Sample records for module discovery decodes

  1. Multi-stage decoding for multi-level block modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao

    1991-01-01

    Various types of multistage decoding for multilevel block modulation codes, in which the decoding of a component code at each stage can be either soft decision or hard decision, maximum likelihood or bounded distance are discussed. Error performance for codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. It was found that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. It was found that the difference in performance between the suboptimum multi-stage soft decision maximum likelihood decoding of a modulation code and the single stage optimum decoding of the overall code is very small, only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.

  2. A novel parallel pipeline structure of VP9 decoder

    NASA Astrophysics Data System (ADS)

    Qin, Huabiao; Chen, Wu; Yi, Sijun; Tan, Yunfei; Yi, Huan

    2018-04-01

    To improve the efficiency of VP9 decoder, a novel parallel pipeline structure of VP9 decoder is presented in this paper. According to the decoding workflow, VP9 decoder can be divided into sub-modules which include entropy decoding, inverse quantization, inverse transform, intra prediction, inter prediction, deblocking and pixel adaptive compensation. By analyzing the computing time of each module, hotspot modules are located and the causes of low efficiency of VP9 decoder can be found. Then, a novel pipeline decoder structure is designed by using mixed parallel decoding methods of data division and function division. The experimental results show that this structure can greatly improve the decoding efficiency of VP9.

  3. Multi-stage decoding for multi-level block modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1991-01-01

    In this paper, we investigate various types of multi-stage decoding for multi-level block modulation codes, in which the decoding of a component code at each stage can be either soft-decision or hard-decision, maximum likelihood or bounded-distance. Error performance of codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. Based on our study and computation results, we find that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. In particular, we find that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum decoding of the overall code is very small: only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.

  4. Multi-stage decoding of multi-level modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao; Costello, Daniel J., Jr.

    1991-01-01

    Various types of multi-stage decoding for multi-level modulation codes are investigated. It is shown that if the component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. Particularly, it is shown that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum soft-decision decoding of the code is very small, only a fraction of dB loss in signal to noise ratio at a bit error rate (BER) of 10(exp -6).

  5. On decoding of multi-level MPSK modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Gupta, Alok Kumar

    1990-01-01

    The decoding problem of multi-level block modulation codes is investigated. The hardware design of soft-decision Viterbi decoder for some short length 8-PSK block modulation codes is presented. An effective way to reduce the hardware complexity of the decoder by reducing the branch metric and path metric, using a non-uniform floating-point to integer mapping scheme, is proposed and discussed. The simulation results of the design are presented. The multi-stage decoding (MSD) of multi-level modulation codes is also investigated. The cases of soft-decision and hard-decision MSD are considered and their performance are evaluated for several codes of different lengths and different minimum squared Euclidean distances. It is shown that the soft-decision MSD reduces the decoding complexity drastically and it is suboptimum. The hard-decision MSD further simplifies the decoding while still maintaining a reasonable coding gain over the uncoded system, if the component codes are chosen properly. Finally, some basic 3-level 8-PSK modulation codes using BCH codes as component codes are constructed and their coding gains are found for hard decision multistage decoding.

  6. Achievable Information Rates for Coded Modulation With Hard Decision Decoding for Coherent Fiber-Optic Systems

    NASA Astrophysics Data System (ADS)

    Sheikh, Alireza; Amat, Alexandre Graell i.; Liva, Gianluigi

    2017-12-01

    We analyze the achievable information rates (AIRs) for coded modulation schemes with QAM constellations with both bit-wise and symbol-wise decoders, corresponding to the case where a binary code is used in combination with a higher-order modulation using the bit-interleaved coded modulation (BICM) paradigm and to the case where a nonbinary code over a field matched to the constellation size is used, respectively. In particular, we consider hard decision decoding, which is the preferable option for fiber-optic communication systems where decoding complexity is a concern. Recently, Liga \\emph{et al.} analyzed the AIRs for bit-wise and symbol-wise decoders considering what the authors called \\emph{hard decision decoder} which, however, exploits \\emph{soft information} of the transition probabilities of discrete-input discrete-output channel resulting from the hard detection. As such, the complexity of the decoder is essentially the same as the complexity of a soft decision decoder. In this paper, we analyze instead the AIRs for the standard hard decision decoder, commonly used in practice, where the decoding is based on the Hamming distance metric. We show that if standard hard decision decoding is used, bit-wise decoders yield significantly higher AIRs than symbol-wise decoders. As a result, contrary to the conclusion by Liga \\emph{et al.}, binary decoders together with the BICM paradigm are preferable for spectrally-efficient fiber-optic systems. We also design binary and nonbinary staircase codes and show that, in agreement with the AIRs, binary codes yield better performance.

  7. Bandwidth efficient coding for satellite communications

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Costello, Daniel J., Jr.; Miller, Warner H.; Morakis, James C.; Poland, William B., Jr.

    1992-01-01

    An error control coding scheme was devised to achieve large coding gain and high reliability by using coded modulation with reduced decoding complexity. To achieve a 3 to 5 dB coding gain and moderate reliability, the decoding complexity is quite modest. In fact, to achieve a 3 dB coding gain, the decoding complexity is quite simple, no matter whether trellis coded modulation or block coded modulation is used. However, to achieve coding gains exceeding 5 dB, the decoding complexity increases drastically, and the implementation of the decoder becomes very expensive and unpractical. The use is proposed of coded modulation in conjunction with concatenated (or cascaded) coding. A good short bandwidth efficient modulation code is used as the inner code and relatively powerful Reed-Solomon code is used as the outer code. With properly chosen inner and outer codes, a concatenated coded modulation scheme not only can achieve large coding gains and high reliability with good bandwidth efficiency but also can be practically implemented. This combination of coded modulation and concatenated coding really offers a way of achieving the best of three worlds, reliability and coding gain, bandwidth efficiency, and decoding complexity.

  8. Error Control Coding Techniques for Space and Satellite Communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Takeshita, Oscar Y.; Cabral, Hermano A.; He, Jiali; White, Gregory S.

    1997-01-01

    Turbo coding using iterative SOVA decoding and M-ary differentially coherent or non-coherent modulation can provide an effective coding modulation solution: (1) Energy efficient with relatively simple SOVA decoding and small packet lengths, depending on BEP required; (2) Low number of decoding iterations required; and (3) Robustness in fading with channel interleaving.

  9. A new LDPC decoding scheme for PDM-8QAM BICM coherent optical communication system

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Zhang, Wen-bo; Xi, Li-xia; Tang, Xian-feng; Zhang, Xiao-guang

    2015-11-01

    A new log-likelihood ratio (LLR) message estimation method is proposed for polarization-division multiplexing eight quadrature amplitude modulation (PDM-8QAM) bit-interleaved coded modulation (BICM) optical communication system. The formulation of the posterior probability is theoretically analyzed, and the way to reduce the pre-decoding bit error rate ( BER) of the low density parity check (LDPC) decoder for PDM-8QAM constellations is presented. Simulation results show that it outperforms the traditional scheme, i.e., the new post-decoding BER is decreased down to 50% of that of the traditional post-decoding algorithm.

  10. Multi-level trellis coded modulation and multi-stage decoding

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Wu, Jiantian; Lin, Shu

    1990-01-01

    Several constructions for multi-level trellis codes are presented and many codes with better performance than previously known codes are found. These codes provide a flexible trade-off between coding gain, decoding complexity, and decoding delay. New multi-level trellis coded modulation schemes using generalized set partitioning methods are developed for Quadrature Amplitude Modulation (QAM) and Phase Shift Keying (PSK) signal sets. New rotationally invariant multi-level trellis codes which can be combined with differential encoding to resolve phase ambiguity are presented.

  11. High-speed architecture for the decoding of trellis-coded modulation

    NASA Technical Reports Server (NTRS)

    Osborne, William P.

    1992-01-01

    Since 1971, when the Viterbi Algorithm was introduced as the optimal method of decoding convolutional codes, improvements in circuit technology, especially VLSI, have steadily increased its speed and practicality. Trellis-Coded Modulation (TCM) combines convolutional coding with higher level modulation (non-binary source alphabet) to provide forward error correction and spectral efficiency. For binary codes, the current stare-of-the-art is a 64-state Viterbi decoder on a single CMOS chip, operating at a data rate of 25 Mbps. Recently, there has been an interest in increasing the speed of the Viterbi Algorithm by improving the decoder architecture, or by reducing the algorithm itself. Designs employing new architectural techniques are now in existence, however these techniques are currently applied to simpler binary codes, not to TCM. The purpose of this report is to discuss TCM architectural considerations in general, and to present the design, at the logic gate level, or a specific TCM decoder which applies these considerations to achieve high-speed decoding.

  12. Multiple-Symbol Noncoherent Decoding of Uncoded and Convolutionally Codes Continous Phase Modulation

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Raphaeli, D.

    2000-01-01

    Recently, a method for combined noncoherent detection and decoding of trellis-codes (noncoherent coded modulation) has been proposed, which can practically approach the performance of coherent detection.

  13. Large constraint length high speed viterbi decoder based on a modular hierarchial decomposition of the deBruijn graph

    NASA Technical Reports Server (NTRS)

    Collins, Oliver (Inventor); Dolinar, Jr., Samuel J. (Inventor); Hus, In-Shek (Inventor); Bozzola, Fabrizio P. (Inventor); Olson, Erlend M. (Inventor); Statman, Joseph I. (Inventor); Zimmerman, George A. (Inventor)

    1991-01-01

    A method of formulating and packaging decision-making elements into a long constraint length Viterbi decoder which involves formulating the decision-making processors as individual Viterbi butterfly processors that are interconnected in a deBruijn graph configuration. A fully distributed architecture, which achieves high decoding speeds, is made feasible by novel wiring and partitioning of the state diagram. This partitioning defines universal modules, which can be used to build any size decoder, such that a large number of wires is contained inside each module, and a small number of wires is needed to connect modules. The total system is modular and hierarchical, and it implements a large proportion of the required wiring internally within modules and may include some external wiring to fully complete the deBruijn graph. pg,14.

  14. Serial turbo trellis coded modulation using a serially concatenated coder

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Dolinar, Samuel J. (Inventor); Pollara, Fabrizio (Inventor)

    2010-01-01

    Serial concatenated trellis coded modulation (SCTCM) includes an outer coder, an interleaver, a recursive inner coder and a mapping element. The outer coder receives data to be coded and produces outer coded data. The interleaver permutes the outer coded data to produce interleaved data. The recursive inner coder codes the interleaved data to produce inner coded data. The mapping element maps the inner coded data to a symbol. The recursive inner coder has a structure which facilitates iterative decoding of the symbols at a decoder system. The recursive inner coder and the mapping element are selected to maximize the effective free Euclidean distance of a trellis coded modulator formed from the recursive inner coder and the mapping element. The decoder system includes a demodulation unit, an inner SISO (soft-input soft-output) decoder, a deinterleaver, an outer SISO decoder, and an interleaver.

  15. Modulation and coding for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H.; Simon, Marvin K.; Pollara, Fabrizio; Divsalar, Dariush; Miller, Warner H.; Morakis, James C.; Ryan, Carl R.

    1990-01-01

    Several modulation and coding advances supported by NASA are summarized. To support long-constraint-length convolutional code, a VLSI maximum-likelihood decoder, utilizing parallel processing techniques, which is being developed to decode convolutional codes of constraint length 15 and a code rate as low as 1/6 is discussed. A VLSI high-speed 8-b Reed-Solomon decoder which is being developed for advanced tracking and data relay satellite (ATDRS) applications is discussed. A 300-Mb/s modem with continuous phase modulation (CPM) and codings which is being developed for ATDRS is discussed. Trellis-coded modulation (TCM) techniques are discussed for satellite-based mobile communication applications.

  16. Decoding telomere protein Rap1: Its telomeric and nontelomeric functions and potential implications in diabetic cardiomyopathy.

    PubMed

    Cai, Yin; Kandula, Vidya; Kosuru, Ramoji; Ye, Xiaodong; Irwin, Michael G; Xia, Zhengyuan

    2017-10-02

    Mammalian Rap1, the most conserved telomere-interacting protein, beyond its role within nucleus for the maintenance of telomeric functions, is also well known for its pleiotropic functions in various physiological and pathological conditions associated with metabolism, inflammation and oxidative stress. For all these, nowadays Rap1 is the subject of critical investigations aimed to unveil its molecular signaling pathways and to scrutinize the applicability of its modulation as a promising therapeutic strategy with clinical relevance. However, the underlying intimate mechanisms of Rap1 are not extensively studied, but any modulation of this protein level has been associated with pathologies like inflammation, oxidative stress and deregulated metabolism. This is considerably important in light of the recent discovery of Rap1 modulation in diseases like cancer and cardiac metabolic disorders. In this review, we focus on both the telomeric and nontelomeric functions of Rap1 and its modulation in various health risks, especially on the heart.

  17. Soft-Input Soft-Output Modules for the Construction and Distributed Iterative Decoding of Code Networks

    NASA Technical Reports Server (NTRS)

    Benedetto, S.; Divsalar, D.; Montorsi, G.; Pollara, F.

    1998-01-01

    Soft-input soft-output building blocks (modules) are presented to construct and iteratively decode in a distributed fashion code networks, a new concept that includes, and generalizes, various forms of concatenated coding schemes.

  18. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  19. Coding/decoding two-dimensional images with orbital angular momentum of light.

    PubMed

    Chu, Jiaqi; Li, Xuefeng; Smithwick, Quinn; Chu, Daping

    2016-04-01

    We investigate encoding and decoding of two-dimensional information using the orbital angular momentum (OAM) of light. Spiral phase plates and phase-only spatial light modulators are used in encoding and decoding of OAM states, respectively. We show that off-axis points and spatial variables encoded with a given OAM state can be recovered through decoding with the corresponding complimentary OAM state.

  20. Rate adaptive multilevel coded modulation with high coding gain in intensity modulation direct detection optical communication

    NASA Astrophysics Data System (ADS)

    Xiao, Fei; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Zhang, Qi; Tian, Qinghua; Tian, Feng; Wang, Yongjun; Rao, Lan; Ullah, Rahat; Zhao, Feng; Li, Deng'ao

    2018-02-01

    A rate-adaptive multilevel coded modulation (RA-MLC) scheme based on fixed code length and a corresponding decoding scheme is proposed. RA-MLC scheme combines the multilevel coded and modulation technology with the binary linear block code at the transmitter. Bits division, coding, optional interleaving, and modulation are carried out by the preset rule, then transmitted through standard single mode fiber span equal to 100 km. The receiver improves the accuracy of decoding by means of soft information passing through different layers, which enhances the performance. Simulations are carried out in an intensity modulation-direct detection optical communication system using MATLAB®. Results show that the RA-MLC scheme can achieve bit error rate of 1E-5 when optical signal-to-noise ratio is 20.7 dB. It also reduced the number of decoders by 72% and realized 22 rate adaptation without significantly increasing the computing time. The coding gain is increased by 7.3 dB at BER=1E-3.

  1. Frequency-Accommodating Manchester Decoder

    NASA Technical Reports Server (NTRS)

    Vasquez, Mario J.

    1988-01-01

    No adjustment necessary to cover a 10:1 frequency range. Decoding circuit converts biphase-level pulse-code modulation to nonreturn-to-zero (NRZ)-level pulse-code modulation plus clock signal. Circuit accommodates input data rate of 50 to 500 kb/s. Tracks gradual changes in rate automatically, eliminating need for extra circuits and manual switching to adjust to different rates.

  2. Encoding and decoding amplitude-modulated cochlear implant stimuli—a point process analysis

    PubMed Central

    Shea-Brown, Eric; Rubinstein, Jay T.

    2010-01-01

    Cochlear implant speech processors stimulate the auditory nerve by delivering amplitude-modulated electrical pulse trains to intracochlear electrodes. Studying how auditory nerve cells encode modulation information is of fundamental importance, therefore, to understanding cochlear implant function and improving speech perception in cochlear implant users. In this paper, we analyze simulated responses of the auditory nerve to amplitude-modulated cochlear implant stimuli using a point process model. First, we quantify the information encoded in the spike trains by testing an ideal observer’s ability to detect amplitude modulation in a two-alternative forced-choice task. We vary the amount of information available to the observer to probe how spike timing and averaged firing rate encode modulation. Second, we construct a neural decoding method that predicts several qualitative trends observed in psychophysical tests of amplitude modulation detection in cochlear implant listeners. We find that modulation information is primarily available in the sequence of spike times. The performance of an ideal observer, however, is inconsistent with observed trends in psychophysical data. Using a neural decoding method that jitters spike times to degrade its temporal resolution and then computes a common measure of phase locking from spike trains of a heterogeneous population of model nerve cells, we predict the correct qualitative dependence of modulation detection thresholds on modulation frequency and stimulus level. The decoder does not predict the observed loss of modulation sensitivity at high carrier pulse rates, but this framework can be applied to future models that better represent auditory nerve responses to high carrier pulse rate stimuli. The supplemental material of this article contains the article’s data in an active, re-usable format. PMID:20177761

  3. Scalable SCPPM Decoder

    NASA Technical Reports Server (NTRS)

    Quir, Kevin J.; Gin, Jonathan W.; Nguyen, Danh H.; Nguyen, Huy; Nakashima, Michael A.; Moision, Bruce E.

    2012-01-01

    A decoder was developed that decodes a serial concatenated pulse position modulation (SCPPM) encoded information sequence. The decoder takes as input a sequence of four bit log-likelihood ratios (LLR) for each PPM slot in a codeword via a XAUI 10-Gb/s quad optical fiber interface. If the decoder is unavailable, it passes the LLRs on to the next decoder via a XAUI 10-Gb/s quad optical fiber interface. Otherwise, it decodes the sequence and outputs information bits through a 1-GB/s Ethernet UDP/IP (User Datagram Protocol/Internet Protocol) interface. The throughput for a single decoder unit is 150-Mb/s at an average of four decoding iterations; by connecting a number of decoder units in series, a decoding rate equal to that of the aggregate rate is achieved. The unit is controlled through a 1-GB/s Ethernet UDP/IP interface. This ground station decoder was developed to demonstrate a deep space optical communication link capability, and is unique in the scalable design to achieve real-time SCPP decoding at the aggregate data rate.

  4. 25 Tb/s transmission over 5,530 km using 16QAM at 5.2 b/s/Hz spectral efficiency.

    PubMed

    Cai, J-X; Batshon, H G; Zhang, H; Davidson, C R; Sun, Y; Mazurczyk, M; Foursa, D G; Sinkin, O; Pilipetskii, A; Mohs, G; Bergano, Neal S

    2013-01-28

    We transmit 250x100G PDM RZ-16QAM channels with 5.2 b/s/Hz spectral efficiency over 5,530 km using single-stage C-band EDFAs equalized to 40 nm. We use single parity check coded modulation and all channels are decoded with no errors after iterative decoding between a MAP decoder and an LDPC based FEC algorithm. We also observe that the optimum power spectral density is nearly independent of SE, signal baud rate or modulation format in a dispersion uncompensated system.

  5. Performance of Low-Density Parity-Check Coded Modulation

    NASA Astrophysics Data System (ADS)

    Hamkins, J.

    2011-02-01

    This article presents the simulated performance of a family of nine AR4JA low-density parity-check (LDPC) codes when used with each of five modulations. In each case, the decoder inputs are codebit log-likelihood ratios computed from the received (noisy) modulation symbols using a general formula which applies to arbitrary modulations. Suboptimal soft-decision and hard-decision demodulators are also explored. Bit-interleaving and various mappings of bits to modulation symbols are considered. A number of subtle decoder algorithm details are shown to affect performance, especially in the error floor region. Among these are quantization dynamic range and step size, clipping degree-one variable nodes, "Jones clipping" of variable nodes, approximations of the min* function, and partial hard-limiting messages from check nodes. Using these decoder optimizations, all coded modulations simulated here are free of error floors down to codeword error rates below 10^{-6}. The purpose of generating this performance data is to aid system engineers in determining an appropriate code and modulation to use under specific power and bandwidth constraints, and to provide information needed to design a variable/adaptive coded modulation (VCM/ACM) system using the AR4JA codes. IPNPR Volume 42-185 Tagged File.txt

  6. Optimizations of a Hardware Decoder for Deep-Space Optical Communications

    NASA Technical Reports Server (NTRS)

    Cheng, Michael K.; Nakashima, Michael A.; Moision, Bruce E.; Hamkins, Jon

    2007-01-01

    The National Aeronautics and Space Administration has developed a capacity approaching modulation and coding scheme that comprises a serial concatenation of an inner accumulate pulse-position modulation (PPM) and an outer convolutional code [or serially concatenated PPM (SCPPM)] for deep-space optical communications. Decoding of this code uses the turbo principle. However, due to the nonbinary property of SCPPM, a straightforward application of classical turbo decoding is very inefficient. Here, we present various optimizations applicable in hardware implementation of the SCPPM decoder. More specifically, we feature a Super Gamma computation to efficiently handle parallel trellis edges, a pipeline-friendly 'maxstar top-2' circuit that reduces the max-only approximation penalty, a low-latency cyclic redundancy check circuit for window-based decoders, and a high-speed algorithmic polynomial interleaver that leads to memory savings. Using the featured optimizations, we implement a 6.72 megabits-per-second (Mbps) SCPPM decoder on a single field-programmable gate array (FPGA). Compared to the current data rate of 256 kilobits per second from Mars, the SCPPM coded scheme represents a throughput increase of more than twenty-six fold. Extension to a 50-Mbps decoder on a board with multiple FPGAs follows naturally. We show through hardware simulations that the SCPPM coded system can operate within 1 dB of the Shannon capacity at nominal operating conditions.

  7. Cognitive Radio for Tactical Wireless Communication Networks

    DTIC Science & Technology

    2011-10-09

    Pursley. Demodulator Statistics for Enhanced Soft-Decision Decoding in CDMA Packet Radio Systems, ICC 2010 - 2010 IEEE International Conference on...likelihood ratio (LLR) metrics and distance metrics. In [BPR08], [BoP09], and [BPR11], we investigated direct-sequence spread-spectrum ( DS -SS...modulation formats, which are among the most robust formats for tactical cognitive radio networks. DS -SS modulation with adaptive soft-decision decoding is

  8. A novel design of optical CDMA system based on TCM and FFH

    NASA Astrophysics Data System (ADS)

    Fang, Jun-Bin; Xu, Zhi-Hai; Huang, Hong-bin; Zheng, Liming; Chen, Shun-er; Liu, Wei-ping

    2005-02-01

    For the application in Passive Optical Network (PON), a novel design of OCDMA system scheme is proposed in this paper. There are two key components included in this scheme: a new kind of OCDMA encoder/decoder system based on TCM and FFH and an improved Optical Line Terminal (OLT) receiving system with improved anti-interference performance by the use of Long Period Fiber Grating (LPFG). In the encoder/decoder system, Trellis Coded Modulation (TCM) encoder is applied in front of the FFH modulator. Original signal firstly is encoded through TCM encoder, and then the redundant code out of the TCM encoder will be mapped into one of the FFH modulation signal subsets for transmission. On the receiver (decoder) side, transmitting signal is demodulated through FFH and decoded by trellis decoder. Owing to the fact that high coding gain can be acquired by TCM without adding transmitting band and reducing transmitting speed, TCM is utilized to ameliorate bit error performance and reduce multi-user interference. In the OLT receiving system, EDFA and LPFG are placed in front of decoder to get excellent gain flatness on a large bandwidth, and Optical Hard Limiter (OHL) is also deployed to improve detection performance, through which the anti-interference performance of receiving system can be greatly enhanced. At the same time, some software is used to simulate the system performance for further analysis and authentication. The related work in this paper provides a valuable reference to the research.

  9. Global cortical activity predicts shape of hand during grasping

    PubMed Central

    Agashe, Harshavardhan A.; Paek, Andrew Y.; Zhang, Yuhang; Contreras-Vidal, José L.

    2015-01-01

    Recent studies show that the amplitude of cortical field potentials is modulated in the time domain by grasping kinematics. However, it is unknown if these low frequency modulations persist and contain enough information to decode grasp kinematics in macro-scale activity measured at the scalp via electroencephalography (EEG). Further, it is unclear as to whether joint angle velocities or movement synergies are the optimal kinematics spaces to decode. In this offline decoding study, we infer from human EEG, hand joint angular velocities as well as synergistic trajectories as subjects perform natural reach-to-grasp movements. Decoding accuracy, measured as the correlation coefficient (r) between the predicted and actual movement kinematics, was r = 0.49 ± 0.02 across 15 hand joints. Across the first three kinematic synergies, decoding accuracies were r = 0.59 ± 0.04, 0.47 ± 0.06, and 0.32 ± 0.05. The spatial-temporal pattern of EEG channel recruitment showed early involvement of contralateral frontal-central scalp areas followed by later activation of central electrodes over primary sensorimotor cortical areas. Information content in EEG about the grasp type peaked at 250 ms after movement onset. The high decoding accuracies in this study are significant not only as evidence for time-domain modulation in macro-scale brain activity, but for the field of brain-machine interfaces as well. Our decoding strategy, which harnesses the neural “symphony” as opposed to local members of the neural ensemble (as in intracranial approaches), may provide a means of extracting information about motor intent for grasping without the need for penetrating electrodes and suggests that it may be soon possible to develop non-invasive neural interfaces for the control of prosthetic limbs. PMID:25914616

  10. Hardware Implementation of Serially Concatenated PPM Decoder

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Hamkins, Jon; Barsoum, Maged; Cheng, Michael; Nakashima, Michael

    2009-01-01

    A prototype decoder for a serially concatenated pulse position modulation (SCPPM) code has been implemented in a field-programmable gate array (FPGA). At the time of this reporting, this is the first known hardware SCPPM decoder. The SCPPM coding scheme, conceived for free-space optical communications with both deep-space and terrestrial applications in mind, is an improvement of several dB over the conventional Reed-Solomon PPM scheme. The design of the FPGA SCPPM decoder is based on a turbo decoding algorithm that requires relatively low computational complexity while delivering error-rate performance within approximately 1 dB of channel capacity. The SCPPM encoder consists of an outer convolutional encoder, an interleaver, an accumulator, and an inner modulation encoder (more precisely, a mapping of bits to PPM symbols). Each code is describable by a trellis (a finite directed graph). The SCPPM decoder consists of an inner soft-in-soft-out (SISO) module, a de-interleaver, an outer SISO module, and an interleaver connected in a loop (see figure). Each SISO module applies the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm to compute a-posteriori bit log-likelihood ratios (LLRs) from apriori LLRs by traversing the code trellis in forward and backward directions. The SISO modules iteratively refine the LLRs by passing the estimates between one another much like the working of a turbine engine. Extrinsic information (the difference between the a-posteriori and a-priori LLRs) is exchanged rather than the a-posteriori LLRs to minimize undesired feedback. All computations are performed in the logarithmic domain, wherein multiplications are translated into additions, thereby reducing complexity and sensitivity to fixed-point implementation roundoff errors. To lower the required memory for storing channel likelihood data and the amounts of data transfer between the decoder and the receiver, one can discard the majority of channel likelihoods, using only the remainder in operation of the decoder. This is accomplished in the receiver by transmitting only a subset consisting of the likelihoods that correspond to time slots containing the largest numbers of observed photons during each PPM symbol period. The assumed number of observed photons in the remaining time slots is set to the mean of a noise slot. In low background noise, the selection of a small subset in this manner results in only negligible loss. Other features of the decoder design to reduce complexity and increase speed include (1) quantization of metrics in an efficient procedure chosen to incur no more than a small performance loss and (2) the use of the max-star function that allows sum of exponentials to be computed by simple operations that involve only an addition, a subtraction, and a table lookup. Another prominent feature of the design is a provision for access to interleaver and de-interleaver memory in a single clock cycle, eliminating the multiple clock-cycle latency characteristic of prior interleaver and de-interleaver designs.

  11. Communication system analysis for manned space flight

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1978-01-01

    The development of adaptive delta modulators capable of digitizing a video signal is summarized. The delta modulator encoder accepts a 4 MHz black and white composite video signal or a color video signal and encodes it into a stream of binary digits at a rate which can be adjusted from 8 Mb/s to 24 Mb/s. The output bit rate is determined by the user and alters the quality of the video picture. The digital signal is decoded using the adaptive delta modulator decoder to reconstruct the picture.

  12. Active module identification in intracellular networks using a memetic algorithm with a new binary decoding scheme.

    PubMed

    Li, Dong; Pan, Zhisong; Hu, Guyu; Zhu, Zexuan; He, Shan

    2017-03-14

    Active modules are connected regions in biological network which show significant changes in expression over particular conditions. The identification of such modules is important since it may reveal the regulatory and signaling mechanisms that associate with a given cellular response. In this paper, we propose a novel active module identification algorithm based on a memetic algorithm. We propose a novel encoding/decoding scheme to ensure the connectedness of the identified active modules. Based on the scheme, we also design and incorporate a local search operator into the memetic algorithm to improve its performance. The effectiveness of proposed algorithm is validated on both small and large protein interaction networks.

  13. Enhanced 2/3 four-ary modulation code using soft-decision Viterbi decoding for four-level holographic data storage systems

    NASA Astrophysics Data System (ADS)

    Kong, Gyuyeol; Choi, Sooyong

    2017-09-01

    An enhanced 2/3 four-ary modulation code using soft-decision Viterbi decoding is proposed for four-level holographic data storage systems. While the previous four-ary modulation codes focus on preventing maximum two-dimensional intersymbol interference patterns, the proposed four-ary modulation code aims at maximizing the coding gains for better bit error rate performances. For achieving significant coding gains from the four-ary modulation codes, we design a new 2/3 four-ary modulation code in order to enlarge the free distance on the trellis through extensive simulation. The free distance of the proposed four-ary modulation code is extended from 1.21 to 2.04 compared with that of the conventional four-ary modulation code. The simulation result shows that the proposed four-ary modulation code has more than 1 dB gains compared with the conventional four-ary modulation code.

  14. Decoding Face Information in Time, Frequency and Space from Direct Intracranial Recordings of the Human Brain

    PubMed Central

    Oya, Hiroyuki; Howard, Matthew A.; Adolphs, Ralph

    2008-01-01

    Faces are processed by a neural system with distributed anatomical components, but the roles of these components remain unclear. A dominant theory of face perception postulates independent representations of invariant aspects of faces (e.g., identity) in ventral temporal cortex including the fusiform gyrus, and changeable aspects of faces (e.g., emotion) in lateral temporal cortex including the superior temporal sulcus. Here we recorded neuronal activity directly from the cortical surface in 9 neurosurgical subjects undergoing epilepsy monitoring while they viewed static and dynamic facial expressions. Applying novel decoding analyses to the power spectrogram of electrocorticograms (ECoG) from over 100 contacts in ventral and lateral temporal cortex, we found better representation of both invariant and changeable aspects of faces in ventral than lateral temporal cortex. Critical information for discriminating faces from geometric patterns was carried by power modulations between 50 to 150 Hz. For both static and dynamic face stimuli, we obtained a higher decoding performance in ventral than lateral temporal cortex. For discriminating fearful from happy expressions, critical information was carried by power modulation between 60–150 Hz and below 30 Hz, and again better decoded in ventral than lateral temporal cortex. Task-relevant attention improved decoding accuracy more than10% across a wide frequency range in ventral but not at all in lateral temporal cortex. Spatial searchlight decoding showed that decoding performance was highest around the middle fusiform gyrus. Finally, we found that the right hemisphere, in general, showed superior decoding to the left hemisphere. Taken together, our results challenge the dominant model for independent face representation of invariant and changeable aspects: information about both face attributes was better decoded from a single region in the middle fusiform gyrus. PMID:19065268

  15. 16QAM transmission with 5.2 bits/s/Hz spectral efficiency over transoceanic distance.

    PubMed

    Zhang, H; Cai, J-X; Batshon, H G; Davidson, C R; Sun, Y; Mazurczyk, M; Foursa, D G; Pilipetskii, A; Mohs, G; Bergano, Neal S

    2012-05-21

    We transmit 160 x 100 G PDM RZ 16 QAM channels with 5.2 bits/s/Hz spectral efficiency over 6,860 km. There are more than 3 billion 16 QAM symbols, i.e., 12 billion bits, processed in total. Using coded modulation and iterative decoding between a MAP decoder and an LDPC based FEC all channels are decoded with no remaining errors.

  16. A reduced complexity highly power/bandwidth efficient coded FQPSK system with iterative decoding

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Divsalar, D.

    2001-01-01

    Based on a representation of FQPSK as a trellis-coded modulation, this paper investigates the potential improvement in power efficiency obtained from the application of simple outer codes to form a concatenated coding arrangement with iterative decoding.

  17. Hamming and Accumulator Codes Concatenated with MPSK or QAM

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel

    2009-01-01

    In a proposed coding-and-modulation scheme, a high-rate binary data stream would be processed as follows: 1. The input bit stream would be demultiplexed into multiple bit streams. 2. The multiple bit streams would be processed simultaneously into a high-rate outer Hamming code that would comprise multiple short constituent Hamming codes a distinct constituent Hamming code for each stream. 3. The streams would be interleaved. The interleaver would have a block structure that would facilitate parallelization for high-speed decoding. 4. The interleaved streams would be further processed simultaneously into an inner two-state, rate-1 accumulator code that would comprise multiple constituent accumulator codes - a distinct accumulator code for each stream. 5. The resulting bit streams would be mapped into symbols to be transmitted by use of a higher-order modulation - for example, M-ary phase-shift keying (MPSK) or quadrature amplitude modulation (QAM). The novelty of the scheme lies in the concatenation of the multiple-constituent Hamming and accumulator codes and the corresponding parallel architectures of the encoder and decoder circuitry (see figure) needed to process the multiple bit streams simultaneously. As in the cases of other parallel-processing schemes, one advantage of this scheme is that the overall data rate could be much greater than the data rate of each encoder and decoder stream and, hence, the encoder and decoder could handle data at an overall rate beyond the capability of the individual encoder and decoder circuits.

  18. Optimum Code Rates for Noncoherent MFSK with Errors and Erasures Decoding over Rayleigh Fading Channels

    NASA Technical Reports Server (NTRS)

    Ritcey, Adina Matache James A.

    1997-01-01

    In this paper, we analyze the performance of a communication system employing M-ary frequency shift keying (FSK) modulation with errors-and-erasures decoding using Viterbi ratio threshold technique for erasure insertion, in Rayleigh fading and AWGN channels.

  19. Design and analysis of coherent OCDM en/decoder based on photonic crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Qiu, Kun

    2008-08-01

    The design and performance analysis of a new coherent optical en/decoder based on photonic crystal (PhC) for optical code -division -multiple (OCDM) are presented in this paper. In this scheme, the optical pulse phase and time delay can be flexibly controlled by photonic crystal phase shifter and time delayer by using the appropriate design of fabrication. According to the PhC transmission matrix theorem, combination calculation of the impurity and normal period layers is applied, and performances of the PhC-based optical en/decoder are also analyzed. The reflection, transmission, time delay characteristic and optical spectrum of pulse en/decoded are studied for the waves tuned in the photonic band-gap by numerical calculation. Theoretical analysis and numerical results indicate that the optical pulse is achieved to properly phase modulation and time delay, and an auto-correlation of about 8 dB ration and cross-correlation is gained, which demonstrates the applicability of true pulse phase modulation in a number of applications.

  20. Viterbi decoding for satellite and space communication.

    NASA Technical Reports Server (NTRS)

    Heller, J. A.; Jacobs, I. M.

    1971-01-01

    Convolutional coding and Viterbi decoding, along with binary phase-shift keyed modulation, is presented as an efficient system for reliable communication on power limited satellite and space channels. Performance results, obtained theoretically and through computer simulation, are given for optimum short constraint length codes for a range of code constraint lengths and code rates. System efficiency is compared for hard receiver quantization and 4 and 8 level soft quantization. The effects on performance of varying of certain parameters relevant to decoder complexity and cost are examined. Quantitative performance degradation due to imperfect carrier phase coherence is evaluated and compared to that of an uncoded system. As an example of decoder performance versus complexity, a recently implemented 2-Mbit/sec constraint length 7 Viterbi decoder is discussed. Finally a comparison is made between Viterbi and sequential decoding in terms of suitability to various system requirements.

  1. Coded Modulation in C and MATLAB

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon; Andrews, Kenneth S.

    2011-01-01

    This software, written separately in C and MATLAB as stand-alone packages with equivalent functionality, implements encoders and decoders for a set of nine error-correcting codes and modulators and demodulators for five modulation types. The software can be used as a single program to simulate the performance of such coded modulation. The error-correcting codes implemented are the nine accumulate repeat-4 jagged accumulate (AR4JA) low-density parity-check (LDPC) codes, which have been approved for international standardization by the Consultative Committee for Space Data Systems, and which are scheduled to fly on a series of NASA missions in the Constellation Program. The software implements the encoder and decoder functions, and contains compressed versions of generator and parity-check matrices used in these operations.

  2. On the reduced-complexity of LDPC decoders for ultra-high-speed optical transmission.

    PubMed

    Djordjevic, Ivan B; Xu, Lei; Wang, Ting

    2010-10-25

    We propose two reduced-complexity (RC) LDPC decoders, which can be used in combination with large-girth LDPC codes to enable ultra-high-speed serial optical transmission. We show that optimally attenuated RC min-sum sum algorithm performs only 0.46 dB (at BER of 10(-9)) worse than conventional sum-product algorithm, while having lower storage memory requirements and much lower latency. We further study the use of RC LDPC decoding algorithms in multilevel coded modulation with coherent detection and show that with RC decoding algorithms we can achieve the net coding gain larger than 11 dB at BERs below 10(-9).

  3. [Modulation of Metacognition with Decoded Neurofeedback].

    PubMed

    Koizumi, Ai; Cortese, Aurelio; Amano, Kaoru; Kawato, Mitsuo; Lau, Hakwan

    2017-12-01

    Humans often assess their confidence in their own perception, e.g., feeling "confident" or "certain" of having seen a friend, or feeling "uncertain" about whether the phone rang. The neural mechanism underlying the metacognitive function that reflects subjective perception still remains under debate. We have previously used decoded neurofeedback (DecNef) to demonstrate that manipulating the multivoxel activation patterns in the frontoparietal network modulates perceptual confidence without affecting perceptual performance. The results provided clear evidence for a dissociation between perceptual confidence and performance and suggested a distinct role of the frontoparietal network in metacognition.

  4. Development of a fault-tolerant microprocessor based computer system for space flight

    NASA Technical Reports Server (NTRS)

    Montgomery, V. T.

    1981-01-01

    A methodology for the design of a tightly coupled, highly reliable microprocessor based computer system is described. The concept of triple modular redundancy with sparing is used. The notion of synchronizing by using a single crystal oscillator is examined. The use of decoders to replace voters is also used. The decoders not only isolate the failed module but also allow error identification to be accomplished. Each module is to have its own RAM memory. The necessary circuitry to select a correct memory and the corresponding DMA controller was designed.

  5. Reliability of directional information in unsorted spikes and local field potentials recorded in human motor cortex.

    PubMed

    Perge, János A; Zhang, Shaomin; Malik, Wasim Q; Homer, Mark L; Cash, Sydney; Friehs, Gerhard; Eskandar, Emad N; Donoghue, John P; Hochberg, Leigh R

    2014-08-01

    Action potentials and local field potentials (LFPs) recorded in primary motor cortex contain information about the direction of movement. LFPs are assumed to be more robust to signal instabilities than action potentials, which makes LFPs, along with action potentials, a promising signal source for brain-computer interface applications. Still, relatively little research has directly compared the utility of LFPs to action potentials in decoding movement direction in human motor cortex. We conducted intracortical multi-electrode recordings in motor cortex of two persons (T2 and [S3]) as they performed a motor imagery task. We then compared the offline decoding performance of LFPs and spiking extracted from the same data recorded across a one-year period in each participant. We obtained offline prediction accuracy of movement direction and endpoint velocity in multiple LFP bands, with the best performance in the highest (200-400 Hz) LFP frequency band, presumably also containing low-pass filtered action potentials. Cross-frequency correlations of preferred directions and directional modulation index showed high similarity of directional information between action potential firing rates (spiking) and high frequency LFPs (70-400 Hz), and increasing disparity with lower frequency bands (0-7, 10-40 and 50-65 Hz). Spikes predicted the direction of intended movement more accurately than any individual LFP band, however combined decoding of all LFPs was statistically indistinguishable from spike-based performance. As the quality of spiking signals (i.e. signal amplitude) and the number of significantly modulated spiking units decreased, the offline decoding performance decreased 3.6[5.65]%/month (for T2 and [S3] respectively). The decrease in the number of significantly modulated LFP signals and their decoding accuracy followed a similar trend (2.4[2.85]%/month, ANCOVA, p = 0.27[0.03]). Field potentials provided comparable offline decoding performance to unsorted spikes. Thus, LFPs may provide useful external device control using current human intracortical recording technology. ( NCT00912041.).

  6. A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder.

    PubMed

    Boi, Fabio; Moraitis, Timoleon; De Feo, Vito; Diotalevi, Francesco; Bartolozzi, Chiara; Indiveri, Giacomo; Vato, Alessandro

    2016-01-01

    Bidirectional brain-machine interfaces (BMIs) establish a two-way direct communication link between the brain and the external world. A decoder translates recorded neural activity into motor commands and an encoder delivers sensory information collected from the environment directly to the brain creating a closed-loop system. These two modules are typically integrated in bulky external devices. However, the clinical support of patients with severe motor and sensory deficits requires compact, low-power, and fully implantable systems that can decode neural signals to control external devices. As a first step toward this goal, we developed a modular bidirectional BMI setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits. On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn to decode neural signals recorded from the brain into motor outputs controlling the movements of an external device. The modularity of the BMI allowed us to tune the individual components of the setup without modifying the whole system. In this paper, we present the features of this modular BMI and describe how we configured the network of spiking neuron circuits to implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm that connects bidirectionally the brain of an anesthetized rat with an external object. We show that the chip learned the decoding task correctly, allowing the interfaced brain to control the object's trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is mature enough for the development of BMI modules that are sufficiently low-power and compact, while being highly computationally powerful and adaptive.

  7. A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder

    PubMed Central

    Boi, Fabio; Moraitis, Timoleon; De Feo, Vito; Diotalevi, Francesco; Bartolozzi, Chiara; Indiveri, Giacomo; Vato, Alessandro

    2016-01-01

    Bidirectional brain-machine interfaces (BMIs) establish a two-way direct communication link between the brain and the external world. A decoder translates recorded neural activity into motor commands and an encoder delivers sensory information collected from the environment directly to the brain creating a closed-loop system. These two modules are typically integrated in bulky external devices. However, the clinical support of patients with severe motor and sensory deficits requires compact, low-power, and fully implantable systems that can decode neural signals to control external devices. As a first step toward this goal, we developed a modular bidirectional BMI setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits. On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn to decode neural signals recorded from the brain into motor outputs controlling the movements of an external device. The modularity of the BMI allowed us to tune the individual components of the setup without modifying the whole system. In this paper, we present the features of this modular BMI and describe how we configured the network of spiking neuron circuits to implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm that connects bidirectionally the brain of an anesthetized rat with an external object. We show that the chip learned the decoding task correctly, allowing the interfaced brain to control the object's trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is mature enough for the development of BMI modules that are sufficiently low-power and compact, while being highly computationally powerful and adaptive. PMID:28018162

  8. Deep learning with convolutional neural networks for EEG decoding and visualization

    PubMed Central

    Springenberg, Jost Tobias; Fiederer, Lukas Dominique Josef; Glasstetter, Martin; Eggensperger, Katharina; Tangermann, Michael; Hutter, Frank; Burgard, Wolfram; Ball, Tonio

    2017-01-01

    Abstract Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end‐to‐end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end‐to‐end EEG analysis, but a better understanding of how to design and train ConvNets for end‐to‐end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task‐related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG‐based brain mapping. Hum Brain Mapp 38:5391–5420, 2017. © 2017 Wiley Periodicals, Inc. PMID:28782865

  9. Deep learning with convolutional neural networks for EEG decoding and visualization.

    PubMed

    Schirrmeister, Robin Tibor; Springenberg, Jost Tobias; Fiederer, Lukas Dominique Josef; Glasstetter, Martin; Eggensperger, Katharina; Tangermann, Michael; Hutter, Frank; Burgard, Wolfram; Ball, Tonio

    2017-11-01

    Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end-to-end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end-to-end EEG analysis, but a better understanding of how to design and train ConvNets for end-to-end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task-related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG-based brain mapping. Hum Brain Mapp 38:5391-5420, 2017. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  10. Real-time SHVC software decoding with multi-threaded parallel processing

    NASA Astrophysics Data System (ADS)

    Gudumasu, Srinivas; He, Yuwen; Ye, Yan; He, Yong; Ryu, Eun-Seok; Dong, Jie; Xiu, Xiaoyu

    2014-09-01

    This paper proposes a parallel decoding framework for scalable HEVC (SHVC). Various optimization technologies are implemented on the basis of SHVC reference software SHM-2.0 to achieve real-time decoding speed for the two layer spatial scalability configuration. SHVC decoder complexity is analyzed with profiling information. The decoding process at each layer and the up-sampling process are designed in parallel and scheduled by a high level application task manager. Within each layer, multi-threaded decoding is applied to accelerate the layer decoding speed. Entropy decoding, reconstruction, and in-loop processing are pipeline designed with multiple threads based on groups of coding tree units (CTU). A group of CTUs is treated as a processing unit in each pipeline stage to achieve a better trade-off between parallelism and synchronization. Motion compensation, inverse quantization, and inverse transform modules are further optimized with SSE4 SIMD instructions. Simulations on a desktop with an Intel i7 processor 2600 running at 3.4 GHz show that the parallel SHVC software decoder is able to decode 1080p spatial 2x at up to 60 fps (frames per second) and 1080p spatial 1.5x at up to 50 fps for those bitstreams generated with SHVC common test conditions in the JCT-VC standardization group. The decoding performance at various bitrates with different optimization technologies and different numbers of threads are compared in terms of decoding speed and resource usage, including processor and memory.

  11. Advanced modulation technology development for earth station demodulator applications. Coded modulation system development

    NASA Technical Reports Server (NTRS)

    Miller, Susan P.; Kappes, J. Mark; Layer, David H.; Johnson, Peter N.

    1990-01-01

    A jointly optimized coded modulation system is described which was designed, built, and tested by COMSAT Laboratories for NASA LeRC which provides a bandwidth efficiency of 2 bits/s/Hz at an information rate of 160 Mbit/s. A high speed rate 8/9 encoder with a Viterbi decoder and an Octal PSK modem are used to achieve this. The BER performance is approximately 1 dB from the theoretically calculated value for this system at a BER of 5 E-7 under nominal conditions. The system operates in burst mode for downlink applications and tests have demonstrated very little degradation in performance with frequency and level offset. Unique word miss rate measurements were conducted which demonstrate reliable acquisition at low values of Eb/No. Codec self tests have verified the performance of this subsystem in a stand alone mode. The codec is capable of operation at a 200 Mbit/s information rate as demonstrated using a codec test set which introduces noise digitally. The measured performance is within 0.2 dB of the computer simulated predictions. A gate array implementation of the most time critical element of the high speed Viterbi decoder was completed. This gate array add-compare-select chip significantly reduces the power consumption and improves the manufacturability of the decoder. This chip has general application in the implementation of high speed Viterbi decoders.

  12. Real-Time Reed-Solomon Decoder

    NASA Technical Reports Server (NTRS)

    Maki, Gary K.; Cameron, Kelly B.; Owsley, Patrick A.

    1994-01-01

    Generic Reed-Solomon decoder fast enough to correct errors in real time in practical applications designed to be implemented in fewer and smaller very-large-scale integrated, VLSI, circuit chips. Configured to operate in pipelined manner. One outstanding aspect of decoder design is that Euclid multiplier and divider modules contain Galoisfield multipliers configured as combinational-logic cells. Operates at speeds greater than older multipliers. Cellular configuration highly regular and requires little interconnection area, making it ideal for implementation in extraordinarily dense VLSI circuitry. Flight electronics single chip version of this technology implemented and available.

  13. Integrated source and channel encoded digital communications system design study

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1974-01-01

    Studies on the digital communication system for the direct communication links from ground to space shuttle and the links involving the Tracking and Data Relay Satellite (TDRS). Three main tasks were performed:(1) Channel encoding/decoding parameter optimization for forward and reverse TDRS links,(2)integration of command encoding/decoding and channel encoding/decoding; and (3) modulation coding interface study. The general communication environment is presented to provide the necessary background for the tasks and to provide an understanding of the implications of the results of the studies.

  14. Optimal configurations of spatial scale for grid cell firing under noise and uncertainty

    PubMed Central

    Towse, Benjamin W.; Barry, Caswell; Bush, Daniel; Burgess, Neil

    2014-01-01

    We examined the accuracy with which the location of an agent moving within an environment could be decoded from the simulated firing of systems of grid cells. Grid cells were modelled with Poisson spiking dynamics and organized into multiple ‘modules’ of cells, with firing patterns of similar spatial scale within modules and a wide range of spatial scales across modules. The number of grid cells per module, the spatial scaling factor between modules and the size of the environment were varied. Errors in decoded location can take two forms: small errors of precision and larger errors resulting from ambiguity in decoding periodic firing patterns. With enough cells per module (e.g. eight modules of 100 cells each) grid systems are highly robust to ambiguity errors, even over ranges much larger than the largest grid scale (e.g. over a 500 m range when the maximum grid scale is 264 cm). Results did not depend strongly on the precise organization of scales across modules (geometric, co-prime or random). However, independent spatial noise across modules, which would occur if modules receive independent spatial inputs and might increase with spatial uncertainty, dramatically degrades the performance of the grid system. This effect of spatial uncertainty can be mitigated by uniform expansion of grid scales. Thus, in the realistic regimes simulated here, the optimal overall scale for a grid system represents a trade-off between minimizing spatial uncertainty (requiring large scales) and maximizing precision (requiring small scales). Within this view, the temporary expansion of grid scales observed in novel environments may be an optimal response to increased spatial uncertainty induced by the unfamiliarity of the available spatial cues. PMID:24366144

  15. Coordinated design of coding and modulation systems

    NASA Technical Reports Server (NTRS)

    Massey, J. L.; Ancheta, T.; Johannesson, R.; Lauer, G.; Lee, L.

    1976-01-01

    The joint optimization of the coding and modulation systems employed in telemetry systems was investigated. Emphasis was placed on formulating inner and outer coding standards used by the Goddard Spaceflight Center. Convolutional codes were found that are nearly optimum for use with Viterbi decoding in the inner coding of concatenated coding systems. A convolutional code, the unit-memory code, was discovered and is ideal for inner system usage because of its byte-oriented structure. Simulations of sequential decoding on the deep-space channel were carried out to compare directly various convolutional codes that are proposed for use in deep-space systems.

  16. The VLSI design of the sub-band filterbank in MP3 decoding

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Xin; Luo, Li

    2018-03-01

    The sub-band filterbank is one of the most important modules which has the largest amount of calculation in MP3 decoding. In order to save CPU resources and integrate the sub-band filterbank part into MP3 IP core, the hardware circuit of the sub-band filterbank module is designed in this paper. A fast algorithm suit for hardware implementation is proposed and achieved on FPGA development board. The results show that the sub-band filterbank function is correct in the case of using very few registers and the amount of calculation and ROM resources are reduced greatly.

  17. Use of a Drosophila Genome-Wide Conserved Sequence Database to Identify Functionally Related cis-Regulatory Enhancers

    PubMed Central

    Brody, Thomas; Yavatkar, Amarendra S; Kuzin, Alexander; Kundu, Mukta; Tyson, Leonard J; Ross, Jermaine; Lin, Tzu-Yang; Lee, Chi-Hon; Awasaki, Takeshi; Lee, Tzumin; Odenwald, Ward F

    2012-01-01

    Background: Phylogenetic footprinting has revealed that cis-regulatory enhancers consist of conserved DNA sequence clusters (CSCs). Currently, there is no systematic approach for enhancer discovery and analysis that takes full-advantage of the sequence information within enhancer CSCs. Results: We have generated a Drosophila genome-wide database of conserved DNA consisting of >100,000 CSCs derived from EvoPrints spanning over 90% of the genome. cis-Decoder database search and alignment algorithms enable the discovery of functionally related enhancers. The program first identifies conserved repeat elements within an input enhancer and then searches the database for CSCs that score highly against the input CSC. Scoring is based on shared repeats as well as uniquely shared matches, and includes measures of the balance of shared elements, a diagnostic that has proven to be useful in predicting cis-regulatory function. To demonstrate the utility of these tools, a temporally-restricted CNS neuroblast enhancer was used to identify other functionally related enhancers and analyze their structural organization. Conclusions: cis-Decoder reveals that co-regulating enhancers consist of combinations of overlapping shared sequence elements, providing insights into the mode of integration of multiple regulating transcription factors. The database and accompanying algorithms should prove useful in the discovery and analysis of enhancers involved in any developmental process. Developmental Dynamics 241:169–189, 2012. © 2011 Wiley Periodicals, Inc. Key findings A genome-wide catalog of Drosophila conserved DNA sequence clusters. cis-Decoder discovers functionally related enhancers. Functionally related enhancers share balanced sequence element copy numbers. Many enhancers function during multiple phases of development. PMID:22174086

  18. Neural Decoding Reveals Impaired Face Configural Processing in the Right Fusiform Face Area of Individuals with Developmental Prosopagnosia

    PubMed Central

    Zhang, Jiedong; Liu, Jia

    2015-01-01

    Most of human daily social interactions rely on the ability to successfully recognize faces. Yet ∼2% of the human population suffers from face blindness without any acquired brain damage [this is also known as developmental prosopagnosia (DP) or congenital prosopagnosia]). Despite the presence of severe behavioral face recognition deficits, surprisingly, a majority of DP individuals exhibit normal face selectivity in the right fusiform face area (FFA), a key brain region involved in face configural processing. This finding, together with evidence showing impairments downstream from the right FFA in DP individuals, has led some to argue that perhaps the right FFA is largely intact in DP individuals. Using fMRI multivoxel pattern analysis, here we report the discovery of a neural impairment in the right FFA of DP individuals that may play a critical role in mediating their face-processing deficits. In seven individuals with DP, we discovered that, despite the right FFA's preference for faces and it showing decoding for the different face parts, it exhibited impaired face configural decoding and did not contain distinct neural response patterns for the intact and the scrambled face configurations. This abnormality was not present throughout the ventral visual cortex, as normal neural decoding was found in an adjacent object-processing region. To our knowledge, this is the first direct neural evidence showing impaired face configural processing in the right FFA in individuals with DP. The discovery of this neural impairment provides a new clue to our understanding of the neural basis of DP. PMID:25632131

  19. A novel coherent optical en/decoder for optical label processing of OCDM-based optical packets switching networks

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Qiu, Kun

    2007-11-01

    A coherent optical en/decoder based on photonic crystal (PhC) for optical code-division-multiple (OCDM)-based optical label (OCDM-OL) optical packets switching (OPS) networks is proposed in this paper. In this scheme, the optical pulse phase and time delay can be flexibly controlled by the photonic crystal phase shifter and delayer using the appropriate design of fabrication. In this design, the combination calculation of the impurity and normal period layers is applied, according to the PhC transmission matrix theorem. The design and theoretical analysis of the PhC-based optical coherent en/decoder is mainly focused. In addition, the performances of the PhC-based optical en/decoders are analyzed in detail. The reflection, the transmission, delay characteristic and the optical spectrum of pulse en/decoded are studied for the waves tuned in the photonic band-gap by the numerical calculation, taking into account 1-Dimension (1D) PhC. Theoretical analysis and numerical results show that optical pulse is achieved to properly phase modulation and time delay by the proposed scheme, optical label based on OCDM is rewrote successfully by new code for OCDM-based OPS (OCDM-OPS), and an over 8.5 dB ration of auto- and cross-correlation is gained, which demonstrates the applicability of true pulse phase modulation in a number of applications.

  20. Transmission over UWB channels with OFDM system using LDPC coding

    NASA Astrophysics Data System (ADS)

    Dziwoki, Grzegorz; Kucharczyk, Marcin; Sulek, Wojciech

    2009-06-01

    Hostile wireless environment requires use of sophisticated signal processing methods. The paper concerns on Ultra Wideband (UWB) transmission over Personal Area Networks (PAN) including MB-OFDM specification of physical layer. In presented work the transmission system with OFDM modulation was connected with LDPC encoder/decoder. Additionally the frame and bit error rate (FER and BER) of the system was decreased using results from the LDPC decoder in a kind of turbo equalization algorithm for better channel estimation. Computational block using evolutionary strategy, from genetic algorithms family, was also used in presented system. It was placed after SPA (Sum-Product Algorithm) decoder and is conditionally turned on in the decoding process. The result is increased effectiveness of the whole system, especially lower FER. The system was tested with two types of LDPC codes, depending on type of parity check matrices: randomly generated and constructed deterministically, optimized for practical decoder architecture implemented in the FPGA device.

  1. Sensory Perception and Aging in Model Systems: From the Outside In

    PubMed Central

    Linford, Nancy J.; Kuo, Tsung-Han; Chan, Tammy P.; Pletcher, Scott D.

    2014-01-01

    Sensory systems provide organisms from bacteria to human with the ability to interact with the world. Numerous senses have evolved that allow animals to detect and decode cues from sources in both their external and internal environments. Recent advances in understanding the central mechanisms by which the brains of simple organisms evaluate different cues and initiate behavioral decisions, coupled with observations that sensory manipulations are capable of altering organism lifespan, have opened the door for powerful new research into aging. While direct links between sensory perception and aging have been established only recently, here we discuss these initial discoveries and evaluate the potential for different forms of sensory processing to modulate lifespan across taxa. Harnessing the neurobiology of simple model systems to study the biological impact of sensory experiences will yield insights into the broad influence of sensory perception in mammals and may help uncover new mechanisms of healthy aging. PMID:21756108

  2. Sensory perception and aging in model systems: from the outside in.

    PubMed

    Linford, Nancy J; Kuo, Tsung-Han; Chan, Tammy P; Pletcher, Scott D

    2011-01-01

    Sensory systems provide organisms from bacteria to humans with the ability to interact with the world. Numerous senses have evolved that allow animals to detect and decode cues from sources in both their external and internal environments. Recent advances in understanding the central mechanisms by which the brains of simple organisms evaluate different cues and initiate behavioral decisions, coupled with observations that sensory manipulations are capable of altering organismal lifespan, have opened the door for powerful new research into aging. Although direct links between sensory perception and aging have been established only recently, here we discuss these initial discoveries and evaluate the potential for different forms of sensory processing to modulate lifespan across taxa. Harnessing the neurobiology of simple model systems to study the biological impact of sensory experiences will yield insights into the broad influence of sensory perception in mammals and may help uncover new mechanisms of healthy aging.

  3. Adaptive channel estimation for soft decision decoding over non-Gaussian optical channel

    NASA Astrophysics Data System (ADS)

    Xiang, Jing-song; Miao, Tao-tao; Huang, Sheng; Liu, Huan-lin

    2016-10-01

    An adaptive priori likelihood ratio (LLR) estimation method is proposed over non-Gaussian channel in the intensity modulation/direct detection (IM/DD) optical communication systems. Using the nonparametric histogram and the weighted least square linear fitting in the tail regions, the LLR is estimated and used for the soft decision decoding of the low-density parity-check (LDPC) codes. This method can adapt well to the three main kinds of intensity modulation/direct detection (IM/DD) optical channel, i.e., the chi-square channel, the Webb-Gaussian channel and the additive white Gaussian noise (AWGN) channel. The performance penalty of channel estimation is neglected.

