO6) octahedrons leads to its spin reorientation transitions and spontaneous electric polarization different from CuFeO2.

  6. Boron doped simulated graphene field effect transistor model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Preetika, E-mail: preetikamadhav@yahoo.co.in; Gupta, Shuchi, E-mail: sgupta@pu.ac.in; Kaur, Inderpreet, E-mail: inderpreety@yahoo.co.in

    2016-05-06

    Graphene based electronic devices due to its unique properties has transformed electronics. A Graphene Field Effect Transistor (GNRFET) model is simulated in Virtual Nano Lab (VNL) and the calculations are based on density functional theory (DFT). Simulations were performed on this pristine GNRFET model and the transmission spectrum was observed. The graph obtained showed a uniform energy gap of +1 to −1eV and the highest transmission peak at −1.75 eV. To this pristine model of GNRFET, doping was introduced and its effect was seen on the Fermi level obtained in the transmission spectrum. Boron as a dopant was used whichmore » showed variations in both the transmission peaks and the energy gap. In this model, first the single boron was substituted in place of carbon and Fermi level showed an energy gap of 1.5 to −0.5eV with the highest transmission peak at −1.3 eV. In another variation in the model, two carbon atoms were replaced by two boron atoms and Fermi level shifted from 2 to 0.25eV. In this observation, the highest transmission peak was observed at −1(approx.). The use of nanoelectronic devices have opened many areas of applications as GFET is an excellent building block for electronic circuits, and is being used in applications such as high-performance frequency doublers and mixers, digital modulators, phase detectors, optoelectronics and spintronics.« less

  7. Polarization induced doped transistor

    DOEpatents

    Xing, Huili; Jena, Debdeep; Nomoto, Kazuki; Song, Bo; Zhu, Mingda; Hu, Zongyang

    2016-06-07

    A nitride-based field effect transistor (FET) comprises a compositionally graded and polarization induced doped p-layer underlying at least one gate contact and a compositionally graded and doped n-channel underlying a source contact. The n-channel is converted from the p-layer to the n-channel by ion implantation, a buffer underlies the doped p-layer and the n-channel, and a drain underlies the buffer.

  8. Hidden phase in a two-dimensional Sn layer stabilized by modulation hole doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming, Fangfei; Mulugeta Amare, Daniel; Tu, Weisong

    Semiconductor surfaces and ultrathin interfaces exhibit an interesting variety of two-dimensional quantum matter phases, such as charge density waves, spin density waves and superconducting condensates. Yet, the electronic properties of these broken symmetry phases are extremely difficult to control due to the inherent difficulty of doping a strictly two-dimensional material without introducing chemical disorder. Here we successfully exploit a modulation doping scheme to uncover, in conjunction with a scanning tunnelling microscope tip-assist, a hidden equilibrium phase in a hole-doped bilayer of Sn on Si(111). This new phase is intrinsically phase separated into insulating domains with polar and nonpolar symmetries. Itsmore » formation involves a spontaneous symmetry breaking process that appears to be electronically driven, notwithstanding the lack of metallicity in this system. This modulation doping approach allows access to novel phases of matter, promising new avenues for exploring competing quantum matter phases on a silicon platform.« less

  9. Hidden phase in a two-dimensional Sn layer stabilized by modulation hole doping

    DOE PAGES

    Ming, Fangfei; Mulugeta Amare, Daniel; Tu, Weisong; ...

    2017-03-07

    Semiconductor surfaces and ultrathin interfaces exhibit an interesting variety of two-dimensional quantum matter phases, such as charge density waves, spin density waves and superconducting condensates. Yet, the electronic properties of these broken symmetry phases are extremely difficult to control due to the inherent difficulty of doping a strictly two-dimensional material without introducing chemical disorder. Here we successfully exploit a modulation doping scheme to uncover, in conjunction with a scanning tunnelling microscope tip-assist, a hidden equilibrium phase in a hole-doped bilayer of Sn on Si(111). This new phase is intrinsically phase separated into insulating domains with polar and nonpolar symmetries. Itsmore » formation involves a spontaneous symmetry breaking process that appears to be electronically driven, notwithstanding the lack of metallicity in this system. This modulation doping approach allows access to novel phases of matter, promising new avenues for exploring competing quantum matter phases on a silicon platform.« less

  10. Thermal conversion of electronic and electrical properties of AuCl3-doped single-walled carbon nanotubes.

    PubMed

    Yoon, Seon-Mi; Kim, Un Jeong; Benayad, Anass; Lee, Il Ha; Son, Hyungbin; Shin, Hyeon-Jin; Choi, Won Mook; Lee, Young Hee; Jin, Yong Wan; Lee, Eun-Hong; Lee, Sang Yoon; Choi, Jae-Young; Kim, Jong Min

    2011-02-22

    By using carbon-free inorganic atomic layer involving heat treatment from 150 to 300 °C, environmentally stable and permanent modulation of the electronic and electrical properties of single-walled carbon nanotubes (SWCNTs) from p-type to ambi-polar and possibly to n-type has been demonstrated. At low heat treatment temperature, a strong p-doping effect from Au(3+) ions to CNTs due to a large difference in reduction potential between them is dominant. However at higher temperature, the gold species are thermally reduced, and thermally induced CNT-Cl finally occurs by the decomposition reaction of AuCl(3). Thus, in the AuCl(3)-doped SWCNTs treated at higher temperature, the p-type doping effect is suppressed and an n-type property from CNT-Cl is thermally induced. Thermal conversion of the majority carrier type of AuCl(3)-doped SWNTs is systematically investigated by combining various optical and electrical tools.

  11. A Moral Foundation for Anti-Doping: How Far Have We Progressed? Where Are the Limits?

    PubMed

    Murray, Thomas H

    2017-01-01

    Clarity about the ethical justification of anti-doping is essential. In its absence, critics multiply and confusion abounds. Three broad reasons are typically offered in anti-doping's defense: to protect athletes' health; to promote fairness; and to preserve meaning and values in sport - what the World Anti-Doping Agency (WADA) Code refers to as the spirit of sport. Protecting health is itself an important value, but many sports encourage athletes to take significant risks. The case against doping is buttressed by concern for athletes' health, but it cannot be the sole foundation. Promoting fairness is vital in all sports as the metaphor of the level playing field attests. But playing fields can be leveled by providing performance-enhancing drugs to all competitors. When doping is prohibited, fairness is aided by effective anti-doping. But the fundamental justification for anti-doping is found in the meanings and values we pursue in and through sport. © 2017 S. Karger AG, Basel.

  12. Local Magnetoelectric Effect in La-Doped BiFeO3 Multiferroic Thin Films Revealed by Magnetic-Field-Assisted Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Pan, Dan-Feng; Zhou, Ming-Xiu; Lu, Zeng-Xing; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-06-01

    Multiferroic La-doped BiFeO3 thin films have been prepared by a sol-gel plus spin-coating process, and the local magnetoelectric coupling effect has been investigated by the magnetic-field-assisted scanning probe microscopy connected with a ferroelectric analyzer. The local ferroelectric polarization response to external magnetic fields is observed and a so-called optimized magnetic field of ~40 Oe is obtained, at which the ferroelectric polarization reaches the maximum. Moreover, we carry out the magnetic-field-dependent surface conductivity measurements and illustrate the origin of local magnetoresistance in the La-doped BiFeO3 thin films, which is closely related to the local ferroelectric polarization response to external magnetic fields. This work not only provides a useful technique to characterize the local magnetoelectric coupling for a wide range of multiferroic materials but also is significant for deeply understanding the local multiferroic behaviors in the BiFeO3-based systems.

  13. Role of Hole Trap Sites in MoS2 for Inconsistency in Optical and Electrical Phenomena.

    PubMed

    Tran, Minh Dao; Kim, Ji-Hee; Kim, Hyun; Doan, Manh Ha; Duong, Dinh Loc; Lee, Young Hee

    2018-03-28

    Because of strong Coulomb interaction in two-dimensional van der Waals-layered materials, the trap charges at the interface strongly influence the scattering of the majority carriers and thus often degrade their electrical properties. However, the photogenerated minority carriers can be trapped at the interface, modulate the electron-hole recombination, and eventually influence the optical properties. In this study, we report the role of the hole trap sites on the inconsistency in the electrical and optical phenomena between two systems with different interfacial trap densities, which are monolayer MoS 2 -based field-effect transistors (FETs) on hexagonal boron nitride (h-BN) and SiO 2 substrates. Electronic transport measurements indicate that the use of h-BN as a gate insulator can induce a higher n-doping concentration of the monolayer MoS 2 by suppressing the free-electron transfer from the intrinsically n-doped MoS 2 to the SiO 2 gate insulator. Nevertheless, optical measurements show that the electron concentration in MoS 2 /SiO 2 is heavier than that in MoS 2 /h-BN, manifested by the relative red shift of the A 1g Raman peak. The inconsistency in the evaluation of the electron concentration in MoS 2 by electrical and optical measurements is explained by the trapping of the photogenerated holes in the spatially modulated valence band edge of the monolayer MoS 2 caused by the local strain from the SiO 2 /Si substrate. This photoinduced electron doping in MoS 2 /SiO 2 is further confirmed by the development of the trion component in the power-dependent photoluminescence spectra and negative shift of the threshold voltage of the FET after illumination.

  14. Interstitial effects of B and Li on the magnetic phase transition and magnetocaloric effects in Gd2In alloy

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Xie, Yigao; Zhou, Xiaoqian; Zhong, Hui; Jiang, Qingzheng; Ma, Shengcan; Zhong, Zhenchen; Cui, Weibin; Wang, Qiang

    2018-05-01

    Interstitial effects of B and Li on the phase transition and magnetocaloric effect in Gd2In alloys had been studied. The antiferromagnetic (AFM) - ferromagnetic (FM) phase transition was found to be of first-order nature while ferromagnetic - paramagnetic (PM) phase transition was of second-order nature in B- or Li-doped Gd2In alloys. AFM-FM phase transition temperature was increased while FM-PM phase transition was decreased with more doping concentrations. During AFM-FM phase transition, the slope of temperature-dependent critical field (μ0Hcr) was increased by increased doping amounts. The magnetic entropy changes under small field change were enhanced by B and Li addition, which showed the beneficial effects of B and Li additions.

  15. Relation between film thickness and surface doping of MoS2 based field effect transistors

    NASA Astrophysics Data System (ADS)

    Lockhart de la Rosa, César J.; Arutchelvan, Goutham; Leonhardt, Alessandra; Huyghebaert, Cedric; Radu, Iuliana; Heyns, Marc; De Gendt, Stefan

    2018-05-01

    Ultra-thin MoS2 film doping through surface functionalization with physically adsorbed species is of great interest due to its ability to dope the film without reduction in the carrier mobility. However, there is a need for understanding how the thickness of the MoS2 film is related to the induced surface doping for improved electrical performance. In this work, we report on the relation of MoS2 film thickness with the doping effect induced by the n-dopant adsorbate poly(vinyl-alcohol). Field effect transistors built using MoS2 films of different thicknesses were electrically characterized, and it was observed that the ION/OFF ratio after doping in thin films is more than four orders of magnitudes greater when compared with thick films. Additionally, a semi-classical model tuned with the experimental devices was used to understand the spatial distribution of charge in the channel and explain the observed behavior. From the simulation results, it was revealed that the two-dimensional carrier density induced by the adsorbate is distributed rather uniformly along the complete channel for thin films (<5.2 nm) contrary to what happens for thicker films.

  16. Effect of Ti4+ doping on magnetic properties of charge ordered Bi0.3Ca0.7MnO3

    NASA Astrophysics Data System (ADS)

    Yadav, Kamlesh; Singh, M. P.; Razavi, F. S.; Varma, G. D.

    2017-07-01

    The effect of Ti doping in Bi0.3Ca0.7Mn1-x Ti x O3 (where x  =  0.0, 0.015, 0.03, 0.05, 0.08, 0.12 and 0.16) on structural, magnetic and transport properties have been studied. The charge-ordering temperature (T CO) decreases gradually with increasing Ti doping content, and finally disappears completely for x  =  0.12. The Neel temperature (T N) also decreases with increasing Ti doping content. A transition to a cluster glass like state is observed at T  ⩽  T N. The zero field cooled/field cooled (ZFC/FC) magnetization decreases at high temperature (T  >  200 K) with increasing Ti content, whereas an opposite trend is observed at low temperature (T  <  200 K). Small exchange bias effect is also observed for x  =  0.08 at 10 K. The resistivity increases with increasing Ti doping content. The disorder induced by Ti doping on the Mn site plays a key role in explaining the observed magnetic and electrical properties.

  17. Personal and psychosocial predictors of doping use in physical activity settings: a meta-analysis.

    PubMed

    Ntoumanis, Nikos; Ng, Johan Y Y; Barkoukis, Vassilis; Backhouse, Susan

    2014-11-01

    There is a growing body of empirical evidence on demographic and psychosocial predictors of doping intentions and behaviors utilizing a variety of variables and conceptual models. However, to date there has been no attempt to quantitatively synthesize the available evidence and identify the strongest predictors of doping. Using meta-analysis, we aimed to (i) determine effect sizes of psychological (e.g. attitudes) and social-contextual factors (e.g. social norms), and demographic (e.g. sex and age) variables on doping intentions and use; (ii) examine variables that moderate such effect sizes; and (iii) test a path analysis model, using the meta-analyzed effect sizes, based on variables from the theory of planned behavior (TPB). Articles were identified from online databases, by contacting experts in the field, and searching the World Anti-Doping Agency website. Studies that measured doping behaviors and/or doping intentions, and at least one other demographic, psychological, or social-contextual variable were included. We identified 63 independent datasets. Study information was extracted by using predefined data fields and taking into account study quality indicators. A random effects meta-analysis was carried out, correcting for sampling and measurement error, and identifying moderator variables. Path analysis was conducted on a subset of studies that utilized the TPB. Use of legal supplements, perceived social norms, and positive attitudes towards doping were the strongest positive correlates of doping intentions and behaviors. In contrast, morality and self-efficacy to refrain from doping had the strongest negative association with doping intentions and behaviors. Furthermore, path analysis suggested that attitudes, perceived norms, and self-efficacy to refrain from doping predicted intentions to dope and, indirectly, doping behaviors. Various meta-analyzed effect sizes were based on a small number of studies, which were correlational in nature. This is a limitation of the extant literature. This review identifies a number of important correlates of doping intention and behavior, many of which were measured via self-reports and were drawn from an extended TPB framework. Future research might benefit from embracing other conceptual models of doping behavior and adopting experimental methodologies that will test some of the identified correlates in an effort to develop targeted anti-doping policies and programs.

  18. Single-frequency gain-switched Ho-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Geng, Jihong; Wang, Q.; Luo, T.; Case, B.; Jiang, S.; Amzajerdian, Farzin; Yu, Jirong

    2012-10-01

    We demonstrate a single-frequency gain-switched Ho-doped fiber laser based on heavily doped silicate glass fiber fabricated in house. A Q-switched Tm-doped fiber laser at 1.95μm was used to gain-switch the Ho-doped fiber laser via in-band pumping. Output power of the single-frequency gain-switched pulses has been amplified in a cladding-pumped Tm-Ho-codoped fiber amplifier with 1.2m active fiber pumped at 803nm. Two different nonlinear effects, i.e., modulation instability and stimulated Brillouin scattering, could be seen in the 10μm-core fiber amplifier when the peak power exceeds 3kW. The single-frequency gain-switched fiber laser was operated at 2.05μm, a popular laser wavelength for Doppler lidar application. This is the first demonstration of this kind of fiber laser.

  19. Broadband Electric-Field Sensor Array Technology

    DTIC Science & Technology

    2012-08-05

    output voltage modulation on the output RF transmission line (impedance Z0 = 50 Ω) via a transimpedance amplifier connected to the photodiode. The...voltage amplitude is where G is the conversion gain of the photodiode and amplifier . The RF power detected by an RF receiver with a matched impedance...wave (CW) tunable near-infrared laser amplified by an erbium-doped fiber amplifier (EDFA) is guided by single-mode optical fiber and coupled into

  20. Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction

    PubMed Central

    Du, Juan; Wang, Qingkai; Jiang, Guobao; Xu, Changwen; Zhao, Chujun; Xiang, Yuanjiang; Chen, Yu; Wen, Shuangchun; Zhang, Han

    2014-01-01

    By coupling few-layer Molybdenum Disulfide (MoS2) with fiber-taper evanescent light field, a new type of MoS2 based nonlinear optical modulating element had been successfully fabricated as a two-dimensional layered saturable absorber with strong light-matter interaction. This MoS2-taper-fiber device is not only capable of passively mode-locking an all-normal-dispersion ytterbium-doped fiber laser and enduring high power laser excitation (up to 1 W), but also functions as a polarization sensitive optical modulating component (that is, different polarized light can induce different nonlinear optical response). Thanks to the combined advantages from the strong nonlinear optical response in MoS2 together with the sufficiently-long-range interaction between light and MoS2, this device allows for the generation of high power stable dissipative solitons at 1042.6 nm with pulse duration of 656 ps and a repetition rate of 6.74 MHz at a pump power of 210 mW. Our work may also constitute the first example of MoS2-enabled wave-guiding photonic device, and potentially give some new insights into two-dimensional layered materials related photonics. PMID:25213108

  1. Ultrasensitive interplay between ferromagnetism and superconductivity in NbGd composite thin films

    PubMed Central

    Bawa, Ambika; Gupta, Anurag; Singh, Sandeep; Awana, V.P.S.; Sahoo, Sangeeta

    2016-01-01

    A model binary hybrid system composed of a randomly distributed rare-earth ferromagnetic (Gd) part embedded in an s-wave superconducting (Nb) matrix is being manufactured to study the interplay between competing superconducting and ferromagnetic order parameters. The normal metallic to superconducting phase transition appears to be very sensitive to the magnetic counterpart and the modulation of the superconducing properties follow closely to the Abrikosov-Gor’kov (AG) theory of magnetic impurity induced pair breaking mechanism. A critical concentration of Gd is obtained for the studied NbGd based composite films (CFs) above which superconductivity disappears. Besides, a magnetic ordering resembling the paramagnetic Meissner effect (PME) appears in DC magnetization measurements at temperatures close to the superconducting transition temperature. The positive magnetization related to the PME emerges upon doping Nb with Gd. The temperature dependent resistance measurements evolve in a similar fashion with the concentration of Gd as that with an external magnetic field and in both the cases, the transition curves accompany several intermediate features indicating the traces of magnetism originated either from Gd or from the external field. Finally, the signatures of magnetism appear evidently in the magnetization and transport measurements for the CFs with very low (<1 at.%) doping of Gd. PMID:26725684

  2. Inhomogeneous nuclear spin polarization induced by helicity-modulated optical excitation of fluorine-bound electron spins in ZnSe

    NASA Astrophysics Data System (ADS)

    Heisterkamp, F.; Greilich, A.; Zhukov, E. A.; Kirstein, E.; Kazimierczuk, T.; Korenev, V. L.; Yugova, I. A.; Yakovlev, D. R.; Pawlis, A.; Bayer, M.

    2015-12-01

    Optically induced nuclear spin polarization in a fluorine-doped ZnSe epilayer is studied by time-resolved Kerr rotation using resonant excitation of donor-bound excitons. Excitation with helicity-modulated laser pulses results in a transverse nuclear spin polarization, which is detected as a change of the Larmor precession frequency of the donor-bound electron spins. The frequency shift in dependence on the transverse magnetic field exhibits a pronounced dispersion-like shape with resonances at the fields of nuclear magnetic resonance of the constituent zinc and selenium isotopes. It is studied as a function of external parameters, particularly of constant and radio frequency external magnetic fields. The width of the resonance and its shape indicate a strong spatial inhomogeneity of the nuclear spin polarization in the vicinity of a fluorine donor. A mechanism of optically induced nuclear spin polarization is suggested based on the concept of resonant nuclear spin cooling driven by the inhomogeneous Knight field of the donor-bound electron.

  3. Correlation-Induced Self-Doping in the Iron-Pnictide Superconductor Ba2Ti2Fe2As4O

    NASA Astrophysics Data System (ADS)

    Ma, J.-Z.; van Roekeghem, A.; Richard, P.; Liu, Z.-H.; Miao, H.; Zeng, L.-K.; Xu, N.; Shi, M.; Cao, C.; He, J.-B.; Chen, G.-F.; Sun, Y.-L.; Cao, G.-H.; Wang, S.-C.; Biermann, S.; Qian, T.; Ding, H.

    2014-12-01

    The electronic structure of the iron-based superconductor Ba2Ti2Fe2As4O (Tconset=23.5 K ) has been investigated by using angle-resolved photoemission spectroscopy and combined local density approximation and dynamical mean field theory calculations. The electronic states near the Fermi level are dominated by both the Fe 3 d and Ti 3 d orbitals, indicating that the spacer layers separating different FeAs layers are also metallic. By counting the enclosed volumes of the Fermi surface sheets, we observe a large self-doping effect; i.e., 0.25 electrons per unit cell are transferred from the FeAs layer to the Ti2As2O layer, leaving the FeAs layer in a hole-doped state. This exotic behavior is successfully reproduced by our dynamical mean field calculations, in which the self-doping effect is attributed to the electronic correlations in the 3 d shells. Our work provides an alternative route of effective doping without element substitution for iron-based superconductors.

  4. The effects of annealing temperature on the in-field Jc and surface pinning in silicone oil doped MgB2 bulks and wires

    NASA Astrophysics Data System (ADS)

    Hossain, M. S. A.; Motaman, A.; Çiçek, Ö.; Ağıl, H.; Ertekin, E.; Gencer, A.; Wang, X. L.; Dou, S. X.

    2012-12-01

    The effects of sintering temperature on the lattice parameters, full width at half maximum (FWHM), strain, critical temperature (Tc), critical current density (Jc), irreversibility field (Hirr), upper critical field (Hc2), and resistivity (ρ) of 10 wt.% silicone oil doped MgB2 bulk and wire samples are investigated in state of the art by this article. The a-lattice parameter of the silicone oil doped samples which were sintered at different temperatures was drastically reduced from 3.0864 Å to 3.0745 Å, compared to the un-doped samples, which indicates the substitution of the carbon (C) into the boron sites. It was found that sintered samples at the low temperature of 600 °C shows more lattice distortion by more C-substitution and higher strain, lower Tc, higher impurity scattering, and enhancement of both magnetic Jc and Hc2, compared to those sintered samples at high temperatures. The flux pinning mechanism has been analyzed based on the extended normalized pinning force density fp = Fp/Fp,max scaled with b = B/Bmax. Results show that surface pinning is the dominant pinning mechanism for the doped sample sintered at the low temperature of 600 °C, while point pinning is dominant for the un-doped sample. The powder in tube (PIT) MgB2 wire was also fabricated by using of this liquid doping and found that both transport Jc and n-factor increased which proves this cheap and abundant silicone oil doping can be a good candidate for industrial application.

  5. Electrical Tuning of Exciton-Plasmon Polariton Coupling in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Lattice.

    PubMed

    Lee, Bumsu; Liu, Wenjing; Naylor, Carl H; Park, Joohee; Malek, Stephanie C; Berger, Jacob S; Johnson, A T Charlie; Agarwal, Ritesh

    2017-07-12

    Active control of light-matter interactions in semiconductors is critical for realizing next generation optoelectronic devices with real-time control of the system's optical properties and hence functionalities via external fields. The ability to dynamically manipulate optical interactions by applied fields in active materials coupled to cavities with fixed geometrical parameters opens up possibilities of controlling the lifetimes, oscillator strengths, effective mass, and relaxation properties of a coupled exciton-photon (or plasmon) system. Here, we demonstrate electrical control of exciton-plasmon coupling strengths between strong and weak coupling limits in a two-dimensional semiconductor integrated with plasmonic nanoresonators assembled in a field-effect transistor device by electrostatic doping. As a result, the energy-momentum dispersions of such an exciton-plasmon coupled system can be altered dynamically with applied electric field by modulating the excitonic properties of monolayer MoS 2 arising from many-body effects. In addition, evidence of enhanced coupling between charged excitons (trions) and plasmons was also observed upon increased carrier injection, which can be utilized for fabricating Fermionic polaritonic and magnetoplasmonic devices. The ability to dynamically control the optical properties of a coupled exciton-plasmonic system with electric fields demonstrates the versatility of the coupled system and offers a new platform for the design of optoelectronic devices with precisely tailored responses.

  6. Investigation of veritcal graded channel doping in nanoscale fully-depleted SOI-MOSFET

    NASA Astrophysics Data System (ADS)

    Ramezani, Zeinab; Orouji, Ali A.

    2016-10-01

    For achieving reliable transistor, we investigate an amended channel doping (ACD) engineering which improves the electrical and thermal performances of fully-depleted silicon-on-insulator (SOI) MOSFET. We have called the proposed structure with the amended channel doping engineering as ACD-SOI structure and compared it with a conventional fully-depleted SOI MOSFET (C-SOI) with uniform doping distribution using 2-D ATLAS simulator. The amended channel doping is a vertical graded doping that is distributed from the surface of structure with high doping density to the bottom of channel, near the buried oxide, with low doping density. Short channel effects (SCEs) and leakage current suppress due to high barrier height near the source region and electric field modification in the ACD-SOI in comparison with the C-SOI structure. Furthermore, by lower electric field and electron temperature near the drain region that is the place of hot carrier generation, we except the improvement of reliability and gate induced drain lowering (GIDL) in the proposed structure. Undesirable Self heating effect (SHE) that become a critical challenge for SOI MOSFETs is alleviated in the ACD-SOI structure because of utilizing low doping density near the buried oxide. Thus, refer to accessible results, the ACD-SOI structure with graded distribution in vertical direction is a reliable device especially in low power and high temperature applications.

  7. Negative differential resistance in BN co-doped coaxial carbon nanotube field effect transistor

    NASA Astrophysics Data System (ADS)

    Shah, Khurshed A.; Parvaiz, M. Shunaid

    2016-12-01

    The CNTFETs are the most promising advanced alternatives to the conventional FETs due to their outstanding structure and electrical properties. In this paper, we report the I-V characteristics of zig-zag (4, 0) semiconducting coaxial carbon nanotube field effect transistor (CNTFET) using the non-equilibrium Green's function formalism. The CNTFET is co-doped with two, four and six boron-nitrogen (BN) atoms separately near the electrodes using the substitutional doping method and the I-V characteristics were calculated for each model using Atomistic Tool Kit software (version 13.8.1) and its virtual interface. The results reveal that all models show negative differential resistance (NDR) behavior with the maximum peak to valley current ratio (PVCR) of 3.2 at 300 K for the four atom doped model. The NDR behavior is due to the band to band tunneling (BTBT) in semiconducting CNTFET and decreases as the doping in the channel increases. The results are beneficial for next generation designing of nano devices and their potential applications in electronic industry.

  8. Doped organic transistors operating in the inversion and depletion regime

    PubMed Central

    Lüssem, Björn; Tietze, Max L.; Kleemann, Hans; Hoßbach, Christoph; Bartha, Johann W.; Zakhidov, Alexander; Leo, Karl

    2013-01-01

    The inversion field-effect transistor is the basic device of modern microelectronics and is nowadays used more than a billion times on every state-of-the-art computer chip. In the future, this rigid technology will be complemented by flexible electronics produced at extremely low cost. Organic field-effect transistors have the potential to be the basic device for flexible electronics, but still need much improvement. In particular, despite more than 20 years of research, organic inversion mode transistors have not been reported so far. Here we discuss the first realization of organic inversion transistors and the optimization of organic depletion transistors by our organic doping technology. We show that the transistor parameters—in particular, the threshold voltage and the ON/OFF ratio—can be controlled by the doping concentration and the thickness of the transistor channel. Injection of minority carriers into the doped transistor channel is achieved by doped contacts, which allows forming an inversion layer. PMID:24225722

  9. Extinction of photoemission of Mn-Doped ZnS nanofluid in weak magnetic field

    NASA Astrophysics Data System (ADS)

    Vu, Anh-Tuan; Bui, Hong-Van; Pham, Van-Ben; Le, Van-Hong; Hoang, Nam-Nhat

    2016-08-01

    The observation of extinction of photoluminescence of Mn-doped ZnS nanofluid under applying of weak magnetic field is reported. At a constant field of 270 Gauss and above, the exponential decays of photoluminescent intensity was observed in disregard of field direction. About 50% extinction was achieved after 30 minute magnetization and a total extinction after 1 hour. The memory effect preserved for more than 2 hours at room temperature. This extinction was observed in a system with no clear ferromagnetic behavior.

  10. First-principles studies of electric field effects on the electronic structure of trilayer graphene

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Peng; Li, Xiang-Guo; Fry, James N.; Cheng, Hai-Ping

    2016-10-01

    A gate electric field is a powerful way to manipulate the physical properties of nanojunctions made of two-dimensional crystals. To simulate field effects on the electronic structure of trilayer graphene, we used density functional theory in combination with the effective screening medium method, which enables us to understand the field-dependent layer-layer interactions and the fundamental physics underlying band gap variations and the resulting band modifications. Two different graphene stacking orders, Bernal (or ABC) and rhombohedral (or ABA), were considered. In addition to confirming the experimentally observed band gap opening in ABC-stacked and the band overlap in ABA-stacked trilayer systems, our results reveal rich physics in these fascinating systems, where layer-layer couplings are present but some characteristics features of single-layer graphene are partially preserved. For ABC stacking, the electric-field-induced band gap size can be tuned by charge doping, while for ABA band the tunable quantity is the band overlap. Our calculations show that the electronic structures of the two stacking orders respond very differently to charge doping. We find that in the ABA stacking hole doping can reopen a band gap in the band-overlapping region, a phenomenon distinctly different from electron doping. The physical origins of the observed behaviors were fully analyzed, and we conclude that the dual-gate configuration greatly enhances the tunability of the trilayer systems.

  11. Optical spin orientation of minority holes in a modulation-doped GaAs/(Ga,Al)As quantum well

    NASA Astrophysics Data System (ADS)

    Koudinov, A. V.; Dzhioev, R. I.; Korenev, V. L.; Sapega, V. F.; Kusrayev, Yu. G.

    2016-04-01

    The optical spin orientation effect in a GaAs/(Ga,Al)As quantum well containing a high-mobility two-dimensional electron gas was found to be due to spin-polarized minority carriers, the holes. The observed oscillations of both the intensity and polarization of the photoluminescence in a magnetic field are well described in a model whose main elements are resonant absorption of the exciting light by the Landau levels and mixing of the heavy- and light-hole subbands. After subtraction of these effects, the observed influence of magnetic fields on the spin polarization can be well interpreted by a standard approach of the optical orientation method. The spin relaxation of holes is controlled by the Dyakonov-Perel' mechanism. Deceleration of the spin relaxation by the magnetic field occurs through the Ivchenko mechanism—due to the cyclotron motion of holes. Mobility of holes was found to be two orders of magnitude smaller than that of electrons, being determined by the scattering of holes by the electron gas.

  12. Enhancement of encaged electron concentration by Sr(2+) doping and improvement of Gd(3+) emission through controlling encaged anions in conductive C12A7 phosphors.

    PubMed

    Zhang, Meng; Liu, Yuxue; Zhu, Hancheng; Yan, Duanting; Yang, Jian; Zhang, Xinyang; Liu, Chunguang; Xu, Changshan

    2016-07-28

    Conductive C12A7:0.1%Gd(3+),y%Sr(2+) powders with different Sr(2+) doping concentrations have been prepared in a H2 atmosphere by a solid state method in combination with subsequent UV-irradiation. The encaged electron concentration could be modulated through tuning Sr(2+) doping and its maximum value reaches 2.3 × 10(19) cm(-3). This is attributed to the competition between enhanced uptake and the release of the encaged anions during their formation and diffusion processes and the suppression of encaged electrons generation due to the increased encaged OH(-) anions and the decreased encaged O(2-) anions. Although there exists encaged electrons and different encaged anions (O(2-), H(-) and OH(-)) in C12A7 conductive powders prepared through the hydrogen route, a dominant local environment around Gd(3+) could be observed using electron spin resonance (ESR) detection. It can be ascribed to the stronger coupling of the encaged OH(-) to the framework of C12A7 than those of the encaged electrons, O(2-) and H(-) anions. In addition, emission of Gd(3+) ions is enhanced under UV or low voltage electron beam excitation and a new local environment around Gd(3+) ions appears through the thermal annealing in air because of the decrease of the encaged OH(-) anions and the increase of the encaged O(2-) anions. Our results suggested that Sr(2+) doping in combination with thermal annealing in air is an effective strategy for increasing the conductive performance and enhancing the emission of rare earth ions doped into C12A7 conductive phosphors for low-voltage field emission displays (FEDs).

  13. A computational study on tuning the field emission and electronic properties of BN nanocones by impurity atom doping

    NASA Astrophysics Data System (ADS)

    Ahmadi, S.; Delir Kheirollahi Nezhad, P.; Hosseinian, A.; Vessally, E.

    2018-06-01

    We have inspected the effect of substituting a boron or nitrogen atom of a BN nanocone (BNNC) by two impurity atoms with lower and higher atomic numbers based on the density functional theory calculations. Our results explain the experimental observations in a molecular level. Orbital and partial density of states analyses show that the doping processes increase the electrical conductivity by creating new states within the gap of BNNC as follows: BeB > ON > CB > CN. The electron emission current from the surface of BNNC is improved after the CB and BeB dopings, and it is decreased by CN and ON dopings. The BeB and CN dopings make the BNNC a p-type semiconductor and the CB and ON dopings make it an n-type one in good agreement with the experimental results. The ON and BeB doping processes are suggested for the field emission current, and electrical conductivity enhancement, respectively.

  14. Nonthermal Photocoercivity Effect in Low-Doped (Ga,Mn)As Ferromagnetic Semiconductor

    NASA Astrophysics Data System (ADS)

    Kiessling, T.; Astakhov, G. V.; Hoffmann, H.; Korenev, V. L.; Schwittek, J.; Schott, G. M.; Gould, C.; Ossau, W.; Brunner, K.; Molenkamp, L. W.

    2011-12-01

    We report a photoinduced change of the coercive field of a low doped Ga1-xMnxAs ferromagnetic semiconductor under very low intensity illumination. This photocoercivity effect (PCE) is local and reversible, which enables the controlled formation of localized magnetization domains. The PCE arises from a light induced lowering of the domain wall pinning energy as confirmed by test experiments on high doped, fully metallic ferromagnetic Ga1-xMnxAs.

  15. Effects of Nickel Doping on the Multiferroic and Magnetic Phases of MnWO 4

    DOE PAGES

    Poudel, N.; Lorenz, B.; Lv, B.; ...

    2015-12-15

    There are various orders in multiferroic materials with a frustrated spiral spin modulation inducing a ferroelectric state are extremely sensitive to small perturbations such as magnetic and electric fields, external pressure, or chemical substitutions. A classical multiferroic, the mineral Hubnerite with chemical formula MnWO 4, shows three different magnetic phases at low temperature. The intermediate phase between 7.5K < T < 12.7K is multiferroic and ferroelectricity is induced by an inversion symmetry breaking spiral Mn-spin order and strong spin-lattice interactions. Furthermore, the substitution of Ni 2+ (spin 1) for Mn 2+ (spin 5/2) in MnWO 4 and its effects onmore » the magnetic and multiferroic phases are studied. The ferroelectric phase is stabilized for low Ni content (up to 10%). Upon further Ni doping, the polarization in the ferroelectric phase is quickly suppressed while a collinear and commensurate magnetic phase, characteristic of the magnetic structure in NiWO 4, appears first at higher temperature, gradually extends to lower temperature, and becomes the ground state above 30% doping. Between 10% and 30%, the multiferroic phase coexists with the collinear commensurate phase. In this concentration region, the spin spiral plane is close to the a-b plane which explains the drop of the ferroelectric polarization. Finally, the phase diagram of Mn 1-xNi xWO 4 is derived by a combination of magnetic susceptibility, specific heat, electric polarization, and neutron scattering measurements.« less

  16. Observing quantum control of up-conversion luminescence in Dy3+ ion doped glass from weak to intermediate shaped femtosecond laser fields

    NASA Astrophysics Data System (ADS)

    Liu, Pei; Cheng, Wenjing; Yao, Yunhua; Xu, Cheng; Zheng, Ye; Deng, Lianzhong; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong; Zhang, Shian

    2017-11-01

    Controlling the up-conversion luminescence of rare-earth ions in real-time, in a dynamical and reversible manner, is very important for their application in laser sources, fiber-optic communications, light-emitting diodes, color displays and biological systems. In previous studies, the up-conversion luminescence control mainly focused on the weak femtosecond laser field. Here, we further extend this control behavior from weak to intermediate femtosecond laser fields. In this work, we experimentally and theoretically demonstrate that the up-conversion luminescence in Dy3+ ion doped glass can be artificially controlled by a π phase step modulation, but the up-conversion luminescence control behavior will be affected by the femtosecond laser intensity, and the up-conversion luminescence is suppressed by lower laser intensity while enhanced by higher laser intensity. We establish a new theoretical model (i.e. the fourth-order perturbation theory) to explain the physical control mechanism by considering the two- and four-photon absorption processes, and the theoretical results show that the relative weight of four-photon absorption in the whole excitation process will increase with the increase in laser intensity, and the interference between two- and four-photon absorptions results in up-conversion luminescence control modulation under different laser intensities. These theoretical and experimental works can provide a new method to control and understand up-conversion luminescence in rare-earth ions, and also may open a new opportunity to the related application areas of rare-earth ions.

  17. Nanoscale-SiC doping for enhancing Jc and Hc2 in superconducting MgB2

    NASA Astrophysics Data System (ADS)

    Dou, S. X.; Braccini, V.; Soltanian, S.; Klie, R.; Zhu, Y.; Li, S.; Wang, X. L.; Larbalestier, D.

    2004-12-01

    The effect of nanoscale-SiC doping of MgB2 was investigated in comparison with undoped, clean-limit, and Mg-vapor-exposed samples using transport and magnetic measurements. It was found that there are two distinguishable but related mechanisms that control the critical current-density-field Jc(H ) behavior: increase of upper critical field Hc2 and improvement of flux pinning. There is a clear correlation between the critical temperature Tc, the resistivity ρ, the residual resistivity ratio RRR =R(300K)/R(40K), the irreversibility field H*, and the alloying state in the samples. The Hc2 is about the same within the measured field range for both the Mg-vapor-treated and the SiC-doped samples. However, the Jc(H ) for the latter is higher than the former in a high-field regime by an order of magnitude. Mg vapor treatment induced intrinsic scattering and contributed to an increase in Hc2. SiC doping, on the other hand, introduced many nanoscale precipitates and disorder at B and Mg sites, provoking an increase of ρ(40K ) from 1μΩcm (RRR=15) for the clean-limit sample to 300μΩcm (RRR=1.75) for the SiC-doped sample, leading to significant enhancement of both Hc2 and H * with only a minor effect on Tc. Electron energy-loss spectroscope and transmission electron microscope analysis revealed impurity phases: Mg2Si, MgO, MgB4, BOx, SixByOz, and BC at a scale below 10nm and an extensive domain structure of 2-4-nm domains in the doped sample, which serve as strong pinning centers.

  18. Photo-induced spin and valley-dependent Seebeck effect in the low-buckled Dirac materials

    NASA Astrophysics Data System (ADS)

    Mohammadi, Yawar

    2018-04-01

    Employing the Landauer-Buttiker formula we investigate the spin and valley dependence of Seebeck effect in low-buckled Dirac materials (LBDMs), whose band structure are modulated by local application of a gate voltage and off-resonant circularly polarized light. We calculate the charge, spin and valley Seebeck coefficients of an irradiated LBDM as functions of electronic doping, light intensity and the amount of the electric field in the linear regime. Our calculation reveal that all Seebeck coefficients always shows an odd features with respect to the chemical potential. Moreover, we show that, due to the strong spin-orbit coupling in the LBDMs, the induced thermovoltage in the irradiated LBDMs is spin polarized, and can also become valley polarized if the gate voltage is applied too. It is also found that the valley (spin) polarization of the induced thermovoltage could be inverted by reversing the circular polarization of light or reversing the direction the electric field (only by reversing the circular polarization of light).

  19. Variation of the coordination environment and its effect on the white light emission properties in a Mn-doped ZnO-ZnS complex structure.

    PubMed

    Cheng, Yan; Chen, Rui; Feng, Haifeng; Hao, Weichang; Xu, Huaizhe; Wang, Yu; Li, Jiong

    2014-03-14

    Mn-doped ZnO-ZnS complex nanocrystals were fabricated through coating of dodecanethiol on Mn-doped ZnO nanocrystals. The relationship between the component of white light emission and the coordination environments of Mn-dopants were experimentally investigated. It was shown that Mn ions mainly formed Mn(3+)O6 octahedra in as prepared Mn-doped ZnO, while the Mn(3+) ions on the surface of ZnO transferred into Mn(2+) ions at the interface between ZnO and ZnS after dodecanethiol coating. The Mn(2+)S4 tetrahedron density and the orange emission intensity increased upon enhancing the dodecanethiol content. These results provide an alternative way to optimize the white emission spectrum from nanocrystals of Mn-doped ZnS-ZnO complex structures through modulation of the coordination environment of Mn ions.

  20. Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors.

    PubMed

    Zhang, Fengjiao; Dai, Xiaojuan; Zhu, Weikun; Chung, Hyunjoong; Diao, Ying

    2017-07-01

    Molecular doping of organic electronics has shown promise to sensitively modulate important device metrics. One critical challenge is the disruption of structure order upon doping of highly crystalline organic semiconductors, which significantly reduces the charge carrier mobility. This paper demonstrates a new method to achieve large modulation of charge carrier mobility via channel doping without disrupting the molecular ordering. Central to the method is the introduction of nanopores into the organic semiconductor thin films via a simple and robust templated meniscus-guided coating method. Using this method, the charge carrier mobility of C 8 -benzothieno[3,2-b]benzothiophene transistors is boosted by almost sevenfold. This paper further demonstrates enhanced electron transport by close to an order of magnitude in a diketopyrrolopyrrole-based donor-acceptor polymer. Combining spectroscopic measurements, density functional theory calculations, and electrical characterizations, the doping mechanism is identified as partial-charge-transfer induced trap filling. The nanopores serve to enhance the dopant/organic semiconductor charge transfer reaction by exposing the π-electrons to the pore wall. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fengjiao; Dai, Xiaojuan; Zhu, Weikun

    Molecular doping of organic electronics has shown promise to sensitively modulate important device metrics. One critical challenge is the disruption of structure order upon doping of highly crystalline organic semiconductors, which significantly reduces the charge carrier mobility. This paper demonstrates a new method to achieve large modulation of charge carrier mobility via channel doping without disrupting the molecular ordering. Central to the method is the introduction of nanopores into the organic semiconductor thin films via a simple and robust templated meniscus-guided coating method. Using this method, the charge carrier mobility of C8-benzothieno[3,2-b]benzothiophene transistors is boosted by almost sevenfold. This papermore » further demonstrates enhanced electron transport by close to an order of magnitude in a diketopyrrolopyrrole-based donor–acceptor polymer. Combining spectroscopic measurements, density functional theory calculations, and electrical characterizations, the doping mechanism is identified as partial-charge-transfer induced trap filling. The nanopores serve to enhance the dopant/organic semiconductor charge transfer reaction by exposing the π-electrons to the pore wall.« less

  2. Modulation-doped growth of mosaic graphene with single-crystalline p–n junctions for efficient photocurrent generation

    PubMed Central

    Yan, Kai; Wu, Di; Peng, Hailin; Jin, Li; Fu, Qiang; Bao, Xinhe; Liu, Zhongfan

    2012-01-01

    Device applications of graphene such as ultrafast transistors and photodetectors benefit from the combination of both high-quality p- and n-doped components prepared in a large-scale manner with spatial control and seamless connection. Here we develop a well-controlled chemical vapour deposition process for direct growth of mosaic graphene. Mosaic graphene is produced in large-area monolayers with spatially modulated, stable and uniform doping, and shows considerably high room temperature carrier mobility of ~5,000 cm2 V−1 s−1 in intrinsic portion and ~2,500 cm2 V−1 s−1 in nitrogen-doped portion. The unchanged crystalline registry during modulation doping indicates the single-crystalline nature of p–n junctions. Efficient hot carrier-assisted photocurrent was generated by laser excitation at the junction under ambient conditions. This study provides a facile avenue for large-scale synthesis of single-crystalline graphene p–n junctions, allowing for batch fabrication and integration of high-efficiency optoelectronic and electronic devices within the atomically thin film. PMID:23232410

  3. Homo-junction ferroelectric field-effect-transistor memory device using solution-processed lithium-doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Bhansali, Unnat. S.; Alshareef, H. N.