  4. Coding and decoding in a point-to-point communication using the polarization of the light beam.

    PubMed

    Kavehvash, Z; Massoumian, F

    2008-05-10

    A new technique for coding and decoding of optical signals through the use of polarization is described. In this technique the concept of coding is translated to polarization. In other words, coding is done in such a way that each code represents a unique polarization. This is done by implementing a binary pattern on a spatial light modulator in such a way that the reflected light has the required polarization. Decoding is done by the detection of the received beam's polarization. By linking the concept of coding to polarization we can use each of these concepts in measuring the other one, attaining some gains. In this paper the construction of a simple point-to-point communication where coding and decoding is done through polarization will be discussed.

  5. Reliability of directional information in unsorted spikes and local field potentials recorded in human motor cortex

    PubMed Central

    Perge, János A.; Zhang, Shaomin; Malik, Wasim Q.; Homer, Mark L.; Cash, Sydney; Friehs, Gerhard; Eskandar, Emad N.; Donoghue, John P.; Hochberg, Leigh R.

    2014-01-01

    Objective Action potentials and local field potentials (LFPs) recorded in primary motor cortex contain information about the direction of movement. LFPs are assumed to be more robust to signal instabilities than action potentials, which makes LFPs along with action potentials a promising signal source for brain-computer interface applications. Still, relatively little research has directly compared the utility of LFPs to action potentials in decoding movement direction in human motor cortex. Approach We conducted intracortical multielectrode recordings in motor cortex of two persons (T2 and [S3]) as they performed a motor imagery task. We then compared the offline decoding performance of LFPs and spiking extracted from the same data recorded across a one-year period in each participant. Main results We obtained offline prediction accuracy of movement direction and endpoint velocity in multiple LFP bands, with the best performance in the highest (200–400Hz) LFP frequency band, presumably also containing low-pass filtered action potentials. Cross-frequency correlations of preferred directions and directional modulation index showed high similarity of directional information between action potential firing rates (spiking) and high frequency LFPs (70–400Hz), and increasing disparity with lower frequency bands (0–7, 10–40 and 50–65Hz). Spikes predicted the direction of intended movement more accurately than any individual LFP band, however combined decoding of all LFPs was statistically indistinguishable from spike based performance. As the quality of spiking signals (i.e. signal amplitude) and the number of significantly modulated spiking units decreased, the offline decoding performance decreased 3.6[5.65]%/month (for T2 and [S3] respectively). The decrease in the number of significantly modulated LFP signals and their decoding accuracy followed a similar trend (2.4[2.85]%/month, ANCOVA, p=0.27[0.03]). Significance Field potentials provided comparable offline decoding performance to unsorted spikes. Thus, LFPs may provide useful external device control using current human intracortical recording technology. (Clinical trial registration number: NCT00912041) PMID:24921388

  6. Network-Based Disease Module Discovery by a Novel Seed Connector Algorithm with Pathobiological Implications.

    PubMed

    Wang, Rui-Sheng; Loscalzo, Joseph

    2018-05-20

    Understanding the genetic basis of complex diseases is challenging. Prior work shows that disease-related proteins do not typically function in isolation. Rather, they often interact with each other to form a network module that underlies dysfunctional mechanistic pathways. Identifying such disease modules will provide insights into a systems-level understanding of molecular mechanisms of diseases. Owing to the incompleteness of our knowledge of disease proteins and limited information on the biological mediators of pathobiological processes, the key proteins (seed proteins) for many diseases appear scattered over the human protein-protein interactome and form a few small branches, rather than coherent network modules. In this paper, we develop a network-based algorithm, called the Seed Connector algorithm (SCA), to pinpoint disease modules by adding as few additional linking proteins (seed connectors) to the seed protein pool as possible. Such seed connectors are hidden disease module elements that are critical for interpreting the functional context of disease proteins. The SCA aims to connect seed disease proteins so that disease mechanisms and pathways can be decoded based on predicted coherent network modules. We validate the algorithm using a large corpus of 70 complex diseases and binding targets of over 200 drugs, and demonstrate the biological relevance of the seed connectors. Lastly, as a specific proof of concept, we apply the SCA to a set of seed proteins for coronary artery disease derived from a meta-analysis of large-scale genome-wide association studies and obtain a coronary artery disease module enriched with important disease-related signaling pathways and drug targets not previously recognized. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Mixed coherent states in coupled chaotic systems: Design of secure wireless communication

    NASA Astrophysics Data System (ADS)

    Vigneshwaran, M.; Dana, S. K.; Padmanaban, E.

    2016-12-01

    A general coupling design is proposed to realize a mixed coherent (MC) state: coexistence of complete synchronization, antisynchronization, and amplitude death in different pairs of similar state variables of the coupled chaotic system. The stability of coupled system is ensured by the Lyapunov function and a scaling of each variable is also separately taken care of. When heterogeneity as a parameter mismatch is introduced in the coupled system, the coupling function facilitates to retain its coherence and displays the global stability with renewed scaling factor. Robust synchronization features facilitated by a MC state enable to design a dual modulation scheme: binary phase shift key (BPSK) and parameter mismatch shift key (PMSK), for secure data transmission. Two classes of decoders (coherent and noncoherent) are discussed, the noncoherent decoder shows better performance over the coherent decoder, mostly a noncoherent demodulator is preferred in biological implant applications. Both the modulation schemes are demonstrated numerically by using the Lorenz oscillator and the BPSK scheme is demonstrated experimentally using radio signals.

  8. Hardware Implementation of a MIMO Decoder Using Matrix Factorization Based Channel Estimation

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad Tariqul; Numan, Mostafa Wasiuddin; Misran, Norbahiah; Ali, Mohd Alauddin Mohd; Singh, Mandeep

    2011-05-01

    This paper presents an efficient hardware realization of multiple-input multiple-output (MIMO) wireless communication decoder that utilizes the available resources by adopting the technique of parallelism. The hardware is designed and implemented on Xilinx Virtex™-4 XC4VLX60 field programmable gate arrays (FPGA) device in a modular approach which simplifies and eases hardware update, and facilitates testing of the various modules independently. The decoder involves a proficient channel estimation module that employs matrix factorization on least squares (LS) estimation to reduce a full rank matrix into a simpler form in order to eliminate matrix inversion. This results in performance improvement and complexity reduction of the MIMO system. Performance evaluation of the proposed method is validated through MATLAB simulations which indicate 2 dB improvement in terms of SNR compared to LS estimation. Moreover complexity comparison is performed in terms of mathematical operations, which shows that the proposed approach appreciably outperforms LS estimation at a lower complexity and represents a good solution for channel estimation technique.

  9. Spatial attention and reading ability: ERP correlates of flanker and cue-size effects in good and poor adult phonological decoders.

    PubMed

    Matthews, Allison Jane; Martin, Frances Heritage

    2015-12-01

    To investigate facilitatory and inhibitory processes during selective attention among adults with good (n=17) and poor (n=14) phonological decoding skills, a go/nogo flanker task was completed while EEG was recorded. Participants responded to a middle target letter flanked by compatible or incompatible flankers. The target was surrounded by a small or large circular cue which was presented simultaneously or 500ms prior. Poor decoders showed a greater RT cost for incompatible stimuli preceded by large cues and less RT benefit for compatible stimuli. Poor decoders also showed reduced modulation of ERPs by cue-size at left hemisphere posterior sites (N1) and by flanker compatibility at right hemisphere posterior sites (N1) and frontal sites (N2), consistent with processing differences in fronto-parietal attention networks. These findings have potential implications for understanding the relationship between spatial attention and phonological decoding in dyslexia. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Soft-decision decoding techniques for linear block codes and their error performance analysis

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1996-01-01

    The first paper presents a new minimum-weight trellis-based soft-decision iterative decoding algorithm for binary linear block codes. The second paper derives an upper bound on the probability of block error for multilevel concatenated codes (MLCC). The bound evaluates difference in performance for different decompositions of some codes. The third paper investigates the bit error probability code for maximum likelihood decoding of binary linear codes. The fourth and final paper included in this report is concerns itself with the construction of multilevel concatenated block modulation codes using a multilevel concatenation scheme for the frequency non-selective Rayleigh fading channel.

  11. Feedback control policies employed by people using intracortical brain-computer interfaces.

    PubMed

    Willett, Francis R; Pandarinath, Chethan; Jarosiewicz, Beata; Murphy, Brian A; Memberg, William D; Blabe, Christine H; Saab, Jad; Walter, Benjamin L; Sweet, Jennifer A; Miller, Jonathan P; Henderson, Jaimie M; Shenoy, Krishna V; Simeral, John D; Hochberg, Leigh R; Kirsch, Robert F; Ajiboye, A Bolu

    2017-02-01

    When using an intracortical BCI (iBCI), users modulate their neural population activity to move an effector towards a target, stop accurately, and correct for movement errors. We call the rules that govern this modulation a 'feedback control policy'. A better understanding of these policies may inform the design of higher-performing neural decoders. We studied how three participants in the BrainGate2 pilot clinical trial used an iBCI to control a cursor in a 2D target acquisition task. Participants used a velocity decoder with exponential smoothing dynamics. Through offline analyses, we characterized the users' feedback control policies by modeling their neural activity as a function of cursor state and target position. We also tested whether users could adapt their policy to different decoder dynamics by varying the gain (speed scaling) and temporal smoothing parameters of the iBCI. We demonstrate that control policy assumptions made in previous studies do not fully describe the policies of our participants. To account for these discrepancies, we propose a new model that captures (1) how the user's neural population activity gradually declines as the cursor approaches the target from afar, then decreases more sharply as the cursor comes into contact with the target, (2) how the user makes constant feedback corrections even when the cursor is on top of the target, and (3) how the user actively accounts for the cursor's current velocity to avoid overshooting the target. Further, we show that users can adapt their control policy to decoder dynamics by attenuating neural modulation when the cursor gain is high and by damping the cursor velocity more strongly when the smoothing dynamics are high. Our control policy model may help to build better decoders, understand how neural activity varies during active iBCI control, and produce better simulations of closed-loop iBCI movements.

  12. Feedback control policies employed by people using intracortical brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Willett, Francis R.; Pandarinath, Chethan; Jarosiewicz, Beata; Murphy, Brian A.; Memberg, William D.; Blabe, Christine H.; Saab, Jad; Walter, Benjamin L.; Sweet, Jennifer A.; Miller, Jonathan P.; Henderson, Jaimie M.; Shenoy, Krishna V.; Simeral, John D.; Hochberg, Leigh R.; Kirsch, Robert F.; Bolu Ajiboye, A.

    2017-02-01

    Objective. When using an intracortical BCI (iBCI), users modulate their neural population activity to move an effector towards a target, stop accurately, and correct for movement errors. We call the rules that govern this modulation a ‘feedback control policy’. A better understanding of these policies may inform the design of higher-performing neural decoders. Approach. We studied how three participants in the BrainGate2 pilot clinical trial used an iBCI to control a cursor in a 2D target acquisition task. Participants used a velocity decoder with exponential smoothing dynamics. Through offline analyses, we characterized the users’ feedback control policies by modeling their neural activity as a function of cursor state and target position. We also tested whether users could adapt their policy to different decoder dynamics by varying the gain (speed scaling) and temporal smoothing parameters of the iBCI. Main results. We demonstrate that control policy assumptions made in previous studies do not fully describe the policies of our participants. To account for these discrepancies, we propose a new model that captures (1) how the user’s neural population activity gradually declines as the cursor approaches the target from afar, then decreases more sharply as the cursor comes into contact with the target, (2) how the user makes constant feedback corrections even when the cursor is on top of the target, and (3) how the user actively accounts for the cursor’s current velocity to avoid overshooting the target. Further, we show that users can adapt their control policy to decoder dynamics by attenuating neural modulation when the cursor gain is high and by damping the cursor velocity more strongly when the smoothing dynamics are high. Significance. Our control policy model may help to build better decoders, understand how neural activity varies during active iBCI control, and produce better simulations of closed-loop iBCI movements.

  13. The design and construction of a module to demonstrate a method for transmission of data from a medical implant

    NASA Astrophysics Data System (ADS)

    Morgan, I.; Benjamin, J. D.

    1985-08-01

    Methods of powering devices to which only ac contact can be made and receiving data transmitted back from them are described. Such devices include medical implants which communicate with the external environment via ultrasound or rf links. Two breadboard systems were built to demonstrate the techniques. In both the device is powered by picking up an ac input and rectifying it. A signal voltage detected by the device is encoded as a frequency, transmitted and decoded. In one case this is performed on a separate channel from that used to power the device. In the other only one channel is used for both signals, and data is transmitted by modulating the impedance presented by the device. The resulting modulation of the input signal is picked up by the external circuit and decoded.

  14. Modulation of neural activity by reward in medial intraparietal cortex is sensitive to temporal sequence of reward

    PubMed Central

    Rajalingham, Rishi; Stacey, Richard Greg; Tsoulfas, Georgios

    2014-01-01

    To restore movements to paralyzed patients, neural prosthetic systems must accurately decode patients' intentions from neural signals. Despite significant advancements, current systems are unable to restore complex movements. Decoding reward-related signals from the medial intraparietal area (MIP) could enhance prosthetic performance. However, the dynamics of reward sensitivity in MIP is not known. Furthermore, reward-related modulation in premotor areas has been attributed to behavioral confounds. Here we investigated the stability of reward encoding in MIP by assessing the effect of reward history on reward sensitivity. We recorded from neurons in MIP while monkeys performed a delayed-reach task under two reward schedules. In the variable schedule, an equal number of small- and large-rewards trials were randomly interleaved. In the constant schedule, one reward size was delivered for a block of trials. The memory period firing rate of most neurons in response to identical rewards varied according to schedule. Using systems identification tools, we attributed the schedule sensitivity to the dependence of neural activity on the history of reward. We did not find schedule-dependent behavioral changes, suggesting that reward modulates neural activity in MIP. Neural discrimination between rewards was less in the variable than in the constant schedule, degrading our ability to decode reach target and reward simultaneously. The effect of schedule was mitigated by adding Haar wavelet coefficients to the decoding model. This raises the possibility of multiple encoding schemes at different timescales and reinforces the potential utility of reward information for prosthetic performance. PMID:25008408

  15. Modulation of neural activity by reward in medial intraparietal cortex is sensitive to temporal sequence of reward.

    PubMed

    Rajalingham, Rishi; Stacey, Richard Greg; Tsoulfas, Georgios; Musallam, Sam

    2014-10-01

    To restore movements to paralyzed patients, neural prosthetic systems must accurately decode patients' intentions from neural signals. Despite significant advancements, current systems are unable to restore complex movements. Decoding reward-related signals from the medial intraparietal area (MIP) could enhance prosthetic performance. However, the dynamics of reward sensitivity in MIP is not known. Furthermore, reward-related modulation in premotor areas has been attributed to behavioral confounds. Here we investigated the stability of reward encoding in MIP by assessing the effect of reward history on reward sensitivity. We recorded from neurons in MIP while monkeys performed a delayed-reach task under two reward schedules. In the variable schedule, an equal number of small- and large-rewards trials were randomly interleaved. In the constant schedule, one reward size was delivered for a block of trials. The memory period firing rate of most neurons in response to identical rewards varied according to schedule. Using systems identification tools, we attributed the schedule sensitivity to the dependence of neural activity on the history of reward. We did not find schedule-dependent behavioral changes, suggesting that reward modulates neural activity in MIP. Neural discrimination between rewards was less in the variable than in the constant schedule, degrading our ability to decode reach target and reward simultaneously. The effect of schedule was mitigated by adding Haar wavelet coefficients to the decoding model. This raises the possibility of multiple encoding schemes at different timescales and reinforces the potential utility of reward information for prosthetic performance. Copyright © 2014 the American Physiological Society.

  16. Trinary Encoder, Decoder, Multiplexer and Demultiplexer Using Savart Plate and Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    Ghosh, Amal K.; Singha Roy, Souradip; Mandal, Sudipta; Basuray, Amitabha

    Optoelectronic processors have already been developed with the strong potentiality of optics in information and data processing. Encoder, Decoder, Multiplexers and Demultiplexers are the most important components in modern system designs and in communications. We have implemented the same using trinary logic gates with signed magnitude defined as Modified Trinary Number (MTN). The Spatial Light Modulator (SLM) based optoelectronic circuit is suitable for high speed data processing and communications using photon as carrier. We also presented here a possible method of implementing the same using light with photon as carrier of information. The importance of the method is that all the basic gates needed may be fabricated based on basic building block.

  17. Universal Decoder for PPM of any Order

    NASA Technical Reports Server (NTRS)

    Moision, Bruce E.

    2010-01-01

    A recently developed algorithm for demodulation and decoding of a pulse-position- modulation (PPM) signal is suitable as a basis for designing a single hardware decoding apparatus to be capable of handling any PPM order. Hence, this algorithm offers advantages of greater flexibility and lower cost, in comparison with prior such algorithms, which necessitate the use of a distinct hardware implementation for each PPM order. In addition, in comparison with the prior algorithms, the present algorithm entails less complexity in decoding at large orders. An unavoidably lengthy presentation of background information, including definitions of terms, is prerequisite to a meaningful summary of this development. As an aid to understanding, the figure illustrates the relevant processes of coding, modulation, propagation, demodulation, and decoding. An M-ary PPM signal has M time slots per symbol period. A pulse (signifying 1) is transmitted during one of the time slots; no pulse (signifying 0) is transmitted during the other time slots. The information intended to be conveyed from the transmitting end to the receiving end of a radio or optical communication channel is a K-bit vector u. This vector is encoded by an (N,K) binary error-correcting code, producing an N-bit vector a. In turn, the vector a is subdivided into blocks of m = log2(M) bits and each such block is mapped to an M-ary PPM symbol. The resultant coding/modulation scheme can be regarded as equivalent to a nonlinear binary code. The binary vector of PPM symbols, x is transmitted over a Poisson channel, such that there is obtained, at the receiver, a Poisson-distributed photon count characterized by a mean background count nb during no-pulse time slots and a mean signal-plus-background count of ns+nb during a pulse time slot. In the receiver, demodulation of the signal is effected in an iterative soft decoding process that involves consideration of relationships among photon counts and conditional likelihoods of m-bit vectors of coded bits. Inasmuch as the likelihoods of all the m-bit vectors of coded bits mapping to the same PPM symbol are correlated, the best performance is obtained when the joint mbit conditional likelihoods are utilized. Unfortunately, the complexity of decoding, measured in the number of operations per bit, grows exponentially with m, and can thus become prohibitively expensive for large PPM orders. For a system required to handle multiple PPM orders, the cost is even higher because it is necessary to have separate decoding hardware for each order. This concludes the prerequisite background information. In the present algorithm, the decoding process as described above is modified by, among other things, introduction of an lbit marginalizer sub-algorithm. The term "l-bit marginalizer" signifies that instead of m-bit conditional likelihoods, the decoder computes l-bit conditional likelihoods, where l is fixed. Fixing l, regardless of the value of m, makes it possible to use a single hardware implementation for any PPM order. One could minimize the decoding complexity and obtain an especially simple design by fixing l at 1, but this would entail some loss of performance. An intermediate solution is to fix l at some value, greater than 1, that may be less than or greater than m. This solution makes it possible to obtain the desired flexibility to handle any PPM order while compromising between complexity and loss of performance.

  18. Natural products discovery from micro-organisms in the post-genome era.

    PubMed

    Ikeda, Haruo

    2017-01-01

    With the decision to award the Nobel Prize in Physiology or Medicine to Drs. S. Ōmura, W.C. Campbell, and Y. Tu, the importance and usefulness of natural drug discovery and development have been revalidated. Since the end of the twentieth century, many genome analyses of organisms have been conducted, and accordingly, numerous microbial genomes have been decoded. In particular, genomic studies of actinomycetes, micro-organisms that readily produce natural products, led to the discovery of biosynthetic gene clusters responsible for producing natural products. New explorations for natural products through a comprehensive approach combining genomic information with conventional methods show great promise for the discovery of new natural products and even systematic generation of unnaturally occurring compounds.

  19. The design of high performance, low power triple-track magnetic sensor chip.

    PubMed

    Wu, Xiulong; Li, Minghua; Lin, Zhiting; Xi, Mengyuan; Chen, Junning

    2013-07-09

    This paper presents a design of a high performance and low power consumption triple-track magnetic sensor chip which was fabricated in TSMC 0.35 μm CMOS process. This chip is able to simultaneously sense, decode and read out the information stored in triple-track magnetic cards. A reference voltage generating circuit, a low-cost filter circuit, a power-on reset circuit, an RC oscillator, and a pre-decoding circuit are utilized as the basic modules. The triple-track magnetic sensor chip has four states, i.e., reset, sleep, swiping card and data read-out. In sleep state, the internal RC oscillator is closed, which means that the digital part does not operate to optimize energy consumption. In order to improve decoding accuracy and expand the sensing range of the signal, two kinds of circuit are put forward, naming offset correction circuit, and tracking circuit. With these two circuits, the sensing function of this chip can be more efficiently and accurately. We simulated these circuit modules with TSMC technology library. The results showed that these modules worked well within wide range input signal. Based on these results, the layout and tape-out were carried out. The measurement results showed that the chip do function well within a wide swipe speed range, which achieved the design target.

  20. The Design of High Performance, Low Power Triple-Track Magnetic Sensor Chip

    PubMed Central

    Wu, Xiulong; Li, Minghua; Lin, Zhiting; Xi, Mengyuan; Chen, Junning

    2013-01-01

    This paper presents a design of a high performance and low power consumption triple-track magnetic sensor chip which was fabricated in TSMC 0.35 μm CMOS process. This chip is able to simultaneously sense, decode and read out the information stored in triple-track magnetic cards. A reference voltage generating circuit, a low-cost filter circuit, a power-on reset circuit, an RC oscillator, and a pre-decoding circuit are utilized as the basic modules. The triple-track magnetic sensor chip has four states, i.e., reset, sleep, swiping card and data read-out. In sleep state, the internal RC oscillator is closed, which means that the digital part does not operate to optimize energy consumption. In order to improve decoding accuracy and expand the sensing range of the signal, two kinds of circuit are put forward, naming offset correction circuit, and tracking circuit. With these two circuits, the sensing function of this chip can be more efficiently and accurately. We simulated these circuit modules with TSMC technology library. The results showed that these modules worked well within wide range input signal. Based on these results, the layout and tape-out were carried out. The measurement results showed that the chip do function well within a wide swipe speed range, which achieved the design target. PMID:23839231

  1. ‘Inner voices’: the cerebral representation of emotional voice cues described in literary texts

    PubMed Central

    Kreifelts, Benjamin; Gößling-Arnold, Christina; Wertheimer, Jürgen; Wildgruber, Dirk

    2014-01-01

    While non-verbal affective voice cues are generally recognized as a crucial behavioral guide in any day-to-day conversation their role as a powerful source of information may extend well beyond close-up personal interactions and include other modes of communication such as written discourse or literature as well. Building on the assumption that similarities between the different ‘modes’ of voice cues may not only be limited to their functional role but may also include cerebral mechanisms engaged in the decoding process, the present functional magnetic resonance imaging study aimed at exploring brain responses associated with processing emotional voice signals described in literary texts. Emphasis was placed on evaluating ‘voice’ sensitive as well as task- and emotion-related modulations of brain activation frequently associated with the decoding of acoustic vocal cues. Obtained findings suggest that several similarities emerge with respect to the perception of acoustic voice signals: results identify the superior temporal, lateral and medial frontal cortex as well as the posterior cingulate cortex and cerebellum to contribute to the decoding process, with similarities to acoustic voice perception reflected in a ‘voice’-cue preference of temporal voice areas as well as an emotion-related modulation of the medial frontal cortex and a task-modulated response of the lateral frontal cortex. PMID:24396008

  2. Optical control system for high-voltage terminals

    DOEpatents

    Bicek, John J.

    1978-01-01

    An optical control system for the control of devices in the terminal of an electrostatic accelerator includes a laser that is modulated by a series of preselected codes produced by an encoder. A photodiode receiver is placed in the laser beam at the high-voltage terminal of an electrostatic accelerator. A decoder connected to the photodiode decodes the signals to provide control impulses for a plurality of devices at the high voltage of the terminal.

  3. Hybrid WDM/OCDMA for next generation access network

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Wada, Naoya; Miyazaki, T.; Cincotti, G.; Kitayama, Ken-ichi

    2007-11-01

    Hybrid wavelength division multiplexing/optical code division multiple access (WDM/OCDMA) passive optical network (PON), where asynchronous OCDMA traffic transmits over WDM network, can be one potential candidate for gigabit-symmetric fiber-to-the-home (FTTH) services. In a cost-effective WDM/OCDMA network, a large scale multi-port encoder/decoder can be employed in the central office, and a low cost encoder/decoder will be used in optical network unit (ONU). The WDM/OCDMA system could be one promising solution to the symmetric high capacity access network with high spectral efficiency, cost effective, good flexibility and enhanced security. Asynchronous WDM/OCDMA systems have been experimentally demonstrated using superstructured fiber Bragg gratings (SSFBG) and muti-port OCDMA en/decoders. The total throughput has reached above Tera-bit/s with spectral efficiency of about 0.41. The key enabling techniques include ultra-long SSFBG, multi-port E/D with high power contrast ratio, optical thresholding, differential phase shift keying modulation with balanced detection, forward error correction, and etc. Using multi-level modulation formats to carry multi-bit information with single pulse, the total capacity and spectral efficiency could be further enhanced.

  4. Study of the OCDMA Transmission Characteristics in FSO-FTTH at Various Distances, Outdoor

    NASA Astrophysics Data System (ADS)

    Aldouri, Muthana Y.; Aljunid, S. A.; Fadhil, Hilal A.

    2013-06-01

    It is important to apply the field Programmable Gate Array (FPGA), and Optical Switch technology as an encoder and decoder for Spectral Amplitude Coding Optical Code Division Multiple Access (SAC-OCDMA) Free Space Optic Fiber to the Home (FSO-FTTH) transmitter and receiver system design. The encoder and decoder module will be using FPGA as a code generator, optical switch using as encode and decode of optical source. This module was tested by using the Modified Double Weight (MDW) code, which is selected as an excellent candidate because it had shown superior performance were by the total noise is reduced. It is also easy to construct and can reduce the number of filters required at a receiver by a newly proposed detection scheme known as AND Subtraction technique. MDW code is presented here to support Fiber-To-The-Home (FTTH) access network in Point-To-Multi-Point (P2MP) application. The conversion used a Mach-Zehnder interferometer (MZI) wavelength converter. The performances are characterized through BER and bit rate (BR), also, the received power at a variety of bit rates.

  5. Information-reduced Carrier Synchronization of Iterative Decoded BPSK and QPSK using Soft Decision (Extrinsic) Feedback

    NASA Technical Reports Server (NTRS)

    Simon, Marvin; Valles, Esteban; Jones, Christopher

    2008-01-01

    This paper addresses the carrier-phase estimation problem under low SNR conditions as are typical of turbo- and LDPC-coded applications. In previous publications by the first author, closed-loop carrier synchronization schemes for error-correction coded BPSK and QPSK modulation were proposed that were based on feeding back hard data decisions at the input of the loop, the purpose being to remove the modulation prior to attempting to track the carrier phase as opposed to the more conventional decision-feedback schemes that incorporate such feedback inside the loop. In this paper, we consider an alternative approach wherein the extrinsic soft information from the iterative decoder of turbo or LDPC codes is instead used as the feedback.

  6. Design and implementation of a channel decoder with LDPC code

    NASA Astrophysics Data System (ADS)

    Hu, Diqing; Wang, Peng; Wang, Jianzong; Li, Tianquan

    2008-12-01

    Because Toshiba quit the competition, there is only one standard of blue-ray disc: BLU-RAY DISC, which satisfies the demands of high-density video programs. But almost all the patents are gotten by big companies such as Sony, Philips. As a result we must pay much for these patents when our productions use BD. As our own high-density optical disk storage system, Next-Generation Versatile Disc(NVD) which proposes a new data format and error correction code with independent intellectual property rights and high cost performance owns higher coding efficiency than DVD and 12GB which could meet the demands of playing the high-density video programs. In this paper, we develop Low-Density Parity-Check Codes (LDPC): a new channel encoding process and application scheme using Q-matrix based on LDPC encoding has application in NVD's channel decoder. And combined with the embedded system portable feature of SOPC system, we have completed all the decoding modules by FPGA. In the NVD experiment environment, tests are done. Though there are collisions between LDPC and Run-Length-Limited modulation codes (RLL) which are used in optical storage system frequently, the system is provided as a suitable solution. At the same time, it overcomes the defects of the instability and inextensibility, which occurred in the former decoding system of NVD--it was implemented by hardware.

  7. Basic Reading Instruction for Students in Automotive Occupations. Student's Handbook.

    ERIC Educational Resources Information Center

    General Behavioral Systems, Inc., Torrance, CA.

    The basic reading course outlined in this student handbook emphasizes the decoding process. The contents consist of a letter-and-sound spelling chart and 87 course modules which are based on single-letter and letter-combination sounds. Many of the modules include exercises, and some contain reading material. (JM)

  8. Constructing and decoding unconventional ubiquitin chains.

    PubMed

    Behrends, Christian; Harper, J Wade

    2011-05-01

    One of the most notable discoveries in the ubiquitin system during the past decade is the extensive use of diverse chain linkages to control signaling networks. Although the utility of Lys48- and Lys63-linked chains in protein turnover and molecular assembly, respectively, are well known, we are only beginning to understand how unconventional chain linkages are formed on target proteins and how such linkages are decoded by specific binding proteins. In this review, we summarize recent efforts to elucidate the machinery and mechanisms controlling assembly of Lys11-linked and linear (or Met1-linked) ubiquitin chains, and describe current models for how these chain types function in immune signaling and cell-cycle control.

  9. Iterative Demodulation and Decoding of Non-Square QAM

    NASA Technical Reports Server (NTRS)

    Li, Lifang; Divsalar, Dariush; Dolinar, Samuel

    2004-01-01

    It has been shown that a non-square (NS) 2(sup 2n+1)-ary (where n is a positive integer) quadrature amplitude modulation [(NS)2(sup 2n+1)-QAM] has inherent memory that can be exploited to obtain coding gains. Moreover, it should not be necessary to build new hardware to realize these gains. The present scheme is a product of theoretical calculations directed toward reducing the computational complexity of decoding coded 2(sup 2n+1)-QAM. In the general case of 2(sup 2n+1)-QAM, the signal constellation is not square and it is impossible to have independent in-phase (I) and quadrature-phase (Q) mapping and demapping. However, independent I and Q mapping and demapping are desirable for reducing the complexity of computing the log likelihood ratio (LLR) between a bit and a received symbol (such computations are essential operations in iterative decoding). This is because in modulation schemes that include independent I and Q mapping and demapping, each bit of a signal point is involved in only one-dimensional mapping and demapping. As a result, the computation of the LLR is equivalent to that of a one-dimensional pulse amplitude modulation (PAM) system. Therefore, it is desirable to find a signal constellation that enables independent I and Q mapping and demapping for 2(sup 2n+1)-QAM.

  10. Impact of personality on the cerebral processing of emotional prosody.

    PubMed

    Brück, Carolin; Kreifelts, Benjamin; Kaza, Evangelia; Lotze, Martin; Wildgruber, Dirk

    2011-09-01

    While several studies have focused on identifying common brain mechanisms governing the decoding of emotional speech melody, interindividual variations in the cerebral processing of prosodic information, in comparison, have received only little attention to date: Albeit, for instance, differences in personality among individuals have been shown to modulate emotional brain responses, personality influences on the neural basis of prosody decoding have not been investigated systematically yet. Thus, the present study aimed at delineating relationships between interindividual differences in personality and hemodynamic responses evoked by emotional speech melody. To determine personality-dependent modulations of brain reactivity, fMRI activation patterns during the processing of emotional speech cues were acquired from 24 healthy volunteers and subsequently correlated with individual trait measures of extraversion and neuroticism obtained for each participant. Whereas correlation analysis did not indicate any link between brain activation and extraversion, strong positive correlations between measures of neuroticism and hemodynamic responses of the right amygdala, the left postcentral gyrus as well as medial frontal structures including the right anterior cingulate cortex emerged, suggesting that brain mechanisms mediating the decoding of emotional speech melody may vary depending on differences in neuroticism among individuals. Observed trait-specific modulations are discussed in the light of processing biases as well as differences in emotion control or task strategies which may be associated with the personality trait of neuroticism. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Turbo Trellis Coded Modulation With Iterative Decoding for Mobile Satellite Communications

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Pollara, F.

    1997-01-01

    In this paper, analytical bounds on the performance of parallel concatenation of two codes, known as turbo codes, and serial concatenation of two codes over fading channels are obtained. Based on this analysis, design criteria for the selection of component trellis codes for MPSK modulation, and a suitable bit-by-bit iterative decoding structure are proposed. Examples are given for throughput of 2 bits/sec/Hz with 8PSK modulation. The parallel concatenation example uses two rate 4/5 8-state convolutional codes with two interleavers. The convolutional codes' outputs are then mapped to two 8PSK modulations. The serial concatenated code example uses an 8-state outer code with rate 4/5 and a 4-state inner trellis code with 5 inputs and 2 x 8PSK outputs per trellis branch. Based on the above mentioned design criteria for fading channels, a method to obtain he structure of the trellis code with maximum diversity is proposed. Simulation results are given for AWGN and an independent Rayleigh fading channel with perfect Channel State Information (CSI).

  12. Coding and decoding for code division multiple user communication systems

    NASA Technical Reports Server (NTRS)

    Healy, T. J.

    1985-01-01

    A new algorithm is introduced which decodes code division multiple user communication signals. The algorithm makes use of the distinctive form or pattern of each signal to separate it from the composite signal created by the multiple users. Although the algorithm is presented in terms of frequency-hopped signals, the actual transmitter modulator can use any of the existing digital modulation techniques. The algorithm is applicable to error-free codes or to codes where controlled interference is permitted. It can be used when block synchronization is assumed, and in some cases when it is not. The paper also discusses briefly some of the codes which can be used in connection with the algorithm, and relates the algorithm to past studies which use other approaches to the same problem.

  13. Energy-efficient constellations design and fast decoding for space-collaborative MIMO visible light communications

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-Jun; Liang, Wang-Feng; Wang, Chao; Wang, Wen-Ya

    2017-01-01

    In this paper, space-collaborative constellations (SCCs) for indoor multiple-input multiple-output (MIMO) visible light communication (VLC) systems are considered. Compared with traditional VLC MIMO techniques, such as repetition coding (RC), spatial modulation (SM) and spatial multiplexing (SMP), SCC achieves the minimum average optical power for a fixed minimum Euclidean distance. We have presented a unified SCC structure for 2×2 MIMO VLC systems and extended it to larger MIMO VLC systems with more transceivers. Specifically for 2×2 MIMO VLC, a fast decoding algorithm is developed with decoding complexity almost linear in terms of the square root of the cardinality of SCC, and the expressions of symbol error rate of SCC are presented. In addition, bit mappings similar to Gray mapping are proposed for SCC. Computer simulations are performed to verify the fast decoding algorithm and the performance of SCC, and the results demonstrate that the performance of SCC is better than those of RC, SM and SMP for indoor channels in general.

  14. Decoding the content of visual short-term memory under distraction in occipital and parietal areas.

    PubMed

    Bettencourt, Katherine C; Xu, Yaoda

    2016-01-01

    Recent studies have provided conflicting accounts regarding where in the human brain visual short-term memory (VSTM) content is stored, with strong univariate fMRI responses being reported in superior intraparietal sulcus (IPS), but robust multivariate decoding being reported in occipital cortex. Given the continuous influx of information in everyday vision, VSTM storage under distraction is often required. We found that neither distractor presence nor predictability during the memory delay affected behavioral performance. Similarly, superior IPS exhibited consistent decoding of VSTM content across all distractor manipulations and had multivariate responses that closely tracked behavioral VSTM performance. However, occipital decoding of VSTM content was substantially modulated by distractor presence and predictability. Furthermore, we found no effect of target-distractor similarity on VSTM behavioral performance, further challenging the role of sensory regions in VSTM storage. Overall, consistent with previous univariate findings, our results indicate that superior IPS, but not occipital cortex, has a central role in VSTM storage.

  15. Real-Time fMRI Pattern Decoding and Neurofeedback Using FRIEND: An FSL-Integrated BCI Toolbox

    PubMed Central

    Sato, João R.; Basilio, Rodrigo; Paiva, Fernando F.; Garrido, Griselda J.; Bramati, Ivanei E.; Bado, Patricia; Tovar-Moll, Fernanda; Zahn, Roland; Moll, Jorge

    2013-01-01

    The demonstration that humans can learn to modulate their own brain activity based on feedback of neurophysiological signals opened up exciting opportunities for fundamental and applied neuroscience. Although EEG-based neurofeedback has been long employed both in experimental and clinical investigation, functional MRI (fMRI)-based neurofeedback emerged as a promising method, given its superior spatial resolution and ability to gauge deep cortical and subcortical brain regions. In combination with improved computational approaches, such as pattern recognition analysis (e.g., Support Vector Machines, SVM), fMRI neurofeedback and brain decoding represent key innovations in the field of neuromodulation and functional plasticity. Expansion in this field and its applications critically depend on the existence of freely available, integrated and user-friendly tools for the neuroimaging research community. Here, we introduce FRIEND, a graphic-oriented user-friendly interface package for fMRI neurofeedback and real-time multivoxel pattern decoding. The package integrates routines for image preprocessing in real-time, ROI-based feedback (single-ROI BOLD level and functional connectivity) and brain decoding-based feedback using SVM. FRIEND delivers an intuitive graphic interface with flexible processing pipelines involving optimized procedures embedding widely validated packages, such as FSL and libSVM. In addition, a user-defined visual neurofeedback module allows users to easily design and run fMRI neurofeedback experiments using ROI-based or multivariate classification approaches. FRIEND is open-source and free for non-commercial use. Processing tutorials and extensive documentation are available. PMID:24312569

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rey, D.; Ryan, W.; Ross, M.

    A method for more efficiently utilizing the frequency bandwidth allocated for data transmission is presented. Current space and range communication systems use modulation and coding schemes that transmit 0.5 to 1.0 bits per second per Hertz of radio frequency bandwidth. The goal in this LDRD project is to increase the bandwidth utilization by employing advanced digital communications techniques. This is done with little or no increase in the transmit power which is usually very limited on airborne systems. Teaming with New Mexico State University, an implementation of trellis coded modulation (TCM), a coding and modulation scheme pioneered by Ungerboeck, wasmore » developed for this application and simulated on a computer. TCM provides a means for reliably transmitting data while simultaneously increasing bandwidth efficiency. The penalty is increased receiver complexity. In particular, the trellis decoder requires high-speed, application-specific digital signal processing (DSP) chips. A system solution based on the QualComm Viterbi decoder and the Graychip DSP receiver chips is presented.« less

  17. Joint Carrier-Phase Synchronization and LDPC Decoding

    NASA Technical Reports Server (NTRS)

    Simon, Marvin; Valles, Esteban

    2009-01-01

    A method has been proposed to increase the degree of synchronization of a radio receiver with the phase of a suppressed carrier signal modulated with a binary- phase-shift-keying (BPSK) or quaternary- phase-shift-keying (QPSK) signal representing a low-density parity-check (LDPC) code. This method is an extended version of the method described in Using LDPC Code Constraints to Aid Recovery of Symbol Timing (NPO-43112), NASA Tech Briefs, Vol. 32, No. 10 (October 2008), page 54. Both methods and the receiver architectures in which they would be implemented belong to a class of timing- recovery methods and corresponding receiver architectures characterized as pilotless in that they do not require transmission and reception of pilot signals. The proposed method calls for the use of what is known in the art as soft decision feedback to remove the modulation from a replica of the incoming signal prior to feeding this replica to a phase-locked loop (PLL) or other carrier-tracking stage in the receiver. Soft decision feedback refers to suitably processed versions of intermediate results of iterative computations involved in the LDPC decoding process. Unlike a related prior method in which hard decision feedback (the final sequence of decoded symbols) is used to remove the modulation, the proposed method does not require estimation of the decoder error probability. In a basic digital implementation of the proposed method, the incoming signal (having carrier phase theta theta (sub c) plus noise would first be converted to inphase (I) and quadrature (Q) baseband signals by mixing it with I and Q signals at the carrier frequency [wc/(2 pi)] generated by a local oscillator. The resulting demodulated signals would be processed through one-symbol-period integrate and- dump filters, the outputs of which would be sampled and held, then multiplied by a soft-decision version of the baseband modulated signal. The resulting I and Q products consist of terms proportional to the cosine and sine of the carrier phase cc as well as correlated noise components. These products would be fed as inputs to a digital PLL that would include a number-controlled oscillator (NCO), which provides an estimate of the carrier phase, theta(sub c).

  18. Constructing LDPC Codes from Loop-Free Encoding Modules

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Jones, Christopher; Thorpe, Jeremy; Andrews, Kenneth

    2009-01-01

    A method of constructing certain low-density parity-check (LDPC) codes by use of relatively simple loop-free coding modules has been developed. The subclasses of LDPC codes to which the method applies includes accumulate-repeat-accumulate (ARA) codes, accumulate-repeat-check-accumulate codes, and the codes described in Accumulate-Repeat-Accumulate-Accumulate Codes (NPO-41305), NASA Tech Briefs, Vol. 31, No. 9 (September 2007), page 90. All of the affected codes can be characterized as serial/parallel (hybrid) concatenations of such relatively simple modules as accumulators, repetition codes, differentiators, and punctured single-parity check codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. These codes can also be characterized as hybrid turbolike codes that have projected graph or protograph representations (for example see figure); these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The present method comprises two related submethods for constructing LDPC codes from simple loop-free modules with circulant permutations. The first submethod is an iterative encoding method based on the erasure-decoding algorithm. The computations required by this method are well organized because they involve a parity-check matrix having a block-circulant structure. The second submethod involves the use of block-circulant generator matrices. The encoders of this method are very similar to those of recursive convolutional codes. Some encoders according to this second submethod have been implemented in a small field-programmable gate array that operates at a speed of 100 megasymbols per second. By use of density evolution (a computational- simulation technique for analyzing performances of LDPC codes), it has been shown through some examples that as the block size goes to infinity, low iterative decoding thresholds close to channel capacity limits can be achieved for the codes of the type in question having low maximum variable node degrees. The decoding thresholds in these examples are lower than those of the best-known unstructured irregular LDPC codes constrained to have the same maximum node degrees. Furthermore, the present method enables the construction of codes of any desired rate with thresholds that stay uniformly close to their respective channel capacity thresholds.

  19. Architecture and implementation considerations of a high-speed Viterbi decoder for a Reed-Muller subcode

    NASA Technical Reports Server (NTRS)

    Lin, Shu (Principal Investigator); Uehara, Gregory T.; Nakamura, Eric; Chu, Cecilia W. P.

    1996-01-01

    The (64, 40, 8) subcode of the third-order Reed-Muller (RM) code for high-speed satellite communications is proposed. The RM subcode can be used either alone or as an inner code of a concatenated coding system with the NASA standard (255, 233, 33) Reed-Solomon (RS) code as the outer code to achieve high performance (or low bit-error rate) with reduced decoding complexity. It can also be used as a component code in a multilevel bandwidth efficient coded modulation system to achieve reliable bandwidth efficient data transmission. The progress made toward achieving the goal of implementing a decoder system based upon this code is summarized. The development of the integrated circuit prototype sub-trellis IC, particularly focusing on the design methodology, is addressed.

  20. Discussion on LDPC Codes and Uplink Coding

    NASA Technical Reports Server (NTRS)

    Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio

    2007-01-01

    This slide presentation reviews the progress that the workgroup on Low-Density Parity-Check (LDPC) for space link coding. The workgroup is tasked with developing and recommending new error correcting codes for near-Earth, Lunar, and deep space applications. Included in the presentation is a summary of the technical progress of the workgroup. Charts that show the LDPC decoder sensitivity to symbol scaling errors are reviewed, as well as a chart showing the performance of several frame synchronizer algorithms compared to that of some good codes and LDPC decoder tests at ESTL. Also reviewed is a study on Coding, Modulation, and Link Protocol (CMLP), and the recommended codes. A design for the Pseudo-Randomizer with LDPC Decoder and CRC is also reviewed. A chart that summarizes the three proposed coding systems is also presented.

  1. The payload/shuttle-data-communication-link handbook

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Communication links between the Orbiter, payloads, and ground are described: end-to-end, hardline, S-band, Ku-band, TDRSS relay, waveforms, premodulation, subcarrier modulation, carrier modulation, transmitter power, antennas, the RF channel, system noise, received signal-to-noise spectral density, carrier-tracking loop, carrier demodulation, subcarrier demodulation, digital data detection, digital data decoding, and tandem link considerations.

  2. The voltage-sensor quartet

    PubMed Central

    Bankston, J. R.; Kass, R. S.

    2009-01-01

    Decoding the workings of voltage-gated sodium channels is crucial because their mutation leads to severe disease and their activity is modulated by toxins and drugs. An innovative approach now allows such investigations. PMID:19005542

  3. A maximum likelihood convolutional decoder model vs experimental data comparison

    NASA Technical Reports Server (NTRS)

    Chen, R. Y.

    1979-01-01

    This article describes the comparison of a maximum likelihood convolutional decoder (MCD) prediction model and the actual performance of the MCD at the Madrid Deep Space Station. The MCD prediction model is used to develop a subroutine that has been utilized by the Telemetry Analysis Program (TAP) to compute the MCD bit error rate for a given signal-to-noise ratio. The results indicate that that the TAP can predict quite well compared to the experimental measurements. An optimal modulation index also can be found through TAP.

  4. Real-time data compression of broadcast video signals

    NASA Technical Reports Server (NTRS)

    Shalkauser, Mary Jo W. (Inventor); Whyte, Wayne A., Jr. (Inventor); Barnes, Scott P. (Inventor)

    1991-01-01

    A non-adaptive predictor, a nonuniform quantizer, and a multi-level Huffman coder are incorporated into a differential pulse code modulation system for coding and decoding broadcast video signals in real time.

  5. Modulation Depth Estimation and Variable Selection in State-Space Models for Neural Interfaces

    PubMed Central

    Hochberg, Leigh R.; Donoghue, John P.; Brown, Emery N.

    2015-01-01

    Rapid developments in neural interface technology are making it possible to record increasingly large signal sets of neural activity. Various factors such as asymmetrical information distribution and across-channel redundancy may, however, limit the benefit of high-dimensional signal sets, and the increased computational complexity may not yield corresponding improvement in system performance. High-dimensional system models may also lead to overfitting and lack of generalizability. To address these issues, we present a generalized modulation depth measure using the state-space framework that quantifies the tuning of a neural signal channel to relevant behavioral covariates. For a dynamical system, we develop computationally efficient procedures for estimating modulation depth from multivariate data. We show that this measure can be used to rank neural signals and select an optimal channel subset for inclusion in the neural decoding algorithm. We present a scheme for choosing the optimal subset based on model order selection criteria. We apply this method to neuronal ensemble spike-rate decoding in neural interfaces, using our framework to relate motor cortical activity with intended movement kinematics. With offline analysis of intracortical motor imagery data obtained from individuals with tetraplegia using the BrainGate neural interface, we demonstrate that our variable selection scheme is useful for identifying and ranking the most information-rich neural signals. We demonstrate that our approach offers several orders of magnitude lower complexity but virtually identical decoding performance compared to greedy search and other selection schemes. Our statistical analysis shows that the modulation depth of human motor cortical single-unit signals is well characterized by the generalized Pareto distribution. Our variable selection scheme has wide applicability in problems involving multisensor signal modeling and estimation in biomedical engineering systems. PMID:25265627

  6. Predictive Ensemble Decoding of Acoustical Features Explains Context-Dependent Receptive Fields.

    PubMed

    Yildiz, Izzet B; Mesgarani, Nima; Deneve, Sophie

    2016-12-07

    A primary goal of auditory neuroscience is to identify the sound features extracted and represented by auditory neurons. Linear encoding models, which describe neural responses as a function of the stimulus, have been primarily used for this purpose. Here, we provide theoretical arguments and experimental evidence in support of an alternative approach, based on decoding the stimulus from the neural response. We used a Bayesian normative approach to predict the responses of neurons detecting relevant auditory features, despite ambiguities and noise. We compared the model predictions to recordings from the primary auditory cortex of ferrets and found that: (1) the decoding filters of auditory neurons resemble the filters learned from the statistics of speech sounds; (2) the decoding model captures the dynamics of responses better than a linear encoding model of similar complexity; and (3) the decoding model accounts for the accuracy with which the stimulus is represented in neural activity, whereas linear encoding model performs very poorly. Most importantly, our model predicts that neuronal responses are fundamentally shaped by "explaining away," a divisive competition between alternative interpretations of the auditory scene. Neural responses in the auditory cortex are dynamic, nonlinear, and hard to predict. Traditionally, encoding models have been used to describe neural responses as a function of the stimulus. However, in addition to external stimulation, neural activity is strongly modulated by the responses of other neurons in the network. We hypothesized that auditory neurons aim to collectively decode their stimulus. In particular, a stimulus feature that is decoded (or explained away) by one neuron is not explained by another. We demonstrated that this novel Bayesian decoding model is better at capturing the dynamic responses of cortical neurons in ferrets. Whereas the linear encoding model poorly reflects selectivity of neurons, the decoding model can account for the strong nonlinearities observed in neural data. Copyright © 2016 Yildiz et al.

  7. Thematic mapper flight model preshipment review data package. Volume 4: Appendix. Part E: Electronics module data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Tests to verify the as-designed performance of all circuits within the thematic mapper electronics module unit are described. Specifically, the tests involved the evaluation of the scan line corrector driver, shutter drivers function, cal lamp controller function, post amplifier function, command decoder verification unit, and the temperature and actuator controllers function.

  8. Decision Fusion with Channel Errors in Distributed Decode-Then-Fuse Sensor Networks

    PubMed Central

    Yan, Yongsheng; Wang, Haiyan; Shen, Xiaohong; Zhong, Xionghu

    2015-01-01

    Decision fusion for distributed detection in sensor networks under non-ideal channels is investigated in this paper. Usually, the local decisions are transmitted to the fusion center (FC) and decoded, and a fusion rule is then applied to achieve a global decision. We propose an optimal likelihood ratio test (LRT)-based fusion rule to take the uncertainty of the decoded binary data due to modulation, reception mode and communication channel into account. The average bit error rate (BER) is employed to characterize such an uncertainty. Further, the detection performance is analyzed under both non-identical and identical local detection performance indices. In addition, the performance of the proposed method is compared with the existing optimal and suboptimal LRT fusion rules. The results show that the proposed fusion rule is more robust compared to these existing ones. PMID:26251908

  9. Trellis Coding of Non-coherent Multiple Symbol Full Response M-ary CPFSK with Modulation Index 1/M

    NASA Technical Reports Server (NTRS)

    Lee, H.; Divsalar, D.; Weber, C.

    1994-01-01

    This paper introduces a trellis coded modulation (TCM) scheme for non-coherent multiple full response M-ary CPFSK with modulation index 1/M. A proper branch metric for the trellis decoder is obtained by employing a simple approximation of the modified Bessel function for large signal to noise ratio (SNR). Pairwise error probability of coded sequences is evaluated by applying a linear approximation to the Rician random variable.

  10. Spatial co-adaptation of cortical control columns in a micro-ECoG brain-computer interface

    NASA Astrophysics Data System (ADS)

    Rouse, A. G.; Williams, J. J.; Wheeler, J. J.; Moran, D. W.

    2016-10-01

    Objective. Electrocorticography (ECoG) has been used for a range of applications including electrophysiological mapping, epilepsy monitoring, and more recently as a recording modality for brain-computer interfaces (BCIs). Studies that examine ECoG electrodes designed and implanted chronically solely for BCI applications remain limited. The present study explored how two key factors influence chronic, closed-loop ECoG BCI: (i) the effect of inter-electrode distance on BCI performance and (ii) the differences in neural adaptation and performance when fixed versus adaptive BCI decoding weights are used. Approach. The amplitudes of epidural micro-ECoG signals between 75 and 105 Hz with 300 μm diameter electrodes were used for one-dimensional and two-dimensional BCI tasks. The effect of inter-electrode distance on BCI control was tested between 3 and 15 mm. Additionally, the performance and cortical modulation differences between constant, fixed decoding using a small subset of channels versus adaptive decoding weights using the entire array were explored. Main results. Successful BCI control was possible with two electrodes separated by 9 and 15 mm. Performance decreased and the signals became more correlated when the electrodes were only 3 mm apart. BCI performance in a 2D BCI task improved significantly when using adaptive decoding weights (80%-90%) compared to using constant, fixed weights (50%-60%). Additionally, modulation increased for channels previously unavailable for BCI control under the fixed decoding scheme upon switching to the adaptive, all-channel scheme. Significance. Our results clearly show that neural activity under a BCI recording electrode (which we define as a ‘cortical control column’) readily adapts to generate an appropriate control signal. These results show that the practical minimal spatial resolution of these control columns with micro-ECoG BCI is likely on the order of 3 mm. Additionally, they show that the combination and interaction between neural adaptation and machine learning are critical to optimizing ECoG BCI performance.

  11. Robust decoding of selective auditory attention from MEG in a competing-speaker environment via state-space modeling✩

    PubMed Central

    Akram, Sahar; Presacco, Alessandro; Simon, Jonathan Z.; Shamma, Shihab A.; Babadi, Behtash

    2015-01-01

    The underlying mechanism of how the human brain solves the cocktail party problem is largely unknown. Recent neuroimaging studies, however, suggest salient temporal correlations between the auditory neural response and the attended auditory object. Using magnetoencephalography (MEG) recordings of the neural responses of human subjects, we propose a decoding approach for tracking the attentional state while subjects are selectively listening to one of the two speech streams embedded in a competing-speaker environment. We develop a biophysically-inspired state-space model to account for the modulation of the neural response with respect to the attentional state of the listener. The constructed decoder is based on a maximum a posteriori (MAP) estimate of the state parameters via the Expectation Maximization (EM) algorithm. Using only the envelope of the two speech streams as covariates, the proposed decoder enables us to track the attentional state of the listener with a temporal resolution of the order of seconds, together with statistical confidence intervals. We evaluate the performance of the proposed model using numerical simulations and experimentally measured evoked MEG responses from the human brain. Our analysis reveals considerable performance gains provided by the state-space model in terms of temporal resolution, computational complexity and decoding accuracy. PMID:26436490

  12. A forward error correction technique using a high-speed, high-rate single chip codec

    NASA Astrophysics Data System (ADS)

    Boyd, R. W.; Hartman, W. F.; Jones, Robert E.

    The authors describe an error-correction coding approach that allows operation in either burst or continuous modes at data rates of multiple hundreds of megabits per second. Bandspreading is low since the code rate is 7/8 or greater, which is consistent with high-rate link operation. The encoder, along with a hard-decision decoder, fits on a single application-specific integrated circuit (ASIC) chip. Soft-decision decoding is possible utilizing applique hardware in conjunction with the hard-decision decoder. Expected coding gain is a function of the application and is approximately 2.5 dB for hard-decision decoding at 10-5 bit-error rate with phase-shift-keying modulation and additive Gaussian white noise interference. The principal use envisioned for this technique is to achieve a modest amount of coding gain on high-data-rate, bandwidth-constrained channels. Data rates of up to 300 Mb/s can be accommodated by the codec chip. The major objective is burst-mode communications, where code words are composed of 32 n data bits followed by 32 overhead bits.

  13. Translating the "Banana Genome" to Delineate Stress Resistance, Dwarfing, Parthenocarpy and Mechanisms of Fruit Ripening.

    PubMed

    Dash, Prasanta K; Rai, Rhitu

    2016-01-01

    Evolutionary frozen, genetically sterile and globally iconic fruit "Banana" remained untouched by the green revolution and, as of today, researchers face intrinsic impediments for its varietal improvement. Recently, this wonder crop entered the genomics era with decoding of structural genome of double haploid Pahang (AA genome constitution) genotype of Musa acuminata . Its complex genome decoded by hybrid sequencing strategies revealed panoply of genes and transcription factors involved in the process of sucrose conversion that imparts sweetness to its fruit. Historically, banana has faced the wrath of pandemic bacterial, fungal, and viral diseases and multitude of abiotic stresses that has ruined the livelihood of small/marginal farmers' and destroyed commercial plantations. Decoding structural genome of this climacteric fruit has given impetus to a deeper understanding of the repertoire of genes involved in disease resistance, understanding the mechanism of dwarfing to develop an ideal plant type, unraveling the process of parthenocarpy, and fruit ripening for better fruit quality. Further, injunction of comparative genomics will usher in integration of information from its decoded genome and other monocots into field applications in banana related but not limited to yield enhancement, food security, livelihood assurance, and energy sustainability. In this mini review, we discuss pre- and post-genomic discoveries and highlight accomplishments in structural genomics, genetic engineering and forward genetic accomplishments with an aim to target genes and transcription factors for translational research in banana.

  14. Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex.

    PubMed

    Hao, Yaoyao; Zhang, Qiaosheng; Controzzi, Marco; Cipriani, Christian; Li, Yue; Li, Juncheng; Zhang, Shaomin; Wang, Yiwen; Chen, Weidong; Chiara Carrozza, Maria; Zheng, Xiaoxiang

    2014-12-01

    Recent studies have shown that dorsal premotor cortex (PMd), a cortical area in the dorsomedial grasp pathway, is involved in grasp movements. However, the neural ensemble firing property of PMd during grasp movements and the extent to which it can be used for grasp decoding are still unclear. To address these issues, we used multielectrode arrays to record both spike and local field potential (LFP) signals in PMd in macaque monkeys performing reaching and grasping of one of four differently shaped objects. Single and population neuronal activity showed distinct patterns during execution of different grip types. Cluster analysis of neural ensemble signals indicated that the grasp related patterns emerged soon (200-300 ms) after the go cue signal, and faded away during the hold period. The timing and duration of the patterns varied depending on the behaviors of individual monkey. Application of support vector machine model to stable activity patterns revealed classification accuracies of 94% and 89% for each of the two monkeys, indicating a robust, decodable grasp pattern encoded in the PMd. Grasp decoding using LFPs, especially the high-frequency bands, also produced high decoding accuracies. This study is the first to specify the neuronal population encoding of grasp during the time course of grasp. We demonstrate high grasp decoding performance in PMd. These findings, combined with previous evidence for reach related modulation studies, suggest that PMd may play an important role in generation and maintenance of grasp action and may be a suitable locus for brain-machine interface applications.

  15. Lifeomics leads the age of grand discoveries.

    PubMed

    He, Fuchu

    2013-03-01

    When our knowledge of a field accumulates to a certain level, we are bound to see the rise of one or more great scientists. They will make a series of grand discoveries/breakthroughs and push the discipline into an 'age of grand discoveries'. Mathematics, geography, physics and chemistry have all experienced their ages of grand discoveries; and in life sciences, the age of grand discoveries has appeared countless times since the 16th century. Thanks to the ever-changing development of molecular biology over the past 50 years, contemporary life science is once again approaching its breaking point and the trigger for this is most likely to be 'lifeomics'. At the end of the 20th century, genomics wrote out the 'script of life'; proteomics decoded the script; and RNAomics, glycomics and metabolomics came into bloom. These 'omics', with their unique epistemology and methodology, quickly became the thrust of life sciences, pushing the discipline to new high. Lifeomics, which encompasses all omics, has taken shape and is now signalling the dawn of a new era, the age of grand discoveries.

  16. Oriented modulation for watermarking in direct binary search halftone images.

    PubMed

    Guo, Jing-Ming; Su, Chang-Cheng; Liu, Yun-Fu; Lee, Hua; Lee, Jiann-Der

    2012-09-01

    In this paper, a halftoning-based watermarking method is presented. This method enables high pixel-depth watermark embedding, while maintaining high image quality. This technique is capable of embedding watermarks with pixel depths up to 3 bits without causing prominent degradation to the image quality. To achieve high image quality, the parallel oriented high-efficient direct binary search (DBS) halftoning is selected to be integrated with the proposed orientation modulation (OM) method. The OM method utilizes different halftone texture orientations to carry different watermark data. In the decoder, the least-mean-square-trained filters are applied for feature extraction from watermarked images in the frequency domain, and the naïve Bayes classifier is used to analyze the extracted features and ultimately to decode the watermark data. Experimental results show that the DBS-based OM encoding method maintains a high degree of image quality and realizes the processing efficiency and robustness to be adapted in printing applications.