    2012-06-01

    High performance homo-junction field-effect transistor memory devices were prepared using solution processed transparent lithium-doped zinc oxide thin films for both the ferroelectric and semiconducting active layers. A highest field-effect mobility of 8.7 cm2/Vs was obtained along with an Ion/Ioff ratio of 106. The ferroelectric thin film transistors showed a low sub-threshold swing value of 0.19 V/dec and a significantly reduced device operating voltage (±4 V) compared to the reported hetero-junction ferroelectric transistors, which is very promising for low-power non-volatile memory applications.

  4. Doping and musculoskeletal system: short-term and long-lasting effects of doping agents.

    PubMed

    Nikolopoulos, Dimitrios D; Spiliopoulou, Chara; Theocharis, Stamatios E

    2011-10-01

    Doping is a problem that has plagued the world of competition and sports for ages. Even before the dawn of Olympic history in ancient Greece, competitors have looked for artificial means to improve athletic performance. Since ancient times, athletes have attempted to gain an unfair competitive advantage through the use of doping substances. A Prohibited List of doping substances and methods banned in sports is published yearly by the World Anti-Doping Agency. Among the substances included are steroidal and peptide hormones and their modulators, stimulants, glucocorticosteroids, β₂-agonists, diuretics and masking agents, narcotics, and cannabinoids. Blood doping, tampering, infusions, and gene doping are examples of prohibited methods indicated on the List. Apart from the unethical aspect of doping, as it abrogates fair-play's principle, it is extremely important to consider the hazards it presents to the health and well-being of athletes. The referred negative effects for the athlete's health have to do, on the one hand, by the high doses of the performance-enhancing agents and on the other hand, by the relentless, superhuman strict training that the elite or amateur athletes put their muscles, bones, and joints. The purpose of this article is to highlight the early and the long-lasting consequences of the doping abuse on bone and muscle metabolism. © 2010 The Authors Fundamental and Clinical Pharmacology © 2010 Société Française de Pharmacologie et de Thérapeutique.

  5. Co-doping as a tool for tuning the optical properties of singlewalled carbon nanotubes: A first principles study

    NASA Astrophysics Data System (ADS)

    Sharma, Deepa; Jaggi, Neena

    2017-07-01

    This paper presents a first principles study on the effect of co-doping on various optical spectra of a zigzag single-walled carbon nanotube (SWCNT). Optical spectra of a pristine SWCNT, SWCNT co-doped with Aluminum (Al) & Phosphorus (P) and another one co-doped with Al, P and Nitrogen (N) have been calculated using density functional theory (DFT).The theory has been implemented using the Cambridge sequential total energy package (CASTEP) code available as a userfriendly module with the software 'Material Studio'. Polarized and unpolarized light as well as light through polycrystalline media have been considered. The dependence of various spectra on the status of incident light presents a clear evidence of anisotropicity in the optical properties. Analysis of the simulated spectra involves calculation and comparison of different optical properties like dielectric function, reflectivity, refractive index, conductivity and loss function for the pristine and co-doped SWCNTs. Noticeable variations are observed in the optical properties on simultaneously doping the SWCNT with Al and P and then further introducing N atom into the structure so that it can be concluded that co-doping (simultaneous doping with different combinations of dopants) can be evolved as a novel and effective tool for tailoring the optical properties of SWCNTs as per the requirements while designing an optical device. It will prove to be highly significant for effective designing of SWCNT based sensitive optical devices for a variety of technological applications.

  6. Effect of heavy-ion irradiation on London penetration depth in overdoped Ba(Fe 1 - x Co x ) 2 As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, J.; Tanatar, M. A.; Kim, Hyunsoo

    2013-08-01

    Irradiation with 1.4 GeV 208 Pb ions was used to induce artificial disorder in single crystals of iron-arsenide superconductor Ba(Fe 1 - x Co x ) 2 As 2 and to study its effects on the temperature-dependent London penetration depth and transport properties. A study was undertaken on overdoped single crystals with x = 0.108 and x = 0.127 characterized by notable modulation of the superconducting gap. Irradiation corresponding to the matching fields of B Φ = 6 T and 6.5 T with doses 2.22 × 10 11 d /cm 2 and 2.4 × 10 11 d /cm 2 ,more » respectively, suppresses the superconducting T c by approximately 0.3 to 1 K. The variation of the low-temperature penetration depth in both pristine and irradiated samples is well described by the power law Δ λ ( T ) = A T n . Irradiation increases the magnitude of the prefactor A and decreases the exponent n , similar to the effect of irradiation in optimally-doped samples. This finding supports universal s ± pairing in Ba(Fe 1 - x Co x ) 2 As 2 compounds for the entire Co doping range.« less

  7. Study of grain boundary transparency in (Y b1 -xC ax) B a2C u3O bicrystal thin films over a wide temperature, field, and field orientation range

    NASA Astrophysics Data System (ADS)

    Li, Pei; Abraimov, Dmytro; Polyanskii, Anatolii; Kametani, Fumitake; Larbalestier, David

    2015-03-01

    The residual low-angle grain boundary (GB) network is still the most important current-limiting mechanism operating in biaxially textured rare-earth barium-copper-oxide (REBCO) coated conductors. While Ca doping is well established to improve supercurrent flow across low-angle GBs in weak fields at high temperatures, Ca doping also depresses Tc, making it so far impractical for high-temperature applications of REBCO coated conductors. On the other hand, high-field-magnet applications of REBCO require low temperatures. Here we systematically evaluate the effectiveness of Ca doping in improving the GB transparency, rGB=JcGB/ Jcgrain , of low-angle Y b1 -xC axBaCuO [001] tilt bicrystal films down to 10 K and with magnetic fields perpendicular and parallel to the film surfaces, while varying the Ca and oxygen doping level. Using low-temperature scanning laser microscopy and magneto-optical imaging, we found rGB to strongly depend on the angle between magnetic field and the GB plane and clearly identified regimes in which JcGB can exceed Jcgrain(rGB>1 ) where the GB pinning is optimized by the field being parallel to the GB dislocations. However, even in this favorable situation, we found that rGB became much smaller at lower temperatures. Calculations of the GB Ca segregation profile predict that the high-Jc channels between the GB dislocation cores are almost Ca free. It may be therefore that the positive effects of Ca doping seen by many authors near Tc are partly a consequence of the higher Tc of these Ca-free channels.

  8. Graphene Dirac point tuned by ferroelectric polarization field

    NASA Astrophysics Data System (ADS)

    Wang, Xudong; Chen, Yan; Wu, Guangjian; Wang, Jianlu; Tian, Bobo; Sun, Shuo; Shen, Hong; Lin, Tie; Hu, Weida; Kang, Tingting; Tang, Minghua; Xiao, Yongguang; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao

    2018-04-01

    Graphene has received numerous attention for future nanoelectronics and optoelectronics. The Dirac point is a key parameter of graphene that provides information about its carrier properties. There are lots of methods to tune the Dirac point of graphene, such as chemical doping, impurities, defects, and disorder. In this study, we report a different approach to tune the Dirac point of graphene using a ferroelectric polarization field. The Dirac point can be adjusted to near the ferroelectric coercive voltage regardless its original position. We have ensured this phenomenon by temperature-dependent experiments, and analyzed its mechanism with the theory of impurity correlation in graphene. Additionally, with the modulation of ferroelectric polymer, the current on/off ratio and mobility of graphene transistor both have been improved. This work provides an effective method to tune the Dirac point of graphene, which can be readily used to configure functional devices such as p-n junctions and inverters.

  9. Controllable Hysteresis and Threshold Voltage of Single-Walled Carbon Nano-tube Transistors with Ferroelectric Polymer Top-Gate Insulators

    PubMed Central

    Sun, Yi-Lin; Xie, Dan; Xu, Jian-Long; Zhang, Cheng; Dai, Rui-Xuan; Li, Xian; Meng, Xiang-Jian; Zhu, Hong-Wei

    2016-01-01

    Double-gated field effect transistors have been fabricated using the SWCNT networks as channel layer and the organic ferroelectric P(VDF-TrFE) film spin-coated as top gate insulators. Standard photolithography process has been adopted to achieve the patterning of organic P(VDF-TrFE) films and top-gate electrodes, which is compatible with conventional CMOS process technology. An effective way for modulating the threshold voltage in the channel of P(VDF-TrFE) top-gate transistors under polarization has been reported. The introduction of functional P(VDF-TrFE) gate dielectric also provides us an alternative method to suppress the initial hysteresis of SWCNT networks and obtain a controllable ferroelectric hysteresis behavior. Applied bottom gate voltage has been found to be another effective way to highly control the threshold voltage of the networked SWCNTs based FETs by electrostatic doping effect. PMID:26980284

  10. A computational study on the electronic and field emission properties of Mg and Si doped AlN nanocones

    NASA Astrophysics Data System (ADS)

    Saedi, Leila; Soleymanabadi, Hamed; Panahyab, Ataollah

    2018-05-01

    Following an experimental work, we explored the effect of replacing an Al atom of an AlN nanocone by Si or Mg atom on its electronic and field emission properties using density functional theory calculations. We found that both Si-doping and Mg-doping increase the electrical conductivity of AlN nanocone, but their influences on the filed emission properties are significantly different. The Si-doping increases the electron concentration of AlN nanocone and results in a large electron mobility and a low work function, whereas Mg-doping leads to a high hole concentration below the conduction level and increases the work function in agreement with the experimental results. It is predicted that Si-doped AlN nanocones show excellent filed emission performance with higher emitted electron current density compared to the pristine AlN nanocone. But the Mg-doping meaningfully decreases the emitted electron current density from the surface of AlN nanocone. The Mg-doping can increase the work function about 41.9% and the Si-doping can decrease it about 6.3%. The Mg-doping and Si-doping convert the AlN nanocone to a p-type and n-type semiconductors, respectively. Our results explain in a molecular level what observed in the experiment.

  11. Electro-caloric effect in lead-free Sn doped BaTiO{sub 3} ceramics at room temperature and low applied fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Sanjay Kumar; Reddy, V. Raghavendra, E-mail: varimalla@yahoo.com, E-mail: vrreddy@csr.res.in; Bag, Pallab

    2014-09-15

    Structural, dielectric, ferroelectric (FE), {sup 119}Sn Mössbauer, and specific heat measurements of polycrystalline BaTi{sub 1–x}Sn{sub x}O{sub 3} (x = 0% to 15%) ceramics are reported. Phase purity and homogeneous phase formation with Sn doping is confirmed from x-ray diffraction and {sup 119}Sn Mössbauer measurements. With Sn doping, the microstructure is found to change significantly. Better ferroelectric properties at room temperature, i.e., increased remnant polarization (38% more) and very low field switchability (225% less) are observed for x = 5% sample as compared to other samples and the results are explained in terms of grain size effects. With Sn doping, merging of all the phasemore » transitions into a single one is observed for x ≥ 10% and for x = 5%, the tetragonal to orthorhombic transition temperature is found close to room temperature. As a consequence better electro-caloric effects are observed for x = 5% sample and therefore is expected to satisfy the requirements for non-toxic, low energy (field) and room temperature based applications.« less

  12. Illicit organogenesis

    PubMed Central

    Schänzer, Wilhelm

    2008-01-01

    Doping and manipulation are undesirable companions of professional and amateur sport. Numerous adverse analytical findings as well as confessions of athletes have demonstrated the variety of doping agents and methods as well as the inventiveness of cheating sportsmen. Besides ‘conventional’ misuse of drugs such as erythropoietin and insulins, experts fear that therapeutics that are currently undergoing clinical trials might be part of current or future doping regimens, which aim for an increased functionality and performance or organs and tissues. Emerging drugs such as selective androgen receptor modulators (SARMs), hypoxia-inducible factor (HIF) complex stabilizers or modulators of muscle fiber calcium channels are considered relevant for current and future doping controls due to their high potential for misuse in sports. PMID:19337407

  13. Room temperature ferromagnetism with large magnetic moment at low field in rare-earth-doped BiFeO₃ thin films.

    PubMed

    Kim, Tae-Young; Hong, Nguyen Hoa; Sugawara, T; Raghavender, A T; Kurisu, M

    2013-05-22

    Thin films of rare earth (RE)-doped BiFeO3 (where RE=Sm, Ho, Pr and Nd) were grown on LaAlO3 substrates by using the pulsed laser deposition technique. All the films show a single phase of rhombohedral structure with space group R3c. The saturated magnetization in the Ho- and Sm-doped films is much larger than the values reported in the literature, and is observed at quite a low field of 0.2 T. For Ho and Sm doping, the magnetization increases as the film becomes thinner, suggesting that the observed magnetism is mostly due to a surface effect. In the case of Nd doping, even though the thin film has a large magnetic moment, the mechanism seems to be different.

  14. Doping management for high-power fiber lasers: 100 W, few-picosecond pulse generation from an all-fiber-integrated amplifier.

    PubMed

    Elahi, P; Yılmaz, S; Akçaalan, O; Kalaycıoğlu, H; Oktem, B; Senel, C; Ilday, F Ö; Eken, K

    2012-08-01

    Thermal effects, which limit the average power, can be minimized by using low-doped, longer gain fibers, whereas the presence of nonlinear effects requires use of high-doped, shorter fibers to maximize the peak power. We propose the use of varying doping levels along the gain fiber to circumvent these opposing requirements. By analogy to dispersion management and nonlinearity management, we refer to this scheme as doping management. As a practical first implementation, we report on the development of a fiber laser-amplifier system, the last stage of which has a hybrid gain fiber composed of high-doped and low-doped Yb fibers. The amplifier generates 100 W at 100 MHz with pulse energy of 1 μJ. The seed source is a passively mode-locked fiber oscillator operating in the all-normal-dispersion regime. The amplifier comprises three stages, which are all-fiber-integrated, delivering 13 ps pulses at full power. By optionally placing a grating compressor after the first stage amplifier, chirp of the seed pulses can be controlled, which allows an extra degree of freedom in the interplay between dispersion and self-phase modulation. This way, the laser delivers 4.5 ps pulses with ~200 kW peak power directly from fiber, without using external pulse compression.

  15. Two Carrier Analysis of Persistent Photoconductivity in Modulation-Doped Structures

    NASA Technical Reports Server (NTRS)

    Schacham, S. E.; Mena, R. A.; Haugland, E. J.; Alterovitz, S. A.

    1995-01-01

    A simultaneous fit of Hall and conductivity data gives quantitative results on the carrier concentration and mobility in both the quantum well and the parallel conduction channel. In this study this method was applied to reveal several new findings on the effect of persistent photoconductivity (PPC) on free-carrier concentrations and mobilities. The increase in the two-dimensional electron-gas (2DEG) concentration is significantly smaller than the apparent one derived from single carrier analysis of the Hall coefficient. In the two types of structures investigated, delta doped and continuously doped barrier, the apparent concentration almost doubles following illumination, while analysis reveals an increase of about 20% in the 2DEG. The effect of PPC on mobility depends on the structure. For the sample with a continuously doped barrier the mobility in the quantum well more than doubles. This increase is attributed to the effective screening of the ionized donors by the large electron concentration in the barrier. In the delta doped barrier sample the mobility is reduced by almost a factor of 2. This decrease is probably caused by strong coupling between the two wells, as is demonstrated by self-consistent analysis.

  16. Dynamic control of mode field diameter and effective area by germanium doping of hexagonal photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Miyagi, Kazuya; Namihira, Yoshinori; Kasamatsu, Yuho; Hossain, Md. Anwar

    2013-07-01

    We demonstrate dynamic control of the effective area ( A eff) of photonic crystal fibers (PCFs) in the range of 18.1-8.22 μm2 and the mode field diameter in the range of 4.78-3.42 μm. This control was realized by altering their structural properties and varying the germanium (Ge) doping rate, which changed the refractive index difference (Δ n Ge) between 1.0 and 3.0% relative to the refractive index of the silica cladding. This was achieved by adjusting the Ge doping rate in the core and changing the radius ( d core) of the doped region, i.e., by changing the equivalent refractive index, using numerical calculations. Numerical results were verified by comparison with experimental results for a fabricated Gedoped PCF obtained by far-field scanning based on the ITU-T Petermann II definition. The proposed approach will simultaneously decrease Aeff and achieves high light confinement and high nonlinearity in PCFs. It enables architectonics/controllability of highly nonlinear PCFs with passive optical devices in photonic networks and life science applications.

  17. Superconductivity in diamond.

    PubMed

    Ekimov, E A; Sidorov, V A; Bauer, E D; Mel'nik, N N; Curro, N J; Thompson, J D; Stishov, S M

    2004-04-01

    Diamond is an electrical insulator well known for its exceptional hardness. It also conducts heat even more effectively than copper, and can withstand very high electric fields. With these physical properties, diamond is attractive for electronic applications, particularly when charge carriers are introduced (by chemical doping) into the system. Boron has one less electron than carbon and, because of its small atomic radius, boron is relatively easily incorporated into diamond; as boron acts as a charge acceptor, the resulting diamond is effectively hole-doped. Here we report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500-2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature T(c) approximately 4 K; superconductivity survives in a magnetic field up to Hc2(0) > or = 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions.

  18. Dynamic characteristics of undoped and p-doped Fabry-Perot InAs/InP quantum dash based ridge waveguide lasers for access/metro networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mollet, O., E-mail: oriane.mollet@lpn.cnrs.fr; Martinez, A.; Merghem, K.

    In this paper, we report the characteristics of InAs/InP quantum dashes (QDash) based lasers emitting around 1.55 μm. An unprecedented high modal gain of ∼100 cm{sup −1} is obtained for an optimized active structure by stacking 12 QDash layers. Directly modulated lasers allowed achieving a modulation bandwidth of ∼10 GHz and a Henry factor around 5. Thanks to p-type doping, the Henry factor value is reduced down to 2.7 while the modulation bandwidth still amounts to ∼10 GHz. This shows that doping of the active region is important to improve the dynamic characteristics of QDash lasers.

  19. Compositionally modulated multilayer diamond-like carbon coatings with AlTiSi multi-doping by reactive high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Gao, Xiang; Liu, Jingmao; Kwon, Se-Hun; Wang, Qimin

    2017-12-01

    Diamond-like carbon (DLC) coatings with AlTiSi multi-doping were prepared by a reactive high power impulse magnetron sputtering with using a gas mixture of Ar and C2H2 as precursor. The composition, microstructure, compressive stress, and mechanical property of the as-deposited DLC coatings were studied systemically by using SEM, XPS, TEM, Raman spectrum, stress-tester, and nanoindentation as a function of the Ar fraction. The results show that the doping concentrations of the Al, Ti and Si atoms increased as the Ar fraction increased. The doped Ti and Si preferred to bond with C while the doped Al mainly existed in oxidation state without bonding with C. As the doping concentrations increased, TiC carbide nanocrystals were formed in the DLC matrix. The microstructure of coatings changed from an amorphous feature dominant AlTiSi-DLC to a carbide nanocomposite AlTiSi-DLC with TiC nanoparticles embedding. In addition, the coatings exhibited the compositionally modulated multilayer consisting of alternate Al-rich layer and Al-poor layer due to the rotation of the substrate holder and the diffusion behavior of the doped Al which tended to separate from C and diffuse towards the DLC matrix surface owing to its weak interactions with C. The periodic Al-rich layer can effectively release the compressive stress of the coatings. On the other hand, the hard TiC nanoparticles were conducive to the hardness of the coatings. Consequently, the DLC coatings with relatively low residual stress and high hardness could be acquired successfully through AlTiSi multi-doping. It is believed that the AlCrSi multi-doping may be a good way for improving the comprehensive properties of the DLC coatings. In addition, we believe that the DLC coatings with Al-rich multilayered structure have a high oxidation resistance, which allows the DLC coatings application in high temperature environment.

  20. Flux pinning in nanoparticle doped MgB 2/Cu tapes

    NASA Astrophysics Data System (ADS)

    Babić, E.; Kušević, I.; Husnjak, O.; Soltanian, S.; Wang, X. L.; Dou, S. X.

    2007-09-01

    The irreversibility fields Birr and critical current densities Jc of undoped and Si and SiC nanoparticle doped (5, 10 and 20 wt%) MgB2 tapes were measured in the temperature (T) range 2-38 K and in magnetic fields B ⩽ 16 T. Whereas Birr of undoped tapes varies smoothly with T, those of doped tapes show a change in slope around a crossover field Bcr which increases with nanoparticle content and also depends on their type. This indicates matching effect in vortex pinning, probably associated with Mg2Si nanoprecipitates formed during heat treatment. Indeed, Birr of doped tapes was enhanced in respect to that of undoped one with the highest enhancement for Birr ≈ Bcr, but the enhancement remained high ≈1.4 even for Birr ≫ Bcr (low temperatures). The variations of Jc and the pinning force density Fp = JcB with B and T support the above findings.

  1. Effect of density of localized states on the ovonic threshold switching characteristics of the amorphous GeSe films

    NASA Astrophysics Data System (ADS)

    Ahn, Hyung-Woo; Seok Jeong, Doo; Cheong, Byung-ki; Lee, Hosuk; Lee, Hosun; Kim, Su-dong; Shin, Sang-Yeol; Kim, Donghwan; Lee, Suyoun

    2013-07-01

    We investigated the effect of nitrogen (N) doping on the threshold voltage of an ovonic threshold switching device using amorphous GeSe. Using the spectroscopic ellipsometry, we found that the addition of N brought about significant changes in electronic structure of GeSe, such as the density of localized states and the band gap energy. Besides, it was observed that the characteristics of OTS devices strongly depended on the doping of N, which could be attributed to those changes in electronic structure suggesting a method to modulate the threshold voltage of the device.

  2. Enhanced High Temperature Piezoelectrics Based on BiScO3-PbTiO3 Ceramics

    NASA Technical Reports Server (NTRS)

    Sehirlioglu, Alp; Sayir, Ali; Dynys, Fred

    2009-01-01

    High-temperature piezoelectrics are a key technology for aeronautics and aerospace applications such as fuel modulation to increase the engine efficiency and decrease emissions. The principal challenge for the insertion of piezoelectric materials is the limitation on upper use temperature which is due to low Curie-Temperature (TC) and increasing electrical conductivity. BiScO3-PbTiO3 (BS-PT) system is a promising candidate for improving the operating temperature for piezoelectric actuators due to its high TC (greater than 400 C). Bi2O3 was shown to be a good sintering aid for liquid phase sintering resulting in reduced grain size and increased resistivity. Zr doped and liquid phase sintered BS-PT ceramics exhibited saturated and square hysteresis loops with enhanced remenant polarization (37 microC per square centimeter) and coercive field (14 kV/cm). BS-PT doped with Mn showed enhanced field induced strain (0.27% at 50kV/cm). All the numbers indicated in parenthesis were collected at 100 C.

  3. Nanowire Tunnel Field Effect Transistors: Prospects and Pitfalls

    NASA Astrophysics Data System (ADS)

    Sylvia, Somaia Sarwat

    The tunnel field effect transistor (TFET) has the potential to operate at lower voltages and lower power than the field effect transistor (FET). The TFET can circumvent the fundamental thermal limit of the inverse subthreshold slope (S) by exploiting interband tunneling of non-equilibrium "cold" carriers. The conduction mechanism in the TFET is governed by band-to-band tunneling which limits the drive current. TFETs built with III-V materials like InAs and InSb can produce enough tunneling current because of their small direct bandgap. Our simulation results show that although they require highly degenerate source doping to support the high electric fields in the tunnel region, the devices achieve minimum inverse subthreshold slopes of 30 mV/dec. In subthreshold, these devices experience both regimes of voltage-controlled tunneling and cold-carrier injection. Numerical results based on a discretized 8-band k.p model are compared to analytical WKB theory. For both regular FETs and TFETs, direct channel tunneling dominates the leakage current when the physical gate length is reduced to 5 nm. Therefore, a survey of materials is performed to determine their ability to suppress the direct tunnel current through a 5 nm barrier. The tunneling effective mass gives the best indication of the relative size of the tunnel currents. Si gives the lowest overall tunnel current for both the conduction and valence band and, therefore, it is the optimum choice for suppressing tunnel current at the 5 nm scale. Our numerical simulation shows that the finite number, random placement, and discrete nature of the dopants in the source of an InAs nanowire (NW) TFET affect both the mean value and the variance of the drive current and the inverse subthreshold slope. The discrete doping model gives an average drive current and an inverse subthreshold slope that are less than those predicted from the homogeneous doping model. The doping density required to achieve a target drive current is higher in the discrete doping model compared to the homogeneous doping model. The relative variation in the ON current decreases as the average doping density and/or NW diameter increases. For the largest 8 nm NW studied, the coefficient of variation in the ON current is ˜15% at a doping density of 1.5 x 1020 cm--3. Results from full self-consistent non-equilibrium Green's function calculations and semi-classical calculations are compared.

  4. Semiconductor Nonlinear Dynamics Study by Broadband Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ho, I.-Chen

    Semiconductor nonlinearity in the terahertz (THz) frequency range has been attracting considerable attention due to the recent development of high-power semiconductor-based nanodevices. However, the underlying physics concerning carrier dynamics in the presence of high-field THz transients is still obscure. This thesis introduces an ultrafast, time-resolved THz pump/THz probe approach to the study of semiconductor properties in the nonlinear regime. The carrier dynamics regarding two mechanisms, intervalley scattering and impact ionization, is observed for doped InAs on a sub-picosecond time scale. In addition, polaron modulation driven by intense THz pulses is experimentally and theoretically investigated. The observed polaron dynamics verifies the interaction between energetic electrons and a phonon field. In contrast to previous work which reports optical phonon responses, acoustic phonon modulations are addressed in this study. A further understanding of the intense field interacting with solid materials will accelerate the development of semiconductor devices. This thesis starts with the design and performance of a table-top THz spectrometer which has the advantages of ultra-broad bandwidth (one order higher bandwidth compared to a conventional ZnTe sensor) and high electric field strength (>100 kV/cm). Unlike the conventional THz time-domain spectroscopy, the spectrometer integrates a novel THz air-biased-coherent-detection (THz-ABCD) technique and utilizes selected gases as THz emitters and sensors. In comparison with commonly used electro-optic (EO) crystals or photoconductive (PC) dipole antennas, the gases have the benefits of no phonon absorption as existing in EO crystals and no carrier life time limitation as observed in PC dipole antennas. The newly development THz-ABCD spectrometer with a strong THz field strength capability provides a platform for various research topics especially on the nonlinear carrier dynamics of semiconductors. Two mechanisms, electron intervalley scattering and impact ionization of InAs crystals, are observed under the excitation of intense THz field on a sub-picosecond time scale. These two competing mechanisms are demonstrated by changing the impurity doping type of the semiconductors and varying the strength of the THz field. Another investigation of nonlinear carrier dynamics is the observation of coherent polaron oscillation in n-doped semiconductors excited by intense THz pulses. Through modulations of surface reflection with a THz pump/THz probe technique, this work experimentally verifies the interaction between energetic electrons and a phonon field, which has been theoretically predicted by previous publications, and shows that this interaction applies for the acoustic phonon modes. Usually, two transverse acoustic (2TA) phonon responses are inactive in infrared measurement, while they are detectable in second-order Raman spectroscopy. The study of polaron dynamics, with nonlinear THz spectroscopy (in the far-infrared range), provides a unique method to diagnose the overtones of 2TA phonon responses of semiconductors, and therefore incorporates the abilities of both infrared and Raman spectroscopy. This work presents a new milestone in wave-matter interaction and seeks to benefit the industrial applications in high power, small scale devices.

  5. The effect of nano-alumina on structural and magnetic properties of MgB2 superconductors

    NASA Astrophysics Data System (ADS)

    Ansari, Intikhab A.; Shahabuddin, M.; Ziq, Khalil A.; Salem, A. F.; Awana, V. P. S.; Husain, M.; Kishan, H.

    2007-08-01

    Nano-Al2O3 doped Mg1-xAlxB2 with 0<=x<=6% were synthesized by solid state reaction at 750 °C in Fe tube encapsulation under a vacuum of 10-5 Torr. Resistance measurement shows that the Tc decreases with x and zero resistivity for x = 0 and 6% are obtained at 38 and 35 K, respectively. XRD measurement shows that the lattice parameter and cell volume also decrease monotonically with increasing doping levels. From this we infer that the Al has been substituted in the lattice of MgB2 at Mg sites. Resistivity measurement shows a systematic decrease in Tc with doping which also confirms the substitution of Al. Magnetization studies in the temperature range from 4 to 35 K and in the magnetic field up to 9 T shows a significant increase in the irreversibility field (Hirr), critical current density (Jc) and remanent magnetization (MR) with increasing concentration of the Al2O3 nanoparticle. At low fields we have observed large vortex instabilities (known as a vortex avalanche) associated with all doped samples. The vortex-avalanche effect is reduced with increasing temperature and vanishes near 20 K. The results are discussed in terms of local-vortex instabilities caused by doping of Al2O3 nanoparticles.

  6. Electric field tunable electron g factor and high asymmetrical Stark effect in InAs1-xNx quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, X. W.; Fan, W. J.; Li, S. S.; Xia, J. B.

    2007-04-01

    The electronic structure, electron g factor, and Stark effect of InAs1-xNx quantum dots are studied by using the ten-band k •p model. It is found that the g factor can be tuned to be zero by the shape and size of quantum dots, nitrogen (N) doping, and the electric field. The N doping has two effects on the g factor: the direct effect increases the g factor and the indirect effect decreases it. The Stark effect in quantum ellipsoids is high asymmetrical and the asymmetry factor may be 319.

  7. Polarization compensation at low p-GaN doping density in InGaN/GaN p-i-n solar cells: Effect of InGaN interlayers

    NASA Astrophysics Data System (ADS)

    Saini, Basant; Adhikari, Sonachand; Pal, Suchandan; Kapoor, Avinsahi

    2017-07-01

    The effectiveness of polarization matching layer (PML) between i-InGaN/p-GaN is studied numerically for Ga-face InGaN/GaN p-i-n solar cell at low p-GaN doping (∼5e17 cm-3). The simulations are performed for four InxGa1-xN/GaN heterostructures (x = 10%, 15%, 20% and 25%), thus investigating the impact of PML for low as well as high indium containing absorber regions. Use of PML presents a suitable alternative to counter the effects of polarization-induced electric fields arising at low p-GaN doping density especially for absorber regions with high indium (>10%). It is seen that it not only mitigates the negative effects of polarization-induced electric fields but also reduces the high potential barriers existing at i-InGaN/p-GaN heterojunction. The improvement in photovoltaic properties of the heterostructures even at low p-GaN doping validates this claim.

  8. Persistent spin helix manipulation by optical doping of a CdTe quantum well

    NASA Astrophysics Data System (ADS)

    Passmann, F.; Anghel, S.; Tischler, T.; Poshakinskiy, A. V.; Tarasenko, S. A.; Karczewski, G.; Wojtowicz, T.; Bristow, A. D.; Betz, M.

    2018-05-01

    Time-resolved Kerr-rotation microscopy explores the influence of optical doping on the persistent spin helix in a [001]-grown CdTe quantum well at cryogenic temperatures. Electron spin-diffusion dynamics reveal a momentum-dependent effective magnetic field providing SU(2) spin-rotation symmetry, consistent with kinetic theory. The Dresselhaus and Rashba spin-orbit coupling parameters are extracted independently from rotating the spin helix with external magnetic fields applied parallel and perpendicular to the effective magnetic field. Most importantly, a nonuniform spatiotemporal precession pattern is observed. The kinetic-theory framework of spin diffusion allows for modeling of this finding by incorporating the photocarrier density into the Rashba (α) and the Dresselhaus (β3) parameters. Corresponding calculations are further validated by an excitation-density-dependent measurement. This work shows universality of the persistent spin helix by its observation in a II-VI compound and the ability to fine-tune it by optical doping.

  9. Multi-layer MOS capacitor based polarization insensitive electro-optic intensity modulator.

    PubMed

    Qiu, Xiaoming; Ruan, Xiaoke; Li, Yanping; Zhang, Fan

    2018-05-28

    In this study, a multi-layer metal-oxide-semiconductor capacitor (MLMOSC) polarization insensitive modulator is proposed. The design is validated by numerical simulation with commercial software LUMERICAL SOLUTION. Based on the epsilon-near-zero (ENZ) effect of indium tin oxide (ITO), the device manages to uniformly modulate both the transverse electric (TE) and the transverse magnetic (TM) modes. With a 20μm-long double-layer metal-oxide-semiconductor capacitor (DLMOSC) polarization insensitive modulator, in which two metal-oxide-semiconductor (MOS) structures are formed by the n-doped Si/HfO 2 /ITO/HfO 2 / n-doped Si stack, the extinction ratios (ERs) of both the TE and the TM modes can be over 20dB. The polarization dependent losses of the device can be as low as 0.05dB for the "OFF" state and 0.004dB for the "ON" state. Within 1dB polarization dependent loss, the device can operate with over 20dB ERs at the S, C, and L bands. The polarization insensitive modulator offers various merits including ultra-compact size, broadband spectrum, and complementary metal oxide semiconductor (CMOS) compatibility.

  10. Switching electrochromic performance improvement enabled by highly developed mesopores and oxygen vacancy defects of Fe-doped WO3 films

    NASA Astrophysics Data System (ADS)

    Koo, Bon-Ryul; Kim, Kue-Ho; Ahn, Hyo-Jin

    2018-09-01

    In recent years, owing to the capability to reversibly adjust transparency, reflection, and color by the low electric field, electrochromic devices (ECDs) have received an extensive attention for their potential use in optoelectronic applications. However, considering that the performances of the ECDs, including coloration efficiency (CE, <30.0 cm2/C) and switching speed (>10.0 s), are still low for an effective applied use, critical efforts are needed to push the development of a unique nanostructure film to improve electrochromic (EC) performances. Specifically, as the large-scale applications (e.g. refrigerators, vehicles, and airplanes) of the ECDs have been recently developed, the study for improving switching speed is urgently needed for commercialization of the devices. In this context, the present study reports a novel nanostructure film of Fe-doped WO3 films with highly developed mesopores and oxygen vacancy defects, fabricated using the Fe agent and the camphene-assisted sol-gel method. Fe-doped WO3 films with highly developed mesopores and oxygen vacancy defects show remarkable EC performances with both fast switching speed (2.8 s for the coloration speed and 0.3 s for the bleaching speed) and high CE (71.1 cm2/C). These two aspects contribute to the synergistic effects of optimized Fe doping and camphene on the films and have outstanding values as compared to previously reported results of WO3-based materials. Specifically, the fast switching speed is attributed to the shortened Li+ diffusion pathway of the highly developed mesopores; and the other is the improved electrical conductivity of the highly increased oxygen vacancy defects. In addition, the high CE value is due to an efficient charge transport as the result of a more effective electroactive contact of the morphology with highly developed mesopores, resulting in a large transmittance modulation with a small intercalated charge density.

  11. Tunable magnetism of 3d transition metal doped BiFeO3

    NASA Astrophysics Data System (ADS)

    Lu, S.; Li, C.; Zhao, Y. F.; Gong, Y. Y.; Niu, L. Y.; Liu, X. J.; Wang, T.

    2017-10-01

    Electronic polarization or bond relaxation can effectively alter the electronic and magnetic behavior of materials by doping impurity atom. For this aim, the thermodynamic, electronic and magnetic performances of cubic BiFeO3 have been modulated by the 3d transition metal (TM) dopants (Sc, Ti, V, Cr, Mn, Co, Ni, Cu and Zn) based on the density functional theory. Results show that the doped specimen with low impurity concentration is more stable than that with high impurity concentration. The Mulliken charge values and spin magnetic moments of TM element are making major changes, while those of all host atoms are making any major changes. Especially, it is the linear relation between the spin magnetic moments of TM dopants and the total magnetic moment of doped specimens; thus, the variations of total magnetic moment of doped specimens are decided by the spin magnetic moments of TM dopants, thought the total magnetic moments of doped specimens mainly come from Fe atom and TM dopants. Besides, as double TM atoms substitution the Fe atoms, the Sc-, Ti-, Mn-, Co- and Zn-doped specimens show AFM state, while the V-, Cr-, Ni- and Cu-doped specimens show FM state.

  12. pn-Heterojunction effects of perylene tetracarboxylic diimide derivatives on pentacene field-effect transistor.

    PubMed

    Yu, Seong Hun; Kang, Boseok; An, Gukil; Kim, BongSoo; Lee, Moo Hyung; Kang, Moon Sung; Kim, Hyunjung; Lee, Jung Heon; Lee, Shichoon; Cho, Kilwon; Lee, Jun Young; Cho, Jeong Ho

    2015-01-28

    We investigated the heterojunction effects of perylene tetracarboxylic diimide (PTCDI) derivatives on the pentacene-based field-effect transistors (FETs). Three PTCDI derivatives with different substituents were deposited onto pentacene layers and served as charge transfer dopants. The deposited PTCDI layer, which had a nominal thickness of a few layers, formed discontinuous patches on the pentacene layers and dramatically enhanced the hole mobility in the pentacene FET. Among the three PTCDI molecules tested, the octyl-substituted PTCDI, PTCDI-C8, provided the most efficient hole-doping characteristics (p-type) relative to the fluorophenyl-substituted PTCDIs, 4-FPEPTC and 2,4-FPEPTC. The organic heterojunction and doping characteristics were systematically investigated using atomic force microscopy, 2D grazing incidence X-ray diffraction studies, and ultraviolet photoelectron spectroscopy. PTCDI-C8, bearing octyl substituents, grew laterally on the pentacene layer (2D growth), whereas 2,4-FPEPTC, with fluorophenyl substituents, underwent 3D growth. The different growth modes resulted in different contact areas and relative orientations between the pentacene and PTCDI molecules, which significantly affected the doping efficiency of the deposited adlayer. The differences between the growth modes and the thin-film microstructures in the different PTCDI patches were attributed to a mismatch between the surface energies of the patches and the underlying pentacene layer. The film-morphology-dependent doping effects observed here offer practical guidelines for achieving more effective charge transfer doping in thin-film transistors.

  13. Design consideration of δ-doping channels for high-performance n + - GaAs / p + -InGaP/n-GaAs camel-gate field effect transistors

    NASA Astrophysics Data System (ADS)

    Tsai, Jung-Hui; Chen, Jeng-Shyan; Chu, Yu-Jui

    2005-01-01

    The influence of δ-doping channels on the performance of n +-GaAs/p +-InGaP/n-GaAs camel-gate field effect transistors is investigated by theoretical analysis and experimental results. The depleted pn junction of the camel gate and the existence of considerable conduction band discontinuity at the InGaP/GaAs heterojunction enhance the potential barrier height and the forward gate voltage. As the concentration-thickness products of the n-GaAs layer and δ-doping layer are fixed, the higher δ-doping device exhibits a higher potential barrier height, a larger drain current, and a broader gate voltage swing, whereas the transconductance is somewhat lower. For a n +=5.5×10 12 cm -2δ-doping device, the experimental result exhibits a maximum transconductance of 240 mS/mm and a gate voltage swing of 3.5 V. Consequently, the studied devices provide a good potential for large signal and linear circuit applications.

  14. Colossal dielectric permittivity in (Al + Nb) co-doped rutile SnO2 ceramics with low loss at room temperature

    NASA Astrophysics Data System (ADS)

    Song, Yongli; Wang, Xianjie; Zhang, Xingquan; Qi, Xudong; Liu, Zhiguo; Zhang, Lingli; Zhang, Yu; Wang, Yang; Sui, Yu; Song, Bo

    2016-10-01

    The exploration of colossal dielectric permittivity (CP) materials with low dielectric loss in a wide range of frequencies/temperatures continues to attract considerable interest. In this paper, we report CP in (Al + Nb) co-doped rutile SnO2 ceramics with a low dielectric loss at room temperature. Al0.02Nb0.05Sn0.93O2 and Al0.03Nb0.05Sn0.92O2 ceramics exhibit high relative dielectric permittivities (above 103) and low dielectric losses (0.015 < tan δ < 0.1) in a wide range of frequencies and at temperatures from 140 to 400 K. Al doping can effectively modulate the dielectric behavior by increasing the grain and grain boundary resistances. The large differences in the resistance and conductive activation energy of the grains and grain boundaries suggest that the CP in co-doped SnO2 ceramics can be attributed to the internal barrier layer capacitor effect.

  15. Structure and Magnetic Properties of Rare Earth Doped Transparent Alumina

    NASA Astrophysics Data System (ADS)

    Limmer, Krista; Neupane, Mahesh; Chantawansri, Tanya

    Recent experimental studies of rare earth (RE) doped alumina suggest that the RE induced novel phase-dependent structural and magnetic properties. Motivated by these efforts, the effects of RE doping of alpha and theta alumina on the local structure, magnetic properties, and phase stability have been examined in this first principles study. Although a direct correlation between the magnetic field dependent materials properties observed experimentally and calculated from first principles is not feasible because of the applied field and the scale, the internal magnetic properties and other properties of the doped materials are evaluated. The RE dopants are shown to increase the substitutional site volume as well as increasingly distort the site structure as a function of ionic radii. Doping both the alpha (stable) and theta (metastable) phases enhanced the relative stability of the theta phase. The energetic doping cost and internal magnetic moment were shown to be a function of the electronic configuration of the RE-dopant, with magnetic moment directly proportional to the number of unpaired electrons and doping cost being inversely related.

  16. Flux pinning and inhomogeneity in magnetic nanoparticle doped MgB2/Fe wires

    NASA Astrophysics Data System (ADS)

    Novosel, Nikolina; Pajić, Damir; Mustapić, Mislav; Babić, Emil; Shcherbakov, Andrey; Horvat, Joseph; Skoko, Željko; Zadro, Krešo

    2010-06-01

    The effects of magnetic nanoparticle doping on superconductivity of MgB2/Fe wires have been investigated. Fe2B and SiO2-coated Fe2B particles with average diameters 80 and 150 nm, respectively, were used as dopands. MgB2 wires with different nanoparticle contents (0, 3, 7.5, 12 wt.%) were sintered at temperature 750°C. The magnetoresistivity and critical current density Jc of wires were measured in the temperature range 2-40 K in magnetic field B <= 16 T. Both transport and magnetic Jc were determined. Superconducting transition temperature Tc of doped wires decreases quite rapidly with doping level (~ 0.5 K per wt.%). This results in the reduction of the irreversibility fields Birr(T) and critical current densities Jc(B,T) in doped samples (both at low (5 K) and high temperatures (20 K)). Common scaling of Jc(B,T) curves for doped and undoped wires indicates that the main mechanism of flux pinning is the same in both types of samples. Rather curved Kramer's plots for Jc of doped wires imply considerable inhomogeneity.

  17. Characterization of multilayer GaAs/AlGaAs transistor structures by variable angle spectroscopic ellipsometry

    NASA Technical Reports Server (NTRS)

    Merkel, Kenneth G.; Snyder, Paul G.; Woollam, John A.; Alterovitz, Samuel; Rai, A. K.