  17. Code-modulated visual evoked potentials using fast stimulus presentation and spatiotemporal beamformer decoding.

    PubMed

    Wittevrongel, Benjamin; Van Wolputte, Elia; Van Hulle, Marc M

    2017-11-08

    When encoding visual targets using various lagged versions of a pseudorandom binary sequence of luminance changes, the EEG signal recorded over the viewer's occipital pole exhibits so-called code-modulated visual evoked potentials (cVEPs), the phase lags of which can be tied to these targets. The cVEP paradigm has enjoyed interest in the brain-computer interfacing (BCI) community for the reported high information transfer rates (ITR, in bits/min). In this study, we introduce a novel decoding algorithm based on spatiotemporal beamforming, and show that this algorithm is able to accurately identify the gazed target. Especially for a small number of repetitions of the coding sequence, our beamforming approach significantly outperforms an optimised support vector machine (SVM)-based classifier, which is considered state-of-the-art in cVEP-based BCI. In addition to the traditional 60 Hz stimulus presentation rate for the coding sequence, we also explore the 120 Hz rate, and show that the latter enables faster communication, with a maximal median ITR of 172.87 bits/min. Finally, we also report on a transition effect in the EEG signal following the onset of the stimulus sequence, and recommend to exclude the first 150 ms of the trials from decoding when relying on a single presentation of the stimulus sequence.

  18. Information rates of probabilistically shaped coded modulation for a multi-span fiber-optic communication system with 64QAM

    NASA Astrophysics Data System (ADS)

    Fehenberger, Tobias

    2018-02-01

    This paper studies probabilistic shaping in a multi-span wavelength-division multiplexing optical fiber system with 64-ary quadrature amplitude modulation (QAM) input. In split-step fiber simulations and via an enhanced Gaussian noise model, three figures of merit are investigated, which are signal-to-noise ratio (SNR), achievable information rate (AIR) for capacity-achieving forward error correction (FEC) with bit-metric decoding, and the information rate achieved with low-density parity-check (LDPC) FEC. For the considered system parameters and different shaped input distributions, shaping is found to decrease the SNR by 0.3 dB yet simultaneously increases the AIR by up to 0.4 bit per 4D-symbol. The information rates of LDPC-coded modulation with shaped 64QAM input are improved by up to 0.74 bit per 4D-symbol, which is larger than the shaping gain when considering AIRs. This increase is attributed to the reduced coding gap of the higher-rate code that is used for decoding the nonuniform QAM input.

  19. Optimized iterative decoding method for TPC coded CPM

    NASA Astrophysics Data System (ADS)

    Ma, Yanmin; Lai, Penghui; Wang, Shilian; Xie, Shunqin; Zhang, Wei

    2018-05-01

    Turbo Product Code (TPC) coded Continuous Phase Modulation (CPM) system (TPC-CPM) has been widely used in aeronautical telemetry and satellite communication. This paper mainly investigates the improvement and optimization on the TPC-CPM system. We first add the interleaver and deinterleaver to the TPC-CPM system, and then establish an iterative system to iteratively decode. However, the improved system has a poor convergence ability. To overcome this issue, we use the Extrinsic Information Transfer (EXIT) analysis to find the optimal factors for the system. The experiments show our method is efficient to improve the convergence performance.

  20. Task-induced frequency modulation features for brain-computer interfacing.

    PubMed

    Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2017-10-01

    Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects' intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects' intents with an accuracy comparable to task-induced amplitude modulation. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.

  1. Optimum decoding and detection of a multiplicative amplitude-encoded watermark

    NASA Astrophysics Data System (ADS)

    Barni, Mauro; Bartolini, Franco; De Rosa, Alessia; Piva, Alessandro

    2002-04-01

    The aim of this paper is to present a novel approach to the decoding and the detection of multibit, multiplicative, watermarks embedded in the frequency domain. Watermark payload is conveyed by amplitude modulating a pseudo-random sequence, thus resembling conventional DS spread spectrum techniques. As opposed to conventional communication systems, though, the watermark is embedded within the host DFT coefficients by using a multiplicative rule. The watermark decoding technique presented in the paper is an optimum one, in that it minimizes the bit error probability. The problem of watermark presence assessment, which is often underestimated by state-of-the-art research on multibit watermarking, is addressed too, and the optimum detection rule derived according to the Neyman-Pearson criterion. Experimental results are shown both to demonstrate the validity of the theoretical analysis and to highlight the good performance of the proposed system.

  2. New Bandwidth Efficient Parallel Concatenated Coding Schemes

    NASA Technical Reports Server (NTRS)

    Denedetto, S.; Divsalar, D.; Montorsi, G.; Pollara, F.

    1996-01-01

    We propose a new solution to parallel concatenation of trellis codes with multilevel amplitude/phase modulations and a suitable iterative decoding structure. Examples are given for throughputs 2 bits/sec/Hz with 8PSK and 16QAM signal constellations.

  3. Toward an autonomous brain machine interface: integrating sensorimotor reward modulation and reinforcement learning.

    PubMed

    Marsh, Brandi T; Tarigoppula, Venkata S Aditya; Chen, Chen; Francis, Joseph T

    2015-05-13

    For decades, neurophysiologists have worked on elucidating the function of the cortical sensorimotor control system from the standpoint of kinematics or dynamics. Recently, computational neuroscientists have developed models that can emulate changes seen in the primary motor cortex during learning. However, these simulations rely on the existence of a reward-like signal in the primary sensorimotor cortex. Reward modulation of the primary sensorimotor cortex has yet to be characterized at the level of neural units. Here we demonstrate that single units/multiunits and local field potentials in the primary motor (M1) cortex of nonhuman primates (Macaca radiata) are modulated by reward expectation during reaching movements and that this modulation is present even while subjects passively view cursor motions that are predictive of either reward or nonreward. After establishing this reward modulation, we set out to determine whether we could correctly classify rewarding versus nonrewarding trials, on a moment-to-moment basis. This reward information could then be used in collaboration with reinforcement learning principles toward an autonomous brain-machine interface. The autonomous brain-machine interface would use M1 for both decoding movement intention and extraction of reward expectation information as evaluative feedback, which would then update the decoding algorithm as necessary. In the work presented here, we show that this, in theory, is possible. Copyright © 2015 the authors 0270-6474/15/357374-14$15.00/0.

  4. Goal-Directed Modulation of Neural Memory Patterns: Implications for fMRI-Based Memory Detection.

    PubMed

    Uncapher, Melina R; Boyd-Meredith, J Tyler; Chow, Tiffany E; Rissman, Jesse; Wagner, Anthony D

    2015-06-03

    Remembering a past event elicits distributed neural patterns that can be distinguished from patterns elicited when encountering novel information. These differing patterns can be decoded with relatively high diagnostic accuracy for individual memories using multivoxel pattern analysis (MVPA) of fMRI data. Brain-based memory detection--if valid and reliable--would have clear utility beyond the domain of cognitive neuroscience, in the realm of law, marketing, and beyond. However, a significant boundary condition on memory decoding validity may be the deployment of "countermeasures": strategies used to mask memory signals. Here we tested the vulnerability of fMRI-based memory detection to countermeasures, using a paradigm that bears resemblance to eyewitness identification. Participants were scanned while performing two tasks on previously studied and novel faces: (1) a standard recognition memory task; and (2) a task wherein they attempted to conceal their true memory state. Univariate analyses revealed that participants were able to strategically modulate neural responses, averaged across trials, in regions implicated in memory retrieval, including the hippocampus and angular gyrus. Moreover, regions associated with goal-directed shifts of attention and thought substitution supported memory concealment, and those associated with memory generation supported novelty concealment. Critically, whereas MVPA enabled reliable classification of memory states when participants reported memory truthfully, the ability to decode memory on individual trials was compromised, even reversing, during attempts to conceal memory. Together, these findings demonstrate that strategic goal states can be deployed to mask memory-related neural patterns and foil memory decoding technology, placing a significant boundary condition on their real-world utility. Copyright © 2015 the authors 0270-6474/15/358531-15$15.00/0.

  5. Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex

    NASA Astrophysics Data System (ADS)

    Hao, Yaoyao; Zhang, Qiaosheng; Controzzi, Marco; Cipriani, Christian; Li, Yue; Li, Juncheng; Zhang, Shaomin; Wang, Yiwen; Chen, Weidong; Chiara Carrozza, Maria; Zheng, Xiaoxiang

    2014-12-01

    Objective. Recent studies have shown that dorsal premotor cortex (PMd), a cortical area in the dorsomedial grasp pathway, is involved in grasp movements. However, the neural ensemble firing property of PMd during grasp movements and the extent to which it can be used for grasp decoding are still unclear. Approach. To address these issues, we used multielectrode arrays to record both spike and local field potential (LFP) signals in PMd in macaque monkeys performing reaching and grasping of one of four differently shaped objects. Main results. Single and population neuronal activity showed distinct patterns during execution of different grip types. Cluster analysis of neural ensemble signals indicated that the grasp related patterns emerged soon (200-300 ms) after the go cue signal, and faded away during the hold period. The timing and duration of the patterns varied depending on the behaviors of individual monkey. Application of support vector machine model to stable activity patterns revealed classification accuracies of 94% and 89% for each of the two monkeys, indicating a robust, decodable grasp pattern encoded in the PMd. Grasp decoding using LFPs, especially the high-frequency bands, also produced high decoding accuracies. Significance. This study is the first to specify the neuronal population encoding of grasp during the time course of grasp. We demonstrate high grasp decoding performance in PMd. These findings, combined with previous evidence for reach related modulation studies, suggest that PMd may play an important role in generation and maintenance of grasp action and may be a suitable locus for brain-machine interface applications.

  6. LDPC-PPM Coding Scheme for Optical Communication

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged; Moision, Bruce; Divsalar, Dariush; Fitz, Michael

    2009-01-01

    In a proposed coding-and-modulation/demodulation-and-decoding scheme for a free-space optical communication system, an error-correcting code of the low-density parity-check (LDPC) type would be concatenated with a modulation code that consists of a mapping of bits to pulse-position-modulation (PPM) symbols. Hence, the scheme is denoted LDPC-PPM. This scheme could be considered a competitor of a related prior scheme in which an outer convolutional error-correcting code is concatenated with an interleaving operation, a bit-accumulation operation, and a PPM inner code. Both the prior and present schemes can be characterized as serially concatenated pulse-position modulation (SCPPM) coding schemes. Figure 1 represents a free-space optical communication system based on either the present LDPC-PPM scheme or the prior SCPPM scheme. At the transmitting terminal, the original data (u) are processed by an encoder into blocks of bits (a), and the encoded data are mapped to PPM of an optical signal (c). For the purpose of design and analysis, the optical channel in which the PPM signal propagates is modeled as a Poisson point process. At the receiving terminal, the arriving optical signal (y) is demodulated to obtain an estimate (a^) of the coded data, which is then processed by a decoder to obtain an estimate (u^) of the original data.

  7. Assessment of composite motif discovery methods.

    PubMed

    Klepper, Kjetil; Sandve, Geir K; Abul, Osman; Johansen, Jostein; Drablos, Finn

    2008-02-26

    Computational discovery of regulatory elements is an important area of bioinformatics research and more than a hundred motif discovery methods have been published. Traditionally, most of these methods have addressed the problem of single motif discovery - discovering binding motifs for individual transcription factors. In higher organisms, however, transcription factors usually act in combination with nearby bound factors to induce specific regulatory behaviours. Hence, recent focus has shifted from single motifs to the discovery of sets of motifs bound by multiple cooperating transcription factors, so called composite motifs or cis-regulatory modules. Given the large number and diversity of methods available, independent assessment of methods becomes important. Although there have been several benchmark studies of single motif discovery, no similar studies have previously been conducted concerning composite motif discovery. We have developed a benchmarking framework for composite motif discovery and used it to evaluate the performance of eight published module discovery tools. Benchmark datasets were constructed based on real genomic sequences containing experimentally verified regulatory modules, and the module discovery programs were asked to predict both the locations of these modules and to specify the single motifs involved. To aid the programs in their search, we provided position weight matrices corresponding to the binding motifs of the transcription factors involved. In addition, selections of decoy matrices were mixed with the genuine matrices on one dataset to test the response of programs to varying levels of noise. Although some of the methods tested tended to score somewhat better than others overall, there were still large variations between individual datasets and no single method performed consistently better than the rest in all situations. The variation in performance on individual datasets also shows that the new benchmark datasets represents a suitable variety of challenges to most methods for module discovery.

  8. Translating the “Banana Genome” to Delineate Stress Resistance, Dwarfing, Parthenocarpy and Mechanisms of Fruit Ripening

    PubMed Central

    Dash, Prasanta K.; Rai, Rhitu

    2016-01-01

    Evolutionary frozen, genetically sterile and globally iconic fruit “Banana” remained untouched by the green revolution and, as of today, researchers face intrinsic impediments for its varietal improvement. Recently, this wonder crop entered the genomics era with decoding of structural genome of double haploid Pahang (AA genome constitution) genotype of Musa acuminata. Its complex genome decoded by hybrid sequencing strategies revealed panoply of genes and transcription factors involved in the process of sucrose conversion that imparts sweetness to its fruit. Historically, banana has faced the wrath of pandemic bacterial, fungal, and viral diseases and multitude of abiotic stresses that has ruined the livelihood of small/marginal farmers’ and destroyed commercial plantations. Decoding structural genome of this climacteric fruit has given impetus to a deeper understanding of the repertoire of genes involved in disease resistance, understanding the mechanism of dwarfing to develop an ideal plant type, unraveling the process of parthenocarpy, and fruit ripening for better fruit quality. Further, injunction of comparative genomics will usher in integration of information from its decoded genome and other monocots into field applications in banana related but not limited to yield enhancement, food security, livelihood assurance, and energy sustainability. In this mini review, we discuss pre- and post-genomic discoveries and highlight accomplishments in structural genomics, genetic engineering and forward genetic accomplishments with an aim to target genes and transcription factors for translational research in banana. PMID:27833619

  9. Multidimensional Trellis Coded Phase Modulation Using a Multilevel Concatenation Approach. Part 2; Codes for AWGN and Fading Channels

    NASA Technical Reports Server (NTRS)

    Rajpal, Sandeep; Rhee, DoJun; Lin, Shu

    1997-01-01

    In this paper, we will use the construction technique proposed in to construct multidimensional trellis coded modulation (TCM) codes for both the additive white Gaussian noise (AWGN) and the fading channels. Analytical performance bounds and simulation results show that these codes perform very well and achieve significant coding gains over uncoded reference modulation systems. In addition, the proposed technique can be used to construct codes which have a performance/decoding complexity advantage over the codes listed in literature.

  10. Electronics for a prototype variable field of view PET camera using the PMT-quadrant-sharing detector array

    NASA Astrophysics Data System (ADS)

    Li, H.; Wong, Wai-Hoi; Zhang, N.; Wang, J.; Uribe, J.; Baghaei, H.; Yokoyama, S.

    1999-06-01

    Electronics for a prototype high-resolution PET camera with eight position-sensitive detector modules has been developed. Each module has 16 BGO (Bi/sub 4/Ge/sub 3/O/sub 12/) blocks (each block is composed of 49 crystals). The design goals are component and space reduction. The electronics is composed of five parts: front-end analog processing, digital position decoding, fast timing, coincidence processing and master data acquisition. The front-end analog circuit is a zone-based structure (each zone has 3/spl times/3 PMTs). Nine ADCs digitize integration signals of an active zone identified by eight trigger clusters; each cluster is composed of six photomultiplier tubes (PMTs). A trigger corresponding to a gamma ray is sent to a fast timing board to obtain a time-mark, and the nine digitized signals are passed to the position decoding board, where a real block (four PMTs) can be picked out from the zone for position decoding. Lookup tables are used for energy discrimination and to identify the gamma-hit crystal location. The coincidence board opens a 70-ns initial timing window, followed by two 20-ns true/accidental time-mark lookup table windows. The data output from the coincidence board can be acquired either in sinogram mode or in list mode with a Motorola/IRONICS VME-based system.

  11. Task-induced frequency modulation features for brain-computer interfacing

    NASA Astrophysics Data System (ADS)

    Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2017-10-01

    Objective. Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects’ intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects’ intents with an accuracy comparable to task-induced amplitude modulation. Approach. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. Main results. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Significance. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.

  12. A high throughput architecture for a low complexity soft-output demapping algorithm

    NASA Astrophysics Data System (ADS)

    Ali, I.; Wasenmüller, U.; Wehn, N.

    2015-11-01

    Iterative channel decoders such as Turbo-Code and LDPC decoders show exceptional performance and therefore they are a part of many wireless communication receivers nowadays. These decoders require a soft input, i.e., the logarithmic likelihood ratio (LLR) of the received bits with a typical quantization of 4 to 6 bits. For computing the LLR values from a received complex symbol, a soft demapper is employed in the receiver. The implementation cost of traditional soft-output demapping methods is relatively large in high order modulation systems, and therefore low complexity demapping algorithms are indispensable in low power receivers. In the presence of multiple wireless communication standards where each standard defines multiple modulation schemes, there is a need to have an efficient demapper architecture covering all the flexibility requirements of these standards. Another challenge associated with hardware implementation of the demapper is to achieve a very high throughput in double iterative systems, for instance, MIMO and Code-Aided Synchronization. In this paper, we present a comprehensive communication and hardware performance evaluation of low complexity soft-output demapping algorithms to select the best algorithm for implementation. The main goal of this work is to design a high throughput, flexible, and area efficient architecture. We describe architectures to execute the investigated algorithms. We implement these architectures on a FPGA device to evaluate their hardware performance. The work has resulted in a hardware architecture based on the figured out best low complexity algorithm delivering a high throughput of 166 Msymbols/second for Gray mapped 16-QAM modulation on Virtex-5. This efficient architecture occupies only 127 slice registers, 248 slice LUTs and 2 DSP48Es.

  13. Trellis Tone Modulation Multiple-Access for Peer Discovery in D2D Networks

    PubMed Central

    Lim, Chiwoo; Kim, Sang-Hyo

    2018-01-01

    In this paper, a new non-orthogonal multiple-access scheme, trellis tone modulation multiple-access (TTMMA), is proposed for peer discovery of distributed device-to-device (D2D) communication. The range and capacity of discovery are important performance metrics in peer discovery. The proposed trellis tone modulation uses single-tone transmission and achieves a long discovery range due to its low Peak-to-Average Power Ratio (PAPR). The TTMMA also exploits non-orthogonal resource assignment to increase the discovery capacity. For the multi-user detection of superposed multiple-access signals, a message-passing algorithm with supplementary schemes are proposed. With TTMMA and its message-passing demodulation, approximately 1.5 times the number of devices are discovered compared to the conventional frequency division multiple-access (FDMA)-based discovery. PMID:29673167

  14. Trellis Tone Modulation Multiple-Access for Peer Discovery in D2D Networks.

    PubMed

    Lim, Chiwoo; Jang, Min; Kim, Sang-Hyo

    2018-04-17

    In this paper, a new non-orthogonal multiple-access scheme, trellis tone modulation multiple-access (TTMMA), is proposed for peer discovery of distributed device-to-device (D2D) communication. The range and capacity of discovery are important performance metrics in peer discovery. The proposed trellis tone modulation uses single-tone transmission and achieves a long discovery range due to its low Peak-to-Average Power Ratio (PAPR). The TTMMA also exploits non-orthogonal resource assignment to increase the discovery capacity. For the multi-user detection of superposed multiple-access signals, a message-passing algorithm with supplementary schemes are proposed. With TTMMA and its message-passing demodulation, approximately 1.5 times the number of devices are discovered compared to the conventional frequency division multiple-access (FDMA)-based discovery.

  15. Female Drosophila melanogaster respond to song-amplitude modulations.

    PubMed

    Brüggemeier, Birgit; Porter, Mason A; Vigoreaux, Jim O; Goodwin, Stephen F

    2018-06-11

    Males in numerous animal species use mating songs to attract females and intimidate competitors. We demonstrate that modulations in song amplitude are behaviourally relevant in the fruit fly Drosophila We show that D rosophila melanogaster females prefer amplitude modulations that are typical of melanogaster song over other modulations, which suggests that amplitude modulations are processed auditorily by D. melanogaster Our work demonstrates that receivers can decode messages in amplitude modulations, complementing the recent finding that male flies actively control song amplitude. To describe amplitude modulations, we propose the concept of song amplitude structure (SAS) and discuss similarities and differences to amplitude modulation with distance (AMD).This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  16. LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication.

    PubMed

    Djordjevic, Ivan B; Arabaci, Murat

    2010-11-22

    An orbital angular momentum (OAM) based LDPC-coded modulation scheme suitable for use in FSO communication is proposed. We demonstrate that the proposed scheme can operate under strong atmospheric turbulence regime and enable 100 Gb/s optical transmission while employing 10 Gb/s components. Both binary and nonbinary LDPC-coded OAM modulations are studied. In addition to providing better BER performance, the nonbinary LDPC-coded modulation reduces overall decoder complexity and latency. The nonbinary LDPC-coded OAM modulation provides a net coding gain of 9.3 dB at the BER of 10(-8). The maximum-ratio combining scheme outperforms the corresponding equal-gain combining scheme by almost 2.5 dB.

  17. Structured Low-Density Parity-Check Codes with Bandwidth Efficient Modulation

    NASA Technical Reports Server (NTRS)

    Cheng, Michael K.; Divsalar, Dariush; Duy, Stephanie

    2009-01-01

    In this work, we study the performance of structured Low-Density Parity-Check (LDPC) Codes together with bandwidth efficient modulations. We consider protograph-based LDPC codes that facilitate high-speed hardware implementations and have minimum distances that grow linearly with block sizes. We cover various higher- order modulations such as 8-PSK, 16-APSK, and 16-QAM. During demodulation, a demapper transforms the received in-phase and quadrature samples into reliability information that feeds the binary LDPC decoder. We will compare various low-complexity demappers and provide simulation results for assorted coded-modulation combinations on the additive white Gaussian noise and independent Rayleigh fading channels.

  18. Brain-Machine Interface Enables Bimanual Arm Movements in Monkeys

    PubMed Central

    Ifft, Peter J.; Shokur, Solaiman; Li, Zheng; Lebedev, Mikhail A.; Nicolelis, Miguel A. L.

    2014-01-01

    Brain-machine interfaces (BMIs) are artificial systems that aim to restore sensation and movement to severely paralyzed patients. However, previous BMIs enabled only single arm functionality, and control of bimanual movements was a major challenge. Here, we developed and tested a bimanual BMI that enabled rhesus monkeys to control two avatar arms simultaneously. The bimanual BMI was based on the extracellular activity of 374–497 neurons recorded from several frontal and parietal cortical areas of both cerebral hemispheres. Cortical activity was transformed into movements of the two arms with a decoding algorithm called a 5th order unscented Kalman filter (UKF). The UKF is well-suited for BMI decoding because it accounts for both characteristics of reaching movements and their representation by cortical neurons. The UKF was trained either during a manual task performed with two joysticks or by having the monkeys passively observe the movements of avatar arms. Most cortical neurons changed their modulation patterns when both arms were engaged simultaneously. Representing the two arms jointly in a single UKF decoder resulted in improved decoding performance compared with using separate decoders for each arm. As the animals’ performance in bimanual BMI control improved over time, we observed widespread plasticity in frontal and parietal cortical areas. Neuronal representation of the avatar and reach targets was enhanced with learning, whereas pairwise correlations between neurons initially increased and then decreased. These results suggest that cortical networks may assimilate the two avatar arms through BMI control. PMID:24197735

  19. Impact of jammer side information on the performance of anti-jam systems

    NASA Astrophysics Data System (ADS)

    Lim, Samuel

    1992-03-01

    The Chernoff bound parameter, D, provides a performance measure for all coded communication systems. D can be used to determine upper-bounds on bit error probabilities (BEPs) of Viterbi decoded convolutional codes. The impact on BEP bounds of channel measurements that provide additional side information can also be evaluated with D. This memo documents the results of a Chernoff bound parameter evaluation in optimum partial-band noise jamming (OPBNJ) for both BPSK and DPSK modulation schemes. Hard and soft quantized receivers, with and without jammer side information (JSI), were examined. The results of this analysis indicate that JSI does improve decoding performance. However, a knowledge of jammer presence alone achieves a performance level comparable to soft decision decoding with perfect JSI. Furthermore, performance degradation due to the lack of JSI can be compensated for by increasing the number of levels of quantization. Therefore, an anti-jam system without JSI can be made to perform almost as well as a system with JSI.

  20. Temporal Context in Speech Processing and Attentional Stream Selection: A Behavioral and Neural perspective

    PubMed Central

    Zion Golumbic, Elana M.; Poeppel, David; Schroeder, Charles E.

    2012-01-01

    The human capacity for processing speech is remarkable, especially given that information in speech unfolds over multiple time scales concurrently. Similarly notable is our ability to filter out of extraneous sounds and focus our attention on one conversation, epitomized by the ‘Cocktail Party’ effect. Yet, the neural mechanisms underlying on-line speech decoding and attentional stream selection are not well understood. We review findings from behavioral and neurophysiological investigations that underscore the importance of the temporal structure of speech for achieving these perceptual feats. We discuss the hypothesis that entrainment of ambient neuronal oscillations to speech’s temporal structure, across multiple time-scales, serves to facilitate its decoding and underlies the selection of an attended speech stream over other competing input. In this regard, speech decoding and attentional stream selection are examples of ‘active sensing’, emphasizing an interaction between proactive and predictive top-down modulation of neuronal dynamics and bottom-up sensory input. PMID:22285024

  1. Instructional and Learning Modes in Math. Module CMM:006:02.

    ERIC Educational Resources Information Center

    Rexroat, Melvin E.

    This is the second module in a series on mathematics methods and materials for preservice elementary teachers. This module focuses on three instructional and learning modes: expository, guided discovery, and inquiry (pure discovery). Objectives for the module are listed, the prerequisites are stated, pre- and post-assessment standards are…

  2. Electronics. Module 3: Digital Logic Application. Instructor's Guide.

    ERIC Educational Resources Information Center

    Carter, Ed; Murphy, Mark

    This guide contains instructor's materials for a 10-unit secondary school course on digital logic application. The units are introduction to digital, logic gates, digital integrated circuits, combination logic, flip-flops, counters and shift registers, encoders and decoders, arithmetic circuits, memory, and analog/digital and digital/analog…

  3. A soft decoding algorithm and hardware implementation for the visual prosthesis based on high order soft demodulation.

    PubMed

    Yang, Yuan; Quan, Nannan; Bu, Jingjing; Li, Xueping; Yu, Ningmei

    2016-09-26

    High order modulation and demodulation technology can solve the frequency requirement between the wireless energy transmission and data communication. In order to achieve reliable wireless data communication based on high order modulation technology for visual prosthesis, this work proposed a Reed-Solomon (RS) error correcting code (ECC) circuit on the basis of differential amplitude and phase shift keying (DAPSK) soft demodulation. Firstly, recognizing the weakness of the traditional DAPSK soft demodulation algorithm based on division that is complex for hardware implementation, an improved phase soft demodulation algorithm for visual prosthesis to reduce the hardware complexity is put forward. Based on this new algorithm, an improved RS soft decoding method is hence proposed. In this new decoding method, the combination of Chase algorithm and hard decoding algorithms is used to achieve soft decoding. In order to meet the requirements of implantable visual prosthesis, the method to calculate reliability of symbol-level based on multiplication of bit reliability is derived, which reduces the testing vectors number of Chase algorithm. The proposed algorithms are verified by MATLAB simulation and FPGA experimental results. During MATLAB simulation, the biological channel attenuation property model is added into the ECC circuit. The data rate is 8 Mbps in the MATLAB simulation and FPGA experiments. MATLAB simulation results show that the improved phase soft demodulation algorithm proposed in this paper saves hardware resources without losing bit error rate (BER) performance. Compared with the traditional demodulation circuit, the coding gain of the ECC circuit has been improved by about 3 dB under the same BER of [Formula: see text]. The FPGA experimental results show that under the condition of data demodulation error with wireless coils 3 cm away, the system can correct it. The greater the distance, the higher the BER. Then we use a bit error rate analyzer to measure BER of the demodulation circuit and the RS ECC circuit with different distance of two coils. And the experimental results show that the RS ECC circuit has about an order of magnitude lower BER than the demodulation circuit when under the same coils distance. Therefore, the RS ECC circuit has more higher reliability of the communication in the system. The improved phase soft demodulation algorithm and soft decoding algorithm proposed in this paper enables data communication that is more reliable than other demodulation system, which also provide a significant reference for further study to the visual prosthesis system.

  4. Modulation of RNA function by aminoglycoside antibiotics.

    PubMed

    Schroeder, R; Waldsich, C; Wank, H

    2000-01-04

    One of the most important families of antibiotics are the aminoglycosides, including drugs such as neomycin B, paromomycin, gentamicin and streptomycin. With the discovery of the catalytic potential of RNA, these antibiotics became very popular due to their RNA-binding capacity. They serve for the analysis of RNA function as well as for the study of RNA as a potential therapeutic target. Improvements in RNA structure determination recently provided first insights into the decoding site of the ribosome at high resolution and how aminoglycosides might induce misreading of the genetic code. In addition to inhibiting prokaryotic translation, aminoglycosides inhibit several catalytic RNAs such as self-splicing group I introns, RNase P and small ribozymes in vitro. Furthermore, these antibiotics interfere with human immunodeficiency virus (HIV) replication by disrupting essential RNA-protein contacts. Most exciting is the potential of many RNA-binding antibiotics to stimulate RNA activities, conceiving small-molecule partners for the hypothesis of an ancient RNA world. SELEX (systematic evolution of ligands by exponential enrichment) has been used in this evolutionary game leading to small synthetic RNAs, whose NMR structures gave valuable information on how aminoglycosides interact with RNA, which could possibly be used in applied science.

  5. Performance of Low-Density Parity-Check Coded Modulation

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon

    2010-01-01

    This paper reports the simulated performance of each of the nine accumulate-repeat-4-jagged-accumulate (AR4JA) low-density parity-check (LDPC) codes [3] when used in conjunction with binary phase-shift-keying (BPSK), quadrature PSK (QPSK), 8-PSK, 16-ary amplitude PSK (16- APSK), and 32-APSK.We also report the performance under various mappings of bits to modulation symbols, 16-APSK and 32-APSK ring scalings, log-likelihood ratio (LLR) approximations, and decoder variations. One of the simple and well-performing LLR approximations can be expressed in a general equation that applies to all of the modulation types.

  6. Context-Conditioned Generalization in Adaptation to Distorted Speech

    ERIC Educational Resources Information Center

    Dahan, Delphine; Mead, Rebecca L.

    2010-01-01

    People were trained to decode noise-vocoded speech by hearing monosyllabic stimuli in distorted and unaltered forms. When later presented with different stimuli, listeners were able to successfully generalize their experience. However, generalization was modulated by the degree to which testing stimuli resembled training stimuli: Testing stimuli's…

  7. Algorithms for a very high speed universal noiseless coding module

    NASA Technical Reports Server (NTRS)

    Rice, Robert F.; Yeh, Pen-Shu

    1991-01-01

    The algorithmic definitions and performance characterizations are presented for a high performance adaptive coding module. Operation of at least one of these (single chip) implementations is expected to exceed 500 Mbits/s under laboratory conditions. Operation of a companion decoding module should operate at up to half the coder's rate. The module incorporates a powerful noiseless coder for Standard Form Data Sources (i.e., sources whose symbols can be represented by uncorrelated non-negative integers where the smaller integers are more likely than the larger ones). Performance close to data entropies can be expected over a Dynamic Range of from 1.5 to 12 to 14 bits/sample (depending on the implementation).

  8. Development of Scientific Approach Based on Discovery Learning Module

    NASA Astrophysics Data System (ADS)

    Ellizar, E.; Hardeli, H.; Beltris, S.; Suharni, R.

    2018-04-01

    Scientific Approach is a learning process, designed to make the students actively construct their own knowledge through stages of scientific method. The scientific approach in learning process can be done by using learning modules. One of the learning model is discovery based learning. Discovery learning is a learning model for the valuable things in learning through various activities, such as observation, experience, and reasoning. In fact, the students’ activity to construct their own knowledge were not optimal. It’s because the available learning modules were not in line with the scientific approach. The purpose of this study was to develop a scientific approach discovery based learning module on Acid Based, also on electrolyte and non-electrolyte solution. The developing process of this chemistry modules use the Plomp Model with three main stages. The stages are preliminary research, prototyping stage, and the assessment stage. The subject of this research was the 10th and 11th Grade of Senior High School students (SMAN 2 Padang). Validation were tested by the experts of Chemistry lecturers and teachers. Practicality of these modules had been tested through questionnaire. The effectiveness had been tested through experimental procedure by comparing student achievement between experiment and control groups. Based on the findings, it can be concluded that the developed scientific approach discovery based learning module significantly improve the students’ learning in Acid-based and Electrolyte solution. The result of the data analysis indicated that the chemistry module was valid in content, construct, and presentation. Chemistry module also has a good practicality level and also accordance with the available time. This chemistry module was also effective, because it can help the students to understand the content of the learning material. That’s proved by the result of learning student. Based on the result can conclude that chemistry module based on discovery learning and scientific approach in electrolyte and non-electrolyte solution and Acid Based for the 10th and 11th grade of senior high school students were valid, practice, and effective.

  9. [Antitubercular agents].

    PubMed

    Gartmann, J

    1999-12-01

    The personally experienced development of chemotherapy for tuberculosis during the last half century represents some highlights of new knowledges and practical successes: the discovery of antituberculosis drugs; the comprehension of their actions and side effects; the exploration of mechanisms of resistance against antituberculosis agents; the evaluation of therapeutic and epidemiologic consequences of resistant strains; the decoding of the mycobacterial genetic structure. For different economic, social and psychologic reasons, the worldwide results of the battle against tuberculosis are not nearly as good as possible. AIDS is only a partial factor of this failure.

  10. Convolutional code performance in planetary entry channels

    NASA Technical Reports Server (NTRS)

    Modestino, J. W.

    1974-01-01

    The planetary entry channel is modeled for communication purposes representing turbulent atmospheric scattering effects. The performance of short and long constraint length convolutional codes is investigated in conjunction with coherent BPSK modulation and Viterbi maximum likelihood decoding. Algorithms for sequential decoding are studied in terms of computation and/or storage requirements as a function of the fading channel parameters. The performance of the coded coherent BPSK system is compared with the coded incoherent MFSK system. Results indicate that: some degree of interleaving is required to combat time correlated fading of channel; only modest amounts of interleaving are required to approach performance of memoryless channel; additional propagational results are required on the phase perturbation process; and the incoherent MFSK system is superior when phase tracking errors are considered.

  11. Does Gaze Direction Modulate Facial Expression Processing in Children with Autism Spectrum Disorder?

    ERIC Educational Resources Information Center

    Akechi, Hironori; Senju, Atsushi; Kikuchi, Yukiko; Tojo, Yoshikuni; Osanai, Hiroo; Hasegawa, Toshikazu

    2009-01-01

    Two experiments investigated whether children with autism spectrum disorder (ASD) integrate relevant communicative signals, such as gaze direction, when decoding a facial expression. In Experiment 1, typically developing children (9-14 years old; n = 14) were faster at detecting a facial expression accompanying a gaze direction with a congruent…

  12. The highly conserved codon following the slippery sequence supports -1 frameshift efficiency at the HIV-1 frameshift site.

    PubMed

    Mathew, Suneeth F; Crowe-McAuliffe, Caillan; Graves, Ryan; Cardno, Tony S; McKinney, Cushla; Poole, Elizabeth S; Tate, Warren P

    2015-01-01

    HIV-1 utilises -1 programmed ribosomal frameshifting to translate structural and enzymatic domains in a defined proportion required for replication. A slippery sequence, U UUU UUA, and a stem-loop are well-defined RNA features modulating -1 frameshifting in HIV-1. The GGG glycine codon immediately following the slippery sequence (the 'intercodon') contributes structurally to the start of the stem-loop but has no defined role in current models of the frameshift mechanism, as slippage is inferred to occur before the intercodon has reached the ribosomal decoding site. This GGG codon is highly conserved in natural isolates of HIV. When the natural intercodon was replaced with a stop codon two different decoding molecules-eRF1 protein or a cognate suppressor tRNA-were able to access and decode the intercodon prior to -1 frameshifting. This implies significant slippage occurs when the intercodon is in the (perhaps distorted) ribosomal A site. We accommodate the influence of the intercodon in a model of frame maintenance versus frameshifting in HIV-1.

  13. Multilevel Concatenated Block Modulation Codes for the Frequency Non-selective Rayleigh Fading Channel

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Rhee, Dojun

    1996-01-01

    This paper is concerned with construction of multilevel concatenated block modulation codes using a multi-level concatenation scheme for the frequency non-selective Rayleigh fading channel. In the construction of multilevel concatenated modulation code, block modulation codes are used as the inner codes. Various types of codes (block or convolutional, binary or nonbinary) are being considered as the outer codes. In particular, we focus on the special case for which Reed-Solomon (RS) codes are used as the outer codes. For this special case, a systematic algebraic technique for constructing q-level concatenated block modulation codes is proposed. Codes have been constructed for certain specific values of q and compared with the single-level concatenated block modulation codes using the same inner codes. A multilevel closest coset decoding scheme for these codes is proposed.

  14. Decoding fMRI Signatures of Real-world Autobiographical Memory Retrieval.

    PubMed

    Rissman, Jesse; Chow, Tiffany E; Reggente, Nicco; Wagner, Anthony D

    2016-04-01

    Extant neuroimaging data implicate frontoparietal and medial-temporal lobe regions in episodic retrieval, and the specific pattern of activity within and across these regions is diagnostic of an individual's subjective mnemonic experience. For example, in laboratory-based paradigms, memories for recently encoded faces can be accurately decoded from single-trial fMRI patterns [Uncapher, M. R., Boyd-Meredith, J. T., Chow, T. E., Rissman, J., & Wagner, A. D. Goal-directed modulation of neural memory patterns: Implications for fMRI-based memory detection. Journal of Neuroscience, 35, 8531-8545, 2015; Rissman, J., Greely, H. T., & Wagner, A. D. Detecting individual memories through the neural decoding of memory states and past experience. Proceedings of the National Academy of Sciences, U.S.A., 107, 9849-9854, 2010]. Here, we investigated the neural patterns underlying memory for real-world autobiographical events, probed at 1- to 3-week retention intervals as well as whether distinct patterns are associated with different subjective memory states. For 3 weeks, participants (n = 16) wore digital cameras that captured photographs of their daily activities. One week later, they were scanned while making memory judgments about sequences of photos depicting events from their own lives or events captured by the cameras of others. Whole-brain multivoxel pattern analysis achieved near-perfect accuracy at distinguishing correctly recognized events from correctly rejected novel events, and decoding performance did not significantly vary with retention interval. Multivoxel pattern classifiers also differentiated recollection from familiarity and reliably decoded the subjective strength of recollection, of familiarity, or of novelty. Classification-based brain maps revealed dissociable neural signatures of these mnemonic states, with activity patterns in hippocampus, medial PFC, and ventral parietal cortex being particularly diagnostic of recollection. Finally, a classifier trained on previously acquired laboratory-based memory data achieved reliable decoding of autobiographical memory states. We discuss the implications for neuroscientific accounts of episodic retrieval and comment on the potential forensic use of fMRI for probing experiential knowledge.

  15. The Bayesian Decoding of Force Stimuli from Slowly Adapting Type I Fibers in Humans.

    PubMed

    Kasi, Patrick; Wright, James; Khamis, Heba; Birznieks, Ingvars; van Schaik, André

    2016-01-01

    It is well known that signals encoded by mechanoreceptors facilitate precise object manipulation in humans. It is therefore of interest to study signals encoded by the mechanoreceptors because this will contribute further towards the understanding of fundamental sensory mechanisms that are responsible for coordinating force components during object manipulation. From a practical point of view, this may suggest strategies for designing sensory-controlled biomedical devices and robotic manipulators. We use a two-stage nonlinear decoding paradigm to reconstruct the force stimulus given signals from slowly adapting type one (SA-I) tactile afferents. First, we describe a nonhomogeneous Poisson encoding model which is a function of the force stimulus and the force's rate of change. In the decoding phase, we use a recursive nonlinear Bayesian filter to reconstruct the force profile, given the SA-I spike patterns and parameters described by the encoding model. Under the current encoding model, the mode ratio of force to its derivative is: 1.26 to 1.02. This indicates that the force derivative contributes significantly to the rate of change to the SA-I afferent spike modulation. Furthermore, using recursive Bayesian decoding algorithms is advantageous because it can incorporate past and current information in order to make predictions--consistent with neural systems--with little computational resources. This makes it suitable for interfacing with prostheses.

  16. The Bayesian Decoding of Force Stimuli from Slowly Adapting Type I Fibers in Humans

    PubMed Central

    Wright, James; Khamis, Heba; Birznieks, Ingvars; van Schaik, André

    2016-01-01

    It is well known that signals encoded by mechanoreceptors facilitate precise object manipulation in humans. It is therefore of interest to study signals encoded by the mechanoreceptors because this will contribute further towards the understanding of fundamental sensory mechanisms that are responsible for coordinating force components during object manipulation. From a practical point of view, this may suggest strategies for designing sensory-controlled biomedical devices and robotic manipulators. We use a two-stage nonlinear decoding paradigm to reconstruct the force stimulus given signals from slowly adapting type one (SA-I) tactile afferents. First, we describe a nonhomogeneous Poisson encoding model which is a function of the force stimulus and the force’s rate of change. In the decoding phase, we use a recursive nonlinear Bayesian filter to reconstruct the force profile, given the SA-I spike patterns and parameters described by the encoding model. Under the current encoding model, the mode ratio of force to its derivative is: 1.26 to 1.02. This indicates that the force derivative contributes significantly to the rate of change to the SA-I afferent spike modulation. Furthermore, using recursive Bayesian decoding algorithms is advantageous because it can incorporate past and current information in order to make predictions—consistent with neural systems—with little computational resources. This makes it suitable for interfacing with prostheses. PMID:27077750

  17. Single trial prediction of self-paced reaching directions from EEG signals.

    PubMed

    Lew, Eileen Y L; Chavarriaga, Ricardo; Silvoni, Stefano; Millán, José Del R

    2014-01-01

    Early detection of movement intention could possibly minimize the delays in the activation of neuroprosthetic devices. As yet, single trial analysis using non-invasive approaches for understanding such movement preparation remains a challenging task. We studied the feasibility of predicting movement directions in self-paced upper limb center-out reaching tasks, i.e., spontaneous movements executed without an external cue that can better reflect natural motor behavior in humans. We reported results of non-invasive electroencephalography (EEG) recorded from mild stroke patients and able-bodied participants. Previous studies have shown that low frequency EEG oscillations are modulated by the intent to move and therefore, can be decoded prior to the movement execution. Motivated by these results, we investigated whether slow cortical potentials (SCPs) preceding movement onset can be used to classify reaching directions and evaluated the performance using 5-fold cross-validation. For able-bodied subjects, we obtained an average decoding accuracy of 76% (chance level of 25%) at 62.5 ms before onset using the amplitude of on-going SCPs with above chance level performances between 875 to 437.5 ms prior to onset. The decoding accuracy for the stroke patients was on average 47% with their paretic arms. Comparison of the decoding accuracy across different frequency ranges (i.e., SCPs, delta, theta, alpha, and gamma) yielded the best accuracy using SCPs filtered between 0.1 to 1 Hz. Across all the subjects, including stroke subjects, the best selected features were obtained mostly from the fronto-parietal regions, hence consistent with previous neurophysiological studies on arm reaching tasks. In summary, we concluded that SCPs allow the possibility of single trial decoding of reaching directions at least 312.5 ms before onset of reach.

  18. Analytical and Experimental Performance Evaluation of BLE Neighbor Discovery Process Including Non-Idealities of Real Chipsets

    PubMed Central

    Perez-Diaz de Cerio, David; Hernández, Ángela; Valenzuela, Jose Luis; Valdovinos, Antonio

    2017-01-01

    The purpose of this paper is to evaluate from a real perspective the performance of Bluetooth Low Energy (BLE) as a technology that enables fast and reliable discovery of a large number of users/devices in a short period of time. The BLE standard specifies a wide range of configurable parameter values that determine the discovery process and need to be set according to the particular application requirements. Many previous works have been addressed to investigate the discovery process through analytical and simulation models, according to the ideal specification of the standard. However, measurements show that additional scanning gaps appear in the scanning process, which reduce the discovery capabilities. These gaps have been identified in all of the analyzed devices and respond to both regular patterns and variable events associated with the decoding process. We have demonstrated that these non-idealities, which are not taken into account in other studies, have a severe impact on the discovery process performance. Extensive performance evaluation for a varying number of devices and feasible parameter combinations has been done by comparing simulations and experimental measurements. This work also includes a simple mathematical model that closely matches both the standard implementation and the different chipset peculiarities for any possible parameter value specified in the standard and for any number of simultaneous advertising devices under scanner coverage. PMID:28273801

  19. Analytical and Experimental Performance Evaluation of BLE Neighbor Discovery Process Including Non-Idealities of Real Chipsets.

    PubMed

    Perez-Diaz de Cerio, David; Hernández, Ángela; Valenzuela, Jose Luis; Valdovinos, Antonio

    2017-03-03

    The purpose of this paper is to evaluate from a real perspective the performance of Bluetooth Low Energy (BLE) as a technology that enables fast and reliable discovery of a large number of users/devices in a short period of time. The BLE standard specifies a wide range of configurable parameter values that determine the discovery process and need to be set according to the particular application requirements. Many previous works have been addressed to investigate the discovery process through analytical and simulation models, according to the ideal specification of the standard. However, measurements show that additional scanning gaps appear in the scanning process, which reduce the discovery capabilities. These gaps have been identified in all of the analyzed devices and respond to both regular patterns and variable events associated with the decoding process. We have demonstrated that these non-idealities, which are not taken into account in other studies, have a severe impact on the discovery process performance. Extensive performance evaluation for a varying number of devices and feasible parameter combinations has been done by comparing simulations and experimental measurements. This work also includes a simple mathematical model that closely matches both the standard implementation and the different chipset peculiarities for any possible parameter value specified in the standard and for any number of simultaneous advertising devices under scanner coverage.

  20. Resolution Of Phase Ambiguities In QPSK

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.

    1992-01-01

    Report discusses several techniques for resolution of phase ambiguities in detection and decoding of radio signals modulated by coherent quadrature phase-shift keying (QPSK) and offset QPSK (OQPSK). Eight ambiguities: four associated with phase of carrier signal in absence of ambiguity in direction of rotation of carrier phase, and another four associated with carrier phase in presence of phase-rotation ambiguity.

  1. Bandwidth compression of color video signals. Ph.D. Thesis Final Report, 1 Oct. 1979 - 30 Sep. 1980

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1980-01-01

    The different encoder/decoder strategies to digitally encode video using an adaptive delta modulation are described. The techniques employed are: (1) separately encoding the R, G, and B components; (2) separately encoding the I, Y, and Q components; and (3) encoding the picture in a line sequential manner.

  2. Development of a Position Decoding ASIC for SPECT using Silicon Photomultiplier

    NASA Astrophysics Data System (ADS)

    Cho, M.; Kim, H.; Lim, K. T.; Cho, G.

    2016-01-01

    Single Photon Emission Computed Tomography(SPECT) is a widely used diagnosis modality for detecting metabolic diseases. In general, SPECT system is consisted of a sensor, a pre-amplifier, position decoding circuits(PDC) and a data acquisition(DAQ) system. Due to such complexity, it is quite costly to assemble SPECT system by putting discrete components together. Moreover, using discrete components would make the system rather bulky. In this work, we designed a channel module ASIC for SPECT system. This system was composed of a transimpedance amplifier(TIA), comparators and digital logics. In this particular module, a TIA was selected as a preamplifier because the decay time and the rise time are shorter than that of other preamplifier topologies. In the proposed module, the amplified pulse from the TIA was split into two separate signals and each signal was then fed into two comparators with different reference levels, e.g., a low and high level. Then an XOR gate combined the comparator outputs and the output of XOR gate was sent to the suceeding digital logic. Furthermore, the output of each component in the module is composed of a signal packet. The packet includes the information on the energy, the time and the position of the incident photon. The energy and position information of a detected radiation can be derived from the output of the D-flipflop(DFF) in the module via time-over-threshold(TOT). The timing information was measured using a delayed rising edge from the low-level referenced comparator. There are several advantages in developing the channel module ASIC. First of all, the ASIC has only digital outputs and thus a correction circuit for analog signal distortion can be neglected. In addition, it is possible to cut down the system production cost because the volume of the system can be reduced due to the compactness of ASIC. The benefits of channel module is not only limited to SPECT but also beneficial to many other radiation detecting systems.

  3. Methodology and method and apparatus for signaling with capacity optimized constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2011-01-01

    Communication systems having transmitter, includes a coder configured to receive user bits and output encoded bits at an expanded output encoded bit rate, a mapper configured to map encoded bits to symbols in a symbol constellation, a modulator configured to generate a signal for transmission via the communication channel using symbols generated by the mapper. In addition, the receiver includes a demodulator configured to demodulate the received signal via the communication channel, a demapper configured to estimate likelihoods from the demodulated signal, a decoder that is configured to estimate decoded bits from the likelihoods generated by the demapper. Furthermore, the symbol constellation is a capacity optimized geometrically spaced symbol constellation that provides a given capacity at a reduced signal-to-noise ratio compared to a signal constellation that maximizes d.sub.min.

  4. Indoor visible light communication with smart lighting technology

    NASA Astrophysics Data System (ADS)

    Das Barman, Abhirup; Halder, Alak

    2017-02-01

    An indoor visible-light communication performance is investigated utilizing energy efficient white light by 2D LED arrays. Enabled by recent advances in LED technology, IEEE 802.15.7 standardizes high-data-rate visible light communication and advocates for colour shift keying (CSK) modulation to overcome flicker and to support dimming. Voronoi segmentation is employed for decoding N-CSK constellation which has superior performance compared to other existing decoding methods. The two chief performance degrading effects of inter-symbol interference and LED nonlinearity is jointly mitigated using LMS post equalization at the receiver which improves the symbol error rate performance and increases field of view of the receiver. It is found that LMS post equalization symbol at 250MHz offers 7dB SNR improvement at SER10-6

  5. Further Developments in the Communication Link and Error Analysis (CLEAN) Simulator

    NASA Technical Reports Server (NTRS)

    Ebel, William J.; Ingels, Frank M.

    1995-01-01

    During the period 1 July 1993 - 30 June 1994, significant developments to the Communication Link and Error ANalysis (CLEAN) simulator were completed. Many of these were reported in the Semi-Annual report dated December 1993 which has been included in this report in Appendix A. Since December 1993, a number of additional modules have been added involving Unit-Memory Convolutional codes (UMC). These are: (1) Unit-Memory Convolutional Encoder module (UMCEncd); (2) Hard decision Unit-Memory Convolutional Decoder using the Viterbi decoding algorithm (VitUMC); and (3) a number of utility modules designed to investigate the performance of LTMC's such as LTMC column distance function (UMCdc), UMC free distance function (UMCdfree), UMC row distance function (UMCdr), and UMC Transformation (UMCTrans). The study of UMC's was driven, in part, by the desire to investigate high-rate convolutional codes which are better suited as inner codes for a concatenated coding scheme. A number of high-rate LTMC's were found which are good candidates for inner codes. Besides the further developments of the simulation, a study was performed to construct a table of the best known Unit-Memory Convolutional codes. Finally, a preliminary study of the usefulness of the Periodic Convolutional Interleaver (PCI) was completed and documented in a Technical note dated March 17, 1994. This technical note has also been included in this final report.

  6. Analysis of error-correction constraints in an optical disk.

    PubMed

    Roberts, J D; Ryley, A; Jones, D M; Burke, D

    1996-07-10

    The compact disk read-only memory (CD-ROM) is a mature storage medium with complex error control. It comprises four levels of Reed Solomon codes allied to a sequence of sophisticated interleaving strategies and 8:14 modulation coding. New storage media are being developed and introduced that place still further demands on signal processing for error correction. It is therefore appropriate to explore thoroughly the limit of existing strategies to assess future requirements. We describe a simulation of all stages of the CD-ROM coding, modulation, and decoding. The results of decoding the burst error of a prescribed number of modulation bits are discussed in detail. Measures of residual uncorrected error within a sector are displayed by C1, C2, P, and Q error counts and by the status of the final cyclic redundancy check (CRC). Where each data sector is encoded separately, it is shown that error-correction performance against burst errors depends critically on the position of the burst within a sector. The C1 error measures the burst length, whereas C2 errors reflect the burst position. The performance of Reed Solomon product codes is shown by the P and Q statistics. It is shown that synchronization loss is critical near the limits of error correction. An example is given of miscorrection that is identified by the CRC check.

  7. Analysis of error-correction constraints in an optical disk

    NASA Astrophysics Data System (ADS)

    Roberts, Jonathan D.; Ryley, Alan; Jones, David M.; Burke, David

    1996-07-01

    The compact disk read-only memory (CD-ROM) is a mature storage medium with complex error control. It comprises four levels of Reed Solomon codes allied to a sequence of sophisticated interleaving strategies and 8:14 modulation coding. New storage media are being developed and introduced that place still further demands on signal processing for error correction. It is therefore appropriate to explore thoroughly the limit of existing strategies to assess future requirements. We describe a simulation of all stages of the CD-ROM coding, modulation, and decoding. The results of decoding the burst error of a prescribed number of modulation bits are discussed in detail. Measures of residual uncorrected error within a sector are displayed by C1, C2, P, and Q error counts and by the status of the final cyclic redundancy check (CRC). Where each data sector is encoded separately, it is shown that error-correction performance against burst errors depends critically on the position of the burst within a sector. The C1 error measures the burst length, whereas C2 errors reflect the burst position. The performance of Reed Solomon product codes is shown by the P and Q statistics. It is shown that synchronization loss is critical near the limits of error correction. An example is given of miscorrection that is identified by the CRC check.

  8. Time course of implicit processing and explicit processing of emotional faces and emotional words.

    PubMed

    Frühholz, Sascha; Jellinghaus, Anne; Herrmann, Manfred

    2011-05-01

    Facial expressions are important emotional stimuli during social interactions. Symbolic emotional cues, such as affective words, also convey information regarding emotions that is relevant for social communication. Various studies have demonstrated fast decoding of emotions from words, as was shown for faces, whereas others report a rather delayed decoding of information about emotions from words. Here, we introduced an implicit (color naming) and explicit task (emotion judgment) with facial expressions and words, both containing information about emotions, to directly compare the time course of emotion processing using event-related potentials (ERP). The data show that only negative faces affected task performance, resulting in increased error rates compared to neutral faces. Presentation of emotional faces resulted in a modulation of the N170, the EPN and the LPP components and these modulations were found during both the explicit and implicit tasks. Emotional words only affected the EPN during the explicit task, but a task-independent effect on the LPP was revealed. Finally, emotional faces modulated source activity in the extrastriate cortex underlying the generation of the N170, EPN and LPP components. Emotional words led to a modulation of source activity corresponding to the EPN and LPP, but they also affected the N170 source on the right hemisphere. These data show that facial expressions affect earlier stages of emotion processing compared to emotional words, but the emotional value of words may have been detected at early stages of emotional processing in the visual cortex, as was indicated by the extrastriate source activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Locomotion and task demands differentially modulate thalamic audiovisual processing during active search

    PubMed Central

    Williamson, Ross S.; Hancock, Kenneth E.; Shinn-Cunningham, Barbara G.; Polley, Daniel B.

    2015-01-01

    SUMMARY Active search is a ubiquitous goal-driven behavior wherein organisms purposefully investigate the sensory environment to locate a target object. During active search, brain circuits analyze a stream of sensory information from the external environment, adjusting for internal signals related to self-generated movement or “top-down” weighting of anticipated target and distractor properties. Sensory responses in the cortex can be modulated by internal state [1–9], though the extent and form of modulation arising in the cortex de novo versus an inheritance from subcortical stations is not clear [4, 8–12]. We addressed this question by simultaneously recording from auditory and visual regions of the thalamus (MG and LG, respectively) while mice used dynamic auditory or visual feedback to search for a hidden target within an annular track. Locomotion was associated with strongly suppressed responses and reduced decoding accuracy in MG but a subtle increase in LG spiking. Because stimuli in one modality provided critical information about target location while the other served as a distractor, we could also estimate the importance of task relevance in both thalamic subdivisions. In contrast to the effects of locomotion, we found that LG responses were reduced overall yet decoded stimuli more accurately when vision was behaviorally relevant, whereas task relevance had little effect on MG responses. This double dissociation between the influences of task relevance and movement in MG and LG highlights a role for extrasensory modulation in the thalamus but also suggests key differences in the organization of modulatory circuitry between the auditory and visual pathways. PMID:26119749

  10. The neural speed of familiar face recognition.

    PubMed

    Barragan-Jason, G; Cauchoix, M; Barbeau, E J

    2015-08-01

    Rapidly recognizing familiar people from their faces appears critical for social interactions (e.g., to differentiate friend from foe). However, the actual speed at which the human brain can distinguish familiar from unknown faces still remains debated. In particular, it is not clear whether familiarity can be extracted from rapid face individualization or if it requires additional time consuming processing. We recorded scalp EEG activity in 28 subjects performing a go/no-go, famous/non-famous, unrepeated, face recognition task. Speed constraints were used to encourage subjects to use the earliest familiarity information available. Event related potential (ERP) analyses show that both the N170 and the N250 components were modulated by familiarity. The N170 modulation was related to behaviour: subjects presenting the strongest N170 modulation were also faster but less accurate than those who only showed weak N170 modulation. A complementary Multi-Variate Pattern Analysis (MVPA) confirmed ERP results and provided some more insights into the dynamics of face recognition as the N170 differential effect appeared to be related to a first transitory phase (transitory bump of decoding power) starting at around 140 ms, which returned to baseline afterwards. This bump of activity was henceforth followed by an increase of decoding power starting around 200 ms after stimulus onset. Overall, our results suggest that rather than a simple single-process, familiarity for faces may rely on a cascade of neural processes, including a coarse and fast stage starting at 140 ms and a more refined but slower stage occurring after 200 ms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. KSC-2009-2938

    NASA Image and Video Library

    2009-05-05

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians place equipment in the Resupply Stowage Platform, or RSP, to be installed in the multi-purpose logistics module Leonardo. The module is part of the payload for space shuttle Discovery's STS-128 mission. Discovery will carry science and storage racks to the International Space Station . Launch of Discovery is targeted for Aug. 6. Photo credit: NASA/Kim Shiflett

  12. High-Speed Soft-Decision Decoding of Two Reed-Muller Codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Uehara, Gregory T.