    1989-01-01

    Variable angle of incidence spectroscopic ellipsometry (VASE) has been implemented as a means of determining layer thickness, alloy composition, and growth quality of GaAs/AlGaAs samples composed of relatively thick layers as well as superlattices. The structures studied in this work contained GaAs/AlGaAs multilayers with a superlattice 'barrier' and were grown for later formation of modulation-doped field effect transistors (MODFETs). Sample modeling was performed by treating the superlattice as a bulk AlGaAs layer of unknown composition. Extremely good data fits were realized when five layer thicknesses and two alloy ratios were allowed to vary in a regression analysis. Room temperature excitonic effects associated with the e-hh(1), e-lh(1) and e-hh(2) transitions were observed in the VASE data.

  18. Effect of p-GaN layer doping on the photoresponse of GaN-based p-i-n ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Guo, Jin; Xie, Feng; Wang, Wanjun; Wang, Guosheng; Wu, Haoran; Wang, Tanglin; Song, Man

    2015-08-01

    We report on two-dimensional (2D) numerical simulations of photoresponse characteristics for GaN based p-i-n ultraviolet (UV) photodetectors. Effects of doping density of p-GaN layer on the photoresponse have been investigated. In order to accurately simulate the device performance, the theoretical calculation includes doping-dependent mobility degradation by Arora model and high field saturation model. Theoretical modeling shows that the doping density of p- GaN layer can significantly affect the photoresponse of GaN based p-i-n UV photodetectors, especially at schottky contact. We have to make a suitable choice of the doping in the device design according to the simulation results.

  19. Competition between dynamic and structural disorder in a doped triangular antiferromagnet RbFe(MoO4)2

    NASA Astrophysics Data System (ADS)

    Smirnov, A. I.; Soldatov, T. A.; Petrenko, O. A.; Takata, A.; Kida, T.; Hagiwara, M.; Zhitomirsky, M. E.; Shapiro, A. Ya

    2018-03-01

    Magnetisation measurements and electron spin resonance (ESR) spectra of a doped quasi two dimensional (2D) antiferromagnet on a triangular lattice Rb1 ‑ x K x Fe(MoO4)2 reveal a crucial change of the ground state spin configuration and a disappearance of a characteristic 1/3-magnetisation plateau at x = 0.15. According to theory for triangular antiferromagnets with a weak random modulation of the exchange bonds, this is a result of the competition between the structural and dynamic disorders. The dynamic zero-point or thermal fluctuations are known to lift the degeneracy of the mean field ground state of a triangular antiferromagnet and cause the spin configuration to be the most collinear, while the static disorder provides another selection of the ground state, with the least collinear structure. Low-level doping (x ≤ 0.15) was found to decrease the Néel temperature and saturation field by only few percent, while the magnetisation plateau disappears completely and the spin configuration is drastically changed. ESR spectra confirm an impurity-induced change of the so-called Y-type structure to an inverted Y-structure for x = 0.15. For x = 0.075 the intermediate regime with the decrease of width and weakening of flattening of 1/3-plateau was found.

  20. Analysis of epitaxial drift field N on P silicon solar cells

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.; Brandhorst, H. W., Jr.

    1976-01-01

    The performance of epitaxial drift field silicon solar cell structures having a variety of impurity profiles was calculated. These structures consist of a uniformly doped P-type substrate layer, and a P-type epitaxial drift field layer with a variety of field strengths. Several N-layer structures were modeled. A four layer solar cell model was used to calculate efficiency, open circuit voltage and short circuit current. The effect on performance of layer thickness, doping level, and diffusion length was determined. The results show that peak initial efficiency of 18.1% occurs for a drift field thickness of about 30 micron with the doping rising from 10 to the 17th power atoms/cu cm at the edge of the depletion region to 10 to the 18th power atoms/cu cm in the substrate. Stronger drift fields (narrow field regions) allowed very high performance (17% efficiency) even after irradiation to 3x10 to the 14th power 1 MeV electrons/sq cm.

  1. Synthesis and Characterization of Molybdenum Doped ZnO Thin Films by SILAR Deposition Method

    NASA Astrophysics Data System (ADS)

    Radha, R.; Sakthivelu, A.; Pradhabhan, D.

    2016-08-01

    Molybdenum (Mo) doped zinc oxide (ZnO) thin films were deposited on the glass substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) deposition method. The effect of Mo dopant concentration of 5, 6.6 and 10 mol% on the structural, morphological, optical and electrical properties of n-type Mo doped ZnO films was studied. The X-ray diffraction (XRD) results confirmed that the Mo doped ZnO thin films were polycrystalline with wurtzite structure. The field emission scanning electron microscopy (FESEM) studies shows that the surface morphology of the films changes with Mo doping. A blue shift of the optical band gap was observed in the optical studies. Effect of Mo dopant concentration on electrical conductivity was studied and it shows comparatively high electrical conductivity at 10 mol% of Mo doping concentration.

  2. A theoretical review on electronic, magnetic and optical properties of silicene.

    PubMed

    Chowdhury, Suman; Jana, Debnarayan

    2016-12-01

    Inspired by the success of graphene, various two dimensional (2D) structures in free standing (FS) (hypothetical) form and on different substrates have been proposed recently. Silicene, a silicon counterpart of graphene, is predicted to possess massless Dirac fermions and to exhibit an experimentally accessible quantum spin Hall effect. Since the effective spin-orbit interaction is quite significant compared to graphene, buckling in silicene opens a gap of 1.55 meV at the Dirac point. This band gap can be further tailored by applying in plane stress, an external electric field, chemical functionalization and defects. In this topical theoretical review, we would like to explore the electronic, magnetic and optical properties, including Raman spectroscopy of various important derivatives of monolayer and bilayer silicene (BLS) with different adatoms (doping). The magnetic properties can be tailored by chemical functionalization, such as hydrogenation and introducing vacancy into the pristine planar silicene. Apart from some universal features of optical absorption present in all these 2D materials, the study on reflectivity modulation with doping (Al and P) concentration in silicene has indicated the emergence of some strong peaks having the robust characteristic of a doped reflective surface for both polarizations of the electromagnetic (EM) field. Besides this, attempts will be made to understand the electronic properties of silicene from some simple tight-binding Hamiltonian. We also point out the importance of shape dependence and optical anisotropy properties in silicene nanodisks and establish that a zigzag trigonal possesses the maximum magnetic moment. We also suggest future directions to be explored to make the synthesis of silicene and its various derivatives viable for verification of theoretical predictions. Although this is a fairly new route, the results obtained so far from experimental and theoretical studies in understanding silicene have shown enough significant promising features to open a new direction in the silicon industry, silicon based nano-structures in spintronics and in opto-electronic devices.

  3. CoM(M=Fe,Cu,Ni)-embedded nitrogen-enriched porous carbon framework for efficient oxygen and hydrogen evolution reactions

    NASA Astrophysics Data System (ADS)

    Feng, Xiaogeng; Bo, Xiangjie; Guo, Liping

    2018-06-01

    Rational synthesis and development of earth-abundant materials with efficient electrocatalytic activity and stability for water splitting is a critical but challenging step for sustainable energy application. Herein, a family of bimetal (CoFe, CoCu, CoNi) embedded nitrogen-doped carbon frameworks is developed through a facile and simple thermal conversion strategy of metal-doped zeolitic imidazolate frameworks. Thanks to collaborative superiorities of abundant M-N-C species, modulation action of secondary metal, cobalt-based electroactive phases, template effect of MOFs and unique porous structure, bimetal embedded nitrogen-doped carbon frameworks materials manifest good oxygen and hydrogen evolution catalytic activity. Especially, after modulating the species and molar ratio of metal sources, optimal Co0.75Fe0.25 nitrogen-doped carbon framework catalyst just requires a low overpotential of 303 mV to achieve 10 mA cm-2 with a low Tafel slope (39.49 mV dec-1) for oxygen evolution reaction, which even surpasses that of commercial RuO2. In addition, the optimal catalyst can function as an efficient bifunctional electrocatalyst for overall water splitting with satisfying activity and stability. This development offers an attractive direction for the rational design and fabrication of porous carbon materials for electrochemical energy applications.

  4. Ring modulators with enhanced efficiency based on standing-wave operation on a field-matched, interdigitated p-n junction.

    PubMed

    Pavanello, Fabio; Zeng, Xiaoge; Wade, Mark T; Popović, Miloš A

    2016-11-28

    We propose ring modulators based on interdigitated p-n junctions that exploit standing rather than traveling-wave resonant modes to improve modulation efficiency, insertion loss and speed. Matching the longitudinal nodes and antinodes of a standing-wave mode with high (contacts) and low (depletion regions) carrier density regions, respectively, simultaneously lowers loss and increases sensitivity significantly. This approach permits further to relax optical constraints on contacts placement and can lead to lower device capacitance. Such structures are well-matched to fabrication in advanced microelectronics CMOS processes. Device architectures that exploit this concept are presented along with their benefits and drawbacks. A temporal coupled mode theory model is used to investigate the static and dynamic response. We show that modulation efficiencies or loss Q factors up to 2 times higher than in previous traveling-wave geometries can be achieved leading to much larger extinction ratios. Finally, we discuss more complex doping geometries that can improve carrier dynamics for higher modulation speeds in this context.

  5. Metal-insulator transition properties of sputtered silicon-doped and un-doped vanadium dioxide films at terahertz range

    NASA Astrophysics Data System (ADS)

    Zhang, Huafu; Wu, Zhiming; Niu, Ruihua; Wu, Xuefei; he, Qiong; Jiang, Yadong

    2015-03-01

    Silicon-doped and un-doped vanadium dioxide (VO2) films were synthesized on high-purity single-crystal silicon substrates by means of reactive direct current magnetron sputtering followed by thermal annealing. The structure, morphology and metal-insulator transition properties of silicon-doped VO2 films at terahertz range were measured and compared to those of un-doped VO2 films. X-ray diffraction and scanning electron microscopy indicated that doping the films with silicon significantly affects the preferred crystallographic orientation and surface morphologies (grain size, pores and characteristics of grain boundaries). The temperature dependence of terahertz transmission shows that the transition temperature, hysteresis width and transition sharpness greatly depend on the silicon contents while the transition amplitude was relatively insensitive to the silicon contents. Interestingly, the VO2 film doped with a silicon content of 4.6 at.% shows excellent terahertz switching characteristics, namely a small hysteresis width of 4.5 °C, a giant transmission modulation ratio of about 82% and a relatively low transition temperature of 56.1 °C upon heating. This work experimentally indicates that silicon doping can effectively control not only the surface morphology but also the metal-insulator transition characteristics of VO2 films at terahertz range.

  6. Graphene surface plasmons mediated thermal radiation

    NASA Astrophysics Data System (ADS)

    Li, Jiayu; Liu, Baoan; Shen, Sheng

    2018-02-01

    A graphene nanostructure can simultaneously serve as a plasmonic optical resonator and a thermal emitter when thermally heated up. The unique electronic and optical properties of graphene have rendered tremendous potential in the active manipulation of light and the microscopic energy transport in nanostructures. Here we show that the thermally pumped surface plasmonic modes along graphene nanoribbons could dramatically modulate their thermal emission spectra in both near- and far-fields. Based on the fluctuating surface current method implemented by the resistive boundary method, we directly calculate the thermal emission spectrum from single graphene ribbons and vertically paired graphene ribbons. Furthermore, we demonstrate that both the near- and far-field thermal emission from graphene nanostructures can be optimized by tuning the chemical potential of doped graphene. The general guideline to maximize the thermal emission is illustrated by the our recently developed theory on resonant thermal emitters modulated by quasi-normal modes.

  7. Study of Stark Effect in n-doped 1.55 μm InN0.92yP1-1.92yBiy/InP MQWs

    NASA Astrophysics Data System (ADS)

    Bilel, C.; Chakir, K.; Rebey, A.; Alrowaili, Z. A.

    2018-05-01

    The effect of an applied electric field on electronic band structure and optical absorption properties of n-doped InN0.92y P1-1.92y Bi y /InP multiple quantum wells (MQWs) was theoretically studied using a self-consistent calculation combined with the 16-band anti-crossing model. The incorporation of N and Bi atoms into an InP host matrix leads to rapid reduction of the band gap energy covering a large infrared range. The optimization of the well parameters, such as the well/barrier widths, N/Bi compositions and doping density, allowed us to obtain InN0.92y P1-1.92y Bi y /InP MQWs operating at the wavelength 1.55 μm. Application of the electric field causes a red-shift of the fundamental transition energy T 1 accompanied by a significant change in the spatial distribution of confined electron density. The Stark effect on the absorption coefficient of n-doped InN0.92y P1-1.92y Bi y /InP MQWs was investigated. The Bi composition of these MQWs was adjusted for each electric field value in order to maintain the wavelength emission at 1.55 μm.

  8. Nature-Inspired Capillary-Driven Welding Process for Boosting Metal-Oxide Nanofiber Electronics.

    PubMed

    Meng, You; Lou, Kaihua; Qi, Rui; Guo, Zidong; Shin, Byoungchul; Liu, Guoxia; Shan, Fukai

    2018-06-20

    Recently, semiconducting nanofiber networks (NFNs) have been considered as one of the most promising platforms for large-area and low-cost electronics applications. However, the high contact resistance among stacking nanofibers remained to be a major challenge, leading to poor device performance and parasitic energy consumption. In this report, a controllable welding technique for NFNs was successfully demonstrated via a bioinspired capillary-driven process. The interfiber connections were well-achieved via a cooperative concept, combining localized capillary condensation and curvature-induced surface diffusion. With the improvements of the interfiber connections, the welded NFNs exhibited enhanced mechanical property and high electrical performance. The field-effect transistors (FETs) based on the welded Hf-doped In 2 O 3 (InHfO) NFNs were demonstrated for the first time. Meanwhile, the mechanisms involved in the grain-boundary modulation for polycrystalline metal-oxide nanofibers were discussed. When the high-k ZrO x dielectric thin films were integrated into the FETs, the field-effect mobility and operating voltage were further improved to be 25 cm 2 V -1 s -1 and 3 V, respectively. This is one of the best device performances among the reported nanofibers-based FETs. These results demonstrated the potencies of the capillary-driven welding process and grain-boundary modulation mechanism for metal-oxide NFNs, which could be applicable for high-performance, large-scale, and low-power functional electronics.

  9. Observation of reduced phase transition temperature in N-doped thermochromic film of monoclinic VO2

    NASA Astrophysics Data System (ADS)

    Wan, Meinan; Xiong, Mo; Li, Neng; Liu, Baoshun; Wang, Shuo; Ching, Wai-Yim; Zhao, Xiujian

    2017-07-01

    Research on monoclinic (M1) phase of VO2 has attracted a great of interest for smart coating applications due to its exceptional thermochromic property. Herein, we report the results using a novel approach to synthesize N-doped VO2(M1) thin films with high purity by heat treatment in NH3 atmosphere. The N dopant in the film can be regulated by varying NH3 concentration during the annealing process. We find that the N atoms are located at the interstitial sites or substitute oxygen atoms, and the V-N bonds in the VO2 thin films increase with NH3 concentration. The metal to insulator transition (MIT) temperature (τc,h) of the VO2 thin film is effectively reduced from 80.0 to 62.9 °C, while the solar modulation efficiency (ΔTsol) and the modulation efficiency at 2000 nm (ΔT2000nm) are 7.36% and 55.6% respectively. The band gap of N-doped VO2 thin films related to MIT (Eg1) is estimated to be as low as 0.18-0.25 eV whereas the band gap associated with the visible transparency (Eg2) is about 1.50-1.58 eV. Based on the highly accurate first-principles calculations, the Eg1 of VO2 (M1) is reduced after substituted or interstitial N-doping, while the Eg2 alters with the mode of N-doping, which is excellent agreement with experimental measurement.

  10. Control of the inversion-channel MOS properties by Mg doping in homoepitaxial p-GaN layers

    NASA Astrophysics Data System (ADS)

    Takashima, Shinya; Ueno, Katsunori; Matsuyama, Hideaki; Inamoto, Takuro; Edo, Masaharu; Takahashi, Tokio; Shimizu, Mitsuaki; Nakagawa, Kiyokazu

    2017-12-01

    Lateral GaN MOSFETs on homoepitaxial p-GaN layers with different Mg doping concentrations ([Mg]) have been evaluated to investigate the impact of [Mg] on MOS channel properties. It is demonstrated that the threshold voltage (V th) can be controlled by [Mg] along with the theoretical curve. The field effect mobility also shows [Mg] dependence and a maximum field effect mobility of 123 cm2 V-1 s-1 is achieved on [Mg] = 6.5 × 1016 cm-3 layer with V th = 3.0 V. The obtained results indicate that GaN MOSFETs can be designed on the basis of the doping concentration of the p-GaN layer with promising characteristics for the realization of power MOSFETs.

  11. Telmisartan as metabolic modulator: a new perspective in sports doping?

    PubMed

    Sanchis-Gomar, Fabian; Lippi, Giuseppe

    2012-03-01

    The World Antidoping Agency (WADA) has introduced some changes in the 2012 prohibited list. Among the leading innovations to the rules are that both 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (peroxisome proliferator-activated receptor-δ [PPAR-δ]-5' adenosine monophosphate-activated protein kinase [AMPK] agonist) and GW1516 (PPAR-δ-agonist) are no longer categorized as gene doping substances in the new 2012 prohibited list but as metabolic modulators in the class "Hormone and metabolic modulators." This may also be valid for the angotensin II receptor blocker telmisartan. It has recently been shown that telmisartan might induce similar biochemical, biological, and metabolic changes (e.g., mitochondrial biogenesis and changes in skeletal muscle fiber type) as those reported for the former call of substances. We suspect that metabolic modulators abuse such as telmisartan might become a tangible threat in sports and should be thereby targeted as an important antidoping issue. The 2012 WADA prohibited list does not provide telmisartan for a potential doping drug, but arguments supporting the consideration to include them among "metabolic modulators" are at hand.

  12. Negligible carrier freeze-out facilitated by impurity band conduction in highly p-type GaN

    NASA Astrophysics Data System (ADS)

    Gunning, Brendan; Lowder, Jonathan; Moseley, Michael; Alan Doolittle, W.

    2012-08-01

    Highly p-type GaN films with hole concentrations exceeding 6 × 1019 cm-3 grown by metal-modulated epitaxy are electrically characterized. Temperature-dependent Hall effect measurements at cryogenic temperatures reveal minimal carrier freeze-out in highly doped samples, while less heavily doped samples exhibited high resistivity and donor-compensated conductivity as is traditionally observed. Effective activation energies as low as 43 meV were extracted, and a maximum Mg activation efficiency of 52% was found. In addition, the effective activation energy was found to be negatively correlated to the hole concentration. These results indicate the onset of the Mott-Insulator transition leading to impurity band conduction.

  13. Study of novel junctionless Ge n-Tunneling Field-Effect Transistors with lightly doped drain (LDD) region

    NASA Astrophysics Data System (ADS)

    Liu, Xiangyu; Hu, Huiyong; Wang, Bin; Wang, Meng; Han, Genquan; Cui, Shimin; Zhang, Heming

    2017-02-01

    In this paper, a novel junctionless Ge n-Tunneling Field-Effect Transistors (TFET) structure is proposed. The simulation results show that Ion = 5.5 × 10-5A/μm is achieved. The junctionless device structure enhances Ion effectively and increases the region where significant BTBT occurs, comparing with the normal Ge-nTEFT. The impact of the lightly doped drain (LDD) region is investigated. A comparison of Ion and Ioff of the junctionless Ge n-TFET with different channel doping concentration ND and LDD doping concentration NLDD is studied. Ioff is reduced 1 order of magnitude with the optimized ND and NLDD are 1 × 1018cm-3 and 1 × 1017 cm-3, respectively. To reduce the gate induced drain leakage (GIDL) current, the impact of the sloped gate oxide structure is also studied. By employing the sloped gate oxide structure, the below 60 mV/decade subthreshold swing S = 46.2 mV/decade is achieved at Ion = 4.05 × 10-5A/μm and Ion/Ioff = 5.7 × 106.

  14. F-doped VO2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability.

    PubMed

    Dai, Lei; Chen, Shi; Liu, Jianjun; Gao, Yanfeng; Zhou, Jiadong; Chen, Zhang; Cao, Chuanxiang; Luo, Hongjie; Kanehira, Minoru

    2013-07-28

    F-doped VO2 (M1) nanoparticles were prepared via one-pot hydrothermal synthesis. The F-doping can minimise the size of the VO2 (M1) nanoparticles, induce a homogeneous size distribution and effectively decrease the phase transition temperature to 35 °C at 2.93% F in VO2. VO2 smart glass foils obtained by casting these nanoparticles exhibit excellent thermochromism in the near-infrared region, which suggests that these foils can be used for energy-efficient glass. Compared to a pure VO2 foil, the 2.93% F-doped VO2 foil exhibits an increased solar-heat shielding ability (35.1%) and a modified comfortable colour, while still retaining an excellent solar modulation ability (10.7%) and an appropriate visible transmittance (48.7%). The F-doped VO2 foils are the first to simultaneously meet the requirements of a reduced phase transition temperature, diluted colour and excellent thermochromic properties, and these properties make the further improved F-doped VO2 foils suitable for commercial applications in energy efficient glass.

  15. Effects of Contact-Induced Doping on the Behaviors of Organic Photovoltaic Devices

    DOE PAGES

    Wang, Jian; Xu, Liang; Lee, Yun -Ju; ...

    2015-10-09

    Substrates can significantly affect the electronic properties of organic semiconductors. In this paper, we report the effects of contact-induced doping, arising from charge transfer between a high work function hole extraction layer (HEL) and the organic active layer, on organic photovoltaic device performance. Employing a high work function HEL is found to increase doping in the active layer and decrease photocurrent. Combined experimental and modeling investigations reveal that higher doping increases polaron–exciton quenching and carrier recombination within the field-free region. Consequently, there exists an optimal HEL work function that enables a large built-in field while keeping the active layer dopingmore » low. This value is found to be ~0.4 eV larger than the pinning level of the active layer material. As a result, these understandings establish a criterion for optimal design of the HEL when adapting a new active layer system and can shed light on optimizing performance in other organic electronic devices.« less

  16. Experimental study on the 4H-SiC-based VDMOSFETs with lightly doped P-well field-limiting rings termination

    NASA Astrophysics Data System (ADS)

    He, Yan Jing; Lv, Hong Liang; Tang, Xiao Yan; Song, Qing Wen; Zhang, Yi Meng; Han, Chao; Zhang, Yi Men; Zhang, Yu Ming

    2017-03-01

    A lightly doped P-well field-limiting rings (FLRs) termination on 4H-SiC vertical double-implanted metal-oxide-semiconductor field-effect transistors (VDMOSFETs) has been investigated. Based on the simulation, the proposed termination applied to 4H-SiC VDMOSFET could achieve an almost same breakdown voltage (BV) and have the advantage of lower ion-implantation damage comparing with P+ FLRs termination. Meanwhile, this kind of termination also reduces the difficulty and consumption of fabrication process. 4H-SiC VDMOSFETs with lightly doped P-well (FLRs) termination have been fabricated on 10 μm thick epi-layer with nitrogen doping concentration of 6.2 × 1015 cm-3. The maximum breakdown voltage of the 4H-SiC VDMOSFETs has achieved as high as 1610 V at a current of 15 μA, which is very close to the simulated result of 1643 V and about 90% of the plane parallel breakdown voltage of 1780 V. It is considered that P-well FLRs termination is an effective, robust and process-tolerant termination structure suitable for 4H-SiC VDMOSFET.

  17. Effect of amino acid doping on the growth and ferroelectric properties of triglycine sulphate single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghavan, C.M.; Sankar, R.; Mohan Kumar, R.

    2008-02-05

    Effect of amino acids (L-leucine and isoleucine) doping on the growth aspects and ferroelectric properties of triglycine sulphate crystals has been studied. Pure and doped crystals were grown from aqueous solution by low temperature solution growth technique. The cell parameter values were found to significantly vary for doped crystals. Fourier transform infrared analysis confirmed the presence of functional groups in the grown crystal. Morphology study reveals that amino acid doping induces faster growth rate along b-direction leading to a wide b-plane and hence suitable for pyroelectric detector applications. Ferroelectric domain structure has been studied by atomic force microscopy and hysteresismore » measurements reveal an increase of coercive field due to the formation of single domain pattern.« less

  18. Evolution of structural, electronic and magneto-transport properties of Sr2Ir1-xTixO4 5d based oxide

    NASA Astrophysics Data System (ADS)

    Bhatti, Imtiaz Noor; Pramanik, A. K.

    2018-05-01

    To investigate the effect of chemical doping on structural and transport properties in Sr2IrO4, in this study we have doped Ti4+ (3d0) at Ir4+ (5d5) site. Thus Ti doping introduces hole in the electronic band moreover, it also weaken the spin orbital coupling (SOC) and enhance electronic correlation (U). We have prepared the polycrystalline samples of Sr2Ir1-xTixO4 with x = 0.0 0.05 and 0.10 with solid state reaction method. Single phase and chemically pure samples were obtained. All samples crystalizes in tetragonal structure and I41/acd symmetry. The structural analysis shows the evolution of lattice parameter with doping. The temperature dependent resistivity is measured using four probe technique down in the temperature range 5 K-300 K. The resistivity increases with Ti doping. Temperature dependency of resistivity is explained by thermal activated 2-dimensional Mott Variable Hopping range model. To further understand the transport behavior both temperature and field dependent magneto-resistance is also studied. Negative magneto-resistance (MR) has been observed for all samples at 50 K. The MR shows quadratic field dependence at high field, implies a relevance of a quantum interference effect in this spin orbital coupled insulator.

  19. Enhancement of the in-field Jc of MgB2 via SiCl4 doping

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Lin; Dou, S. X.; Hossain, M. S. A.; Cheng, Z. X.; Liao, X. Z.; Ghorbani, S. R.; Yao, Q. W.; Kim, J. H.; Silver, T.

    2010-06-01

    We present the following results. (1) We introduce a doping source for MgB2 , liquid SiCl4 , which is free of C, to significantly enhance the irreversibility field (Hirr) , the upper critical field (Hc2) , and the critical current density (Jc) with a little reduction in the critical temperature (Tc) . (2) Although Si can not be incorporated into the crystal lattice, a significant reduction in the a -axis lattice parameter was found, to the same extent as for carbon doping. (3) Based on the first-principles calculation, it is found that it is reliable to estimate the C concentration just from the reduction in the a -lattice parameter for C-doped MgB2 polycrystalline samples that are prepared at high sintering temperatures, but not for those prepared at low sintering temperatures. Strain effects and magnesium deficiency might be reasons for the a -lattice reduction in non-C or some of the C-added MgB2 samples. (4) The SiCl4 -doped MgB2 shows much higher Jc with superior field dependence above 20 K compared to undoped MgB2 and MgB2 doped with various carbon sources. (5) We introduce a parameter, RHH (Hc2/Hirr) , which can clearly reflect the degree of flux-pinning enhancement, providing us with guidance for further enhancing Jc . (6) It was found that spatial variation in the charge-carrier mean free path is responsible for the flux-pinning mechanism in the SiCl4 treated MgB2 with large in-field Jc .

  20. Redshift of the light emission from highly strained In0.3Ga0.7As/GaAs quantum wells by dipole δ doping

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Wang, S.-M.; Wang, X.-D.; Larsson, A.

    2005-08-01

    We have studied theoretically the energy band structures and optical properties of highly strained dipole δ-doped In0.3Ga0.7As/GaAs single quantum wells. Including dopant diffusion effect, strain in the quantum well, spin-orbital interactions, and many-body effects, the self-consistent calculations of the eight-band k •p model and the Poisson equation show that the dipole δ doping induces an electric field across the In0.3Ga0.7As quantum well by the Stark effect so that both the interband transition energy and the wave-function overlap between the ground-state electrons and holes are reduced. Applying an external bias across the quantum well partially cancels the built-in electric field and reduces the wavelength redshift. The calculated material gain peak is close to the experimental lasing wavelength.

  1. Experimental and numerical investigation of contact-area-limited doping for top-contact pentacene thin-film transistors with Schottky contact.

    PubMed

    Noda, Kei; Wada, Yasuo; Toyabe, Toru

    2015-10-28

    Effects of contact-area-limited doping for pentacene thin-film transistors with a bottom-gate, top-contact configuration were investigated. The increase in the drain current and the effective field-effect mobility was achieved by preparing hole-doped layers underneath the gold contact electrodes by coevaporation of pentacene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), confirmed by using a thin-film organic transistor advanced simulator (TOTAS) incorporating Schottky contact with a thermionic field emission (TFE) model. Although the simulated electrical characteristics fit the experimental results well only in the linear regime of the transistor operation, the barrier height for hole injection and the gate-voltage-dependent hole mobility in the pentacene transistors were evaluated with the aid of the device simulation. This experimental data analysis with the simulation indicates that the highly-doped semiconducting layers prepared in the contact regions can enhance the charge carrier injection into the active semiconductor layer and concurrent trap filling in the transistor channel, caused by the mitigation of a Schottky energy barrier. This study suggests that both the contact-area-limited doping and the device simulation dealing with Schottky contact are indispensable in designing and developing high-performance organic thin-film transistors.

  2. Fiber Amplifier Report for NEPP 2008

    NASA Technical Reports Server (NTRS)

    Thomes, Joe; Ott, Melanie; LaRocca, Frank; Chuska, Rick; Switzer, Rob

    2008-01-01

    Ongoing qualification activities of LiNbO3 modulators. Passive (unpumped) radiation testing of Er-, Yb-, and Er/Yb-doped fibers: a) Yb-doped fibers exhibit higher radiation resistance than Er-doped fibers; b) Er/Yb co-doped fibers exhibit largest radiation resistance. Active (pumped) radiation testing of Yb-doped fibers conducted at NASA GSFC: a) Typical decay behavior observed; b) No comparison could be made to other fibers due to problems with test setup. Development of new high power fiber terminations.

  3. Electron mobility in modulation-doped heterostructures

    NASA Technical Reports Server (NTRS)

    Walukiewicz, W.; Ruda, H. E.; Lagowski, J.; Gatos, H. C.

    1984-01-01

    A model for electron mobility in a two-dimensional electron gas confined in a triangular well was developed. All major scattering processes (deformation potential and piezoelectric acoustic, polar optical, ionized impurity, and alloy disorder) were included, as well as intrasubband and intersubband scattering. The model is applied to two types of modulation-doped heterostructures, namely GaAs-GaAlAs and In(0.53)Ga(0.47)As-Al(0.52)In(0.48)As. In the former case, phonons and remote ionized impurities ultimately limit the mobility, whereas in the latter, alloy disorder is a predominant scattering process at low temperatures. The calculated mobilities are in very good agreement with recently reported experimental characteristics for both GaAs-Ga(1-x)Al(x)As and In(0.53)Ga(0.47)As-Al(0.52)In(0.48)As modulation-doped heterostructures.

  4. Two types of nematicity in the phase diagram of the cuprate superconductor YBa2Cu3Oy

    NASA Astrophysics Data System (ADS)

    Cyr-Choinière, O.; Grissonnanche, G.; Badoux, S.; Day, J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Doiron-Leyraud, N.; Taillefer, Louis

    2015-12-01

    Nematicity has emerged as a key feature of cuprate superconductors, but its link to other fundamental properties such as superconductivity, charge order, and the pseudogap remains unclear. Here we use measurements of transport anisotropy in YBa2Cu3Oy to distinguish two types of nematicity. The first is associated with short-range charge-density-wave modulations in a doping region near p =0.12 . It is detected in the Nernst coefficient, but not in the resistivity. The second type prevails at lower doping, where there are spin modulations but no charge modulations. In this case, the onset of in-plane anisotropy—detected in both the Nernst coefficient and the resistivity—follows a line in the temperature-doping phase diagram that tracks the pseudogap energy. We discuss two possible scenarios for the latter nematicity.

  5. Continuous-wave supercontinuum laser based on an erbium-doped fiber ring cavity incorporating a highly nonlinear optical fiber.

    PubMed

    Lee, Ju Han; Takushima, Yuichi; Kikuchi, Kazuro

    2005-10-01

    We experimentally demonstrate a novel erbium-doped fiber based continuous-wave (cw) supercontinuum laser. The laser has a simple ring-cavity structure incorporating an erbium-doped fiber and a highly nonlinear dispersion-shifted fiber (HNL-DSF). Differently from previously demonstrated cw supercontinuum sources based on single propagation of a strong Raman pump laser beam through a highly nonlinear fiber, erbium gain inside the cavity generates a seed light oscillation, and the oscillated light subsequently evolves into a supercontinuum by nonlinear effects such as modulation instability and stimulated Raman scattering in the HNL-DSF. High quality of the depolarized supercontinuum laser output with a spectral bandwidth larger than 250 nm is readily achieved.

  6. Defect characterization and magnetic properties in un-doped ZnO thin film annealed in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Ning, Shuai; Zhan, Peng; Wang, Wei-Peng; Li, Zheng-Cao; Zhang, Zheng-Jun

    2014-12-01

    Highly c-axis oriented un-doped zinc oxide (ZnO) thin films, each with a thickness of ~ 100 nm, are deposited on Si (001) substrates by pulsed electron beam deposition at a temperature of ~ 320 °C, followed by annealing at 650 °C in argon in a strong magnetic field. X-ray photoelectron spectroscopy (XPS), positron annihilation analysis (PAS), and electron paramagnetic resonance (EPR) characterizations suggest that the major defects generated in these ZnO films are oxygen vacancies. Photoluminescence (PL) and magnetic property measurements indicate that the room-temperature ferromagnetism in the un-doped ZnO film originates from the singly ionized oxygen vacancies whose number depends on the strength of the magnetic field applied in the thermal annealing process. The effects of the magnetic field on the defect generation in the ZnO films are also discussed.

  7. n-Type Doping of Vapor-Liquid-Solid Grown GaAs Nanowires.

    PubMed

    Gutsche, Christoph; Lysov, Andrey; Regolin, Ingo; Blekker, Kai; Prost, Werner; Tegude, Franz-Josef

    2011-12-01

    In this letter, n-type doping of GaAs nanowires grown by metal-organic vapor phase epitaxy in the vapor-liquid-solid growth mode on (111)B GaAs substrates is reported. A low growth temperature of 400°C is adjusted in order to exclude shell growth. The impact of doping precursors on the morphology of GaAs nanowires was investigated. Tetraethyl tin as doping precursor enables heavily n-type doped GaAs nanowires in a relatively small process window while no doping effect could be found for ditertiarybutylsilane. Electrical measurements carried out on single nanowires reveal an axially non-uniform doping profile. Within a number of wires from the same run, the donor concentrations ND of GaAs nanowires are found to vary from 7 × 10(17) cm(-3) to 2 × 10(18) cm(-3). The n-type conductivity is proven by the transfer characteristics of fabricated nanowire metal-insulator-semiconductor field-effect transistor devices.

  8. Wavelength locking of single emitters and multi-emitter modules: simulation and experiments

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Rappaport, Noam; Peleg, Ophir; Berk, Yuri; Dahan, Nir; Klumel, Genady; Baskin, Ilya; Levy, Moshe

    2016-03-01

    Wavelength-stabilized high-brightness single emitters are commonly used in fiber-coupled laser diode modules for pumping Yb-doped lasers at 976 nm, and Nd-doped ones at 808 nm. We investigate the spectral behavior of single emitters under wavelength-selective feedback from a volume Bragg (or hologram) grating (VBG) in a multi-emitter module. By integrating a full VBG model as a multi-layer thin film structure with commercial raytracing software, we simulated wavelength locking conditions as a function of beam divergence and angular alignment tolerances. Good correlation between the simulated VBG feedback strength and experimentally measured locking ranges, in both VBG misalignment angle and laser temperature, is demonstrated. The challenges of assembling multi-emitter modules based on beam-stacked optical architectures are specifically addressed, where the wavelength locking conditions must be achieved simultaneously with high fiber coupling efficiency for each emitter in the module. It is shown that angular misorientation between fast and slow-axis collimating optics can have a dramatic effect on the spectral and power performance of the module. We report the development of our NEON-S wavelength-stabilized fiber laser pump module, which uses a VBG to provide wavelength-selective optical feedback in the collimated portion of the beam. Powered by our purpose-developed high-brightness single emitters, the module delivers 47 W output at 11 A from an 0.15 NA fiber and a 0.3 nm linewidth at 976 nm. Preliminary wavelength-locking results at 808 nm are also presented.

  9. Magnetic quantum phase transition in Cr-doped Bi2(SexTe1-x)3 driven by the Stark effect

    NASA Astrophysics Data System (ADS)

    Zhang, Zuocheng; Feng, Xiao; Wang, Jing; Lian, Biao; Zhang, Jinsong; Chang, Cuizu; Guo, Minghua; Ou, Yunbo; Feng, Yang; Zhang, Shou-Cheng; He, Ke; Ma, Xucun; Xue, Qi-Kun; Wang, Yayu

    2017-10-01

    The recent experimental observation of the quantum anomalous Hall effect has cast significant attention on magnetic topological insulators. In these magnetic counterparts of conventional topological insulators such as Bi2Te3, a long-range ferromagnetic state can be established by chemical doping with transition-metal elements. However, a much richer electronic phase diagram can emerge and, in the specific case of Cr-doped Bi2(SexTe1-x)3, a magnetic quantum phase transition tuned by the actual chemical composition has been reported. From an application-oriented perspective, the relevance of these results hinges on the possibility to manipulate magnetism and electronic band topology by external perturbations such as an electric field generated by gate electrodes—similar to what has been achieved in conventional diluted magnetic semiconductors. Here, we investigate the magneto-transport properties of Cr-doped Bi2(SexTe1-x)3 with different compositions under the effect of a gate voltage. The electric field has a negligible effect on magnetic order for all investigated compositions, with the remarkable exception of the sample close to the topological quantum critical point, where the gate voltage reversibly drives a ferromagnetic-to-paramagnetic phase transition. Theoretical calculations show that a perpendicular electric field causes a shift in the electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and, in turn, a magnetic phase transition.

  10. Experimental Performance of a Single-Mode Ytterbium-doped Fiber Ring Laser with Intracavity Modulator

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2012-01-01

    We have developed a linearly polarized Ytterbium-doped fiber ring laser with a single longitudinal mode output at 1064 run. A fiber-coupled intracavity phase modulator ensured mode-hop free operation and allowed fast frequency tuning. The fiber laser was locked with high stability to an iodine-stabilized laser, showing a frequency noise suppression of a factor approx 10 (exp 5) at 1 mHz

  11. Top-gate organic depletion and inversion transistors with doped channel and injection contact

    NASA Astrophysics Data System (ADS)

    Liu, Xuhai; Kasemann, Daniel; Leo, Karl

    2015-03-01

    Organic field-effect transistors constitute a vibrant research field and open application perspectives in flexible electronics. For a commercial breakthrough, however, significant performance improvements are still needed, e.g., stable and high charge carrier mobility and on-off ratio, tunable threshold voltage, as well as integrability criteria such as n- and p-channel operation and top-gate architecture. Here, we show pentacene-based top-gate organic transistors operated in depletion and inversion regimes, realized by doping source and drain contacts as well as a thin layer of the transistor channel. By varying the doping concentration and the thickness of the doped channel, we control the position of the threshold voltage without degrading on-off ratio or mobility. Capacitance-voltage measurements show that an inversion channel can indeed be formed, e.g., an n-doped channel can be inverted to a p-type inversion channel with highly p-doped contacts. The Cytop polymer dielectric minimizes hysteresis, and the transistors can be biased for prolonged cycles without a shift of threshold voltage, indicating excellent operation stability.

  12. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Konishi, Keita; Goto, Ken; Murakami, Hisashi; Kumagai, Yoshinao; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka

    2017-03-01

    Ga2O3 field-plated Schottky barrier diodes (FP-SBDs) were fabricated on a Si-doped n--Ga2O3 drift layer grown by halide vapor phase epitaxy on a Sn-doped n+-Ga2O3 (001) substrate. The specific on-resistance of the Ga2O3 FP-SBD was estimated to be 5.1 mΩ.cm2. Successful field-plate engineering resulted in a high breakdown voltage of 1076 V. A larger-than-expected effective barrier height of 1.46 eV, which was extracted from the temperature-dependent current-voltage characteristics, could be caused by the effect of fluorine atoms delivered in a hydrofluoric acid solution process.

  13. Spectroscopic and crystal-field analysis of new Yb-doped laser materials

    NASA Astrophysics Data System (ADS)

    Haumesser, Paul-Henri; Gaumé, Romain; Viana, Bruno; Antic-Fidancev, Elisabeth; Vivien, Daniel

    2001-06-01

    Crystal-field effects are very important as far as laser performances of Yb-doped materials are concerned. In order to simplify the interpretation of low-temperature spectra, two tools derived from a careful examination of crystal-field interaction are presented. Both approaches are successfully applied in the case of new Yb-doped materials, namely Ca3Y2(BO3)4 (CYB), Ca3Gd2(BO3)4 (CaGB), Sr3Y(BO3)3 (SrYBO), Ba3Lu(BO3)3 (BLuB), Y2SiO5 (YSO), Ca2Al2SiO7 (CAS) and SrY4(SiO4)3O (SYS). The 2F7/2 splitting is particularly large in these materials and favourable to a quasi-three-level laser operating scheme. Calculations performed using the point charge electrostatic model for these compounds and using a consistent set of effective atomic charges confirm the experimental results. This should permit to use this model in a predictive approach.

  14. The enhanced efficiency of graphene-silicon solar cells by electric field doping.

    PubMed

    Yu, Xuegong; Yang, Lifei; Lv, Qingmin; Xu, Mingsheng; Chen, Hongzheng; Yang, Deren

    2015-04-28

    The graphene-silicon (Gr-Si) Schottky junction solar cell has been recognized as one of the most low-cost candidates in photovoltaics due to its simple fabrication process. However, the low Gr-Si Schottky barrier height largely limits the power conversion efficiency of Gr-Si solar cells. Here, we demonstrate that electric field doping can be used to tune the work function of a Gr film and therefore improve the photovoltaic performance of the Gr-Si solar cell effectively. The electric field doping effects can be achieved either by connecting the Gr-Si solar cell to an external power supply or by polarizing a ferroelectric polymer layer integrated in the Gr-Si solar cell. Exploration of both of the device architecture designs showed that the power conversion efficiency of Gr-Si solar cells is more than twice of the control Gr-Si solar cells. Our study opens a new avenue for improving the performance of Gr-Si solar cells.

  15. Field-Theoretical Studies of a doped Mott Insulator

    NASA Astrophysics Data System (ADS)

    Juricic, Vladimir

    2006-06-01

    In this thesis, the magnetic and the transport properties of La(2-x)Sr(x)CuO(4) in the undoped and lightly doped regime are investigated. In Chapter 2, we consider the role of the Dzyaloshinskii-Moriya (DM) and the pseudodipolar (XY) interactions in determining the magnetic properties of the undoped material, La(2)CuO(4), motivated by recent experiments, which show a complete anisotropy in the magnetic susceptibility response. We start with the microscopic spin model, which, besides the Heisenberg superexchange interaction, contains the anisotropic DM and the XY interactions. We map this microscopic model into a corresponding field theory, which turns out to be a generalized nonlinear sigma model. The effect of the anisotropies is to introduce gaps for the spin excitations, which are responsible for the ground-state properties of the material. When a magnetic field is applied, the DM anisotropy leads to an unexpected linear coupling of the staggered magnetization to the magnetic field, which is responsible for a completely anisotropic magnetic susceptibility, in agreement with experiments. In Chapter 3, we investigate the effect of the DM and the XY anisotropies on the magnetism when Sr doping is introduced in La(2)CuO(4). Our starting point is the nonlinear sigma model, which includes these anisotropies, and also the dopant holes, represented via an effective dipole field which couples to the background magnetization current. In the antiferromagnetic phase, x<2%, the dipole-magnetization current coupling leads to a decrease of the spin gaps, in good agreement with recent experiments. The DM gap gives rise to the stability of the antiferromagnetic state up to the doping level x=2%, at which the dipole field acquires a nonzero expectation value, causing a change in the magnetic ground state of the system. Beyond this doping concentration, the spins rearrange to form an incommensurate helicoidal state, which gives rise to two incommensurate peaks in the spin-glass phase of La(2-x)Sr(x)CuO(4), as observed by neutron scattering experiments. The incommensurability is related to the doping and the XY gap in a way that allows us to explain the linear doping dependence of the incommensurability at higher doping, as well as the deviation from the linear behavior at the onset of the spin-glass phase. We propose a measurement of the doping dependence of the incommensurability in the magnetic field as a smoking-gun experiment that would discriminate between the helicoidal and the stripe scenarios in the spin-glass phase of La(2-x)Sr(x)CuO(4). In Chapter 4, we study the dynamics of topological defects of a frustrated spin system displaying helicoidal order. As a starting point we consider the SO(3) nonlinear sigma model to describe long-wavelength fluctuations around the noncollinear spin state. This model allows for vortex-like topological defects, associated with the change of chirality of the noncollinear state. We consider single vortices and vortex-antivortex pairs, and quantize them using the collective coordinate method, which allows us to represent the defect as a particle coupled to a bath of harmonic oscillators. As a result, the defect motion is damped due to the scattering by the magnons. Finally, motivated by recent experiments, we consider an application of the model for describing the transport in lightly doped La(2-x)Sr(x)CuO(4).

  16. Effects of magnetic impurities on upper critical fields in the high-T c superconductor La-doped CaFe2As2

    NASA Astrophysics Data System (ADS)

    Jung, Soon-Gil; Shin, Soohyeon; Jang, Harim; Mikheenko, Pavlo; Johansen, Tom H.; Park, Tuson

    2017-08-01

    We investigate the effects of magnetic impurities on the upper critical field (μ 0 H c2) in La-doped CaFe2As2 (LaCa122) single crystals. The magnetic field dependency of the superconducting transition temperature (T c) for LaCa122 is rapidly suppressed at low fields up to ˜1 kOe despite its large μ 0 H c2(0) value on the order of tens of Tesla, resulting in a large positive curvature of μ 0 H c2(T) near T c. The magnetization hysteresis (M-H) loop at temperatures above T c shows a ferromagnetic-like signal and the M(H) value rapidly increases with increasing magnetic field up to ˜1 kOe. Taken together with the linear suppression of T c with the magnetization in the normal state, these results suggest that the large upward curvature of μ 0 H c2(T) near T c in La-doped CaFe2As2 mainly originates from the suppression of superconductivity due to the presence of magnetic impurities.

  17. High-injection effects in near-field thermophotovoltaic devices.

    PubMed

    Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe

    2017-11-20

    In near-field thermophotovoltaics, a substantial enhancement of the electrical power output is expected as a result of the larger photogeneration of electron-hole pairs due to the tunneling of evanescent modes from the thermal radiator to the photovoltaic cell. The common low-injection approximation, which considers that the local carrier density due to photogeneration is moderate in comparison to that due to doping, needs therefore to be assessed. By solving the full drift-diffusion equations, the existence of high-injection effects is studied in the case of a GaSb p-on-n junction cell and a radiator supporting surface polaritons. Depending on doping densities and surface recombination velocity, results reveal that high-injection phenomena can already take place in the far field and become very significant in the near field. Impacts of high injection on maximum electrical power, short-circuit current, open-circuit voltage, recombination rates, and variations of the difference between quasi-Fermi levels are analyzed in detail. By showing that an optimum acceptor doping density can be estimated, this work suggests that a detailed and accurate modeling of the electrical transport is also key for the design of near-field thermophotovoltaic devices.

  18. Chemical sensors based on surface charge transfer

    NASA Astrophysics Data System (ADS)

    Mohtasebi, Amirmasoud; Kruse, Peter

    2018-02-01

    The focus of this review is an introduction to chemiresistive chemical sensors. The general concept of chemical sensors is briefly introduced, followed by different architectures of chemiresistive sensors and relevant materials. For several of the most common systems, the fabrication of the active materials used in such sensors and their properties are discussed. Furthermore, the sensing mechanism, advantages, and limitations of each group of chemiresistive sensors are briefly elaborated. Compared to electrochemical sensors, chemiresistive sensors have the key advantage of a simpler geometry, eliminating the need for a reference electrode. The performance of bulk chemiresistors can be improved upon by using freestanding ultra-thin films (nanomaterials) or field effect geometries. Both of those concepts have also been combined in a gateless geometry, where charge transport though a percolation network of nanomaterials is modulated via adsorbate doping.

  19. Monolithic integration of SOI waveguide photodetectors and transimpedance amplifiers

    NASA Astrophysics Data System (ADS)

    Li, Shuxia; Tarr, N. Garry; Ye, Winnie N.

    2018-02-01

    In the absence of commercial foundry technologies offering silicon-on-insulator (SOI) photonics combined with Complementary Metal Oxide Semiconductor (CMOS) transistors, monolithic integration of conventional electronics with SOI photonics is difficult. Here we explore the implementation of lateral bipolar junction transistors (LBJTs) and Junction Field Effect Transistors (JFETs) in a commercial SOI photonics technology lacking MOS devices but offering a variety of n- and p-type ion implants intended to provide waveguide modulators and photodetectors. The fabrication makes use of the commercial Institute of Microelectronics (IME) SOI photonics technology. Based on knowledge of device doping and geometry, simple compact LBJT and JFET device models are developed. These models are then used to design basic transimpedance amplifiers integrated with optical waveguides. The devices' experimental current-voltage characteristics results are reported.

  20. Unusual doping effect of non-magnetic ion on magnetic properties of CuFe1-xGaxO2

    NASA Astrophysics Data System (ADS)

    Shi, Liran; Jin, Zhao; Chen, Borong; Xia, Nianming; Zuo, Huakun; Wang, Yeshuai; Ouyang, Zhongwen; Xia, Zhengcai

    2014-12-01

    The structural and magnetic properties of nonmagnetic Ga3+ ion doped CuFe1-xGaxO2 (x=0, 0.02, 0.03, and 0.05) single crystal samples have been investigated. In pulsed high magnetic fields, the field-induced multi-step transitions were observed in all the samples. Compared with pure CuFeO2, the transition temperatures, critical magnetic fields decrease and the magnetic hysteresis of the doped samples become small, which may result from the partial release of the spin frustration and the changes of the magnetic coupling both inter- and intra-planes due to the Ga3+ dopant. The magnetization measurements show an abnormal dilution behavior, especially in a lower temperature region, the magnetic moment was enhanced due to the nonmagnetic Ga3+ ion doping, the enhancement becomes more obviously in the sample with the Ga3+ doping level of x=0.03. These results may connected with the substitution of nonmagnetic Ga3+ ions destroying the stability of ground state and affecting the stability of the ferroelectricity incommensurate phase. Based on the experimental results, a super-cell model and their magnetic diagram were assumed.

  1. Exploration of dynamic dipole polarizability of impurity doped quantum dots in presence of noise

    NASA Astrophysics Data System (ADS)

    Ghosh, Anuja; Bera, Aindrila; Saha, Surajit; Arif, Sk. Md.; Ghosh, Manas

    2018-02-01

    Present study strives to perform a rigorous exploration of dynamic dipole polarizability (DDP) of GaAs quantum dot (QD) containing dopant with special reference to influence of Gaussian white noise. Several physical quantities have been varied over a range to observe the modulations of the DDP profiles. Aforesaid physical quantities include magnetic field, confinement potential, dopant location, dopant potential, noise strength, aluminium concentration (only for Alx Ga1 - x As alloy QD), position-dependent effective mass (PDEM), position-dependent dielectric screening function (PDDSF), anisotropy, hydrostatic pressure (HP) and temperature. The DDP profiles reveal noticeable characteristics governed by the particular physical quantity involved, presence/absence of noise, the manner (additive/multiplicative) noise is applied to the system and the incoming photon frequency. As a general observation we have found that additive noise causing greater deviation of the DDP profile from noise-free state than its multiplicative neighbor. The study highlights viable means of harnessing DDP of doped QD under the governance of noise by appropriate adjustment of several relevant factors. The study merits importance in the light of technological applications of QD-based devices where noise appears as an integral component.

  2. Interaction of surface plasmon polaritons in heavily doped GaN microstructures with terahertz radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melentev, G. A., E-mail: gamelen@spbstu.ru; Shalygin, V. A.; Vorobjev, L. E.

    2016-03-07

    We present the results of experimental and theoretical studies of the surface plasmon polariton excitations in heavily doped GaN epitaxial layers. Reflection and emission of radiation in the frequency range of 2–20 THz including the Reststrahlen band were investigated for samples with grating etched on the sample surface, as well as for samples with flat surface. The reflectivity spectrum for p-polarized radiation measured for the sample with the surface-relief grating demonstrates a set of resonances associated with excitations of different surface plasmon polariton modes. Spectral peculiarities due to the diffraction effect have been also revealed. The characteristic features of themore » reflectivity spectrum, namely, frequencies, amplitudes, and widths of the resonance dips, are well described theoretically by a modified technique of rigorous coupled-wave analysis of Maxwell equations. The emissivity spectra of the samples were measured under epilayer temperature modulation by pulsed electric field. The emissivity spectrum of the sample with surface-relief grating shows emission peaks in the frequency ranges corresponding to the decay of the surface plasmon polariton modes. Theoretical analysis based on the blackbody-like radiation theory well describes the main peculiarities of the observed THz emission.« less

  3. High Electron Mobility SiGe/Si Transistor Structures on Sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Mueller, Carl H.; Croke, Edward T.; Ponchak, George E.

    2003-01-01

    SiGe/Si n-type modulation doped field effect structures and transistors (n-MODFETs) have been fabricated on r-plane sapphire substrates. The structures were deposited using molecular beam epitaxy, and antimony dopants were incorporated via a delta doping process. Secondary ion mass spectroscopy (SIMS) indicates that the peak antimony, concentration was approximately 4 x 10(exp19) per cubic cm. The electron mobility was over 1,200 and 13,000 sq cm/V-sec at room temperature and 0.25 K, respectively. At these two temperatures, the electron carrier densities were 1.6 and 1.33 x 10(exp 12) per sq cm, thus demonstrating that carrier confinement was excellent. Shubnikov-de Haas oscillations were observed at 0.25 K, thus confirming the two-dimensional nature of the carriers. Transistors, with gate lengths varying from 1 micron to 5 microns, were fabricated using these structures and dc characterization was performed at room temperature. The saturated drain current region extended over a wide source-to-drain voltage (V(sub DS)) range, with (V(sub DS)) knee voltages of approximately 0.5 V and increased leakage starting at voltages slightly higher than 4 V.

  4. The Athlete Biological Passport: an integral element of innovative strategies in antidoping.

    PubMed

    Vernec, Alan R

    2014-05-01

    Concern for the health of athletes and integrity of sport resulted in the banning of specific substances although many years passed before analytical testing took place. Soon doping control programmes became synonymous with urine tests and adverse analytical findings. This system has its limits due to the detection window of prohibited substances, the timing of sample collections and the sophistication of some doping regimens. There have been a number of situations where these limits were demonstrated by athletes who proclaimed innocence based on passing their analytical tests only to later confess to doping. New strategies were called for to protect clean athletes. In the current World Anti-Doping Code, there are eight means to an Anti-Doping Rule Violation (ADRV). Article 2.2 states that the use of a prohibited substance may be established by any reliable means including witness statements, documentary evidence or evaluations of longitudinal profiling. In 2006, the World Anti-Doping Agency (WADA) with the support of some International Federations (IFs) gathered a group of experts to develop a harmonised programme on longitudinal profiling, or serial analysis of indirect biomarkers of doping, that was both scientifically and legally robust. This culminated in the WADA Athlete Biological Passport (ABP) Operating Guidelines and Technical Documents, published in 2009. The ABP is a paradigm that infers the use of prohibited substance (or method) by the monitoring of discriminant biomarkers over time. The haematological module detects blood manipulation by the use of erythropoietic stimulating agents or via blood transfusions. The steroidal module aims to identify endogenous anabolic androgenic steroids when administered exogenously and other indirect steroid doping substances or methods. Other ABP modules (endocrine, 'omics') are being developed. The term passport, first coined in 2000, is now defined in the ABP Guidelines as the longitudinal profile and all other relevant information including training, competitions and information derived from investigations. In the 2015 World Anti-Doping Code, investigations or enquiries gathered from other sources will play an even more prominent role.

  5. Research on the ϕ-OTDR fiber sensor sensitive for all of the distance

    NASA Astrophysics Data System (ADS)

    Kong, Yong; Liu, Yang; Shi, Yi; Ansari, Farhad; Taylor, Todd

    2018-01-01

    In this paper, a modified construction for the traditional ϕ-OTDR fiber sensor sensitive for all of distance is presented, the related numerical simulation and experiment analysis results show that this construction can reduce the gain imbalance for all of the distance along the fiber caused by the Rayleigh scattering loss of the fiber and the gain imbalance of Raman fiber amplifier in this fiber sensor system. In order to improve further the vibration sensitivity of this system, the possible methods to restrain the influences of modulation instability effect, Stimulated Brillouin effect, reduce the amplified spontaneous emission (ASE) noises of Raman laser (RL) and Erbium3+-doped fiber amplifiers (EDFA), double Rayleigh backscattering noise in this system are discussed, which will offer a great reference value for the science research and engineering application in the field of fiber sensor as we believe.

  6. All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.

    PubMed

    Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis

    2013-05-20

    This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation.

  7. Phase-field model of insulator-to-metal transition in VO2 under an electric field

    NASA Astrophysics Data System (ADS)

    Shi, Yin; Chen, Long-Qing

    2018-05-01

    The roles of an electric field and electronic doping in insulator-to-metal transitions are still not well understood. Here we formulated a phase-field model of insulator-to-metal transitions by taking into account both structural and electronic instabilities as well as free electrons and holes in VO2, a strongly correlated transition-metal oxide. Our phase-field simulations demonstrate that in a VO2 slab under a uniform electric field, an abrupt universal resistive transition occurs inside the supercooling region, in sharp contrast to the conventional Landau-Zener smooth electric breakdown. We also show that hole doping may decouple the structural and electronic phase transitions in VO2, leading to a metastable metallic monoclinic phase which could be stabilized through a geometrical confinement and the size effect. This work provides a general mesoscale thermodynamic framework for understanding the influences of electric field, electronic doping, and stress and strain on insulator-to-metal transitions and the corresponding mesoscale domain structure evolution in VO2 and related strongly correlated systems.

  8. Crystal field parameters and energy levels scheme of trivalent chromium doped BSO

    NASA Astrophysics Data System (ADS)

    Petkova, P.; Andreici, E.-L.; Avram, N. M.

    2014-11-01

    The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.

  9. Crystal field parameters and energy levels scheme of trivalent chromium doped BSO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petkova, P.; Andreici, E.-L.; Avram, N. M., E-mail: n1m2marva@yahoo.com

    The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of themore » crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.« less

  10. Electrostatic modification of novel materials

    NASA Astrophysics Data System (ADS)

    Ahn, C. H.; Bhattacharya, A.; di Ventra, M.; Eckstein, J. N.; Frisbie, C. Daniel; Gershenson, M. E.; Goldman, A. M.; Inoue, I. H.; Mannhart, J.; Millis, Andrew J.; Morpurgo, Alberto F.; Natelson, Douglas; Triscone, Jean-Marc

    2006-10-01

    Application of the field-effect transistor principle to novel materials to achieve electrostatic doping is a relatively new research area. It may provide the opportunity to bring about modifications of the electronic and magnetic properties of materials through controlled and reversible changes of the carrier concentration without modifying the level of disorder, as occurs when chemical composition is altered. As well as providing a basis for new devices, electrostatic doping can in principle serve as a tool for studying quantum critical behavior, by permitting the ground state of a system to be tuned in a controlled fashion. In this paper progress in electrostatic doping of a number of materials systems is reviewed. These include structures containing complex oxides, such as cuprate superconductors and colossal magnetoresistive compounds, organic semiconductors, in the form of both single crystals and thin films, inorganic layered compounds, single molecules, and magnetic semiconductors. Recent progress in the field is discussed, including enabling experiments and technologies, open scientific issues and challenges, and future research opportunities. For many of the materials considered, some of the results can be anticipated by combining knowledge of macroscopic or bulk properties and the understanding of the field-effect configuration developed during the course of the evolution of conventional microelectronics. However, because electrostatic doping is an interfacial phenomenon, which is largely an unexplored field, real progress will depend on the development of a better understanding of lattice distortion and charge transfer at interfaces in these systems.

  11. Room temperature synthesis of Mn2+ doped ZnS d-dots and observation of tunable dual emission: Effects of doping concentration, temperature, and ultraviolet light illumination

    NASA Astrophysics Data System (ADS)

    Kole, A. K.; Tiwary, C. S.; Kumbhakar, P.

    2013-03-01

    Mn2+ doped (0-50.0 molar %) ZnS d-dots have been synthesized in water medium by using an environment friendly low cost chemical technique. Tunable dual emission in UV and yellow-orange regions is achieved by tailoring the Mn2+ doping concentration in the host ZnS nanocrystal. The optimum doping concentration for achieving efficient photoluminescence (PL) emission is determined to be ˜1.10 (at. %) corresponding to 40.0 (molar %) of Mn2+ doping concentration used during synthesis. The mechanism of charge transfer from the host to the dopant leading to the intensity modulated tunable (594-610 nm) yellow-orange PL emission is straightforwardly understood as no capping agent is used. The temperature dependent PL emission measurements are carried out, viz., in 1.10 at. % Mn2+ doped sample and the experimental results are explained by using a theoretical PL emission model. It is found that the ratio of non-radiative to radiative recombination rates is temperature dependent and this phenomenon has not been reported, so far, in Mn2+ doped ZnS system. The colour tuning of the emitted light from the samples are evident from the calculated chromaticity coordinates. UV light irradiation for 150 min in 40.0 (molar %) Mn2+ doped sample shows an enhancement of 33% in PL emission intensity.

  12. Review on charge transfer and chemical activity of TiO2: Mechanism and applications

    NASA Astrophysics Data System (ADS)

    Cai, Yongqing; Feng, Yuan Ping

    2016-12-01

    Charge separation and transfer at the interface between two materials play a significant role in various atomic-scale processes and energy conversion systems. In this review, we present the mechanism and outcome of charge transfer in TiO2, which is extensively explored for photocatalytic applications in the field of environmental science. We list several experimental and computational methods to estimate the amount of charge transfer. The effects of the work function, defects and doping, and employment of external electric field on modulating the charge transfer are presented. The interplay between the band bending and carrier transport across the surface and interface consisting of TiO2 is discussed. We show that the charge transfer can also strongly affect the behavior of deposited nanoparticles on TiO2 through built-in electric field that it creates. This review encompasses several advances of composite materials where TiO2 is combined with two-dimensional materials like graphene, MoS2, phosphorene, etc. The charge transport in the TiO2-organohalide perovskite with respect to the electron-hole separation at the interface is also discussed.

  13. Degradation Mechanisms for GaN and GaAs High Speed Transistors

    PubMed Central

    Cheney, David J.; Douglas, Erica A.; Liu, Lu; Lo, Chien-Fong; Gila, Brent P.; Ren, Fan; Pearton, Stephen J.

    2012-01-01

    We present a review of reliability issues in AlGaN/GaN and AlGaAs/GaAs high electron mobility transistors (HEMTs) as well as Heterojunction Bipolar Transistors (HBTs) in the AlGaAs/GaAs materials systems. Because of the complex nature and multi-faceted operation modes of these devices, reliability studies must go beyond the typical Arrhenius accelerated life tests. We review the electric field driven degradation in devices with different gate metallization, device dimensions, electric field mitigation techniques (such as source field plate), and the effect of device fabrication processes for both DC and RF stress conditions. We summarize the degradation mechanisms that limit the lifetime of these devices. A variety of contact and surface degradation mechanisms have been reported, but differ in the two device technologies: For HEMTs, the layers are thin and relatively lightly doped compared to HBT structures and there is a metal Schottky gate that is directly on the semiconductor. By contrast, the HBT relies on pn junctions for current modulation and has only Ohmic contacts. This leads to different degradation mechanisms for the two types of devices.

  14. Effects of emission layer doping on the spatial distribution of charge and host recombination rate density in organic light emitting devices: A numerical study

    NASA Astrophysics Data System (ADS)

    Li, Yanli; Zhou, Maoqing; Zheng, Tingcai; Yao, Bo; Peng, Yingquan

    2013-12-01

    Based on drift-diffusion theory, a numerical model of the doping of a single energy level trap in the emission layer of an organic light emitting device (OLED) was developed, and the effects of doping of this single energy level trap on the distribution of the charge density, the recombination rate density, and the electric field in single- and double-layer OLEDs were studied numerically. The results show that by doping the n-type (p-type) emission layer with single energy electron (hole) traps, the distribution of the recombination rate density can be tuned and shifted, which is useful for improvement of the device performance by reduced electrode quenching or for realization of desirable special functions, e.g., emission spectrum tuning in multiple dye-doped white OLEDs.

  15. Enrichment of Pyrrolic Nitrogen by Hole Defects in Nitrogen and Sulfur Co-Doped Graphene Hydrogel for Flexible Supercapacitors.

    PubMed

    Tran, Ngoc Quang; Kang, Bong Kyun; Woo, Moo Hyun; Yoon, Dae Ho

    2016-08-23

    The effect of the doping configuration and concentration of nitrogen (N) and sulfur (S) on the electrochemical performance of 3 D N and S co-doped hole defect graphene hydrogel (NS-HGH) electrodes is investigated. Surprisingly, by introducing a hole defect on the graphene surface, the difference in the doping concentrations of N and S can be used to effectively modulate the electrochemical behavior of the NS-HGH. The hole defects provide a rapid ion diffusion path. Finally, we showed that the intriguing specific capacitance (536 F g(-1) ) of the NS-HGH could enhance the overall performance of the pseudocapacitance and electric double layer capacitance. The rational design of the NS-HGH-based flexible solid state supercapacitor results in not only outstanding electrochemical performance with a maximum energy density of 14.8 Wh kg(-1) and power density of 5.2 KW kg(-1) but also in extraordinary mechanical flexibility and excellent cycle stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Pulsed ytterbium-doped fibre laser with a combined modulator based on single-wall carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khudyakov, D V; Borodkin, A A; Vartapetov, S K

    2015-09-30

    This paper describes an all-normal-dispersion pulsed ytterbium-doped fibre ring laser mode-locked by a nonlinear combined modulator based on single-wall carbon nanotubes. We have demonstrated 1.7-ps pulse generation at 1.04 μm with a repetition rate of 35.6 MHz. At the laser output, the pulses were compressed to 180 fs. We have examined an intracavity nonlinear modulator which utilises nonlinear polarisation ellipse rotation in conjunction with a saturable absorber in the form of a polymer-matrix composite film containing single-wall carbon nanotubes. (lasers)

  17. Programmable graphene doping via electron beam irradiation.

    PubMed

    Zhou, Yangbo; Jadwiszczak, Jakub; Keane, Darragh; Chen, Ying; Yu, Dapeng; Zhang, Hongzhou

    2017-06-29

    Graphene is a promising candidate to succeed silicon based devices, and the conventional strategies for fabrication and testing of graphene-based electronics often utilise an electron beam. Here, we report on a systematic study of the effect of electron beam exposure on graphene devices. We realise reversible doping of on-chip graphene using a focused electron beam. Our results demonstrate site-specific control of carrier type and concentration achievable by modulating the charge distribution in the substrate. The effect of substrate-embedded charges on carrier mobility and conductivity of graphene is studied, with a dielectric screening model proposed to explain the effective n-type and p-type doping produced at different beam energies. Multiple logic operations are thus implemented in a single graphene sheet by using site-specific e-beam irradiation. We extend the phenomenon to MoS 2 , generalising it to conductive two-dimensional materials. Our results are of importance to imaging, in situ characterisation and lithographic techniques employed to investigate 2D materials.

  18. All-Optical, Photonic Band Gap Modulation in Azobenzene Liquid Crystal Doped Cholesterics (Preprint)

    DTIC Science & Technology

    2006-10-01

    4348 5e. TASK NUMBER RG 6. AUTHOR(S) Uladzimir A . Hrozhyk, Svetlana V . Serak, and Nelson V . Tabiryan (Beam Engineering for Advanced Measurements...modulation in azobenzene liquid crystal doped cholesterics Uladzimir A . Hrozhyk, Svetlana v . Serak, Nelson V . Tabiryan Beam Engineeringfor Advanced...Tsutsumi, Science, 1995,268, 1873. [6] T. Ikeda, J Mat. Chern., 2003,13, 2037. [7] A . Urbas, J. Klosterman, V . Tondiglia, L. Natarajan, R

  19. Engineering Topological Surface State of Cr-doped Bi2Se3 under external electric field

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Min; Lian, Ruqian; Yang, Yanmin; Xu, Guigui; Zhong, Kehua; Huang, Zhigao

    2017-03-01

    External electric field control of topological surface states (SSs) is significant for the next generation of condensed matter research and topological quantum devices. Here, we present a first-principles study of the SSs in the magnetic topological insulator (MTI) Cr-doped Bi2Se3 under external electric field. The charge transfer, electric potential, band structure and magnetism of the pure and Cr doped Bi2Se3 film have been investigated. It is found that the competition between charge transfer and spin-orbit coupling (SOC) will lead to an electrically tunable band gap in Bi2Se3 film under external electric field. As Cr atom doped, the charge transfer of Bi2Se3 film under external electric field obviously decreases. Remarkably, the band gap of Cr doped Bi2Se3 film can be greatly engineered by the external electric field due to its special band structure. Furthermore, magnetic coupling of Cr-doped Bi2Se3 could be even mediated via the control of electric field. It is demonstrated that external electric field plays an important role on the electronic and magnetic properties of Cr-doped Bi2Se3 film. Our results may promote the development of electronic and spintronic applications of magnetic topological insulator.

  20. Study of subband electronic structure of Si δ-doped GaAs using magnetotransport measurements in tilted magnetic fields

    NASA Astrophysics Data System (ADS)

    Li, G.; Hauser, N.; Jagadish, C.; Antoszewski, J.; Xu, W.

    1996-06-01

    Si δ-doped GaAs grown by metal organic vapor phase epitaxy (MOVPE) is characterized using magnetotransport measurements in tilted magnetic fields. Angular dependence of the longitudinal magnetoresistance (Rxx) vs the magnetic field (B) traces in tilted magnetic fields is used to examine the existence of a quasi-two-dimensional electron gas. The subband electron densities (ni) are obtained applying fast Fourier transform (FFT) analysis to the Rxx vs B trace and using mobility spectrum (MS) analysis of the magnetic field dependent Hall data. Our results show that (1) the subband electron densities remain roughly constant when the tilted magnetic field with an angle <30° measured from the Si δ-doped plane normal is ramped up to 13 T; (2) FFT analysis of the Rxx vs B trace and MS analysis of the magnetic field dependent Hall data both give the comparable results on subband electron densities of Si δ-doped GaAs with low δ-doping concentration, however, for Si δ-doped GaAs with very high δ-doping concentration, the occupation of the lowest subbands cannot be well resolved in the MS analysis; (3) the highest subband electron mobility reported to date of 45 282 cm2/s V is observed in Si δ-doped GaAs at 77 K in the dark; and (4) the subband electron densities of Si δ-doped GaAs grown by MOVPE at 700 °C are comparable to those grown by MBE at temperatures below 600 °C. A detailed study of magnetotransport properties of Si δ-doped GaAs in the parallel magnetic fields is then carried out to further confirm the subband electronic structures revealed by FFT and MS analysis. Our results are compared to theoretical calculation previously reported in literature. In addition, influence of different cap layer structures on subband electronic structures of Si δ-doped GaAs is observed and also discussed.

  1. Tailoring Thermal Radiative Properties with Doped-Silicon Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhuomin

    Aligned doped-silicon nanowire (D-SiNW) arrays form a hyperbolic metamaterial in the mid-infrared and have unique thermal radiative properties, such as broadband omnidirectional absorption, low-loss negative refraction, etc. A combined theoretical and experimental investigation will be performed to characterize D-SiNW arrays and other metamaterials for tailoring thermal radiative properties. Near-field thermal radiation between anisotropic materials with hyperbolic dispersions will also be predicted for potential application in energy harvesting. A new kind of anisotropic metamaterial with a hyperbolic dispersion in a broad infrared region has been proposed and demonstrated based on aligned doped-silicon nanowire (D-SiNW) arrays. D-SiNW-based metamaterials have unique thermal radiativemore » properties, such as broadband omnidirectional absorption whose width and location can be tuned by varying the filling ratio and/or doping level. Furthermore, high figure of merit (FOM) can be achieved in a wide spectral region, suggesting that D-SiNW arrays may be used as a negative refraction material with much less loss than other structured materials, such as layered semiconductor materials. We have also shown that D-SiNWs and other nanostructures can significantly enhance near-field thermal radiation. The study of near-field radiative heat transfer between closely spaced objects and the electromagnetic wave interactions with micro/nanostructured materials has become an emerging multidisciplinary field due to its importance in advanced energy systems, manufacturing, local thermal management, and high spatial resolution thermal sensing and mapping. We have performed extensive study on the energy streamlines involving anisotropic metamaterials and the applicability of the effective medium theory for near-field thermal radiation. Graphene as a 2D material has attracted great attention in nanoelectronics, plasmonics, and energy harvesting. We have shown that graphene can be used to tailor the transmittance, reflectance, and absorptance of nanostructured materials. Furthermore, graphene can be used to enhance near-field coupling to increase the phonon tunneling probability. We have performed analysis of near-field thermophotovoltaic devices with backside reflecting mirror and with tungsten gratings. We have predicted a large enhancement of electroluminescent refrigeration at a separation distance down to 10 nm due to near-field thermal radiation effect. A heat flux measurement system is developed to measure the near-field radiation in vacuum. We have fabricated doped Si plates separated by sparsely distributed posts to create a 200-800 nm vacuum gap. Our measurement results demonstrate that 11 times enhancement of near-field thermal radiation between parallel doped-Si plates with a lateral dimension 1 cm by 1 cm.« less

  2. Silicon Germanium Strained Layers and Heterostructures

    NASA Astrophysics Data System (ADS)

    Willander, M.; Nur, O.; Jain, S. C.

    2004-01-01

    The integration of strained-Si1 xGex into Si technology has enhanced the performance and extended the functionality of Si based circuits. The improvement of device performance is observed in both AC as well as DC characteristics of these devices. The category of such devices includes field effect as well as bipolar families. Speed performance in some based circuits has reached limits previously dominated by III-V heterostructures based devices. In addition, for some optoelectronics applications including photodetectors it is now possible to easily integrate strained-Si1 xGex based optical devices into standard Silicon technology. The impact of integrating strained and relaxed Si1 xGex alloys into Si technology is important. It has lead to stimulate Si research as well as offers easy options for performances that requires very complicated and costly process if pure Si has to be used. In this paper we start by discussing the strain and stability of Si1 xGex alloys. The origin and the process responsible for transient enhanced diffusion (TED) in highly doped Si containing layers will be mentioned. Due to the importance of TED for thin highly doped Boron strained-Si1 xGex layers and its degrading consequences, possible suppression design methods will be presented. Quantum well pchannel MOSFETs (QW-PMOSFETs) based on thin buried QW are solution to the low speed and weak current derivability. Different aspects of designing these devices for a better performance are briefly reviewed. Other FETs based on tensile strained Si on relaxed Si1 xGex for n-channel and modulation doped field effect transistors (MODFETs) showed excellent performance. Record AC performance well above 200GHz for fmax is already observed and this record is expected to increase in the coming years. Heterojunction bipolar transistors (HPTs) with thin strained-Si1 xGex highly doped base have lead to optimize the performance of the bipolar technology for many applications easily. The strategies of design and the most important designs of HBTs for optimum AC as well as DC are discussed in details. This technology is now mature enough and that is manifested in the appearance in the market nowadays. Si1 xGex based FETs circuits compatible with standard Si CMOS processes are soon expected to appear in the market. Finally, we briefly discuss the recent advances in Si1 xGex based infrared photodetectors.

  3. Preparation and electrical properties of electrospun tin-doped indium oxide nanowires

    NASA Astrophysics Data System (ADS)

    Lin, Dandan; Wu, Hui; Zhang, Rui; Pan, Wei

    2007-11-01

    Well-aligned tin-doped indium (ITO) nanowires have been prepared using the electrospinning process. The Sn doping mechanism and microstructure have been characterized by x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS). Devices for I-V measurement and field-effect transistors (FETs) were assembled using ITO nanowires with top contact configurations. The effect of Sn doping on the electrical conductivity was significant in that it enhanced the conductance by over 107 times, up to ~1 S cm-1 for ITO nanowires with an Sn content of 17.5 at.%. The nanowire FETs were operated in the depletion mode with an electron mobility of up to 0.45 cm2 V-1 s-1 and an on/off ratio of 103.

  4. Electronic transport properties of graphene doped by gallium.

    PubMed

    Mach, J; Procházka, P; Bartošík, M; Nezval, D; Piastek, J; Hulva, J; Švarc, V; Konečný, M; Kormoš, L; Šikola, T

    2017-10-13

    In this work we present the effect of low dose gallium (Ga) deposition (<4 ML) performed in UHV (10 -7 Pa) on the electronic doping and charge carrier scattering in graphene grown by chemical vapor deposition. In situ graphene transport measurements performed with a graphene field-effect transistor structure show that at low Ga coverages a graphene layer tends to be strongly n-doped with an efficiency of 0.64 electrons per one Ga atom, while the further deposition and Ga cluster formation results in removing electrons from graphene (less n-doping). The experimental results are supported by the density functional theory calculations and explained as a consequence of distinct interaction between graphene and Ga atoms in case of individual atoms, layers, or clusters.

  5. Electronic transport properties of graphene doped by gallium

    NASA Astrophysics Data System (ADS)

    Mach, J.; Procházka, P.; Bartošík, M.; Nezval, D.; Piastek, J.; Hulva, J.; Švarc, V.; Konečný, M.; Kormoš, L.; Šikola, T.

    2017-10-01

    In this work we present the effect of low dose gallium (Ga) deposition (<4 ML) performed in UHV (10-7 Pa) on the electronic doping and charge carrier scattering in graphene grown by chemical vapor deposition. In situ graphene transport measurements performed with a graphene field-effect transistor structure show that at low Ga coverages a graphene layer tends to be strongly n-doped with an efficiency of 0.64 electrons per one Ga atom, while the further deposition and Ga cluster formation results in removing electrons from graphene (less n-doping). The experimental results are supported by the density functional theory calculations and explained as a consequence of distinct interaction between graphene and Ga atoms in case of individual atoms, layers, or clusters.

  6. Disorder induced magnetism and electrical conduction in La doped Ca2FeMoO6 double perovskite

    NASA Astrophysics Data System (ADS)

    Poddar, Asok; Bhowmik, R. N.; Muthuselvam, I. Panneer

    2010-11-01

    We report the magnetism and electrical transport properties of La doped Ca2FeMoO6 double perovskite. Reduction in magnetic moment, nonmonotonic variation in magnetic ordering temperature (TC), increasing magnetic hardness, low temperature resistivity upturn, and loss of metallic conductivity are some of the major changes that we observed due to La doping induced disorder in double perovskite structure. The increase in magnetic disorder in La doped samples and its effect on TC is more consistent with the mean field theory. The modification in electronic band structure due to La doping is understood by establishing a correlation between the temperature dependence of electrical conductivity and thermoelectric power.

  7. Seven-core neodymium-doped phosphate all-solid photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Wang, Longfei; He, Dongbing; Feng, Suya; Yu, Chunlei; Hu, Lili; Chen, Danping

    2016-01-01

    We demonstrate a single-mode seven-core Nd-doped phosphate photonic crystal fiber with all-solid structure with an effective mode field diameter of 108 μm. The multicore fiber is first theoretically investigated through the finite-difference time-domain method. Then the in-phase mode is selected experimentally by a far-field mode-filtering method. The obtained in-phase mode has 7 mrad mode field divergences, which approximately agrees with the predicted 5.6 mrad in seven-core fiber. Output power of 15.5 W was extracted from a 25 cm fiber with slope efficiency of 57%.

  8. Systematic low-energy effective field theory for magnons and holes in an antiferromagnet on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Kämpfer, F.; Bessire, B.; Wirz, M.; Hofmann, C. P.; Jiang, F.-J.; Wiese, U.-J.

    2012-02-01

    Based on a symmetry analysis of the microscopic Hubbard and t-J models, a systematic low-energy effective field theory is constructed for hole-doped antiferromagnets on the honeycomb lattice. In the antiferromagnetic phase, doped holes are massive due to the spontaneous breakdown of the SU(2)s symmetry, just as nucleons in Quantum Chromodynamics (QCD) pick up their mass from spontaneous chiral symmetry breaking. In the broken phase, the effective action contains a single-derivative term, similar to the Shraiman-Siggia term in the square lattice case. Interestingly, an accidental continuous spatial rotation symmetry arises at leading order. As an application of the effective field theory, we consider one-magnon exchange between two holes and the formation of two-hole bound states. As an unambiguous prediction of the effective theory, the wave function for the ground state of two holes bound by magnon exchange exhibits f-wave symmetry.

  9. Dynamics of Peregrine combs and Peregrine walls in an inhomogeneous Hirota and Maxwell-Bloch system

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Wang, Zi-Qi; Sun, Wen-Rong; Shi, Yu-Ying; Li, Min; Xu, Min

    2017-06-01

    Under investigation in this paper is an inhomogeneous Hirota-Maxwell-Bloch (IHMB) system which can describe the propagation of optical solitons in an erbium-doped optical fiber. The breather multiple births (BMBs) are derived with periodically varying group velocity dispersion (GVD) coefficients. Under large periodic modulations in the GVD coefficient of IHMB system, the Peregrine comb (PC) solution is produced, which can be viewed as the limiting case of the BMBs. When the amplitude of the modulation satisfies a special condition, the Peregrine wall (PW) that can be regarded as an intermediate state between rogue wave and PC is obtained. The effects of the third-order dispersion on the spatiotemporal characteristics of PCs and PWs are studied. Our results may be useful for the experimental control and manipulation of the formation of generalized Peregrine rogue waves in inhomogeneous erbium-doped optical fiber.

  10. Modulated optical phase conjugation in rhodamine 110 doped boric acid glass saturable absorber thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Ramesh C.; Waigh, Thomas A.; Singh, Jagdish P.

    2008-03-01

    The optical phase conjugation signal in nearly nondegenerate four wave mixing was studied using a rhodamine 110 doped boric acid glass saturable absorber nonlinear medium. We have demonstrated a narrow band optical filter (2.56±0.15Hz) using an optical phase conjugation signal in the frequency modulation of a weak probe beam in the presence of two strong counterpropagating pump beams in rhodamine 110 doped boric acid glass thin films (10-4m). Both the pump beams and the probe beam are at a wavelength of 488nm (continuous-wave Ar+ laser). The probe beam frequency was detuned with a ramp signal using a piezoelectric transducer mirror.

  11. Effects of Nb doping level on the electronic transport, photoelectric effect and magnetoresistance across La0.5Ca0.5MnO3/Nb:SrTiO3 junctions

    NASA Astrophysics Data System (ADS)

    Wang, J. F.; Jiang, Y. C.; Chen, M. G.; Gao, J.

    2013-12-01

    Heterojunctions composed of La0.5Ca0.5MnO3 and Nb doped SrTiO3 were fabricated, and the effects of the Nb doping level on their electronic transport, photoelectric effect, and magnetoresistance were investigated. A lower doping concentration of Nb led to better rectifying properties and higher open circuit voltages. The I-V curves for La0.5Ca0.5MnO3/0.7 wt. % Nb-SrTiO3 showed a negligible response to magnetic fields for all temperatures, whereas La0.5Ca0.5MnO3/0.05 wt. % Nb-SrTiO3 exhibited distinct magnetoresistance, which depended on both the bias voltage and temperature. These results are discussed with the assistance of conventional semiconductor theories.

  12. Effect of organic salt doping on the performance of single layer bulk heterojunction organic solar cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yap, C.C.; Yahaya, M.; Salleh, M.M.

    2011-01-15

    The effect of organic salt, tetrabutylammonium hexafluorophosphate (TBAPF{sub 6}) doping on the performance of single layer bulk heterojunction organic solar cell with ITO/MEHPPV:PCBM/Al structure was investigated where indium tin oxide (ITO) was used as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV) as donor, (6,6)-phenyl-C61 butyric acid methyl ester (PCBM) as acceptor and aluminium (Al) as cathode. In contrast to the undoped device, the electric field-treated device doped with TBAPF{sub 6} exhibited better solar cell performance under illumination with a halogen projector lamp at 100 mW/cm{sup 2}. The short circuit current density and the open circuit voltage of the doped device increased from 0.54 {mu}A/cm{supmore » 2} to 6.41 {mu}A/cm{sup 2} and from 0.24 V to 0.50 V, respectively as compared to those of the undoped device. The significant improvement was attributed to the increase of built-in electric field caused by accumulation of ionic species at the active layer/electrode interfaces. (author)« less

  13. B-doped diamond field-effect transistor with ferroelectric vinylidene fluoride-trifluoroethylene gate insulator

    NASA Astrophysics Data System (ADS)

    Karaya, Ryota; Baba, Ikki; Mori, Yosuke; Matsumoto, Tsubasa; Nakajima, Takashi; Tokuda, Norio; Kawae, Takeshi

    2017-10-01

    A B-doped diamond field-effect transistor (FET) with a ferroelectric vinylidene fluoride-trifluoroethylene (VDF-TrFE) copolymer gate insulator was fabricated. The VDF-TrFE film deposited on the B-doped diamond showed good insulating and ferroelectric properties. Also, a Pt/VDF-TrFE/B-doped diamond layered structure showed ideal behavior as a metal-ferroelectric-semiconductor (MFS) capacitor, and the memory window width was 11 V, when the gate voltage was swept from 20 to -20 V. The fabricated MFS-type FET structure showed the typical properties of a depletion-type p-channel FET and a maximum drain current density of 0.87 mA/mm at room temperature. The drain current versus gate voltage curves of the proposed FET showed a clockwise hysteresis loop owing to the ferroelectricity of the VDF-TrFE gate insulator. In addition, we demonstrated the logic inverter with the MFS-type diamond FET coupled with a load resistor, and obtained the inversion behavior of the input signal and a maximum gain of 18.4 for the present circuit.

  14. Effects of doping Na and Cl atom on electronic structure of silicene: Density functional theory calculation

    NASA Astrophysics Data System (ADS)

    Pamungkas, Mauludi Ariesto; Sobirin, Kafi; Abdurrouf

    2018-04-01

    Silicene is a material in which silicon atoms are packed in two-dimensional hexagonal lattice, similar to that of graphene. Compared to graphene, silicene has promising potential to be applied in microelectronic technology because of its compatibility with silicon comonly used in semiconducting devices. Natrium and chlorine are easy to extract and can be used as dopants in FET (Field Effect Transistor). In this work, the effects of adsorption energy and electronic structure of silicene to both natrium and chlorine atoms are calculated with Density Functional Theory (DFT). The results show that dopings of Na transform silicene which is initially semimetal into a metal. Then dopings of Cl Top-site transform silicene into a semiconducting material and doping of Na and Cl simultaneously transfoms silicene into a conducting material.