    1996-01-01

    In his research, we have proposed the (64, 40, 8) subcode of the third-order Reed-Muller (RM) code to NASA for high-speed satellite communications. This RM subcode can be used either alone or as an inner code of a concatenated coding system with the NASA standard (255, 233, 33) Reed-Solomon (RS) code as the outer code to achieve high performance (or low bit-error rate) with reduced decoding complexity. It can also be used as a component code in a multilevel bandwidth efficient coded modulation system to achieve reliable bandwidth efficient data transmission. This report will summarize the key progress we have made toward achieving our eventual goal of implementing a decoder system based upon this code. In the first phase of study, we investigated the complexities of various sectionalized trellis diagrams for the proposed (64, 40, 8) RNI subcode. We found a specific 8-trellis diagram for this code which requires the least decoding complexity with a high possibility of achieving a decoding speed of 600 M bits per second (Mbps). The combination of a large number of states and a hi ch data rate will be made possible due to the utilization of a high degree of parallelism throughout the architecture. This trellis diagram will be presented and briefly described. In the second phase of study which was carried out through the past year, we investigated circuit architectures to determine the feasibility of VLSI implementation of a high-speed Viterbi decoder based on this 8-section trellis diagram. We began to examine specific design and implementation approaches to implement a fully custom integrated circuit (IC) which will be a key building block for a decoder system implementation. The key results will be presented in this report. This report will be divided into three primary sections. First, we will briefly describe the system block diagram in which the proposed decoder is assumed to be operating and present some of the key architectural approaches being used to implement the system at high speed. Second, we will describe details of the 8-trellis diagram we found to best meet the trade-offs between chip and overall system complexity. The chosen approach implements the trellis for the (64, 40, 8) RM subcode with 32 independent sub-trellises. And third, we will describe results of our feasibility study on the implementation of such an IC chip in CMOS technology to implement one of these sub-trellises.

  13. High-Speed Soft-Decision Decoding of Two Reed-Muller Codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Uehara, Gregory T.

    1996-01-01

    In this research, we have proposed the (64, 40, 8) subcode of the third-order Reed-Muller (RM) code to NASA for high-speed satellite communications. This RM subcode can be used either alone or as an inner code of a concatenated coding system with the NASA standard (255, 233, 33) Reed-Solomon (RS) code as the outer code to achieve high performance (or low bit-error rate) with reduced decoding complexity. It can also be used as a component code in a multilevel bandwidth efficient coded modulation system to achieve reliable bandwidth efficient data transmission. This report will summarize the key progress we have made toward achieving our eventual goal of implementing, a decoder system based upon this code. In the first phase of study, we investigated the complexities of various sectionalized trellis diagrams for the proposed (64, 40, 8) RM subcode. We found a specific 8-trellis diagram for this code which requires the least decoding complexity with a high possibility of achieving a decoding speed of 600 M bits per second (Mbps). The combination of a large number of states and a high data rate will be made possible due to the utilization of a high degree of parallelism throughout the architecture. This trellis diagram will be presented and briefly described. In the second phase of study, which was carried out through the past year, we investigated circuit architectures to determine the feasibility of VLSI implementation of a high-speed Viterbi decoder based on this 8-section trellis diagram. We began to examine specific design and implementation approaches to implement a fully custom integrated circuit (IC) which will be a key building block for a decoder system implementation. The key results will be presented in this report. This report will be divided into three primary sections. First, we will briefly describe the system block diagram in which the proposed decoder is assumed to be operating, and present some of the key architectural approaches being used to implement the system at high speed. Second, we will describe details of the 8-trellis diagram we found to best meet the trade-offs between chip and overall system complexity. The chosen approach implements the trellis for the (64, 40, 8) RM subcode with 32 independent sub-trellises. And third, we will describe results of our feasibility study on the implementation of such an IC chip in CMOS technology to implement one of these sub-trellises.

  14. A brain-machine interface enables bimanual arm movements in monkeys.

    PubMed

    Ifft, Peter J; Shokur, Solaiman; Li, Zheng; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2013-11-06

    Brain-machine interfaces (BMIs) are artificial systems that aim to restore sensation and movement to paralyzed patients. So far, BMIs have enabled only one arm to be moved at a time. Control of bimanual arm movements remains a major challenge. We have developed and tested a bimanual BMI that enables rhesus monkeys to control two avatar arms simultaneously. The bimanual BMI was based on the extracellular activity of 374 to 497 neurons recorded from several frontal and parietal cortical areas of both cerebral hemispheres. Cortical activity was transformed into movements of the two arms with a decoding algorithm called a fifth-order unscented Kalman filter (UKF). The UKF was trained either during a manual task performed with two joysticks or by having the monkeys passively observe the movements of avatar arms. Most cortical neurons changed their modulation patterns when both arms were engaged simultaneously. Representing the two arms jointly in a single UKF decoder resulted in improved decoding performance compared with using separate decoders for each arm. As the animals' performance in bimanual BMI control improved over time, we observed widespread plasticity in frontal and parietal cortical areas. Neuronal representation of the avatar and reach targets was enhanced with learning, whereas pairwise correlations between neurons initially increased and then decreased. These results suggest that cortical networks may assimilate the two avatar arms through BMI control. These findings should help in the design of more sophisticated BMIs capable of enabling bimanual motor control in human patients.

  15. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex

    PubMed Central

    Logiaco, Laureline; Quilodran, René; Procyk, Emmanuel; Arleo, Angelo

    2015-01-01

    The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC) of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70–200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys’ behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators. PMID:26266537

  16. Squeeze-SegNet: a new fast deep convolutional neural network for semantic segmentation

    NASA Astrophysics Data System (ADS)

    Nanfack, Geraldin; Elhassouny, Azeddine; Oulad Haj Thami, Rachid

    2018-04-01

    The recent researches in Deep Convolutional Neural Network have focused their attention on improving accuracy that provide significant advances. However, if they were limited to classification tasks, nowadays with contributions from Scientific Communities who are embarking in this field, they have become very useful in higher level tasks such as object detection and pixel-wise semantic segmentation. Thus, brilliant ideas in the field of semantic segmentation with deep learning have completed the state of the art of accuracy, however this architectures become very difficult to apply in embedded systems as is the case for autonomous driving. We present a new Deep fully Convolutional Neural Network for pixel-wise semantic segmentation which we call Squeeze-SegNet. The architecture is based on Encoder-Decoder style. We use a SqueezeNet-like encoder and a decoder formed by our proposed squeeze-decoder module and upsample layer using downsample indices like in SegNet and we add a deconvolution layer to provide final multi-channel feature map. On datasets like Camvid or City-states, our net gets SegNet-level accuracy with less than 10 times fewer parameters than SegNet.

  17. Loss tolerant speech decoder for telecommunications

    NASA Technical Reports Server (NTRS)

    Prieto, Jr., Jaime L. (Inventor)

    1999-01-01

    A method and device for extrapolating past signal-history data for insertion into missing data segments in order to conceal digital speech frame errors. The extrapolation method uses past-signal history that is stored in a buffer. The method is implemented with a device that utilizes a finite-impulse response (FIR) multi-layer feed-forward artificial neural network that is trained by back-propagation for one-step extrapolation of speech compression algorithm (SCA) parameters. Once a speech connection has been established, the speech compression algorithm device begins sending encoded speech frames. As the speech frames are received, they are decoded and converted back into speech signal voltages. During the normal decoding process, pre-processing of the required SCA parameters will occur and the results stored in the past-history buffer. If a speech frame is detected to be lost or in error, then extrapolation modules are executed and replacement SCA parameters are generated and sent as the parameters required by the SCA. In this way, the information transfer to the SCA is transparent, and the SCA processing continues as usual. The listener will not normally notice that a speech frame has been lost because of the smooth transition between the last-received, lost, and next-received speech frames.

  18. Telemedicine. Final report/project accomplishments summary CRADA number 95-KCP-1014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanDeusen, A.L.

    1997-04-01

    This project was initiated to fill existing voids in the telemedicine equipment market. Currently, when a medical facility adds telemedicine capability to their video conference system, they must purchase expensive and bulky encoders and decoders in order to send information over the available data channel. Even with this expensive equipment, only one data type (stethoscope or ECG) can be sent at a time. In addition, since existing encoders and decoders are not designed specifically for telemedicine, special cables must be built to connect with this equipment. This project resulted in the design and construction of an encoder/decoder system that resolvedmore » these issues. The unit (referred to as the Telecoder) is designed specifically for the telemedicine market. The Telecoder is compact, handles two types of data (stethoscope and ECG) simultaneously, integrates with existing medical equipment, and is less expensive. In addition to the Telecoder module, a prototype was built that adds all the necessary logic and interfaces necessary to integrate the basic encoder design into additional Cardionics products. Although a complete integration into other Cardionics products was not in the scope of this CRADA, all the basic design work has been done to allow Cardionics to complete the work.« less

  19. Modeling task-specific neuronal ensembles improves decoding of grasp

    NASA Astrophysics Data System (ADS)

    Smith, Ryan J.; Soares, Alcimar B.; Rouse, Adam G.; Schieber, Marc H.; Thakor, Nitish V.

    2018-06-01

    Objective. Dexterous movement involves the activation and coordination of networks of neuronal populations across multiple cortical regions. Attempts to model firing of individual neurons commonly treat the firing rate as directly modulating with motor behavior. However, motor behavior may additionally be associated with modulations in the activity and functional connectivity of neurons in a broader ensemble. Accounting for variations in neural ensemble connectivity may provide additional information about the behavior being performed. Approach. In this study, we examined neural ensemble activity in primary motor cortex (M1) and premotor cortex (PM) of two male rhesus monkeys during performance of a center-out reach, grasp and manipulate task. We constructed point process encoding models of neuronal firing that incorporated task-specific variations in the baseline firing rate as well as variations in functional connectivity with the neural ensemble. Models were evaluated both in terms of their encoding capabilities and their ability to properly classify the grasp being performed. Main results. Task-specific ensemble models correctly predicted the performed grasp with over 95% accuracy and were shown to outperform models of neuronal activity that assume only a variable baseline firing rate. Task-specific ensemble models exhibited superior decoding performance in 82% of units in both monkeys (p  <  0.01). Inclusion of ensemble activity also broadly improved the ability of models to describe observed spiking. Encoding performance of task-specific ensemble models, measured by spike timing predictability, improved upon baseline models in 62% of units. Significance. These results suggest that additional discriminative information about motor behavior found in the variations in functional connectivity of neuronal ensembles located in motor-related cortical regions is relevant to decode complex tasks such as grasping objects, and may serve the basis for more reliable and accurate neural prosthesis.

  20. Probabilistic Amplitude Shaping With Hard Decision Decoding and Staircase Codes

    NASA Astrophysics Data System (ADS)

    Sheikh, Alireza; Amat, Alexandre Graell i.; Liva, Gianluigi; Steiner, Fabian

    2018-05-01

    We consider probabilistic amplitude shaping (PAS) as a means of increasing the spectral efficiency of fiber-optic communication systems. In contrast to previous works in the literature, we consider probabilistic shaping with hard decision decoding (HDD). In particular, we apply the PAS recently introduced by B\\"ocherer \\emph{et al.} to a coded modulation (CM) scheme with bit-wise HDD that uses a staircase code as the forward error correction code. We show that the CM scheme with PAS and staircase codes yields significant gains in spectral efficiency with respect to the baseline scheme using a staircase code and a standard constellation with uniformly distributed signal points. Using a single staircase code, the proposed scheme achieves performance within $0.57$--$1.44$ dB of the corresponding achievable information rate for a wide range of spectral efficiencies.

  1. A digital communications system for manned spaceflight applications.

    NASA Technical Reports Server (NTRS)

    Batson, B. H.; Moorehead, R. W.

    1973-01-01

    A highly efficient, all-digital communications signal design employing convolutional coding and PN spectrum spreading is described for two-way transmission of voice and data between a manned spacecraft and ground. Variable-slope delta modulation is selected for analog/digital conversion of the voice signal, and a convolutional decoder utilizing the Viterbi decoding algorithm is selected for use at each receiving terminal. A PN spread spectrum technique is implemented to protect against multipath effects and to reduce the energy density (per unit bandwidth) impinging on the earth's surface to a value within the guidelines adopted by international agreement. Performance predictions are presented for transmission via a TDRS (tracking and data relay satellite) system and for direct transmission between the spacecraft and earth. Hardware estimates are provided for a flight-qualified communications system employing the coded digital signal design.

  2. Error Control Coding Techniques for Space and Satellite Communications

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    2000-01-01

    This paper presents a concatenated turbo coding system in which a Reed-Solomom outer code is concatenated with a binary turbo inner code. In the proposed system, the outer code decoder and the inner turbo code decoder interact to achieve both good bit error and frame error performances. The outer code decoder helps the inner turbo code decoder to terminate its decoding iteration while the inner turbo code decoder provides soft-output information to the outer code decoder to carry out a reliability-based soft-decision decoding. In the case that the outer code decoding fails, the outer code decoder instructs the inner code decoder to continue its decoding iterations until the outer code decoding is successful or a preset maximum number of decoding iterations is reached. This interaction between outer and inner code decoders reduces decoding delay. Also presented in the paper are an effective criterion for stopping the iteration process of the inner code decoder and a new reliability-based decoding algorithm for nonbinary codes.

  3. An Interactive Concatenated Turbo Coding System

    NASA Technical Reports Server (NTRS)

    Liu, Ye; Tang, Heng; Lin, Shu; Fossorier, Marc

    1999-01-01

    This paper presents a concatenated turbo coding system in which a Reed-Solomon outer code is concatenated with a binary turbo inner code. In the proposed system, the outer code decoder and the inner turbo code decoder interact to achieve both good bit error and frame error performances. The outer code decoder helps the inner turbo code decoder to terminate its decoding iteration while the inner turbo code decoder provides soft-output information to the outer code decoder to carry out a reliability-based soft- decision decoding. In the case that the outer code decoding fails, the outer code decoder instructs the inner code decoder to continue its decoding iterations until the outer code decoding is successful or a preset maximum number of decoding iterations is reached. This interaction between outer and inner code decoders reduces decoding delay. Also presented in the paper are an effective criterion for stopping the iteration process of the inner code decoder and a new reliability-based decoding algorithm for nonbinary codes.

  4. Design of small-molecule epigenetic modulators

    PubMed Central

    Pachaiyappan, Boobalan

    2013-01-01

    The field of epigenetics has expanded rapidly to reveal multiple new targets for drug discovery. The functional elements of the epigenomic machinery can be catagorized as writers, erasers and readers, and together these elements control cellular gene expression and homeostasis. It is increasingly clear that aberrations in the epigenome can underly a variety of diseases, and thus discovery of small molecules that modulate the epigenome in a specific manner is a viable approach to the discovery of new therapeutic agents. In this Digest, the components of epigenetic control of gene expression will be briefly summarized, and efforts to identify small molecules that modulate epigenetic processes will be described. PMID:24300735

  5. Four-dimensional modulation and coding: An alternate to frequency-reuse

    NASA Technical Reports Server (NTRS)

    Wilson, S. G.; Sleeper, H. A.

    1983-01-01

    Four dimensional modulation as a means of improving communication efficiency on the band-limited Gaussian channel, with the four dimensions of signal space constituted by phase orthogonal carriers (cos omega sub c t and sin omega sub c t) simultaneously on space orthogonal electromagnetic waves are discussed. "Frequency reuse' techniques use such polarization orthogonality to reuse the same frequency slot, but the modulation is not treated as four dimensional, rather a product of two-d modulations, e.g., QPSK. It is well known that, higher dimensionality signalling affords possible improvements in the power bandwidth sense. Four-D modulations based upon subsets of lattice-packings in four-D, which afford simplification of encoding and decoding are described. Sets of up to 1024 signals are constructed in four-D, providing a (Nyquist) spectral efficiency of up to 10 bps/Hz. Energy gains over the reuse technique are in the one to three dB range t equal bandwidth.

  6. Four-dimensional modulation and coding - An alternate to frequency-reuse

    NASA Technical Reports Server (NTRS)

    Wilson, S. G.; Sleeper, H. A.; Srinath, N. K.

    1984-01-01

    Four dimensional modulation as a means of improving communication efficiency on the band-limited Gaussian channel, with the four dimensions of signal space constituted by phase orthogonal carriers (cos omega sub c t and sin omega sub c t) simultaneously on space orthogonal electromagnetic waves are discussed. 'Frequency reuse' techniques use such polarization orthogonality to reuse the same frequency slot, but the modulation is not treated as four dimensional, rather a product of two-D modulations, e.g., QPSK. It is well known that, higher dimensionality signalling affords possible improvements in the power bandwidth sense. Four-D modulations based upon subsets of lattice-packings in four-D, which afford simplification of encoding and decoding are described. Sets of up to 1024 signals are constructed in four-D, providing a (Nyquist) spectral efficiency of up to 10 bps/Hz. Energy gains over the reuse technique are in the one to three dB range t equal bandwidth.

  7. Multidimensional Trellis Coded Phase Modulation Using a Multilevel Concatenation Approach. Part 1; Code Design

    NASA Technical Reports Server (NTRS)

    Rajpal, Sandeep; Rhee, Do Jun; Lin, Shu

    1997-01-01

    The first part of this paper presents a simple and systematic technique for constructing multidimensional M-ary phase shift keying (MMK) trellis coded modulation (TCM) codes. The construction is based on a multilevel concatenation approach in which binary convolutional codes with good free branch distances are used as the outer codes and block MPSK modulation codes are used as the inner codes (or the signal spaces). Conditions on phase invariance of these codes are derived and a multistage decoding scheme for these codes is proposed. The proposed technique can be used to construct good codes for both the additive white Gaussian noise (AWGN) and fading channels as is shown in the second part of this paper.

  8. Synchronization for Optical PPM with Inter-Symbol Guard Times

    NASA Astrophysics Data System (ADS)

    Rogalin, R.; Srinivasan, M.

    2017-05-01

    Deep space optical communications promises orders of magnitude growth in communication capacity, supporting high data rate applications such as video streaming and high-bandwidth science instruments. Pulse position modulation is the modulation format of choice for deep space applications, and by inserting inter-symbol guard times between the symbols, the signal carries the timing information needed by the demodulator. Accurately extracting this timing information is crucial to demodulating and decoding this signal. In this article, we propose a number of timing and frequency estimation schemes for this modulation format, and in particular highlight a low complexity maximum likelihood timing estimator that significantly outperforms the prior art in this domain. This method does not require an explicit synchronization sequence, freeing up channel resources for data transmission.

  9. Signal Detection and Frame Synchronization of Multiple Wireless Networking Waveforms

    DTIC Science & Technology

    2007-09-01

    punctured to obtain coding rates of 2 3 and 3 4 . Convolutional forward error correction coding is used to detect and correct bit...likely to be isolated and be correctable by the convolutional decoder. 44 Data rate (Mbps) Modulation Coding Rate Coded bits per subcarrier...binary convolutional code . A shortened Reed-Solomon technique is employed first. The code is shortened depending upon the data

  10. Receiver Statistics for Cognitive Radios in Dynamic Spectrum Access Networks

    DTIC Science & Technology

    2012-02-28

    SNR) are employed by many protocols and processes in direct-sequence ( DS ) spread-spectrum packet radio networks, including soft-decision decoding...adaptive modulation protocols, and power adjustment protocols. For DS spread spectrum, we have introduced and evaluated SNR estimators that employ...obtained during demodulation in a binary CDMA receiver. We investigated several methods to apply the proposed metric to the demodulator’s soft-decision

  11. Maximum likelihood estimation of signal-to-noise ratio and combiner weight

    NASA Technical Reports Server (NTRS)

    Kalson, S.; Dolinar, S. J.

    1986-01-01

    An algorithm for estimating signal to noise ratio and combiner weight parameters for a discrete time series is presented. The algorithm is based upon the joint maximum likelihood estimate of the signal and noise power. The discrete-time series are the sufficient statistics obtained after matched filtering of a biphase modulated signal in additive white Gaussian noise, before maximum likelihood decoding is performed.

  12. On the performance of joint iterative detection and decoding in coherent optical channels with laser frequency fluctuations

    NASA Astrophysics Data System (ADS)

    Castrillón, Mario A.; Morero, Damián A.; Agazzi, Oscar E.; Hueda, Mario R.

    2015-08-01

    The joint iterative detection and decoding (JIDD) technique has been proposed by Barbieri et al. (2007) with the objective of compensating the time-varying phase noise and constant frequency offset experienced in satellite communication systems. The application of JIDD to optical coherent receivers in the presence of laser frequency fluctuations has not been reported in prior literature. Laser frequency fluctuations are caused by mechanical vibrations, power supply noise, and other mechanisms. They significantly degrade the performance of the carrier phase estimator in high-speed intradyne coherent optical receivers. This work investigates the performance of the JIDD algorithm in multi-gigabit optical coherent receivers. We present simulation results of bit error rate (BER) for non-differential polarization division multiplexing (PDM)-16QAM modulation in a 200 Gb/s coherent optical system that includes an LDPC code with 20% overhead and net coding gain of 11.3 dB at BER = 10-15. Our study shows that JIDD with a pilot rate ⩽ 5 % compensates for both laser phase noise and laser frequency fluctuation. Furthermore, since JIDD is used with non-differential modulation formats, we find that gains in excess of 1 dB can be achieved over existing solutions based on an explicit carrier phase estimator with differential modulation. The impact of the fiber nonlinearities in dense wavelength division multiplexing (DWDM) systems is also investigated. Our results demonstrate that JIDD is an excellent candidate for application in next generation high-speed optical coherent receivers.

  13. Performance analysis of decode-and-forward dual-hop optical spatial modulation with diversity combiner over atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Odeyemi, Kehinde O.; Owolawi, Pius A.; Srivastava, Viranjay M.

    2017-11-01

    Dual-hops transmission is a growing interest technique that can be used to mitigate against atmospheric turbulence along the Free Space Optical (FSO) communication links. This paper analyzes the performance of Decode-and-Forward (DF) dual-hops FSO systems in-conjunction with spatial modulation and diversity combiners over a Gamma-Gamma atmospheric turbulence channel using heterodyne detection. Maximum Ratio Combiner (MRC), Equal Gain Combiner (EGC) and Selection Combiner (SC) are considered at the relay and destination as mitigation tools to improve the system error performance. Power series expansion of modified Bessel function is used to derive the closed form expression for the end-to-end Average Pairwise Error Probability (APEP) expressions for each of the combiners under study and a tight upper bound on the Average Bit Error Rate (ABER) per hop is given. Thus, the overall end-to-end ABER for the dual-hops FSO system is then evaluated. The numerical results depicted that dual-hops transmission systems outperformed the direct link systems. Moreover, the impact of having the same and different combiners at the relay and destination are also presented. The results also confirm that the combination of dual hops transmission with spatial modulation and diversity combiner significantly improves the systems error rate with the MRC combiner offering an optimal performance with respect to variation in atmospheric turbulence, change in links average received SNR and link range of the system.

  14. Design of small molecule epigenetic modulators.

    PubMed

    Pachaiyappan, Boobalan; Woster, Patrick M

    2014-01-01

    The field of epigenetics has expanded rapidly to reveal multiple new targets for drug discovery. The functional elements of the epigenomic machinery can be categorized as writers, erasers and readers, and together these elements control cellular gene expression and homeostasis. It is increasingly clear that aberrations in the epigenome can underly a variety of diseases, and thus discovery of small molecules that modulate the epigenome in a specific manner is a viable approach to the discovery of new therapeutic agents. In this Digest, the components of epigenetic control of gene expression will be briefly summarized, and efforts to identify small molecules that modulate epigenetic processes will be described. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Neuroimaging of decoding and language comprehension in young very low birth weight (VLBW) adolescents: Indications for compensatory mechanisms.

    PubMed

    van Ettinger-Veenstra, Helene; Widén, Carin; Engström, Maria; Karlsson, Thomas; Leijon, Ingemar; Nelson, Nina

    2017-01-01

    In preterm children with very low birth weight (VLBW ≤ 1500 g), reading problems are often observed. Reading comprehension is dependent on word decoding and language comprehension. We investigated neural activation-within brain regions important for reading-related to components of reading comprehension in young VLBW adolescents in direct comparison to normal birth weight (NBW) term-born peers, with the use of functional magnetic resonance imaging (fMRI). We hypothesized that the decoding mechanisms will be affected by VLBW, and expect to see increased neural activity for VLBW which may be modulated by task performance and cognitive ability. The study investigated 13 (11 included in fMRI) young adolescents (ages 12 to 14 years) born preterm with VLBW and in 13 NBW controls (ages 12-14 years) for performance on the Block Design and Vocabulary subtests of the Wechsler Intelligence Scale for Children; and for semantic, orthographic, and phonological processing during an fMRI paradigm. The VLBW group showed increased phonological activation in left inferior frontal gyrus, decreased orthographic activation in right supramarginal gyrus, and decreased semantic activation in left inferior frontal gyrus. Block Design was related to altered right-hemispheric activation, and VLBW showed lower WISC Block Design scores. Left angular gyrus showed activation increase specific for VLBW with high accuracy on the semantic test. Young VLBW adolescents showed no accuracy and reaction time performance differences on our fMRI language tasks, but they did exhibit altered neural activation during these tasks. This altered activation for VLBW was observed as increased activation during phonological decoding, and as mainly decreased activation during orthographic and semantic processing. Correlations of neural activation with accuracy on the semantic fMRI task and with decreased WISC Block Design performance were specific for the VLBW group. Together, results suggest compensatory mechanisms by recruiting additional brain regions upon altered neural development of decoding for VLBW.

  16. A Real-Time Brain-Machine Interface Combining Motor Target and Trajectory Intent Using an Optimal Feedback Control Design

    PubMed Central

    Shanechi, Maryam M.; Williams, Ziv M.; Wornell, Gregory W.; Hu, Rollin C.; Powers, Marissa; Brown, Emery N.

    2013-01-01

    Real-time brain-machine interfaces (BMI) have focused on either estimating the continuous movement trajectory or target intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control system in which the subject modulates the neural activity to move the prosthetic device towards a desired target while receiving real-time sensory feedback of the state of the movement. We develop a novel real-time BMI using an optimal feedback control design that jointly estimates the movement target and trajectory of monkeys in two stages. First, the target is decoded from neural spiking activity before movement initiation. Second, the trajectory is decoded by combining the decoded target with the peri-movement spiking activity using an optimal feedback control design. This design exploits a recursive Bayesian decoder that uses an optimal feedback control model of the sensorimotor system to take into account the intended target location and the sensory feedback in its trajectory estimation from spiking activity. The real-time BMI processes the spiking activity directly using point process modeling. We implement the BMI in experiments consisting of an instructed-delay center-out task in which monkeys are presented with a target location on the screen during a delay period and then have to move a cursor to it without touching the incorrect targets. We show that the two-stage BMI performs more accurately than either stage alone. Correct target prediction can compensate for inaccurate trajectory estimation and vice versa. The optimal feedback control design also results in trajectories that are smoother and have lower estimation error. The two-stage decoder also performs better than linear regression approaches in offline cross-validation analyses. Our results demonstrate the advantage of a BMI design that jointly estimates the target and trajectory of movement and more closely mimics the sensorimotor control system. PMID:23593130

  17. KSC-08pd1041

    NASA Image and Video Library

    2008-04-26

    CAPE CANAVERAL, Fla. -- In the Vehicle Assembly Building at NASA's Kennedy Space Center, space shuttle Discovery, looking like a giant bat, hangs suspended above the transfer aisle. The crane holding it will lift Discovery to the upper levels and lower it into high bay 3. In the bay, Discovery will be mated to the external tank and solid rocket boosters for launch on the upcoming STS-124 mission to the International Space Station. On the mission, the STS-124 crew will transport the Japanese Experiment Module - Pressurized Module and the Japanese Remote Manipulator System to the space station. Launch of Discovery is targeted for May 31 Photo credit: NASA/Jim Grossmann

  18. Iterative Frequency Domain Decision Feedback Equalization and Decoding for Underwater Acoustic Communications

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Ge, Jian-Hua

    2012-12-01

    Single-carrier (SC) transmission with frequency-domain equalization (FDE) is today recognized as an attractive alternative to orthogonal frequency-division multiplexing (OFDM) for communication application with the inter-symbol interference (ISI) caused by multi-path propagation, especially in shallow water channel. In this paper, we investigate an iterative receiver based on minimum mean square error (MMSE) decision feedback equalizer (DFE) with symbol rate and fractional rate samplings in the frequency domain (FD) and serially concatenated trellis coded modulation (SCTCM) decoder. Based on sound speed profiles (SSP) measured in the lake and finite-element ray tracking (Bellhop) method, the shallow water channel is constructed to evaluate the performance of the proposed iterative receiver. Performance results show that the proposed iterative receiver can significantly improve the performance and obtain better data transmission than FD linear and adaptive decision feedback equalizers, especially in adopting fractional rate sampling.

  19. Optimal decoding in fading channels - A combined envelope, multiple differential and coherent detection approach

    NASA Astrophysics Data System (ADS)

    Makrakis, Dimitrios; Mathiopoulos, P. Takis

    A maximum likelihood sequential decoder for the reception of digitally modulated signals with single or multiamplitude constellations transmitted over a multiplicative, nonselective fading channel is derived. It is shown that its structure consists of a combination of envelope, multiple differential, and coherent detectors. The outputs of each of these detectors are jointly processed by means of an algorithm. This algorithm is presented in a recursive form. The derivation of the new receiver is general enough to accommodate uncoded as well as coded (e.g., trellis-coded) schemes. Performance evaluation results for a reduced-complexity trellis-coded QPSK system have demonstrated that the proposed receiver dramatically reduces the error floors caused by fading. At Eb/N0 = 20 dB the new receiver structure results in bit-error-rate reductions of more than three orders of magnitude compared to a conventional Viterbi receiver, while being reasonably simple to implement.

  20. Enhanced decoding for the Galileo low-gain antenna mission: Viterbi redecoding with four decoding stages

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Belongie, M.

    1995-01-01

    The Galileo low-gain antenna mission will be supported by a coding system that uses a (14,1/4) inner convolutional code concatenated with Reed-Solomon codes of four different redundancies. Decoding for this code is designed to proceed in four distinct stages of Viterbi decoding followed by Reed-Solomon decoding. In each successive stage, the Reed-Solomon decoder only tries to decode the highest redundancy codewords not yet decoded in previous stages, and the Viterbi decoder redecodes its data utilizing the known symbols from previously decoded Reed-Solomon codewords. A previous article analyzed a two-stage decoding option that was not selected by Galileo. The present article analyzes the four-stage decoding scheme and derives the near-optimum set of redundancies selected for use by Galileo. The performance improvements relative to one- and two-stage decoding systems are evaluated.

  1. Trellis-coded CPM for satellite-based mobile communications

    NASA Technical Reports Server (NTRS)

    Abrishamkar, Farrokh; Biglieri, Ezio

    1988-01-01

    Digital transmission for satellite-based land mobile communications is discussed. To satisfy the power and bandwidth limitations imposed on such systems, a combination of trellis coding and continuous-phase modulated signals are considered. Some schemes based on this idea are presented, and their performance is analyzed by computer simulation. The results obtained show that a scheme based on directional detection and Viterbi decoding appears promising for practical applications.

  2. Cascading Oscillators in Decoding Speech: Reflection of a Cortical Computation Principle

    DTIC Science & Technology

    2016-09-06

    Combining an experimental paradigm based on Ghitza and Greenberg (2009) for speech with the approach of Farbood et al. (2013) to timing in key...Fuglsang, 2015). A model was developed which uses modulation spectrograms to construct an oscillating time - series synchronized with the slowly varying...estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources, gathering and maintaining the data

  3. Development of a Self Powered Vehicle Detector

    DTIC Science & Technology

    1978-10-01

    Low Power RFTelemetry Link, Audio Tone kncoder/Decoder, 9mn’dlrectional Microstrip Antenna, RF Oscillator , RF Transmitter, Battery/ Solar Cell Tests...tuned Colpitts oscillator using a fundamental mode crystal, a reactance modulator (varactor diode), and a collector tank circuit tuned to the second...papers discussing this type of VCXO. The basic Colpitts oscillator equivalent circuit is shown in Figure 29 having a collector tank tuned to the 2nd

  4. Decoding the genome with an integrative analysis tool: combinatorial CRM Decoder.

    PubMed

    Kang, Keunsoo; Kim, Joomyeong; Chung, Jae Hoon; Lee, Daeyoup

    2011-09-01

    The identification of genome-wide cis-regulatory modules (CRMs) and characterization of their associated epigenetic features are fundamental steps toward the understanding of gene regulatory networks. Although integrative analysis of available genome-wide information can provide new biological insights, the lack of novel methodologies has become a major bottleneck. Here, we present a comprehensive analysis tool called combinatorial CRM decoder (CCD), which utilizes the publicly available information to identify and characterize genome-wide CRMs in a species of interest. CCD first defines a set of the epigenetic features which is significantly associated with a set of known CRMs as a code called 'trace code', and subsequently uses the trace code to pinpoint putative CRMs throughout the genome. Using 61 genome-wide data sets obtained from 17 independent mouse studies, CCD successfully catalogued ∼12 600 CRMs (five distinct classes) including polycomb repressive complex 2 target sites as well as imprinting control regions. Interestingly, we discovered that ∼4% of the identified CRMs belong to at least two different classes named 'multi-functional CRM', suggesting their functional importance for regulating spatiotemporal gene expression. From these examples, we show that CCD can be applied to any potential genome-wide datasets and therefore will shed light on unveiling genome-wide CRMs in various species.

  5. Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome.

    PubMed

    Sharma, Divya; Cukras, Anthony R; Rogers, Elizabeth J; Southworth, Daniel R; Green, Rachel

    2007-12-07

    The fidelity of aminoacyl-tRNA selection by the ribosome depends on a conformational switch in the decoding center of the small ribosomal subunit induced by cognate but not by near-cognate aminoacyl-tRNA. The aminoglycosides paromomycin and streptomycin bind to the decoding center and induce related structural rearrangements that explain their observed effects on miscoding. Structural and biochemical studies have identified ribosomal protein S12 (as well as specific nucleotides in 16S ribosomal RNA) as a critical molecular contributor in distinguishing between cognate and near-cognate tRNA species as well as in promoting more global rearrangements in the small subunit, referred to as "closure." Here we use a mutational approach to define contributions made by two highly conserved loops in S12 to the process of tRNA selection. Most S12 variant ribosomes tested display increased levels of fidelity (a "restrictive" phenotype). Interestingly, several variants, K42A and R53A, were substantially resistant to the miscoding effects of paromomycin. Further characterization of the compromised paromomycin response identified a probable second, fidelity-modulating binding site for paromomycin in the 16S ribosomal RNA that facilitates closure of the small subunit and compensates for defects associated with the S12 mutations.

  6. Noninvasive EEG correlates of overground and stair walking.

    PubMed

    Brantley, Justin A; Luu, Trieu Phat; Ozdemir, Recep; Zhu, Fangshi; Winslow, Anna T; Huang, Helen; Contreras-Vidal, Jose L

    2016-08-01

    Automated walking intention detection remains a challenge in lower-limb neuroprosthetic systems. Here, we assess the feasibility of extracting motor intent from scalp electroencephalography (EEG). First, we evaluated the corticomuscular coherence between central EEG electrodes (C1, Cz, C2) and muscles of the shank and thigh during walking on level ground and stairs. Second, we trained decoders to predict the linear envelope of the surface electromyogram (EMG). We observed significant EEG-led corticomuscular coupling between electrodes and sEMG (tibialis anterior) in the high delta (3-4 Hz) and low theta (4-5 Hz) frequency bands during level walking, indicating efferent signaling from the cortex to peripheral motor neurons. The coherence was increased between EEG and vastus lateralis and tibialis anterior in the delta band (<; 2 Hz) during stair ascent, indicating a task specific modulation in corticomuscular coupling. However, EMG was the leading signal for biceps femoris and gastrocnemius coherence during stair ascent, possibly representing afferent feedback loops from periphery to the motor cortex. Decoder validation showed that EEG signals contained information about the sEMG patterns during over ground walking, however, the accuracy of the predicted sEMG patterns decreased during the stair condition. Overall, these initial findings support the feasibility of integrating sEMG and EEG into a hybrid decoder for volitional control of lower limb neuroprostheses.

  7. Experimental demonstration of polarization encoding quantum key distribution system based on intrinsically stable polarization-modulated units.

    PubMed

    Wang, Jindong; Qin, Xiaojuan; Jiang, Yinzhu; Wang, Xiaojing; Chen, Liwei; Zhao, Feng; Wei, Zhengjun; Zhang, Zhiming

    2016-04-18

    A proof-of-principle demonstration of a one-way polarization encoding quantum key distribution (QKD) system is demonstrated. This approach can automatically compensate for birefringence and phase drift. This is achieved by constructing intrinsically stable polarization-modulated units (PMUs) to perform the encoding and decoding, which can be used with four-state protocol, six-state protocol, and the measurement-device-independent (MDI) scheme. A polarization extinction ratio of about 30 dB was maintained for several hours over a 50 km optical fiber without any adjustments to our setup, which evidences its potential for use in practical applications.

  8. Ratiometric Decoding of Pheromones for a Biomimetic Infochemical Communication System.

    PubMed

    Wei, Guangfen; Thomas, Sanju; Cole, Marina; Rácz, Zoltán; Gardner, Julian W

    2017-10-30

    Biosynthetic infochemical communication is an emerging scientific field employing molecular compounds for information transmission, labelling, and biochemical interfacing; having potential application in diverse areas ranging from pest management to group coordination of swarming robots. Our communication system comprises a chemoemitter module that encodes information by producing volatile pheromone components and a chemoreceiver module that decodes the transmitted ratiometric information via polymer-coated piezoelectric Surface Acoustic Wave Resonator (SAWR) sensors. The inspiration for such a system is based on the pheromone-based communication between insects. Ten features are extracted from the SAWR sensor response and analysed using multi-variate classification techniques, i.e., Linear Discriminant Analysis (LDA), Probabilistic Neural Network (PNN), and Multilayer Perception Neural Network (MLPNN) methods, and an optimal feature subset is identified. A combination of steady state and transient features of the sensor signals showed superior performances with LDA and MLPNN. Although MLPNN gave excellent results reaching 100% recognition rate at 400 s, over all time stations PNN gave the best performance based on an expanded data-set with adjacent neighbours. In this case, 100% of the pheromone mixtures were successfully identified just 200 s after they were first injected into the wind tunnel. We believe that this approach can be used for future chemical communication employing simple mixtures of airborne molecules.

  9. Ratiometric Decoding of Pheromones for a Biomimetic Infochemical Communication System

    PubMed Central

    Wei, Guangfen; Thomas, Sanju; Cole, Marina; Rácz, Zoltán

    2017-01-01

    Biosynthetic infochemical communication is an emerging scientific field employing molecular compounds for information transmission, labelling, and biochemical interfacing; having potential application in diverse areas ranging from pest management to group coordination of swarming robots. Our communication system comprises a chemoemitter module that encodes information by producing volatile pheromone components and a chemoreceiver module that decodes the transmitted ratiometric information via polymer-coated piezoelectric Surface Acoustic Wave Resonator (SAWR) sensors. The inspiration for such a system is based on the pheromone-based communication between insects. Ten features are extracted from the SAWR sensor response and analysed using multi-variate classification techniques, i.e., Linear Discriminant Analysis (LDA), Probabilistic Neural Network (PNN), and Multilayer Perception Neural Network (MLPNN) methods, and an optimal feature subset is identified. A combination of steady state and transient features of the sensor signals showed superior performances with LDA and MLPNN. Although MLPNN gave excellent results reaching 100% recognition rate at 400 s, over all time stations PNN gave the best performance based on an expanded data-set with adjacent neighbours. In this case, 100% of the pheromone mixtures were successfully identified just 200 s after they were first injected into the wind tunnel. We believe that this approach can be used for future chemical communication employing simple mixtures of airborne molecules. PMID:29084158

  10. A closed-loop neurobotic system for fine touch sensing

    NASA Astrophysics Data System (ADS)

    Bologna, L. L.; Pinoteau, J.; Passot, J.-B.; Garrido, J. A.; Vogel, J.; Ros Vidal, E.; Arleo, A.

    2013-08-01

    Objective. Fine touch sensing relies on peripheral-to-central neurotransmission of somesthetic percepts, as well as on active motion policies shaping tactile exploration. This paper presents a novel neuroengineering framework for robotic applications based on the multistage processing of fine tactile information in the closed action-perception loop. Approach. The integrated system modules focus on (i) neural coding principles of spatiotemporal spiking patterns at the periphery of the somatosensory pathway, (ii) probabilistic decoding mechanisms mediating cortical-like tactile recognition and (iii) decision-making and low-level motor adaptation underlying active touch sensing. We probed the resulting neural architecture through a Braille reading task. Main results. Our results on the peripheral encoding of primary contact features are consistent with experimental data on human slow-adapting type I mechanoreceptors. They also suggest second-order processing by cuneate neurons may resolve perceptual ambiguities, contributing to a fast and highly performing online discrimination of Braille inputs by a downstream probabilistic decoder. The implemented multilevel adaptive control provides robustness to motion inaccuracy, while making the number of finger accelerations covariate with Braille character complexity. The resulting modulation of fingertip kinematics is coherent with that observed in human Braille readers. Significance. This work provides a basis for the design and implementation of modular neuromimetic systems for fine touch discrimination in robotics.

  11. A subject-independent pattern-based Brain-Computer Interface

    PubMed Central

    Ray, Andreas M.; Sitaram, Ranganatha; Rana, Mohit; Pasqualotto, Emanuele; Buyukturkoglu, Korhan; Guan, Cuntai; Ang, Kai-Keng; Tejos, Cristián; Zamorano, Francisco; Aboitiz, Francisco; Birbaumer, Niels; Ruiz, Sergio

    2015-01-01

    While earlier Brain-Computer Interface (BCI) studies have mostly focused on modulating specific brain regions or signals, new developments in pattern classification of brain states are enabling real-time decoding and modulation of an entire functional network. The present study proposes a new method for real-time pattern classification and neurofeedback of brain states from electroencephalographic (EEG) signals. It involves the creation of a fused classification model based on the method of Common Spatial Patterns (CSPs) from data of several healthy individuals. The subject-independent model is then used to classify EEG data in real-time and provide feedback to new individuals. In a series of offline experiments involving training and testing of the classifier with individual data from 27 healthy subjects, a mean classification accuracy of 75.30% was achieved, demonstrating that the classification system at hand can reliably decode two types of imagery used in our experiments, i.e., happy emotional imagery and motor imagery. In a subsequent experiment it is shown that the classifier can be used to provide neurofeedback to new subjects, and that these subjects learn to “match” their brain pattern to that of the fused classification model in a few days of neurofeedback training. This finding can have important implications for future studies on neurofeedback and its clinical applications on neuropsychiatric disorders. PMID:26539089

  12. Circuit Design Approaches for Implementation of a Subtrellis IC for a Reed-Muller Subcode

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Uehara, Gregory T.; Nakamura, Eric B.; Chu, Cecilia W. P.

    1996-01-01

    In his research, we have proposed the (64, 40, 8) subcode of the third-order Reed-Muller (RM) code to NASA for high-speed satellite communications. This RM subcode can be used either alone or as an inner code of a concatenated coding system with the NASA standard (255, 233, 33) Reed-Solomon (RS) code as the outer code to achieve high performance (or low bit-error rate) with reduced decoding complexity. It can also be used as a component code in a multilevel bandwidth efficient coded modulation system to achieve reliable bandwidth efficient data transmission. This report will summarize the key progress we have made toward achieving our eventual goal of implementing a decoder system based upon this code. In the first phase of study, we investigated the complexities of various sectionalized trellis diagrams for the proposed (64, 40, 8) RM subcode. We found a specific 8-trellis diagram for this code which requires the least decoding complexity with a high possibility of achieving a decoding speed of 600 M bits per second(Mbps). The combination of a large number of states and a high data rate will be made possible due to the utilization of a high degree of parallelism throughout the architecture. This trellis diagram will be presented and briefly described. In the second phase of study which was carried out through the past year, we investigated circuit architectures to determine the feasibility of VLSI implementation of a high- speed Viterbi decoder based on this 8-section trellis diagram. We began to examine specific design and implementation approaches to implement a fully custom integrated circuit (IC) which will be a key building block for a decoder system implementation. The key results will be presented in this report. This report will be divided into three primary sections. First, we will briefly describe the system block diagram in which the proposed decoder is assumed to be operating and present some of the key architectural approaches being used to implement the system at high speed. Second, we will describe details of the 8-trellis diagram we found to best meet the trade-offs between chip and overall system complexity. The chosen approach implements the trellis for the (64, 40, 8) RM subcode with 32 independent sub-trellises. And third, we will describe results of our feasibility study on the implementation of such an IC chip in CMOS technology to implement one of these subtrellises.

  13. Circuit Design Approaches for Implementation of a Subtrellis IC for a Reed-Muller Subcode

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Uehara, Gregory T.; Nakamura, Eric B.; Chu, Cecilia W. P.

    1996-01-01

    In this research, we have proposed the (64, 40, 8) subcode of the third-order Reed-Muller (RM) code to NASA for high-speed satellite communications. This RM subcode can be used either alone or as an inner code of a concatenated coding system with the NASA standard (255, 233, 33) Reed-Solomon (RS) code as the outer code to achieve high performance (or low bit-error rate) with reduced decoding complexity. It can also be used as a component code in a multilevel bandwidth efficient coded modulation system to achieve reliable bandwidth efficient data transmission. This report will summarize the key progress we have made toward achieving our eventual goal of implementing a decoder system based upon this code. In the first phase of study, we investigated the complexities of various sectionalized trellis diagrams for the proposed (64, 40, 8) RM subcode. We found a specific 8-trellis diagram for this code which requires the least decoding complexity with a high possibility of achieving a decoding speed of 600 M bits per second (Mbps). The combination of a large number of states and a high data rate will be made possible due to the utilization of a high degree of parallelism throughout the architecture. This trellis diagram will be presented and briefly described. In the second phase of study which was carried out through the past year, we investigated circuit architectures to determine the feasibility of VLSI implementation of a high-speed Viterbi decoder based on this 8-section trellis diagram. We began to examine specific design and implementation approaches to implement a fully custom integrated circuit (IC) which will be a key building block for a decoder system implementation. The key results will be presented in this report. This report will be divided into three primary sections. First, we will briefly describe the system block diagram in which the proposed decoder is assumed to be operating and present some of the key architectural approaches being used to implement the system at high speed. Second, we will describe details of the 8-trellis diagram we found to best meet the trade-offs between chip and overall system complexity. The chosen approach implements the trellis for the (64, 40, 8) RM subcode with 32 independent sub-trellises. And third, we will describe results of our feasibility study on the implementation of such an IC chip in CMOS technology to implement one of these subtrellises.

  14. Effectiveness of Discovery Learning-Based Transformation Geometry Module

    NASA Astrophysics Data System (ADS)

    Febriana, R.; Haryono, Y.; Yusri, R.

    2017-09-01

    Development of transformation geometry module is conducted because the students got difficulties to understand the existing book. The purpose of the research was to find out the effectiveness of discovery learning-based transformation geometry module toward student’s activity. Model of the development was Plomp model consisting preliminary research, prototyping phase and assessment phase. The research was focused on assessment phase where it was to observe the designed product effectiveness. The instrument was observation sheet. The observed activities were visual activities, oral activities, listening activities, mental activities, emotional activities and motor activities. Based on the result of the research, it is found that visual activities, learning activities, writing activities, the student’s activity is in the criteria very effective. It can be concluded that the use of discovery learning-based transformation geometry module use can increase the positive student’s activity and decrease the negative activity.

  15. KSC-2009-4560

    NASA Image and Video Library

    2009-08-09

    CAPE CANAVERAL, Fla. – On Launch Pad 39A, the payload ground-handling mechanism moves back after placing the multi-purpose logistics module Leonardo in space shuttle Discovery's payload bay. Leonardo is the primary payload on Discovery's STS-128 mission to the International Space Station. Beneath the module is the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery will deliver 33,000 pounds of equipment to the station, including science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch is targeted for late August. Photo credit: NASA/Jack Pfaller

  16. Singer product apertures-A coded aperture system with a fast decoding algorithm

    NASA Astrophysics Data System (ADS)

    Byard, Kevin; Shutler, Paul M. E.

    2017-06-01

    A new type of coded aperture configuration that enables fast decoding of the coded aperture shadowgram data is presented. Based on the products of incidence vectors generated from the Singer difference sets, we call these Singer product apertures. For a range of aperture dimensions, we compare experimentally the performance of three decoding methods: standard decoding, induction decoding and direct vector decoding. In all cases the induction and direct vector methods are several orders of magnitude faster than the standard method, with direct vector decoding being significantly faster than induction decoding. For apertures of the same dimensions the increase in speed offered by direct vector decoding over induction decoding is better for lower throughput apertures.

  17. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1989-01-01

    Two aspects of the work for NASA are examined: the construction of multi-dimensional phase modulation trellis codes and a performance analysis of these codes. A complete list is contained of all the best trellis codes for use with phase modulation. LxMPSK signal constellations are included for M = 4, 8, and 16 and L = 1, 2, 3, and 4. Spectral efficiencies range from 1 bit/channel symbol (equivalent to rate 1/2 coded QPSK) to 3.75 bits/channel symbol (equivalent to 15/16 coded 16-PSK). The parity check polynomials, rotational invariance properties, free distance, path multiplicities, and coding gains are given for all codes. These codes are considered to be the best candidates for implementation of a high speed decoder for satellite transmission. The design of a hardware decoder for one of these codes, viz., the 16-state 3x8-PSK code with free distance 4.0 and coding gain 3.75 dB is discussed. An exhaustive simulation study of the multi-dimensional phase modulation trellis codes is contained. This study was motivated by the fact that coding gains quoted for almost all codes found in literature are in fact only asymptotic coding gains, i.e., the coding gain at very high signal to noise ratios (SNRs) or very low BER. These asymptotic coding gains can be obtained directly from a knowledge of the free distance of the code. On the other hand, real coding gains at BERs in the range of 10(exp -2) to 10(exp -6), where these codes are most likely to operate in a concatenated system, must be done by simulation.

  18. Improving soft FEC performance for higher-order modulations via optimized bit channel mappings.

    PubMed

    Häger, Christian; Amat, Alexandre Graell I; Brännström, Fredrik; Alvarado, Alex; Agrell, Erik

    2014-06-16

    Soft forward error correction with higher-order modulations is often implemented in practice via the pragmatic bit-interleaved coded modulation paradigm, where a single binary code is mapped to a nonbinary modulation. In this paper, we study the optimization of the mapping of the coded bits to the modulation bits for a polarization-multiplexed fiber-optical system without optical inline dispersion compensation. Our focus is on protograph-based low-density parity-check (LDPC) codes which allow for an efficient hardware implementation, suitable for high-speed optical communications. The optimization is applied to the AR4JA protograph family, and further extended to protograph-based spatially coupled LDPC codes assuming a windowed decoder. Full field simulations via the split-step Fourier method are used to verify the analysis. The results show performance gains of up to 0.25 dB, which translate into a possible extension of the transmission reach by roughly up to 8%, without significantly increasing the system complexity.

  19. Embryology meets molecular biology: Deciphering the apical ectodermal ridge.

    PubMed

    Verheyden, Jamie M; Sun, Xin

    2017-09-15

    More than sixty years ago, while studying feather tracks on the shoulder of the chick embryo, Dr. John Saunders used Nile Blue dye to stain the tissue. There, he noticed a darkly stained line of cells that neatly rims the tip of the growing limb bud. Rather than ignoring this observation, he followed it up by removing this tissue and found that it led to a striking truncation of the limb skeletons. This landmark experiment marks the serendipitous discovery of the apical ectodermal ridge (AER), the quintessential embryonic structure that drives the outgrowth of the limb. Dr. Saunders continued to lead the limb field for the next fifty years, not just through his own work, but also by inspiring the next generation of researchers through his infectious love of science. Together, he and those who followed ushered in the discovery of fibroblast growth factor (FGF) as the AER molecule. The seamless marriage of embryology and molecular biology that led to the decoding of the AER serves as a shining example of how discoveries are made for the rest of the developmental biology field. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Molecular property diagnostic suite (MPDS): Development of disease-specific open source web portals for drug discovery.

    PubMed

    Nagamani, S; Gaur, A S; Tanneeru, K; Muneeswaran, G; Madugula, S S; Consortium, Mpds; Druzhilovskiy, D; Poroikov, V V; Sastry, G N

    2017-11-01

    Molecular property diagnostic suite (MPDS) is a Galaxy-based open source drug discovery and development platform. MPDS web portals are designed for several diseases, such as tuberculosis, diabetes mellitus, and other metabolic disorders, specifically aimed to evaluate and estimate the drug-likeness of a given molecule. MPDS consists of three modules, namely data libraries, data processing, and data analysis tools which are configured and interconnected to assist drug discovery for specific diseases. The data library module encompasses vast information on chemical space, wherein the MPDS compound library comprises 110.31 million unique molecules generated from public domain databases. Every molecule is assigned with a unique ID and card, which provides complete information for the molecule. Some of the modules in the MPDS are specific to the diseases, while others are non-specific. Importantly, a suitably altered protocol can be effectively generated for another disease-specific MPDS web portal by modifying some of the modules. Thus, the MPDS suite of web portals shows great promise to emerge as disease-specific portals of great value, integrating chemoinformatics, bioinformatics, molecular modelling, and structure- and analogue-based drug discovery approaches.

  1. Differences in the Predictors of Reading Comprehension in First Graders from Low Socio-Economic Status Families with Either Good or Poor Decoding Skills

    PubMed Central

    Gentaz, Edouard; Sprenger-Charolles, Liliane; Theurel, Anne

    2015-01-01

    Based on the assumption that good decoding skills constitute a bootstrapping mechanism for reading comprehension, the present study investigated the relative contribution of the former skill to the latter compared to that of three other predictors of reading comprehension (listening comprehension, vocabulary and phonemic awareness) in 392 French-speaking first graders from low SES families. This large sample was split into three groups according to their level of decoding skills assessed by pseudoword reading. Using a cutoff of 1 SD above or below the mean of the entire population, there were 63 good decoders, 267 average decoders and 62 poor decoders. 58% of the variance in reading comprehension was explained by our four predictors, with decoding skills proving to be the best predictor (12.1%, 7.3% for listening comprehension, 4.6% for vocabulary and 3.3% for phonemic awareness). Interaction between group versus decoding skills, listening comprehension and phonemic awareness accounted for significant additional variance (3.6%, 1.1% and 1.0%, respectively). The effects on reading comprehension of decoding skills and phonemic awareness were higher in poor and average decoders than in good decoders whereas listening comprehension accounted for more variance in good and average decoders than in poor decoders. Furthermore, the percentage of children with impaired reading comprehension skills was higher in the group of poor decoders (55%) than in the two other groups (average decoders: 7%; good decoders: 0%) and only 6 children (1.5%) had impaired reading comprehension skills with unimpaired decoding skills, listening comprehension or vocabulary. These results challenge the outcomes of studies on “poor comprehenders” by showing that, at least in first grade, poor reading comprehension is strongly linked to the level of decoding skills. PMID:25793519

  2. Differences in the predictors of reading comprehension in first graders from low socio-economic status families with either good or poor decoding skills.

    PubMed

    Gentaz, Edouard; Sprenger-Charolles, Liliane; Theurel, Anne

    2015-01-01

    Based on the assumption that good decoding skills constitute a bootstrapping mechanism for reading comprehension, the present study investigated the relative contribution of the former skill to the latter compared to that of three other predictors of reading comprehension (listening comprehension, vocabulary and phonemic awareness) in 392 French-speaking first graders from low SES families. This large sample was split into three groups according to their level of decoding skills assessed by pseudoword reading. Using a cutoff of 1 SD above or below the mean of the entire population, there were 63 good decoders, 267 average decoders and 62 poor decoders. 58% of the variance in reading comprehension was explained by our four predictors, with decoding skills proving to be the best predictor (12.1%, 7.3% for listening comprehension, 4.6% for vocabulary and 3.3% for phonemic awareness). Interaction between group versus decoding skills, listening comprehension and phonemic awareness accounted for significant additional variance (3.6%, 1.1% and 1.0%, respectively). The effects on reading comprehension of decoding skills and phonemic awareness were higher in poor and average decoders than in good decoders whereas listening comprehension accounted for more variance in good and average decoders than in poor decoders. Furthermore, the percentage of children with impaired reading comprehension skills was higher in the group of poor decoders (55%) than in the two other groups (average decoders: 7%; good decoders: 0%) and only 6 children (1.5%) had impaired reading comprehension skills with unimpaired decoding skills, listening comprehension or vocabulary. These results challenge the outcomes of studies on "poor comprehenders" by showing that, at least in first grade, poor reading comprehension is strongly linked to the level of decoding skills.

  3. Optical signal processing for a smart vehicle lighting system using a-SiCH technology

    NASA Astrophysics Data System (ADS)

    Vieira, M. A.; Vieira, M.; Vieira, P.; Louro, P.

    2017-05-01

    We propose the use of Visible Light Communication (VLC) for vehicle safety applications, creating a smart vehicle lighting system that combines the functions of illumination and signaling, communications, and positioning. The feasibility of VLC is demonstrated by employing trichromatic Red-Green-Blue (RGB) LEDs as transmitters, since they offer the possibility of Wavelength Division Multiplexing (WDM), which can greatly increase the transmission data rate, when using SiC double p-i-n receivers to encode/decode the information. Trichromatic RGB Light Emitting Diodes (LED)s (RGB-LED) are used together for illumination proposes (headlamps) and individually, each chip, to transmit the driving range distance and data information. An on-off code is used to transmit the data. Free space is the transmission medium. The receivers consist of two stacked amorphous a-H:SiC cells. They combine the simultaneous demultiplexing operation with the photodetection and self-amplification. The proposed coding is based on SiC technology. Multiple Input Multi Output (MIMO) architecture is used. For data transmission, we propose the use of two headlights based on commercially available modulated white RGB-LEDs. For data receiving and decoding we use three a-SiC:H double pin/pin optical processors symmetrically distributed at the vehicle tail Moreover, we present a way to achieve vehicular communication using the parity bits. A representation with a 4 bit original string color message and the transmitted 7 bit string, the encoding and decoding accurate positional information processes and the design of SiC navigation system are discussed and tested. A visible multilateration method estimates the drive distance range by using the decoded information received from several non-collinear transmitters.

  4. Short-range communication system

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2012-01-01

    A short-range communication system includes an antenna, a transmitter, and a receiver. The antenna is an electrical conductor formed as a planar coil with rings thereof being uniformly spaced. The transmitter is spaced apart from the plane of the coil by a gap. An amplitude-modulated and asynchronous signal indicative of a data stream of known peak amplitude is transmitted into the gap. The receiver detects the coil's resonance and decodes same to recover the data stream.

  5. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1989-01-01

    The performance of bandwidth efficient trellis codes on channels with phase jitter, or those disturbed by jamming and impulse noise is analyzed. An heuristic algorithm for construction of bandwidth efficient trellis codes with any constraint length up to about 30, any signal constellation, and any code rate was developed. Construction of good distance profile trellis codes for sequential decoding and comparison of random coding bounds of trellis coded modulation schemes are also discussed.

  6. Experimental demonstration of a flexible time-domain quantum channel.

    PubMed

    Xing, Xingxing; Feizpour, Amir; Hayat, Alex; Steinberg, Aephraim M

    2014-10-20

    We present an experimental realization of a flexible quantum channel where the Hilbert space dimensionality can be controlled electronically. Using electro-optical modulators (EOM) and narrow-band optical filters, quantum information is encoded and decoded in the temporal degrees of freedom of photons from a long-coherence-time single-photon source. Our results demonstrate the feasibility of a generic scheme for encoding and transmitting multidimensional quantum information over the existing fiber-optical telecommunications infrastructure.

  7. A Fully Integrated Materials Framework for Enabling the Wireless Detection of Micro-defects in Aging and Battle-worn Structures

    DTIC Science & Technology

    2012-05-01

    field-programmable gate array (FPGA) uses digital signal processing (DSP) algorithms to decode echo-location information from the backscattered signal ...characterizing and understanding of the physical properties of the BST and PZT thin films. Using microwave reflection spectroscopy, the complex...acoustic data, , would be encoded in the reflected MW signal by means of phase modulation (PM). By using high-Q resonators as the reactive

  8. Architecture for time or transform domain decoding of reed-solomon codes

    NASA Technical Reports Server (NTRS)

    Hsu, In-Shek (Inventor); Truong, Trieu-Kie (Inventor); Deutsch, Leslie J. (Inventor); Shao, Howard M. (Inventor)

    1989-01-01

    Two pipeline (255,233) RS decoders, one a time domain decoder and the other a transform domain decoder, use the same first part to develop an errata locator polynomial .tau.(x), and an errata evaluator polynominal A(x). Both the time domain decoder and transform domain decoder have a modified GCD that uses an input multiplexer and an output demultiplexer to reduce the number of GCD cells required. The time domain decoder uses a Chien search and polynomial evaluator on the GCD outputs .tau.(x) and A(x), for the final decoding steps, while the transform domain decoder uses a transform error pattern algorithm operating on .tau.(x) and the initial syndrome computation S(x), followed by an inverse transform algorithm in sequence for the final decoding steps prior to adding the received RS coded message to produce a decoded output message.