  15. Improved electron transfer and plasmonic effect in dye-sensitized solar cells with bi-functional Nb-doped TiO2/Ag ternary nanostructures.

    PubMed

    Park, Jung Tae; Chi, Won Seok; Jeon, Harim; Kim, Jong Hak

    2014-03-07

    TiO2 nanoparticles are surface-modified via atom transfer radical polymerization (ATRP) with a hydrophilic poly(oxyethylene)methacrylate (POEM), which can coordinate to the Ag precursor, i.e. silver trifluoromethanesulfonate (AgCF3SO3). Following the reduction of Ag ions, a Nb2O5 doping process and calcination at 450 °C, bi-functional Nb-doped TiO2/Ag ternary nanostructures are generated. The resulting nanostructures are characterized by energy-filtering transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. The dye-sensitized solar cell (DSSC) based on the Nb-doped TiO2/Ag nanostructure photoanode with a polymerized ionic liquid (PIL) as the solid polymer electrolyte shows an overall energy conversion efficiency (η) of 6.9%, which is much higher than those of neat TiO2 (4.7%) and Nb-doped TiO2 (5.4%). The enhancement of η is mostly due to the increase of current density, attributed to the improved electron transfer properties including electron injection, collection, and plasmonic effects without the negative effects of charge recombination or problems with corrosion. These properties are supported by intensity modulated photocurrent/voltage spectroscopy (IMPS/IMVS) and incident photon-to-electron conversion efficiency (IPCE) measurements.

  16. Mn-Site Doped CaMnO 3: Creation of the CMR Effect

    NASA Astrophysics Data System (ADS)

    Raveau, B.; Zhao, Y. M.; Martin, C.; Hervieu, M.; Maignan, A.

    2000-01-01

    The doping of CaMnO3-δ at Mn sites with pentavalent and hexavalent d0 elements - Nb, Ta, W, Mo - modifies the resistivity behavior of this phase, extending the insulating domain and increasing significantly the resistivity at low temperature as the doping element content increases. The higher valency of the doping element introduces electrons; i.e., Mn3+ species are formed in the Mn4+ matrix. Double exchange phenomena then allow ferromagnetic interactions, by application of external magnetic fields which are similar to those observed for electron-doped manganites Ca1-xLnxMnO3 (x≤0.15), but with smaller magnetic moments. Consequently, this Mn site doping induces CMR properties with resistivity ratios considerably larger than those for CaMnO3-δ.

  17. Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth

    DOE PAGES

    Shen, Youde; Chen, Renjie; Yu, Xuechao; ...

    2016-06-02

    Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor–liquid–solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. In this paper, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs–Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed tomore » impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs–Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. Finally, these results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices.« less

  18. Gibbs-Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth.

    PubMed

    Shen, Youde; Chen, Renjie; Yu, Xuechao; Wang, Qijie; Jungjohann, Katherine L; Dayeh, Shadi A; Wu, Tom

    2016-07-13

    Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor-liquid-solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. Here, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs-Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs-Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. These results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices.

  19. Chemical Vapor Deposition Growth of Degenerate p-Type Mo-Doped ReS2 Films and Their Homojunction.

    PubMed

    Qin, Jing-Kai; Shao, Wen-Zhu; Xu, Cheng-Yan; Li, Yang; Ren, Dan-Dan; Song, Xiao-Guo; Zhen, Liang

    2017-05-10

    Substitutional doping of transition metal dichalcogenide two-dimensional materials has proven to be effective in tuning their intrinsic properties, such as band gap, transport characteristics, and magnetism. In this study, we realized substitutional doping of monolayer rhenium disulfide (ReS 2 ) with Mo via chemical vapor deposition. Scanning transmission electron microscopy demonstrated that Mo atoms are successfully doped into ReS 2 by substitutionally replacing Re atoms in the lattice. Electrical measurements revealed the degenerate p-type semiconductor behavior of Mo-doped ReS 2 field effect transistors, in agreement with density functional theory calculations. The p-n diode device based on a doped ReS 2 and ReS 2 homojunction exhibited gate-tunable current rectification behaviors, and the maximum rectification ratio could reach up to 150 at V d = -2/+2 V. The successful synthesis of p-type ReS 2 in this study could largely promote its application in novel electronic and optoelectronic devices.

  20. Growth and properties of electrodeposited transparent Al-doped ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Baka, O.; Mentar, L.; Khelladi, M. R.; Azizi, A.

    2015-12-01

    Al-doped zinc oxide (AZO) nanostructures were fabricated on fluorine-doped tin-oxide (FTO)- coated glass substrates by using electrodeposition. The effects of the doping concentration of Al on the morphological, microstructural, electrical and optical properties of the nanostructures were investigated. From the field emission scanning electron microscopy (FE-SEM) observation, when the amount of Al was increased in the solution, the grains size was observed to decreases. The observed changes in the morphology indicate that Al acts as nucleation centers in the vacancy sites of ZnO and destroys the crystalline structure at high doping level. Effectively, the X-ray diffraction (XRD) analysis indicated that the undoped and the doped ZnO nanostructures has a polycrystalline nature and a hexagonal wurtzite structure with a (002) preferential orientation. The photoluminescence (PL) room-temperature measurements showed that the incorporation of Al in the Zn lattice can improve the intensity of ultraviolet (UV) emission, thus suggesting its greater prospects for use in UV optoelectronic devices.

  1. Slowdown of group velocity of light in dual-frequency laser-pumped cascade structure of Er3+-doped optical fiber at room temperature

    NASA Astrophysics Data System (ADS)

    Qiu, Wei; Yang, Yujing; Gao, Yuan; Liu, Jianjun; Lv, Pin; Jiang, Qiuli

    2018-04-01

    Slow light is demonstrated in the cascade structure of an erbium-doped fiber with two forward propagation pumps. The results of the numerical simulation of the time delay and the optimum modulation frequency complement each other. The time delay and the optimum modulation frequency depend on the pump ratio G (G  =  {{P}1480}:{{P}980} ). The discussion results of this paper show that a larger time delay of slow light propagation can be obtained in the cascade structure of Er3+-doped optical fibers with dual-frequency laser pumping. Compared to previous research methods, the dual-frequency laser-pumped cascade structure of an Er3+-doped optical fiber is more controllable. Based on our discussion the pump ratio G should be selected in order to obtain a more appropriate time delay and the slowdown of group velocity.

  2. Integrated Graphene-Based Optoelectronic Devices Used for Ultrafast Optical-THz Photodetectors, Modulators and Emitters

    DTIC Science & Technology

    2015-04-03

    08 and AFRL/ CA policy clarification memorandum dated 16 Jan 09. This report is available to the general public, including foreign nationals. Copies... doped graphene micro-ribbon array and a quantum-well electron gas sitting at an interface between a half-space of air and another half-space of a... doped semiconductor substrate which supports a surface-plasmon mode in our system. The coupling between a spatially-modulated total electromagnetic

  3. Controlled n-Type Doping of Carbon Nanotube Transistors by an Organorhodium Dimer.

    PubMed

    Geier, Michael L; Moudgil, Karttikay; Barlow, Stephen; Marder, Seth R; Hersam, Mark C

    2016-07-13

    Single-walled carbon nanotube (SWCNT) transistors are among the most developed nanoelectronic devices for high-performance computing applications. While p-type SWCNT transistors are easily achieved through adventitious adsorption of atmospheric oxygen, n-type SWCNT transistors require extrinsic doping schemes. Existing n-type doping strategies for SWCNT transistors suffer from one or more issues including environmental instability, limited carrier concentration modulation, undesirable threshold voltage control, and/or poor morphology. In particular, commonly employed benzyl viologen n-type doping layers possess large thicknesses, which preclude top-gate transistor designs that underlie high-density integrated circuit layouts. To overcome these limitations, we report here the controlled n-type doping of SWCNT thin-film transistors with a solution-processed pentamethylrhodocene dimer. The charge transport properties of organorhodium-treated SWCNT thin films show consistent n-type behavior when characterized in both Hall effect and thin-film transistor geometries. Due to the molecular-scale thickness of the organorhodium adlayer, large-area arrays of top-gated, n-type SWCNT transistors are fabricated with high yield. This work will thus facilitate ongoing efforts to realize high-density SWCNT integrated circuits.

  4. Conversion between hexagonal GaN and beta-Ga(2)O(3) nanowires and their electrical transport properties.

    PubMed

    Li, Jianye; An, Lei; Lu, Chenguang; Liu, Jie

    2006-02-01

    We have observed that the hexagonal GaN nanowires grown from a simple chemical vapor deposition method using gallium metal and ammonia gas are usually gallium-doped. By annealing in air, the gallium-doped hexagonal GaN nanowires could be completely converted to beta-Ga(2)O(3) nanowires. Annealing the beta-Ga(2)O(3) nanowires in ammonia could convert them back to undoped hexagonal GaN nanowires. Field effect transistors based on these three kinds of nanowires were fabricated, and their performances were studied. Because of gallium doping, the as-grown GaN nanowires show a weak gating effect. Through the conversion process of GaN nanowires (gallium-doped) --> Ga(2)O(3) nanowires --> GaN nanowires (undoped) via annealing, the final undoped GaN nanowires display different electrical properties than the initial gallium-doped GaN nanowires, show a pronounced n-type gating effect, and can be completely turned off.

  5. Green digital signage using nanoparticle embedded narrow-gap field sequential TN-LCDs

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shunsuke; Shiraishi, Yukihide; Sawai, Hiroya; Toshima, Naoki; Okita, Masaya; Takeuchi, Kiyofumi; Takatsu, Haruyoshi

    2012-03-01

    We have fabricated field sequential color (FSC)-LCDs using cells and modules of narrow-gap TN-LCDs with and without doping the nanoparticles of PCyD-ZrO2 and AF-SiO2. It is shown that the FSC-LCD exhibits a high optical efficiency of OE=4.5 that is defined as OE=[Luminance]/[W/m2]=(cd/W). This figure may provide us a good reference or to clear the Energy Star Program Version 5-3 that issues a guideline: LCD with 50 inch on the diagonal consumes the energy of 108W. Through this research it is claimed that our FSC=LCD may be a novel green digital signage.

  6. Magneto-Resistance in thin film boron carbides

    NASA Astrophysics Data System (ADS)

    Echeverria, Elena; Luo, Guangfu; Liu, J.; Mei, Wai-Ning; Pasquale, F. L.; Colon Santanta, J.; Dowben, P. A.; Zhang, Le; Kelber, J. A.

    2013-03-01

    Chromium doped semiconducting boron carbide devices were fabricated based on a carborane icosahedra (B10C2H12) precursor via plasma enhanced chemical vapor deposition, and the transition metal atoms found to dope pairwise on adjacent icosahedra site locations. Models spin-polarized electronic structure calculations of the doped semiconducting boron carbides indicate that some transition metal (such as Cr) doped semiconducting boron carbides may act as excellent spin filters when used as the dielectric barrier in a magnetic tunnel junction structure. In the case of chromium doping, there may be considerable enhancements in the magneto-resistance of the heterostructure. To this end, current to voltage curves and magneto-transport measurements were performed in various semiconducting boron carbide both in and out plane. The I-V curves as a function of external magnetic field exhibit strong magnetoresistive effects which are enhanced at liquid Nitrogen temperatures. The mechanism for these effects will be discussed in the context of theoretical calculations.

  7. Carrier density control of magnetism and Berry phases in doped EuTiO3

    NASA Astrophysics Data System (ADS)

    Ahadi, Kaveh; Gui, Zhigang; Porter, Zach; Lynn, Jeffrey W.; Xu, Zhijun; Wilson, Stephen D.; Janotti, Anderson; Stemmer, Susanne

    2018-05-01

    In materials with broken time-reversal symmetry, the Berry curvature acts as a reciprocal space magnetic field on the conduction electrons and is a significant contribution to the magnetotransport properties, including the intrinsic anomalous Hall effect. Here, we report neutron diffraction, transport, and magnetization measurements of thin films of doped EuTiO3, an itinerant magnetic material, as a function of carrier density and magnetic field. These films are itinerant antiferromagnets at all doping concentrations. At low carrier densities, the magnetoresistance indicates a metamagnetic transition, which is absent at high carrier densities (>6 × 1020 cm-3). Strikingly, the crossover coincides with a sign change in the spontaneous Hall effects, indicating a sign change in the Berry curvature. We discuss the results in the context of the band structure topology and its coupling to the magnetic texture.

  8. Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator.

    PubMed

    Ding, Jianfeng; Chen, Hongtao; Yang, Lin; Zhang, Lei; Ji, Ruiqiang; Tian, Yonghui; Zhu, Weiwei; Lu, Yangyang; Zhou, Ping; Min, Rui; Yu, Mingbin

    2012-03-26

    We demonstrate a 26 Gbit/s Mach-Zehnder silicon optical modulator. The doping concentration and profile are optimized, and a modulation efficiency with the figure of merit (VπL) of 1.28 V·cm is achieved. We design an 80-nm-wide intrinsic silicon gap between the p-type and n-type doped regions to reduce the capacitance of the diode and prevent the diode from working in a slow diffusion mode. Therefore, the modulator can be driven with a small differential voltage of 0.5 V with no bias. Without the elimination of the dissipated power of the series resistors and the reflected power of the electrical signal, the maximum power consumption is 3.8 mW.

  9. Ab initio study of boron nitride lines on graphene

    NASA Astrophysics Data System (ADS)

    Mata-Carrizal, Berenice; Sanginés-Mendoza, Raúl; Martinez, Edgar

    2013-03-01

    Graphene has unusual electronic properties which make it a promising material for electronic devices. Neverthless, the absence of a band gap sets limitations on its practical applications. Thus, it is crucial to find methods to create and tune the band gap of systems based on graphene. In this way, we explore the modulation of the electronic properties of graphene through doping with boron nitride lines. In particular, we studied the electronic structure of graphene sheets doped with boron nitride lines armchair and zigzag type. The calculations were performed using the pseudopotential LCAO method with a Generalized Gradient Approximation (GGA) for the exchange-correlation energy functional. We found that both doping lines type induce a bandgap and that the energy gap increases as the length of doping lines increases. Accordingly to our DFT calculations, we found that the energy gap on graphene doped with armchair and zigzag lines is due to a two different mechanisms to drain charge from pi- to sigma- orbitals. Thus, we found that doping graphene with boron nitride lines is a useful way to induce and modulate the bandgap on graphene. This research was supported by Consejo Nacional de Ciencia y Tecnología (Conacyt) under Grant No. 133022.

  10. Effect of variations in the doping profiles on the properties of doped multiple quantum well avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Menkara, H. M.; Wagner, B. K.; Summers, C. J.

    1996-01-01

    The purpose of this study is to use both theoretical and experimental evidence to determine the impact of doping imbalance and symmetry on the physical and electrical characteristics of doped multiple quantum well avalanche photodiodes (APD). Theoretical models have been developed to calculate the electric field valence and conduction bands, capacitance-voltage (CV), and carrier concentration versus depletion depth profiles. The models showed a strong correlation between the p- and n-doping balance inside the GaAs wells and the number of depleted stages and breakdown voltage of the APD. A periodic doping imbalance in the wells has been shown to result in a gradual increase (or decrease) in the electric field profile throughout the device which gave rise to partially depleted devices at low bias. The MQW APD structures that we modeled consisted of a 1 micron top p(+)-doped (3 x 10(exp 18) cm(exp -3)) GaAs layer followed by a 1 micron region of alternating layers of GaAs (500 A) and Al(0.42)Ga(0.58)As (500 A), and a 1 micron n(+) back layer (3 x 10(exp 18) cm(exp -3)). The GaAs wells were doped with p-i-n layers placed at the center of each well. The simulation results showed that in an APD with nine doped wells, and where the 50 A p-doped layer is off by 10% (p = 1.65 x 10(exp 18) cm(exp -3), n = 1.5 x 10(exp 18) cm(exp -3)), almost half of the MQW stages were shown to be undepleted at low bias which was a result of a reduction in the electric field near the p(+) cap layer by over 50% from its value in the balanced structure. Experimental CV and IV data on similar MBE grown MQW structures have shown very similar depletion and breakdown characteristics. The models have enabled us to better interpret our experimental data and to determine both the extent of the doping imbalances in the devices as well as the overall p- or n-type doping characteristics of the structures.

  11. Impurity Resonant States p-type Doping in Wide-Band-Gap Nitrides

    NASA Astrophysics Data System (ADS)

    Liu, Zhiqiang; Yi, Xiaoyan; Yu, Zhiguo; Yuan, Gongdong; Liu, Yang; Wang, Junxi; Li, Jinmin; Lu, Na; Ferguson, Ian; Zhang, Yong

    2016-01-01

    In this work, a new strategy for achieving efficient p-type doping in high bandgap nitride semiconductors to overcome the fundamental issue of high activation energy has been proposed and investigated theoretically, and demonstrated experimentally. Specifically, in an AlxGa1-xN/GaN superlattice structure, by modulation doping of Mg in the AlxGa1-xN barriers, high concentration of holes are generated throughout the material. A hole concentration as high as 1.1 × 1018 cm-3 has been achieved, which is about one order of magnitude higher than that typically achievable by direct doping GaN. Results from first-principle calculations indicate that the coupling and hybridization between Mg 2p impurity and the host N 2p orbitals are main reasons for the generation of resonant states in the GaN wells, which further results in the high hole concentration. We expect this approach to be equally applicable for other high bandgap materials where efficient p-type doing is difficult. Furthermore, a two-carrier-species Hall-effect model is proposed to delineate and discriminate the characteristics of the bulk and 2D hole, which usually coexist in superlattice-like doping systems. The model reported here can also be used to explain the abnormal freeze-in effect observed in many previous reports.

  12. Impurity Resonant States p-type Doping in Wide-Band-Gap Nitrides.

    PubMed

    Liu, Zhiqiang; Yi, Xiaoyan; Yu, Zhiguo; Yuan, Gongdong; Liu, Yang; Wang, Junxi; Li, Jinmin; Lu, Na; Ferguson, Ian; Zhang, Yong

    2016-01-18

    In this work, a new strategy for achieving efficient p-type doping in high bandgap nitride semiconductors to overcome the fundamental issue of high activation energy has been proposed and investigated theoretically, and demonstrated experimentally. Specifically, in an AlxGa(1-x)N/GaN superlattice structure, by modulation doping of Mg in the AlxGa(1-x)N barriers, high concentration of holes are generated throughout the material. A hole concentration as high as 1.1 × 10(18) cm(-3) has been achieved, which is about one order of magnitude higher than that typically achievable by direct doping GaN. Results from first-principle calculations indicate that the coupling and hybridization between Mg 2p impurity and the host N 2p orbitals are main reasons for the generation of resonant states in the GaN wells, which further results in the high hole concentration. We expect this approach to be equally applicable for other high bandgap materials where efficient p-type doing is difficult. Furthermore, a two-carrier-species Hall-effect model is proposed to delineate and discriminate the characteristics of the bulk and 2D hole, which usually coexist in superlattice-like doping systems. The model reported here can also be used to explain the abnormal freeze-in effect observed in many previous reports.

  13. Neutron Transmutation Doped (NTD) germanium thermistors for sub-mm bolometer applications

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Itoh, K. M.; Beeman, J. W.

    1996-01-01

    Recent advances in the development of neutron transmutation doped (NTD) semiconductor thermistors fabricated from natural and controlled isotopic composition germanium are reported. The near ideal doping uniformity that can be achieved with the NTD process, the device simplicity of NTD Ge thermistors and the high performance of cooled junction field effect transistor preamplifiers led to the widespread acceptance of these thermal sensors in ground-based, airborne and spaceborne radio telescopes. These features made possible the development of efficient bolometer arrays.

  14. Structural characterization of ultrathin Cr-doped ITO layers deposited by double-target pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Cesaria, Maura; Caricato, Anna Paola; Leggieri, Gilberto; Luches, Armando; Martino, Maurizio; Maruccio, Giuseppe; Catalano, Massimo; Grazia Manera, Maria; Rella, Roberto; Taurino, Antonietta

    2011-09-01

    In this paper we report on the growth and structural characterization of very thin (20 nm) Cr-doped ITO films, deposited at room temperature by double-target pulsed laser ablation on amorphous silica substrates. The role of Cr atoms in the ITO matrix is carefully investigated with increasing doping content by transmission electron microscopy (TEM). Selected-area electron diffraction, conventional bright field and dark field as well as high-resolution TEM analyses, and energy dispersive x-ray spectroscopy demonstrate that (i) crystallization features occur despite the low growth temperature and small thickness, (ii) no chromium or chromium oxide secondary phases are detectable, regardless of the film doping levels, (iii) the films crystallize as crystalline flakes forming large-angle grain boundaries; (iv) the observed flakes consist of crystalline planes with local bending of the crystal lattice. Thickness and compositional information about the films are obtained by Rutherford back-scattering spectrometry. Results are discussed by considering the combined effects of growth temperature, smaller ionic radius of the Cr cation compared with the trivalent In ion, doping level, film thickness, the double-target doping technique and peculiarities of the pulsed laser deposition method.

  15. 1/f noise in titanium doped aluminum thin film deposited by electron beam evaporation method and its dependence on structural variation with temperature

    NASA Astrophysics Data System (ADS)

    Ananda, P.; Vedanayakam, S. Victor; Thyagarajan, K.; Nandakumar, N.

    2018-05-01

    A brief review of Titanium doped Aluminum film has many attractive properties such as thermal properties and 1/f noise is highlighted. The thin film devices of Titanium doped alluminium are specially used in aerospace technology, automotive, biomedical fields also in microelectronics. In this paper, we discus on 1/f noise and nonlinear effects in titanium doped alluminium thin films deposited on glass substrate using electron beam evaporation for different current densities on varying temperatures of the film. The plots are dawn for 1/f noise of the films at different temperatures ranging from 300°C to 450°C and the slopes are determined. The studies shows a higher order increment in FFT amplitude of low frequency 1/f noise in thin films at annealing temperature 400°C. In this technology used in aerospace has been the major field of application of titanium doped alluminium, being one of the major challenges of the development of new alloys with improved strength at high temperature, wide chord Titanium doped alluminium fan blades increases the efficiency while reducing 1/f noise. Structural properties of XRD is identified.

  16. Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers

    PubMed Central

    Du, J.; Zhang, M.; Guo, Z.; Chen, J.; Zhu, X.; Hu, G.; Peng, P.; Zheng, Z.; Zhang, H.

    2017-01-01

    We fabricate ultrasmall phosphorene quantum dots (PQDs) with an average size of 2.6 ± 0.9 nm using a liquid exfoliation method involving ultrasound probe sonication followed by bath sonication. By coupling the as-prepared PQDs with microfiber evanescent light field, the PQD-based saturable absorber (SA) device exhibits ultrafast nonlinear saturable absorption property, with an optical modulation depth of 8.1% at the telecommunication band. With the integration of the all-fiber PQD-based SA, a continuous-wave passively mode-locked erbium-doped (Er-doped) laser cavity delivers stable, self-starting pulses with a pulse duration of 0.88 ps and at the cavity repetition rate of 5.47 MHz. Our results contribute to the growing body of work studying the nonlinear optical properties of ultrasmall PQDs that present new opportunities of this two-dimensional (2D) nanomaterial for future ultrafast photonic technologies. PMID:28211471

  17. Optical studies of native defects in π-conjugated donor-acceptor copolymers

    NASA Astrophysics Data System (ADS)

    Baniya, Sangita; Khanal, Dipak; Lafalce, Evan; You, Wei; Valy Vardeny, Z.

    2018-04-01

    We used multiple spectroscopies such as photoinduced absorption (PIA), magneto photoinduced absorption, and doping induced absorption for studying native defects in π-conjugated donor-acceptor copolymer chains of benzodithio-phene fluorinated benzotriazole. The PIA spectrum contains characteristic photoinduced absorption bands that are due to polarons and triplet exciton species, whose strengths have different dependencies on the modulation frequency, temperature, and laser excitation, as well as magnetic field response. We found that the native defects in the copolymer chains serve as efficient traps that ionize the photoexcited excitons, thereby generating charge carriers whose characteristic optical properties are similar, but not equal to those of intrachain polarons formed by doping. The native defects density is of the order of 1017 cm-3 indicating that most of the copolymer chains contain native defects upon synthesis; however, this does not preclude their used-for photovoltaic applications.

  18. Gold nanorod as saturable absorber for Q-switched Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Xu-De; Luo, Zhi-Chao; Liu, Hao; Zhao, Nian; Liu, Meng; Zhu, Yan-Fang; Xue, Jian-Ping; Luo, Ai-Ping; Xu, Wen-Cheng

    2015-07-01

    We reported on the generation of Q-switched pulse in an Yb-doped fiber laser by using a filmy polyvinyl alcohol (PVA)-based gold nanorods (GNRs) saturable absorber (SA). The GNRs are synthesized through seed-mediated method whose longitudinal surface plasmon resonance (SPR) absorption peak is located at 1038 nm. The modulation depth of the GNRs SA is ∼4.06%. By gradually increasing the pump power from 62 mW to 128 mW, the repetition rate of Q-switched pulse increases from 8.78 kHz to 20.78 kHz and the pulse duration decreases from 9.43 μs to 3.65 μs. In addition, the dual-wavelength switchable Q-switched operation was also observed. The obtained results further expand the applications of GNRs SA to the field of Q-switched pulsed fiber lasers at 1.0 μm waveband.

  19. Device optimization and scaling properties of a gate-on-germanium source tunnel field-effect transistor

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Avik; Mallik, Abhijit; Omura, Yasuhisa

    2015-06-01

    A gate-on-germanium source (GoGeS) tunnel field-effect transistor (TFET) shows great promise for low-power (sub-0.5 V) applications. A detailed investigation, with the help of a numerical device simulator, on the effects of variation in different structural parameters of a GoGeS TFET on its electrical performance is reported in this paper. Structural parameters such as κ-value of the gate dielectric, length and κ-value of the spacer, and doping concentrations of both the substrate and source are considered. A low-κ symmetric spacer and a high-κ gate dielectric are found to yield better device performance. The substrate doping influences only the p-i-n leakage floor. The source doping is found to significantly affect performance parameters such as OFF-state current, ON-state current and subthreshold swing, in addition to a threshold voltage shift. Results of the investigation on the gate length scaling of such devices are also reported in this paper.

  20. Ultralow power complementary inverter circuits using axially doped p- and n-channel Si nanowire field effect transistors.

    PubMed

    Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon

    2016-06-09

    We have successfully synthesized axially doped p- and n-type regions on a single Si nanowire (NW). Diodes and complementary metal-oxide-semiconductor (CMOS) inverter devices using single axial p- and n-channel Si NW field-effect transistors (FETs) were fabricated. We show that the threshold voltages of both p- and n-channel Si NW FETs can be lowered to nearly zero by effectively controlling the doping concentration. Because of the high performance of the p- and n-type Si NW channel FETs, especially with regard to the low threshold voltage, the fabricated NW CMOS inverters have a low operating voltage (<3 V) while maintaining a high voltage gain (∼6) and ultralow static power dissipation (≤0.3 pW) at an input voltage of ±3 V. This result offers a viable way for the fabrication of a high-performance high-density logic circuit using a low-temperature fabrication process, which makes it suitable for flexible electronics.

  1. Electronic and Morphological Dual Modulation of Cobalt Carbonate Hydroxides by Mn Doping toward Highly Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting.

    PubMed

    Tang, Tang; Jiang, Wen-Jie; Niu, Shuai; Liu, Ning; Luo, Hao; Chen, Yu-Yun; Jin, Shi-Feng; Gao, Feng; Wan, Li-Jun; Hu, Jin-Song

    2017-06-21

    Developing bifunctional efficient and durable non-noble electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is highly desirable and challenging for overall water splitting. Herein, Co-Mn carbonate hydroxide (CoMnCH) nanosheet arrays with controllable morphology and composition were developed on nickel foam (NF) as such a bifunctional electrocatalyst. It is discovered that Mn doping in CoCH can simultaneously modulate the nanosheet morphology to significantly increase the electrochemical active surface area for exposing more accessible active sites and tune the electronic structure of Co center to effectively boost its intrinsic activity. As a result, the optimized Co 1 Mn 1 CH/NF electrode exhibits unprecedented OER activity with an ultralow overpotential of 294 mV at 30 mA cm -2 , compared with all reported metal carbonate hydroxides. Benefited from 3D open nanosheet array topographic structure with tight contact between nanosheets and NF, it is able to deliver a high and stable current density of 1000 mA cm -2 at only an overpotential of 462 mV with no interference from high-flux oxygen evolution. Despite no reports about effective HER on metal carbonate hydroxides yet, the small overpotential of 180 mV at 10 mA cm -2 for HER can be also achieved on Co 1 Mn 1 CH/NF by the dual modulation of Mn doping. This offers a two-electrode electrolyzer using bifunctional Co 1 Mn 1 CH/NF as both anode and cathode to perform stable overall water splitting with a cell voltage of only 1.68 V at 10 mA cm -2 . These findings may open up opportunities to explore other multimetal carbonate hydroxides as practical bifunctional electrocatalysts for scale-up water electrolysis.

  2. Effect of A-site La and Ba doping on threshold field and characteristic temperatures of PbSc0.5Ta0.5O3 relaxor studied by acoustic emission

    NASA Astrophysics Data System (ADS)

    Dul'kin, E.; Mihailova, B.; Gospodinov, M.; Roth, M.

    2012-09-01

    The structural transitions in Pb1-xLaxSc(1+x)/2Ta(1-x)/2O3, x = 0.08 (PLST) relaxor crystals were studied by means of acoustic emission (AE) under an external electric field (E) and compared with those observed in pure PbSc0.5Ta0.5O3 (PST) and Pb0.78Ba0.22Sc0.5Ta0.5O3 (PBST) [E. Dul'kin et al., EPL 94, 57002 (2011)]. Similar to both the PST and PBST compounds, in zero field PLST exhibits AE corresponding to a para-to-antiferroelectric incommensurate phase transition at Tn = 276 K, lying in the vicinity of dielectric temperature maximum (Tm). This AE signal exhibits a nontrivial behavior when applying E resembling the electric-field-dependence of Tn previously observed for both the PST and PBST, namely, Tn initially decreases with the increase of E, attains a minimum at a threshold field Eth = 0.5 kV/cm, accompanied by a pronounced maximum of the AE count rate Ṅ = 12 s-1, and then starts increasing as E enhances. The similarities and difference between PST, PLST, and PBST with respect to Tn, Eth, and Ṅ are discussed from the viewpoint of three mechanisms: (i) chemically induced random local electric field due to the extra charge on the A-site ion, (ii) disturbance of the system of stereochemically active lone-pair electrons of Pb2+ by the isotropic outermost electron shell of substituting ion, and (iii) change in the tolerance factor and elastic field to the larger ionic radius of the substituting A-site ion due to the different radius of the substituting ion. The first two mechanisms influence the actual values of Tn and Eth, whereas the latter is shown to affect the normalized Ṅ, indicating the fractions undergoing a field-induced crossover from a modulated antiferroelectric to a ferroelectric state. Creation of secondary random electric field, caused by doping-induced A-site-O ionic chemical bonding, is discussed.

  3. Simplifying and expanding analytical capabilities for various classes of doping agents by means of direct urine injection high performance liquid chromatography high resolution/high accuracy mass spectrometry.

    PubMed

    Görgens, Christian; Guddat, Sven; Thomas, Andreas; Wachsmuth, Philipp; Orlovius, Anne-Katrin; Sigmund, Gerd; Thevis, Mario; Schänzer, Wilhelm

    2016-11-30

    So far, in sports drug testing compounds of different classes are processed and measured using different screening procedures. The constantly increasing number of samples in doping analysis, as well as the large number of substances with doping related, pharmacological effects require the development of even more powerful assays than those already employed in sports drug testing, indispensably with reduced sample preparation procedures. The analysis of native urine samples after direct injection provides a promising analytical approach, which thereby possesses a broad applicability to many different compounds and their metabolites, without a time-consuming sample preparation. In this study, a novel multi-target approach based on liquid chromatography and high resolution/high accuracy mass spectrometry is presented to screen for more than 200 analytes of various classes of doping agents far below the required detection limits in sports drug testing. Here, classic groups of drugs as diuretics, stimulants, β 2 -agonists, narcotics and anabolic androgenic steroids as well as various newer target compounds like hypoxia-inducible factor (HIF) stabilizers, selective androgen receptor modulators (SARMs), selective estrogen receptor modulators (SERMs), plasma volume expanders and other doping related compounds, listed in the 2016 WADA prohibited list were implemented. As a main achievement, growth hormone releasing peptides could be implemented, which chemically belong to the group of small peptides (<2kDa) and are commonly determined by laborious and time-consuming stand-alone assays. The assay was fully validated for qualitative purposes considering the parameters specificity, robustness (rRT: <2%), intra- (CV: 1.7-18.4 %) and inter-day precision (CV: 2.3-18.3%) at three concentration levels, linearity (R 2 >0.99), limit of detection (0.1-25ng/mL; 3'OH-stanozolol glucuronide: 50pg/mL; dextran/HES: 10μg/mL) and matrix effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Competing exchange bias and field-induced ferromagnetism in La-doped BaFe O3

    NASA Astrophysics Data System (ADS)

    Fita, I.; Wisniewski, A.; Puzniak, R.; Iwanowski, P.; Markovich, V.; Kolesnik, S.; Dabrowski, B.

    2017-04-01

    An exchange bias (EB) effect was observed in mixed valent L axB a1 -xFe O3 (x =0.125 , 0.25, 0.33) perovskites exhibiting the antiferromagnetic (AFM) helical order among F e4 + ions coexisting with the ferromagnetic (FM) cluster phase in the ground state. The L a3 + ions for B a2 + site substitution, associated with increase in number of the AFM coupled F e3 + - F e4 + pairs as well as some F e3 + - F e3 + pairs, leads to strengthening of the AFM phase and consequently to the alteration of the EB characteristics, which depend on level of the La doping x . At low doping x ≤0.25 , an abnormal dependence of the EB field, HEB, on the cooling field, Hcool, was found. The HEB increases rapidly with increasing cooling field at low Hcool, but it falls suddenly at cooling fields higher than 20 kOe, reducing by an order of magnitude at 90 kOe. The suppression of EB is caused by the field-induced increased volume of the FM phase, due to the transformation of the AFM helical spin structure into the FM one. Thus, low-doped L axB a1 -xFe O3 demonstrates a competition of two alternate cooling-field-induced effects, one of which leads to the EB anisotropy and another one to the enhanced ferromagnetism. In contrast, the x =0.33 sample, having a strong AFM constituent, shows no field-induced FM and no drop in the EB field. Accordingly, the HEB vs Hcool dependence was found to be well explained in the framework of a model describing phase-separated AFM-FM systems, namely, the model assuming isolated FM clusters of size ˜4 nm embedded in the AFM matrix.

  5. Effect of the magnetic field on the nonlinear optical rectification and second and third harmonic generation in double δ-doped GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Martínez-Orozco, J. C.; Rojas-Briseño, J. G.; Rodríguez-Magdaleno, K. A.; Rodríguez-Vargas, I.; Mora-Ramos, M. E.; Restrepo, R. L.; Ungan, F.; Kasapoglu, E.; Duque, C. A.

    2017-11-01

    In this paper we are reporting the computation for the Nonlinear Optical Rectification (NOR) and the Second and Third Harmonic Generation (SHG and THG) related with electronic states of asymmetric double Si-δ-doped quantum well in a GaAs matrix when this is subjected to an in-plane (x-oriented) constant magnetic field effect. The work is performed in the effective mass and parabolic band approximations in order to compute the electronic structure for the system by a diagonalization procedure. The expressions for the nonlinear optical susceptibilities, χ0(2), χ2ω(2), and χ3ω(3), are those arising from the compact matrix density formulation and stand for the NOR, SHG, and THG, respectively. This asymmetric double δ-doped quantum well potential profile actually exhibits nonzero NOR, SHG, and THG responses which can be easily controlled by the in-plane (x-direction) externally applied magnetic field. In particular we find that for the chosen configuration the harmonic generation is in the far-infrared/THz region, thus and becoming suitable building blocks for photodetectors in this range of the electromagnetic spectra.

  6. Suppression of ambipolar current in tunnel FETs using drain-pocket: Proposal and analysis

    NASA Astrophysics Data System (ADS)

    Garg, Shelly; Saurabh, Sneh

    2018-01-01

    In this paper, we investigate the impact of a drain-pocket (DP) adjacent to the drain region in Tunnel Field-Effect Transistors (TFETs) to effectively suppress the ambipolar current. Using calibrated two-dimensional device simulation, we examine the impact of DP in Double Gate TFET (DGTFET). We demonstrate the superiority of the DP technique over the existing techniques in controlling the ambipolar current. In particular, the addition of DP to a TFET is able to fully suppress the ambipolar current even when TFET is biased at high negative gate voltages and drain doping is kept as high as the source doping. Moreover, adding DP is complementary to the well-known technique of employ-ing source-pocket (SP) in a TFET since both need similar doping type and doping concentration.

  7. Magnetic properties and magnetocaloric effect in Pt doped Ni-Mn-Ga

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; D'Souza, S. W.; Mukherjee, K.; Kushwaha, P.; Barman, S. R.; Agarwal, Sandeep; Mukhopadhyay, P. K.; Chakrabarti, Aparna; Sampathkumaran, E. V.

    2014-06-01

    Large magnetocaloric effect is observed in Ni1.8Pt0.2MnGa close to room temperature. The entropy change shows a crossover from positive to negative sign at the martensite transition. It is negative above 1.6 T and its magnitude increases linearly with magnetic field. An increase in the saturation magnetic moment is observed with Pt doping in Ni2MnGa. Ab initio theoretical calculations show that the increase in magnetic moment with Pt doping in Ni2MnGa is associated with increase in the Mn and Pt local moments in the ferromagnetic ground state. The Curie temperature calculated from the exchange interaction parameters is in good agreement with experiment, showing the absence of any antiferromagnetic correlation due to Pt doping.

  8. Effect of Rare Earth Elements (Er, Ho) on Semi-Metallic Materials (ScN) in an Applied Electric Field

    NASA Technical Reports Server (NTRS)

    Kim, Hyunjung; Park, Yeonjoon; King, Glen C.; Lee, Kunik; Choi, Sang H.

    2012-01-01

    The development of materials and fabrication technology for field-controlled spectrally active optics is essential for applications such as membrane optics, filters for LIDARs, windows for sensors, telescopes, spectroscopes, cameras and flat-panel displays. The dopants of rare earth elements, in a host of optical systems, create a number of absorption and emission band structures and can easily be incorporated into many high quality crystalline and amorphous hosts. In wide band-gap semiconductors like ScN, the existing deep levels can capture or emit the mobile charges, and can be ionized with the loss or capture of the carriers which are the fundamental basis of concept for smart optic materials. The band gap shrinkage or splitting with dopants supports the possibility of this concept. In the present work, a semi-metallic material (ScN) was doped with rare earth elements (Er, Ho) and tested under an applied electric field to characterize spectral and refractive index shifts by either Stark or Zeeman Effect. These effects can be verified using the UV-Vis spectroscopy, the Hall Effect measurement and the ellipsometric spectroscopy. The optical band gaps of ScN doped with Er and doped with Ho were experimentally estimated as 2.33eV and 2.24eV ( 0.2eV) respectively. This is less than that of undoped ScN (2.5 0.2eV). The red-shifted absorption onset is a direct evidence for the decrease of band gap energy (Eg), and the broadening of valence band states is attributable to the doping cases. A decrease in refractive index with an applied field was observed as a small shift in absorption coefficient using a variable angle spectroscopic ellipsometer. In the presence of an electric field, mobile carriers are redistributed within the space charge region (SCR) to produce this electro-refractive effect. The shift in refractive index is also affected by the density and location of deep potential wells within the SCR. In addition, the microstructure change was observed by a TEM analysis. These results give an insight for future applications for the field-controlled spectrally active material systems.

  9. Biomarker monitoring in sports doping control.

    PubMed

    Pottgiesser, Torben; Schumacher, Yorck Olaf

    2012-06-01

    Biomarker monitoring can be considered a new era in the effort against doping. Opposed to the old concept in doping control of direct detection of a prohibited substance in a biological sample such as urine or blood, the new paradigm allows a personalized longitudinal monitoring of biomarkers that indicate non-physiological responses independently of the used doping technique or substance, and may cause sanctioning of illicit practices. This review presents the development of biomarker monitoring in sports doping control and focuses on the implementation of the Athlete Biological Passport as the current concept of the World Anti Doping Agency for the detection of blood doping (hematological module). The scope of the article extends to the description of novel biomarkers and future concepts of application.

  10. In vitro and in vivo assessment of magnetically actuated biomaterials and prospects in tendon healing.

    PubMed

    Santos, Lívia; Silva, Marta; Gonçalves, Ana I; Pesqueira, Tamagno; Rodrigues, Márcia T; Gomes, Manuela E

    2016-05-01

    To expand our understanding on the effect of magnetically actuated biomaterials in stem cells, inflammation and fibrous tissue growth. Magnetic biomaterials were obtained by doping iron oxide particles into starch poly-ϵ-caprolactone (SPCL) to create two formulations, magSPCL-1.8 and 3.6. Stem cell behavior was assessed in vitro and the inflammatory response, subcutaneously in Wistar rats. Metabolic activity and proliferation increased significantly overtime in SPCL and magSPCL-1.8. Electromagnetic fields attenuated the presence of mast cells and macrophages in tissues surrounding SPCL and magSPCL-1.8, between weeks 1 and 9. Macrophage reduction was more pronounced for magSPCL-1.8, which could explain why this material prevented growth of fibrous tissue overtime. Magnetically actuated biomaterials have potential to modulate inflammation and the growth of fibrous tissue.

  11. Gene doping.

    PubMed

    Haisma, H J; de Hon, O

    2006-04-01

    Together with the rapidly increasing knowledge on genetic therapies as a promising new branch of regular medicine, the issue has arisen whether these techniques might be abused in the field of sports. Previous experiences have shown that drugs that are still in the experimental phases of research may find their way into the athletic world. Both the World Anti-Doping Agency (WADA) and the International Olympic Committee (IOC) have expressed concerns about this possibility. As a result, the method of gene doping has been included in the list of prohibited classes of substances and prohibited methods. This review addresses the possible ways in which knowledge gained in the field of genetic therapies may be misused in elite sports. Many genes are readily available which may potentially have an effect on athletic performance. The sporting world will eventually be faced with the phenomena of gene doping to improve athletic performance. A combination of developing detection methods based on gene arrays or proteomics and a clear education program on the associated risks seems to be the most promising preventive method to counteract the possible application of gene doping.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Çataltepe, Ö. Aslan, E-mail: ozdenaslan@yahoo.com, E-mail: ozden.aslan@gedik.edu.tr; Özdemir, Z. Güven, E-mail: zguvenozdemir@yahoo.com; Onbaşlı, Ü., E-mail: phonon@doruk.net.tr

    In this work, the effect of oxygen doping on the critical parameters of the mercury based superconducting sample such as critical transition temperature, T{sub c}, critical magnetic field, H{sub c}, critical current density, J{sub c}, has been investigated by the magnetic susceptibility versus temperature (χ-T) and magnetization versus applied magnetic field (M-H) measurements and, X-Ray Diffraction (XRD) patterns. It has been observed that regardless of the oxygen doping concentration, the mercury cuprate system possesses two intrinsic superconducting phases together, HgBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub 8+x} and HgBa{sub 2}CaCu{sub 2}O{sub 6+x}. However, the highest T{sub c} has been determined for the optimummore » oxygen doped sample. Moreover, it has been revealed that superconducting properties, crystal lattice parameters, coherent lengths, ξ{sub ab}, ξ{sub c} and the anisotropy factor γ etc. are very sensitive to oxygen doping procedures. Hence, the results presented this work enables one to obtain the mercury based superconductor with the most desirable criticals and other parameters for theoretical and technological applications by arranging the oxygen doping concentration.« less

  13. NASA Tech Briefs, January 2009

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Tech Briefs are short announcements of innovations originating from research and development activities of the National Aeronautics and Space Administration. They emphasize information considered likely to be transferable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. Topics covered include: The Radio Frequency Health Node Wireless Sensor System; Effects of Temperature on Polymer/Carbon Chemical Sensors; Small CO2 Sensors Operate at Lower Temperature; Tele-Supervised Adaptive Ocean Sensor Fleet; Synthesis of Submillimeter Radiation for Spectroscopy; 100-GHz Phase Switch/Mixer Containing a Slot-Line Transition; Generating Ka-Band Signals Using an X-Band Vector Modulator; SiC Optically Modulated Field-Effect Transistor; Submillimeter-Wave Amplifier Module with Integrated Waveguide Transitions; Metrology System for a Large, Somewhat Flexible Telescope; Economical Implementation of a Filter Engine in an FPGA; Improved Joining of Metal Components to Composite Structures; Machined Titanium Heat-Pipe Wick Structure; Gadolinia-Doped Ceria Cathodes for Electrolysis of CO2; Utilizing Ocean Thermal Energy in a Submarine Robot; Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators; Alternative OTEC Scheme for a Submarine Robot; Sensitive, Rapid Detection of Bacterial Spores; Adenosine Monophosphate-Based Detection of Bacterial Spores; Silicon Microleaks for Inlets of Mass Spectrometers; CGH Figure Testing of Aspherical Mirrors in Cold Vacuums; Series-Coupled Pairs of Silica Microresonators; Precise Stabilization of the Optical Frequency of WGMRs; Formation Flying of Components of a Large Space Telescope; Laser Metrology Heterodyne Phase-Locked Loop; Spatial Modulation Improves Performance in CTIS; High-Performance Algorithm for Solving the Diagnosis Problem; Truncation Depth Rule-of-Thumb for Convolutional Codes; Efficient Method for Optimizing Placement of Sensors.

  14. Quantum dot laser optimization: selectively doped layers

    NASA Astrophysics Data System (ADS)

    Korenev, Vladimir V.; Konoplev, Sergey S.; Savelyev, Artem V.; Shernyakov, Yurii M.; Maximov, Mikhail V.; Zhukov, Alexey E.

    2016-08-01

    Edge emitting quantum dot (QD) lasers are discussed. It has been recently proposed to use modulation p-doping of the layers that are adjacent to QD layers in order to control QD's charge state. Experimentally it has been proven useful to enhance ground state lasing and suppress the onset of excited state lasing at high injection. These results have been also confirmed with numerical calculations involving solution of drift-diffusion equations. However, deep understanding of physical reasons for such behavior and laser optimization requires analytical approaches to the problem. In this paper, under a set of assumptions we provide an analytical model that explains major effects of selective p-doping. Capture rates of elections and holes can be calculated by solving Poisson equations for electrons and holes around the charged QD layer. The charge itself is ruled by capture rates and selective doping concentration. We analyzed this self-consistent set of equations and showed that it can be used to optimize QD laser performance and to explain underlying physics.

  15. Effects of rare earth ionic doping on microstructures and electrical properties of CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Renzhong; Department of Technology and Physics, Zhengzhou University of Light Industry, Zhengzhou 450002; Chen, Zhenping, E-mail: xrzbotao@163.com

    2015-06-15

    Graphical abstract: The dielectric constant decreases monotonically with reduced RE doping ion radius and is more frequency independent compared with that of pure CCTO sample. - Highlights: • The mean grain sizes decrease monotonically with reduced RE doping ionic radius. • Doping gives rise to the monotonic decrease of ϵ{sub r} with reduced RE ionic radius. • The nonlinear coefficient and breakdown field increase with RE ionic doping. • α of all the samples is associated with the potential barrier width rather than Φ{sub b}. - Abstract: Ca{sub 1–x}R{sub x}Cu{sub 3}Ti{sub 4}O{sub 12}(R = La, Nd, Eu, Gd, Er; xmore » = 0 and 0.005) ceramics were prepared by the conventional solid-state method. The influences of rare earth (RE) ion doping on the microstructure, dielectric and electrical properties of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) ceramics were investigated systematically. Single-phase formation is confirmed by XRD analyses. The mean grain size decreases monotonically with reduced RE ion radius. The EDS results reveal that RE ionic doping reduces Cu-rich phase segregation at the grain boundaries (GBs). Doping gives rise to the monotonic decrease of dielectric constant with reduced RE ionic radius but significantly improves stability with frequency. The lower dielectric loss of doped samples is obtained due to the increase of GB resistance. In addition, the nonlinear coefficient and breakdown field increase with RE ionic doping. Both the fine grains and the enhancement of potential barrier at GBs are responsible for the improvement of the nonlinear current–voltage properties in doped CCTO samples.« less

  16. Isoelectronic tungsten doping in monolayer MoSe 2 for carrier type modulation

    DOE PAGES

    Li, Xufan; Lin, Ming -Wei; Basile, Leonardo; ...

    2016-07-06

    Doping and alloying are effective ways to engineer the band structure and modulate the optoelectronic functionality of monolayer transition metal dichalcogenides (TMDs). In this work, we explore the synthesis and electronic properties of monolayer Mo 1-xW xSe 2 (0 < x < 0.18) alloys with almost 100% alloying degree. The isoelectronic substitutional doping of tungsten for molybdenum in the monolayer MoSe 2 is shown to suppress its intrinsically n-type conduction behavior, with p-type conduction gradually emerging to become dominant with increasing W concentration in the alloys. Atomic resolution Z-contrast electron microscopy show that W is shown to substitute directly formore » Mo without the introduction of noticeable vacancy or interstitial defects, however with randomly-distributed W-rich regions ~2 nm in diameter. Scanning tunneling microscopy/spectroscopy measurements reveal that these W-rich regions exhibit a local band structure with the valence band maximum (VBM) closer to the Fermi level as compared with the Mo-rich regions in the monolayer Mo 1-xW xSe 2 crystal. These localized upshifts of the VBM in the local band structure appear responsible for the overall p-type behavior observed for the monolayer Mo 1-xW xSe 2 crystals. Stacked monolayers of n-type MoSe 2 and p-type Mo 1-xW xSe 2 were demonstrated to form atomically thin, vertically stacked p n homojunctions with gate-tunable characteristics, which appear useful for future optoelectronic applications. Lastly, these results indicate that alloying with isoelectronic dopant atoms appears to be an effective and advantageous alternate strategy to doping or alloying with electron donors or acceptors in two-dimensional TMDs.« less

  17. Doping effect of polyaniline/MWCNT composites on capacitance and cyclic stability of supercapacitors.

    PubMed

    Karthikeyan, G; Sahoo, S; Nayak, G C; Das, C K

    2012-03-01

    Polyaniline doped by Zn2+ ions was synthesized as nanocomposites with multiwalled carbon nanotubes (MWCNT) by in-situ oxidative polymerization and investigated as electrode material for supercapacitors. The uniform coating of polyaniline on MWCNT was characterized by field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). The effect of Zn2+ ions on nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy. The electrochemical performances were investigated by cyclic voltammetry (CV), constant current charging/discharging cyclic test (CC) and electrochemical impedance spectroscopy (EIS) using a three-electrode system. The doped polyaniline composites show higher specific capacitance and better cyclic stability.

  18. Structurally controllable spin spatial splitter in a hybrid ferromagnet and semiconductor nanostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Mao-Wang, E-mail: maowanglu@126.com; Cao, Xue-Li; Huang, Xin-Hong

    2014-05-07

    We theoretically investigate modulation of a tunable δ-potential to the lateral displacement of electrons across a magnetically modulated semiconductor nanostructure. Experimentally, this nanostructure can be produced by depositing a nanosized ferromagnetic stripe with in-plane magnetization on top of a semiconductor heterostructure, while the δ-potential can be realized by means of the atomic layer doping technique. Theoretical analysis reveals that this δ-doping can break the intrinsic symmetry in nanostructure and a considerable spin polarization in the lateral displacement will appear. Numerical calculations demonstrate that both magnitude and sign of spin polarization can be manipulated by changing the height and/or position ofmore » the δ-doping, giving rise to a structurally tunable spin spatial splitter.« less

  19. Anisotropy of the Seebeck Coefficient in the Cuprate Superconductor YBa2 Cu3 Oy : Fermi-Surface Reconstruction by Bidirectional Charge Order

    NASA Astrophysics Data System (ADS)

    Cyr-Choinière, O.; Badoux, S.; Grissonnanche, G.; Michon, B.; Afshar, S. A. A.; Fortier, S.; LeBoeuf, D.; Graf, D.; Day, J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Doiron-Leyraud, N.; Taillefer, Louis

    2017-07-01

    The Seebeck coefficient S of the cuprate YBa2 Cu3 Oy is measured in magnetic fields large enough to suppress superconductivity, at hole dopings p =0.11 and p =0.12 , for heat currents along the a and b directions of the orthorhombic crystal structure. For both directions, S /T decreases and becomes negative at low temperature, a signature that the Fermi surface undergoes a reconstruction due to broken translational symmetry. Above a clear threshold field, a strong new feature appears in Sb, for conduction along the b axis only. We attribute this feature to the onset of 3D-coherent unidirectional charge-density-wave modulations seen by x-ray diffraction, also along the b axis only. Because these modulations have a sharp onset temperature well below the temperature where S /T starts to drop towards negative values, we infer that they are not the cause of Fermi-surface reconstruction. Instead, the reconstruction must be caused by the quasi-2D bidirectional modulations that develop at significantly higher temperature. The unidirectional order only confers an additional anisotropy to the already reconstructed Fermi surface, also manifest as an in-plane anisotropy of the resistivity.

  20. Revealing giant internal magnetic fields due to spin fluctuations in magnetically doped colloidal nanocrystals

    DOE PAGES

    Rice, William D.; Liu, Wenyong; Baker, Thomas A.; ...

    2015-11-23

    Strong quantum confinement in semiconductors can compress the wavefunctions of band electrons and holes to nanometre-scale volumes, significantly enhancing interactions between themselves and individual dopants. In magnetically doped semiconductors, where paramagnetic dopants (such as Mn 2+, Co 2+ and so on) couple to band carriers via strong sp–d spin exchange, giant magneto-optical effects can therefore be realized in confined geometries using few or even single impurity spins. Importantly, however, thermodynamic spin fluctuations become increasingly relevant in this few-spin limit. In nanoscale volumes, the statistical √N fluctuations of N spins are expected to generate giant effective magnetic fields B eff, whichmore » should dramatically impact carrier spin dynamics, even in the absence of any applied field. In this paper, we directly and unambiguously reveal the large B eff that exist in Mn 2+-doped CdSe colloidal nanocrystals using ultrafast optical spectroscopy. At zero applied magnetic field, extremely rapid (300–600 GHz) spin precession of photoinjected electrons is observed, indicating B eff ~ 15-30 T for electrons. Precession frequencies exceed 2 THz in applied magnetic fields. Finally, these signals arise from electron precession about the random fields due to statistically incomplete cancellation of the embedded Mn 2+ moments, thereby revealing the initial coherent dynamics of magnetic polaron formation, and highlighting the importance of magnetization fluctuations on carrier spin dynamics in nanomaterials.« less

  1. Reversal of spontaneous magnetization and spontaneous exchange bias for Sm1-xYxCrO3: The effect of Y doping

    NASA Astrophysics Data System (ADS)

    Zhang, Hongguang; Wang, Jianhua; Xie, Liang; Fu, Dexiang; Guo, Yanyan; Li, Yongtao

    2017-11-01

    We report the crystal and electronic structures and magnetic properties of non-magnetic Y3+ ion doped SmCrO3 crystals. Structural distortion and electronic structure variation are caused by cation disorder due to Y doping. Although the spin moment of Sm3+ is diluted by nonmagnetic Y ions, spin reorientation continues to exist, and the temperature-dependent magnetization reversal effect and the spontaneous exchange bias effect under zero field cooling are simultaneously induced below Neel temperature. Significantly, the method of doping promotes the achievement of temperature dependent tunable switching of magnetization and sign of a spontaneous exchange bias from positive to negative. Our work provides more tunable ways to the sign reversal of magnetization and exchange bias, which have potential application in designing magnetic random access memory devices, thermomagnetic switches and spin-valve devices.

  2. Conductivity Modifications of Graphene by Electron Donative Organic Molecules

    NASA Astrophysics Data System (ADS)

    Masujima, Hiroaki; Mori, Takehiko; Hayamizu, Yuhei

    2017-07-01

    Graphene has been studied for the application of transparent electrodes in flexible electrical devices with semiconductor organics. Control of the charge carrier density in graphene is crucial to reduce the contact resistance between graphene and the active layer of organic semiconductor. Chemical doping of graphene is an approach to change the carrier density, where the adsorbed organic molecules donate or accept electrons form graphene. While various acceptor organic molecules have been demonstrated so far, investigation about donor molecules is still poor. In this work, we have investigated doping effect in graphene field-effect transistors functionalized by organic donor molecules such as dibenzotetrathiafulvalene (DBTTF), hexamethyltetrathiafulvalene (HMTTF), 1,5-diaminonaphthalene (DAN), and N, N, N', N'-tetramethyl- p-phenylenediamine (TMPD). Based on conductivity measurements of graphene transistors, the former three molecules do not have any significant effect to graphene transistors. However, TMPD shows effective n-type doping. The doping effect has a correlation with the level of highest occupied molecular orbital (HOMO) of each molecule, where TMPD has the highest HOMO level.

  3. Kilowatt high-efficiency narrow-linewidth monolithic fiber amplifier operating at 1034 nm

    NASA Astrophysics Data System (ADS)

    Naderi, Nader A.; Flores, Angel; Anderson, Brian M.; Rowland, Ken; Dajani, Iyad

    2016-03-01

    Power scaling investigation of a narrow-linewidth, Ytterbium-doped all-fiber amplifier operating at 1034 nm is presented. Nonlinear stimulated Brillouin scattering (SBS) effects were suppressed through the utilization of an external phase modulation technique. Here, the power amplifier was seeded with a spectrally broadened master oscillator and the results were compared using both pseudo-random bit sequence (PRBS) and white noise source (WNS) phase modulation formats. By utilizing an optical band pass filter as well as optimizing the length of fiber used in the pre-amplifier stages, we were able to appreciably suppress unwanted amplified spontaneous emission (ASE). Notably, through PRBS phase modulation, greater than two-fold enhancement in threshold power was achieved when compared to the WNS modulated case. Consequently, by further optimizing both the power amplifier length and PRBS pattern at a clock rate of 3.5 GHz, we demonstrated 1 kilowatt of power with a slope efficiency of 81% and an overall ASE content of less than 1%. Beam quality measurements at 1 kilowatt provided near diffraction-limited operation (M2 < 1.2) with no sign of modal instability. To the best of our knowledge, the power scaling results achieved in this work represent the highest power reported for a spectrally narrow all-fiber amplifier operating at < 1040 nm in Yb-doped silica-based fiber.

  4. Effects of Mg pre-flow, memory, and diffusion on the growth of p-GaN with MOCVD (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tu, Charng-Gan; Chen, Hao-Tsung; Chen, Sheng-Hung; Chao, Chen-Yao; Kiang, Yean-Woei; Yang, Chih-Chung

    2017-02-01

    In MOCVD growth, two key factors for growing a p-type structure, when the modulation growth or delta-doping technique is used, include Mg memory and diffusion. With high-temperature growth (>900 degree C), doped Mg can diffuse into the under-layer. Also, due to the high-pressure growth and growth chamber coating in MOCVD, plenty Mg atoms exist in the growth chamber for a duration after Mg supply is ended. In this situation, Mg doping continues in the following designated un-doped layers. In this paper, we demonstrate the study results of Mg preflow, memory, and diffusion. The results show that pre-flow of Mg into the growth chamber can lead to a significantly higher Mg doping concentration in growing a p-GaN layer. In other words, a duration for Mg buildup is required for high Mg incorporation. Based on SIMS study, we find that with the pre-flow growth, a high- and a low-doping p-GaN layer are formed. The doping concentration difference between the two layers is about 10 times. The thickness of the high- (low-) doping layer is about 40 (65) nm. The growth of the high-doping layer starts 10-15 min after Mg supply starts (Mg buildup time). The diffusion length of Mg into the AlGaN layer beneath (Mg content reduced to <5%) is about 10 nm. The memory time of Mg in the growth chamber is about 60 min, after which the Mg doping concentration is reduced to <1%.

  5. Co-current Doping Effect of Nanoscale Carbon and Aluminum Nitride on Critical Current Density and Flux Pinning Properties of Bulk MgB2 Superconductors

    NASA Astrophysics Data System (ADS)

    Tripathi, D.; Dey, T. K.

    2018-05-01

    The effect of nanoscale aluminum nitride (n-AlN) and carbon (n-C) co-doping on superconducting properties of polycrystalline bulk MgB2 superconductor has been investigated. Polycrystalline pellets of MgB2, MgB2 + 0.5 wt% AlN (nano), MgB_{1.99}C_{0.01} and MgB_{1.99}C_{0.01} + 0.5 wt% AlN (nano) have been synthesized by a solid reaction process under inert atmosphere. The transition temperature (TC) estimated from resistivity measurement indicates only a small decrease for C (nano) and co-doped MgB2 samples. The magnetic field response of investigated samples has been measured at 4, 10, and 20 K in the field range ± 6 T. MgB2 pellets co-doped with 0.5 wt% n-AlN and 1 wt% n-C display appreciable enhancement in critical current density (J_C) of MgB2 in both low (≥ 3 times), as well as, high-field region (≥ 15 times). J_C versus H behavior of both pristine and doped MgB2 pellets is well explained in the light of the collective pinning model. Further, the normalized pinning force density f_p(= F_p/F_{pmax}) displays a fair correspondence with the scaling procedure proposed by Eisterer et al. Moreover, the scaled data of the pinning force density (i.e., f_p{-}h data) of the investigated pellets at different temperature are well interpreted by a modified Dew-Hughes expression reported by Sandu and Chee.

  6. Impact of Silicon Doping on Low-Frequency Charge Noise and Conductance Drift in GaAs/AlxGa1 -xAs Nanostructures

    NASA Astrophysics Data System (ADS)

    Fallahi, S.; Nakamura, J. R.; Gardner, G. C.; Yannell, M. M.; Manfra, M. J.

    2018-03-01

    We present measurements of low-frequency charge noise and conductance drift in modulation-doped GaAs /AlxGa1 -xAs heterostructures grown by molecular beam epitaxy in which the silicon doping density is varied from 2.4 ×1018 (critically doped) to 6.0 ×1018 cm-3 (overdoped). Quantum point contacts are used to detect charge fluctuations. A clear reduction of both short-time-scale telegraphic noise and long-time-scale conductance drift with decreased doping density is observed. These measurements indicate that the neutral doping region plays a significant role in charge noise and conductance drift.

  7. Effect of magnetic field on the flux pinning mechanisms in Al and SiC co-doped MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Kia, N. S.; Ghorbani, S. R.; Arabi, H.; Hossain, M. S. A.

    2018-07-01

    MgB2 superconductor samples co-doped with 0.02 wt. Al2O3 and 0-0.05 wt. SiC were studied by magnetization - magnetic field (M-H) loop measurements at different temperatures. The critical current density has been calculated by the Bean model, and the irreversibility field, Hirr, has been obtained by the Kramer method. The pinning mechanism of the co-doped sample with 2% Al and 5% SiC was investigated in particular due to its having the highest Hirr. The normalized volume pinning force f = F/Fmax as a function of reduced magnetic field h = H/Hirr has been obtained, and the pinning mechanism was studied by the Dew-Houghes model. It was found that the normal point pinning (NPP), the normal surface pinning (NSP), and the normal volume pinning (NVP) mechanisms play the main roles. The magnetic field and temperature dependence of contributions of the NPP, NSP, and NVP pinning mechanisms were obtained. The results show that the contributions of the pinning mechanisms depend on the temperature and magnetic field. From the temperature dependence of the critical current density within the collective pinning theory, it was found that both the δl pinning due to spatial fluctuations of the charge-carrier mean free path and the δTc pinning due to randomly distributed spatial variations in the transition temperature coexist at zero magnetic field in co-doped samples. Yet, the charge-carrier mean-free-path fluctuation pinning (δl) is the only important pinning mechanism at non-zero magnetic fields.

  8. Mg doping of GaN by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lieten, R. R.; Motsnyi, V.; Zhang, L.; Cheng, K.; Leys, M.; Degroote, S.; Buchowicz, G.; Dubon, O.; Borghs, G.

    2011-04-01

    We present a systematic study on the influence of growth conditions on the incorporation and activation of Mg in GaN layers grown by plasma-assisted molecular beam epitaxy. We show that high quality p-type GaN layers can be obtained on GaN-on-silicon templates. The Mg incorporation and the electrical properties have been investigated as a function of growth temperature, Ga : N flux ratio and Mg : Ga flux ratio. It was found that the incorporation of Mg and the electrical properties are highly sensitive to the Ga : N flux ratio. The highest hole mobility and lowest resistivity were achieved for slightly Ga-rich conditions. In addition to an optimal Ga : N ratio, an optimum Mg : Ga flux ratio was also observed at around 1%. We observed a clear Mg flux window for p-type doping of GaN : 0.31% < Mg : Ga < 5.0%. A lowest resistivity of 0.98 Ω cm was obtained for optimized growth conditions. The p-type GaN layer then showed a hole concentration of 4.3 × 1017 cm-3 and a mobility of 15 cm2 V-1 s-1. Temperature-dependent Hall effect measurements indicate an acceptor depth in these samples of 100 meV for a hole concentration of 5.5 × 1017 cm-3. The corresponding Mg concentration is 5 × 1019 cm-3, indicating approximately 1% activation at room temperature. In addition to continuous growth of Mg-doped GaN layers we also investigated different modulated growth procedures. We show that a modulated growth procedure has only limited influence on Mg doping at a growth temperature of 800 °C or higher. This result is thus in contrast to previously reported GaN : Mg doping at much lower growth temperatures of 500 °C.

  9. Transport properties of Sb-doped Si nanowires

    NASA Astrophysics Data System (ADS)

    Nukala, Prathyusha; Sapkota, Gopal; Gali, Pradeep; Philipose, U.

    2012-08-01

    We present a safe and cost-effective approach for synthesis of n-type Sb-doped Si nanowires. The nanowires were synthesized at ambient pressure using SiCl4 as Si source and pure Sb as the dopant source. Structural and compositional characterization using electron microscopy and X-ray spectroscopy show crystalline nanowires with lengths of 30-40 μm and diameters of 40-100 nm. A 3-4 nm thick amorphous oxide shell covers the surface of the nanowire, post-growth. The composition of this shell was confirmed by Raman spectroscopy. Growth of Si nanowires, followed by low temperature annealing in Sb vapor, was shown to be an effective technique for synthesizing Sb-doped Si nanowires. The doping concentration of Sb was found to be dependent on temperature, with Sb re-evaporating from the Si nanowire at higher doping temperatures. Field effect transistors (FETs) were fabricated to investigate the electrical transport properties of these nanowires. The as-grown Si nanowires were found to be p-type with a channel mobility of 40 cm2 V-1 s-1. After doping with Sb, these nanowires exhibited n-type behavior. The channel mobility and carrier concentration of the Sb-doped Si nanowires were estimated to be 288 cm2 V-1 s-1 and 5.3×1018 cm-3 respectively.

  10. p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111).

    PubMed

    Nguyen, H P T; Zhang, S; Cui, K; Han, X; Fathololoumi, S; Couillard, M; Botton, G A; Mi, Z

    2011-05-11

    Full-color, catalyst-free InGaN/GaN dot-in-a-wire light-emitting diodes (LEDs) were monolithically grown on Si(111) by molecular beam epitaxy, with the emission characteristics controlled by the dot properties in a single epitaxial growth step. With the use of p-type modulation doping in the dot-in-a-wire heterostructures, we have demonstrated the most efficient phosphor-free white LEDs ever reported, which exhibit an internal quantum efficiency of ∼56.8%, nearly unaltered CIE chromaticity coordinates with increasing injection current, and virtually zero efficiency droop at current densities up to ∼640 A/cm(2). The remarkable performance is attributed to the superior three-dimensional carrier confinement provided by the electronically coupled dot-in-a-wire heterostructures, the nearly defect- and strain-free GaN nanowires, and the significantly enhanced hole transport due to the p-type modulation doping.

  11. Control of magnetism by electrical charge doping or redox reactions in a surface-oxidized Co thin film with a solid-state capacitor structure

    NASA Astrophysics Data System (ADS)

    Hirai, T.; Koyama, T.; Chiba, D.

    2018-03-01

    We have investigated the electric field (EF) effect on magnetism in a Co thin film with a naturally oxidized surface. The EF was applied to the oxidized Co surface through a gate insulator layer made of HfO2, which was formed using atomic layer deposition (ALD). The efficiency of the EF effect on the magnetic anisotropy in the sample with the HfO2 layer deposited at the appropriate temperature for the ALD process was relatively large compared to the previously reported values with an unoxidized Co film. The coercivity promptly and reversibly followed the variation in gate voltage. The modulation of the channel resistance was at most ˜0.02%. In contrast, a dramatic change in the magnetic properties including the large change in the saturation magnetic moment and a much larger EF-induced modulation of the channel resistance (˜10%) were observed in the sample with a HfO2 layer deposited at a temperature far below the appropriate temperature range. The response of these properties to the gate voltage was very slow, suggesting that a redox reaction dominated the EF effect on the magnetism in this sample. The frequency response for the capacitive properties was examined to discuss the difference in the mechanism of the EF effect observed here.

  12. Evidences of grain boundary capacitance effect on the colossal dielectric permittivity in (Nb + In) co-doped TiO2 ceramics

    PubMed Central

    Li, Jinglei; Li, Fei; Li, Chao; Yang, Guang; Xu, Zhuo; Zhang, Shujun

    2015-01-01

    The (Nb + In) co-doped TiO2 ceramics were synthesized by conventional solid-state sintering (CSSS) and spark plasma sintering (SPS) methods. The phases and microstructures were studied by X-ray diffraction, Raman spectra, field-emission scanning electron microscopy and transmission electron microscopy, indicating that both samples were in pure rutile phase while showing significant difference in grain size. The dielectric and I–V behaviors of SPS and CSSS samples were investigated. Though both possess colossal permittivity (CP), the SPS samples exhibited much higher dielectric permittivity/loss factor and lower breakdown electric field when compared to their CSSS counterparts. To further explore the origin of CP in co-doped TiO2 ceramics, the I–V behavior was studied on single grain and grain boundary in CSSS sample. The nearly ohmic I–V behavior was observed in single grain, while GBs showed nonlinear behavior and much higher resistance. The higher dielectric permittivity and lower breakdown electric field in SPS samples, thus, were thought to be associated with the feature of SPS, by which reduced space charges and/or impurity segregation can be achieved at grain boundaries. The present results support that the grain boundary capacitance effect plays an important role in the CP and nonlinear I–V behavior of (Nb + In) co-doped TiO2 ceramics. PMID:25656713

  13. Evidences of grain boundary capacitance effect on the colossal dielectric permittivity in (Nb + In) co-doped TiO2 ceramics

    NASA Astrophysics Data System (ADS)

    Li, Jinglei; Li, Fei; Li, Chao; Yang, Guang; Xu, Zhuo; Zhang, Shujun

    2015-02-01

    The (Nb + In) co-doped TiO2 ceramics were synthesized by conventional solid-state sintering (CSSS) and spark plasma sintering (SPS) methods. The phases and microstructures were studied by X-ray diffraction, Raman spectra, field-emission scanning electron microscopy and transmission electron microscopy, indicating that both samples were in pure rutile phase while showing significant difference in grain size. The dielectric and I-V behaviors of SPS and CSSS samples were investigated. Though both possess colossal permittivity (CP), the SPS samples exhibited much higher dielectric permittivity/loss factor and lower breakdown electric field when compared to their CSSS counterparts. To further explore the origin of CP in co-doped TiO2 ceramics, the I-V behavior was studied on single grain and grain boundary in CSSS sample. The nearly ohmic I-V behavior was observed in single grain, while GBs showed nonlinear behavior and much higher resistance. The higher dielectric permittivity and lower breakdown electric field in SPS samples, thus, were thought to be associated with the feature of SPS, by which reduced space charges and/or impurity segregation can be achieved at grain boundaries. The present results support that the grain boundary capacitance effect plays an important role in the CP and nonlinear I-V behavior of (Nb + In) co-doped TiO2 ceramics.

  14. Evidences of grain boundary capacitance effect on the colossal dielectric permittivity in (Nb + In) co-doped TiO2 ceramics.

    PubMed

    Li, Jinglei; Li, Fei; Li, Chao; Yang, Guang; Xu, Zhuo; Zhang, Shujun

    2015-02-06

    The (Nb + In) co-doped TiO2 ceramics were synthesized by conventional solid-state sintering (CSSS) and spark plasma sintering (SPS) methods. The phases and microstructures were studied by X-ray diffraction, Raman spectra, field-emission scanning electron microscopy and transmission electron microscopy, indicating that both samples were in pure rutile phase while showing significant difference in grain size. The dielectric and I-V behaviors of SPS and CSSS samples were investigated. Though both possess colossal permittivity (CP), the SPS samples exhibited much higher dielectric permittivity/loss factor and lower breakdown electric field when compared to their CSSS counterparts. To further explore the origin of CP in co-doped TiO2 ceramics, the I-V behavior was studied on single grain and grain boundary in CSSS sample. The nearly ohmic I-V behavior was observed in single grain, while GBs showed nonlinear behavior and much higher resistance. The higher dielectric permittivity and lower breakdown electric field in SPS samples, thus, were thought to be associated with the feature of SPS, by which reduced space charges and/or impurity segregation can be achieved at grain boundaries. The present results support that the grain boundary capacitance effect plays an important role in the CP and nonlinear I-V behavior of (Nb + In) co-doped TiO2 ceramics.

  15. Spin tuning of electron-doped metal-phthalocyanine layers.

    PubMed

    Stepanow, Sebastian; Lodi Rizzini, Alberto; Krull, Cornelius; Kavich, Jerald; Cezar, Julio C; Yakhou-Harris, Flora; Sheverdyaeva, Polina M; Moras, Paolo; Carbone, Carlo; Ceballos, Gustavo; Mugarza, Aitor; Gambardella, Pietro

    2014-04-09

    The spin state of organic-based magnets at interfaces is to a great extent determined by the organic environment and the nature of the spin-carrying metal center, which is further subject to modifications by the adsorbate-substrate coupling. Direct chemical doping offers an additional route for tailoring the electronic and magnetic characteristics of molecular magnets. Here we present a systematic investigation of the effects of alkali metal doping on the charge state and crystal field of 3d metal ions in Cu, Ni, Fe, and Mn phthalocyanine (Pc) monolayers adsorbed on Ag. Combined X-ray absorption spectroscopy and ligand field multiplet calculations show that Cu(II), Ni(II), and Fe(II) ions reduce to Cu(I), Ni(I), and Fe(I) upon alkali metal adsorption, whereas Mn maintains its formal oxidation state. The strength of the crystal field at the Ni, Fe, and Mn sites is strongly reduced upon doping. The combined effect of these changes is that the magnetic moment of high- and low-spin ions such as Cu and Ni can be entirely turned off or on, respectively, whereas the magnetic configuration of MnPc can be changed from intermediate (3/2) to high (5/2) spin. In the case of FePc a 10-fold increase of the orbital magnetic moment accompanies charge transfer and a transition to a high-spin state.

  16. Effect of Electromechanical Properties in Mn-doped BaTiO3

    NASA Astrophysics Data System (ADS)

    Takenaka, Hiroyuki; Cohen, R. E.

    Experimental studies reported that Mn doping in BaTiO3 could improve their electromechanical properties. In addition, ageing process gives rise to a significant reversible strain effect. Performing density functional theory (DFT) calculations, we find that Mn dopant with oxygen vacancy induces local electric field of 20 MV/m in 2x2x2 (39 atom) supercell. In order to understand effects of the electromechanical properties from phenomenological point of view, we optimize electric enthalpies in Landau-Devonshire model, parametrized from DFT results, under applying electric fields. We show dielectric constant and piezoelectric coefficients from the optimized polarization paths. supported by ONR, the ERC Advanced Grant ToMCaT, and the Carnegie Institution for Science.

  17. A facile method to synthesize boron-doped Ni/Fe alloy nano-chains as electrocatalyst for water oxidation

    NASA Astrophysics Data System (ADS)

    Yang, Yisu; Zhuang, Linzhou; Lin, Rijia; Li, Mengran; Xu, Xiaoyong; Rufford, Thomas E.; Zhu, Zhonghua

    2017-05-01

    We report a novel magnetic field assisted chemical reduction method for the synthesis of boron-doped Ni/Fe nano-chains as promising catalysts for the oxygen evolution reaction (OER). The boron-doped Ni/Fe nano-chains were synthesised in a one step process at room temperature using NaBH4 as a reducing agent. The addition of boron reduced the magnetic moment of the intermediate synthesis products and produced nano-chains with a high specific surface area of 73.4 m2 g-1. The boron-doped Ni/Fe nano-chains exhibited catalytic performance superior to state-of-the-art Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite and RuO2 noble metal oxide catalysts. The mass normalized activity of the boron-doped Ni/Fe nano-chains measured at an overpotential of 0.35 V was 64.0 A g-1, with a Tafel slope of only 40 mV dec-1. The excellent performance of the boron-doped Ni/Fe nano-chains can be attributed to the uniform elemental distribution and highly amorphous structure of the B-doped nano-chains. These results provide new insights into the effect of doping transition-metal based OER catalysts with non-metallic elements. The study demonstrates a facile approach to prepare transition metal nano-chains using magnetic field assisted chemical reduction method as cheap and highly active catalysts for electrochemical water oxidation.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarantini, C.; Sung, Z. -H.; Lee, P. J.

    Nb 3Sn wires are now very close to their final optimization but despite its classical nature, detailed understanding of the role of Ta and Ti doping in the A15 is not fully understood. Long thought to be essentially equivalent in their influence on H c2, they were interchangeably applied. Here we show that Ti produces significantly more homogeneous chemical and superconducting properties. Despite Ta-doped samples having a slightly higher T c onset in zero-field, they always have a wider Tc-distribution. In particular, whereas the Ta-doped A15 has a T c-distribution extending from 18 down to 5-6 K (the lowest expectedmore » Tc for the binary A15 phase), the Ti-doped samples have no A15 phase with T c below ~12 K. The much narrower T c distribution in the Ti-doped samples has a positive effect on their in-field T c-distribution too, leading to an extrapolated μ0H c2(0) 2 Tesla larger than the Ta-doped one. Ti-doping also appears to be very homogeneous even when the Sn content is reduced in order to inhibit breakdown of the diffusion barriers in very high Jc conductors. As a result, the enhanced homogeneity of the Ti-doped samples appears to result from its assistance of rapid diffusion of Sn into the filaments and by its incorporation into the A15 phase interchangeably with Sn on the Sn sites of the A15 phase.« less

  19. Characteristics of camel-gate structures with active doping channel profiles

    NASA Astrophysics Data System (ADS)

    Tsai, Jung-Hui; Lour, Wen-Shiung; Laih, Lih-Wen; Liu, Rong-Chau; Liu, Wen-Chau

    1996-03-01

    In this paper, we demonstrate the influence of channel doping profile on the performances of camel-gate field effect transistors (CAMFETs). For comparison, single and tri-step doping channel structures with identical doping thickness products are employed, while other parameters are kept unchanged. The results of a theoretical analysis show that the single doping channel FET with lightly doping active layer has higher barrier height and drain-source saturation current. However, the transconductance is decreased. For a tri-step doping channel structure, it is found that the output drain-source saturation current and the barrier height are enhanced. Furthermore, the relatively voltage independent performances are improved. Two CAMFETs with single and tri-step doping channel structures have been fabricated and discussed. The devices exhibit nearly voltage independent transconductances of 144 mS mm -1 and 222 mS mm -1 for single and tri-step doping channel CAMFETs, respectively. The operation gate voltage may extend to ± 1.5 V for a tri-step doping channel CAMFET. In addition, the drain current densities of > 750 and 405 mA mm -1 are obtained for the tri-step and single doping CAMFETs. These experimental results are inconsistent with theoretical analysis.

  20. The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chung; Chen, Wei-Cheng; Chan, Shun-Hsiang; Su, Wei-Fang

    2018-01-01

    Perovskite solar cell is a novel photovoltaic technology with the superior progress in efficiency and the simple solution processes. Develop lead-free or lead-reduced perovskite materials is a significant concern for high-performance perovskite solar cell. Among the alkaline earth metals, the Sr2+ and Ba2+ are suitable for Pb2+ replacement in perovskite film due to fitting Goldschmidt's tolerance factor. In this study, we adopted Ba-doped and Sr-doped perovskite structured materials with different doping levels, including 1.0, 5.0, and 10.0 mol%, to prepare perovskite solar cells. Both Ba-doped and Sr-doped perovskite structured materials have a related tendency in absorption behavior and surface morphology. At 10.0 mol% doping level, the power conversion efficiency (PCE) of Sr-doped perovskite solar cells is only ∼0.5%, but the PCE of Ba-doped perovskite solar cells can be achieved to ∼9.7%. Ba-doped perovskite solar cells showed the acceptable photovoltaic characteristics than Sr-doped perovskite solar cells. Ba dopant can partially replace the amount of lead in the perovskite solar cells, and it could be a potential candidate in the field of lead-free or lead-reduced perovskite energy materials.

  1. Performance evaluation of parallel electric field tunnel field-effect transistor by a distributed-element circuit model

    NASA Astrophysics Data System (ADS)

    Morita, Yukinori; Mori, Takahiro; Migita, Shinji; Mizubayashi, Wataru; Tanabe, Akihito; Fukuda, Koichi; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shin-ichi; Liu, Yongxun; Masahara, Meishoku; Ota, Hiroyuki

    2014-12-01

    The performance of parallel electric field tunnel field-effect transistors (TFETs), in which band-to-band tunneling (BTBT) was initiated in-line to the gate electric field was evaluated. The TFET was fabricated by inserting an epitaxially-grown parallel-plate tunnel capacitor between heavily doped source wells and gate insulators. Analysis using a distributed-element circuit model indicated there should be a limit of the drain current caused by the self-voltage-drop effect in the ultrathin channel layer.

  2. Significant enhancement of compositional and superconducting homogeneity in Ti rather than Ta-doped Nb 3Sn

    DOE PAGES

    Tarantini, C.; Sung, Z. -H.; Lee, P. J.; ...

    2016-01-25

    Nb 3Sn wires are now very close to their final optimization but despite its classical nature, detailed understanding of the role of Ta and Ti doping in the A15 is not fully understood. Long thought to be essentially equivalent in their influence on H c2, they were interchangeably applied. Here we show that Ti produces significantly more homogeneous chemical and superconducting properties. Despite Ta-doped samples having a slightly higher T c onset in zero-field, they always have a wider Tc-distribution. In particular, whereas the Ta-doped A15 has a T c-distribution extending from 18 down to 5-6 K (the lowest expectedmore » Tc for the binary A15 phase), the Ti-doped samples have no A15 phase with T c below ~12 K. The much narrower T c distribution in the Ti-doped samples has a positive effect on their in-field T c-distribution too, leading to an extrapolated μ0H c2(0) 2 Tesla larger than the Ta-doped one. Ti-doping also appears to be very homogeneous even when the Sn content is reduced in order to inhibit breakdown of the diffusion barriers in very high Jc conductors. As a result, the enhanced homogeneity of the Ti-doped samples appears to result from its assistance of rapid diffusion of Sn into the filaments and by its incorporation into the A15 phase interchangeably with Sn on the Sn sites of the A15 phase.« less

  3. Realization of a Hole-Doped Mott Insulator on a Triangular Silicon Lattice

    NASA Astrophysics Data System (ADS)

    Ming, Fangfei; Johnston, Steve; Mulugeta, Daniel; Smith, Tyler S.; Vilmercati, Paolo; Lee, Geunseop; Maier, Thomas A.; Snijders, Paul C.; Weitering, Hanno H.

    2017-12-01

    The physics of doped Mott insulators is at the heart of some of the most exotic physical phenomena in materials research including insulator-metal transitions, colossal magnetoresistance, and high-temperature superconductivity in layered perovskite compounds. Advances in this field would greatly benefit from the availability of new material systems with a similar richness of physical phenomena but with fewer chemical and structural complications in comparison to oxides. Using scanning tunneling microscopy and spectroscopy, we show that such a system can be realized on a silicon platform. The adsorption of one-third monolayer of Sn atoms on a Si(111) surface produces a triangular surface lattice with half filled dangling bond orbitals. Modulation hole doping of these dangling bonds unveils clear hallmarks of Mott physics, such as spectral weight transfer and the formation of quasiparticle states at the Fermi level, well-defined Fermi contour segments, and a sharp singularity in the density of states. These observations are remarkably similar to those made in complex oxide materials, including high-temperature superconductors, but highly extraordinary within the realm of conventional s p -bonded semiconductor materials. It suggests that exotic quantum matter phases can be realized and engineered on silicon-based materials platforms.

  4. Characteristics of Superjunction Lateral-Double-Diffusion Metal Oxide Semiconductor Field Effect Transistor and Degradation after Electrical Stress

    NASA Astrophysics Data System (ADS)

    Lin, Jyh‑Ling; Lin, Ming‑Jang; Lin, Li‑Jheng

    2006-04-01

    The superjunction lateral double diffusion metal oxide semiconductor field effect has recently received considerable attention. Introducing heavily doped p-type strips to the n-type drift region increases the horizontal depletion capability. Consequently, the doping concentration of the drift region is higher and the conduction resistance is lower than those of conventional lateral-double-diffusion metal oxide semiconductor field effect transistors (LDMOSFETs). These characteristics may increase breakdown voltage (\\mathit{BV}) and reduce specific on-resistance (Ron,sp). In this study, we focus on the electrical characteristics of conventional LDMOSFETs on silicon bulk, silicon-on-insulator (SOI) LDMOSFETs and superjunction LDMOSFETs after bias stress. Additionally, the \\mathit{BV} and Ron,sp of superjunction LDMOSFETs with different N/P drift region widths and different dosages are discussed. Simulation tools, including two-dimensional (2-D) TSPREM-4/MEDICI and three-dimensional (3-D) DAVINCI, were employed to determine the device characteristics.

  5. Simultaneous measurement of the de Haas-van Alphen and the Shubnikov-de Haas effect in a two-dimensional electron system

    NASA Astrophysics Data System (ADS)

    Ruhe, N.; Springborn, J. I.; Heyn, Ch.; Wilde, M. A.; Grundler, D.

    2006-12-01

    In a simultaneous experiment we studied the de Haas-van Alphen (dHvA) and the Shubnikov-de Haas (SdH) effects in a two-dimensional electron system (2DES) in a modulation-doped GaAs/AlxGa1-xAs heterostructure. For this, a gated 2DES mesa was monolithically integrated with a micromechnical cantilever with an interferometric fiber-optics readout. In situ measurement of the dHvA and SdH oscillations at 300mK in a magnetic field B allowed us to directly compare the variation of the ground state energy and the nonequilibrium transport behavior, respectively. This was done on a 2DES of a small carrier density ns ranging from 5×1010to33×1010cm-2 . The wave forms of the dHvA oscillations were nonsinusoidal down to a magnetic field as small as 1.45T . At the same time the zero-field mobility was as low as μe=105cm2/Vs . We found that at fixed B the observed dHvA wave form and amplitude were independent of ns and μe . This was unexpected and in contrast to the established picture in the literature. To understand the dHvA effect quantitatively in a disordered 2DES our data suggest that energetic details of the disorder potentials have to be considered.