  9. Coding and decoding with dendrites.

    PubMed

    Papoutsi, Athanasia; Kastellakis, George; Psarrou, Maria; Anastasakis, Stelios; Poirazi, Panayiota

    2014-02-01

    Since the discovery of complex, voltage dependent mechanisms in the dendrites of multiple neuron types, great effort has been devoted in search of a direct link between dendritic properties and specific neuronal functions. Over the last few years, new experimental techniques have allowed the visualization and probing of dendritic anatomy, plasticity and integrative schemes with unprecedented detail. This vast amount of information has caused a paradigm shift in the study of memory, one of the most important pursuits in Neuroscience, and calls for the development of novel theories and models that will unify the available data according to some basic principles. Traditional models of memory considered neural cells as the fundamental processing units in the brain. Recent studies however are proposing new theories in which memory is not only formed by modifying the synaptic connections between neurons, but also by modifications of intrinsic and anatomical dendritic properties as well as fine tuning of the wiring diagram. In this review paper we present previous studies along with recent findings from our group that support a key role of dendrites in information processing, including the encoding and decoding of new memories, both at the single cell and the network level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. FPGA implementation of low complexity LDPC iterative decoder

    NASA Astrophysics Data System (ADS)

    Verma, Shivani; Sharma, Sanjay

    2016-07-01

    Low-density parity-check (LDPC) codes, proposed by Gallager, emerged as a class of codes which can yield very good performance on the additive white Gaussian noise channel as well as on the binary symmetric channel. LDPC codes have gained lots of importance due to their capacity achieving property and excellent performance in the noisy channel. Belief propagation (BP) algorithm and its approximations, most notably min-sum, are popular iterative decoding algorithms used for LDPC and turbo codes. The trade-off between the hardware complexity and the decoding throughput is a critical factor in the implementation of the practical decoder. This article presents introduction to LDPC codes and its various decoding algorithms followed by realisation of LDPC decoder by using simplified message passing algorithm and partially parallel decoder architecture. Simplified message passing algorithm has been proposed for trade-off between low decoding complexity and decoder performance. It greatly reduces the routing and check node complexity of the decoder. Partially parallel decoder architecture possesses high speed and reduced complexity. The improved design of the decoder possesses a maximum symbol throughput of 92.95 Mbps and a maximum of 18 decoding iterations. The article presents implementation of 9216 bits, rate-1/2, (3, 6) LDPC decoder on Xilinx XC3D3400A device from Spartan-3A DSP family.

  11. KSC-07pd2825

    NASA Image and Video Library

    2007-10-09

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, space shuttle Discovery's payload bay doors are closed around the U.S. Node 2 module, named Harmony. The name was chosen from an academic competition involving more than 2,200 U. S. students in kindergarten through high school. The module will be delivered to the International Space Station aboard Discovery on the 14-day STS-120 mission. An orbiter's payload bay door closure at the pad is a milestone signaling that the launch date is near. Discovery's launch is targeted for Oct. 23 at 11:38 a.m. EDT. Photo credit: NASA/George Shelton

  12. KSC-07pd2824

    NASA Image and Video Library

    2007-10-09

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, space shuttle Discovery's payload bay doors are nearly closed around the U.S. Node 2 module, named Harmony. The name was chosen from an academic competition involving more than 2,200 U. S. students in kindergarten through high school. The module will be delivered to the International Space Station aboard Discovery on the 14-day STS-120 mission. An orbiter's payload bay door closure at the pad is a milestone signaling that the launch date is near. Discovery's launch is targeted for Oct. 23 at 11:38 a.m. EDT. Photo credit: NASA/George Shelton

  13. KSC-07pd2820

    NASA Image and Video Library

    2007-10-09

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, preparations are under way to close space shuttle Discovery's payload bay doors around the U.S. Node 2 module, named Harmony. The name was chosen from an academic competition involving more than 2,200 U. S. students in kindergarten through high school. The module will be delivered to the International Space Station aboard Discovery on the 14-day STS-120 mission. An orbiter's payload bay door closure at the pad is a milestone signaling that the launch date is near. Discovery's launch is targeted for Oct. 23 at 11:38 a.m. EDT. Photo credit: NASA/George Shelton

  14. KSC-07pd2823

    NASA Image and Video Library

    2007-10-09

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, space shuttle Discovery's payload bay doors slowly enclose the U.S. Node 2 module, named Harmony. The name was chosen from an academic competition involving more than 2,200 U. S. students in kindergarten through high school. The module will be delivered to the International Space Station aboard Discovery on the 14-day STS-120 mission. An orbiter's payload bay door closure at the pad is a milestone signaling that the launch date is near. Discovery's launch is targeted for Oct. 23 at 11:38 a.m. EDT. Photo credit: NASA/George Shelton

  15. KSC-07pd2822

    NASA Image and Video Library

    2007-10-09

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, space shuttle Discovery's payload bay doors are partially closed around the U.S. Node 2 module, named Harmony. The name was chosen from an academic competition involving more than 2,200 U. S. students in kindergarten through high school. The module will be delivered to the International Space Station aboard Discovery on the 14-day STS-120 mission. An orbiter's payload bay door closure at the pad is a milestone signaling that the launch date is near. Discovery's launch is targeted for Oct. 23 at 11:38 a.m. EDT. Photo credit: NASA/George Shelton

  16. KSC-07pd2821

    NASA Image and Video Library

    2007-10-09

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, space shuttle Discovery's payload bay doors begin to close around the U.S. Node 2 module, named Harmony. The name was chosen from an academic competition involving more than 2,200 U. S. students in kindergarten through high school. The module will be delivered to the International Space Station aboard Discovery on the 14-day STS-120 mission. An orbiter's payload bay door closure at the pad is a milestone signaling that the launch date is near. Discovery's launch is targeted for Oct. 23 at 11:38 a.m. EDT. Photo credit: NASA/George Shelton

  17. The design plan of a VLSI single chip (255, 223) Reed-Solomon decoder

    NASA Technical Reports Server (NTRS)

    Hsu, I. S.; Shao, H. M.; Deutsch, L. J.

    1987-01-01

    The very large-scale integration (VLSI) architecture of a single chip (255, 223) Reed-Solomon decoder for decoding both errors and erasures is described. A decoding failure detection capability is also included in this system so that the decoder will recognize a failure to decode instead of introducing additional errors. This could happen whenever the received word contains too many errors and erasures for the code to correct. The number of transistors needed to implement this decoder is estimated at about 75,000 if the delay for received message is not included. This is in contrast to the older transform decoding algorithm which needs about 100,000 transistors. However, the transform decoder is simpler in architecture than the time decoder. It is therefore possible to implement a single chip (255, 223) Reed-Solomon decoder with today's VLSI technology. An implementation strategy for the decoder system is presented. This represents the first step in a plan to take advantage of advanced coding techniques to realize a 2.0 dB coding gain for future space missions.

  18. Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip.

    PubMed

    Dongre, Chaitanya; van Weerd, Jasper; Besselink, Geert A J; Vazquez, Rebeca Martinez; Osellame, Roberto; Cerullo, Giulio; van Weeghel, Rob; van den Vlekkert, Hans H; Hoekstra, Hugo J W M; Pollnau, Markus

    2011-02-21

    We introduce a principle of parallel optical processing to an optofluidic lab-on-a-chip. During electrophoretic separation, the ultra-low limit of detection achieved with our set-up allows us to record fluorescence from covalently end-labeled DNA molecules. Different sets of exclusively color-labeled DNA fragments-otherwise rendered indistinguishable by spatio-temporal coincidence-are traced back to their origin by modulation-frequency-encoded multi-wavelength laser excitation, fluorescence detection with a single ultrasensitive, albeit color-blind photomultiplier, and Fourier analysis decoding. As a proof of principle, fragments obtained by multiplex ligation-dependent probe amplification from independent human genomic segments, associated with genetic predispositions to breast cancer and anemia, are simultaneously analyzed.

  19. Sidelobe-modulated optical vortices for free-space communication.

    PubMed

    Jia, P; Yang, Y; Min, C J; Fang, H; Yuan, X-C

    2013-02-15

    We propose and experimentally demonstrate a new method for free-space optical (FSO) communication, where the transmitter encodes data into a composite computer-generated hologram and the receiver decodes through a retrieved array of sidelobe-modulated optical vortices (SMOVs). By employing the SMOV generation and detection technique, the usual stringent alignment and phase-matching requirement of the detection of optical vortices is released. In transmitting a gray-scale picture with 180×180 pixels, a bit error rate as low as 3.01×10(-3) has been achieved. Due to the orbital angular momentum multiplexing and spatial paralleling, this FSO communication method possesses the ability to greatly increase the capacity of data transmission.

  20. Design of remote control alarm system by microwave detection

    NASA Astrophysics Data System (ADS)

    Wang, Junli

    2018-04-01

    A microwave detection remote control alarm system is designed, which is composed of a Microwave detectors, a radio receiving/transmitting module and a digital encoding/decoding IC. When some objects move into the surveillance area, microwave detectors will generate a control signal to start transmitting system. A radio control signal will be spread by the transmitting module, once the signal can be received, and it will be disposed by some circuits, arousing some voices that awake the watching people. The whole device is a modular configuration, it not only has some advantage of frequency stable, but also reliable and adjustment-free, and it is suitable for many kinds of demands within the distance of 100m.

  1. Direct Identification of On-Bead Peptides Using Surface-Enhanced Raman Spectroscopic Barcoding System for High-Throughput Bioanalysis

    PubMed Central

    Kang, Homan; Jeong, Sinyoung; Koh, Yul; Geun Cha, Myeong; Yang, Jin-Kyoung; Kyeong, San; Kim, Jaehi; Kwak, Seon-Yeong; Chang, Hye-Jin; Lee, Hyunmi; Jeong, Cheolhwan; Kim, Jong-Ho; Jun, Bong-Hyun; Kim, Yong-Kweon; Hong Jeong, Dae; Lee, Yoon-Sik

    2015-01-01

    Recently, preparation and screening of compound libraries remain one of the most challenging tasks in drug discovery, biomarker detection, and biomolecular profiling processes. So far, several distinct encoding/decoding methods such as chemical encoding, graphical encoding, and optical encoding have been reported to identify those libraries. In this paper, a simple and efficient surface-enhanced Raman spectroscopic (SERS) barcoding method using highly sensitive SERS nanoparticles (SERS ID) is presented. The 44 kinds of SERS IDs were able to generate simple codes and could possibly generate more than one million kinds of codes by incorporating combinations of different SERS IDs. The barcoding method exhibited high stability and reliability under bioassay conditions. The SERS ID encoding based screening platform can identify the peptide ligand on the bead and also quantify its binding affinity for specific protein. We believe that our SERS barcoding technology is a promising method in the screening of one-bead-one-compound (OBOC) libraries for drug discovery. PMID:26017924

  2. Direct identification of on-bead peptides using surface-enhanced Raman spectroscopic barcoding system for high-throughput bioanalysis.

    PubMed

    Kang, Homan; Jeong, Sinyoung; Koh, Yul; Geun Cha, Myeong; Yang, Jin-Kyoung; Kyeong, San; Kim, Jaehi; Kwak, Seon-Yeong; Chang, Hye-Jin; Lee, Hyunmi; Jeong, Cheolhwan; Kim, Jong-Ho; Jun, Bong-Hyun; Kim, Yong-Kweon; Hong Jeong, Dae; Lee, Yoon-Sik

    2015-05-28

    Recently, preparation and screening of compound libraries remain one of the most challenging tasks in drug discovery, biomarker detection, and biomolecular profiling processes. So far, several distinct encoding/decoding methods such as chemical encoding, graphical encoding, and optical encoding have been reported to identify those libraries. In this paper, a simple and efficient surface-enhanced Raman spectroscopic (SERS) barcoding method using highly sensitive SERS nanoparticles (SERS ID) is presented. The 44 kinds of SERS IDs were able to generate simple codes and could possibly generate more than one million kinds of codes by incorporating combinations of different SERS IDs. The barcoding method exhibited high stability and reliability under bioassay conditions. The SERS ID encoding based screening platform can identify the peptide ligand on the bead and also quantify its binding affinity for specific protein. We believe that our SERS barcoding technology is a promising method in the screening of one-bead-one-compound (OBOC) libraries for drug discovery.

  3. The serial message-passing schedule for LDPC decoding algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Mingshan; Liu, Shanshan; Zhou, Yuan; Jiang, Xue

    2015-12-01

    The conventional message-passing schedule for LDPC decoding algorithms is the so-called flooding schedule. It has the disadvantage that the updated messages cannot be used until next iteration, thus reducing the convergence speed . In this case, the Layered Decoding algorithm (LBP) based on serial message-passing schedule is proposed. In this paper the decoding principle of LBP algorithm is briefly introduced, and then proposed its two improved algorithms, the grouped serial decoding algorithm (Grouped LBP) and the semi-serial decoding algorithm .They can improve LBP algorithm's decoding speed while maintaining a good decoding performance.

  4. Great circle solution to polarization-based quantum communication (QC) in optical fiber

    DOEpatents

    Nordholt, Jane Elizabeth; Peterson, Charles Glen; Newell, Raymond Thorson; Hughes, Richard John

    2016-03-15

    Birefringence in optical fibers is compensated by applying polarization modulation at a receiver. Polarization modulation is applied so that a transmitted optical signal has states of polarization (SOPs) that are equally spaced on the Poincare sphere. Fiber birefringence encountered in propagation between a transmitter and a receiver rotates the great circle on the Poincare sphere that represents the polarization bases used for modulation. By adjusting received polarizations, polarization components of the received optical signal can be directed to corresponding detectors for decoding, regardless of the magnitude and orientation of the fiber birefringence. A transmitter can be configured to transmit in conjugate polarization bases whose SOPs can be represented as equidistant points on a great circle so that the received SOPs are mapped to equidistant points on a great circle and routed to corresponding detectors.

  5. Mapping visual stimuli to perceptual decisions via sparse decoding of mesoscopic neural activity.

    PubMed

    Sajda, Paul

    2010-01-01

    In this talk I will describe our work investigating sparse decoding of neural activity, given a realistic mapping of the visual scene to neuronal spike trains generated by a model of primary visual cortex (V1). We use a linear decoder which imposes sparsity via an L1 norm. The decoder can be viewed as a decoding neuron (linear summation followed by a sigmoidal nonlinearity) in which there are relatively few non-zero synaptic weights. We find: (1) the best decoding performance is for a representation that is sparse in both space and time, (2) decoding of a temporal code results in better performance than a rate code and is also a better fit to the psychophysical data, (3) the number of neurons required for decoding increases monotonically as signal-to-noise in the stimulus decreases, with as little as 1% of the neurons required for decoding at the highest signal-to-noise levels, and (4) sparse decoding results in a more accurate decoding of the stimulus and is a better fit to psychophysical performance than a distributed decoding, for example one imposed by an L2 norm. We conclude that sparse coding is well-justified from a decoding perspective in that it results in a minimum number of neurons and maximum accuracy when sparse representations can be decoded from the neural dynamics.

  6. Systems and methods for knowledge discovery in spatial data

    DOEpatents

    Obradovic, Zoran; Fiez, Timothy E.; Vucetic, Slobodan; Lazarevic, Aleksandar; Pokrajac, Dragoljub; Hoskinson, Reed L.

    2005-03-08

    Systems and methods are provided for knowledge discovery in spatial data as well as to systems and methods for optimizing recipes used in spatial environments such as may be found in precision agriculture. A spatial data analysis and modeling module is provided which allows users to interactively and flexibly analyze and mine spatial data. The spatial data analysis and modeling module applies spatial data mining algorithms through a number of steps. The data loading and generation module obtains or generates spatial data and allows for basic partitioning. The inspection module provides basic statistical analysis. The preprocessing module smoothes and cleans the data and allows for basic manipulation of the data. The partitioning module provides for more advanced data partitioning. The prediction module applies regression and classification algorithms on the spatial data. The integration module enhances prediction methods by combining and integrating models. The recommendation module provides the user with site-specific recommendations as to how to optimize a recipe for a spatial environment such as a fertilizer recipe for an agricultural field.

  7. Image transmission system using adaptive joint source and channel decoding

    NASA Astrophysics Data System (ADS)

    Liu, Weiliang; Daut, David G.

    2005-03-01

    In this paper, an adaptive joint source and channel decoding method is designed to accelerate the convergence of the iterative log-dimain sum-product decoding procedure of LDPC codes as well as to improve the reconstructed image quality. Error resilience modes are used in the JPEG2000 source codec, which makes it possible to provide useful source decoded information to the channel decoder. After each iteration, a tentative decoding is made and the channel decoded bits are then sent to the JPEG2000 decoder. Due to the error resilience modes, some bits are known to be either correct or in error. The positions of these bits are then fed back to the channel decoder. The log-likelihood ratios (LLR) of these bits are then modified by a weighting factor for the next iteration. By observing the statistics of the decoding procedure, the weighting factor is designed as a function of the channel condition. That is, for lower channel SNR, a larger factor is assigned, and vice versa. Results show that the proposed joint decoding methods can greatly reduce the number of iterations, and thereby reduce the decoding delay considerably. At the same time, this method always outperforms the non-source controlled decoding method up to 5dB in terms of PSNR for various reconstructed images.

  8. Frame Decoder for Consultative Committee for Space Data Systems (CCSDS)

    NASA Technical Reports Server (NTRS)

    Reyes, Miguel A. De Jesus

    2014-01-01

    GNU Radio is a free and open source development toolkit that provides signal processing to implement software radios. It can be used with low-cost external RF hardware to create software defined radios, or without hardware in a simulation-like environment. GNU Radio applications are primarily written in Python and C++. The Universal Software Radio Peripheral (USRP) is a computer-hosted software radio designed by Ettus Research. The USRP connects to a host computer via high-speed Gigabit Ethernet. Using the open source Universal Hardware Driver (UHD), we can run GNU Radio applications using the USRP. An SDR is a "radio in which some or all physical layer functions are software defined"(IEEE Definition). A radio is any kind of device that wirelessly transmits or receives radio frequency (RF) signals in the radio frequency. An SDR is a radio communication system where components that have been typically implemented in hardware are implemented in software. GNU Radio has a generic packet decoder block that is not optimized for CCSDS frames. Using this generic packet decoder will add bytes to the CCSDS frames and will not permit for bit error correction using Reed-Solomon. The CCSDS frames consist of 256 bytes, including a 32-bit sync marker (0x1ACFFC1D). This frames are generated by the Space Data Processor and GNU Radio will perform the modulation and framing operations, including frame synchronization.

  9. Interfacing to the brain’s motor decisions

    PubMed Central

    2017-01-01

    It has been long known that neural activity, recorded with electrophysiological methods, contains rich information about a subject’s motor intentions, sensory experiences, allocation of attention, action planning, and even abstract thoughts. All these functions have been the subject of neurophysiological investigations, with the goal of understanding how neuronal activity represents behavioral parameters, sensory inputs, and cognitive functions. The field of brain-machine interfaces (BMIs) strives for a somewhat different goal: it endeavors to extract information from neural modulations to create a communication link between the brain and external devices. Although many remarkable successes have been already achieved in the BMI field, questions remain regarding the possibility of decoding high-order neural representations, such as decision making. Could BMIs be employed to decode the neural representations of decisions underlying goal-directed actions? In this review we lay out a framework that describes the computations underlying goal-directed actions as a multistep process performed by multiple cortical and subcortical areas. We then discuss how BMIs could connect to different decision-making steps and decode the neural processing ongoing before movements are initiated. Such decision-making BMIs could operate as a system with prediction that offers many advantages, such as shorter reaction time, better error processing, and improved unsupervised learning. To present the current state of the art, we review several recent BMIs incorporating decision-making components. PMID:28003406

  10. Real-Time Tracking of Selective Auditory Attention From M/EEG: A Bayesian Filtering Approach

    PubMed Central

    Miran, Sina; Akram, Sahar; Sheikhattar, Alireza; Simon, Jonathan Z.; Zhang, Tao; Babadi, Behtash

    2018-01-01

    Humans are able to identify and track a target speaker amid a cacophony of acoustic interference, an ability which is often referred to as the cocktail party phenomenon. Results from several decades of studying this phenomenon have culminated in recent years in various promising attempts to decode the attentional state of a listener in a competing-speaker environment from non-invasive neuroimaging recordings such as magnetoencephalography (MEG) and electroencephalography (EEG). To this end, most existing approaches compute correlation-based measures by either regressing the features of each speech stream to the M/EEG channels (the decoding approach) or vice versa (the encoding approach). To produce robust results, these procedures require multiple trials for training purposes. Also, their decoding accuracy drops significantly when operating at high temporal resolutions. Thus, they are not well-suited for emerging real-time applications such as smart hearing aid devices or brain-computer interface systems, where training data might be limited and high temporal resolutions are desired. In this paper, we close this gap by developing an algorithmic pipeline for real-time decoding of the attentional state. Our proposed framework consists of three main modules: (1) Real-time and robust estimation of encoding or decoding coefficients, achieved by sparse adaptive filtering, (2) Extracting reliable markers of the attentional state, and thereby generalizing the widely-used correlation-based measures thereof, and (3) Devising a near real-time state-space estimator that translates the noisy and variable attention markers to robust and statistically interpretable estimates of the attentional state with minimal delay. Our proposed algorithms integrate various techniques including forgetting factor-based adaptive filtering, ℓ1-regularization, forward-backward splitting algorithms, fixed-lag smoothing, and Expectation Maximization. We validate the performance of our proposed framework using comprehensive simulations as well as application to experimentally acquired M/EEG data. Our results reveal that the proposed real-time algorithms perform nearly as accurately as the existing state-of-the-art offline techniques, while providing a significant degree of adaptivity, statistical robustness, and computational savings. PMID:29765298

  11. Real-Time Tracking of Selective Auditory Attention From M/EEG: A Bayesian Filtering Approach.

    PubMed

    Miran, Sina; Akram, Sahar; Sheikhattar, Alireza; Simon, Jonathan Z; Zhang, Tao; Babadi, Behtash

    2018-01-01

    Humans are able to identify and track a target speaker amid a cacophony of acoustic interference, an ability which is often referred to as the cocktail party phenomenon. Results from several decades of studying this phenomenon have culminated in recent years in various promising attempts to decode the attentional state of a listener in a competing-speaker environment from non-invasive neuroimaging recordings such as magnetoencephalography (MEG) and electroencephalography (EEG). To this end, most existing approaches compute correlation-based measures by either regressing the features of each speech stream to the M/EEG channels (the decoding approach) or vice versa (the encoding approach). To produce robust results, these procedures require multiple trials for training purposes. Also, their decoding accuracy drops significantly when operating at high temporal resolutions. Thus, they are not well-suited for emerging real-time applications such as smart hearing aid devices or brain-computer interface systems, where training data might be limited and high temporal resolutions are desired. In this paper, we close this gap by developing an algorithmic pipeline for real-time decoding of the attentional state. Our proposed framework consists of three main modules: (1) Real-time and robust estimation of encoding or decoding coefficients, achieved by sparse adaptive filtering, (2) Extracting reliable markers of the attentional state, and thereby generalizing the widely-used correlation-based measures thereof, and (3) Devising a near real-time state-space estimator that translates the noisy and variable attention markers to robust and statistically interpretable estimates of the attentional state with minimal delay. Our proposed algorithms integrate various techniques including forgetting factor-based adaptive filtering, ℓ 1 -regularization, forward-backward splitting algorithms, fixed-lag smoothing, and Expectation Maximization. We validate the performance of our proposed framework using comprehensive simulations as well as application to experimentally acquired M/EEG data. Our results reveal that the proposed real-time algorithms perform nearly as accurately as the existing state-of-the-art offline techniques, while providing a significant degree of adaptivity, statistical robustness, and computational savings.

  12. A long constraint length VLSI Viterbi decoder for the DSN

    NASA Technical Reports Server (NTRS)

    Statman, J. I.; Zimmerman, G.; Pollara, F.; Collins, O.

    1988-01-01

    A Viterbi decoder, capable of decoding convolutional codes with constraint lengths up to 15, is under development for the Deep Space Network (DSN). The objective is to complete a prototype of this decoder by late 1990, and demonstrate its performance using the (15, 1/4) encoder in Galileo. The decoder is expected to provide 1 to 2 dB improvement in bit SNR, compared to the present (7, 1/2) code and existing Maximum Likelihood Convolutional Decoder (MCD). The decoder will be fully programmable for any code up to constraint length 15, and code rate 1/2 to 1/6. The decoder architecture and top-level design are described.

  13. Decoding small surface codes with feedforward neural networks

    NASA Astrophysics Data System (ADS)

    Varsamopoulos, Savvas; Criger, Ben; Bertels, Koen

    2018-01-01

    Surface codes reach high error thresholds when decoded with known algorithms, but the decoding time will likely exceed the available time budget, especially for near-term implementations. To decrease the decoding time, we reduce the decoding problem to a classification problem that a feedforward neural network can solve. We investigate quantum error correction and fault tolerance at small code distances using neural network-based decoders, demonstrating that the neural network can generalize to inputs that were not provided during training and that they can reach similar or better decoding performance compared to previous algorithms. We conclude by discussing the time required by a feedforward neural network decoder in hardware.

  14. Flexible high speed codec

    NASA Technical Reports Server (NTRS)

    Boyd, R. W.; Hartman, W. F.

    1992-01-01

    The project's objective is to develop an advanced high speed coding technology that provides substantial coding gains with limited bandwidth expansion for several common modulation types. The resulting technique is applicable to several continuous and burst communication environments. Decoding provides a significant gain with hard decisions alone and can utilize soft decision information when available from the demodulator to increase the coding gain. The hard decision codec will be implemented using a single application specific integrated circuit (ASIC) chip. It will be capable of coding and decoding as well as some formatting and synchronization functions at data rates up to 300 megabits per second (Mb/s). Code rate is a function of the block length and can vary from 7/8 to 15/16. Length of coded bursts can be any multiple of 32 that is greater than or equal to 256 bits. Coding may be switched in or out on a burst by burst basis with no change in the throughput delay. Reliability information in the form of 3-bit (8-level) soft decisions, can be exploited using applique circuitry around the hard decision codec. This applique circuitry will be discrete logic in the present contract. However, ease of transition to LSI is one of the design guidelines. Discussed here is the selected coding technique. Its application to some communication systems is described. Performance with 4, 8, and 16-ary Phase Shift Keying (PSK) modulation is also presented.

  15. Adaptive decoding of convolutional codes

    NASA Astrophysics Data System (ADS)

    Hueske, K.; Geldmacher, J.; Götze, J.

    2007-06-01

    Convolutional codes, which are frequently used as error correction codes in digital transmission systems, are generally decoded using the Viterbi Decoder. On the one hand the Viterbi Decoder is an optimum maximum likelihood decoder, i.e. the most probable transmitted code sequence is obtained. On the other hand the mathematical complexity of the algorithm only depends on the used code, not on the number of transmission errors. To reduce the complexity of the decoding process for good transmission conditions, an alternative syndrome based decoder is presented. The reduction of complexity is realized by two different approaches, the syndrome zero sequence deactivation and the path metric equalization. The two approaches enable an easy adaptation of the decoding complexity for different transmission conditions, which results in a trade-off between decoding complexity and error correction performance.

  16. Discovery of the "RNA continent" through a contrarian's research strategy.

    PubMed

    Hayashizaki, Yoshihide

    2011-01-01

    The International Human Genome Sequencing Consortium completed the decoding of the human genome sequence in 2003. Readers will be aware of the paradigm shift which has occurred since then in the field of life science research. At last, mankind has been able to focus on a complete picture of the full extent of the genome, on which is recorded the basic information that controls all life. Meanwhile, another genome project, centered on Japan and known as the mouse genome encyclopedia project, was progressing with participation from around the world. Led by our research group at RIKEN, it was a full-length cDNA project which aimed to decode the whole RNA (transcriptome) using the mouse as a model. The basic information that controls all life is recorded on the genome, but in order to obtain a complete picture of this extensive information, the decoding of the genome alone is far from sufficient. These two genome projects established that the number of letters in the genome, which is the blueprint of life, is finite, that the number of RNA molecules derived from it is also finite, and that the number of protein molecules derived from the RNA is probably finite too. A massive number of combinations is still involved, but we are now able to understand one section of the network formed by these data. Once an object of study has been understood to be finite, establishing an image of the whole is certain to lead us to an understanding of the whole. Omics is an approach that views the information controlling life as finite and seeks to assemble and analyze it as a whole. Here, I would like to present our transcriptome research while making reference to our unique research strategy.

  17. High-dimensional free-space optical communications based on orbital angular momentum coding

    NASA Astrophysics Data System (ADS)

    Zou, Li; Gu, Xiaofan; Wang, Le

    2018-03-01

    In this paper, we propose a high-dimensional free-space optical communication scheme using orbital angular momentum (OAM) coding. In the scheme, the transmitter encodes N-bits information by using a spatial light modulator to convert a Gaussian beam to a superposition mode of N OAM modes and a Gaussian mode; The receiver decodes the information through an OAM mode analyser which consists of a MZ interferometer with a rotating Dove prism, a photoelectric detector and a computer carrying out the fast Fourier transform. The scheme could realize a high-dimensional free-space optical communication, and decodes the information much fast and accurately. We have verified the feasibility of the scheme by exploiting 8 (4) OAM modes and a Gaussian mode to implement a 256-ary (16-ary) coding free-space optical communication to transmit a 256-gray-scale (16-gray-scale) picture. The results show that a zero bit error rate performance has been achieved.

  18. A class of parametrically excited calcium oscillation detectors.

    PubMed Central

    Izu, L T; Spangler, R A

    1995-01-01

    Intracellular Ca2+ oscillations are often a response to external signals such as hormones. Changes in the external signal can alter the frequency, amplitude, or form of the oscillations suggesting that information is encoded in the pattern of Ca2+ oscillations. How might a cell decode this signal? We show that an excitable system whose kinetic parameters are modulated by the Ca2+ concentration can function as a Ca2+ oscillation detector. Such systems have the following properties: (1) They are more sensitive to an oscillatory than to a steady Ca2+ signal. (2) Their response is largely independent of the signal amplitude. (3) They can extract information from a noisy signal. (4) Unlike other frequency sensitive detectors, they have a flat frequency response. These properties make a Ca(2+)-sensitive excitable system nearly ideal for detecting and decoding Ca2+ oscillations. We suggest that Ca2+ oscillations, in concert with these detectors, can act as cellular timekeepers to coordinate related biochemical reactions and enhance their overall efficiency. PMID:7787048

  19. "Decoding versus comprehension": Brain responses underlying reading comprehension in children with autism.

    PubMed

    Bednarz, Haley M; Maximo, Jose O; Murdaugh, Donna L; O'Kelley, Sarah; Kana, Rajesh K

    2017-06-01

    Despite intact decoding ability, deficits in reading comprehension are relatively common in children with autism spectrum disorders (ASD). However, few neuroimaging studies have tested the neural bases of this specific profile of reading deficit in ASD. This fMRI study examined activation and synchronization of the brain's reading network in children with ASD with specific reading comprehension deficits during a word similarities task. Thirteen typically developing children and 18 children with ASD performed the task in the MRI scanner. No statistically significant group differences in functional activation were observed; however, children with ASD showed decreased functional connectivity between the left inferior frontal gyrus (LIFG) and the left inferior occipital gyrus (LIOG). In addition, reading comprehension ability significantly positively predicted functional connectivity between the LIFG and left thalamus (LTHAL) among all subjects. The results of this study provide evidence for altered recruitment of reading-related neural resources in ASD children and suggest specific weaknesses in top-down modulation of semantic processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Design of video interface conversion system based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhao, Heng; Wang, Xiang-jun

    2014-11-01

    This paper presents a FPGA based video interface conversion system that enables the inter-conversion between digital and analog video. Cyclone IV series EP4CE22F17C chip from Altera Corporation is used as the main video processing chip, and single-chip is used as the information interaction control unit between FPGA and PC. The system is able to encode/decode messages from the PC. Technologies including video decoding/encoding circuits, bus communication protocol, data stream de-interleaving and de-interlacing, color space conversion and the Camera Link timing generator module of FPGA are introduced. The system converts Composite Video Broadcast Signal (CVBS) from the CCD camera into Low Voltage Differential Signaling (LVDS), which will be collected by the video processing unit with Camera Link interface. The processed video signals will then be inputted to system output board and displayed on the monitor.The current experiment shows that it can achieve high-quality video conversion with minimum board size.

  1. Inherent secure communications using lattice based waveform design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugh, Matthew Owen

    2013-12-01

    The wireless communications channel is innately insecure due to the broadcast nature of the electromagnetic medium. Many techniques have been developed and implemented in order to combat insecurities and ensure the privacy of transmitted messages. Traditional methods include encrypting the data via cryptographic methods, hiding the data in the noise floor as in wideband communications, or nulling the signal in the spatial direction of the adversary using array processing techniques. This work analyzes the design of signaling constellations, i.e. modulation formats, to combat eavesdroppers from correctly decoding transmitted messages. It has been shown that in certain channel models the abilitymore » of an adversary to decode the transmitted messages can be degraded by a clever signaling constellation based on lattice theory. This work attempts to optimize certain lattice parameters in order to maximize the security of the data transmission. These techniques are of interest because they are orthogonal to, and can be used in conjunction with, traditional security techniques to create a more secure communication channel.« less

  2. Voluntary Enhancement of Neural Signatures of Affiliative Emotion Using fMRI Neurofeedback

    PubMed Central

    Moll, Jorge; Weingartner, Julie H.; Bado, Patricia; Basilio, Rodrigo; Sato, João R.; Melo, Bruno R.; Bramati, Ivanei E.; de Oliveira-Souza, Ricardo; Zahn, Roland

    2014-01-01

    In Ridley Scott’s film “Blade Runner”, empathy-detection devices are employed to measure affiliative emotions. Despite recent neurocomputational advances, it is unknown whether brain signatures of affiliative emotions, such as tenderness/affection, can be decoded and voluntarily modulated. Here, we employed multivariate voxel pattern analysis and real-time fMRI to address this question. We found that participants were able to use visual feedback based on decoded fMRI patterns as a neurofeedback signal to increase brain activation characteristic of tenderness/affection relative to pride, an equally complex control emotion. Such improvement was not observed in a control group performing the same fMRI task without neurofeedback. Furthermore, the neurofeedback-driven enhancement of tenderness/affection-related distributed patterns was associated with local fMRI responses in the septohypothalamic area and frontopolar cortex, regions previously implicated in affiliative emotion. This demonstrates that humans can voluntarily enhance brain signatures of tenderness/affection, unlocking new possibilities for promoting prosocial emotions and countering antisocial behavior. PMID:24847819

  3. Reduction of ETS-VI Laser Communication Equipment Optical-Downlink Telemetry Collected During GOLD

    NASA Technical Reports Server (NTRS)

    Toyoshima, M.; Araki, K.; Arimoto, Y.; Toyoda, M.; Jeganathan, M.; Wilson, K.; Lesh, J. R.

    1997-01-01

    Free-space laser communications experiments were conducted between the laser communication equipment (LCE) on board the Japanese Engineering Test Satellite VI (ETS-VI) and the ground station located at the Table Mountain Facility (TMF) during late 1995 and early 1996. This article describes the on-line data reduction process used to decode LCE telemetry (called E2) downlinked on the optical carrier during the Ground/Orbiter Lasercomm Demonstration (GOLD) experiments. The LCE has the capability of transmitting real-time sensor and status information at 128 kbps by modulating the onboard diode laser. The optical downlink was detected on the ground, bit synchronized, and the resulting data stream stored on a data recorder. The recorded data were subsequently decoded by on-line data processing that included cross-correlation of the known telemetry data format and the downlink data stream. Signals obtained from the processing can be useful not only in evaluating the characteristics of the LCE but also in understanding uplink and downlink signal quality.

  4. An Iterative Time Windowed Signature Algorithm for Time Dependent Transcription Module Discovery

    PubMed Central

    Meng, Jia; Gao, Shou-Jiang; Huang, Yufei

    2010-01-01

    An algorithm for the discovery of time varying modules using genome-wide expression data is present here. When applied to large-scale time serious data, our method is designed to discover not only the transcription modules but also their timing information, which is rarely annotated by the existing approaches. Rather than assuming commonly defined time constant transcription modules, a module is depicted as a set of genes that are co-regulated during a specific period of time, i.e., a time dependent transcription module (TDTM). A rigorous mathematical definition of TDTM is provided, which is serve as an objective function for retrieving modules. Based on the definition, an effective signature algorithm is proposed that iteratively searches the transcription modules from the time series data. The proposed method was tested on the simulated systems and applied to the human time series microarray data during Kaposi's sarcoma-associated herpesvirus (KSHV) infection. The result has been verified by Expression Analysis Systematic Explorer. PMID:21552463

  5. State-based decoding of hand and finger kinematics using neuronal ensemble and LFP activity during dexterous reach-to-grasp movements

    PubMed Central

    Mollazadeh, Mohsen; Davidson, Adam G.; Schieber, Marc H.; Thakor, Nitish V.

    2013-01-01

    The performance of brain-machine interfaces (BMIs) that continuously control upper limb neuroprostheses may benefit from distinguishing periods of posture and movement so as to prevent inappropriate movement of the prosthesis. Few studies, however, have investigated how decoding behavioral states and detecting the transitions between posture and movement could be used autonomously to trigger a kinematic decoder. We recorded simultaneous neuronal ensemble and local field potential (LFP) activity from microelectrode arrays in primary motor cortex (M1) and dorsal (PMd) and ventral (PMv) premotor areas of two male rhesus monkeys performing a center-out reach-and-grasp task, while upper limb kinematics were tracked with a motion capture system with markers on the dorsal aspect of the forearm, hand, and fingers. A state decoder was trained to distinguish four behavioral states (baseline, reaction, movement, hold), while a kinematic decoder was trained to continuously decode hand end point position and 18 joint angles of the wrist and fingers. LFP amplitude most accurately predicted transition into the reaction (62%) and movement (73%) states, while spikes most accurately decoded arm, hand, and finger kinematics during movement. Using an LFP-based state decoder to trigger a spike-based kinematic decoder [r = 0.72, root mean squared error (RMSE) = 0.15] significantly improved decoding of reach-to-grasp movements from baseline to final hold, compared with either a spike-based state decoder combined with a spike-based kinematic decoder (r = 0.70, RMSE = 0.17) or a spike-based kinematic decoder alone (r = 0.67, RMSE = 0.17). Combining LFP-based state decoding with spike-based kinematic decoding may be a valuable step toward the realization of BMI control of a multifingered neuroprosthesis performing dexterous manipulation. PMID:23536714

  6. The System Design, Engineering Architecture, and Preliminary Results of a Lower-Cost High-Sensitivity High-Resolution Positron Emission Mammography Camera.

    PubMed

    Zhang, Yuxuan; Ramirez, Rocio A; Li, Hongdi; Liu, Shitao; An, Shaohui; Wang, Chao; Baghaei, Hossain; Wong, Wai-Hoi

    2010-02-01

    A lower-cost high-sensitivity high-resolution positron emission mammography (PEM) camera is developed. It consists of two detector modules with the planar detector bank of 20 × 12 cm(2). Each bank has 60 low-cost PMT-Quadrant-Sharing (PQS) LYSO blocks arranged in a 10 × 6 array with two types of geometries. One is the symmetric 19.36 × 19.36 mm(2) block made of 1.5 × 1.5 × 10 mm(3) crystals in a 12 × 12 array. The other is the 19.36 × 26.05 mm(2) asymmetric block made of 1.5 × 1.9 × 10 mm(3) crystals in 12 × 13 array. One row (10) of the elongated blocks are used along one side of the bank to reclaim the half empty PMT photocathode in the regular PQS design to reduce the dead area at the edge of the module. The bank has a high overall crystal packing fraction of 88%, which results in a very high sensitivity. Mechanical design and electronics have been developed for low-cost, compactness, and stability purposes. Each module has four Anger-HYPER decoding electronics that can handle a count-rate of 3 Mcps for single events. A simple two-module coincidence board with a hardware delay window for random coincidences has been developed with an adjustable window of 6 to 15 ns. Some of the performance parameters have been studied by preliminary tests and Monte Carlo simulations, including the crystal decoding map and the 17% energy resolution of the detectors, the point source sensitivity of 11.5% with 50 mm bank-to-bank distance, the 1.2 mm-spatial resolutions, 42 kcps peak Noise Equivalent Count Rate at 7.0-mCi total activity in human body, and the resolution phantom images. Those results show that the design goal of building a lower-cost, high-sensitivity, high-resolution PEM detector is achieved.

  7. Real-time minimal-bit-error probability decoding of convolutional codes

    NASA Technical Reports Server (NTRS)

    Lee, L.-N.

    1974-01-01

    A recursive procedure is derived for decoding of rate R = 1/n binary convolutional codes which minimizes the probability of the individual decoding decisions for each information bit, subject to the constraint that the decoding delay be limited to Delta branches. This new decoding algorithm is similar to, but somewhat more complex than, the Viterbi decoding algorithm. A real-time, i.e., fixed decoding delay, version of the Viterbi algorithm is also developed and used for comparison to the new algorithm on simulated channels. It is shown that the new algorithm offers advantages over Viterbi decoding in soft-decision applications, such as in the inner coding system for concatenated coding.

  8. Real-time minimal bit error probability decoding of convolutional codes

    NASA Technical Reports Server (NTRS)

    Lee, L. N.

    1973-01-01

    A recursive procedure is derived for decoding of rate R=1/n binary convolutional codes which minimizes the probability of the individual decoding decisions for each information bit subject to the constraint that the decoding delay be limited to Delta branches. This new decoding algorithm is similar to, but somewhat more complex than, the Viterbi decoding algorithm. A real-time, i.e. fixed decoding delay, version of the Viterbi algorithm is also developed and used for comparison to the new algorithm on simulated channels. It is shown that the new algorithm offers advantages over Viterbi decoding in soft-decision applications such as in the inner coding system for concatenated coding.

  9. KSC-07pd2593

    NASA Image and Video Library

    2007-09-27

    KENNEDY SPACE CENTER, FLA. -- The payload canister containing the Italian-built U.S. Node 2 module, called Harmony, begins taking its cargo to Launch Pad 39A. At the pad, the canister will be lifted to the payload changeout room and the module transferred inside. The payload will be installed in space shuttle Discovery's payload bay after the vehicle rolls out to the pad. Discovery is targeted for launch to the International Space Station for mission STS-120 on Oct. 23. The pressurized module will act as an internal connecting port and passageway to additional international science labs and cargo spacecraft. Photo credit: NASA/George Shelton

  10. KSC-07pd2594

    NASA Image and Video Library

    2007-09-27

    KENNEDY SPACE CENTER, FLA. -- The payload canister containing the Italian-built U.S. Node 2 module, called Harmony, arrives on Launch Pad 39A. The canister will be lifted to the payload changeout room, seen at the top center, and the module transferred inside. The payload will be installed in space shuttle Discovery's payload bay after the vehicle rolls out to the pad. Discovery is targeted for launch to the International Space Station for mission STS-120 on Oct. 23. The pressurized module will act as an internal connecting port and passageway to additional international science labs and cargo spacecraft. Photo credit: NASA/George Shelton

  11. Bayesian decoding using unsorted spikes in the rat hippocampus

    PubMed Central

    Layton, Stuart P.; Chen, Zhe; Wilson, Matthew A.

    2013-01-01

    A fundamental task in neuroscience is to understand how neural ensembles represent information. Population decoding is a useful tool to extract information from neuronal populations based on the ensemble spiking activity. We propose a novel Bayesian decoding paradigm to decode unsorted spikes in the rat hippocampus. Our approach uses a direct mapping between spike waveform features and covariates of interest and avoids accumulation of spike sorting errors. Our decoding paradigm is nonparametric, encoding model-free for representing stimuli, and extracts information from all available spikes and their waveform features. We apply the proposed Bayesian decoding algorithm to a position reconstruction task for freely behaving rats based on tetrode recordings of rat hippocampal neuronal activity. Our detailed decoding analyses demonstrate that our approach is efficient and better utilizes the available information in the nonsortable hash than the standard sorting-based decoding algorithm. Our approach can be adapted to an online encoding/decoding framework for applications that require real-time decoding, such as brain-machine interfaces. PMID:24089403

  12. The Development of a Portable Hard Disk Encryption/Decryption System with a MEMS Coded Lock.

    PubMed

    Zhang, Weiping; Chen, Wenyuan; Tang, Jian; Xu, Peng; Li, Yibin; Li, Shengyong

    2009-01-01

    In this paper, a novel portable hard-disk encryption/decryption system with a MEMS coded lock is presented, which can authenticate the user and provide the key for the AES encryption/decryption module. The portable hard-disk encryption/decryption system is composed of the authentication module, the USB portable hard-disk interface card, the ATA protocol command decoder module, the data encryption/decryption module, the cipher key management module, the MEMS coded lock controlling circuit module, the MEMS coded lock and the hard disk. The ATA protocol circuit, the MEMS control circuit and AES encryption/decryption circuit are designed and realized by FPGA(Field Programmable Gate Array). The MEMS coded lock with two couplers and two groups of counter-meshing-gears (CMGs) are fabricated by a LIGA-like process and precision engineering method. The whole prototype was fabricated and tested. The test results show that the user's password could be correctly discriminated by the MEMS coded lock, and the AES encryption module could get the key from the MEMS coded lock. Moreover, the data in the hard-disk could be encrypted or decrypted, and the read-write speed of the dataflow could reach 17 MB/s in Ultra DMA mode.

  13. A bandwidth efficient coding scheme for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Pietrobon, Steven S.; Costello, Daniel J., Jr.

    1991-01-01

    As a demonstration of the performance capabilities of trellis codes using multidimensional signal sets, a Viterbi decoder was designed. The choice of code was based on two factors. The first factor was its application as a possible replacement for the coding scheme currently used on the Hubble Space Telescope (HST). The HST at present uses the rate 1/3 nu = 6 (with 2 (exp nu) = 64 states) convolutional code with Binary Phase Shift Keying (BPSK) modulation. With the modulator restricted to a 3 Msym/s, this implies a data rate of only 1 Mbit/s, since the bandwidth efficiency K = 1/3 bit/sym. This is a very bandwidth inefficient scheme, although the system has the advantage of simplicity and large coding gain. The basic requirement from NASA was for a scheme that has as large a K as possible. Since a satellite channel was being used, 8PSK modulation was selected. This allows a K of between 2 and 3 bit/sym. The next influencing factor was INTELSAT's intention of transmitting the SONET 155.52 Mbit/s standard data rate over the 72 MHz transponders on its satellites. This requires a bandwidth efficiency of around 2.5 bit/sym. A Reed-Solomon block code is used as an outer code to give very low bit error rates (BER). A 16 state rate 5/6, 2.5 bit/sym, 4D-8PSK trellis code was selected. This code has reasonable complexity and has a coding gain of 4.8 dB compared to uncoded 8PSK (2). This trellis code also has the advantage that it is 45 deg rotationally invariant. This means that the decoder needs only to synchronize to one of the two naturally mapped 8PSK signals in the signal set.

  14. An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules.

    PubMed

    Mosheiff, Noga; Agmon, Haggai; Moriel, Avraham; Burak, Yoram

    2017-06-01

    Grid cells in the entorhinal cortex encode the position of an animal in its environment with spatially periodic tuning curves with different periodicities. Recent experiments established that these cells are functionally organized in discrete modules with uniform grid spacing. Here we develop a theory for efficient coding of position, which takes into account the temporal statistics of the animal's motion. The theory predicts a sharp decrease of module population sizes with grid spacing, in agreement with the trend seen in the experimental data. We identify a simple scheme for readout of the grid cell code by neural circuitry, that can match in accuracy the optimal Bayesian decoder. This readout scheme requires persistence over different timescales, depending on the grid cell module. Thus, we propose that the brain may employ an efficient representation of position which takes advantage of the spatiotemporal statistics of the encoded variable, in similarity to the principles that govern early sensory processing.

  15. An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules

    PubMed Central

    Mosheiff, Noga; Agmon, Haggai; Moriel, Avraham

    2017-01-01

    Grid cells in the entorhinal cortex encode the position of an animal in its environment with spatially periodic tuning curves with different periodicities. Recent experiments established that these cells are functionally organized in discrete modules with uniform grid spacing. Here we develop a theory for efficient coding of position, which takes into account the temporal statistics of the animal’s motion. The theory predicts a sharp decrease of module population sizes with grid spacing, in agreement with the trend seen in the experimental data. We identify a simple scheme for readout of the grid cell code by neural circuitry, that can match in accuracy the optimal Bayesian decoder. This readout scheme requires persistence over different timescales, depending on the grid cell module. Thus, we propose that the brain may employ an efficient representation of position which takes advantage of the spatiotemporal statistics of the encoded variable, in similarity to the principles that govern early sensory processing. PMID:28628647

  16. Mathematical models utilized in the retrieval of displacement information encoded in fringe patterns

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Lamberti, Luciano

    2016-02-01

    All the techniques that measure displacements, whether in the range of visible optics or any other form of field methods, require the presence of a carrier signal. A carrier signal is a wave form modulated (modified) by an input, deformation of the medium. A carrier is tagged to the medium under analysis and deforms with the medium. The wave form must be known both in the unmodulated and the modulated conditions. There are two basic mathematical models that can be utilized to decode the information contained in the carrier, phase modulation or frequency modulation, both are closely connected. Basic problems connected to the detection and recovery of displacement information that are common to all optical techniques will be analyzed in this paper, focusing on the general theory common to all the methods independently of the type of signal utilized. The aspects discussed are those that have practical impact in the process of data gathering and data processing.

  17. Odor-identity dependent motor programs underlie behavioral responses to odors

    PubMed Central

    Jung, Seung-Hye; Hueston, Catherine; Bhandawat, Vikas

    2015-01-01

    All animals use olfactory information to perform tasks essential to their survival. Odors typically activate multiple olfactory receptor neuron (ORN) classes and are therefore represented by the patterns of active ORNs. How the patterns of active ORN classes are decoded to drive behavior is under intense investigation. In this study, using Drosophila as a model system, we investigate the logic by which odors modulate locomotion. We designed a novel behavioral arena in which we could examine a fly’s locomotion under precisely controlled stimulus condition. In this arena, in response to similarly attractive odors, flies modulate their locomotion differently implying that odors have a more diverse effect on locomotion than was anticipated. Three features underlie odor-guided locomotion: First, in response to odors, flies modulate a surprisingly large number of motor parameters. Second, similarly attractive odors elicit changes in different motor programs. Third, different ORN classes modulate different subset of motor parameters. DOI: http://dx.doi.org/10.7554/eLife.11092.001 PMID:26439011

  18. Multi-level bandwidth efficient block modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1989-01-01

    The multilevel technique is investigated for combining block coding and modulation. There are four parts. In the first part, a formulation is presented for signal sets on which modulation codes are to be constructed. Distance measures on a signal set are defined and their properties are developed. In the second part, a general formulation is presented for multilevel modulation codes in terms of component codes with appropriate Euclidean distances. The distance properties, Euclidean weight distribution and linear structure of multilevel modulation codes are investigated. In the third part, several specific methods for constructing multilevel block modulation codes with interdependency among component codes are proposed. Given a multilevel block modulation code C with no interdependency among the binary component codes, the proposed methods give a multilevel block modulation code C which has the same rate as C, a minimum squared Euclidean distance not less than that of code C, a trellis diagram with the same number of states as that of C and a smaller number of nearest neighbor codewords than that of C. In the last part, error performance of block modulation codes is analyzed for an AWGN channel based on soft-decision maximum likelihood decoding. Error probabilities of some specific codes are evaluated based on their Euclidean weight distributions and simulation results.

  19. 47 CFR 11.33 - EAS Decoder.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... decoders manufactured after August 1, 2003 must provide a means to permit the selective display and logging... upgrade their decoders on an optional basis to include a selective display and logging capability for EAS... decoders after February 1, 2004 must install decoders that provide a means to permit the selective display...

  20. A real-time MPEG software decoder using a portable message-passing library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwong, Man Kam; Tang, P.T. Peter; Lin, Biquan

    1995-12-31

    We present a real-time MPEG software decoder that uses message-passing libraries such as MPL, p4 and MPI. The parallel MPEG decoder currently runs on the IBM SP system but can be easil ported to other parallel machines. This paper discusses our parallel MPEG decoding algorithm as well as the parallel programming environment under which it uses. Several technical issues are discussed, including balancing of decoding speed, memory limitation, 1/0 capacities, and optimization of MPEG decoding components. This project shows that a real-time portable software MPEG decoder is feasible in a general-purpose parallel machine.

  1. NP-hardness of decoding quantum error-correction codes

    NASA Astrophysics Data System (ADS)

    Hsieh, Min-Hsiu; Le Gall, François

    2011-05-01

    Although the theory of quantum error correction is intimately related to classical coding theory and, in particular, one can construct quantum error-correction codes (QECCs) from classical codes with the dual-containing property, this does not necessarily imply that the computational complexity of decoding QECCs is the same as their classical counterparts. Instead, decoding QECCs can be very much different from decoding classical codes due to the degeneracy property. Intuitively, one expects degeneracy would simplify the decoding since two different errors might not and need not be distinguished in order to correct them. However, we show that general quantum decoding problem is NP-hard regardless of the quantum codes being degenerate or nondegenerate. This finding implies that no considerably fast decoding algorithm exists for the general quantum decoding problems and suggests the existence of a quantum cryptosystem based on the hardness of decoding QECCs.

  2. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes. Part 3; The Map and Related Decoding Algirithms

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Fossorier, Marc

    1998-01-01

    In a coded communication system with equiprobable signaling, MLD minimizes the word error probability and delivers the most likely codeword associated with the corresponding received sequence. This decoding has two drawbacks. First, minimization of the word error probability is not equivalent to minimization of the bit error probability. Therefore, MLD becomes suboptimum with respect to the bit error probability. Second, MLD delivers a hard-decision estimate of the received sequence, so that information is lost between the input and output of the ML decoder. This information is important in coded schemes where the decoded sequence is further processed, such as concatenated coding schemes, multi-stage and iterative decoding schemes. In this chapter, we first present a decoding algorithm which both minimizes bit error probability, and provides the corresponding soft information at the output of the decoder. This algorithm is referred to as the MAP (maximum aposteriori probability) decoding algorithm.

  3. KSC-08pd1144

    NASA Image and Video Library

    2008-05-05

    CAPE CANAVERAL, Fla. -- Inside space shuttle Discovery's payload bay can be seen the red rain gutters, which prevent leaks into the bay from rain while the shuttle is on the pad. The STS-124 mission payload, the Japanese Experiment Module - Pressurized Module and the Japanese Remote Manipulator System (below the gutters), is being transferred from the Payload Changeout Room into the payload bay. Launch of Discovery is targeted for May 31. Photo credit: NASA/Jim Grossmann

  4. KSC-07pd2681

    NASA Image and Video Library

    2007-10-05

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, workers remove the rain gutters from space shuttle Discovery's payload bay. The gutters prevent leaks into the bay from rain while the shuttle is on the pad. Beneath is the orbital docking system. Mission STS-120 will bring the Harmony module that will provide attachment points for European and Japanese laboratory modules to the International Space Station. Launch of Discovery is targeted for Oct. 23. Photo credit: NASA/George Shelton

  5. Discovery and validation of a glioblastoma co-expressed gene module

    PubMed Central

    Dunwoodie, Leland J.; Poehlman, William L.; Ficklin, Stephen P.; Feltus, Frank Alexander

    2018-01-01

    Tumors exhibit complex patterns of aberrant gene expression. Using a knowledge-independent, noise-reducing gene co-expression network construction software called KINC, we created multiple RNAseq-based gene co-expression networks relevant to brain and glioblastoma biology. In this report, we describe the discovery and validation of a glioblastoma-specific gene module that contains 22 co-expressed genes. The genes are upregulated in glioblastoma relative to normal brain and lower grade glioma samples; they are also hypo-methylated in glioblastoma relative to lower grade glioma tumors. Among the proneural, neural, mesenchymal, and classical glioblastoma subtypes, these genes are most-highly expressed in the mesenchymal subtype. Furthermore, high expression of these genes is associated with decreased survival across each glioblastoma subtype. These genes are of interest to glioblastoma biology and our gene interaction discovery and validation workflow can be used to discover and validate co-expressed gene modules derived from any co-expression network. PMID:29541392

  6. Discovery and validation of a glioblastoma co-expressed gene module.

    PubMed

    Dunwoodie, Leland J; Poehlman, William L; Ficklin, Stephen P; Feltus, Frank Alexander

    2018-02-16

    Tumors exhibit complex patterns of aberrant gene expression. Using a knowledge-independent, noise-reducing gene co-expression network construction software called KINC, we created multiple RNAseq-based gene co-expression networks relevant to brain and glioblastoma biology. In this report, we describe the discovery and validation of a glioblastoma-specific gene module that contains 22 co-expressed genes. The genes are upregulated in glioblastoma relative to normal brain and lower grade glioma samples; they are also hypo-methylated in glioblastoma relative to lower grade glioma tumors. Among the proneural, neural, mesenchymal, and classical glioblastoma subtypes, these genes are most-highly expressed in the mesenchymal subtype. Furthermore, high expression of these genes is associated with decreased survival across each glioblastoma subtype. These genes are of interest to glioblastoma biology and our gene interaction discovery and validation workflow can be used to discover and validate co-expressed gene modules derived from any co-expression network.

  7. Inexpensive position sensitive detector block for dedicated PET cameras using 40-mm diameter PMT in quadrant sharing configuration

    NASA Astrophysics Data System (ADS)

    Uribe, J.; Aykac, M.; Baghaei, H.; Li, Hongdi; Wang, Yu; Liu, Yaqiang; Wong, V.; Xing, Tao; Ramirez, R.; Wong, Wai-Hoi

    2003-06-01

    Recent approvals by CMS (HCFA) for reimbursement of positron emission tomography (PET) scans fuels the rapid grow of the PET market, thus creating the need for more affordable dedicated PET scanners. The objective of the work presented here was the development of a BGO position-sensitive block with similar detector area (40 mm /spl times/ 40 mm) and same number of crystals (8 /spl times/ 8) as the block of a commercial BGO PET, using the less expensive photomultiplier quadrant sharing (PQS) technique. This block is coupled to four single-anode 40-mm diameter photomultipliers (PMT) instead of the 19-mm PMT used in a popular commercial BGO PET, and each PMT is shared by four adjacent detector blocks. Potentially, this design needs only 25% of the number of PMT used in the commercial BGO PET. In order not to waste the unused half-row of PMT at the edges of a detector panel/module when the module is made up solely of square blocks, an extended rectangular block has to be developed for the edge-blocks in the module, which maximized the use of the PMT and minimized the gap between modules. Only the extended block needs to be developed to derive the design for all the blocks in the module because the symmetric square block uses the same light-distributing partitions as those along the short side of the extended rectangular block. White-paint masks applied with accurate templates and airbrush were fine-tuned for every pair of adjacent crystals. The experimental block developed in this study provided good crystal-decoding. The composite energy spectrum of all 64 crystals showed a prominent photopeak. The worst crystal sitting in the air space between 4 round PMTs still has 60% of the signal pulse height as the best crystal. The average energy resolution was 21.8% for 511 keV gamma (range 17% - 28.7%) that compared well with the 22% - 44% measured with GE and CTI blocks. The image resolution provided by the PQS blocks is expected to be comparable to that of commercial BGO PETs as similar size crystals were decoded.

  8. A study of universal modulation techniques applied to satellite data collection

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A universal modulation and frequency control system for use with data collection platform (DCP) transmitters is examined. The final design discussed can, under software/firmwave control, generate all of the specific digital data modulation formats currently used in the NASA satellite data collection service and can simultaneously synthesize the proper RF carrier frequencies employed. A novel technique for DCP time and frequency control is presented. The emissions of NBS radio station WWV/WWVH are received, detected, and finally decoded in microcomputer software to generate a highly accurate time base for the platform; with the assistance of external hardware, the microcomputer also directs the recalibration of all DCP oscillators to achieve very high frequency accuracies and low drift rates versus temperature, supply voltage, and time. The final programmable DCP design also employs direct microcomputer control of data reduction, formatting, transmitter switching, and system power management.

  9. Exploring system interconnection architectures with VIPACES: from direct connections to NOCs

    NASA Astrophysics Data System (ADS)

    Sánchez-Peña, Armando; Carballo, Pedro P.; Núñez, Antonio

    2007-05-01

    This paper presents a simple environment for the verification of AMBA 3 AXI systems in Verification IP (VIP) production called VIPACES (Verification Interface Primitives for the development of AXI Compliant Elements and Systems). These primitives are presented as a not compiled library written in SystemC where interfaces are the core of the library. The definition of interfaces instead of generic modules let the user construct custom modules improving the resources spent during the verification phase as well as easily adapting his modules to the AMBA 3 AXI protocol. This topic is the main discussion in the VIPACES library. The paper focuses on comparing and contrasting the main interconnection schemes for AMBA 3 AXI as modeled by VIPACES. For assessing these results we propose a validation scenario with a particular architecture belonging to the domain of MPEG4 video decoding, which is compound by an AXI bus connecting an IDCT and other processing resources.

  10. Shuttle S-band communications technical concepts

    NASA Technical Reports Server (NTRS)

    Seyl, J. W.; Seibert, W. W.; Porter, J. A.; Eggers, D. S.; Novosad, S. W.; Vang, H. A.; Lenett, S. D.; Lewton, W. A.; Pawlowski, J. F.

    1985-01-01

    Using the S-band communications system, shuttle orbiter can communicate directly with the Earth via the Ground Spaceflight Tracking and Data Network (GSTDN) or via the Tracking and Data Relay Satellite System (TDRSS). The S-band frequencies provide the primary links for direct Earth and TDRSS communications during all launch and entry/landing phases of shuttle missions. On orbit, S-band links are used when TDRSS Ku-band is not available, when conditions require orbiter attitudes unfavorable to Ku-band communications, or when the payload bay doors are closed. the S-band communications functional requirements, the orbiter hardware configuration, and the NASA S-band communications network are described. The requirements and implementation concepts which resulted in techniques for shuttle S-band hardware development discussed include: (1) digital voice delta modulation; (2) convolutional coding/Viterbi decoding; (3) critical modulation index for phase modulation using a Costas loop (phase-shift keying) receiver; (4) optimum digital data modulation parameters for continuous-wave frequency modulation; (5) intermodulation effects of subcarrier ranging and time-division multiplexing data channels; (6) radiofrequency coverage; and (7) despreading techniques under poor signal-to-noise conditions. Channel performance is reviewed.

  11. Error Characterization and Mitigation for 16Nm MLC NAND Flash Memory Under Total Ionizing Dose Effect

    NASA Technical Reports Server (NTRS)

    Li, Yue (Inventor); Bruck, Jehoshua (Inventor)

    2018-01-01

    A data device includes a memory having a plurality of memory cells configured to store data values in accordance with a predetermined rank modulation scheme that is optional and a memory controller that receives a current error count from an error decoder of the data device for one or more data operations of the flash memory device and selects an operating mode for data scrubbing in accordance with the received error count and a program cycles count.

  12. Targeting LKB1 in cancer – exposing and exploiting vulnerabilities

    PubMed Central

    Momcilovic, M; Shackelford, D B

    2015-01-01

    The LKB1 tumour suppressor is a serine/threonine kinase that functions as master regulator of cell growth, metabolism, survival and polarity. LKB1 is frequently mutated in human cancers and research spanning the last two decades have begun decoding the cellular pathways deregulated following LKB1 inactivation. This work has led to the identification of vulnerabilities present in LKB1-deficient tumour cells. Pre-clinical studies have now identified therapeutic strategies targeting this subset of tumours that promise to benefit this large patient population harbouring LKB1 mutations. Here, we review the current efforts that are underway to translate pre-clinical discovery of therapeutic strategies targeting LKB1 mutant cancers into clinical practice. PMID:26196184

  13. Bounded-Angle Iterative Decoding of LDPC Codes

    NASA Technical Reports Server (NTRS)

    Dolinar, Samuel; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush

    2009-01-01

    Bounded-angle iterative decoding is a modified version of conventional iterative decoding, conceived as a means of reducing undetected-error rates for short low-density parity-check (LDPC) codes. For a given code, bounded-angle iterative decoding can be implemented by means of a simple modification of the decoder algorithm, without redesigning the code. Bounded-angle iterative decoding is based on a representation of received words and code words as vectors in an n-dimensional Euclidean space (where n is an integer).

  14. Discovery and therapeutic promise of selective androgen receptor modulators.

    PubMed

    Chen, Jiyun; Kim, Juhyun; Dalton, James T

    2005-06-01

    Androgens are essential for male development and the maintenance of male secondary characteristics, such as bone mass, muscle mass, body composition, and spermatogenesis. The main disadvantages of steroidal androgens are their undesirable physicochemical and pharmacokinetic properties. The recent discovery of nonsteroidal selective androgen receptor modulators (SARMs) provides a promising alternative for testosterone replacement therapies with advantages including oral bioavailability, flexibility of structural modification, androgen receptor specificity, tissue selectivity, and the lack of steroid-related side effects.

  15. Discovery AND Therapeutic Promise OF Selective Androgen Receptor Modulators

    PubMed Central

    Chen, Jiyun; Kim, Juhyun; Dalton, James T.

    2007-01-01

    Androgens are essential for male development and the maintenance of male secondary characteristics, such as bone mass, muscle mass, body composition, and spermatogenesis. The main disadvantages of steroidal androgens are their undesirable physicochemical and pharmacokinetic properties. The recent discovery of nonsteroidal selective androgen receptor modulators (SARMs) provides a promising alternative for testosterone replacement therapies with advantages including oral bioavailability, flexibility of structural modification, androgen receptor specificity, tissue selectivity, and the lack of steroid-related side effects. PMID:15994457

  16. KSC-07pd2680

    NASA Image and Video Library

    2007-10-05

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, workers are removing the rain gutters from space shuttle Discovery's payload bay. The gutters prevent leaks into the bay from rain while the shuttle is on the pad. Beneath is the orbital docking system. Mission STS-120 will bring the Harmony module that will provide attachment points for European and Japanese laboratory modules to the International Space Station. Launch of Discovery is targeted for Oct. 23. Photo credit: NASA/George Shelton

  17. Iterative channel decoding of FEC-based multiple-description codes.

    PubMed

    Chang, Seok-Ho; Cosman, Pamela C; Milstein, Laurence B

    2012-03-01

    Multiple description coding has been receiving attention as a robust transmission framework for multimedia services. This paper studies the iterative decoding of FEC-based multiple description codes. The proposed decoding algorithms take advantage of the error detection capability of Reed-Solomon (RS) erasure codes. The information of correctly decoded RS codewords is exploited to enhance the error correction capability of the Viterbi algorithm at the next iteration of decoding. In the proposed algorithm, an intradescription interleaver is synergistically combined with the iterative decoder. The interleaver does not affect the performance of noniterative decoding but greatly enhances the performance when the system is iteratively decoded. We also address the optimal allocation of RS parity symbols for unequal error protection. For the optimal allocation in iterative decoding, we derive mathematical equations from which the probability distributions of description erasures can be generated in a simple way. The performance of the algorithm is evaluated over an orthogonal frequency-division multiplexing system. The results show that the performance of the multiple description codes is significantly enhanced.

  18. High rate concatenated coding systems using bandwidth efficient trellis inner codes

    NASA Technical Reports Server (NTRS)

    Deng, Robert H.; Costello, Daniel J., Jr.

    1989-01-01

    High-rate concatenated coding systems with bandwidth-efficient trellis inner codes and Reed-Solomon (RS) outer codes are investigated for application in high-speed satellite communication systems. Two concatenated coding schemes are proposed. In one the inner code is decoded with soft-decision Viterbi decoding, and the outer RS code performs error-correction-only decoding (decoding without side information). In the other, the inner code is decoded with a modified Viterbi algorithm, which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, whereas branch metrics are used to provide reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. The two schemes have been proposed for high-speed data communication on NASA satellite channels. The rates considered are at least double those used in current NASA systems, and the results indicate that high system reliability can still be achieved.

  19. KSC-07pd2678

    NASA Image and Video Library

    2007-10-05

    KENNEDY SPACE CENTER, FLA. -- From the payload changeout room on Launch Pad 39A, the payloads for mission STS-120 have been transferred into space shuttle Discovery's payload bay. Seen at the lower end is the Italian-built U.S. Node 2 module, named Harmony. At the top is the orbital docking system. The red ring at top comprises rain gutters to prevent leaks into the bay from rain while the shuttle is on the pad. Mission STS-120 will bring the Harmony module that will provide attachment points for European and Japanese laboratory modules to the International Space Station. Launch of Discovery is targeted for Oct. 23. Photo credit: NASA/George Shelton

  20. KSC-07pd2599

    NASA Image and Video Library

    2007-09-27

    KENNEDY SPACE CENTER, FLA. -- In full light of day, the payload canister containing the Italian-built U.S. Node 2 module, called Harmony, is in place next to the payload changeout room on Launch Pad 39A. The canister will be opened and the module transferred inside. The payload will be installed in space shuttle Discovery's payload bay after the vehicle rolls out to the pad. Discovery is targeted for launch to the International Space Station for mission STS-120 on Oct. 23. The pressurized module will act as an internal connecting port and passageway to additional international science labs and cargo spacecraft. Photo credit: NASA/George Shelton

  1. KSC-07pd2596

    NASA Image and Video Library

    2007-09-27

    KENNEDY SPACE CENTER, FLA. -- With umbilical lines still attached, the payload canister containing the Italian-built U.S. Node 2 module, called Harmony, is lifted up toward the payload changeout room on Launch Pad 39A. The canister will be lifted to the payload changeout room and the module transferred inside. The payload will be installed in space shuttle Discovery's payload bay after the vehicle rolls out to the pad. Discovery is targeted for launch to the International Space Station for mission STS-120 on Oct. 23. The pressurized module will act as an internal connecting port and passageway to additional international science labs and cargo spacecraft. Photo credit: NASA/George Shelton

  2. [Clinical experience in communication in autogenous psychotherapy and hypnosis].

    PubMed

    Eletti, P L; Peresson, L

    1983-12-30

    Questions relating to communication and metacommunication during two forms of directive psychotherapy (Schultz's autogenous training and hypnosis) are examined. The concept of rigidity and cognitive flexibility with regard to the physician-patient relationship is discussed: abstract-concrete dynamics, abstract generalisation of diagnosis, linguistic egocentricity, stereotypical adaptation to conventional language. Some attention is devoted to Heider's balance theory as the first approach to psychological understanding of the therapeutic relationship. The communicative and metacommunicative process described by the Palo Alto (California) school is discussed. Autogenous psychotherapy and hypnosis extend through the concepts of symmetrical relation and inferior complementarity. The criteria for reaching these objectives are stated, along with the pragmatic methods devised for decoding messages and gaining access to metacommunication. Three clinical cases treated through autogenous training and one with hypnosis are analysed with respect to communication and from the relational standpoint. The patient's messages are decoded, the ambiguity of the communication is detected, and the physician's possible answers are examined at both the technical and the emotive level. It is felt that the correct use of the communicational perspective greatly extends the possibilities of autogenous training and hypnosis. It is not a question of combining relational and autogenous management, but of using the Palo Alto discoveries in the more complete understanding of cases in which psychotherapy is employed.

  3. Efficient Decoding of Compressed Data.

    ERIC Educational Resources Information Center

    Bassiouni, Mostafa A.; Mukherjee, Amar

    1995-01-01

    Discusses the problem of enhancing the speed of Huffman decoding of compressed data. Topics addressed include the Huffman decoding tree; multibit decoding; binary string mapping problems; and algorithms for solving mapping problems. (22 references) (LRW)

  4. A new VLSI architecture for a single-chip-type Reed-Solomon decoder

    NASA Technical Reports Server (NTRS)

    Hsu, I. S.; Truong, T. K.

    1989-01-01

    A new very large scale integration (VLSI) architecture for implementing Reed-Solomon (RS) decoders that can correct both errors and erasures is described. This new architecture implements a Reed-Solomon decoder by using replication of a single VLSI chip. It is anticipated that this single chip type RS decoder approach will save substantial development and production costs. It is estimated that reduction in cost by a factor of four is possible with this new architecture. Furthermore, this Reed-Solomon decoder is programmable between 8 bit and 10 bit symbol sizes. Therefore, both an 8 bit Consultative Committee for Space Data Systems (CCSDS) RS decoder and a 10 bit decoder are obtained at the same time, and when concatenated with a (15,1/6) Viterbi decoder, provide an additional 2.1-dB coding gain.

  5. Deconstructing multivariate decoding for the study of brain function.

    PubMed

    Hebart, Martin N; Baker, Chris I

    2017-08-04

    Multivariate decoding methods were developed originally as tools to enable accurate predictions in real-world applications. The realization that these methods can also be employed to study brain function has led to their widespread adoption in the neurosciences. However, prior to the rise of multivariate decoding, the study of brain function was firmly embedded in a statistical philosophy grounded on univariate methods of data analysis. In this way, multivariate decoding for brain interpretation grew out of two established frameworks: multivariate decoding for predictions in real-world applications, and classical univariate analysis based on the study and interpretation of brain activation. We argue that this led to two confusions, one reflecting a mixture of multivariate decoding for prediction or interpretation, and the other a mixture of the conceptual and statistical philosophies underlying multivariate decoding and classical univariate analysis. Here we attempt to systematically disambiguate multivariate decoding for the study of brain function from the frameworks it grew out of. After elaborating these confusions and their consequences, we describe six, often unappreciated, differences between classical univariate analysis and multivariate decoding. We then focus on how the common interpretation of what is signal and noise changes in multivariate decoding. Finally, we use four examples to illustrate where these confusions may impact the interpretation of neuroimaging data. We conclude with a discussion of potential strategies to help resolve these confusions in interpreting multivariate decoding results, including the potential departure from multivariate decoding methods for the study of brain function. Copyright © 2017. Published by Elsevier Inc.

  6. Spatial Lattice Modulation for MIMO Systems

    NASA Astrophysics Data System (ADS)

    Choi, Jiwook; Nam, Yunseo; Lee, Namyoon

    2018-06-01

    This paper proposes spatial lattice modulation (SLM), a spatial modulation method for multipleinput-multiple-output (MIMO) systems. The key idea of SLM is to jointly exploit spatial, in-phase, and quadrature dimensions to modulate information bits into a multi-dimensional signal set that consists oflattice points. One major finding is that SLM achieves a higher spectral efficiency than the existing spatial modulation and spatial multiplexing methods for the MIMO channel under the constraint ofM-ary pulseamplitude-modulation (PAM) input signaling per dimension. In particular, it is shown that when the SLM signal set is constructed by using dense lattices, a significant signal-to-noise-ratio (SNR) gain, i.e., a nominal coding gain, is attainable compared to the existing methods. In addition, closed-form expressions for both the average mutual information and average symbol-vector-error-probability (ASVEP) of generic SLM are derived under Rayleigh-fading environments. To reduce detection complexity, a low-complexity detection method for SLM, which is referred to as lattice sphere decoding, is developed by exploiting lattice theory. Simulation results verify the accuracy of the conducted analysis and demonstrate that the proposed SLM techniques achieve higher average mutual information and lower ASVEP than do existing methods.

  7. Error-trellis Syndrome Decoding Techniques for Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1984-01-01

    An error-trellis syndrome decoding technique for convolutional codes is developed. This algorithm is then applied to the entire class of systematic convolutional codes and to the high-rate, Wyner-Ash convolutional codes. A special example of the one-error-correcting Wyner-Ash code, a rate 3/4 code, is treated. The error-trellis syndrome decoding method applied to this example shows in detail how much more efficient syndrome decoding is than Viterbi decoding if applied to the same problem. For standard Viterbi decoding, 64 states are required, whereas in the example only 7 states are needed. Also, within the 7 states required for decoding, many fewer transitions are needed between the states.

  8. The VLSI design of an error-trellis syndrome decoder for certain convolutional codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Jensen, J. M.; Hsu, I.-S.; Truong, T. K.

    1986-01-01

    A recursive algorithm using the error-trellis decoding technique is developed to decode convolutional codes (CCs). An example, illustrating the very large scale integration (VLSI) architecture of such a decode, is given for a dual-K CC. It is demonstrated that such a decoder can be realized readily on a single chip with metal-nitride-oxide-semiconductor technology.

  9. Systolic VLSI Reed-Solomon Decoder

    NASA Technical Reports Server (NTRS)

    Shao, H. M.; Truong, T. K.; Deutsch, L. J.; Yuen, J. H.

    1986-01-01

    Decoder for digital communications provides high-speed, pipelined ReedSolomon (RS) error-correction decoding of data streams. Principal new feature of proposed decoder is modification of Euclid greatest-common-divisor algorithm to avoid need for time-consuming computations of inverse of certain Galois-field quantities. Decoder architecture suitable for implementation on very-large-scale integrated (VLSI) chips with negative-channel metaloxide/silicon circuitry.

  10. The VLSI design of error-trellis syndrome decoding for convolutional codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Jensen, J. M.; Truong, T. K.; Hsu, I. S.

    1985-01-01

    A recursive algorithm using the error-trellis decoding technique is developed to decode convolutional codes (CCs). An example, illustrating the very large scale integration (VLSI) architecture of such a decode, is given for a dual-K CC. It is demonstrated that such a decoder can be realized readily on a single chip with metal-nitride-oxide-semiconductor technology.

  11. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes. Part 3

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1998-01-01

    Decoding algorithms based on the trellis representation of a code (block or convolutional) drastically reduce decoding complexity. The best known and most commonly used trellis-based decoding algorithm is the Viterbi algorithm. It is a maximum likelihood decoding algorithm. Convolutional codes with the Viterbi decoding have been widely used for error control in digital communications over the last two decades. This chapter is concerned with the application of the Viterbi decoding algorithm to linear block codes. First, the Viterbi algorithm is presented. Then, optimum sectionalization of a trellis to minimize the computational complexity of a Viterbi decoder is discussed and an algorithm is presented. Some design issues for IC (integrated circuit) implementation of a Viterbi decoder are considered and discussed. Finally, a new decoding algorithm based on the principle of compare-select-add is presented. This new algorithm can be applied to both block and convolutional codes and is more efficient than the conventional Viterbi algorithm based on the add-compare-select principle. This algorithm is particularly efficient for rate 1/n antipodal convolutional codes and their high-rate punctured codes. It reduces computational complexity by one-third compared with the Viterbi algorithm.

  12. A test of the role of the medial temporal lobe in single-word decoding.

    PubMed

    Osipowicz, Karol; Rickards, Tyler; Shah, Atif; Sharan, Ashwini; Sperling, Michael; Kahn, Waseem; Tracy, Joseph

    2011-01-15

    The degree to which the MTL system contributes to effective language skills is not well delineated. We sought to determine if the MTL plays a role in single-word decoding in healthy, normal skilled readers. The experiment follows from the implications of the dual-process model of single-word decoding, which provides distinct predictions about the nature of MTL involvement. The paradigm utilized word (regular and irregularly spelled words) and pseudoword (phonetically regular) stimuli that differed in their demand for non-lexical as opposed lexical decoding. The data clearly showed that the MTL system was not involved in single word decoding in skilled, native English readers. Neither the hippocampus nor the MTL system as a whole showed significant activation during lexical or non-lexical based decoding. The results provide evidence that lexical and non-lexical decoding are implemented by distinct but overlapping neuroanatomical networks. Non-lexical decoding appeared most uniquely associated with cuneus and fusiform gyrus activation biased toward the left hemisphere. In contrast, lexical decoding appeared associated with right middle frontal and supramarginal, and bilateral cerebellar activation. Both these decoding operations appeared in the context of a shared widespread network of activations including bilateral occipital cortex and superior frontal regions. These activations suggest that the absence of MTL involvement in either lexical or non-lexical decoding appears likely a function of the skilled reading ability of our sample such that whole-word recognition and retrieval processes do not utilize the declarative memory system, in the case of lexical decoding, and require only minimal analysis and recombination of the phonetic elements of a word, in the case of non-lexical decoding. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. A Test of the Role of the Medial Temporal Lobe in Single-Word Decoding

    PubMed Central

    Osipowicz, Karol; Rickards, Tyler; Shah, Atif; Sharan, Ashwini; Sperling, Michael; Kahn, Waseem; Tracy, Joseph

    2012-01-01

    The degree to which the MTL system contributes to effective language skills is not well delineated. We sought to determine if the MTL plays a role in single-word decoding in healthy, normal skilled readers. The experiment follows from the implications of the dual-process model of single-word decoding, which provides distinct predictions about the nature of MTL involvement. The paradigm utilized word (regular and irregularly spelled words) and pseudoword (phonetically regular) stimuli that differed in their demand for non-lexical as opposed lexical decoding. The data clearly showed that the MTL system was not involved in single word decoding in skilled, native English readers. Neither the hippocampus, nor the MTL system as a whole showed significant activation during lexical or non-lexical based decoding. The results provide evidence that lexical and non-lexical decoding are implemented by distinct but overlapping neuroanatomical networks. Non-lexical decoding appeared most uniquely associated with cuneus and fusiform gyrus activation biased toward the left hemisphere. In contrast, lexical decoding appeared associated with right middle frontal and supramarginal, and bilateral cerebellar activation. Both these decoding operations appeared in the context of a shared widespread network of activations including bilateral occipital cortex and superior frontal regions. These activations suggest that the absence of MTL involvement in either lexical or non-lexical decoding appears likely a function of the skilled reading ability of our sample such that whole-word recognition and retrieval processes do not utilize the declarative memory system, in the case of lexical decoding, and require only minimal analysis and recombination of the phonetic elements of a word, in the case of non-lexical decoding. PMID:20884357

  14. Hybrid concatenated codes and iterative decoding

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Pollara, Fabrizio (Inventor)

    2000-01-01

    Several improved turbo code apparatuses and methods. The invention encompasses several classes: (1) A data source is applied to two or more encoders with an interleaver between the source and each of the second and subsequent encoders. Each encoder outputs a code element which may be transmitted or stored. A parallel decoder provides the ability to decode the code elements to derive the original source information d without use of a received data signal corresponding to d. The output may be coupled to a multilevel trellis-coded modulator (TCM). (2) A data source d is applied to two or more encoders with an interleaver between the source and each of the second and subsequent encoders. Each of the encoders outputs a code element. In addition, the original data source d is output from the encoder. All of the output elements are coupled to a TCM. (3) At least two data sources are applied to two or more encoders with an interleaver between each source and each of the second and subsequent encoders. The output may be coupled to a TCM. (4) At least two data sources are applied to two or more encoders with at least two interleavers between each source and each of the second and subsequent encoders. (5) At least one data source is applied to one or more serially linked encoders through at least one interleaver. The output may be coupled to a TCM. The invention includes a novel way of terminating a turbo coder.

  15. Taking Attention Away from the Auditory Modality: Context-dependent Effects on Early Sensory Encoding of Speech.

    PubMed

    Xie, Zilong; Reetzke, Rachel; Chandrasekaran, Bharath

    2018-05-24

    Increasing visual perceptual load can reduce pre-attentive auditory cortical activity to sounds, a reflection of the limited and shared attentional resources for sensory processing across modalities. Here, we demonstrate that modulating visual perceptual load can impact the early sensory encoding of speech sounds, and that the impact of visual load is highly dependent on the predictability of the incoming speech stream. Participants (n = 20, 9 females) performed a visual search task of high (target similar to distractors) and low (target dissimilar to distractors) perceptual load, while early auditory electrophysiological responses were recorded to native speech sounds. Speech sounds were presented either in a 'repetitive context', or a less predictable 'variable context'. Independent of auditory stimulus context, pre-attentive auditory cortical activity was reduced during high visual load, relative to low visual load. We applied a data-driven machine learning approach to decode speech sounds from the early auditory electrophysiological responses. Decoding performance was found to be poorer under conditions of high (relative to low) visual load, when the incoming acoustic stream was predictable. When the auditory stimulus context was less predictable, decoding performance was substantially greater for the high (relative to low) visual load conditions. Our results provide support for shared attentional resources between visual and auditory modalities that substantially influence the early sensory encoding of speech signals in a context-dependent manner. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Carbon source-dependent expansion of the genetic code in bacteria

    PubMed Central

    Prat, Laure; Heinemann, Ilka U.; Aerni, Hans R.; Rinehart, Jesse; O’Donoghue, Patrick; Söll, Dieter

    2012-01-01

    Despite the fact that the genetic code is known to vary between organisms in rare cases, it is believed that in the lifetime of a single cell the code is stable. We found Acetohalobium arabaticum cells grown on pyruvate genetically encode 20 amino acids, but in the presence of trimethylamine (TMA), A. arabaticum dynamically expands its genetic code to 21 amino acids including pyrrolysine (Pyl). A. arabaticum is the only known organism that modulates the size of its genetic code in response to its environment and energy source. The gene cassette pylTSBCD, required to biosynthesize and genetically encode UAG codons as Pyl, is present in the genomes of 24 anaerobic archaea and bacteria. Unlike archaeal Pyl-decoding organisms that constitutively encode Pyl, we observed that A. arabaticum controls Pyl encoding by down-regulating transcription of the entire Pyl operon under growth conditions lacking TMA, to the point where no detectable Pyl-tRNAPyl is made in vivo. Pyl-decoding archaea adapted to an expanded genetic code by minimizing TAG codon frequency to typically ∼5% of ORFs, whereas Pyl-decoding bacteria (∼20% of ORFs contain in-frame TAGs) regulate Pyl-tRNAPyl formation and translation of UAG by transcriptional deactivation of genes in the Pyl operon. We further demonstrate that Pyl encoding occurs in a bacterium that naturally encodes the Pyl operon, and identified Pyl residues by mass spectrometry in A. arabaticum proteins including two methylamine methyltransferases. PMID:23185002

  17. LDPC-based iterative joint source-channel decoding for JPEG2000.

    PubMed

    Pu, Lingling; Wu, Zhenyu; Bilgin, Ali; Marcellin, Michael W; Vasic, Bane

    2007-02-01

    A framework is proposed for iterative joint source-channel decoding of JPEG2000 codestreams. At the encoder, JPEG2000 is used to perform source coding with certain error-resilience (ER) modes, and LDPC codes are used to perform channel coding. During decoding, the source decoder uses the ER modes to identify corrupt sections of the codestream and provides this information to the channel decoder. Decoding is carried out jointly in an iterative fashion. Experimental results indicate that the proposed method requires fewer iterations and improves overall system performance.

  18. Recent Progress in the Design and Discovery of RXR Modulators Targeting Alternate Binding Sites of the Receptor.

    PubMed

    Su, Ying; Zeng, Zhiping; Chen, Ziwen; Xu, Dan; Zhang, Weidong; Zhang, Xiao-Kun

    2017-01-01

    Retinoid X receptors (RXRs) occupy a central position within the nuclear receptor superfamily. They not only function as important transcriptional factors but also exhibit diverse nongenomic biological activities. The pleiotropic actions of RXRs under both physiological and pathophysiological conditions confer RXRs important drug targets for the treatment of cancer, and metabolic and neurodegenerative diseases. RXR modulators have been studied for the purpose of developing both drug molecules and chemical tools for biological investigation of RXR. Development of RXR modulators has focused on small molecules targeting the canonical ligand-binding pocket. However, accumulating results have demonstrated that there are other binding mechanisms by which small molecules interact with RXR to act as RXR modulators. This review discusses the recent development in the design and discovery of RXR modulators with a focus on those targeting novel binding sites on RXR.

  19. Belief propagation decoding of quantum channels by passing quantum messages

    NASA Astrophysics Data System (ADS)

    Renes, Joseph M.

    2017-07-01

    The belief propagation (BP) algorithm is a powerful tool in a wide range of disciplines from statistical physics to machine learning to computational biology, and is ubiquitous in decoding classical error-correcting codes. The algorithm works by passing messages between nodes of the factor graph associated with the code and enables efficient decoding of the channel, in some cases even up to the Shannon capacity. Here we construct the first BP algorithm which passes quantum messages on the factor graph and is capable of decoding the classical-quantum channel with pure state outputs. This gives explicit decoding circuits whose number of gates is quadratic in the code length. We also show that this decoder can be modified to work with polar codes for the pure state channel and as part of a decoder for transmitting quantum information over the amplitude damping channel. These represent the first explicit capacity-achieving decoders for non-Pauli channels.

  20. Low Power LDPC Code Decoder Architecture Based on Intermediate Message Compression Technique

    NASA Astrophysics Data System (ADS)

    Shimizu, Kazunori; Togawa, Nozomu; Ikenaga, Takeshi; Goto, Satoshi

    Reducing the power dissipation for LDPC code decoder is a major challenging task to apply it to the practical digital communication systems. In this paper, we propose a low power LDPC code decoder architecture based on an intermediate message-compression technique which features as follows: (i) An intermediate message compression technique enables the decoder to reduce the required memory capacity and write power dissipation. (ii) A clock gated shift register based intermediate message memory architecture enables the decoder to decompress the compressed messages in a single clock cycle while reducing the read power dissipation. The combination of the above two techniques enables the decoder to reduce the power dissipation while keeping the decoding throughput. The simulation results show that the proposed architecture improves the power efficiency up to 52% and 18% compared to that of the decoder based on the overlapped schedule and the rapid convergence schedule without the proposed techniques respectively.

  1. “Doctor” or “darling”? Decoding the communication partner from ECoG of the anterior temporal lobe during non-experimental, real-life social interaction

    PubMed Central

    Derix, Johanna; Iljina, Olga; Schulze-Bonhage, Andreas; Aertsen, Ad; Ball, Tonio

    2012-01-01

    Human brain processes underlying real-life social interaction in everyday situations have been difficult to study and have, until now, remained largely unknown. Here, we investigated whether electrocorticography (ECoG) recorded for pre-neurosurgical diagnostics during the daily hospital life of epilepsy patients could provide a way to elucidate the neural correlates of non-experimental social interaction. We identified time periods in which patients were involved in conversations with either their respective life partners (Condition 1; C1) or attending physicians (Condition 2; C2). These two conditions can be expected to differentially involve subfunctions of social interaction which have been associated with activity in the anterior temporal lobe (ATL), including the temporal pole (TP). Therefore, we specifically focused on ECoG recordings from this brain region and investigated spectral power modulations in the alpha (8–12 Hz) and theta (3–5 Hz) frequency ranges, which have been previously assumed to play an important role in the processing of social interaction. We hypothesized that brain activity in this region might be sensitive to differences in the two interaction situations and tested whether these differences can be detected by single-trial decoding. Condition-specific effects in both theta and alpha bands were observed: the left and right TP exclusively showed increased power in C1 compared to C2, whereas more posterior parts of the ATL exhibited similar (C1 > C2) and also contrary (C2 > C1) effects. Single-trial decoding accuracies for classification of these effects were highly above chance. Our findings demonstrate that it is possible to study the neural correlates of human social interaction in non-experimental conditions. Decoding the identity of the communication partner and adjusting the speech output accordingly may be useful in the emerging field of brain-machine interfacing for restoration of expressive speech. PMID:22973215

  2. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1998-01-01

    A code trellis is a graphical representation of a code, block or convolutional, in which every path represents a codeword (or a code sequence for a convolutional code). This representation makes it possible to implement Maximum Likelihood Decoding (MLD) of a code with reduced decoding complexity. The most well known trellis-based MLD algorithm is the Viterbi algorithm. The trellis representation was first introduced and used for convolutional codes [23]. This representation, together with the Viterbi decoding algorithm, has resulted in a wide range of applications of convolutional codes for error control in digital communications over the last two decades. There are two major reasons for this inactive period of research in this area. First, most coding theorists at that time believed that block codes did not have simple trellis structure like convolutional codes and maximum likelihood decoding of linear block codes using the Viterbi algorithm was practically impossible, except for very short block codes. Second, since almost all of the linear block codes are constructed algebraically or based on finite geometries, it was the belief of many coding theorists that algebraic decoding was the only way to decode these codes. These two reasons seriously hindered the development of efficient soft-decision decoding methods for linear block codes and their applications to error control in digital communications. This led to a general belief that block codes are inferior to convolutional codes and hence, that they were not useful. Chapter 2 gives a brief review of linear block codes. The goal is to provide the essential background material for the development of trellis structure and trellis-based decoding algorithms for linear block codes in the later chapters. Chapters 3 through 6 present the fundamental concepts, finite-state machine model, state space formulation, basic structural properties, state labeling, construction procedures, complexity, minimality, and sectionalization of trellises. Chapter 7 discusses trellis decomposition and subtrellises for low-weight codewords. Chapter 8 first presents well known methods for constructing long powerful codes from short component codes or component codes of smaller dimensions, and then provides methods for constructing their trellises which include Shannon and Cartesian product techniques. Chapter 9 deals with convolutional codes, puncturing, zero-tail termination and tail-biting.Chapters 10 through 13 present various trellis-based decoding algorithms, old and new. Chapter 10 first discusses the application of the well known Viterbi decoding algorithm to linear block codes, optimum sectionalization of a code trellis to minimize computation complexity, and design issues for IC (integrated circuit) implementation of a Viterbi decoder. Then it presents a new decoding algorithm for convolutional codes, named Differential Trellis Decoding (DTD) algorithm. Chapter 12 presents a suboptimum reliability-based iterative decoding algorithm with a low-weight trellis search for the most likely codeword. This decoding algorithm provides a good trade-off between error performance and decoding complexity. All the decoding algorithms presented in Chapters 10 through 12 are devised to minimize word error probability. Chapter 13 presents decoding algorithms that minimize bit error probability and provide the corresponding soft (reliability) information at the output of the decoder. Decoding algorithms presented are the MAP (maximum a posteriori probability) decoding algorithm and the Soft-Output Viterbi Algorithm (SOVA) algorithm. Finally, the minimization of bit error probability in trellis-based MLD is discussed.

  3. Buffer management for sequential decoding. [block erasure probability reduction

    NASA Technical Reports Server (NTRS)

    Layland, J. W.

    1974-01-01

    Sequential decoding has been found to be an efficient means of communicating at low undetected error rates from deep space probes, but erasure or computational overflow remains a significant problem. Erasure of a block occurs when the decoder has not finished decoding that block at the time that it must be output. By drawing upon analogies in computer time sharing, this paper develops a buffer-management strategy which reduces the decoder idle time to a negligible level, and therefore improves the erasure probability of a sequential decoder. For a decoder with a speed advantage of ten and a buffer size of ten blocks, operating at an erasure rate of .01, use of this buffer-management strategy reduces the erasure rate to less than .0001.

  4. Application of source biasing technique for energy efficient DECODER circuit design: memory array application

    NASA Astrophysics Data System (ADS)

    Gupta, Neha; Parihar, Priyanka; Neema, Vaibhav

    2018-04-01

    Researchers have proposed many circuit techniques to reduce leakage power dissipation in memory cells. If we want to reduce the overall power in the memory system, we have to work on the input circuitry of memory architecture i.e. row and column decoder. In this research work, low leakage power with a high speed row and column decoder for memory array application is designed and four new techniques are proposed. In this work, the comparison of cluster DECODER, body bias DECODER, source bias DECODER, and source coupling DECODER are designed and analyzed for memory array application. Simulation is performed for the comparative analysis of different DECODER design parameters at 180 nm GPDK technology file using the CADENCE tool. Simulation results show that the proposed source bias DECODER circuit technique decreases the leakage current by 99.92% and static energy by 99.92% at a supply voltage of 1.2 V. The proposed circuit also improves dynamic power dissipation by 5.69%, dynamic PDP/EDP 65.03% and delay 57.25% at 1.2 V supply voltage.

  5. A Scalable Architecture of a Structured LDPC Decoder

    NASA Technical Reports Server (NTRS)

    Lee, Jason Kwok-San; Lee, Benjamin; Thorpe, Jeremy; Andrews, Kenneth; Dolinar, Sam; Hamkins, Jon

    2004-01-01

    We present a scalable decoding architecture for a certain class of structured LDPC codes. The codes are designed using a small (n,r) protograph that is replicated Z times to produce a decoding graph for a (Z x n, Z x r) code. Using this architecture, we have implemented a decoder for a (4096,2048) LDPC code on a Xilinx Virtex-II 2000 FPGA, and achieved decoding speeds of 31 Mbps with 10 fixed iterations. The implemented message-passing algorithm uses an optimized 3-bit non-uniform quantizer that operates with 0.2dB implementation loss relative to a floating point decoder.

  6. Multiuser signal detection using sequential decoding

    NASA Astrophysics Data System (ADS)

    Xie, Zhenhua; Rushforth, Craig K.; Short, Robert T.

    1990-05-01

    The application of sequential decoding to the detection of data transmitted over the additive white Gaussian noise channel by K asynchronous transmitters using direct-sequence spread-spectrum multiple access is considered. A modification of Fano's (1963) sequential-decoding metric, allowing the messages from a given user to be safely decoded if its Eb/N0 exceeds -1.6 dB, is presented. Computer simulation is used to evaluate the performance of a sequential decoder that uses this metric in conjunction with the stack algorithm. In many circumstances, the sequential decoder achieves results comparable to those obtained using the much more complicated optimal receiver.

  7. Complementary Reliability-Based Decodings of Binary Linear Block Codes

    NASA Technical Reports Server (NTRS)

    Fossorier, Marc P. C.; Lin, Shu

    1997-01-01

    This correspondence presents a hybrid reliability-based decoding algorithm which combines the reprocessing method based on the most reliable basis and a generalized Chase-type algebraic decoder based on the least reliable positions. It is shown that reprocessing with a simple additional algebraic decoding effort achieves significant coding gain. For long codes, the order of reprocessing required to achieve asymptotic optimum error performance is reduced by approximately 1/3. This significantly reduces the computational complexity, especially for long codes. Also, a more efficient criterion for stopping the decoding process is derived based on the knowledge of the algebraic decoding solution.

  8. Visual perception as retrospective Bayesian decoding from high- to low-level features

    PubMed Central

    Ding, Stephanie; Cueva, Christopher J.; Tsodyks, Misha; Qian, Ning

    2017-01-01

    When a stimulus is presented, its encoding is known to progress from low- to high-level features. How these features are decoded to produce perception is less clear, and most models assume that decoding follows the same low- to high-level hierarchy of encoding. There are also theories arguing for global precedence, reversed hierarchy, or bidirectional processing, but they are descriptive without quantitative comparison with human perception. Moreover, observers often inspect different parts of a scene sequentially to form overall perception, suggesting that perceptual decoding requires working memory, yet few models consider how working-memory properties may affect decoding hierarchy. We probed decoding hierarchy by comparing absolute judgments of single orientations and relative/ordinal judgments between two sequentially presented orientations. We found that lower-level, absolute judgments failed to account for higher-level, relative/ordinal judgments. However, when ordinal judgment was used to retrospectively decode memory representations of absolute orientations, striking aspects of absolute judgments, including the correlation and forward/backward aftereffects between two reported orientations in a trial, were explained. We propose that the brain prioritizes decoding of higher-level features because they are more behaviorally relevant, and more invariant and categorical, and thus easier to specify and maintain in noisy working memory, and that more reliable higher-level decoding constrains less reliable lower-level decoding. PMID:29073108

  9. The Development of a Portable Hard Disk Encryption/Decryption System with a MEMS Coded Lock

    PubMed Central

    Zhang, Weiping; Chen, Wenyuan; Tang, Jian; Xu, Peng; Li, Yibin; Li, Shengyong

    2009-01-01

    In this paper, a novel portable hard-disk encryption/decryption system with a MEMS coded lock is presented, which can authenticate the user and provide the key for the AES encryption/decryption module. The portable hard-disk encryption/decryption system is composed of the authentication module, the USB portable hard-disk interface card, the ATA protocol command decoder module, the data encryption/decryption module, the cipher key management module, the MEMS coded lock controlling circuit module, the MEMS coded lock and the hard disk. The ATA protocol circuit, the MEMS control circuit and AES encryption/decryption circuit are designed and realized by FPGA(Field Programmable Gate Array). The MEMS coded lock with two couplers and two groups of counter-meshing-gears (CMGs) are fabricated by a LIGA-like process and precision engineering method. The whole prototype was fabricated and tested. The test results show that the user's password could be correctly discriminated by the MEMS coded lock, and the AES encryption module could get the key from the MEMS coded lock. Moreover, the data in the hard-disk could be encrypted or decrypted, and the read-write speed of the dataflow could reach 17 MB/s in Ultra DMA mode. PMID:22291566

  10. Development of allosteric modulators of GPCRs for treatment of CNS disorders.

    PubMed

    Nickols, Hilary Highfield; Conn, P Jeffrey

    2014-01-01

    The discovery of allosteric modulators of G protein-coupled receptors (GPCRs) provides a promising new strategy with potential for developing novel treatments for a variety of central nervous system (CNS) disorders. Traditional drug discovery efforts targeting GPCRs have focused on developing ligands for orthosteric sites which bind endogenous ligands. Allosteric modulators target a site separate from the orthosteric site to modulate receptor function. These allosteric agents can either potentiate (positive allosteric modulator, PAM) or inhibit (negative allosteric modulator, NAM) the receptor response and often provide much greater subtype selectivity than orthosteric ligands for the same receptors. Experimental evidence has revealed more nuanced pharmacological modes of action of allosteric modulators, with some PAMs showing allosteric agonism in combination with positive allosteric modulation in response to endogenous ligand (ago-potentiators) as well as "bitopic" ligands that interact with both the allosteric and orthosteric sites. Drugs targeting the allosteric site allow for increased drug selectivity and potentially decreased adverse side effects. Promising evidence has demonstrated potential utility of a number of allosteric modulators of GPCRs in multiple CNS disorders, including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, as well as psychiatric or neurobehavioral diseases such as anxiety, schizophrenia, and addiction. © 2013.

  11. KSC-08pd1108

    NASA Image and Video Library

    2008-05-03

    CAPE CANAVERAL, Fla. -- At Launch Pad 39A at NASA's Kennedy Space Center, the payload for the STS-124 mission, secured in the payload changeout room on the rotating service structure, at left, awaits installation into the payload bay of space shuttle Discovery. Discovery's 3.4-mile journey from the Vehicle Assembly Building began at 11:47 p.m. on May 2. The shuttle arrived at the launch pad at 4:25 a.m. EDT May 3 and was secured, or hard down, by 6:06 a.m. On the 13-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is targeted for May 31. Photo credit: NASA/Troy Cryder

  12. RCRA, Superfund and EPCRA hotline training module. Introduction to: the Superfund response program (updated February 1998); Directive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-06-01

    This module includes the following: Regulatory Summary (Definitions; National Contingency Plan; Notification or Discovery; Response Process; Removal Process; Remedial Process; Community Involvement; State Role; Natural Resource Damage Assessments; Federal Facility Response; and Contractor Support); and Module Summary.

  13. Multipurpose Logistics Module, Leonardo, Rests in Discovery's Payload Bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This in-orbit close up shows the Italian Space Agency-built multipurpose Logistics Module (MPLM), Leonardo, the primary cargo of the STS-102 mission, resting in the payload bay of the Space Shuttle Orbiter Discovery. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight and NASA's 103rd overall flight, STS-102 launched March 8, 2001 for an almost 13 day mission.

  14. Simultaneous real-time monitoring of multiple cortical systems.

    PubMed

    Gupta, Disha; Jeremy Hill, N; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L; Schalk, Gerwin

    2014-10-01

    Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. We study these questions using electrocorticographic signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (six for offline parameter optimization, six for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main Results: Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelopes. These decoders were trained separately and executed simultaneously in real time. This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple independent brain systems. Our comparison of univariate and multivariate decoding strategies, and our analysis of the influence of their decoding parameters, provides benchmarks and guidelines for future research on this topic.

  15. Simultaneous Real-Time Monitoring of Multiple Cortical Systems

    PubMed Central

    Gupta, Disha; Hill, N. Jeremy; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L.; Schalk, Gerwin

    2014-01-01

    Objective Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor, or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. Approach We study these questions using electrocorticographic (ECoG) signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (6 for offline parameter optimization, 6 for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main results Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelope. These decoders were trained separately and executed simultaneously in real time. Significance This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple independent brain systems. Our comparison of univariate and multivariate decoding strategies, and our analysis of the influence of their decoding parameters, provides benchmarks and guidelines for future research on this topic. PMID:25080161

  16. Least reliable bits coding (LRBC) for high data rate satellite communications

    NASA Technical Reports Server (NTRS)

    Vanderaar, Mark; Budinger, James; Wagner, Paul

    1992-01-01

    LRBC, a bandwidth efficient multilevel/multistage block-coded modulation technique, is analyzed. LRBC uses simple multilevel component codes that provide increased error protection on increasingly unreliable modulated bits in order to maintain an overall high code rate that increases spectral efficiency. Soft-decision multistage decoding is used to make decisions on unprotected bits through corrections made on more protected bits. Analytical expressions and tight performance bounds are used to show that LRBC can achieve increased spectral efficiency and maintain equivalent or better power efficiency compared to that of BPSK. The relative simplicity of Galois field algebra vs the Viterbi algorithm and the availability of high-speed commercial VLSI for block codes indicates that LRBC using block codes is a desirable method for high data rate implementations.

  17. The ribosome as an optimal decoder: a lesson in molecular recognition.

    PubMed

    Savir, Yonatan; Tlusty, Tsvi

    2013-04-11

    The ribosome is a complex molecular machine that, in order to synthesize proteins, has to decode mRNAs by pairing their codons with matching tRNAs. Decoding is a major determinant of fitness and requires accurate and fast selection of correct tRNAs among many similar competitors. However, it is unclear whether the modern ribosome, and in particular its large conformational changes during decoding, are the outcome of adaptation to its task as a decoder or the result of other constraints. Here, we derive the energy landscape that provides optimal discrimination between competing substrates and thereby optimal tRNA decoding. We show that the measured landscape of the prokaryotic ribosome is sculpted in this way. This model suggests that conformational changes of the ribosome and tRNA during decoding are means to obtain an optimal decoder. Our analysis puts forward a generic mechanism that may be utilized broadly by molecular recognition systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes. Part 3; An Iterative Decoding Algorithm for Linear Block Codes Based on a Low-Weight Trellis Search

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Fossorier, Marc

    1998-01-01

    For long linear block codes, maximum likelihood decoding based on full code trellises would be very hard to implement if not impossible. In this case, we may wish to trade error performance for the reduction in decoding complexity. Sub-optimum soft-decision decoding of a linear block code based on a low-weight sub-trellis can be devised to provide an effective trade-off between error performance and decoding complexity. This chapter presents such a suboptimal decoding algorithm for linear block codes. This decoding algorithm is iterative in nature and based on an optimality test. It has the following important features: (1) a simple method to generate a sequence of candidate code-words, one at a time, for test; (2) a sufficient condition for testing a candidate code-word for optimality; and (3) a low-weight sub-trellis search for finding the most likely (ML) code-word.

  19. Enhanced decoding for the Galileo S-band mission

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Belongie, M.

    1993-01-01

    A coding system under consideration for the Galileo S-band low-gain antenna mission is a concatenated system using a variable redundancy Reed-Solomon outer code and a (14,1/4) convolutional inner code. The 8-bit Reed-Solomon symbols are interleaved to depth 8, and the eight 255-symbol codewords in each interleaved block have redundancies 64, 20, 20, 20, 64, 20, 20, and 20, respectively (or equivalently, the codewords have 191, 235, 235, 235, 191, 235, 235, and 235 8-bit information symbols, respectively). This concatenated code is to be decoded by an enhanced decoder that utilizes a maximum likelihood (Viterbi) convolutional decoder; a Reed Solomon decoder capable of processing erasures; an algorithm for declaring erasures in undecoded codewords based on known erroneous symbols in neighboring decodable words; a second Viterbi decoding operation (redecoding) constrained to follow only paths consistent with the known symbols from previously decodable Reed-Solomon codewords; and a second Reed-Solomon decoding operation using the output from the Viterbi redecoder and additional erasure declarations to the extent possible. It is estimated that this code and decoder can achieve a decoded bit error rate of 1 x 10(exp 7) at a concatenated code signal-to-noise ratio of 0.76 dB. By comparison, a threshold of 1.17 dB is required for a baseline coding system consisting of the same (14,1/4) convolutional code, a (255,223) Reed-Solomon code with constant redundancy 32 also interleaved to depth 8, a one-pass Viterbi decoder, and a Reed Solomon decoder incapable of declaring or utilizing erasures. The relative gain of the enhanced system is thus 0.41 dB. It is predicted from analysis based on an assumption of infinite interleaving that the coding gain could be further improved by approximately 0.2 dB if four stages of Viterbi decoding and four levels of Reed-Solomon redundancy are permitted. Confirmation of this effect and specification of the optimum four-level redundancy profile for depth-8 interleaving is currently being done.

  20. Performance of convolutional codes on fading channels typical of planetary entry missions

    NASA Technical Reports Server (NTRS)

    Modestino, J. W.; Mui, S. Y.; Reale, T. J.

    1974-01-01

    The performance of convolutional codes in fading channels typical of the planetary entry channel is examined in detail. The signal fading is due primarily to turbulent atmospheric scattering of the RF signal transmitted from an entry probe through a planetary atmosphere. Short constraint length convolutional codes are considered in conjunction with binary phase-shift keyed modulation and Viterbi maximum likelihood decoding, and for longer constraint length codes sequential decoding utilizing both the Fano and Zigangirov-Jelinek (ZJ) algorithms are considered. Careful consideration is given to the modeling of the channel in terms of a few meaningful parameters which can be correlated closely with theoretical propagation studies. For short constraint length codes the bit error probability performance was investigated as a function of E sub b/N sub o parameterized by the fading channel parameters. For longer constraint length codes the effect was examined of the fading channel parameters on the computational requirements of both the Fano and ZJ algorithms. The effects of simple block interleaving in combatting the memory of the channel is explored, using the analytic approach or digital computer simulation.

  1. Development of a Cost-Effective Modular Pixelated NaI(Tl) Detector for Clinical SPECT Applications

    PubMed Central

    Rozler, Mike; Liang, Haoning; Chang, Wei

    2013-01-01

    A new pixelated detector for high-resolution clinical SPECT applications was designed and tested. The modular detector is based on a scintillator block comprised of 2.75×2.75×10 mm3 NaI(Tl) pixels and decoded by an array of 51 mm diameter single-anode PMTs. Several configurations, utilizing two types of PMTs, were evaluated using a collimated beam source to measure positioning accuracy directly. Good pixel separation was observed, with correct pixel identification ranging from 60 to 72% averaged over the entire area of the modules, depending on the PMT type and configuration. This translates to a significant improvement in positioning accuracy compared to continuous slab detectors of the same thickness, along with effective reduction of “dead” space at the edges. The observed 10% average energy resolution compares well to continuous slab detectors. The combined performance demonstrates the suitability of pixelated detectors decoded with a relatively small number of medium-sized PMTs as a cost-effective approach for high resolution clinical SPECT applications, in particular those involving curved detector geometries. PMID:24146436

  2. Large grain instruction and phonological awareness skill influence rime sensitivity, processing speed, and early decoding skill in adult L2 learners

    PubMed Central

    Brennan, Christine; Booth, James R.

    2016-01-01

    Linguistic knowledge, cognitive ability, and instruction influence how adults acquire a second orthography yet it remains unclear how different forms of instruction influence grain size sensitivity and subsequent decoding skill and speed. Thirty-seven monolingual, literate English-speaking adults were trained on a novel artificial orthography given initial instruction that directed attention to either large or small grain size units (i.e., words or letters). We examined how initial instruction influenced processing speed (i.e., reaction time (RT)) and sensitivity to different orthographic grain sizes (i.e., rimes and letters). Directing attention to large grain size units during initial instruction resulted in higher accuracy for rimes, whereas directing attention to smaller grain size units resulted in slower RTs across all measures. Additionally, phonological awareness skill modulated early learning effects, compensating for the limitations of the initial instruction provided. Collectively, these findings suggest that when adults are learning to read a second orthography, consideration should be given to how initial instruction directs attention to different grain sizes and inherent phonological awareness ability. PMID:27829705

  3. Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data.

    PubMed

    Grootswagers, Tijl; Wardle, Susan G; Carlson, Thomas A

    2017-04-01

    Multivariate pattern analysis (MVPA) or brain decoding methods have become standard practice in analyzing fMRI data. Although decoding methods have been extensively applied in brain-computer interfaces, these methods have only recently been applied to time series neuroimaging data such as MEG and EEG to address experimental questions in cognitive neuroscience. In a tutorial style review, we describe a broad set of options to inform future time series decoding studies from a cognitive neuroscience perspective. Using example MEG data, we illustrate the effects that different options in the decoding analysis pipeline can have on experimental results where the aim is to "decode" different perceptual stimuli or cognitive states over time from dynamic brain activation patterns. We show that decisions made at both preprocessing (e.g., dimensionality reduction, subsampling, trial averaging) and decoding (e.g., classifier selection, cross-validation design) stages of the analysis can significantly affect the results. In addition to standard decoding, we describe extensions to MVPA for time-varying neuroimaging data including representational similarity analysis, temporal generalization, and the interpretation of classifier weight maps. Finally, we outline important caveats in the design and interpretation of time series decoding experiments.

  4. Decoding the attended speech stream with multi-channel EEG: implications for online, daily-life applications

    NASA Astrophysics Data System (ADS)

    Mirkovic, Bojana; Debener, Stefan; Jaeger, Manuela; De Vos, Maarten

    2015-08-01

    Objective. Recent studies have provided evidence that temporal envelope driven speech decoding from high-density electroencephalography (EEG) and magnetoencephalography recordings can identify the attended speech stream in a multi-speaker scenario. The present work replicated the previous high density EEG study and investigated the necessary technical requirements for practical attended speech decoding with EEG. Approach. Twelve normal hearing participants attended to one out of two simultaneously presented audiobook stories, while high density EEG was recorded. An offline iterative procedure eliminating those channels contributing the least to decoding provided insight into the necessary channel number and optimal cross-subject channel configuration. Aiming towards the future goal of near real-time classification with an individually trained decoder, the minimum duration of training data necessary for successful classification was determined by using a chronological cross-validation approach. Main results. Close replication of the previously reported results confirmed the method robustness. Decoder performance remained stable from 96 channels down to 25. Furthermore, for less than 15 min of training data, the subject-independent (pre-trained) decoder performed better than an individually trained decoder did. Significance. Our study complements previous research and provides information suggesting that efficient low-density EEG online decoding is within reach.

  5. A Parallel Decoding Algorithm for Short Polar Codes Based on Error Checking and Correcting

    PubMed Central

    Pan, Xiaofei; Pan, Kegang; Ye, Zhan; Gong, Chao

    2014-01-01

    We propose a parallel decoding algorithm based on error checking and correcting to improve the performance of the short polar codes. In order to enhance the error-correcting capacity of the decoding algorithm, we first derive the error-checking equations generated on the basis of the frozen nodes, and then we introduce the method to check the errors in the input nodes of the decoder by the solutions of these equations. In order to further correct those checked errors, we adopt the method of modifying the probability messages of the error nodes with constant values according to the maximization principle. Due to the existence of multiple solutions of the error-checking equations, we formulate a CRC-aided optimization problem of finding the optimal solution with three different target functions, so as to improve the accuracy of error checking. Besides, in order to increase the throughput of decoding, we use a parallel method based on the decoding tree to calculate probability messages of all the nodes in the decoder. Numerical results show that the proposed decoding algorithm achieves better performance than that of some existing decoding algorithms with the same code length. PMID:25540813

  6. Collins in Service Module

    NASA Image and Video Library

    2005-08-05

    S114-E-7138 (5 August 2005) --- Astronaut Eileen M. Collins, STS-114 commander, waves while floating in the Zvezda Service Module of the international space station while Space Shuttle Discovery was docked to the station.

  7. Decoding Facial Expressions: A New Test with Decoding Norms.

    ERIC Educational Resources Information Center

    Leathers, Dale G.; Emigh, Ted H.

    1980-01-01

    Describes the development and testing of a new facial meaning sensitivity test designed to determine how specialized are the meanings that can be decoded from facial expressions. Demonstrates the use of the test to measure a receiver's current level of skill in decoding facial expressions. (JMF)

  8. Edge-Related Activity Is Not Necessary to Explain Orientation Decoding in Human Visual Cortex.

    PubMed

    Wardle, Susan G; Ritchie, J Brendan; Seymour, Kiley; Carlson, Thomas A

    2017-02-01

    Multivariate pattern analysis is a powerful technique; however, a significant theoretical limitation in neuroscience is the ambiguity in interpreting the source of decodable information used by classifiers. This is exemplified by the continued controversy over the source of orientation decoding from fMRI responses in human V1. Recently Carlson (2014) identified a potential source of decodable information by modeling voxel responses based on the Hubel and Wiesel (1972) ice-cube model of visual cortex. The model revealed that activity associated with the edges of gratings covaries with orientation and could potentially be used to discriminate orientation. Here we empirically evaluate whether "edge-related activity" underlies orientation decoding from patterns of BOLD response in human V1. First, we systematically mapped classifier performance as a function of stimulus location using population receptive field modeling to isolate each voxel's overlap with a large annular grating stimulus. Orientation was decodable across the stimulus; however, peak decoding performance occurred for voxels with receptive fields closer to the fovea and overlapping with the inner edge. Critically, we did not observe the expected second peak in decoding performance at the outer stimulus edge as predicted by the edge account. Second, we evaluated whether voxels that contribute most to classifier performance have receptive fields that cluster in cortical regions corresponding to the retinotopic location of the stimulus edge. Instead, we find the distribution of highly weighted voxels to be approximately random, with a modest bias toward more foveal voxels. Our results demonstrate that edge-related activity is likely not necessary for orientation decoding. A significant theoretical limitation of multivariate pattern analysis in neuroscience is the ambiguity in interpreting the source of decodable information used by classifiers. For example, orientation can be decoded from BOLD activation patterns in human V1, even though orientation columns are at a finer spatial scale than 3T fMRI. Consequently, the source of decodable information remains controversial. Here we test the proposal that information related to the stimulus edges underlies orientation decoding. We map voxel population receptive fields in V1 and evaluate orientation decoding performance as a function of stimulus location in retinotopic cortex. We find orientation is decodable from voxels whose receptive fields do not overlap with the stimulus edges, suggesting edge-related activity does not substantially drive orientation decoding. Copyright © 2017 the authors 0270-6474/17/371187-10$15.00/0.

  9. Tail Biting Trellis Representation of Codes: Decoding and Construction

    NASA Technical Reports Server (NTRS)

    Shao. Rose Y.; Lin, Shu; Fossorier, Marc

    1999-01-01

    This paper presents two new iterative algorithms for decoding linear codes based on their tail biting trellises, one is unidirectional and the other is bidirectional. Both algorithms are computationally efficient and achieves virtually optimum error performance with a small number of decoding iterations. They outperform all the previous suboptimal decoding algorithms. The bidirectional algorithm also reduces decoding delay. Also presented in the paper is a method for constructing tail biting trellises for linear block codes.