  6. Electronic properties of B and Al doped graphane: A hybrid density functional study

    NASA Astrophysics Data System (ADS)

    Mapasha, R. E.; Igumbor, E.; Andriambelaza, N. F.; Chetty, N.

    2018-04-01

    Using a hybrid density functional theory approach parametrized by Heyd, Scuseria and Ernzerhof (HSE06 hybrid functional), we study the energetics, structural and electronic properties of a graphane monolayer substitutionally doped with the B (BCH) and Al (AlCH) atoms. The BCH defect can be integrated within a graphane monolayer at a relative low formation energy, without major structural distortions and symmetry breaking. The AlCH defect relaxes outward of the monolayer and breaks the symmetry. The density of states plots indicate that BCH doped graphane monolayer is a wide band gap semiconductor, whereas the AlCH defect introduces the spin dependent mid gap states at the vicinity of the Fermi level, revealing a metallic character with the pronounced magnetic features. We further examine the response of the Al dependent spin states on the multiple charge states doping. We find that the defect formation energy, structural and electronic properties can be altered via charge state modulation. The +1 charge doping opens an energy band gap of 1.75 eV. This value corresponds to the wavelength in the visible spectrum, suggesting an ideal material for solar cell absorbers. Our study fine tunes the graphane band gap through the foreign atom doping as well as via defect charge state modulation.

  7. Modulation-Doped In2 O3 /ZnO Heterojunction Transistors Processed from Solution.

    PubMed

    Khim, Dongyoon; Lin, Yen-Hung; Nam, Sungho; Faber, Hendrik; Tetzner, Kornelius; Li, Ruipeng; Zhang, Qiang; Li, Jun; Zhang, Xixiang; Anthopoulos, Thomas D

    2017-05-01

    This paper reports the controlled growth of atomically sharp In 2 O 3 /ZnO and In 2 O 3 /Li-doped ZnO (In 2 O 3 /Li-ZnO) heterojunctions via spin-coating at 200 °C and assesses their application in n-channel thin-film transistors (TFTs). It is shown that addition of Li in ZnO leads to n-type doping and allows for the accurate tuning of its Fermi energy. In the case of In 2 O 3 /ZnO heterojunctions, presence of the n-doped ZnO layer results in an increased amount of electrons being transferred from its conduction band minimum to that of In 2 O 3 over the interface, in a process similar to modulation doping. Electrical characterization reveals the profound impact of the presence of the n-doped ZnO layer on the charge transport properties of the isotype In 2 O 3 /Li-ZnO heterojunctions as well as on the operating characteristics of the resulting TFTs. By judicious optimization of the In 2 O 3 /Li-ZnO interface microstructure, and Li concentration, significant enhancement in both the electron mobility and TFT bias stability is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Improved Li storage performance in SnO 2 nanocrystals by a synergetic doping

    DOE PAGES

    Wan, Ning; Lu, Xia; Wang, Yuesheng; ...

    2016-01-06

    Tin dioxide (SnO 2) is a widely investigated lithium (Li) storage material because of its easy preparation, two-step storage mechanism and high specific capacity for lithium-ion batteries (LIBs). In this contribution, a phase-pure cobalt-doped SnO 2 (Co/SnO 2) and a cobalt and nitrogen co-doped SnO 2 (Co-N/SnO 2) nanocrystals are prepared to explore their Li storage behaviors. It is found that the morphology, specific surface area, and electrochemical properties could be largely modulated in the doped and co-doped SnO 2 nanocrystals. Gavalnostatic cycling results indicate that the Co-N/SnO 2 electrode delivers a specific capacity as high as 716 mAh gmore » –1 after 50 cycles, and the same outstanding rate performance can be observed in subsequent cycles due to the ionic/electronic conductivity enhancement by co-doping effect. Further, microstructure observation indicates the existence of intermediate phase of Li 3N with high ionic conductivity upon cycling, which probably accounts for the improvements of Co-N/SnO 2 electrodes. Furthermore, we find that the method of synergetic doping into SnO 2 with Co and N, with which the electrochemical performances is enhanced remarkably, undoubtedly, will have an important influence on the material itself and community of LIBs as well.« less

  9. Effect of Cr doping on the structural, morphological, optical and electrical properties of indium tin oxide films

    NASA Astrophysics Data System (ADS)

    Mirzaee, Majid; Dolati, Abolghasem

    2015-03-01

    We report on the preparation and characterization of high-purity chromium (0.5-2.5 at.%)-doped indium tin oxide (ITO, In:Sn = 90:10) films deposited by sol-gel-mediated dip coating. The effects of different Cr-doping contents on structural, morphological, optical and electrical properties of the films were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), UV-Vis spectroscopy and four-point probe methods. XRD showed high phase purity cubic In2O3 and indicated a contraction of the lattice with Cr doping. FESEM micrographs show that grain size decreased with increasing the Cr-doping content. A method to determine chromium species in the sample was developed through the decomposition of the Cr 2 p XPS spectrum in Cr6+ and Cr3+ standard spectra. Optical and electrical studies revealed that optimum opto-electronic properties, including minimum sheet resistance of 4,300 Ω/Sq and an average optical transmittance of 85 % in the visible region with a band gap of 3.421 eV, were achieved for the films doped with Cr-doping content of 2 at.%.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandraboss, V.L.; Natanapatham, L.; Karthikeyan, B.

    Graphical abstract: The hetero-junctions that are formed between the ZnO and the Bi provide an internal electric field that facilitates separation of the electron-hole pairs and induces faster carrier migration. Thus they often enhanced photocatalytic reaction. - Highlights: • Bi-doped ZnO nanocomposite material was prepared by precipitation method. • Characterized by XRD, HR-SEM with EDX, UV–visible DRS and FT-RAMAN analysis. • Bi-doped ZnO nanocomposite material was used to photodegradation of Congo red. • Mechanism and photocatalytic effect of nanocomposite material have been discussed. - Abstract: Bismuth (Bi)-doped ZnO nanocomposite material was prepared by precipitation method with doping precursors of bismuthmore » nitrate pentahydrate and oxalic acid, characterized by X-ray diffraction (XRD), High Resolution-Scanning Electron Microscopy (HR-SEM) with Energy Dispersive X-ray (EDX) analysis, UV–visible Diffuse Reflectance Spectroscopy (UV–visible DRS) and Fourier Transform-Raman (FT-RAMAN) analysis. The enhanced photocatalytic activity of the Bi-doped ZnO is demonstrated through photodegradation of Congo red under UV-light irradiation. The mechanism of photocatalytic effect of Bi-doped ZnO nanocomposite material has been discussed.« less

  11. EUO-Based Multifunctional Heterostructures

    DTIC Science & Technology

    2015-06-06

    magnetoresistance and the metal -insulator transition resistance ratios of doped EuO by interfacing this semiconductor with niobium; the observed effect is...general and may be applied to any metal /semiconductor interface where the semiconductor shows large Zeeman splitting under magnetic field, (2...understanding the changes in electronic structure and Fermi-surface reconstruction that occur as doped EuO progresses through the ferromagnetic metal

  12. Tunable magnetic coupling in Mn-doped monolayer MoS2 under lattice strain

    NASA Astrophysics Data System (ADS)

    Miao, Yaping; Huang, Yuhong; Bao, Hongwei; Xu, Kewei; Ma, Fei; Chu, Paul K.

    2018-05-01

    First-principles calculations are conducted to study the electronic and magnetic states of Mn-doped monolayer MoS2 under lattice strain. Mn-doped MoS2 exhibits half-metallic and ferromagnetic (FM) characteristics in which the majority spin channel exhibits metallic features but there is a bandgap in the minority spin channel. The FM state and the total magnetic moment of 1 µ B are always maintained for the larger supercells of monolayer MoS2 with only one doped Mn, no matter under tensile or compressive strain. Furthermore, the FM state will be enhanced by the tensile strain if two Mo atoms are substituted by Mn atoms in the monolayer MoS2. The magnetic moment increases up to 0.50 µ B per unit cell at a tensile strain of 7%. However, the Mn-doped MoS2 changes to metallic and antiferromagnetic under compressive strain. The spin polarization of Mn 3d orbitals disappears gradually with increasing compressive strain, and the superexchange interaction between Mn atoms increases gradually. The results suggest that the electronic and magnetic properties of Mn-doped monolayer MoS2 can be effectively modulated by strain engineering providing insight into application to electronic and spintronic devices.

  13. Capacitorless one-transistor dynamic random-access memory based on asymmetric double-gate Ge/GaAs-heterojunction tunneling field-effect transistor with n-doped boosting layer and drain-underlap structure

    NASA Astrophysics Data System (ADS)

    Yoon, Young Jun; Seo, Jae Hwa; Kang, In Man

    2018-04-01

    In this work, we present a capacitorless one-transistor dynamic random-access memory (1T-DRAM) based on an asymmetric double-gate Ge/GaAs-heterojunction tunneling field-effect transistor (TFET) for DRAM applications. The n-doped boosting layer and gate2 drain-underlap structure is employed in the device to obtain an excellent 1T-DRAM performance. The n-doped layer inserted between the source and channel regions improves the sensing margin because of a high rate of increase in the band-to-band tunneling (BTBT) probability. Furthermore, because the gate2 drain-underlap structure reduces the recombination rate that occurs between the gate2 and drain regions, a device with a gate2 drain-underlap length (L G2_D-underlap) of 10 nm exhibited a longer retention performance. As a result, by applying the n-doped layer and gate2 drain-underlap structure, the proposed device exhibited not only a high sensing margin of 1.11 µA/µm but also a long retention time of greater than 100 ms at a temperature of 358 K (85 °C).

  14. Magnetic and magnetocaloric properties of Ba and Ti co-doped SrRuO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Babusona; Dalal, Biswajit; Dev Ashok, Vishal

    2014-12-28

    Temperature evolution of magnetic properties in Ba and Ti doped SrRuO{sub 3} has been investigated to observe the effects of larger ionic radius Ba at Sr site and isovalent nonmagnetic impurity Ti at Ru site. Ionic radius mismatch and different electronic configuration in comparison with Ru modify Sr(Ba)-O and Ru(Ti)-O bond lengths and Ru-O-Ru bond angle. The apical and basal Ru-O-Ru bond angles vary significantly with Ti doping. Ferromagnetic Curie temperature decreases from 161 K to 149 K monotonically with Ba (10%) and Ti (10%) substitutions at Sr and Ru sites. The zero field cooled (ZFC) magnetization reveals a prominent peak whichmore » shifts towards lower temperature with application of magnetic field. The substitution of tetravalent Ti with localized 3d{sup 0} orbitals for Ru with more delocalized 4d{sup 4} orbitals leads to a broad peak in ZFC magnetization. A spontaneous ZFC magnetization becomes negative below 160 K for all the compositions. The occurrence of both normal and inverse magnetocaloric effects in Ba and Ti co-doped SrRuO{sub 3} makes the system more interesting.« less

  15. Atmospheric pressure route to epitaxial nitrogen-doped trilayer graphene on 4H-SiC (0001) substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boutchich, M.; Arezki, H.; Alamarguy, D.

    Large-area graphene film doped with nitrogen is of great interest for a wide spectrum of nanoelectronics applications, such as field effect devices, super capacitors, and fuel cells among many others. Here, we report on the structural and electronic properties of nitrogen doped trilayer graphene on 4H-SiC (0001) grown under atmospheric pressure. The trilayer nature of the growth is evidenced by scanning transmission electron microscopy. X-ray photoelectron spectroscopy shows the incorporation of 1.2% of nitrogen distributed in pyrrolic-N, and pyridinic-N configurations as well as a graphitic-N contribution. This incorporation causes an increase in the D band on the Raman signature indicatingmore » that the nitrogen is creating defects. Ultraviolet photoelectron spectroscopy shows a decrease of the work function of 0.3 eV due to the N-type doping of the nitrogen atoms in the carbon lattice and the edge defects. A top gate field effect transistor device has been fabricated and exhibits carrier mobilities up to 1300 cm{sup 2}/V s for holes and 850 cm{sup 2}/V s for electrons at room temperature.« less

  16. Structural and critical current properties in Al-doped MgB 2

    NASA Astrophysics Data System (ADS)

    Zheng, D. N.; Xiang, J. Y.; Lang, P. L.; Li, J. Q.; Che, G. C.; Zhao, Z. W.; Wen, H. H.; Tian, H. Y.; Ni, Y. M.; Zhao, Z. X.

    2004-08-01

    A series of Al-doped Mg 1- xAl xB 2 samples have been fabricated and systematic study on structure and superconducting properties have been carried out for the samples. In addition to a structural transition observed by XRD, TEM micrographs showed the existence of a superstructure of double c-axis lattice constant along the direction perpendicular to the boron honeycomb sheet. In order to investigate the effect of Al doping on flux pinning and critical current properties in MgB 2, measurements on the superconducting transition temperature Tc, irreversible field Birr and critical current density Jc were performed too, for the samples with the doping levels lower than 0.15 in particular. These experimental observations were discussed in terms of Al doping induced changes in carrier concentration.

  17. Effect of chromium doping on the correlated electronic structure of V2O3

    NASA Astrophysics Data System (ADS)

    Grieger, Daniel; Lechermann, Frank

    2014-09-01

    The archetypical strongly correlated Mott-phenomena compound V2O3 is known to show a paramagnetic metal-insulator transition driven by doping with chromium atoms and/or (negative) pressure. Via charge self-consistent density-functional theory+dynamical mean-field theory calculations we demonstrate that these two routes cannot be understood as equivalent. An explicit description of Cr-doped V2O3 by means of supercell calculations and the virtual crystal approximation is performed. Introducing chromium's additional electron to the system is shown to modify the overall many-body electronic structure substantially. Chromium doping increases electronic correlations which in addition induce charge transfers between Cr and the remaining V ions. Thereby the transition-metal orbital polarization is increased by the electron doping, in close agreement with experimental findings.

  18. Study of the growth and pyroelectric properties of TGS crystals doped with aniline-family dipolar molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Kecong; Song, Jiancheng; Wang, Min; Fang, Changshui; Lu, Mengkai

    1987-04-01

    TGS crystals doped with aniline-family dipolar molecules (aniline, 2-aminobenzoic acid, 3-aminobenzoic acid, 3-aminobenzene-sulphonic acid, 4-aminobenzenesulphonic acid and 4-nitroraniline) have been grown by the slow-cooling solution method. The influence of these dopants on the growth habits, crystal morphology pyroelectric properties, and structure parameters of TGS crystals has been systematically investigated. The effects of the domain structure of the seed crystal on the pyroelectric properties of the doped crystals have been studied. It is found that the spontaneous polarization (P), pyroelectric coefficient (lambda), and internal bias field of the doped crystals are slightly higher than those of the pure TGS, and the larger the dipole moment of the dopant molecule, the higher the P and lambda of the doped TGS crystal.

  19. Effect of manganese doping on remnant polarization and leakage current in (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 epitaxial thin films on SrTiO3

    NASA Astrophysics Data System (ADS)

    Abazari, M.; Akdoǧan, E. K.; Safari, A.

    2008-05-01

    Single phase, epitaxial, ⟨001⟩ oriented, undoped and 1mol% Mn-doped (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 thin films of 400nm thickness were synthesized on SrRuO3 coated SrTiO3. Such films exhibit well saturated hysteresis loops and have a spontaneous polarization (Ps) of 10μC /cm2, which is a 150% higher over the Ps of the undoped composition. The coercive field of 1mol% Mn doped films is 13kV/cm. Mn-doping results in three orders of magnitude decrease in leakage current above 50kV/cm electric field, which we attribute to the suppression of intrinsic p-type conductivity of undoped films by Mn donors.

  20. Photovoltaic driven multiple quantum well optical modulator

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph (Inventor)

    1990-01-01

    Multiple quantum well (MQW) structures (12) are utilized to provide real-time, reliable, high-performance, optically-addressed spatial-light modulators (SLM) (10). The optically-addressed SLM comprises a vertical stack of quantum well layers (12a) within the penetration depth of an optical write signal 18, a plurality of space charge barriers (12b) having predetermined tunneling times by control of doping and thickness. The material comprising the quantum well layers has a lower bandgap than that of the space charge barrier layers. The write signal modulates a read signal (20). The modulation sensitivity of the device is high and no external voltage source is required. In a preferred embodiment, the SLM having interleaved doped semiconductor layers for driving the MQW photovoltaically is characterized by the use of a shift analogous to the Moss-Burnstein shift caused by the filling of two-dimensional states in the multiple quantum wells, thus allowing high modulation sensitivity in very narrow wells. Arrays (30) may be formed with a plurality of the modulators.

  1. Temperature sensitivity analysis of polarity controlled electrostatically doped tunnel field-effect transistor

    NASA Astrophysics Data System (ADS)

    Nigam, Kaushal; Pandey, Sunil; Kondekar, P. N.; Sharma, Dheeraj

    2016-09-01

    The conventional tunnel field-effect transistors (TFETs) have shown potential to scale down in sub-22 nm regime due to its lower sub-threshold slope and robustness against short-channel effects (SCEs), however, sensitivity towards temperature variation is a major concern. Therefore, for the first time, we investigate temperature sensitivity analysis of a polarity controlled electrostatically doped tunnel field-effect transistor (ED-TFET). Different performance metrics and analog/RF figure-of-merits were considered and compared for both devices, and simulations were performed using Silvaco ATLAS device tool. We found that the variation in ON-state current in ED-TFET is almost temperature independent due to electrostatically doped mechanism, while, it increases in conventional TFET at higher temperature. Above room temperature, the variation in ION, IOFF, and SS sensitivity in ED-TFET are only 0.11%/K, 2.21%/K, and 0.63%/K, while, in conventional TFET the variations are 0.43%/K, 2.99%/K, and 0.71%/K, respectively. However, below room temperature, the variation in ED-TFET ION is 0.195%/K compared to 0.27%/K of conventional TFET. Moreover, it is analysed that the incomplete ionization effect in conventional TFET severely affects the drive current and the threshold voltage, while, ED-TFET remains unaffected. Hence, the proposed ED-TFET is less sensitive towards temperature variation and can be used for cryogenics as well as for high temperature applications.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Shibin; College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061; Chang, Xueting, E-mail: xuetingchang@yahoo.cn

    Cobalt-doped tungsten oxide mesocrystals with different morphologies have been successfully generated using a solvothermal method with tungsten hexachloride and cobalt chloride salts as precursors. The resulting mesocrystals were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Brunauer-Emmet-Teller analysis of nitrogen sorptometer, and UV-vis diffuse reflectance spectroscopy. The photocatalytic properties of the cobalt-doped tungsten oxide mesocrystals were evaluated on the basis of their ability to degrade methyl orange in an aqueous solution under simulated sunlight irradiation. Results showed that the cobalt doping had obvious effect on the morphologies of the final products, and lenticular and blocky cobalt-dopedmore » tungsten oxide mesocrystals could be obtained with 1.0 wt.% and 2.0 wt.% cobalt doping, respectively. The cobalt-doped tungsten oxides exhibited superior photocatalytic activities to that of the undoped tungsten oxide. - Graphical abstract: Schematic illustrations of the growth of the bundled nanowires, lenticular mesocrystals, and blocky mesocrystals. Highlights: Black-Right-Pointing-Pointer Co-doped W{sub 18}O{sub 49} mesocrystals were synthesized using a solvothermal method. Black-Right-Pointing-Pointer The Co doping has obvious effect on the morphology of the final mesocrystals. Black-Right-Pointing-Pointer The Co-doped W{sub 18}O{sub 49} exhibited superior photocatalytic activity to the undoped W{sub 18}O{sub 49}.« less

  3. Investigation of pentacene growth on SiO2 gate insulator after photolithography for nitrogen-doped LaB6 bottom-contact electrode formation

    NASA Astrophysics Data System (ADS)

    Maeda, Yasutaka; Hiroki, Mizuha; Ohmi, Shun-ichiro

    2018-04-01

    Nitrogen-doped (N-doped) LaB6 is a candidate material for the bottom-contact electrode of n-type organic field-effect transistors (OFETs). However, the formation of a N-doped LaB6 electrode affects the surface morphology of a pentacene film. In this study, the effects of surface treatments and a N-doped LaB6 interfacial layer (IL) were investigated to improve the pentacene film quality after N-doped LaB6 electrode patterning with diluted HNO3, followed by resist stripping with acetone and methanol. It was found that the sputtering damage during N-doped LaB6 deposition on a SiO2 gate insulator degraded the crystallinity of pentacene. The H2SO4 and H2O2 (SPM) and diluted HF treatments removed the damaged layer on the SiO2 gate insulator surface. Furthermore, the N-doped LaB6 IL improved the crystallinity of pentacene and realized dendritic grain growth. Owing to these surface treatments, the hole mobility improved from 2.8 × 10-3 to 0.11 cm2/(V·s), and a steep subthreshold swing of 78 mV/dec for the OFET with top-contact configuration was realized in air even after bottom-contact electrode patterning.

  4. Microstructural and electrical characteristics of rare earth oxides doped ZnO varistor films

    NASA Astrophysics Data System (ADS)

    Jiao, Lei; Mei, Yunzhu; Xu, Dong; Zhong, Sujuan; Ma, Jia; Zhang, Lei; Bao, Li

    2018-02-01

    ZnO-Bi2O3 varistor films doped with two kinds of rare earth element oxides (Lu2O3 and Yb2O3) were prepared by the sol-gel method. The effects of Lu2O3/Yb2O3 doping on the microstructure and electrical characteristics of ZnO-Bi2O3 varistor films were investigated. All samples show a homogenized morphology and an improved nonlinear relationship between the electric field (E) and current density (I). Both Yb2O3 and Lu2O3 doping can decrease the grain size of ZnO-Bi2O3 varistor films and improve the electrical properties, which have a positive effect on the development of ZnO varistor ceramics. Yb2O3 doping significantly increases the dielectric constant at low frequency. 0.2 mol. % Yb2O3 doped ZnO-Bi2O3 varistor films exhibit the highest nonlinear coefficient (2.5) and the lowest leakage current (328 μA) among Lu2O3/Yb2O3 doped ZnO-Bi2O3 varistor films. Similarly, 0.1 mol. % Lu2O3 doping increases the nonlinear coefficient to 1.9 and decrease the leakage current to 462 μA.

  5. Effect of Sn doping on structural, mechanical, optical and electrical properties of ZnO nanoarrays prepared by sol-gel and hydrothermal process

    NASA Astrophysics Data System (ADS)

    Agarwal, Manish Baboo; Sharma, Akash; Malaidurai, M.; Thangavel, R.

    2018-05-01

    Undoped and Sn doped Zinc oxide nanorods were prepared by two step process: initially growth of seed layers by sol-gel spin coating technique and then zinc oxide nanorods by hydrothermal process using the precursors zinc nitrate hexahydrate, hexamine and tin chloride. The effects on the electrical, optical, mechanical and structural properties for various Sn concentrations were studied. The crystalline phase determination from X-ray diffraction (XRD) confirms that Sn doped ZnO nanorods have hexagonal wurtzite structure. The variations of stress and strain with different doping concentration of Sn in ZnO nanorods were studied. The doping effect on electrical properties and optical bandgap is estimated by current voltage characteristics and absorbance spectra respectively. The surface morphology was studied with field emission scanning electron microscope (FESEM), which shows that the formation of hexagonal nanorods arrays with increasing Sn concentration. The calculated value of Young's modulus of elasticity (Y) for all the samples remains same. These results can be used in optoelectronic devices.

  6. Revealing Surface States in In-Doped SnTe Nanoplates with Low Bulk Mobility.

    PubMed

    Shen, Jie; Xie, Yujun; Cha, Judy J

    2015-06-10

    Indium (In) doping in topological crystalline insulator SnTe induces superconductivity, making In-doped SnTe a candidate for a topological superconductor. SnTe nanostructures offer well-defined nanoscale morphology and high surface-to-volume ratios to enhance surface effects. Here, we study In-doped SnTe nanoplates, In(x)Sn(1-x)Te, with x ranging from 0 to 0.1 and show they superconduct. More importantly, we show that In doping reduces the bulk mobility of In(x)Sn(1-x)Te such that the surface states are revealed in magnetotransport despite the high bulk carrier density. This is manifested by two-dimensional linear magnetoresistance in high magnetic fields, which is independent of temperature up to 10 K. Aging experiments show that the linear magnetoresistance is sensitive to ambient conditions, further confirming its surface origin. We also show that the weak antilocalization observed in In(x)Sn(1-x)Te nanoplates is a bulk effect. Thus, we show that nanostructures and reducing the bulk mobility are effective strategies to reveal the surface states and test for topological superconductors.

  7. Superconductivity, critical current density, and flux pinning in MgB2-x(SiC)x/2 superconductor after SiC nanoparticle doping

    NASA Astrophysics Data System (ADS)

    Dou, S. X.; Pan, A. V.; Zhou, S.; Ionescu, M.; Wang, X. L.; Horvat, J.; Liu, H. K.; Munroe, P. R.

    2003-08-01

    We investigated the effect of SiC nanoparticle doping on the crystal lattice structure, critical temperature Tc, critical current density Jc, and flux pinning in MgB2 superconductor. A series of MgB2-x(SiC)x/2 samples with x=0-1.0 were fabricated using an in situ reaction process. The contraction of the lattice and depression of Tc with increasing SiC doping level remained rather small most likely due to the counterbalancing effect of Si and C co-doping. The high level Si and C co-doping allowed the creation of intragrain defects and highly dispersed nanoinclusions within the grains which can act as effective pinning centers for vortices, improving Jc behavior as a function of the applied magnetic field. The enhanced pinning is mainly attributable to the substitution-induced defects and local structure fluctuations within grains. A pinning mechanism is proposed to account for different contributions of different defects in MgB2-x(SiC)x/2 superconductors.

  8. Enhanced field-dependent conductivity of magnetorheological gels with low-doped carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Qu, Hang; Yu, Miao; Fu, Jie; Yang, Pingan; Liu, Yuxuan

    2017-10-01

    Magnetorheological gels (MRG) exhibit field-dependent conductivity and controllable mechanical properties. In order to extend their application field, filling a large number of traditional conductive materials is the most common means to enhance the poor conductivity of MRG. In this study, the conductivity of MRG is improved by low-doped carbon nanotubes (CNTs). The influence of CNTs on the magnetoresistance of MRG is discussed from two aspects—the improvement in electrical conductivity and the magnetic sensitivity of conductivity variation. The percolation threshold of CNTs in MRG should be between 1 wt% and 2 wt%. The conductivity of a 4 wt% CNT-doped sample increases more than 28 000 times compared with pure MRG. However, there is a cliff-like drop for the range and rate of conductivity variation when the doping amount of CNTs is between 3 wt% and 4 wt%. Therefore, it is concluded that the optimal mass fraction of CNTs is 3%, which can maintain a suitable variation range and a strong conductivity. Compared with pure MRG, its conductivity increases by at least two orders of magnitude. Finally, a sketch of particle motion simulation is developed to understand the improving mechanism and the effect of CNTs.

  9. Impurity Resonant States p-type Doping in Wide-Band-Gap Nitrides

    PubMed Central

    Liu, Zhiqiang; Yi, Xiaoyan; Yu, Zhiguo; Yuan, Gongdong; Liu, Yang; Wang, Junxi; Li, Jinmin; Lu, Na; Ferguson, Ian; Zhang, Yong

    2016-01-01

    In this work, a new strategy for achieving efficient p-type doping in high bandgap nitride semiconductors to overcome the fundamental issue of high activation energy has been proposed and investigated theoretically, and demonstrated experimentally. Specifically, in an AlxGa1−xN/GaN superlattice structure, by modulation doping of Mg in the AlxGa1−xN barriers, high concentration of holes are generated throughout the material. A hole concentration as high as 1.1 × 1018 cm−3 has been achieved, which is about one order of magnitude higher than that typically achievable by direct doping GaN. Results from first-principle calculations indicate that the coupling and hybridization between Mg 2p impurity and the host N 2p orbitals are main reasons for the generation of resonant states in the GaN wells, which further results in the high hole concentration. We expect this approach to be equally applicable for other high bandgap materials where efficient p-type doing is difficult. Furthermore, a two-carrier-species Hall-effect model is proposed to delineate and discriminate the characteristics of the bulk and 2D hole, which usually coexist in superlattice-like doping systems. The model reported here can also be used to explain the abnormal freeze-in effect observed in many previous reports. PMID:26777294

  10. Controlled p-doping of black phosphorus by integration of MoS2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Jeon, Sumin; Kim, Minwoo; Jia, Jingyuan; Park, Jin-Hong; Lee, Sungjoo; Song, Young Jae

    2018-05-01

    Black phosphorus (BP), a new family of two dimensional (2D) layered materials, is an attractive material for future electronic, photonic and chemical sensing devices, thanks to its high carrier density and a direct bandgap of 0.3-2.0 eV, depending on the number of layers. Controllability over the properties of BP by electrical or chemical modulations is one of the critical requirements for future various device applications. Herein, we report a new doping method of BP by integration of density-controlled monolayer MoS2 nanoparticles (NPs). MoS2 NPs with different density were synthesized by chemical vapor deposition (CVD) and transferred onto a few-layer BP channel, which induced a p-doping effect. Scanning electron microscopy (SEM) confirmed the size and distribution of MoS2 NPs with different density. Raman and X-ray photoelectron spectroscopy (XPS) were measured to confirm the oxidation on the edge of MoS2 NPs and a doping effect of MoS2 NPs on a BP channel. The doping mechanism was explained by a charge transfer by work function differences between BP and MoS2 NPs, which was confirmed by Kelvin probe force microscopy (KPFM) and electrical measurements. The hole concentration of BP was controlled with different densities of MoS2 NPs in a range of 1012-1013 cm-2.

  11. [Identification of candidate genes and expression profiles, as doping biomarkers].

    PubMed

    Paparini, A; Impagnatiello, F; Pistilli, A; Rinaldi, M; Gianfranceschi, G; Signori, E; Stabile, A M; Fazio, V; Rende, M; Romano Spica, V

    2007-01-01

    Administration of prohibited substances to enhance athletic performance represents an emerging medical, social, ethical and legal issue. Traditional controls are based on direct detection of substances or their catabolites. However out-of-competition doping may not be easily revealed by standard analytical methods. Alternative indirect control strategies are based on the evaluation of mid- and long-term effects of doping in tissues. Drug-induced long-lasting changes of gene expression may be taken as effective indicators of doping exposure. To validate this approach, we used real-time PCR to monitor the expression pattern of selected genes in human haematopoietic cells exposed to nandrolone, insulin-like growth factor I (IGF-I) or growth hormone (GH). Some candidate genes were found significantly and consistently modulated by treatments. Nandrolone up-regulated AR, ESR2 and PGR in K562 cells, and SRD5A1, PPARA and JAK2 in Jurkat cells; IGF-I up-regulated EPOR and PGR in HL60 cells, and SRD5A1 in Jurkat; GH up-regulated SRD5A1 and GHR in K562. GATA1 expression was down-regulated in IGF-1-treated HL60, ESR2 was down-regulated in nandrolone-treated Jurkat, and AR and PGR were down-regulated in GH-treated Jurkat. This pilot study shows the potential of molecular biology-based strategies in anti-doping controls.

  12. Effects of interaction strength, doping, and frustration on the antiferromagnetic phase of the two-dimensional Hubbard model

    DOE PAGES

    Fratino, L.; Charlebois, M.; Sémon, P.; ...

    2017-12-19

    Recent quantum-gas microscopy of ultracold atoms and scanning tunneling microscopy of the cuprates reveal new detailed information about doped Mott antiferromagnets, which can be compared with calculations. Using cellular dynamical mean-field theory, we map out the antiferromagnetic (AF) phase of the two-dimensional Hubbard model as a function of interaction strength U, hole doping δ, and temperature T . The Néel phase boundary is nonmonotonic as a function of U and δ. Frustration induced by second-neighbor hopping reduces Néel order more effectively at small U. The doped AF is stabilized at large U by kinetic energy and at small U bymore » potential energy. The transition between the AF insulator and the doped metallic AF is continuous. At large U, we find in-gap states similar to those observed in scanning tunneling microscopy. Finally, we predict that, contrary to the Hubbard bands, these states are only slightly spin polarized.« less

  13. Effects of interaction strength, doping, and frustration on the antiferromagnetic phase of the two-dimensional Hubbard model

    NASA Astrophysics Data System (ADS)

    Fratino, L.; Charlebois, M.; Sémon, P.; Sordi, G.; Tremblay, A.-M. S.

    2017-12-01

    Recent quantum-gas microscopy of ultracold atoms and scanning tunneling microscopy of the cuprates reveal new detailed information about doped Mott antiferromagnets, which can be compared with calculations. Using cellular dynamical mean-field theory, we map out the antiferromagnetic (AF) phase of the two-dimensional Hubbard model as a function of interaction strength U , hole doping δ , and temperature T . The Néel phase boundary is nonmonotonic as a function of U and δ . Frustration induced by second-neighbor hopping reduces Néel order more effectively at small U . The doped AF is stabilized at large U by kinetic energy and at small U by potential energy. The transition between the AF insulator and the doped metallic AF is continuous. At large U , we find in-gap states similar to those observed in scanning tunneling microscopy. We predict that, contrary to the Hubbard bands, these states are only slightly spin polarized.

  14. Doping Nitrogen in InGaZnO Thin Film Transistor with Double Layer Channel Structure.

    PubMed

    Chang, Sheng-Po; Shan, Deng

    2018-04-01

    This paper presents the electrical characteristics of doping nitrogen in an amorphous InGaZnO thin film transistor. The IGZO:N film, which acted as a channel layer, was deposited using RF sputtering with a nitrogen and argon gas mixture at room temperature. The optimized parameters of the IGZO:N/IGZO TFT are as follows: threshold voltage is 0.5 V, field effect mobility is 14.34 cm2V-1S-1. The on/off current ratio is 106 and subthreshold swing is 1.48 V/decade. The positive gate bias stress stability of InGaZnO doping with nitrogen shows improvement compared to doping with oxygen.

  15. Doping of germanium nanowires grown in presence of PH3

    NASA Astrophysics Data System (ADS)

    Tutuc, E.; Chu, J. O.; Ott, J. A.; Guha, S.

    2006-12-01

    The authors study the Au-catalyzed chemical vapor growth of germanium (Ge) nanowires in the presence of phosphine (PH3), used as a dopant precursor. The device characteristics of the ensuing nanowire field effect transistors (FETs) indicate n-type, highly doped nanowires. Using a combination of different nanowire growth sequences and their FET characteristics, the authors determine that phosphorus incorporates predominately via the conformal growth, which accompanies the acicular, nanowire growth. As such, the Ge nanowires grown in the presence of PH3 contain a phosphorus doped shell and an undoped core. The authors determine the doping level in the shell to be ≃(1-4)×1019cm-3.

  16. Optically pre-amplified lidar-radar

    NASA Astrophysics Data System (ADS)

    Morvan, Loic; Dolfi, Daniel; Huignard, Jean-Pierre

    2001-09-01

    We present the concept of an optically pre-amplified intensity modulated lidar, where the modulation frequency is in the microwave domain (1-10 GHz). Such a system permits to combine directivity of laser beams with mature radar processing. As an intensity modulated or dual-frequency laser beam is directed on a target, the backscattered intensity is collected by an optical system, pass through an optical preamplifier, and is detected on a high speed photodiode in a direct detection scheme. A radar type processing permits then to extract range, speed and identification information. The association of spatially multimode amplifier and direct detection allows low sensitivity to atmospheric turbulence and large field of view. We demonstrated theoretically that optical pre-amplification can greatly enhance sensitivity, even in spatially multimode amplifiers, such as free-space amplifier or multimode doped fiber. Computed range estimates based on this concept are presented. Laboratory demonstrations using 1 to 3 GHz modulated laser sources and >20 dB gain in multimode amplifiers are detailed. Preliminary experimental results on range and speed measurements and possible use for large amplitude vibrometry will be presented.

  17. Theoretical Studies on InGaAs/InAlAs SAGCM Avalanche Photodiodes

    NASA Astrophysics Data System (ADS)

    Cao, Siyu; Zhao, Yue; ur Rehman, Sajid; Feng, Shuai; Zuo, Yuhua; Li, Chuanbo; Zhang, Lichun; Cheng, Buwen; Wang, Qiming

    2018-05-01

    In this paper, we provide a detailed insight on InGaAs/InAlAs separate absorption, grading, charge, and multiplication avalanche photodiodes (SAGCM APDs) and a theoretical model of APDs is built. Through theoretical analysis and two-dimensional (2D) simulation, the influence of charge layer and tunneling effect on the APDs is fully understood. The design of charge layer (including doping level and thickness) can be calculated by our predictive model for different multiplication thickness. We find that as the thickness of charge layer increases, the suitable doping level range in charge layer decreases. Compared to thinner charge layer, performance of APD varies significantly via several percent deviations of doping concentrations in thicker charge layer. Moreover, the generation rate ( G btt ) of band-to-band tunnel is calculated, and the influence of tunneling effect on avalanche field was analyzed. We confirm that avalanche field and multiplication factor ( M n ) in multiplication will decrease by the tunneling effect. The theoretical model and analysis are based on InGaAs/InAlAs APD; however, they are applicable to other APD material systems as well.

  18. Improving performance of armchair graphene nanoribbon field effect transistors via boron nitride doping

    NASA Astrophysics Data System (ADS)

    Goharrizi, A. Yazdanpanah; Sanaeepur, M.; Sharifi, M. J.

    2015-09-01

    Device performance of 10 nm length armchair graphene nanoribbon field effect transistors with 1.5 nm and 4 nm width (13 and 33 atoms in width respectively) are compared in terms of Ion /Ioff , trans-conductance, and sub-threshold swing. While narrow devices suffer from edge roughness wider devices are subject to more substrate surface roughness and reduced bandgap. Boron Nitride doping is employed to compensate reduced bandgap in wider devices. Simultaneous effects of edge and substrate surface roughness are considered. Results show that in the presence of both the edge and substrate surface roughness the 4 nm wide device with boron nitride doping shows improved performance with respect to the 1.5 nm one (both of which incorporate the same bandgap AGNR as channel material). Electronic simulations are performed via NEGF method along with tight-binding Hamiltonian. Edge and surface roughness are created by means of one and two dimensional auto correlation functions respectively. Electronic characteristics are averaged over a large number of devices due to statistic nature of both the edge and surface roughness.

  19. Double gate graphene nanoribbon field effect transistor with single halo pocket in channel region

    NASA Astrophysics Data System (ADS)

    Naderi, Ali

    2016-01-01

    A new structure for graphene nanoribbon field-effect transistors (GNRFETs) is proposed and investigated using quantum simulation with a nonequilibrium Green's function (NEGF) method. Tunneling leakage current and ambipolar conduction are known effects for MOSFET-like GNRFETs. To minimize these issues a novel structure with a simple change of the GNRFETs by using single halo pocket in the intrinsic channel region, "Single Halo GNRFET (SH-GNRFET)", is proposed. An appropriate halo pocket at source side of channel is used to modify potential distribution of the gate region and weaken band to band tunneling (BTBT). In devices with materials like Si in channel region, doping type of halo and source/drain regions are different. But, here, due to the smaller bandgap of graphene, the mentioned doping types should be the same to reduce BTBT. Simulations have shown that in comparison with conventional GNRFET (C-GNRFET), an SH-GNRFET with appropriately halo doping results in a larger ON current (Ion), smaller OFF current (Ioff), a larger ON-OFF current ratio (Ion/Ioff), superior ambipolar characteristics, a reduced power-delay product and lower delay time.

  20. High field charge order across the phase diagram of YBa2Cu3Oy

    NASA Astrophysics Data System (ADS)

    Laliberté, Francis; Frachet, Mehdi; Benhabib, Siham; Borgnic, Benjamin; Loew, Toshinao; Porras, Juan; Le Tacon, Mathieu; Keimer, Bernhard; Wiedmann, Steffen; Proust, Cyril; LeBoeuf, David

    2018-03-01

    In hole-doped cuprates there is now compelling evidence that inside the pseudogap phase, charge order breaks translational symmetry. In YBa2Cu3Oy charge order emerges in two steps: a 2D order found at zero field and at high temperature inside the pseudogap phase, and a 3D order that is superimposed below the superconducting transition Tc when superconductivity is weakened by a magnetic field. Several issues still need to be addressed such as the effect of disorder, the relationship between those charge orders and their respective impact on the Fermi surface. Here, we report high magnetic field sound velocity measurements of the 3D charge order in underdoped YBa2Cu3Oy in a large doping range. We found that the 3D charge order exists over the same doping range as its 2D counterpart, indicating an intimate connection between the two distinct orders. Moreover, our data suggest that 3D charge order has only a limited impact on low-lying electronic states of YBa2Cu3Oy.

  1. Erbium/ytterbium co-doped double clad fiber amplifier, its applications and effects in fiber optic communication systems

    NASA Astrophysics Data System (ADS)

    Dua, Puneit

    Increased demand for larger bandwidth and longer inter-amplifiers distances translates to higher power budgets for fiber optic communication systems in order to overcome large splitting losses and achieve acceptable signal-to-noise ratios. Due to their unique design ytterbium sensitized erbium doped, double clad fiber amplifiers; offer significant increase in the output powers that can be obtained. In this thesis we investigate, a one-stage, high power erbium and ytterbium co-doped double clad fiber amplifier (DCFA) with output power of 1.4W, designed and built in our lab. Experimental demonstration and numerical simulation techniques have been used to systematically study the applications of such an amplifier and the effects of incorporating it in various fiber optic communication systems. Amplitude modulated subcarrier multiplexed (AM-SCM) CATV distribution experiment has been performed to verify the feasibility of using this amplifier in an analog/digital communication system. The applications of the amplifier as a Fabry-Perot and ring fiber laser with an all-fiber cavity, a broadband supercontinuum source and for generation of high power, short pulses at 5GHz have been experimentally demonstrated. A variety of observable nonlinear effects occur due to the high intensity of the optical powers confined in micron-sized cores of the fibers, this thesis explores in detail some of these effects caused by using the high power Er/Yb double clad fiber amplifier. A fiber optic based analog/digital CATV system experiences composite second order (CSO) distortion due to the interaction between the gain tilt---the variation of gain with wavelength, of the doped fiber amplifier and the wavelength chirp of the directly modulated semiconductor laser. Gain tilt of the Er/Yb co-doped fiber amplifier has been experimentally measured and its contribution to the CSO of the system calculated. Theoretical analysis of a wavelength division multiplexed system with closely spaced channels has been carried out to show that crosstalk can occur due to the four-wave mixing products generated inside the high power Er/Yb DCFA. A model for parametric amplification due to four-wave mixing has been developed and used to analyze its application for short pulse generation and high speed optical time division multiplexing.

  2. Key scattering mechanisms limiting the lateral transport in a modulation-doped polar heterojunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tien, Nguyen Thanh, E-mail: nttien@ctu.edu.vn; Thao, Pham Thi Bich; Thao, Dinh Nhu

    2016-06-07

    We present a study of the lateral transport of a two-dimensional electron gas (2DEG) in a modulation-doped polar heterojunction (HJ). In contrast to previous studies, we assume that the Coulomb correlation among ionized impurities and among charged dislocations in the HJ is so strong that the 2DEG low-temperature mobility is not limited by impurity and dislocation scattering. The mobility, however, is specified by alloy disorder scattering and combined roughness scattering, which is the total effect induced by both the potential barrier and polarization roughness. The obtained results show that the alloy disorder and combined roughness scattering strongly depend on themore » alloy content and on the near-interface electron distribution. Our theory is capable of explaining the bell-shaped dependence of the lateral mobility on alloy content observed in AlGaN/GaN and on 2DEG density observed in AlN/GaN, which have not previously been explained.« less

  3. The reversal of the spontaneous exchange bias effect and zero-field-cooling magnetization in La1.5Sr0.5Co1-xFexMnO6: the effect of Fe doping.