  10. Visual perception as retrospective Bayesian decoding from high- to low-level features.

    PubMed

    Ding, Stephanie; Cueva, Christopher J; Tsodyks, Misha; Qian, Ning

    2017-10-24

    When a stimulus is presented, its encoding is known to progress from low- to high-level features. How these features are decoded to produce perception is less clear, and most models assume that decoding follows the same low- to high-level hierarchy of encoding. There are also theories arguing for global precedence, reversed hierarchy, or bidirectional processing, but they are descriptive without quantitative comparison with human perception. Moreover, observers often inspect different parts of a scene sequentially to form overall perception, suggesting that perceptual decoding requires working memory, yet few models consider how working-memory properties may affect decoding hierarchy. We probed decoding hierarchy by comparing absolute judgments of single orientations and relative/ordinal judgments between two sequentially presented orientations. We found that lower-level, absolute judgments failed to account for higher-level, relative/ordinal judgments. However, when ordinal judgment was used to retrospectively decode memory representations of absolute orientations, striking aspects of absolute judgments, including the correlation and forward/backward aftereffects between two reported orientations in a trial, were explained. We propose that the brain prioritizes decoding of higher-level features because they are more behaviorally relevant, and more invariant and categorical, and thus easier to specify and maintain in noisy working memory, and that more reliable higher-level decoding constrains less reliable lower-level decoding. Published under the PNAS license.

  11. Module for phosphorus separation and recycling from liquid manures

    USDA-ARS?s Scientific Manuscript database

    A method has been developed to extract and concentrate soluble phosphates from livestock wastewater. The research was conducted over a 10-year period and went from initial bench studies and discovery, to pilot module development, to full-scale demonstrations of the phosphorus (P) module in swine fa...

  12. Demonstration of a High-Efficiency Free-Space Optical Communications Link

    NASA Technical Reports Server (NTRS)

    Birnbaum, Kevin; Farr, William; Gin, Jonathan; Moision, Bruce; Quirk, Kevin; Wright, Malcolm

    2009-01-01

    In this paper we discuss recent progress on the implementation of a hardware free-space optical communications test-bed. The test-bed implements an end-to-end communications system comprising a data encoder, modulator, laser-transmitter, telescope, detector, receiver and error-correction-code decoder. Implementation of each of the component systems is discussed, with an emphasis on 'real-world' system performance degradation and limitations. We have demonstrated real-time data rates of 44 Mbps and photon efficiencies of approximately 1.8 bits/photon over a 100m free-space optical link.

  13. A small terminal for satellite communication systems

    NASA Technical Reports Server (NTRS)

    Xiong, Fuqin; Wu, Dong; Jin, Min

    1994-01-01

    A small portable, low-cost satellite communications terminal system incorporating a modulator/demodulator and convolutional-Viterbi coder/decoder is described. Advances in signal processing and error-correction techniques in combination with higher power and higher frequencies aboard satellites allow for more efficient use of the space segment. This makes it possible to design small economical earth stations. The Advanced Communications Technology Satellite (ACTS) was chosen to test the system. ACTS, operating at the Ka band incorporates higher power, higher frequency, frequency and spatial reuse using spot beams and polarization.

  14. The instrumental principles of MST radars and incoherent scatter radars and the configuration of radar system hardware

    NASA Technical Reports Server (NTRS)

    Roettger, Juergen

    1989-01-01

    The principle of pulse modulation used in the case of coherent scatter radars (MST radars) is discussed. Coherent detection and the corresponding system configuration is delineated. Antenna requirements and design are outlined and the phase-coherent transmitter/receiver system is described. Transmit/receive duplexers, transmitters, receivers, and quadrature detectors are explained. The radar controller, integrator, decoder and correlator design as well as the data transfer and the control and monitoring by the host computer are delineated. Typical operation parameters of some well-known radars are summarized.

  15. de Bruijn cycles for neural decoding.

    PubMed

    Aguirre, Geoffrey Karl; Mattar, Marcelo Gomes; Magis-Weinberg, Lucía

    2011-06-01

    Stimulus counterbalance is critical for studies of neural habituation, bias, anticipation, and (more generally) the effect of stimulus history and context. We introduce de Bruijn cycles, a class of combinatorial objects, as the ideal source of pseudo-random stimulus sequences with arbitrary levels of counterbalance. Neuro-vascular imaging studies (such as BOLD fMRI) have an additional requirement imposed by the filtering and noise properties of the method: only some temporal frequencies of neural modulation are detectable. Extant methods of generating counterbalanced stimulus sequences yield neural modulations that are weakly (or not at all) detected by BOLD fMRI. We solve this limitation using a novel "path-guided" approach for the generation of de Bruijn cycles. The algorithm encodes a hypothesized neural modulation of specific temporal frequency within the seemingly random order of events. By positioning the modulation between the signal and noise bands of the neuro-vascular imaging method, the resulting sequence markedly improves detection power. These sequences may be used to study stimulus context and history effects in a manner not previously possible. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Space Shuttle Discovery (STS-124) Landing

    NASA Image and Video Library

    2008-06-14

    The space shuttle Discovery touches down at 11:15 a.m. EDT, Saturday, June 14, 2008, at the Kennedy Space Center in Florida. During the 13-day mission, Discovery and the crew of STS-124 delivered new components of the Japanese Experiment Module, or Kibo, to the International Space Station and the Canadian-built Special Purpose Dextrous Manipulator to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  17. Decoding and Encoding Facial Expressions in Preschool-Age Children.

    ERIC Educational Resources Information Center

    Zuckerman, Miron; Przewuzman, Sylvia J.

    1979-01-01

    Preschool-age children drew, decoded, and encoded facial expressions depicting five different emotions. Accuracy of drawing, decoding and encoding each of the five emotions was consistent across the three tasks; decoding ability was correlated with drawing ability among female subjects, but neither of these abilities was correlated with encoding…

  18. Multichannel error correction code decoder

    NASA Technical Reports Server (NTRS)

    Wagner, Paul K.; Ivancic, William D.

    1993-01-01

    A brief overview of a processing satellite for a mesh very-small-aperture (VSAT) communications network is provided. The multichannel error correction code (ECC) decoder system, the uplink signal generation and link simulation equipment, and the time-shared decoder are described. The testing is discussed. Applications of the time-shared decoder are recommended.

  19. A software simulation study of a (255,223) Reed-Solomon encoder-decoder

    NASA Technical Reports Server (NTRS)

    Pollara, F.

    1985-01-01

    A set of software programs which simulates a (255,223) Reed-Solomon encoder/decoder pair is described. The transform decoder algorithm uses a modified Euclid algorithm, and closely follows the pipeline architecture proposed for the hardware decoder. Uncorrectable error patterns are detected by a simple test, and the inverse transform is computed by a finite field FFT. Numerical examples of the decoder operation are given for some test codewords, with and without errors. The use of the software package is briefly described.

  20. Network Discovery Pipeline Elucidates Conserved Time-of-Day–Specific cis-Regulatory Modules

    PubMed Central

    McEntee, Connor; Byer, Amanda; Trout, Jonathan D; Hazen, Samuel P; Shen, Rongkun; Priest, Henry D; Sullivan, Christopher M; Givan, Scott A; Yanovsky, Marcelo; Hong, Fangxin; Kay, Steve A; Chory, Joanne

    2008-01-01

    Correct daily phasing of transcription confers an adaptive advantage to almost all organisms, including higher plants. In this study, we describe a hypothesis-driven network discovery pipeline that identifies biologically relevant patterns in genome-scale data. To demonstrate its utility, we analyzed a comprehensive matrix of time courses interrogating the nuclear transcriptome of Arabidopsis thaliana plants grown under different thermocycles, photocycles, and circadian conditions. We show that 89% of Arabidopsis transcripts cycle in at least one condition and that most genes have peak expression at a particular time of day, which shifts depending on the environment. Thermocycles alone can drive at least half of all transcripts critical for synchronizing internal processes such as cell cycle and protein synthesis. We identified at least three distinct transcription modules controlling phase-specific expression, including a new midnight specific module, PBX/TBX/SBX. We validated the network discovery pipeline, as well as the midnight specific module, by demonstrating that the PBX element was sufficient to drive diurnal and circadian condition-dependent expression. Moreover, we show that the three transcription modules are conserved across Arabidopsis, poplar, and rice. These results confirm the complex interplay between thermocycles, photocycles, and the circadian clock on the daily transcription program, and provide a comprehensive view of the conserved genomic targets for a transcriptional network key to successful adaptation. PMID:18248097

  1. Error-trellis syndrome decoding techniques for convolutional codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1985-01-01

    An error-trellis syndrome decoding technique for convolutional codes is developed. This algorithm is then applied to the entire class of systematic convolutional codes and to the high-rate, Wyner-Ash convolutional codes. A special example of the one-error-correcting Wyner-Ash code, a rate 3/4 code, is treated. The error-trellis syndrome decoding method applied to this example shows in detail how much more efficient syndrome decordig is than Viterbi decoding if applied to the same problem. For standard Viterbi decoding, 64 states are required, whereas in the example only 7 states are needed. Also, within the 7 states required for decoding, many fewer transitions are needed between the states.

  2. Gene Discovery of Characteristic Metabolic Pathways in the Tea Plant (Camellia sinensis) Using ‘Omics’-Based Network Approaches: A Future Perspective

    PubMed Central

    Zhang, Shihua; Zhang, Liang; Tai, Yuling; Wang, Xuewen; Ho, Chi-Tang; Wan, Xiaochun

    2018-01-01

    Characteristic secondary metabolites, including flavonoids, theanine and caffeine, in the tea plant (Camellia sinensis) are the primary sources of the rich flavors, fresh taste, and health benefits of tea. The decoding of genes involved in these characteristic components is still significantly lagging, which lays an obstacle for applied genetic improvement and metabolic engineering. With the popularity of high-throughout transcriptomics and metabolomics, ‘omics’-based network approaches, such as gene co-expression network and gene-to-metabolite network, have emerged as powerful tools for gene discovery of plant-specialized (secondary) metabolism. Thus, it is pivotal to summarize and introduce such system-based strategies in facilitating gene identification of characteristic metabolic pathways in the tea plant (or other plants). In this review, we describe recent advances in transcriptomics and metabolomics for transcript and metabolite profiling, and highlight ‘omics’-based network strategies using successful examples in model and non-model plants. Further, we summarize recent progress in ‘omics’ analysis for gene identification of characteristic metabolites in the tea plant. Limitations of the current strategies are discussed by comparison with ‘omics’-based network approaches. Finally, we demonstrate the potential of introducing such network strategies in the tea plant, with a prospects ending for a promising network discovery of characteristic metabolite genes in the tea plant. PMID:29915604

  3. High data rate Reed-Solomon encoding and decoding using VLSI technology

    NASA Technical Reports Server (NTRS)

    Miller, Warner; Morakis, James

    1987-01-01

    Presented as an implementation of a Reed-Solomon encode and decoder, which is 16-symbol error correcting, each symbol is 8 bits. This Reed-Solomon (RS) code is an efficient error correcting code that the National Aeronautics and Space Administration (NASA) will use in future space communications missions. A Very Large Scale Integration (VLSI) implementation of the encoder and decoder accepts data rates up 80 Mbps. A total of seven chips are needed for the decoder (four of the seven decoding chips are customized using 3-micron Complementary Metal Oxide Semiconduction (CMOS) technology) and one chip is required for the encoder. The decoder operates with the symbol clock being the system clock for the chip set. Approximately 1.65 billion Galois Field (GF) operations per second are achieved with the decoder chip set and 640 MOPS are achieved with the encoder chip.

  4. The basis of orientation decoding in human primary visual cortex: fine- or coarse-scale biases?

    PubMed

    Maloney, Ryan T

    2015-01-01

    Orientation signals in human primary visual cortex (V1) can be reliably decoded from the multivariate pattern of activity as measured with functional magnetic resonance imaging (fMRI). The precise underlying source of these decoded signals (whether by orientation biases at a fine or coarse scale in cortex) remains a matter of some controversy, however. Freeman and colleagues (J Neurosci 33: 19695-19703, 2013) recently showed that the accuracy of decoding of spiral patterns in V1 can be predicted by a voxel's preferred spatial position (the population receptive field) and its coarse orientation preference, suggesting that coarse-scale biases are sufficient for orientation decoding. Whether they are also necessary for decoding remains an open question, and one with implications for the broader interpretation of multivariate decoding results in fMRI studies. Copyright © 2015 the American Physiological Society.

  5. Emotion Decoding and Incidental Processing Fluency as Antecedents of Attitude Certainty.

    PubMed

    Petrocelli, John V; Whitmire, Melanie B

    2017-07-01

    Previous research demonstrates that attitude certainty influences the degree to which an attitude changes in response to persuasive appeals. In the current research, decoding emotions from facial expressions and incidental processing fluency, during attitude formation, are examined as antecedents of both attitude certainty and attitude change. In Experiment 1, participants who decoded anger or happiness during attitude formation expressed their greater attitude certainty, and showed more resistance to persuasion than participants who decoded sadness. By manipulating the emotion decoded, the diagnosticity of processing fluency experienced during emotion decoding, and the gaze direction of the social targets, Experiment 2 suggests that the link between emotion decoding and attitude certainty results from incidental processing fluency. Experiment 3 demonstrated that fluency in processing irrelevant stimuli influences attitude certainty, which in turn influences resistance to persuasion. Implications for appraisal-based accounts of attitude formation and attitude change are discussed.

  6. Deep Learning Methods for Improved Decoding of Linear Codes

    NASA Astrophysics Data System (ADS)

    Nachmani, Eliya; Marciano, Elad; Lugosch, Loren; Gross, Warren J.; Burshtein, David; Be'ery, Yair

    2018-02-01

    The problem of low complexity, close to optimal, channel decoding of linear codes with short to moderate block length is considered. It is shown that deep learning methods can be used to improve a standard belief propagation decoder, despite the large example space. Similar improvements are obtained for the min-sum algorithm. It is also shown that tying the parameters of the decoders across iterations, so as to form a recurrent neural network architecture, can be implemented with comparable results. The advantage is that significantly less parameters are required. We also introduce a recurrent neural decoder architecture based on the method of successive relaxation. Improvements over standard belief propagation are also observed on sparser Tanner graph representations of the codes. Furthermore, we demonstrate that the neural belief propagation decoder can be used to improve the performance, or alternatively reduce the computational complexity, of a close to optimal decoder of short BCH codes.

  7. Decoding Children's Expressions of Affect.

    ERIC Educational Resources Information Center

    Feinman, Joel A.; Feldman, Robert S.

    Mothers' ability to decode the emotional expressions of their male and female children was compared to the decoding ability of non-mothers. Happiness, sadness, fear and anger were induced in children in situations that varied in terms of spontaneous and role-played encoding modes. It was hypothesized that mothers would be more accurate decoders of…

  8. Decoding Area Studies and Interdisciplinary Majors: Building a Framework for Entry-Level Students

    ERIC Educational Resources Information Center

    MacPherson, Kristina Ruth

    2015-01-01

    Decoding disciplinary expertise for novices is increasingly part of the undergraduate curriculum. But how might area studies and other interdisciplinary programs, which require integration of courses from multiple disciplines, decode expertise in a similar fashion? Additionally, as a part of decoding area studies and interdisciplines, how might a…

  9. 47 CFR 11.12 - Two-tone Attention Signal encoder and decoder.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Two-tone Attention Signal encoder and decoder... SYSTEM (EAS) General § 11.12 Two-tone Attention Signal encoder and decoder. Existing two-tone Attention Signal encoder and decoder equipment type accepted for use as Emergency Broadcast System equipment under...

  10. 47 CFR 11.12 - Two-tone Attention Signal encoder and decoder.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Two-tone Attention Signal encoder and decoder... SYSTEM (EAS) General § 11.12 Two-tone Attention Signal encoder and decoder. Existing two-tone Attention Signal encoder and decoder equipment type accepted for use as Emergency Broadcast System equipment under...

  11. Sequential Syndrome Decoding of Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1984-01-01

    The algebraic structure of convolutional codes are reviewed and sequential syndrome decoding is applied to those codes. These concepts are then used to realize by example actual sequential decoding, using the stack algorithm. The Fano metric for use in sequential decoding is modified so that it can be utilized to sequentially find the minimum weight error sequence.

  12. Contributions of phonological awareness, phonological short-term memory, and rapid automated naming, toward decoding ability in students with mild intellectual disability.

    PubMed

    Soltani, Amanallah; Roslan, Samsilah

    2013-03-01

    Reading decoding ability is a fundamental skill to acquire word-specific orthographic information necessary for skilled reading. Decoding ability and its underlying phonological processing skills have been heavily investigated typically among developing students. However, the issue has rarely been noticed among students with intellectual disability who commonly suffer from reading decoding problems. This study is aimed at determining the contributions of phonological awareness, phonological short-term memory, and rapid automated naming, as three well known phonological processing skills, to decoding ability among 60 participants with mild intellectual disability of unspecified origin ranging from 15 to 23 years old. The results of the correlation analysis revealed that all three aspects of phonological processing are significantly correlated with decoding ability. Furthermore, a series of hierarchical regression analysis indicated that after controlling the effect of IQ, phonological awareness, and rapid automated naming are two distinct sources of decoding ability, but phonological short-term memory significantly contributes to decoding ability under the realm of phonological awareness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Grasp movement decoding from premotor and parietal cortex.

    PubMed

    Townsend, Benjamin R; Subasi, Erk; Scherberger, Hansjörg

    2011-10-05

    Despite recent advances in harnessing cortical motor-related activity to control computer cursors and robotic devices, the ability to decode and execute different grasping patterns remains a major obstacle. Here we demonstrate a simple Bayesian decoder for real-time classification of grip type and wrist orientation in macaque monkeys that uses higher-order planning signals from anterior intraparietal cortex (AIP) and ventral premotor cortex (area F5). Real-time decoding was based on multiunit signals, which had similar tuning properties to cells in previous single-unit recording studies. Maximum decoding accuracy for two grasp types (power and precision grip) and five wrist orientations was 63% (chance level, 10%). Analysis of decoder performance showed that grip type decoding was highly accurate (90.6%), with most errors occurring during orientation classification. In a subsequent off-line analysis, we found small but significant performance improvements (mean, 6.25 percentage points) when using an optimized spike-sorting method (superparamagnetic clustering). Furthermore, we observed significant differences in the contributions of F5 and AIP for grasp decoding, with F5 being better suited for classification of the grip type and AIP contributing more toward decoding of object orientation. However, optimum decoding performance was maximal when using neural activity simultaneously from both areas. Overall, these results highlight quantitative differences in the functional representation of grasp movements in AIP and F5 and represent a first step toward using these signals for developing functional neural interfaces for hand grasping.

  14. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces.

    PubMed

    Li, Simin; Li, Jie; Li, Zheng

    2016-01-01

    Brain-machine interfaces (BMIs) seek to connect brains with machines or computers directly, for application in areas such as prosthesis control. For this application, the accuracy of the decoding of movement intentions is crucial. We aim to improve accuracy by designing a better encoding model of primary motor cortical activity during hand movements and combining this with decoder engineering refinements, resulting in a new unscented Kalman filter based decoder, UKF2, which improves upon our previous unscented Kalman filter decoder, UKF1. The new encoding model includes novel acceleration magnitude, position-velocity interaction, and target-cursor-distance features (the decoder does not require target position as input, it is decoded). We add a novel probabilistic velocity threshold to better determine the user's intent to move. We combine these improvements with several other refinements suggested by others in the field. Data from two Rhesus monkeys indicate that the UKF2 generates offline reconstructions of hand movements (mean CC 0.851) significantly more accurately than the UKF1 (0.833) and the popular position-velocity Kalman filter (0.812). The encoding model of the UKF2 could predict the instantaneous firing rate of neurons (mean CC 0.210), given kinematic variables and past spiking, better than the encoding models of these two decoders (UKF1: 0.138, p-v Kalman: 0.098). In closed-loop experiments where each monkey controlled a computer cursor with each decoder in turn, the UKF2 facilitated faster task completion (mean 1.56 s vs. 2.05 s) and higher Fitts's Law bit rate (mean 0.738 bit/s vs. 0.584 bit/s) than the UKF1. These results suggest that the modeling and decoder engineering refinements of the UKF2 improve decoding performance. We believe they can be used to enhance other decoders as well.

  15. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces

    PubMed Central

    Li, Simin; Li, Jie; Li, Zheng

    2016-01-01

    Brain-machine interfaces (BMIs) seek to connect brains with machines or computers directly, for application in areas such as prosthesis control. For this application, the accuracy of the decoding of movement intentions is crucial. We aim to improve accuracy by designing a better encoding model of primary motor cortical activity during hand movements and combining this with decoder engineering refinements, resulting in a new unscented Kalman filter based decoder, UKF2, which improves upon our previous unscented Kalman filter decoder, UKF1. The new encoding model includes novel acceleration magnitude, position-velocity interaction, and target-cursor-distance features (the decoder does not require target position as input, it is decoded). We add a novel probabilistic velocity threshold to better determine the user's intent to move. We combine these improvements with several other refinements suggested by others in the field. Data from two Rhesus monkeys indicate that the UKF2 generates offline reconstructions of hand movements (mean CC 0.851) significantly more accurately than the UKF1 (0.833) and the popular position-velocity Kalman filter (0.812). The encoding model of the UKF2 could predict the instantaneous firing rate of neurons (mean CC 0.210), given kinematic variables and past spiking, better than the encoding models of these two decoders (UKF1: 0.138, p-v Kalman: 0.098). In closed-loop experiments where each monkey controlled a computer cursor with each decoder in turn, the UKF2 facilitated faster task completion (mean 1.56 s vs. 2.05 s) and higher Fitts's Law bit rate (mean 0.738 bit/s vs. 0.584 bit/s) than the UKF1. These results suggest that the modeling and decoder engineering refinements of the UKF2 improve decoding performance. We believe they can be used to enhance other decoders as well. PMID:28066170

  16. Task-dependent recurrent dynamics in visual cortex

    PubMed Central

    Tajima, Satohiro; Koida, Kowa; Tajima, Chihiro I; Suzuki, Hideyuki; Aihara, Kazuyuki; Komatsu, Hidehiko

    2017-01-01

    The capacity for flexible sensory-action association in animals has been related to context-dependent attractor dynamics outside the sensory cortices. Here, we report a line of evidence that flexibly modulated attractor dynamics during task switching are already present in the higher visual cortex in macaque monkeys. With a nonlinear decoding approach, we can extract the particular aspect of the neural population response that reflects the task-induced emergence of bistable attractor dynamics in a neural population, which could be obscured by standard unsupervised dimensionality reductions such as PCA. The dynamical modulation selectively increases the information relevant to task demands, indicating that such modulation is beneficial for perceptual decisions. A computational model that features nonlinear recurrent interaction among neurons with a task-dependent background input replicates the key properties observed in the experimental data. These results suggest that the context-dependent attractor dynamics involving the sensory cortex can underlie flexible perceptual abilities. DOI: http://dx.doi.org/10.7554/eLife.26868.001 PMID:28737487

  17. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1991-01-01

    Shannon's capacity bound shows that coding can achieve large reductions in the required signal to noise ratio per information bit (E sub b/N sub 0 where E sub b is the energy per bit and (N sub 0)/2 is the double sided noise density) in comparison to uncoded schemes. For bandwidth efficiencies of 2 bit/sym or greater, these improvements were obtained through the use of Trellis Coded Modulation and Block Coded Modulation. A method of obtaining these high efficiencies using multidimensional Multiple Phase Shift Keying (MPSK) and Quadrature Amplitude Modulation (QAM) signal sets with trellis coding is described. These schemes have advantages in decoding speed, phase transparency, and coding gain in comparison to other trellis coding schemes. Finally, a general parity check equation for rotationally invariant trellis codes is introduced from which non-linear codes for two dimensional MPSK and QAM signal sets are found. These codes are fully transparent to all rotations of the signal set.

  18. Instruction manual, optical effects module electronic controller and processor, model OEMCP

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The OEM-1 electronic module is discussed; it is comprised of four subsystems: the signal processing and display; the stepper motor controls; the chopper controls; and the dc-dc invertor. The OEM-1 module controls the sample wheel so that the relative transmittance of the samples can be compared to the clear aperture position. The 3-1/2 digit digital voltmeter displays the clear aperture signal level as well as the ratio of the remaining sample positions relative to the clear aperture position. The sample wheel position is decoded so that the signals and ratios can be correlated to the data. The OEM is automatically reset to the I sub o on initial turn-on and can be reset to the '0' position by actuating a front panel switch. The sample wheel can be interrupted to change samples or induce a longer integration time if desired by a front panel command. Integration times from 1 - 50 seconds are provided at the front panel, and BCD data for external interfacing is provided.

  19. An Iterative Information-Reduced Quadriphase-Shift-Keyed Carrier Synchronization Scheme Using Decision Feedback for Low Signal-to-Noise Ratio Applications

    NASA Technical Reports Server (NTRS)

    Simon, M.; Tkacenko, A.

    2006-01-01

    In a previous publication [1], an iterative closed-loop carrier synchronization scheme for binary phase-shift keyed (BPSK) modulation was proposed that was based on feeding back data decisions to the input of the loop, the purpose being to remove the modulation prior to carrier synchronization as opposed to the more conventional decision-feedback schemes that incorporate such feedback inside the loop. The idea there was that, with sufficient independence between the received data and the decisions on it that are fed back (as would occur in an error-correction coding environment with sufficient decoding delay), a pure tone in the presence of noise would ultimately be produced (after sufficient iteration and low enough error probability) and thus could be tracked without any squaring loss. This article demonstrates that, with some modification, the same idea of iterative information reduction through decision feedback can be applied to quadrature phase-shift keyed (QPSK) modulation, something that was mentioned in the previous publication but never pursued.

  20. KSC-06pd0924

    NASA Image and Video Library

    2006-05-23

    KENNEDY SPACE CENTER, FLA. -- From inside the payload changeout room on the rotating service structure on Launch Pad 39B, the multi-purpose logistics module Leonardo is being moved into Space Shuttle Discovery's payload bay. The payload ground-handling mechanism (PGHM) is used to transfer the module into the payload bay. Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Leonardo is part of the payload on mission STS-121. Other payloads include the integrated cargo carrier with the mobile transporter reel assembly and a spare pump module, and the lightweight multi-purpose experiment support structure carrier. Discovery is scheduled to launch in a window extending from July 1 through July 19. Photo credit: NASA/Jack Pfaller

  1. KSC-06pd0927

    NASA Image and Video Library

    2006-05-23

    KENNEDY SPACE CENTER, FLA. -- From inside the payload changeout room on the rotating service structure on Launch Pad 39B, the multi-purpose logistics module Leonardo is lowered into Space Shuttle Discovery's payload bay. The payload ground-handling mechanism (PGHM) is used to transfer the module into the payload bay. Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Leonardo is part of the payload on mission STS-121. Other payloads include the integrated cargo carrier with the mobile transporter reel assembly and a spare pump module, and the lightweight multi-purpose experiment support structure carrier. Discovery is scheduled to launch in a window extending from July 1 through July 19. Photo credit: NASA/Jack Pfaller

  2. Matrix factorization reveals aging-specific co-expression gene modules in the fat and muscle tissues in nonhuman primates

    NASA Astrophysics Data System (ADS)

    Wang, Yongcui; Zhao, Weiling; Zhou, Xiaobo

    2016-10-01

    Accurate identification of coherent transcriptional modules (subnetworks) in adipose and muscle tissues is important for revealing the related mechanisms and co-regulated pathways involved in the development of aging-related diseases. Here, we proposed a systematically computational approach, called ICEGM, to Identify the Co-Expression Gene Modules through a novel mathematical framework of Higher-Order Generalized Singular Value Decomposition (HO-GSVD). ICEGM was applied on the adipose, and heart and skeletal muscle tissues in old and young female African green vervet monkeys. The genes associated with the development of inflammation, cardiovascular and skeletal disorder diseases, and cancer were revealed by the ICEGM. Meanwhile, genes in the ICEGM modules were also enriched in the adipocytes, smooth muscle cells, cardiac myocytes, and immune cells. Comprehensive disease annotation and canonical pathway analysis indicated that immune cells, adipocytes, cardiomyocytes, and smooth muscle cells played a synergistic role in cardiac and physical functions in the aged monkeys by regulation of the biological processes associated with metabolism, inflammation, and atherosclerosis. In conclusion, the ICEGM provides an efficiently systematic framework for decoding the co-expression gene modules in multiple tissues. Analysis of genes in the ICEGM module yielded important insights on the cooperative role of multiple tissues in the development of diseases.

  3. Validity and Practitality of Acid-Base Module Based on Guided Discovery Learning for Senior High School

    NASA Astrophysics Data System (ADS)

    Yerimadesi; Bayharti; Jannah, S. M.; Lufri; Festiyed; Kiram, Y.

    2018-04-01

    This Research and Development(R&D) aims to produce guided discovery learning based module on topic of acid-base and determine its validity and practicality in learning. Module development used Four D (4-D) model (define, design, develop and disseminate).This research was performed until development stage. Research’s instruments were validity and practicality questionnaires. Module was validated by five experts (three chemistry lecturers of Universitas Negeri Padang and two chemistry teachers of SMAN 9 Padang). Practicality test was done by two chemistry teachers and 30 students of SMAN 9 Padang. Kappa Cohen’s was used to analyze validity and practicality. The average moment kappa was 0.86 for validity and those for practicality were 0.85 by teachers and 0.76 by students revealing high category. It can be concluded that validity and practicality was proven for high school chemistry learning.

  4. Development of allosteric modulators of GPCRs for treatment of CNS disorders

    PubMed Central

    Nickols, Hilary Highfield; Conn, P. Jeffrey

    2013-01-01

    The discovery of allosteric modulators of G protein-coupled receptors (GPCRs) provides a promising new strategy with potential for developing novel treatments for a variety of central nervous system (CNS) disorders. Traditional drug discovery efforts targeting GPCRs have focused on developing ligands for orthosteric sites which bind endogenous ligands. Allosteric modulators target a site separate from the orthosteric site to modulate receptor function. These allosteric agents can either potentiate (positive allosteric modulator, PAM) or inhibit (negative allosteric modulator, NAM) the receptor response and often provide much greater subtype selectivity than do orthosteric ligands for the same receptors. Experimental evidence has revealed more nuanced pharmacological modes of action of allosteric modulators, with some PAMs showing allosteric agonism in combination with positive allosteric modulation in response to endogenous ligand (ago-potentiators) as well as “bitopic” ligands that interact with both the allosteric and orthosteric sites. Drugs targeting the allosteric site allow for increased drug selectivity and potentially decreased adverse side effects. Promising evidence has demonstrated potential utility of a number of allosteric modulators of GPCRs in multiple CNS disorders, including neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, as well as psychiatric or neurobehavioral diseases such as anxiety, schizophrenia, and addiction. PMID:24076101

  5. Reed-Solomon decoder

    NASA Technical Reports Server (NTRS)

    Lahmeyer, Charles R. (Inventor)

    1987-01-01

    A Reed-Solomon decoder with dedicated hardware for five sequential algorithms was designed with overall pipelining by memory swapping between input, processing and output memories, and internal pipelining through the five algorithms. The code definition used in decoding is specified by a keyword received with each block of data so that a number of different code formats may be decoded by the same hardware.

  6. A study of digital holographic filters generation. Phase 2: Digital data communication system, volume 1

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.; Mo, C. D.

    1978-01-01

    An empirical study of the performance of the Viterbi decoders in bursty channels was carried out and an improved algebraic decoder for nonsystematic codes was developed. The hybrid algorithm was simulated for the (2,1), k = 7 code on a computer using 20 channels having various error statistics, ranging from pure random error to pure bursty channels. The hybrid system outperformed both the algebraic and the Viterbi decoders in every case, except the 1% random error channel where the Viterbi decoder had one bit less decoding error.

  7. Large-Constraint-Length, Fast Viterbi Decoder

    NASA Technical Reports Server (NTRS)

    Collins, O.; Dolinar, S.; Hsu, In-Shek; Pollara, F.; Olson, E.; Statman, J.; Zimmerman, G.

    1990-01-01

    Scheme for efficient interconnection makes VLSI design feasible. Concept for fast Viterbi decoder provides for processing of convolutional codes of constraint length K up to 15 and rates of 1/2 to 1/6. Fully parallel (but bit-serial) architecture developed for decoder of K = 7 implemented in single dedicated VLSI circuit chip. Contains six major functional blocks. VLSI circuits perform branch metric computations, add-compare-select operations, and then store decisions in traceback memory. Traceback processor reads appropriate memory locations and puts out decoded bits. Used as building block for decoders of larger K.

  8. Locating and decoding barcodes in fuzzy images captured by smart phones

    NASA Astrophysics Data System (ADS)

    Deng, Wupeng; Hu, Jiwei; Liu, Quan; Lou, Ping

    2017-07-01

    With the development of barcodes for commercial use, people's requirements for detecting barcodes by smart phone become increasingly pressing. The low quality of barcode image captured by mobile phone always affects the decoding and recognition rates. This paper focuses on locating and decoding EAN-13 barcodes in fuzzy images. We present a more accurate locating algorithm based on segment length and high fault-tolerant rate algorithm for decoding barcodes. Unlike existing approaches, location algorithm is based on the edge segment length of EAN -13 barcodes, while our decoding algorithm allows the appearance of fuzzy region in barcode image. Experimental results are performed on damaged, contaminated and scratched digital images, and provide a quite promising result for EAN -13 barcode location and decoding.

  9. ConGEMs: Condensed Gene Co-Expression Module Discovery Through Rule-Based Clustering and Its Application to Carcinogenesis.

    PubMed

    Mallik, Saurav; Zhao, Zhongming

    2017-12-28

    For transcriptomic analysis, there are numerous microarray-based genomic data, especially those generated for cancer research. The typical analysis measures the difference between a cancer sample-group and a matched control group for each transcript or gene. Association rule mining is used to discover interesting item sets through rule-based methodology. Thus, it has advantages to find causal effect relationships between the transcripts. In this work, we introduce two new rule-based similarity measures-weighted rank-based Jaccard and Cosine measures-and then propose a novel computational framework to detect condensed gene co-expression modules ( C o n G E M s) through the association rule-based learning system and the weighted similarity scores. In practice, the list of evolved condensed markers that consists of both singular and complex markers in nature depends on the corresponding condensed gene sets in either antecedent or consequent of the rules of the resultant modules. In our evaluation, these markers could be supported by literature evidence, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway and Gene Ontology annotations. Specifically, we preliminarily identified differentially expressed genes using an empirical Bayes test. A recently developed algorithm-RANWAR-was then utilized to determine the association rules from these genes. Based on that, we computed the integrated similarity scores of these rule-based similarity measures between each rule-pair, and the resultant scores were used for clustering to identify the co-expressed rule-modules. We applied our method to a gene expression dataset for lung squamous cell carcinoma and a genome methylation dataset for uterine cervical carcinogenesis. Our proposed module discovery method produced better results than the traditional gene-module discovery measures. In summary, our proposed rule-based method is useful for exploring biomarker modules from transcriptomic data.

  10. Reliability-Weighted Integration of Audiovisual Signals Can Be Modulated by Top-down Attention

    PubMed Central

    Noppeney, Uta

    2018-01-01

    Abstract Behaviorally, it is well established that human observers integrate signals near-optimally weighted in proportion to their reliabilities as predicted by maximum likelihood estimation. Yet, despite abundant behavioral evidence, it is unclear how the human brain accomplishes this feat. In a spatial ventriloquist paradigm, participants were presented with auditory, visual, and audiovisual signals and reported the location of the auditory or the visual signal. Combining psychophysics, multivariate functional MRI (fMRI) decoding, and models of maximum likelihood estimation (MLE), we characterized the computational operations underlying audiovisual integration at distinct cortical levels. We estimated observers’ behavioral weights by fitting psychometric functions to participants’ localization responses. Likewise, we estimated the neural weights by fitting neurometric functions to spatial locations decoded from regional fMRI activation patterns. Our results demonstrate that low-level auditory and visual areas encode predominantly the spatial location of the signal component of a region’s preferred auditory (or visual) modality. By contrast, intraparietal sulcus forms spatial representations by integrating auditory and visual signals weighted by their reliabilities. Critically, the neural and behavioral weights and the variance of the spatial representations depended not only on the sensory reliabilities as predicted by the MLE model but also on participants’ modality-specific attention and report (i.e., visual vs. auditory). These results suggest that audiovisual integration is not exclusively determined by bottom-up sensory reliabilities. Instead, modality-specific attention and report can flexibly modulate how intraparietal sulcus integrates sensory signals into spatial representations to guide behavioral responses (e.g., localization and orienting). PMID:29527567

  11. STS-102 MPLM Leonardo is transferred from the PCR into Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - The Multi-Purpose Logistics Module Leonardo is moved into Space Shuttle Discovery'''s payload bay. The primary delivery system used to resupply and return Station cargo requiring a pressurized environment, Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. Discovery is scheduled to launch March 8 at 6:42 a.m. EST on mission STS-102, the eighth construction flight to the International Space Station.

  12. Dynamic Lipid-dependent Modulation of Protein Topology by Post-translational Phosphorylation.

    PubMed

    Vitrac, Heidi; MacLean, David M; Karlstaedt, Anja; Taegtmeyer, Heinrich; Jayaraman, Vasanthi; Bogdanov, Mikhail; Dowhan, William

    2017-02-03

    Membrane protein topology and folding are governed by structural principles and topogenic signals that are recognized and decoded by the protein insertion and translocation machineries at the time of initial membrane insertion and folding. We previously demonstrated that the lipid environment is also a determinant of initial protein topology, which is dynamically responsive to post-assembly changes in membrane lipid composition. However, the effect on protein topology of post-assembly phosphorylation of amino acids localized within initially cytoplasmically oriented extramembrane domains has never been investigated. Here, we show in a controlled in vitro system that phosphorylation of a membrane protein can trigger a change in topological arrangement. The rate of change occurred on a scale of seconds, comparable with the rates observed upon changes in the protein lipid environment. The rate and extent of topological rearrangement were dependent on the charges of extramembrane domains and the lipid bilayer surface. Using model membranes mimicking the lipid compositions of eukaryotic organelles, we determined that anionic lipids, cholesterol, sphingomyelin, and membrane fluidity play critical roles in these processes. Our results demonstrate how post-translational modifications may influence membrane protein topology in a lipid-dependent manner, both along the organelle trafficking pathway and at their final destination. The results provide further evidence that membrane protein topology is dynamic, integrating for the first time the effect of changes in lipid composition and regulators of cellular processes. The discovery of a new topology regulatory mechanism opens additional avenues for understanding unexplored structure-function relationships and the development of optimized topology prediction tools. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Validity of the two-level model for Viterbi decoder gap-cycle performance

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Arnold, S.

    1990-01-01

    A two-level model has previously been proposed for approximating the performance of a Viterbi decoder which encounters data received with periodically varying signal-to-noise ratio. Such cyclically gapped data is obtained from the Very Large Array (VLA), either operating as a stand-alone system or arrayed with Goldstone. This approximate model predicts that the decoder error rate will vary periodically between two discrete levels with the same period as the gap cycle. It further predicts that the length of the gapped portion of the decoder error cycle for a constraint length K decoder will be about K-1 bits shorter than the actual duration of the gap. The two-level model for Viterbi decoder performance with gapped data is subjected to detailed validation tests. Curves showing the cyclical behavior of the decoder error burst statistics are compared with the simple square-wave cycles predicted by the model. The validity of the model depends on a parameter often considered irrelevant in the analysis of Viterbi decoder performance, the overall scaling of the received signal or the decoder's branch-metrics. Three scaling alternatives are examined: optimum branch-metric scaling and constant branch-metric scaling combined with either constant noise-level scaling or constant signal-level scaling. The simulated decoder error cycle curves roughly verify the accuracy of the two-level model for both the case of optimum branch-metric scaling and the case of constant branch-metric scaling combined with constant noise-level scaling. However, the model is not accurate for the case of constant branch-metric scaling combined with constant signal-level scaling.

  14. Adaptive Distributed Video Coding with Correlation Estimation using Expectation Propagation

    PubMed Central

    Cui, Lijuan; Wang, Shuang; Jiang, Xiaoqian; Cheng, Samuel

    2013-01-01

    Distributed video coding (DVC) is rapidly increasing in popularity by the way of shifting the complexity from encoder to decoder, whereas no compression performance degrades, at least in theory. In contrast with conventional video codecs, the inter-frame correlation in DVC is explored at decoder based on the received syndromes of Wyner-Ziv (WZ) frame and side information (SI) frame generated from other frames available only at decoder. However, the ultimate decoding performances of DVC are based on the assumption that the perfect knowledge of correlation statistic between WZ and SI frames should be available at decoder. Therefore, the ability of obtaining a good statistical correlation estimate is becoming increasingly important in practical DVC implementations. Generally, the existing correlation estimation methods in DVC can be classified into two main types: pre-estimation where estimation starts before decoding and on-the-fly (OTF) estimation where estimation can be refined iteratively during decoding. As potential changes between frames might be unpredictable or dynamical, OTF estimation methods usually outperforms pre-estimation techniques with the cost of increased decoding complexity (e.g., sampling methods). In this paper, we propose a low complexity adaptive DVC scheme using expectation propagation (EP), where correlation estimation is performed OTF as it is carried out jointly with decoding of the factor graph-based DVC code. Among different approximate inference methods, EP generally offers better tradeoff between accuracy and complexity. Experimental results show that our proposed scheme outperforms the benchmark state-of-the-art DISCOVER codec and other cases without correlation tracking, and achieves comparable decoding performance but with significantly low complexity comparing with sampling method. PMID:23750314

  15. Decoding continuous three-dimensional hand trajectories from epidural electrocorticographic signals in Japanese macaques

    NASA Astrophysics Data System (ADS)

    Shimoda, Kentaro; Nagasaka, Yasuo; Chao, Zenas C.; Fujii, Naotaka

    2012-06-01

    Brain-machine interface (BMI) technology captures brain signals to enable control of prosthetic or communication devices with the goal of assisting patients who have limited or no ability to perform voluntary movements. Decoding of inherent information in brain signals to interpret the user's intention is one of main approaches for developing BMI technology. Subdural electrocorticography (sECoG)-based decoding provides good accuracy, but surgical complications are one of the major concerns for this approach to be applied in BMIs. In contrast, epidural electrocorticography (eECoG) is less invasive, thus it is theoretically more suitable for long-term implementation, although it is unclear whether eECoG signals carry sufficient information for decoding natural movements. We successfully decoded continuous three-dimensional hand trajectories from eECoG signals in Japanese macaques. A steady quantity of information of continuous hand movements could be acquired from the decoding system for at least several months, and a decoding model could be used for ˜10 days without significant degradation in accuracy or recalibration. The correlation coefficients between observed and predicted trajectories were lower than those for sECoG-based decoding experiments we previously reported, owing to a greater degree of chewing artifacts in eECoG-based decoding than is found in sECoG-based decoding. As one of the safest invasive recording methods available, eECoG provides an acceptable level of performance. With the ease of replacement and upgrades, eECoG systems could become the first-choice interface for real-life BMI applications.

  16. Adaptive distributed video coding with correlation estimation using expectation propagation

    NASA Astrophysics Data System (ADS)

    Cui, Lijuan; Wang, Shuang; Jiang, Xiaoqian; Cheng, Samuel

    2012-10-01

    Distributed video coding (DVC) is rapidly increasing in popularity by the way of shifting the complexity from encoder to decoder, whereas no compression performance degrades, at least in theory. In contrast with conventional video codecs, the inter-frame correlation in DVC is explored at decoder based on the received syndromes of Wyner-Ziv (WZ) frame and side information (SI) frame generated from other frames available only at decoder. However, the ultimate decoding performances of DVC are based on the assumption that the perfect knowledge of correlation statistic between WZ and SI frames should be available at decoder. Therefore, the ability of obtaining a good statistical correlation estimate is becoming increasingly important in practical DVC implementations. Generally, the existing correlation estimation methods in DVC can be classified into two main types: pre-estimation where estimation starts before decoding and on-the-fly (OTF) estimation where estimation can be refined iteratively during decoding. As potential changes between frames might be unpredictable or dynamical, OTF estimation methods usually outperforms pre-estimation techniques with the cost of increased decoding complexity (e.g., sampling methods). In this paper, we propose a low complexity adaptive DVC scheme using expectation propagation (EP), where correlation estimation is performed OTF as it is carried out jointly with decoding of the factor graph-based DVC code. Among different approximate inference methods, EP generally offers better tradeoff between accuracy and complexity. Experimental results show that our proposed scheme outperforms the benchmark state-of-the-art DISCOVER codec and other cases without correlation tracking, and achieves comparable decoding performance but with significantly low complexity comparing with sampling method.

  17. Adaptive Distributed Video Coding with Correlation Estimation using Expectation Propagation.

    PubMed

    Cui, Lijuan; Wang, Shuang; Jiang, Xiaoqian; Cheng, Samuel

    2012-10-15

    Distributed video coding (DVC) is rapidly increasing in popularity by the way of shifting the complexity from encoder to decoder, whereas no compression performance degrades, at least in theory. In contrast with conventional video codecs, the inter-frame correlation in DVC is explored at decoder based on the received syndromes of Wyner-Ziv (WZ) frame and side information (SI) frame generated from other frames available only at decoder. However, the ultimate decoding performances of DVC are based on the assumption that the perfect knowledge of correlation statistic between WZ and SI frames should be available at decoder. Therefore, the ability of obtaining a good statistical correlation estimate is becoming increasingly important in practical DVC implementations. Generally, the existing correlation estimation methods in DVC can be classified into two main types: pre-estimation where estimation starts before decoding and on-the-fly (OTF) estimation where estimation can be refined iteratively during decoding. As potential changes between frames might be unpredictable or dynamical, OTF estimation methods usually outperforms pre-estimation techniques with the cost of increased decoding complexity (e.g., sampling methods). In this paper, we propose a low complexity adaptive DVC scheme using expectation propagation (EP), where correlation estimation is performed OTF as it is carried out jointly with decoding of the factor graph-based DVC code. Among different approximate inference methods, EP generally offers better tradeoff between accuracy and complexity. Experimental results show that our proposed scheme outperforms the benchmark state-of-the-art DISCOVER codec and other cases without correlation tracking, and achieves comparable decoding performance but with significantly low complexity comparing with sampling method.

  18. On the optimality of code options for a universal noiseless coder

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Rice, Robert F.; Miller, Warner

    1991-01-01

    A universal noiseless coding structure was developed that provides efficient performance over an extremely broad range of source entropy. This is accomplished by adaptively selecting the best of several easily implemented variable length coding algorithms. Custom VLSI coder and decoder modules capable of processing over 20 million samples per second are currently under development. The first of the code options used in this module development is shown to be equivalent to a class of Huffman code under the Humblet condition, other options are shown to be equivalent to the Huffman codes of a modified Laplacian symbol set, at specified symbol entropy values. Simulation results are obtained on actual aerial imagery, and they confirm the optimality of the scheme. On sources having Gaussian or Poisson distributions, coder performance is also projected through analysis and simulation.

  19. NASA Tech Briefs, April 2009

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Topics covered include: Direct-Solve Image-Based Wavefront Sensing; Use of UV Sources for Detection and Identification of Explosives; Using Fluorescent Viruses for Detecting Bacteria in Water; Gradiometer Using Middle Loops as Sensing Elements in a Low-Field SQUID MRI System; Volcano Monitor: Autonomous Triggering of In-Situ Sensors; Wireless Fluid-Level Sensors for Harsh Environments; Interference-Detection Module in a Digital Radar Receiver; Modal Vibration Analysis of Large Castings; Structural/Radiation-Shielding Epoxies; Integrated Multilayer Insulation; Apparatus for Screening Multiple Oxygen-Reduction Catalysts; Determining Aliasing in Isolated Signal Conditioning Modules; Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems; Spectrum Analyzers Incorporating Tunable WGM Resonators; Quantum-Well Thermophotovoltaic Cells; Bounded-Angle Iterative Decoding of LDPC Codes; Conversion from Tree to Graph Representation of Requirements; Parallel Hybrid Vehicle Optimal Storage System; and Anaerobic Digestion in a Flooded Densified Leachbed.

  20. Recent advances in coding theory for near error-free communications

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.; Deutsch, L. J.; Dolinar, S. J.; Mceliece, R. J.; Pollara, F.; Shahshahani, M.; Swanson, L.

    1991-01-01

    Channel and source coding theories are discussed. The following subject areas are covered: large constraint length convolutional codes (the Galileo code); decoder design (the big Viterbi decoder); Voyager's and Galileo's data compression scheme; current research in data compression for images; neural networks for soft decoding; neural networks for source decoding; finite-state codes; and fractals for data compression.

  1. Fast transform decoding of nonsystematic Reed-Solomon codes

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Cheung, K.-M.; Reed, I. S.; Shiozaki, A.

    1989-01-01

    A Reed-Solomon (RS) code is considered to be a special case of a redundant residue polynomial (RRP) code, and a fast transform decoding algorithm to correct both errors and erasures is presented. This decoding scheme is an improvement of the decoding algorithm for the RRP code suggested by Shiozaki and Nishida, and can be realized readily on very large scale integration chips.

  2. The Differential Contributions of Auditory-Verbal and Visuospatial Working Memory on Decoding Skills in Children Who Are Poor Decoders

    ERIC Educational Resources Information Center

    Squires, Katie Ellen

    2013-01-01

    This study investigated the differential contribution of auditory-verbal and visuospatial working memory (WM) on decoding skills in second- and fifth-grade children identified with poor decoding. Thirty-two second-grade students and 22 fifth-grade students completed measures that assessed simple and complex auditory-verbal and visuospatial memory,…

  3. Polar Coding with CRC-Aided List Decoding

    DTIC Science & Technology

    2015-08-01

    TECHNICAL REPORT 2087 August 2015 Polar Coding with CRC-Aided List Decoding David Wasserman Approved...list decoding . RESULTS Our simulation results show that polar coding can produce results very similar to the FEC used in the Digital Video...standard. RECOMMENDATIONS In any application for which the DVB-S2 FEC is considered, polar coding with CRC-aided list decod - ing with N = 65536

  4. Decoding position, velocity, or goal: does it matter for brain-machine interfaces?

    PubMed

    Marathe, A R; Taylor, D M

    2011-04-01

    Arm end-point position, end-point velocity, and the intended final location or 'goal' of a reach have all been decoded from cortical signals for use in brain-machine interface (BMI) applications. These different aspects of arm movement can be decoded from the brain and used directly to control the position, velocity, or movement goal of a device. However, these decoded parameters can also be remapped to control different aspects of movement, such as using the decoded position of the hand to control the velocity of a device. People easily learn to use the position of a joystick to control the velocity of an object in a videogame. Similarly, in BMI systems, the position, velocity, or goal of a movement could be decoded from the brain and remapped to control some other aspect of device movement. This study evaluates how easily people make transformations between position, velocity, and reach goal in BMI systems. It also evaluates how different amounts of decoding error impact on device control with and without these transformations. Results suggest some remapping options can significantly improve BMI control. This study provides guidance on what remapping options to use when various amounts of decoding error are present.

  5. Encoder-Decoder Optimization for Brain-Computer Interfaces

    PubMed Central

    Merel, Josh; Pianto, Donald M.; Cunningham, John P.; Paninski, Liam

    2015-01-01

    Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages. PMID:26029919

  6. Encoder-decoder optimization for brain-computer interfaces.

    PubMed

    Merel, Josh; Pianto, Donald M; Cunningham, John P; Paninski, Liam

    2015-06-01

    Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.

  7. Decoding position, velocity, or goal: Does it matter for brain-machine interfaces?

    NASA Astrophysics Data System (ADS)

    Marathe, A. R.; Taylor, D. M.

    2011-04-01

    Arm end-point position, end-point velocity, and the intended final location or 'goal' of a reach have all been decoded from cortical signals for use in brain-machine interface (BMI) applications. These different aspects of arm movement can be decoded from the brain and used directly to control the position, velocity, or movement goal of a device. However, these decoded parameters can also be remapped to control different aspects of movement, such as using the decoded position of the hand to control the velocity of a device. People easily learn to use the position of a joystick to control the velocity of an object in a videogame. Similarly, in BMI systems, the position, velocity, or goal of a movement could be decoded from the brain and remapped to control some other aspect of device movement. This study evaluates how easily people make transformations between position, velocity, and reach goal in BMI systems. It also evaluates how different amounts of decoding error impact on device control with and without these transformations. Results suggest some remapping options can significantly improve BMI control. This study provides guidance on what remapping options to use when various amounts of decoding error are present.

  8. Improved HDRG decoders for qudit and non-Abelian quantum error correction

    NASA Astrophysics Data System (ADS)

    Hutter, Adrian; Loss, Daniel; Wootton, James R.

    2015-03-01

    Hard-decision renormalization group (HDRG) decoders are an important class of decoding algorithms for topological quantum error correction. Due to their versatility, they have been used to decode systems with fractal logical operators, color codes, qudit topological codes, and non-Abelian systems. In this work, we develop a method of performing HDRG decoding which combines strengths of existing decoders and further improves upon them. In particular, we increase the minimal number of errors necessary for a logical error in a system of linear size L from \\Theta ({{L}2/3}) to Ω ({{L}1-ε }) for any ε \\gt 0. We apply our algorithm to decoding D({{{Z}}d}) quantum double models and a non-Abelian anyon model with Fibonacci-like fusion rules, and show that it indeed significantly outperforms previous HDRG decoders. Furthermore, we provide the first study of continuous error correction with imperfect syndrome measurements for the D({{{Z}}d}) quantum double models. The parallelized runtime of our algorithm is poly(log L) for the perfect measurement case. In the continuous case with imperfect syndrome measurements, the averaged runtime is O(1) for Abelian systems, while continuous error correction for non-Abelian anyons stays an open problem.

  9. An architecture of entropy decoder, inverse quantiser and predictor for multi-standard video decoding

    NASA Astrophysics Data System (ADS)

    Liu, Leibo; Chen, Yingjie; Yin, Shouyi; Lei, Hao; He, Guanghui; Wei, Shaojun

    2014-07-01

    A VLSI architecture for entropy decoder, inverse quantiser and predictor is proposed in this article. This architecture is used for decoding video streams of three standards on a single chip, i.e. H.264/AVC, AVS (China National Audio Video coding Standard) and MPEG2. The proposed scheme is called MPMP (Macro-block-Parallel based Multilevel Pipeline), which is intended to improve the decoding performance to satisfy the real-time requirements while maintaining a reasonable area and power consumption. Several techniques, such as slice level pipeline, MB (Macro-Block) level pipeline, MB level parallel, etc., are adopted. Input and output buffers for the inverse quantiser and predictor are shared by the decoding engines for H.264, AVS and MPEG2, therefore effectively reducing the implementation overhead. Simulation shows that decoding process consumes 512, 435 and 438 clock cycles per MB in H.264, AVS and MPEG2, respectively. Owing to the proposed techniques, the video decoder can support H.264 HP (High Profile) 1920 × 1088@30fps (frame per second) streams, AVS JP (Jizhun Profile) 1920 × 1088@41fps streams and MPEG2 MP (Main Profile) 1920 × 1088@39fps streams when exploiting a 200 MHz working frequency.

  10. Motion Direction Biases and Decoding in Human Visual Cortex

    PubMed Central

    Wang, Helena X.; Merriam, Elisha P.; Freeman, Jeremy

    2014-01-01

    Functional magnetic resonance imaging (fMRI) studies have relied on multivariate analysis methods to decode visual motion direction from measurements of cortical activity. Above-chance decoding has been commonly used to infer the motion-selective response properties of the underlying neural populations. Moreover, patterns of reliable response biases across voxels that underlie decoding have been interpreted to reflect maps of functional architecture. Using fMRI, we identified a direction-selective response bias in human visual cortex that: (1) predicted motion-decoding accuracy; (2) depended on the shape of the stimulus aperture rather than the absolute direction of motion, such that response amplitudes gradually decreased with distance from the stimulus aperture edge corresponding to motion origin; and 3) was present in V1, V2, V3, but not evident in MT+, explaining the higher motion-decoding accuracies reported previously in early visual cortex. These results demonstrate that fMRI-based motion decoding has little or no dependence on the underlying functional organization of motion selectivity. PMID:25209297

  11. Mathematics is differentially related to reading comprehension and word decoding: Evidence from a genetically-sensitive design

    PubMed Central

    Harlaar, Nicole; Kovas, Yulia; Dale, Philip S.; Petrill, Stephen A.; Plomin, Robert

    2013-01-01

    Although evidence suggests that individual differences in reading and mathematics skills are correlated, this relationship has typically only been studied in relation to word decoding or global measures of reading. It is unclear whether mathematics is differentially related to word decoding and reading comprehension. The current study examined these relationships at both a phenotypic and etiological level in a population-based cohort of 5162 twin pairs at age 12. Multivariate genetic analyses of latent phenotypic factors of mathematics, word decoding and reading comprehension revealed substantial genetic and shared environmental correlations among all three domains. However, the phenotypic and genetic correlations between mathematics and reading comprehension were significantly greater than between mathematics and word decoding. Independent of mathematics, there was also evidence for genetic and nonshared environmental links between word decoding and reading comprehension. These findings indicate that word decoding and reading comprehension have partly distinct relationships with mathematics in the middle school years. PMID:24319294

  12. Decoding brain activity using a large-scale probabilistic functional-anatomical atlas of human cognition

    PubMed Central

    Jones, Michael N.

    2017-01-01

    A central goal of cognitive neuroscience is to decode human brain activity—that is, to infer mental processes from observed patterns of whole-brain activation. Previous decoding efforts have focused on classifying brain activity into a small set of discrete cognitive states. To attain maximal utility, a decoding framework must be open-ended, systematic, and context-sensitive—that is, capable of interpreting numerous brain states, presented in arbitrary combinations, in light of prior information. Here we take steps towards this objective by introducing a probabilistic decoding framework based on a novel topic model—Generalized Correspondence Latent Dirichlet Allocation—that learns latent topics from a database of over 11,000 published fMRI studies. The model produces highly interpretable, spatially-circumscribed topics that enable flexible decoding of whole-brain images. Importantly, the Bayesian nature of the model allows one to “seed” decoder priors with arbitrary images and text—enabling researchers, for the first time, to generate quantitative, context-sensitive interpretations of whole-brain patterns of brain activity. PMID:29059185

  13. Mathematics is differentially related to reading comprehension and word decoding: Evidence from a genetically-sensitive design.

    PubMed

    Harlaar, Nicole; Kovas, Yulia; Dale, Philip S; Petrill, Stephen A; Plomin, Robert

    2012-08-01

    Although evidence suggests that individual differences in reading and mathematics skills are correlated, this relationship has typically only been studied in relation to word decoding or global measures of reading. It is unclear whether mathematics is differentially related to word decoding and reading comprehension. The current study examined these relationships at both a phenotypic and etiological level in a population-based cohort of 5162 twin pairs at age 12. Multivariate genetic analyses of latent phenotypic factors of mathematics, word decoding and reading comprehension revealed substantial genetic and shared environmental correlations among all three domains. However, the phenotypic and genetic correlations between mathematics and reading comprehension were significantly greater than between mathematics and word decoding. Independent of mathematics, there was also evidence for genetic and nonshared environmental links between word decoding and reading comprehension. These findings indicate that word decoding and reading comprehension have partly distinct relationships with mathematics in the middle school years.

  14. Soft-output decoding algorithms in iterative decoding of turbo codes

    NASA Technical Reports Server (NTRS)

    Benedetto, S.; Montorsi, G.; Divsalar, D.; Pollara, F.

    1996-01-01

    In this article, we present two versions of a simplified maximum a posteriori decoding algorithm. The algorithms work in a sliding window form, like the Viterbi algorithm, and can thus be used to decode continuously transmitted sequences obtained by parallel concatenated codes, without requiring code trellis termination. A heuristic explanation is also given of how to embed the maximum a posteriori algorithms into the iterative decoding of parallel concatenated codes (turbo codes). The performances of the two algorithms are compared on the basis of a powerful rate 1/3 parallel concatenated code. Basic circuits to implement the simplified a posteriori decoding algorithm using lookup tables, and two further approximations (linear and threshold), with a very small penalty, to eliminate the need for lookup tables are proposed.