    PubMed

    Zhang, H G; Xie, L; Liu, X C; Xiong, M X; Cao, L L; Li, Y T

    2017-09-20

    The crystal structure, electronic structure and magnetic properties were systematically studied in a series of Fe-doped La 1.5 Sr 0.5 CoMnO 6 double perovskites. The X-ray diffraction patterns of the samples are all refined with a rhombohedral (R3[combining macron]c) structure. The parameters a and c continuously increase with increasing Fe doping concentration x. X-ray photoelectron spectroscopy (XPS) spectra of the Mn, Co, and Fe 2p core levels, consistent with the soft X-ray absorption spectroscopy (XAS) spectra of Mn, Co, and Fe L 2,3 edges, indicate that their valence states are Mn 3+ and Mn 4+ , Co 2+ and Co 3+ , and Fe 3+ , respectively. However, relative to samples with x ≤ 0.1, there is an abrupt change of photon energy in the Co- and Fe-2p XAS spectra for x ≥ 0.2, implying the spin state transition is from high to low. In addition, this is further confirmed by a comparison between the calculated effective spin moment from the paramagnetic data and the theoretical value. Interestingly, we demonstrate the reversal of both zero-field-cooling magnetization and the sign switching of the spontaneous exchange bias (SEB) with the doping concentration from magnetic measurements. The magnetization reverses from positive to negative with the temperature decreasing across the compensation temperature at the critical concentration x = 0.2. Meanwhile, the exchange bias field of the SEB reverses from large negative values to positive ones. Our findings allow us to propose that the spin state transition caused by inhomogeneity is considered to play an important role in the reversal of the magnetization and the SEB effect.

  4. Formation of qualified BaHfO3 doped Y0.5Gd0.5Ba2Cu3O7-δ film on CeO2 buffered IBAD-MgO tape by self-seeding pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Liu, Linfei; Wang, Wei; Yao, Yanjie; Wu, Xiang; Lu, Saidan; Li, Yijie

    2018-05-01

    Improvement in the in-filed transport properties of REBa2Cu3O7-δ (RE = rare earth elements, REBCO) coated conductor is needed to meet the performance requirements for various practical applications, which can be accomplished by introducing artificial pinning centers (APCs), such as second phase dopant. However, with increasing dopant level the critical current density Jc at 77 K in zero applied magnetic field decreases. In this paper, in order to improve Jc we propose a seed layer technique. 5 mol% BaHfO3 (BHO) doped Y0.5Gd0.5Ba2Cu3O7-δ (YGBCO) epilayer with an inserted seed layer was grown on CeO2 buffered ion beam assisted deposition MgO (IBAD-MgO) tape by pulsed laser deposition. The effect of the conditions employed to prepare the seed layer, including tape moving speed and chemical composition, on the quality of 5 mol% BHO doped YGBCO epilayer was systematically investigated by X-ray diffraction (XRD) measurements and scanning electron microscopy (SEM) observations. It was found that all the samples with seed layer have higher Jc (77 K, self-field) than the 5 mol% BHO doped YGBCO film without seed layer. The seed layer could inhibit deterioration of the Jc at 77 K and self-filed. Especially, the self-seed layer (5 mol% BHO doped YGBCO seed layer) was more effective in improving the crystal quality, surface morphology and superconducting performance. At 4.2 K, the 5 mol% BHO doped YGBCO film with 4 nm thick self-seed layer had a very high flux pinning force density Fp of 860 GN/m3 for B//c under a 9 T field, and more importantly, the peak of the Fp curve was not observed.

  5. Micro Solar Cells with Concentration and Light Trapping Optics

    NASA Astrophysics Data System (ADS)

    Li, Lanfang; Breuckner, Eric; Corcoran, Christopher; Yao, Yuan; Xu, Lu; Nuzzo, Ralph

    2013-03-01

    Compared with conventional bulk plate semiconductor solar cells, micro solar cells provide opportunity for novel design geometry and provide test bed for light trapping at the device level as well as module level. Surface recombination, however, will have to be addressed properly as the much increased surface area due to the reduced dimension is more prominent in these devices than conventional solar cells. In this poster, we present experimental demonstration of silicon micro solar cells with concentration and light trapping optics. Silicon micro solar cell with optimized surface passivation and doping profile that exhibit high efficiency is demonstrated. Effective incorporation of high quantum yield fluorescent centers in the polymer matrix into which micro solar cell was encapsulated was investigated for luminescent solar concentration application. Micro-cell on a semi-transparent, nanopatterned reflector formed by soft-imprint lithography was investigated for near field effect related solar conversion performance enhancement. This work is supported by the DOE `Light-Material Interactions in Energy Conversion' Energy Frontier Research Center under grant DE-SC0001293

  6. Energy levels scheme simulation of divalent cobalt doped bismuth germanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreici, Emiliana-Laura, E-mail: andreicilaura@yahoo.com; Petkova, Petya; Avram, Nicolae M.

    The aim of this paper is to simulate the energy levels scheme for Bismuth Germanate (BGO) doped with divalent cobalt, in order to give a reliable explanation for spectral experimental data. In the semiempirical crystal field theory we first modeled the Crystal Field Parameters (CFPs) of BGO:Cr{sup 2+} system, in the frame of Exchange Charge Model (ECM), with actually site symmetry of the impurity ions after doping. The values of CFPs depend on the geometry of doped host matrix and by parameter G of ECM. First, we optimized the geometry of undoped BGO host matrix and afterwards, that of dopedmore » BGO with divalent cobalt. The charges effect of ligands and covalence bonding between cobalt cations and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the CFPs we simulate the energy levels scheme of cobalt ions, by diagonalizing the matrix of the doped crystal Hamiltonian. Obviously, energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison of obtained results with experimental data shows quite satisfactory, which justify the model and simulation schemes used for the title system.« less

  7. Exchange-mediated spin-lattice relaxation of Fe3+ ions in borate glasses.

    PubMed

    Misra, Sushil K; Pilbrow, John R

    2007-03-01

    Spin-lattice relaxation times (T1) of two borate glasses doped with different concentrations of Fe2O3 were measured using the Electron Spin-Echo (ESE) technique at X-band (9.630 GHz) in the temperature range 2-6K. In comparison with a previous investigation of Fe3+-doped silicate glasses, the relaxation rates were comparable and differed by no more than a factor of two. The data presented here extend those previously reported for borate glasses in the 10-250K range but measured using the amplitude-modulation technique. The T1 values were found to depend on temperature (T) as T(n) with n approximately 1 for the 1% and 0.1% Fe2O3-doped glass samples. These results are consistent with spin-lattice relaxation as effected by exchange interaction of a Fe3+ spin exchange-coupled to another Fe3+ spin in an amorphous material.

  8. Magnetic field effect on pentacene-doped sexithiophene diodes

    NASA Astrophysics Data System (ADS)

    Pham, Song-Toan; Fayolle, Marine; Ohto, Tatsuhiko; Tada, Hirokazu

    2017-11-01

    We studied the effect of impurities on the magnetoresistance of sexithiophene-based diodes using impedance spectroscopy. The impurities were introduced by doping pentacene molecules into a sexithiophene film through a co-evaporation process. The pentacene molecules act as charge-scattering centers, which trigger the negative magnetoresistance of the device. This makes it possible to tune the value of magnetoresistance from positive to negative by increasing the applied voltage. The beneficial properties induced by impurities suggest a potential route to integrate additional functions into organic devices.

  9. The Research Laboratory of Electronics Progress Report Number 133, January 1-December 1990

    DTIC Science & Technology

    1990-12-31

    4 6 Chapter 7 High-Frequency InAlAs/InGaAs Metal -Insulator-Doped Semiconductor...Epitaxy of Compound Semiconductors Chapter 7 High-Frequency InAlAs/InGaAs Metal -Insulator- Doped Semiconductor Field-Effect Transistors (MIDFETs) for...aligned silicided NMOS posed of refractory metals to allow a subsequentdevice fabrication. We have used cobalt deposi- high temperature anneal. This

  10. Low temperature London penetration depth and superfluid density in Fe-based superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyunsoo

    2013-01-01

    The superconducting gap symmetry of the Fe-based superconductors was studied by measurements and analysis of London penetration depth and super uid density. Tunnel diode resonator technique for these measurements was implemented in a dilution refrigerator allowing for the temperatures down to 50 mK. For the analysis of the super uid density, we used both experimental studies of Al-coated samples and original thermodynamic approach based on Rutgers relation. In three systems studied, we found that the superconducting gap at the optimal doping is best described in multi-gap full gap scenario. By performing experiments on samples with arti cially introduced disorder withmore » heavy ion irradiation, we show that evolution of the superconducting transition temperature and of the super uid density are consistent with full-gap sign changing s superconducting state. The superconducting gap develops strong modulation both in the under-doped and the over-doped regimes. In the terminal hole-doped KFe{sub 2}As{sub 2}, both temperature dependence of the super uid density and its evolution with increase of the scattering rate are consistent with symmetry imposed vertical line nodes in the superconducting gap. By comparative studies of hole-doped (Ba,K)Fe{sub 2}As{sub 2} and electron-doped Ca10-3-8, we show that the superconducting gap modulation in the under-doped regime is intrinsic and is not induced by the coexisting static magnetic order.« less

  11. Templated Sphere Phase Liquid Crystals for Tunable Random Lasing

    PubMed Central

    Chen, Ziping; Hu, Dechun; Chen, Xingwu; Zeng, Deren; Lee, Yungjui; Chen, Xiaoxian; Lu, Jiangang

    2017-01-01

    A sphere phase liquid crystal (SPLC) composed of three-dimensional twist structures with disclinations among them exists between isotropic phase and blue phase in a very narrow temperature range, about several degrees centigrade. A low concentration polymer template is applied to improve the thermal stability of SPLCs and broadens the temperature range to more than 448 K. By template processing, a wavelength tunable random lasing is demonstrated with dye doped SPLC. With different polymer concentrations, the reconstructed SPLC random lasing may achieve more than 40 nm wavelength continuous shifting by electric field modulation. PMID:29140283

  12. Nonlinear photothermal Mid-Infrared Microspectroscopy with Superresolution

    NASA Astrophysics Data System (ADS)

    Erramilli, Shyamsunder; Mertiri, Alket; Liu, Hui; Totachawattana, Atcha; Hong, Mi; Sander, Michelle

    2015-03-01

    We describe a nonlinear method for breaking the diffraction limit in mid-infrared microscopy using nonlinear photothermal microspectroscopy. A Quantum Cascade Laser (QCL) tuned to an infrared active vibrational molecular normal mode is used as the pump laser. A low-phase noise Erbium-doped fiber (EDFL) laser is used as the probe. When the incident intensity of the mid-infrared pump laser is increased past a critical threshold, a nanobubble is nucleated, strongly modulating the scatter of the probe beam, in agreement with prior work. Remarkably, we have also found that the photothermal spectral signature of the mid-infrared absorption bifurcates and is strongly narrowed, consistent with an effective ``mean-field'' theory of the observed pitchfork bifurcation. This ultrasharp narrowing can be exploited to obtain mid-infrared images with a resolution that breaks the diffraction limit, without the need of mechanical scanning near-field probes. The method provides a powerful new tool for hyperspectral label-free mid-infrared imaging and characterization of biological tissues and materials science and engineering. We thank our collaborators H. Altug, L. D. Ziegler, J. Mertz, for their advice and generous loan of equipment.

  13. Ferroelectric control of a Mott insulator

    PubMed Central

    Yamada, Hiroyuki; Marinova, Maya; Altuntas, Philippe; Crassous, Arnaud; Bégon-Lours, Laura; Fusil, Stéphane; Jacquet, Eric; Garcia, Vincent; Bouzehouane, Karim; Gloter, Alexandre; Villegas, Javier E.; Barthélémy, Agnès; Bibes, Manuel

    2013-01-01

    The electric field control of functional properties is an important goal in oxide-based electronics. To endow devices with memory, ferroelectric gating is interesting, but usually weak compared to volatile electrolyte gating. Here, we report a very large ferroelectric field-effect in perovskite heterostructures combining the Mott insulator CaMnO3 and the ferroelectric BiFeO3 in its “supertetragonal” phase. Upon polarization reversal of the BiFeO3 gate, the CaMnO3 channel resistance shows a fourfold variation around room temperature, and a tenfold change at ~200 K. This is accompanied by a carrier density modulation exceeding one order of magnitude. We have analyzed the results for various CaMnO3 thicknesses and explain them by the electrostatic doping of the CaMnO3 layer and the presence of a fixed dipole at the CaMnO3/BiFeO3 interface. Our results suggest the relevance of ferroelectric gates to control orbital- or spin-ordered phases, ubiquitous in Mott systems, and pave the way toward efficient Mott-tronics devices. PMID:24089020

  14. Activation energies for the ν=5/2 Fractional Quantum Hall Effect at 10 Tesla

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Du, R. R.; Pfeiffer, L. N.; West, K. W.

    2010-03-01

    We reported on the low-temperature magnetotransport in a high-purity (mobility ˜ 1x10^7cm^2/Vs) modulation-doped GaAs/AlGaAs quantum well with a high electron density (6x10^11 cm-2). A quantized ν=5/2 Hall plateau is observed at B ˜ 10 T, with an activation gap δ5/2˜ 125±10 mK; the plateau can persist up to ˜ 25^o tilt-field. We determined the activation energies δ and quasi-gap energies δ^quasi for the ν=5/2, 7/3, and 8/3 fractional quantum Hall states in tilted-magnetic field (θ). The δ5/2, δ7/3 and the δ5/2^quasi , δ7/3^quasi are found to decrease in θ. We will present the systematic data and discuss their implications on the spin-polarization of ν=5/2 states observed at 10 T.[4pt] [1] R. Willett, Phys. Rev. Lett. 59, 1776 (1987).[0pt] [2] W. Pan et al, Solid State Commun. 119, 641 (2001).

  15. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect

    NASA Astrophysics Data System (ADS)

    Heczko, O.; Drahokoupil, J.; Straka, L.

    2015-05-01

    Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni50.0Mn28.5Ga21.5 single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.

  16. Correlations of structural, magnetic, and dielectric properties of undoped and doped CaCu3Ti4O12

    NASA Astrophysics Data System (ADS)

    Krohns, S.; Lu, J.; Lunkenheimer, P.; Brizé, V.; Autret-Lambert, C.; Gervais, M.; Gervais, F.; Bourée, F.; Porcher, É. F.; Loidl, A.

    2009-11-01

    The present work reports synthesis, as well as a detailed and careful characterization of structural, magnetic, and dielectric properties of differently tempered undoped and doped CaCu3Ti4O12 (CCTO) ceramics. For this purpose, neutron and X-ray powder diffraction, SQUID measurements, and dielectric spectroscopy have been performed. Mn-, Fe-, and Ni-doped CCTO ceramics were investigated in great detail to document the influence of low-level doping with 3d metals on the antiferromagnetic structure and dielectric properties. In the light of possible magnetoelectric coupling in these doped ceramics, the dielectric measurements were also carried out in external magnetic fields up to 7 T. At low temperatures the dielectric constant shows a minor but significant dependence on the applied magnetic field. Undoped CCTO is well-known for its colossal dielectric constant in a broad frequency and temperature range. With the present extended characterization of doped as well as undoped CCTO, we want to address the question why doping with only 1% Mn or 0.5% Fe decreases the room-temperature dielectric constant of CCTO by a factor of ~100 with a concomitant reduction of the conductivity, whereas 0.5% Ni doping changes the dielectric properties only slightly. In addition, diffraction experiments and magnetic investigations were undertaken to check for possible correlations of the magnitude of the colossal dielectric constants with structural details or with magnetic properties like the magnetic ordering, the Curie-Weiss temperatures, or the paramagnetic moment. It is revealed, that while the magnetic ordering temperature and the effective moment of all investigated CCTO ceramics are rather similar, there is a dramatic influence of doping and tempering time on the Curie-Weiss constant.

  17. Optimization of diode-pumped doubly QML laser with neodymium-doped vanadate crystals at 1.34 μm

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Jiao, Zhiyong

    2018-05-01

    We present a theoretical model for a diode-pumped, 1.34 μm V3+:YAG laser that is equipped with an acoustic-optic modulator. The model includes the loss introduced by the acoustic-optic modulator combined with the physical properties of the laser resonator, the neodymium-doped vanadate crystals and the output coupler. The parameters are adjusted within a reasonable range to optimize the pulse output characteristics. A typical Q-switched and mode-locked Nd:Lu0.15Y0.85VO4 laser at 1.34 μm with acoustic-optic modulator and V3+:YAG is set up, and the experimental output characteristics are consistent with the theoretical simulation results.

  18. Stable doping of carbon nanotubes via molecular self assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, B.; Chen, Y.; Podzorov, V., E-mail: podzorov@physics.rutgers.edu

    2014-10-14

    We report a novel method for stable doping of carbon nanotubes (CNT) based on methods of molecular self assembly. A conformal growth of a self-assembled monolayer of fluoroalkyl trichloro-silane (FTS) at CNT surfaces results in a strong increase of the sheet conductivity of CNT electrodes by 60–300%, depending on the CNT chirality and composition. The charge carrier mobility of undoped partially aligned CNT films was independently estimated in a field-effect transistor geometry (~100 cm²V⁻¹s⁻¹). The hole density induced by the FTS monolayer in CNT sheets is estimated to be ~1.8 ×10¹⁴cm⁻². We also show that FTS doping of CNT anodesmore » greatly improves the performance of organic solar cells. This large and stable doping effect, easily achieved in large-area samples, makes this approach very attractive for applications of CNTs in transparent and flexible electronics.« less

  19. Near-thermal limit gating in heavily doped III-V semiconductor nanowires using polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Ullah, A. R.; Carrad, D. J.; Krogstrup, P.; Nygârd, J.; Micolich, A. P.

    2018-02-01

    Doping is a common route to reducing nanowire transistor on-resistance but it has limits. A high doping level gives significant loss in gate performance and ultimately complete gate failure. We show that electrolyte gating remains effective even when the Be doping in our GaAs nanowires is so high that traditional metal-oxide gates fail. In this regime we obtain a combination of subthreshold swing and contact resistance that surpasses the best existing p -type nanowire metal-oxide semiconductor field-effect transistors (MOSFETs). Our subthreshold swing of 75 mV/dec is within 25 % of the room-temperature thermal limit and comparable with n -InP and n -GaAs nanowire MOSFETs. Our results open a new path to extending the performance and application of nanowire transistors, and motivate further work on improved solid electrolytes for nanoscale device applications.

  20. Modulation-Doped SrTiO3/SrTi1-xZrxO3 Heterostructures

    NASA Astrophysics Data System (ADS)

    Kajdos, Adam Paul

    Two-dimensional electron gases (2DEGs) in SrTiO3 have attracted considerable attention for exhibiting a variety of interesting physical phenomena, such as superconductivity and magnetism. So far, most of the literature has focused on interfaces between nonpolar SrTiO3 and polar perovskite oxides (e.g. LaAlO3 or rare-earth titanates), where high carrier density 2DEGs (˜3 x 1014 cm-2) are generated by polar discontinuity. Modulation doping is an alternative approach to generating a 2DEG that has been explored extensively in III-V semiconductors but has not heretofore been explored in complex oxides. This approach involves interfacing an undoped semiconductor with a doped semiconductor whose conduction band edge lies at a higher energy, which results in electrons diffusing into the undoped semiconductor transport channel, where scattering from ionized dopants is minimized. Realizing a high-mobility modulation-doped structure with a SrTiO3 transport channel therefore requires both the optimization of the transport channel by minimizing native defects as well as the development of a perovskite oxide which has a suitable band offset with SrTiO3 and can be electron-doped. The growth of high electron mobility SrTiO3 as a suitable transport channel material was previously demonstrated using the hybrid molecular beam epitaxy (MBE) approach, where Sr is delivered via a solid source and Ti is delivered using a metal-organic precursor, titanium (IV) tetra-isopropoxide (TTIP). Expanding on this, in-situ reflection high-energy electron diffraction (RHEED) is used to track the surface and resulting film cation stoichiometry of homoepitaxial SrTiO3 (001) thin films grown by hybrid MBE. It is shown that films with lattice parameters identical to bulk single-crystal substrates within the detection limit of high-resolution X-ray diffraction (XRD) measurements exhibit an evolution in surface reconstruction with increasing TTIP beam-equivalent pressure. The change in the observed surface reconstruction from (1x1) to (2x1) to c(4x4) is correlated with a change from mixed SrO/TiO2 to pure TiO2 surface termination. It is argued that optimal cation stoichiometry is achieved for growth conditions within the XRD-defined growth window that result in a c(4x4) surface lattice. The development of a doped perovskite oxide semiconductor with a suitable conduction band offset is then discussed as the next necessary step towards realizing modulation-doped heterostructures. The SrTixZr1-x O3 solid solution is investigated for this purpose, with a focus on optimizing cation stoichiometry to allow for controlled doping. In particular, the hybrid MBE growth of SrTixZr1-xO3 thin films is explored using a metal-organic precursor for Zr, zirconium tert-butoxide (ZTB). The successful generation of 2DEGs by modulation doping of SrTiO3 is then demonstrated in SrTiO3/La:SrTi0.95Zr0.05O 3 heterostructures, and the electronic structure is studied by Shubnikov-de Haas analysis using multiple-subband models.

  1. Electric-field controlled capture or release of phosgene molecule on graphene-based materials: First principles calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Tong; Sun, Hao; Wang, Fengdi; Zhang, Wanqiao; Ma, Junmei; Tang, Shuwei; Gong, Hongwei; Zhang, Jingping

    2018-01-01

    Phosgene, one of the common chemicals in many industry areas, is extremely harmful to human and the environment. Thus, it is necessary to design the advanced materials to detect or remove phosgene effectively. In fact, detection or adsorption of some small gas molecules are not the most difficult to actualize. Whereas, one of the primary challenges is the gas molecules desorption from the adsorbent for the purpose of recycling of substrate materials since the small gas molecules interacts strongly with the substrates. In this work, the interaction between the phosgene molecule and pristine or Mn-doped graphene sheets with different electric field and charge state are investigated by using first-principles simulations. Our results show that the adsorption energy of phosgene on Mn-doped graphene is dramatically weakened by applying an external negative electric field but is obviously enhanced by introducing a positive electric field. These processes can be easily controlled by transform the direction of the electric field. Thus, introducing an external electric field or charge in the system may be an excellent method to control the phosgene molecule adsorption and desorption on Mn-doped graphene sheet. All energy needed is just a small quantity of electricity, which satisfies well the requirement of green chemistry and sustainable development. The mechanism and reason of reversible adsorption/desorption is also revealed in terms of energy, charge distribution and orbital analysis. Such spontaneous adsorption or desorption makes Mn-doped graphene to be used as an excellent reusable scavenger of phosgene.

  2. Do athletes have a right to access data in their Athlete Biological Passport?

    PubMed

    Devriendt, Thijs; Chokoshvili, Davit; Favaretto, Maddalena; Borry, Pascal

    2018-05-01

    The Athlete Biological Passport (ABP) refers to the collection of data related to an individual athlete. The ABP contains the Haematological Module and the Steroidal Module, which are used for the longitudinal monitoring of variables in blood and urine, respectively. Based on changes in these variables, a statistical model detects outliers which indicate doping use and guide further targeted testing of the athlete. Presently, athletes can access their data of the Haematological Module in the Anti-Doping Administration and Management System (ADAMS). However, granting athletes access to this data has been a matter of debate within the anti-doping community. This article investigates whether an athlete has a right to access the contents of their ABP profile. We approached this discussion by comparing the nature of ABP data with that of forensic and medical data and touched on important concerns with ABP data disclosure to athletes such as potentially allowing for the development of alternative doping techniques to circumvent detection; and making athletes vulnerable to pressure by the media to publicly release their data. Furthermore, given that ABP data may contain medically relevant information that can be used to diagnose disease, athletes may over-interpret its medical significance and wrongly see it as a free health check. We argue that safeguarding the integrity of the ABP system must be seen as the most essential element and thus a departure from immediate data disclosure is necessary. Two different strategies for delayed data disclosure are proposed which diminish the chances of ABP data being misused to refine doping techniques. Copyright © 2018 John Wiley & Sons, Ltd.

  3. The Effectiveness of a Virtual Field Trip (VFT) Module in Learning Biology

    ERIC Educational Resources Information Center

    Haris, Norbaizura; Osman, Kamisah

    2015-01-01

    Virtual Field Trip is a computer aided module of science developed to study the Colonisation and Succession in Mangrove Swamps, as an alternative to the real field trip in Form for Biology. This study is to identify the effectiveness of the Virtual Field Trip (VFT) module towards the level of achievement in the formative test for this topic. This…

  4. Specific heat and Nernst effect of electron-doped cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Balci, Hamza

    This thesis consists of two separate studies on Pr2- xCexCuO4 (PCCO), a member of the electron-doped high temperature cuprate superconductor family: specific heat and the Nernst effect. We measured the specific heat of PCCO single crystals in order to probe the symmetry of the superconducting order parameter, to study the effect of oxygen reduction (annealing) on bulk properties of the crystals, and to determine proper ties like the condensation energy and the thermodynamic critical field. The order parameter symmetry has been established to be d-wave in the hole-doped cuprates. Experiments performed on electron-doped cuprates show conflicting results. Different experiments suggest s-wave symmetry, d-wave symmetry, or a transition from d-wave to s-wave symmetry with increasing cerium doping. However, most of these experiments are surface sensitive experiments. Specific heat, as a bulk method of probing the gap symmetry is essential in order to convincingly determine the gap symmetry. Our data proposes a way to reconcile all these conflicting results regarding the gap symmetry. In addition, prior specific heat measurements attempting to determine thermodynamic properties like the condensation energy were not successful due to inefficient methods of data analysis or poor sample quality. With improvements on sample quality and data analysis, we reliably determined these properties. The second part of this thesis is a study of the Nernst effect in PCCO thin films with different cerium dopings. We probed the superconducting fluctuations, studied transport phenomena in the normal state, and accurately measured H c2 by using the Nernst effect. After the discovery of the anomalous Nernst effect in the normal state of the hole-doped cuprates, many alternative explanations have been proposed. Vortex-like excitations above Tc, superconducting fluctuations, AFM fluctuations, and preformed Cooper pairs are some of these proposals. The electron-doped cuprates, due to their significant differences from the hole-doped cuprates in terms of coherence length and the phase stiffness temperature (a measure of superfluid density) are the ideal materials to test these ideas. Our data on the electron-doped cuprates does not show any anomalous Nernst effect, and hence it supports the superconducting fluctuations picture among the various proposals.

  5. Enhanced blue responses in nanostructured Si solar cells by shallow doping

    NASA Astrophysics Data System (ADS)

    Cheon, Sieun; Jeong, Doo Seok; Park, Jong-Keuk; Kim, Won Mok; Lee, Taek Sung; Lee, Heon; Kim, Inho

    2018-03-01

    Optimally designed Si nanostructures are very effective for light trapping in crystalline silicon (c-Si) solar cells. However, when the lateral feature size of Si nanostructures is comparable to the junction depth of the emitter, dopant diffusion in the lateral direction leads to excessive doping in the nanostructured emitter whereby poor blue responses arise in the external quantum efficiency (EQE). The primary goal of this study is to find the correlation of emitter junction depth and carrier collection efficiency in nanostructured c-Si solar cells in order to enhance the blue responses. We prepared Si nanostructures of nanocone shape by colloidal lithography, with silica beads of 520 nm in diameter, followed by a reactive ion etching process. c-Si solar cells with a standard cell architecture of an Al back surface field were fabricated varying the emitter junction depth. We varied the emitter junction depth by adjusting the doping level from heavy doping to moderate doping to light doping and achieved greatly enhanced blue responses in EQE from 47%-92% at a wavelength of 400 nm. The junction depth analysis by secondary ion mass-spectroscopy profiling and the scanning electron microscopy measurements provided us with the design guide of the doping level depending on the nanostructure feature size for high efficiency nanostructured c-Si solar cells. Optical simulations showed us that Si nanostructures can serve as an optical resonator to amplify the incident light field, which needs to be considered in the design of nanostructured c-Si solar cells.

  6. Effect of L-Cysteine doping on growth and some characteristics of potassium dihydrogen phosphate single crystals

    NASA Astrophysics Data System (ADS)

    Mahadik, Ashwini; Soni, P. H.; Desai, C. F.

    2017-12-01

    Among quite a number of technologically important NLO materials, Potassium Dihydrogen Phosphate (KDP) is one of the most favourable ones for second harmonic generation applications, such as in electro-optic modulators, parametric oscillators and harmonic generators. The authors report here their studies on KDP crystals doped with L-Cysteine (1 mol% and 2 mol%). The dopant inclusion in the crystals was confirmed using Fourier transform infrared (FT-IR) spectroscopy and Powder X-Ray Diffraction (XRD). The XRD results also confirm the tetragonal structure with lattice parameters a = b = 7.45 Å and c = 6.98 Å. The presence of functional groups of crystals was analyzed using the FTIR spectra. For band gap evaluation, UV-Vis spectra were used and it was found to be 3.41 eV, 4.40eVand 4.50 eV, respectively in the cases of pure KDP, 1 mol% and 2 mol% L-Cysteine dopings. The spectra quality indicates good transparency of the doped crystals in the visible region, a feature quite desirable for applications in optoelectronics.

  7. Homogeneous molybdenum disulfide tunnel diode formed via chemical doping

    NASA Astrophysics Data System (ADS)

    Liu, Xiaochi; Qu, Deshun; Choi, Min Sup; Lee, Changmin; Kim, Hyoungsub; Yoo, Won Jong

    2018-04-01

    We report on a simple, controllable chemical doping method to fabricate a lateral homogeneous MoS2 tunnel diode. MoS2 was doped to degenerate n- (1.6 × 1013 cm-2) and p-type (1.1 × 1013 cm-2) by benzyl viologen and AuCl3, respectively. The n- and p-doping can be patterned on the same MoS2 flake, and the high doping concentration can be maintained by Al2O3 masking together with vacuum annealing. A forward rectifying p-n diode and a band-to-band tunneling induced backward rectifying diode were realized by modulating the doping concentration of both the n- and p-sides. Our approach is a universal stratagem to fabricate diverse 2D homogeneous diodes with various functions.

  8. Local sensor based on nanowire field effect transistor from inhomogeneously doped silicon on insulator

    NASA Astrophysics Data System (ADS)

    Presnov, Denis E.; Bozhev, Ivan V.; Miakonkikh, Andrew V.; Simakin, Sergey G.; Trifonov, Artem S.; Krupenin, Vladimir A.

    2018-02-01

    We present the original method for fabricating a sensitive field/charge sensor based on field effect transistor (FET) with a nanowire channel that uses CMOS-compatible processes only. A FET with a kink-like silicon nanowire channel was fabricated from the inhomogeneously doped silicon on insulator wafer very close (˜100 nm) to the extremely sharp corner of a silicon chip forming local probe. The single e-beam lithographic process with a shadow deposition technique, followed by separate two reactive ion etching processes, was used to define the narrow semiconductor nanowire channel. The sensors charge sensitivity was evaluated to be in the range of 0.1-0.2 e /√{Hz } from the analysis of their transport and noise characteristics. The proposed method provides a good opportunity for the relatively simple manufacture of a local field sensor for measuring the electrical field distribution, potential profiles, and charge dynamics for a wide range of mesoscopic objects. Diagnostic systems and devices based on such sensors can be used in various fields of physics, chemistry, material science, biology, electronics, medicine, etc.

  9. Quantum Dots for Solar Cell Application

    NASA Astrophysics Data System (ADS)

    Poudyal, Uma

    Solar energy has been anticipated as the most important and reliable source of renewable energy to address the ever-increasing energy demand. To harvest solar energy efficiently, diverse kinds of solar cells have been studied. Among these, quantum dot sensitized solar cells have been an interesting group of solar cells mainly due to tunable, size-dependent electronic and optical properties of quantum dots. Moreover, doping these quantum dots with transition metal elements such as Mn opens avenue for improved performance of solar cells as well as for spin based technologies. In this dissertation, Mn-doped CdSe QDs (Mn-CdSe) have been synthesized by Successive Ionic Layer Adsorption and Reaction (SILAR) method. They are used in solar cells to study the effect of Mn doping in the performance of solar cells. Incident photon to current-conversion efficiency (IPCE) is used to record the effect of Mn-doping. Intensity modulated photovoltage and photocurrent spectroscopy (IMVS/PS) has been used to study the carrier dynamics in these solar cells. Additionally, the magnetic properties of Mn-CdSe QDs is studied and its possible origin is discussed. Moreover, CdS/CdSe QDs have been used to study the effect of liquid, gel and solid electrolyte in the performance and stability of the solar cells. Using IPCE spectra, the time decay measurements are presented and the possible reactions between the QD and the electrolytes are explained.

  10. Selective Dirac voltage engineering of individual graphene field-effect transistors for digital inverter and frequency multiplier integrations

    NASA Astrophysics Data System (ADS)

    Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck

    2017-09-01

    The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.

  11. Selective Dirac voltage engineering of individual graphene field-effect transistors for digital inverter and frequency multiplier integrations.

    PubMed

    Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck

    2017-09-15

    The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.

  12. Magnetic properties of Fe-doped organic-inorganic nanohybrids

    NASA Astrophysics Data System (ADS)

    Silva, N. J. O.; Amaral, V. S.; Carlos, L. D.; de Zea Bermudez, V.

    2003-05-01

    We present a magnetic study of Fe-doped diureasils (siloxane-based networks to which poly(ethylene oxide)-based chains are grafted by urea cross linkages doped with Fe(II) or Fe(III) ions. Structural studies show that the Fe(II) ions interact mainly with the organic chain, whereas the incorporation of Fe(III) leads to the formation of iron-based nanoclusters, with radius increasing from 20 to 40 Å. Fe(II)-doped samples behave as simple paramagnets, with μeff=5.32μB. Fe(III)-doped hybrids present antiferromagnetic interactions, with TN increasing with Fe(III) concentration up to 13.6 K for 6% doping. Thermal irreversibility was observed below ˜40 K and is stronger for higher concentrations. The coercive fields (HC) are of the order of 1000 Oe at 5 K. Hysteresis cycles are shifted to negative fields, revealing the presence of exchange anisotropy interactions with exchange fields (HE) of the order of 100 Oe. Both fields decrease rapidly with increasing temperature. We analyze this behavior in terms of the contribution of surface spin disorder to exchange anisotropy.

  13. Why Sn doping significantly enhances the dielectric properties of Ba(Ti1-xSnx)O3

    NASA Astrophysics Data System (ADS)

    Shi, Tao; Xie, Lin; Gu, Lin; Zhu, Jing

    2015-02-01

    Through appropriate doping, the properties of BaTiO3-based ferroelectrics can be significantly enhanced. To determine the physical process induced by the doping of Sn atoms in Ba(Ti0.8Sn0.2)O3, we performed high-resolution scanning transmission electron microscopy experiments and observed that the regions with low Sn content formed polar nano regions (PNRs) embedded in the matrix in Ba(Ti0.8Sn0.2)O3. The interactions among Sn, Ti, Ba and O atoms were determined using first principles calculations. Based on the characteristics of the electronic structure and crystal lattice strain fields, the effects of doping with Sn were investigated. The Sn doping not only changed the electronic structure of the crystal but also increased the dielectric properties of the PNRs. Moreover, the Sn doping was also responsible for the diffuse phase transition of the Ba(Ti1-xSnx)O3 material. The effects mentioned in this paper are universal in lead-free ferroelectrics, and similar elements such as Sb, Mg, and Zr may have the same functions in other systems. Thus, these results provide guidance for the design of the doping process and new systems of ferroelectric or relaxor materials.

  14. Why Sn doping significantly enhances the dielectric properties of Ba(Ti1-xSnx)O3

    PubMed Central

    Shi, Tao; Xie, Lin; Gu, Lin; Zhu, Jing

    2015-01-01

    Through appropriate doping, the properties of BaTiO3-based ferroelectrics can be significantly enhanced. To determine the physical process induced by the doping of Sn atoms in Ba(Ti0.8Sn0.2)O3, we performed high-resolution scanning transmission electron microscopy experiments and observed that the regions with low Sn content formed polar nano regions (PNRs) embedded in the matrix in Ba(Ti0.8Sn0.2)O3. The interactions among Sn, Ti, Ba and O atoms were determined using first principles calculations. Based on the characteristics of the electronic structure and crystal lattice strain fields, the effects of doping with Sn were investigated. The Sn doping not only changed the electronic structure of the crystal but also increased the dielectric properties of the PNRs. Moreover, the Sn doping was also responsible for the diffuse phase transition of the Ba(Ti1-xSnx)O3 material. The effects mentioned in this paper are universal in lead-free ferroelectrics, and similar elements such as Sb, Mg, and Zr may have the same functions in other systems. Thus, these results provide guidance for the design of the doping process and new systems of ferroelectric or relaxor materials. PMID:25721479

  15. Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells.

    PubMed

    Zhang, S J; Lin, S S; Li, X Q; Liu, X Y; Wu, H A; Xu, W L; Wang, P; Wu, Z Q; Zhong, H K; Xu, Z J

    2016-01-07

    Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron spectroscopy, was 0.13-0.25 eV larger than that of graphene. Moreover, when compared with the graphene/GaAs heterostructure, SiG/GaAs exhibits an enhanced performance. The performance of 3.4% silicon doped SiG/GaAs solar cell has been improved by 33.7% on average, which was attributed to the increased barrier height and improved interface quality. Our results suggest that silicon doping can effectively engineer the band gap of monolayered graphene and SiG has great potential in optoelectronic device applications.

  16. Electrical Transport Ability of Nanostructured Potassium-Doped Titanium Oxide Film

    NASA Astrophysics Data System (ADS)

    Lee, So-Yoon; Matsuno, Ryosuke; Ishihara, Kazuhiko; Takai, Madoka

    2011-02-01

    Potassium-doped nanostructured titanium oxide films were fabricated using a wet corrosion process with various KOH solutions. The doped condition of potassium in TiO2 was confirmed by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Nanotubular were synthesized at a dopant concentration of <0.27% when the dopant concentration increased to >0.27%, these structures disappeared. To investigate the electrical properties of K-doped TiO2, pseudo metal-oxide-semiconductor field-effect transistor (MOSFET) samples were fabricated. The samples exhibited a distinct electrical behavior and p-type characteristics. The electrical behavior was governed by the volume of the dopant when the dopant concentration was <0.10% and the volume of the TiO2 phase when the dopant concentration was >0.18%.

  17. Influence of iridium doping in MgB2 superconducting wires

    NASA Astrophysics Data System (ADS)

    Grivel, J.-C.

    2018-04-01

    MgB2 wires with iridium doping were manufactured using the in-situ technique in a composite Cu-Nb sheath. Reaction was performed at 700 °C, 800 °C or 900 °C for 1 h in argon atmosphere. A maximum of about 1.5 at.% Ir replaces Mg in MgB2. The superconducting transition temperature is slightly lowered by Ir doping. The formation of IrMg3 and IrMg4 secondary phase particles is evidenced, especially for a nominal stoichiometry with 2.0 at.% Ir doping. The critical current density and accommodation field of the wires are strongly dependent on the Ir content and are generally weakened in the presence of Ir, although the effect is less pronounced at lower temperatures.

  18. Sports drug testing using complementary matrices: Advantages and limitations.

    PubMed

    Thevis, Mario; Geyer, Hans; Tretzel, Laura; Schänzer, Wilhelm

    2016-10-25

    Today, routine doping controls largely rely on testing whole blood, serum, and urine samples. These matrices allow comprehensively covering inorganic as well as low and high molecular mass organic analytes relevant to doping controls and are collecting and transferring from sampling sites to accredited anti-doping laboratories under standardized conditions. Various aspects including time and cost-effectiveness as well as intrusiveness and invasiveness of the sampling procedure but also analyte stability and breadth of the contained information have been motivation to consider and assess values potentially provided and added to modern sports drug testing programs by alternative matrices. Such alternatives could be dried blood spots (DBS), dried plasma spots (DPS), oral fluid (OF), exhaled breath (EB), and hair. In this review, recent developments and test methods concerning these alternative matrices and expected or proven contributions as well as limitations of these specimens in the context of the international anti-doping fight are presented and discussed, guided by current regulations for prohibited substances and methods of doping as established by the World Anti-Doping Agency (WADA). Focusing on literature published between 2011 and 2015, examples for doping control analytical assays concerning non-approved substances, anabolic agents, peptide hormones/growth factors/related substances and mimetics, β 2 -agonists, hormone and metabolic modulators, diuretics and masking agents, stimulants, narcotics, cannabinoids, glucocorticoids, and beta-blockers were selected to outline the advantages and limitations of the aforementioned alternative matrices as compared to conventional doping control samples (i.e. urine and blood/serum). Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Characteristics of Honeycomb-Type Oxygen Generator with Electrolyte Based on Doped Bismuth Oxide

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Wen; Liu, Yi-Xin; Wang, Sea-Fue; Devasenathipathy, Rajkumar

    2018-03-01

    An oxygen generator using Y-doped Bi2O3 as electrolyte to transport oxygen ions has been developed, having honeycomb-type structure with dimensions of 40 mm × 35 mm × 30 mm and consisting of 13 × 12 channels. External wire circuitry for the channels arrayed using parallel, series, and hybrid connection was evaluated to achieve the best oxygen separation efficiency. It was observed that the oxygen generator with hybrid connection facilitated evolution of oxygen at maximum of 117 sccm and high purity > 99.9% at 550°C under current flow of 14 A. Addition of 5 wt.% silane and 3 wt.% glass-ceramic powder to the Ag slurry used at both electrodes not only increased the coverage of the metal electrode on the ceramic substrate during dip coating but also prevented cracking at the electrode layer of the module under stress from the electric field and temperature during high-temperature operation, thus reducing the decay rate of the oxygen generator in durability testing.

  20. Hormone abuse in sports: the antidoping perspective.

    PubMed

    Barroso, Osquel; Mazzoni, Irene; Rabin, Olivier

    2008-05-01

    Since ancient times, unethical athletes have attempted to gain an unfair competitive advantage through the use of doping substances. A list of doping substances and methods banned in sports is published yearly by the World Anti-Doping Agency (WADA). A substance or method might be included in the List if it fulfills at least two of the following criteria: enhances sports performance; represents a risk to the athlete's health; or violates the spirit of sports. This list, constantly updated to reflect new developments in the pharmaceutical industry as well as doping trends, enumerates the drug types and methods prohibited in and out of competition. Among the substances included are steroidal and peptide hormones and their modulators, stimulants, glucocorticosteroids, beta2-agonists, diuretics and masking agents, narcotics, and cannabinoids. Blood doping, tampering, infusions, and gene doping are examples of prohibited methods indicated on the List. From all these, hormones constitute by far the highest number of adverse analytical findings reported by antidoping laboratories. Although to date most are due to anabolic steroids, the advent of molecular biology techniques has made recombinant peptide hormones readily available. These substances are gradually changing the landscape of doping trends. Peptide hormones like erythropoietin (EPO), human growth hormone (hGH), insulin, and insulin-like growth factor I (IGF-I) are presumed to be widely abused for performance enhancement. Furthermore, as there is a paucity of techniques suitable for their detection, peptide hormones are all the more attractive to dishonest athletes. This article will overview the use of hormones as doping substances in sports, focusing mainly on peptide hormones as they represent a pressing challenge to the current fight against doping. Hormones and hormones modulators being developed by the pharmaceutical industry, which could emerge as new doping substances, are also discussed. 2008, Asian Journal of Andrology, SIMM and SJTU. All rights reserved.

Top