  15. The Limits of Coding with Joint Constraints on Detected and Undetected Error Rates

    NASA Technical Reports Server (NTRS)

    Dolinar, Sam; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush

    2008-01-01

    We develop a remarkably tight upper bound on the performance of a parameterized family of bounded angle maximum-likelihood (BA-ML) incomplete decoders. The new bound for this class of incomplete decoders is calculated from the code's weight enumerator, and is an extension of Poltyrev-type bounds developed for complete ML decoders. This bound can also be applied to bound the average performance of random code ensembles in terms of an ensemble average weight enumerator. We also formulate conditions defining a parameterized family of optimal incomplete decoders, defined to minimize both the total codeword error probability and the undetected error probability for any fixed capability of the decoder to detect errors. We illustrate the gap between optimal and BA-ML incomplete decoding via simulation of a small code.

  16. Direct migration motion estimation and mode decision to decoder for a low-complexity decoder Wyner-Ziv video coding

    NASA Astrophysics Data System (ADS)

    Lei, Ted Chih-Wei; Tseng, Fan-Shuo

    2017-07-01

    This paper addresses the problem of high-computational complexity decoding in traditional Wyner-Ziv video coding (WZVC). The key focus is the migration of two traditionally high-computationally complex encoder algorithms, namely motion estimation and mode decision. In order to reduce the computational burden in this process, the proposed architecture adopts the partial boundary matching algorithm and four flexible types of block mode decision at the decoder. This approach does away with the need for motion estimation and mode decision at the encoder. The experimental results show that the proposed padding block-based WZVC not only decreases decoder complexity to approximately one hundredth that of the state-of-the-art DISCOVER decoding but also outperforms DISCOVER codec by up to 3 to 4 dB.

  17. Numerical and analytical bounds on threshold error rates for hypergraph-product codes

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.; Prabhakar, Sanjay; Dumer, Ilya; Pryadko, Leonid P.

    2018-06-01

    We study analytically and numerically decoding properties of finite-rate hypergraph-product quantum low density parity-check codes obtained from random (3,4)-regular Gallager codes, with a simple model of independent X and Z errors. Several nontrivial lower and upper bounds for the decodable region are constructed analytically by analyzing the properties of the homological difference, equal minus the logarithm of the maximum-likelihood decoding probability for a given syndrome. Numerical results include an upper bound for the decodable region from specific heat calculations in associated Ising models and a minimum-weight decoding threshold of approximately 7 % .

  18. Space Shuttle Discovery (STS-124) Lands

    NASA Image and Video Library

    2008-06-14

    NASA Associate Administrator for Space Operations Bill Gerstenmaier watches the space shuttle Discovery touch down at 11:15 a.m. EDT, Saturday, June 14, 2008, at the Kennedy Space Center in Florida. During the 13-day mission, Discovery and the crew of STS-124 delivered new components of the Japanese Experiment Module, or Kibo, to the International Space Station and the Canadian-built Special Purpose Dextrous Manipulator to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  19. Space Shuttle Discovery is Prepared for Launch

    NASA Image and Video Library

    2011-02-23

    The space shuttle Discovery is seen shortly after the Rotating Service Structure was rolled back at launch pad 39A, at the Kennedy Space Center in Cape Canaveral, Florida, on Wednesday, Feb. 23, 2011. Discovery, on its 39th and final flight, will carry the Italian-built Permanent Multipurpose Module (PMM), Express Logistics Carrier 4 (ELC4) and Robonaut 2, the first humanoid robot in space to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  20. Three education modules using EnviroAtlas-Exploration and Discovery Through Maps: Teaching Science with Technology

    EPA Science Inventory

    Session #1: Exploration and Discovery through Maps: Teaching Science with Technology (elementary school) - EnviroAtlas is a tool developed by the U.S. Environmental Protection Agency and its partners that empowers anyone with the internet to be a highly informed local decision-ma...

  1. Discovery with MPLM

    NASA Image and Video Library

    2010-04-16

    S131-E-010463 (16 April 2010) --- The docked space shuttle Discovery is featured in this image photographed by an STS-131 crew member on the International Space Station. The Leonardo Multi-Purpose Logistics Module is visible in Discovery’s payload bay. Earth’s horizon and the blackness of space provide the backdrop for the scene.

  2. STS-102 crew members check out Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Members of the STS-102 crew check out Discovery's payload bay in the Orbiter Processing Facility bay 1. Dressed in green, they are Mission Specialist Paul W. Richards (left) and Pilot James W. Kelly. The crew is at KSC for Crew Equipment Interface Test activities. Above their heads on the left side are two of the experiments being carried on the flight. STS-102 is the 8th construction flight to the International Space Station and will carry the Multi-Purpose Logistics Module Leonardo. STS-102 is scheduled for launch March 1, 2001. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module Destiny. The mission will also be carrying the Expedition Two crew to the Space Station, replacing the Expedition One crew who will return on Shuttle Discovery.

  3. A Systolic VLSI Design of a Pipeline Reed-solomon Decoder

    NASA Technical Reports Server (NTRS)

    Shao, H. M.; Truong, T. K.; Deutsch, L. J.; Yuen, J. H.; Reed, I. S.

    1984-01-01

    A pipeline structure of a transform decoder similar to a systolic array was developed to decode Reed-Solomon (RS) codes. An important ingredient of this design is a modified Euclidean algorithm for computing the error locator polynomial. The computation of inverse field elements is completely avoided in this modification of Euclid's algorithm. The new decoder is regular and simple, and naturally suitable for VLSI implementation.

  4. A VLSI design of a pipeline Reed-Solomon decoder

    NASA Technical Reports Server (NTRS)

    Shao, H. M.; Truong, T. K.; Deutsch, L. J.; Yuen, J. H.; Reed, I. S.

    1985-01-01

    A pipeline structure of a transform decoder similar to a systolic array was developed to decode Reed-Solomon (RS) codes. An important ingredient of this design is a modified Euclidean algorithm for computing the error locator polynomial. The computation of inverse field elements is completely avoided in this modification of Euclid's algorithm. The new decoder is regular and simple, and naturally suitable for VLSI implementation.

  5. STS-42 crewmembers work in the IML-1 module located in OV-103's payload bay

    NASA Image and Video Library

    1992-01-30

    STS042-201-009 (22-30 Jan 1992) --- Canadian Roberta L. Bondar, payload specialist representing the Canadian Space Agency (CSA), works at the International Microgravity Laboratory's (IML-1) biorack while astronaut Stephen S. Oswald, pilot, changes a film magazine on the IMAX camera. The two were joined by five fellow crew members for eight-days of scientific research aboard the Space Shuttle Discovery in Earth-orbit. Most of their on-duty time was spent in this IML-1 Science Module, positioned in the cargo bay and attached via a tunnel to Discovery's airlock.

  6. KSC-08pd1455

    NASA Image and Video Library

    2008-05-28

    CAPE CANAVERAL, Fla. -- After their arrival on the Shuttle Landing Facility at NASA's Kennedy Space Center, the crew members of space shuttle Discovery's STS-124 mission pose for a group photo. From left are Mission Specialists Gregory Chamitoff and Akihiko Hoshide, Pilot Ken Ham, Mission Specialists Karen Nyberg and Mike Fossum, Commander Mark Kelly and Mission Specialist Ron Garan. Launch of Discovery is scheduled for 5:02 p.m. May 31. On the STS-124 mission, the crew of seven will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Photo credit: NASA/Kim Shiflett

  7. Brain-state classification and a dual-state decoder dramatically improve the control of cursor movement through a brain-machine interface

    NASA Astrophysics Data System (ADS)

    Sachs, Nicholas A.; Ruiz-Torres, Ricardo; Perreault, Eric J.; Miller, Lee E.

    2016-02-01

    Objective. It is quite remarkable that brain machine interfaces (BMIs) can be used to control complex movements with fewer than 100 neurons. Success may be due in part to the limited range of dynamical conditions under which most BMIs are tested. Achieving high-quality control that spans these conditions with a single linear mapping will be more challenging. Even for simple reaching movements, existing BMIs must reduce the stochastic noise of neurons by averaging the control signals over time, instead of over the many neurons that normally control movement. This forces a compromise between a decoder with dynamics allowing rapid movement and one that allows postures to be maintained with little jitter. Our current work presents a method for addressing this compromise, which may also generalize to more highly varied dynamical situations, including movements with more greatly varying speed. Approach. We have developed a system that uses two independent Wiener filters as individual components in a single decoder, one optimized for movement, and the other for postural control. We computed an LDA classifier using the same neural inputs. The decoder combined the outputs of the two filters in proportion to the likelihood assigned by the classifier to each state. Main results. We have performed online experiments with two monkeys using this neural-classifier, dual-state decoder, comparing it to a standard, single-state decoder as well as to a dual-state decoder that switched states automatically based on the cursor’s proximity to a target. The performance of both monkeys using the classifier decoder was markedly better than that of the single-state decoder and comparable to the proximity decoder. Significance. We have demonstrated a novel strategy for dealing with the need to make rapid movements while also maintaining precise cursor control when approaching and stabilizing within targets. Further gains can undoubtedly be realized by optimizing the performance of the individual movement and posture decoders.

  8. Brain-state classification and a dual-state decoder dramatically improve the control of cursor movement through a brain-machine interface.

    PubMed

    Sachs, Nicholas A; Ruiz-Torres, Ricardo; Perreault, Eric J; Miller, Lee E

    2016-02-01

    It is quite remarkable that brain machine interfaces (BMIs) can be used to control complex movements with fewer than 100 neurons. Success may be due in part to the limited range of dynamical conditions under which most BMIs are tested. Achieving high-quality control that spans these conditions with a single linear mapping will be more challenging. Even for simple reaching movements, existing BMIs must reduce the stochastic noise of neurons by averaging the control signals over time, instead of over the many neurons that normally control movement. This forces a compromise between a decoder with dynamics allowing rapid movement and one that allows postures to be maintained with little jitter. Our current work presents a method for addressing this compromise, which may also generalize to more highly varied dynamical situations, including movements with more greatly varying speed. We have developed a system that uses two independent Wiener filters as individual components in a single decoder, one optimized for movement, and the other for postural control. We computed an LDA classifier using the same neural inputs. The decoder combined the outputs of the two filters in proportion to the likelihood assigned by the classifier to each state. We have performed online experiments with two monkeys using this neural-classifier, dual-state decoder, comparing it to a standard, single-state decoder as well as to a dual-state decoder that switched states automatically based on the cursor's proximity to a target. The performance of both monkeys using the classifier decoder was markedly better than that of the single-state decoder and comparable to the proximity decoder. We have demonstrated a novel strategy for dealing with the need to make rapid movements while also maintaining precise cursor control when approaching and stabilizing within targets. Further gains can undoubtedly be realized by optimizing the performance of the individual movement and posture decoders.

  9. To sort or not to sort: the impact of spike-sorting on neural decoding performance.

    PubMed

    Todorova, Sonia; Sadtler, Patrick; Batista, Aaron; Chase, Steven; Ventura, Valérie

    2014-10-01

    Brain-computer interfaces (BCIs) are a promising technology for restoring motor ability to paralyzed patients. Spiking-based BCIs have successfully been used in clinical trials to control multi-degree-of-freedom robotic devices. Current implementations of these devices require a lengthy spike-sorting step, which is an obstacle to moving this technology from the lab to the clinic. A viable alternative is to avoid spike-sorting, treating all threshold crossings of the voltage waveform on an electrode as coming from one putative neuron. It is not known, however, how much decoding information might be lost by ignoring spike identity. We present a full analysis of the effects of spike-sorting schemes on decoding performance. Specifically, we compare how well two common decoders, the optimal linear estimator and the Kalman filter, reconstruct the arm movements of non-human primates performing reaching tasks, when receiving input from various sorting schemes. The schemes we tested included: using threshold crossings without spike-sorting; expert-sorting discarding the noise; expert-sorting, including the noise as if it were another neuron; and automatic spike-sorting using waveform features. We also decoded from a joint statistical model for the waveforms and tuning curves, which does not involve an explicit spike-sorting step. Discarding the threshold crossings that cannot be assigned to neurons degrades decoding: no spikes should be discarded. Decoding based on spike-sorted units outperforms decoding based on electrodes voltage crossings: spike-sorting is useful. The four waveform based spike-sorting methods tested here yield similar decoding efficiencies: a fast and simple method is competitive. Decoding using the joint waveform and tuning model shows promise but is not consistently superior. Our results indicate that simple automated spike-sorting performs as well as the more computationally or manually intensive methods used here. Even basic spike-sorting adds value to the low-threshold waveform-crossing methods often employed in BCI decoding.

  10. To sort or not to sort: the impact of spike-sorting on neural decoding performance

    NASA Astrophysics Data System (ADS)

    Todorova, Sonia; Sadtler, Patrick; Batista, Aaron; Chase, Steven; Ventura, Valérie

    2014-10-01

    Objective. Brain-computer interfaces (BCIs) are a promising technology for restoring motor ability to paralyzed patients. Spiking-based BCIs have successfully been used in clinical trials to control multi-degree-of-freedom robotic devices. Current implementations of these devices require a lengthy spike-sorting step, which is an obstacle to moving this technology from the lab to the clinic. A viable alternative is to avoid spike-sorting, treating all threshold crossings of the voltage waveform on an electrode as coming from one putative neuron. It is not known, however, how much decoding information might be lost by ignoring spike identity. Approach. We present a full analysis of the effects of spike-sorting schemes on decoding performance. Specifically, we compare how well two common decoders, the optimal linear estimator and the Kalman filter, reconstruct the arm movements of non-human primates performing reaching tasks, when receiving input from various sorting schemes. The schemes we tested included: using threshold crossings without spike-sorting; expert-sorting discarding the noise; expert-sorting, including the noise as if it were another neuron; and automatic spike-sorting using waveform features. We also decoded from a joint statistical model for the waveforms and tuning curves, which does not involve an explicit spike-sorting step. Main results. Discarding the threshold crossings that cannot be assigned to neurons degrades decoding: no spikes should be discarded. Decoding based on spike-sorted units outperforms decoding based on electrodes voltage crossings: spike-sorting is useful. The four waveform based spike-sorting methods tested here yield similar decoding efficiencies: a fast and simple method is competitive. Decoding using the joint waveform and tuning model shows promise but is not consistently superior. Significance. Our results indicate that simple automated spike-sorting performs as well as the more computationally or manually intensive methods used here. Even basic spike-sorting adds value to the low-threshold waveform-crossing methods often employed in BCI decoding.

  11. KSC-06pd0926

    NASA Image and Video Library

    2006-05-23

    KENNEDY SPACE CENTER, FLA. -- From inside the payload changeout room on the rotating service structure on Launch Pad 39B, workers maneuver the multi-purpose logistics module Leonardo into Space Shuttle Discovery's payload bay (at left). The payload ground-handling mechanism (PGHM) is used to transfer the module into the payload bay. Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Leonardo is part of the payload on mission STS-121. Other payloads include the integrated cargo carrier with the mobile transporter reel assembly and a spare pump module, and the lightweight multi-purpose experiment support structure carrier. Discovery is scheduled to launch in a window extending from July 1 through July 19. Photo credit: NASA/Jack Pfaller

  12. KSC-06pd0925

    NASA Image and Video Library

    2006-05-23

    KENNEDY SPACE CENTER, FLA. -- From inside the payload changeout room on the rotating service structure on Launch Pad 39B, the multi-purpose logistics module Leonardo is being moved into Space Shuttle Discovery's payload bay (at left). The payload ground-handling mechanism (PGHM) is used to transfer the module into the payload bay. Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Leonardo is part of the payload on mission STS-121. Other payloads include the integrated cargo carrier with the mobile transporter reel assembly and a spare pump module, and the lightweight multi-purpose experiment support structure carrier. Discovery is scheduled to launch in a window extending from July 1 through July 19. Photo credit: NASA/Jack Pfaller

  13. Application of mass spectrometry technologies for the discovery of low-molecular weight modulators of enzymes and protein-protein interactions.

    PubMed

    Zehender, Hartmut; Mayr, Lorenz M

    2007-10-01

    In recent years, mass spectrometry has gained widespread use as an assay and screening technology in drug discovery because it enables sensitive, label-free detection of low-molecular weight modulators of biomolecules as well as sensitive and accurate detection of high-molecular weight modifications of biomolecules. Electrospray and matrix-assisted laser desorption ionization are the most widely used ionization techniques to identify chemical compounds interfering with enzymatic function, receptor-ligand binding or molecules modulating a protein-protein interaction of interest. Mass spectrometry based techniques are no longer restricted to screening in biochemical assay systems but have now become also applicable to imaging of biomolecules and chemical compounds in cell-based assay systems and even in highly complex tissue sections.

  14. STS-42 MS/PLC Norman E. Thagard adjusts Rack 10 FES equipment in IML-1 module

    NASA Image and Video Library

    1992-01-30

    STS042-05-006 (22-30 Jan 1992) --- Astronaut Norman E. Thagard, payload commander, performs the Fluids Experiment System (FES) in the International Microgravity Laboratory (IML-1) science module. The FES is a NASA-developed facility that produces optical images of fluid flows during the processing of materials in space. The system's sophisticated optics consist of a laser to make holograms of samples and a video camera to record images of flows in and around samples. Thagard was joined by six fellow crewmembers for eight days of scientific research aboard Discovery in Earth-orbit. Most of their on-duty time was spent in this IML-1 science module, positioned in the cargo bay and attached via a tunnel to Discovery's airlock.

  15. 47 CFR 11.33 - EAS Decoder.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... time periods expire. (4) Display and logging. A visual message shall be developed from any valid header... input. (8) Decoder Programming. Access to decoder programming shall be protected by a lock or other...

  16. Sphingosine 1-Phosphate Receptor Modulators and Drug Discovery

    PubMed Central

    Park, Soo-Jin; Im, Dong-Soon

    2017-01-01

    Initial discovery on sphingosine 1-phosphate (S1P) as an intracellular second messenger was faced unexpectedly with roles of S1P as a first messenger, which subsequently resulted in cloning of its G protein-coupled receptors, S1P1–5. The molecular identification of S1P receptors opened up a new avenue for pathophysiological research on this lipid mediator. Cellular and molecular in vitro studies and in vivo studies on gene deficient mice have elucidated cellular signaling pathways and the pathophysiological meanings of S1P receptors. Another unexpected finding that fingolimod (FTY720) modulates S1P receptors accelerated drug discovery in this field. Fingolimod was approved as a first-in-class, orally active drug for relapsing multiple sclerosis in 2010, and its applications in other disease conditions are currently under clinical trials. In addition, more selective S1P receptor modulators with better pharmacokinetic profiles and fewer side effects are under development. Some of them are being clinically tested in the contexts of multiple sclerosis and other autoimmune and inflammatory disorders, such as, psoriasis, Crohn’s disease, ulcerative colitis, polymyositis, dermatomyositis, liver failure, renal failure, acute stroke, and transplant rejection. In this review, the authors discuss the state of the art regarding the status of drug discovery efforts targeting S1P receptors and place emphasis on potential clinical applications. PMID:28035084

  17. On the error probability of general tree and trellis codes with applications to sequential decoding

    NASA Technical Reports Server (NTRS)

    Johannesson, R.

    1973-01-01

    An upper bound on the average error probability for maximum-likelihood decoding of the ensemble of random binary tree codes is derived and shown to be independent of the length of the tree. An upper bound on the average error probability for maximum-likelihood decoding of the ensemble of random L-branch binary trellis codes of rate R = 1/n is derived which separates the effects of the tail length T and the memory length M of the code. It is shown that the bound is independent of the length L of the information sequence. This implication is investigated by computer simulations of sequential decoding utilizing the stack algorithm. These simulations confirm the implication and further suggest an empirical formula for the true undetected decoding error probability with sequential decoding.

  18. Obtaining Arbitrary Prescribed Mean Field Dynamics for Recurrently Coupled Networks of Type-I Spiking Neurons with Analytically Determined Weights

    PubMed Central

    Nicola, Wilten; Tripp, Bryan; Scott, Matthew

    2016-01-01

    A fundamental question in computational neuroscience is how to connect a network of spiking neurons to produce desired macroscopic or mean field dynamics. One possible approach is through the Neural Engineering Framework (NEF). The NEF approach requires quantities called decoders which are solved through an optimization problem requiring large matrix inversion. Here, we show how a decoder can be obtained analytically for type I and certain type II firing rates as a function of the heterogeneity of its associated neuron. These decoders generate approximants for functions that converge to the desired function in mean-squared error like 1/N, where N is the number of neurons in the network. We refer to these decoders as scale-invariant decoders due to their structure. These decoders generate weights for a network of neurons through the NEF formula for weights. These weights force the spiking network to have arbitrary and prescribed mean field dynamics. The weights generated with scale-invariant decoders all lie on low dimensional hypersurfaces asymptotically. We demonstrate the applicability of these scale-invariant decoders and weight surfaces by constructing networks of spiking theta neurons that replicate the dynamics of various well known dynamical systems such as the neural integrator, Van der Pol system and the Lorenz system. As these decoders are analytically determined and non-unique, the weights are also analytically determined and non-unique. We discuss the implications for measured weights of neuronal networks. PMID:26973503

  19. Obtaining Arbitrary Prescribed Mean Field Dynamics for Recurrently Coupled Networks of Type-I Spiking Neurons with Analytically Determined Weights.

    PubMed

    Nicola, Wilten; Tripp, Bryan; Scott, Matthew

    2016-01-01

    A fundamental question in computational neuroscience is how to connect a network of spiking neurons to produce desired macroscopic or mean field dynamics. One possible approach is through the Neural Engineering Framework (NEF). The NEF approach requires quantities called decoders which are solved through an optimization problem requiring large matrix inversion. Here, we show how a decoder can be obtained analytically for type I and certain type II firing rates as a function of the heterogeneity of its associated neuron. These decoders generate approximants for functions that converge to the desired function in mean-squared error like 1/N, where N is the number of neurons in the network. We refer to these decoders as scale-invariant decoders due to their structure. These decoders generate weights for a network of neurons through the NEF formula for weights. These weights force the spiking network to have arbitrary and prescribed mean field dynamics. The weights generated with scale-invariant decoders all lie on low dimensional hypersurfaces asymptotically. We demonstrate the applicability of these scale-invariant decoders and weight surfaces by constructing networks of spiking theta neurons that replicate the dynamics of various well known dynamical systems such as the neural integrator, Van der Pol system and the Lorenz system. As these decoders are analytically determined and non-unique, the weights are also analytically determined and non-unique. We discuss the implications for measured weights of neuronal networks.

  20. Hierarchical Neural Representation of Dreamed Objects Revealed by Brain Decoding with Deep Neural Network Features.

    PubMed

    Horikawa, Tomoyasu; Kamitani, Yukiyasu

    2017-01-01

    Dreaming is generally thought to be generated by spontaneous brain activity during sleep with patterns common to waking experience. This view is supported by a recent study demonstrating that dreamed objects can be predicted from brain activity during sleep using statistical decoders trained with stimulus-induced brain activity. However, it remains unclear whether and how visual image features associated with dreamed objects are represented in the brain. In this study, we used a deep neural network (DNN) model for object recognition as a proxy for hierarchical visual feature representation, and DNN features for dreamed objects were analyzed with brain decoding of fMRI data collected during dreaming. The decoders were first trained with stimulus-induced brain activity labeled with the feature values of the stimulus image from multiple DNN layers. The decoders were then used to decode DNN features from the dream fMRI data, and the decoded features were compared with the averaged features of each object category calculated from a large-scale image database. We found that the feature values decoded from the dream fMRI data positively correlated with those associated with dreamed object categories at mid- to high-level DNN layers. Using the decoded features, the dreamed object category could be identified at above-chance levels by matching them to the averaged features for candidate categories. The results suggest that dreaming recruits hierarchical visual feature representations associated with objects, which may support phenomenal aspects of dream experience.

  1. Visual coding with a population of direction-selective neurons.

    PubMed

    Fiscella, Michele; Franke, Felix; Farrow, Karl; Müller, Jan; Roska, Botond; da Silveira, Rava Azeredo; Hierlemann, Andreas

    2015-10-01

    The brain decodes the visual scene from the action potentials of ∼20 retinal ganglion cell types. Among the retinal ganglion cells, direction-selective ganglion cells (DSGCs) encode motion direction. Several studies have focused on the encoding or decoding of motion direction by recording multiunit activity, mainly in the visual cortex. In this study, we simultaneously recorded from all four types of ON-OFF DSGCs of the rabbit retina using a microelectronics-based high-density microelectrode array (HDMEA) and decoded their concerted activity using probabilistic and linear decoders. Furthermore, we investigated how the modification of stimulus parameters (velocity, size, angle of moving object) and the use of different tuning curve fits influenced decoding precision. Finally, we simulated ON-OFF DSGC activity, based on real data, in order to understand how tuning curve widths and the angular distribution of the cells' preferred directions influence decoding performance. We found that probabilistic decoding strategies outperformed, on average, linear methods and that decoding precision was robust to changes in stimulus parameters such as velocity. The removal of noise correlations among cells, by random shuffling trials, caused a drop in decoding precision. Moreover, we found that tuning curves are broad in order to minimize large errors at the expense of a higher average error, and that the retinal direction-selective system would not substantially benefit, on average, from having more than four types of ON-OFF DSGCs or from a perfect alignment of the cells' preferred directions. Copyright © 2015 the American Physiological Society.

  2. Visual coding with a population of direction-selective neurons

    PubMed Central

    Farrow, Karl; Müller, Jan; Roska, Botond; Azeredo da Silveira, Rava; Hierlemann, Andreas

    2015-01-01

    The brain decodes the visual scene from the action potentials of ∼20 retinal ganglion cell types. Among the retinal ganglion cells, direction-selective ganglion cells (DSGCs) encode motion direction. Several studies have focused on the encoding or decoding of motion direction by recording multiunit activity, mainly in the visual cortex. In this study, we simultaneously recorded from all four types of ON-OFF DSGCs of the rabbit retina using a microelectronics-based high-density microelectrode array (HDMEA) and decoded their concerted activity using probabilistic and linear decoders. Furthermore, we investigated how the modification of stimulus parameters (velocity, size, angle of moving object) and the use of different tuning curve fits influenced decoding precision. Finally, we simulated ON-OFF DSGC activity, based on real data, in order to understand how tuning curve widths and the angular distribution of the cells' preferred directions influence decoding performance. We found that probabilistic decoding strategies outperformed, on average, linear methods and that decoding precision was robust to changes in stimulus parameters such as velocity. The removal of noise correlations among cells, by random shuffling trials, caused a drop in decoding precision. Moreover, we found that tuning curves are broad in order to minimize large errors at the expense of a higher average error, and that the retinal direction-selective system would not substantially benefit, on average, from having more than four types of ON-OFF DSGCs or from a perfect alignment of the cells' preferred directions. PMID:26289471

  3. All-in-one visual and computer decoding of multiple secrets: translated-flip VC with polynomial-style sharing

    NASA Astrophysics Data System (ADS)

    Wu, Chia-Hua; Lee, Suiang-Shyan; Lin, Ja-Chen

    2017-06-01

    This all-in-one hiding method creates two transparencies that have several decoding options: visual decoding with or without translation flipping and computer decoding. In visual decoding, two less-important (or fake) binary secret images S1 and S2 can be revealed. S1 is viewed by the direct stacking of two transparencies. S2 is viewed by flipping one transparency and translating the other to a specified coordinate before stacking. Finally, important/true secret files can be decrypted by a computer using the information extracted from transparencies. The encoding process to hide this information includes the translated-flip visual cryptography, block types, the ways to use polynomial-style sharing, and linear congruential generator. If a thief obtained both transparencies, which are stored in distinct places, he still needs to find the values of keys used in computer decoding to break through after viewing S1 and/or S2 by stacking. However, the thief might just try every other kind of stacking and finally quit finding more secrets; for computer decoding is totally different from stacking decoding. Unlike traditional image hiding that uses images as host media, our method hides fine gray-level images in binary transparencies. Thus, our host media are transparencies. Comparisons and analysis are provided.

  4. Multiscale decoding for reliable brain-machine interface performance over time.

    PubMed

    Han-Lin Hsieh; Wong, Yan T; Pesaran, Bijan; Shanechi, Maryam M

    2017-07-01

    Recordings from invasive implants can degrade over time, resulting in a loss of spiking activity for some electrodes. For brain-machine interfaces (BMI), such a signal degradation lowers control performance. Achieving reliable performance over time is critical for BMI clinical viability. One approach to improve BMI longevity is to simultaneously use spikes and other recording modalities such as local field potentials (LFP), which are more robust to signal degradation over time. We have developed a multiscale decoder that can simultaneously model the different statistical profiles of multi-scale spike/LFP activity (discrete spikes vs. continuous LFP). This decoder can also run at multiple time-scales (millisecond for spikes vs. tens of milliseconds for LFP). Here, we validate the multiscale decoder for estimating the movement of 7 major upper-arm joint angles in a non-human primate (NHP) during a 3D reach-to-grasp task. The multiscale decoder uses motor cortical spike/LFP recordings as its input. We show that the multiscale decoder can improve decoding accuracy by adding information from LFP to spikes, while running at the fast millisecond time-scale of the spiking activity. Moreover, this improvement is achieved using relatively few LFP channels, demonstrating the robustness of the approach. These results suggest that using multiscale decoders has the potential to improve the reliability and longevity of BMIs.

  5. Decoding the Semantic Content of Natural Movies from Human Brain Activity

    PubMed Central

    Huth, Alexander G.; Lee, Tyler; Nishimoto, Shinji; Bilenko, Natalia Y.; Vu, An T.; Gallant, Jack L.

    2016-01-01

    One crucial test for any quantitative model of the brain is to show that the model can be used to accurately decode information from evoked brain activity. Several recent neuroimaging studies have decoded the structure or semantic content of static visual images from human brain activity. Here we present a decoding algorithm that makes it possible to decode detailed information about the object and action categories present in natural movies from human brain activity signals measured by functional MRI. Decoding is accomplished using a hierarchical logistic regression (HLR) model that is based on labels that were manually assigned from the WordNet semantic taxonomy. This model makes it possible to simultaneously decode information about both specific and general categories, while respecting the relationships between them. Our results show that we can decode the presence of many object and action categories from averaged blood-oxygen level-dependent (BOLD) responses with a high degree of accuracy (area under the ROC curve > 0.9). Furthermore, we used this framework to test whether semantic relationships defined in the WordNet taxonomy are represented the same way in the human brain. This analysis showed that hierarchical relationships between general categories and atypical examples, such as organism and plant, did not seem to be reflected in representations measured by BOLD fMRI. PMID:27781035

  6. On the decoding process in ternary error-correcting output codes.

    PubMed

    Escalera, Sergio; Pujol, Oriol; Radeva, Petia

    2010-01-01

    A common way to model multiclass classification problems is to design a set of binary classifiers and to combine them. Error-Correcting Output Codes (ECOC) represent a successful framework to deal with these type of problems. Recent works in the ECOC framework showed significant performance improvements by means of new problem-dependent designs based on the ternary ECOC framework. The ternary framework contains a larger set of binary problems because of the use of a "do not care" symbol that allows us to ignore some classes by a given classifier. However, there are no proper studies that analyze the effect of the new symbol at the decoding step. In this paper, we present a taxonomy that embeds all binary and ternary ECOC decoding strategies into four groups. We show that the zero symbol introduces two kinds of biases that require redefinition of the decoding design. A new type of decoding measure is proposed, and two novel decoding strategies are defined. We evaluate the state-of-the-art coding and decoding strategies over a set of UCI Machine Learning Repository data sets and into a real traffic sign categorization problem. The experimental results show that, following the new decoding strategies, the performance of the ECOC design is significantly improved.

  7. System for producing chroma signals

    NASA Technical Reports Server (NTRS)

    Vorhaben, K. H.; Lipoma, P. C. (Inventor)

    1977-01-01

    A method for obtaining electronic chroma signals with a single scanning-type image device is described. A color multiplexed light signal is produced using an arrangement of dichroic filter stripes. In the particular system described, a two layer filter is used to color modulate external light which is then detected by an image pickup tube. The resulting time division multiplexed electronic signal from the pickup tube is converted by a decoder into a green color signal, and a single red-blue multiplexed signal, which is demultiplexed to produce red and blue color signals. The three primary color signals can be encoded as standard NTSC color signals.

  8. Communication system analysis for manned space flight

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1977-01-01

    One- and two-dimensional adaptive delta modulator (ADM) algorithms are discussed and compared. Results are shown for bit rates of two bits/pixel, one bit/pixel and 0.5 bits/pixel. Pictures showing the difference between the encoded-decoded pictures and the original pictures are presented. The effect of channel errors on the reconstructed picture is illustrated. A two-dimensional ADM using interframe encoding is also presented. This system operates at the rate of two bits/pixel and produces excellent quality pictures when there is little motion. The effect of large amounts of motion on the reconstructed picture is described.

  9. Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution

    DOE PAGES

    Cai, Hong; Long, Christopher M.; DeRose, Christopher T.; ...

    2017-01-01

    We demonstrate a silicon photonic transceiver circuit for high-speed discrete variable quantum key distribution that employs a common structure for transmit and receive functions. The device is intended for use in polarization-based quantum cryptographic protocols, such as BB84. Our characterization indicates that the circuit can generate the four BB84 states (TE/TM/45°/135° linear polarizations) with >30 dB polarization extinction ratios and gigabit per second modulation speed, and is capable of decoding any polarization bases differing by 90° with high extinction ratios.

  10. Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution.

    PubMed

    Cai, Hong; Long, Christopher M; DeRose, Christopher T; Boynton, Nicholas; Urayama, Junji; Camacho, Ryan; Pomerene, Andrew; Starbuck, Andrew L; Trotter, Douglas C; Davids, Paul S; Lentine, Anthony L

    2017-05-29

    We demonstrate a silicon photonic transceiver circuit for high-speed discrete variable quantum key distribution that employs a common structure for transmit and receive functions. The device is intended for use in polarization-based quantum cryptographic protocols, such as BB84. Our characterization indicates that the circuit can generate the four BB84 states (TE/TM/45°/135° linear polarizations) with >30 dB polarization extinction ratios and gigabit per second modulation speed, and is capable of decoding any polarization bases differing by 90° with high extinction ratios.

  11. Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Hong; Long, Christopher M.; DeRose, Christopher T.

    We demonstrate a silicon photonic transceiver circuit for high-speed discrete variable quantum key distribution that employs a common structure for transmit and receive functions. The device is intended for use in polarization-based quantum cryptographic protocols, such as BB84. Our characterization indicates that the circuit can generate the four BB84 states (TE/TM/45°/135° linear polarizations) with >30 dB polarization extinction ratios and gigabit per second modulation speed, and is capable of decoding any polarization bases differing by 90° with high extinction ratios.

  12. A model for sequential decoding overflow due to a noisy carrier reference. [communication performance prediction

    NASA Technical Reports Server (NTRS)

    Layland, J. W.

    1974-01-01

    An approximate analysis of the effect of a noisy carrier reference on the performance of sequential decoding is presented. The analysis uses previously developed techniques for evaluating noisy reference performance for medium-rate uncoded communications adapted to sequential decoding for data rates of 8 to 2048 bits/s. In estimating the ten to the minus fourth power deletion probability thresholds for Helios, the model agrees with experimental data to within the experimental tolerances. The computational problem involved in sequential decoding, carrier loop effects, the main characteristics of the medium-rate model, modeled decoding performance, and perspectives on future work are discussed.

  13. The varieties of immunological experience: of pathogens, stress, and dendritic cells.

    PubMed

    Pulendran, Bali

    2015-01-01

    In the 40 years since their discovery, dendritic cells (DCs) have been recognized as central players in immune regulation. DCs sense microbial stimuli through pathogen-recognition receptors (PRRs) and decode, integrate, and present information derived from such stimuli to T cells, thus stimulating immune responses. DCs can also regulate the quality of immune responses. Several functionally specialized subsets of DCs exist, but DCs also display functional plasticity in response to diverse stimuli. In addition to sensing pathogens via PRRs, emerging evidence suggests that DCs can also sense stress signals, such as amino acid starvation, through ancient stress and nutrient sensing pathways, to stimulate adaptive immunity. Here, I discuss these exciting advances in the context of a historic perspective on the discovery of DCs and their role in immune regulation. I conclude with a discussion of emerging areas in DC biology in the systems immunology era and suggest that the impact of DCs on immunity can be usefully contextualized in a hierarchy-of-organization model in which DCs, their receptors and signaling networks, cell-cell interactions, tissue microenvironment, and the host macroenvironment represent different levels of the hierarchy. Immunity or tolerance can then be represented as a complex function of each of these hierarchies.

  14. Assessing Robustness Properties in Dynamic Discovery of Ad Hoc Network Services (Briefing Charts)

    DTIC Science & Technology

    2001-10-04

    JINI entities in directed -- discovery mode. It is part of the SCM_Discovery -- Module. Sends Unicast messages to SCMs on list of -- SCMS to be...discovered until all SCMS are found. -- Receives updates from SCM DB of discovered SCMs and -- removes SCMs accordingly -- NOTE: Failure and...For All (SM, SD, SCM ): (SM, SD) IsElementOf SCM registered-services (CC1) implies SCM IsElementOf SM discovered- SCMs For All

  15. Testing interconnected VLSI circuits in the Big Viterbi Decoder

    NASA Technical Reports Server (NTRS)

    Onyszchuk, I. M.

    1991-01-01

    The Big Viterbi Decoder (BVD) is a powerful error-correcting hardware device for the Deep Space Network (DSN), in support of the Galileo and Comet Rendezvous Asteroid Flyby (CRAF)/Cassini Missions. Recently, a prototype was completed and run successfully at 400,000 or more decoded bits per second. This prototype is a complex digital system whose core arithmetic unit consists of 256 identical very large scale integration (VLSI) gate-array chips, 16 on each of 16 identical boards which are connected through a 28-layer, printed-circuit backplane using 4416 wires. Special techniques were developed for debugging, testing, and locating faults inside individual chips, on boards, and within the entire decoder. The methods are based upon hierarchical structure in the decoder, and require that chips or boards be wired themselves as Viterbi decoders. The basic procedure consists of sending a small set of known, very noisy channel symbols through a decoder, and matching observables against values computed by a software simulation. Also, tests were devised for finding open and short-circuited wires which connect VLSI chips on the boards and through the backplane.

  16. State-space decoding of primary afferent neuron firing rates

    NASA Astrophysics Data System (ADS)

    Wagenaar, J. B.; Ventura, V.; Weber, D. J.

    2011-02-01

    Kinematic state feedback is important for neuroprostheses to generate stable and adaptive movements of an extremity. State information, represented in the firing rates of populations of primary afferent (PA) neurons, can be recorded at the level of the dorsal root ganglia (DRG). Previous work in cats showed the feasibility of using DRG recordings to predict the kinematic state of the hind limb using reverse regression. Although accurate decoding results were attained, reverse regression does not make efficient use of the information embedded in the firing rates of the neural population. In this paper, we present decoding results based on state-space modeling, and show that it is a more principled and more efficient method for decoding the firing rates in an ensemble of PA neurons. In particular, we show that we can extract confounded information from neurons that respond to multiple kinematic parameters, and that including velocity components in the firing rate models significantly increases the accuracy of the decoded trajectory. We show that, on average, state-space decoding is twice as efficient as reverse regression for decoding joint and endpoint kinematics.

  17. Utilizing sensory prediction errors for movement intention decoding: A new methodology

    PubMed Central

    Nakamura, Keigo; Ando, Hideyuki

    2018-01-01

    We propose a new methodology for decoding movement intentions of humans. This methodology is motivated by the well-documented ability of the brain to predict sensory outcomes of self-generated and imagined actions using so-called forward models. We propose to subliminally stimulate the sensory modality corresponding to a user’s intended movement, and decode a user’s movement intention from his electroencephalography (EEG), by decoding for prediction errors—whether the sensory prediction corresponding to a user’s intended movement matches the subliminal sensory stimulation we induce. We tested our proposal in a binary wheelchair turning task in which users thought of turning their wheelchair either left or right. We stimulated their vestibular system subliminally, toward either the left or the right direction, using a galvanic vestibular stimulator and show that the decoding for prediction errors from the EEG can radically improve movement intention decoding performance. We observed an 87.2% median single-trial decoding accuracy across tested participants, with zero user training, within 96 ms of the stimulation, and with no additional cognitive load on the users because the stimulation was subliminal. PMID:29750195

  18. Decoding the time-course of object recognition in the human brain: From visual features to categorical decisions.

    PubMed

    Contini, Erika W; Wardle, Susan G; Carlson, Thomas A

    2017-10-01

    Visual object recognition is a complex, dynamic process. Multivariate pattern analysis methods, such as decoding, have begun to reveal how the brain processes complex visual information. Recently, temporal decoding methods for EEG and MEG have offered the potential to evaluate the temporal dynamics of object recognition. Here we review the contribution of M/EEG time-series decoding methods to understanding visual object recognition in the human brain. Consistent with the current understanding of the visual processing hierarchy, low-level visual features dominate decodable object representations early in the time-course, with more abstract representations related to object category emerging later. A key finding is that the time-course of object processing is highly dynamic and rapidly evolving, with limited temporal generalisation of decodable information. Several studies have examined the emergence of object category structure, and we consider to what degree category decoding can be explained by sensitivity to low-level visual features. Finally, we evaluate recent work attempting to link human behaviour to the neural time-course of object processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Hoshide in sleeping bag in JEM module

    NASA Image and Video Library

    2008-06-09

    S124-E-007983 (9 June 2008) --- Japan Aerospace Exploration Agency astronaut Akihiko Hoshide, STS-124 mission specialist, is pictured in his sleeping bag in Kibo Japanese Pressurized Module of the International Space Station while Space Shuttle Discovery is docked with the station.

  20. Project COLD.

    ERIC Educational Resources Information Center

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  1. Nonlinear Demodulation and Channel Coding in EBPSK Scheme

    PubMed Central

    Chen, Xianqing; Wu, Lenan

    2012-01-01

    The extended binary phase shift keying (EBPSK) is an efficient modulation technique, and a special impacting filter (SIF) is used in its demodulator to improve the bit error rate (BER) performance. However, the conventional threshold decision cannot achieve the optimum performance, and the SIF brings more difficulty in obtaining the posterior probability for LDPC decoding. In this paper, we concentrate not only on reducing the BER of demodulation, but also on providing accurate posterior probability estimates (PPEs). A new approach for the nonlinear demodulation based on the support vector machine (SVM) classifier is introduced. The SVM method which selects only a few sampling points from the filter output was used for getting PPEs. The simulation results show that the accurate posterior probability can be obtained with this method and the BER performance can be improved significantly by applying LDPC codes. Moreover, we analyzed the effect of getting the posterior probability with different methods and different sampling rates. We show that there are more advantages of the SVM method under bad condition and it is less sensitive to the sampling rate than other methods. Thus, SVM is an effective method for EBPSK demodulation and getting posterior probability for LDPC decoding. PMID:23213281

  2. Multiple-input multiple-output visible light communication system based on disorder dispersion components

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Zhang, Qi; Hao, Yue; Zhou, Xin-hui; Yi, Ming-dong; Wei, Wei; Huang, Wei; Li, Xing-ao

    2017-10-01

    A multiple-input multiple-output visible light communication (VLC) system based on disorder dispersion components is presented. Instead of monochromatic sources and large size photodetectors used in the traditional VLC systems, broadband sources with different spectra act as the transmitters and a compact imaging chip sensor accompanied by a disorder dispersion component and a calculating component serve as the receivers in the proposed system. This system has the merits of small size, more channels, simple structure, easy integration, and low cost. Simultaneously, the broadband sources are suitable to act as illumination sources for their white color. A regularized procedure is designed to solve a matrix equation for decoding the signals at the receivers. A proof-of-concept experiment using on-off keying modulation has been done to prove the feasibility of the design. The experimental results show that the signals decoded by the receivers fit well with those generated from the transmitters, but the bit error ratio is increased with the number of the signal channels. The experimental results can be further improved using a high-speed charge-coupled device, decreasing noises, and increasing the distance between the transmitters and the receivers.

  3. Nonlinear demodulation and channel coding in EBPSK scheme.

    PubMed

    Chen, Xianqing; Wu, Lenan

    2012-01-01

    The extended binary phase shift keying (EBPSK) is an efficient modulation technique, and a special impacting filter (SIF) is used in its demodulator to improve the bit error rate (BER) performance. However, the conventional threshold decision cannot achieve the optimum performance, and the SIF brings more difficulty in obtaining the posterior probability for LDPC decoding. In this paper, we concentrate not only on reducing the BER of demodulation, but also on providing accurate posterior probability estimates (PPEs). A new approach for the nonlinear demodulation based on the support vector machine (SVM) classifier is introduced. The SVM method which selects only a few sampling points from the filter output was used for getting PPEs. The simulation results show that the accurate posterior probability can be obtained with this method and the BER performance can be improved significantly by applying LDPC codes. Moreover, we analyzed the effect of getting the posterior probability with different methods and different sampling rates. We show that there are more advantages of the SVM method under bad condition and it is less sensitive to the sampling rate than other methods. Thus, SVM is an effective method for EBPSK demodulation and getting posterior probability for LDPC decoding.

  4. Nonlinear detection for a high rate extended binary phase shift keying system.

    PubMed

    Chen, Xian-Qing; Wu, Le-Nan

    2013-03-28

    The algorithm and the results of a nonlinear detector using a machine learning technique called support vector machine (SVM) on an efficient modulation system with high data rate and low energy consumption is presented in this paper. Simulation results showed that the performance achieved by the SVM detector is comparable to that of a conventional threshold decision (TD) detector. The two detectors detect the received signals together with the special impacting filter (SIF) that can improve the energy utilization efficiency. However, unlike the TD detector, the SVM detector concentrates not only on reducing the BER of the detector, but also on providing accurate posterior probability estimates (PPEs), which can be used as soft-inputs of the LDPC decoder. The complexity of this detector is considered in this paper by using four features and simplifying the decision function. In addition, a bandwidth efficient transmission is analyzed with both SVM and TD detector. The SVM detector is more robust to sampling rate than TD detector. We find that the SVM is suitable for extended binary phase shift keying (EBPSK) signal detection and can provide accurate posterior probability for LDPC decoding.

  5. Nonlinear Detection for a High Rate Extended Binary Phase Shift Keying System

    PubMed Central

    Chen, Xian-Qing; Wu, Le-Nan

    2013-01-01

    The algorithm and the results of a nonlinear detector using a machine learning technique called support vector machine (SVM) on an efficient modulation system with high data rate and low energy consumption is presented in this paper. Simulation results showed that the performance achieved by the SVM detector is comparable to that of a conventional threshold decision (TD) detector. The two detectors detect the received signals together with the special impacting filter (SIF) that can improve the energy utilization efficiency. However, unlike the TD detector, the SVM detector concentrates not only on reducing the BER of the detector, but also on providing accurate posterior probability estimates (PPEs), which can be used as soft-inputs of the LDPC decoder. The complexity of this detector is considered in this paper by using four features and simplifying the decision function. In addition, a bandwidth efficient transmission is analyzed with both SVM and TD detector. The SVM detector is more robust to sampling rate than TD detector. We find that the SVM is suitable for extended binary phase shift keying (EBPSK) signal detection and can provide accurate posterior probability for LDPC decoding. PMID:23539034

  6. Experimental study of an optimized PSP-OSTBC scheme with m-PPM in ultraviolet scattering channel for optical MIMO system.

    PubMed

    Han, Dahai; Gu, Yanjie; Zhang, Min

    2017-08-10

    An optimized scheme of pulse symmetrical position-orthogonal space-time block codes (PSP-OSTBC) is proposed and applied with m-pulse positions modulation (m-PPM) without the use of a complex decoding algorithm in an optical multi-input multi-output (MIMO) ultraviolet (UV) communication system. The proposed scheme breaks through the limitation of the traditional Alamouti code and is suitable for high-order m-PPM in a UV scattering channel, verified by both simulation experiments and field tests with specific parameters. The performances of 1×1, 2×1, and 2×2 PSP-OSTBC systems with 4-PPM are compared experimentally as the optimal tradeoff between modification and coding in practical application. Meanwhile, the feasibility of the proposed scheme for 8-PPM is examined by a simulation experiment as well. The results suggest that the proposed scheme makes the system insensitive to the influence of path loss with a larger channel capacity, and a higher diversity gain and coding gain with a simple decoding algorithm will be achieved by employing the orthogonality of m-PPM in an optical-MIMO-based ultraviolet scattering channel.

  7. The development of and experiments on electromagnetic measurement while a drilling system is used for deep exploration

    NASA Astrophysics Data System (ADS)

    Lu, Chunhua; Jiang, Guosheng; Wang, Ziqi; Wang, Jiahao; Wang, Chenli

    2016-10-01

    An electromagnetic measurement while drilling system (EM-MWD) can transfer well track state parameters to the ground in real time, which makes it an indispensable technology for deep-hole drilling. This paper introduces the development of and experiments on an EM-MWD system used for deep exploration in the People’s Republic of China. The designed EM-MWD system is composed of a downhole instrument and a ground instrument, and we elaborate on the structural design of the downhole instrument, the design of the transmission and control circuits and the signal modulation. This work also covers the software and hardware design of the ground instrument and signal demodulation technologies. Finally, some indoor signal decoding experiments and some in-hole signal transmission experiments are performed. This study indicates that the designed EM-MWD system can measure information for downhole drilling parameters and send it to the ground effectively, while the ground receiver can decode the signal accurately and reliably, and the desired signal can be obtained. Furthermore, the strength of the received signal is not affected by the polar distance within a certain polar distance.

  8. STS-102 MPLM Leonardo is transferred from the PCR into Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - In the Payload Changeout Room, Launch Pad 39B, the Multi-Purpose Logistics Module Leonardo is ready to be transferred into Space Shuttle Discovery'''s payload bay. Discovery is scheduled to launch March 8 at 6:42 a.m. EST on mission STS-102, the eighth construction flight to the International Space Station. The primary delivery system used to resupply and return Station cargo requiring a pressurized environment, Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny.

  9. Decoding task-based attentional modulation during face categorization.

    PubMed

    Chiu, Yu-Chin; Esterman, Michael; Han, Yuefeng; Rosen, Heather; Yantis, Steven

    2011-05-01

    Attention is a neurocognitive mechanism that selects task-relevant sensory or mnemonic information to achieve current behavioral goals. Attentional modulation of cortical activity has been observed when attention is directed to specific locations, features, or objects. However, little is known about how high-level categorization task set modulates perceptual representations. In the current study, observers categorized faces by gender (male vs. female) or race (Asian vs. White). Each face was perceptually ambiguous in both dimensions, such that categorization of one dimension demanded selective attention to task-relevant information within the face. We used multivoxel pattern classification to show that task-specific modulations evoke reliably distinct spatial patterns of activity within three face-selective cortical regions (right fusiform face area and bilateral occipital face areas). This result suggests that patterns of activity in these regions reflect not only stimulus-specific (i.e., faces vs. houses) responses but also task-specific (i.e., race vs. gender) attentional modulation. Furthermore, exploratory whole-brain multivoxel pattern classification (using a searchlight procedure) revealed a network of dorsal fronto-parietal regions (left middle frontal gyrus and left inferior and superior parietal lobule) that also exhibit distinct patterns for the two task sets, suggesting that these regions may represent abstract goals during high-level categorization tasks.

  10. Algorithms for high-speed universal noiseless coding

    NASA Technical Reports Server (NTRS)

    Rice, Robert F.; Yeh, Pen-Shu; Miller, Warner

    1993-01-01

    This paper provides the basic algorithmic definitions and performance characterizations for a high-performance adaptive noiseless (lossless) 'coding module' which is currently under separate developments as single-chip microelectronic circuits at two NASA centers. Laboratory tests of one of these implementations recently demonstrated coding rates of up to 900 Mbits/s. Operation of a companion 'decoding module' can operate at up to half the coder's rate. The functionality provided by these modules should be applicable to most of NASA's science data. The hardware modules incorporate a powerful adaptive noiseless coder for 'standard form' data sources (i.e., sources whose symbols can be represented by uncorrelated nonnegative integers where the smaller integers are more likely than the larger ones). Performance close to data entries can be expected over a 'dynamic range' of from 1.5 to 12-15 bits/sample (depending on the implementation). This is accomplished by adaptively choosing the best of many Huffman equivalent codes to use on each block of 1-16 samples. Because of the extreme simplicity of these codes no table lookups are actually required in an implementation, thus leading to the expected very high data rate capabilities already noted.

  11. Exploring Differential Effects across Two Decoding Treatments on Item-Level Transfer in Children with Significant Word Reading Difficulties: A New Approach for Testing Intervention Elements

    ERIC Educational Resources Information Center

    Steacy, Laura M.; Elleman, Amy M.; Lovett, Maureen W.; Compton, Donald L.

    2016-01-01

    In English, gains in decoding skill do not map directly onto increases in word reading. However, beyond the Self-Teaching Hypothesis, little is known about the transfer of decoding skills to word reading. In this study, we offer a new approach to testing specific decoding elements on transfer to word reading. To illustrate, we modeled word-reading…

  12. Comparison of memory thresholds for planar qudit geometries

    NASA Astrophysics Data System (ADS)

    Marks, Jacob; Jochym-O'Connor, Tomas; Gheorghiu, Vlad

    2017-11-01

    We introduce and analyze a new type of decoding algorithm called general color clustering, based on renormalization group methods, to be used in qudit color codes. The performance of this decoder is analyzed under a generalized bit-flip error model, and is used to obtain the first memory threshold estimates for qudit 6-6-6 color codes. The proposed decoder is compared with similar decoding schemes for qudit surface codes as well as the current leading qubit decoders for both sets of codes. We find that, as with surface codes, clustering performs sub-optimally for qubit color codes, giving a threshold of 5.6 % compared to the 8.0 % obtained through surface projection decoding methods. However, the threshold rate increases by up to 112% for large qudit dimensions, plateauing around 11.9 % . All the analysis is performed using QTop, a new open-source software for simulating and visualizing topological quantum error correcting codes.

  13. A high data rate universal lattice decoder on FPGA

    NASA Astrophysics Data System (ADS)

    Ma, Jing; Huang, Xinming; Kura, Swapna

    2005-06-01

    This paper presents the architecture design of a high data rate universal lattice decoder for MIMO channels on FPGA platform. A phost strategy based lattice decoding algorithm is modified in this paper to reduce the complexity of the closest lattice point search. The data dependency of the improved algorithm is examined and a parallel and pipeline architecture is developed with the iterative decoding function on FPGA and the division intensive channel matrix preprocessing on DSP. Simulation results demonstrate that the improved lattice decoding algorithm provides better bit error rate and less iteration number compared with the original algorithm. The system prototype of the decoder shows that it supports data rate up to 7Mbit/s on a Virtex2-1000 FPGA, which is about 8 times faster than the original algorithm on FPGA platform and two-orders of magnitude better than its implementation on a DSP platform.

  14. Non-tables look-up search algorithm for efficient H.264/AVC context-based adaptive variable length coding decoding

    NASA Astrophysics Data System (ADS)

    Han, Yishi; Luo, Zhixiao; Wang, Jianhua; Min, Zhixuan; Qin, Xinyu; Sun, Yunlong

    2014-09-01

    In general, context-based adaptive variable length coding (CAVLC) decoding in H.264/AVC standard requires frequent access to the unstructured variable length coding tables (VLCTs) and significant memory accesses are consumed. Heavy memory accesses will cause high power consumption and time delays, which are serious problems for applications in portable multimedia devices. We propose a method for high-efficiency CAVLC decoding by using a program instead of all the VLCTs. The decoded codeword from VLCTs can be obtained without any table look-up and memory access. The experimental results show that the proposed algorithm achieves 100% memory access saving and 40% decoding time saving without degrading video quality. Additionally, the proposed algorithm shows a better performance compared with conventional CAVLC decoding, such as table look-up by sequential search, table look-up by binary search, Moon's method, and Kim's method.

  15. Error-correction coding for digital communications

    NASA Astrophysics Data System (ADS)

    Clark, G. C., Jr.; Cain, J. B.

    This book is written for the design engineer who must build the coding and decoding equipment and for the communication system engineer who must incorporate this equipment into a system. It is also suitable as a senior-level or first-year graduate text for an introductory one-semester course in coding theory. Fundamental concepts of coding are discussed along with group codes, taking into account basic principles, practical constraints, performance computations, coding bounds, generalized parity check codes, polynomial codes, and important classes of group codes. Other topics explored are related to simple nonalgebraic decoding techniques for group codes, soft decision decoding of block codes, algebraic techniques for multiple error correction, the convolutional code structure and Viterbi decoding, syndrome decoding techniques, and sequential decoding techniques. System applications are also considered, giving attention to concatenated codes, coding for the white Gaussian noise channel, interleaver structures for coded systems, and coding for burst noise channels.

  16. Global Landscape of a Co-Expressed Gene Network in Barley and its Application to Gene Discovery in Triticeae Crops

    PubMed Central

    Mochida, Keiichi; Uehara-Yamaguchi, Yukiko; Yoshida, Takuhiro; Sakurai, Tetsuya; Shinozaki, Kazuo

    2011-01-01

    Accumulated transcriptome data can be used to investigate regulatory networks of genes involved in various biological systems. Co-expression analysis data sets generated from comprehensively collected transcriptome data sets now represent efficient resources that are capable of facilitating the discovery of genes with closely correlated expression patterns. In order to construct a co-expression network for barley, we analyzed 45 publicly available experimental series, which are composed of 1,347 sets of GeneChip data for barley. On the basis of a gene-to-gene weighted correlation coefficient, we constructed a global barley co-expression network and classified it into clusters of subnetwork modules. The resulting clusters are candidates for functional regulatory modules in the barley transcriptome. To annotate each of the modules, we performed comparative annotation using genes in Arabidopsis and Brachypodium distachyon. On the basis of a comparative analysis between barley and two model species, we investigated functional properties from the representative distributions of the gene ontology (GO) terms. Modules putatively involved in drought stress response and cellulose biogenesis have been identified. These modules are discussed to demonstrate the effectiveness of the co-expression analysis. Furthermore, we applied the data set of co-expressed genes coupled with comparative analysis in attempts to discover potentially Triticeae-specific network modules. These results demonstrate that analysis of the co-expression network of the barley transcriptome together with comparative analysis should promote the process of gene discovery in barley. Furthermore, the insights obtained should be transferable to investigations of Triticeae plants. The associated data set generated in this analysis is publicly accessible at http://coexpression.psc.riken.jp/barley/. PMID:21441235

  17. Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity.

    PubMed

    Zanos, Theodoros P; Silverman, Harold A; Levy, Todd; Tsaava, Tea; Battinelli, Emily; Lorraine, Peter W; Ashe, Jeffrey M; Chavan, Sangeeta S; Tracey, Kevin J; Bouton, Chad E

    2018-05-22

    The nervous system maintains physiological homeostasis through reflex pathways that modulate organ function. This process begins when changes in the internal milieu (e.g., blood pressure, temperature, or pH) activate visceral sensory neurons that transmit action potentials along the vagus nerve to the brainstem. IL-1β and TNF, inflammatory cytokines produced by immune cells during infection and injury, and other inflammatory mediators have been implicated in activating sensory action potentials in the vagus nerve. However, it remains unclear whether neural responses encode cytokine-specific information. Here we develop methods to isolate and decode specific neural signals to discriminate between two different cytokines. Nerve impulses recorded from the vagus nerve of mice exposed to IL-1β and TNF were sorted into groups based on their shape and amplitude, and their respective firing rates were computed. This revealed sensory neural groups responding specifically to TNF and IL-1β in a dose-dependent manner. These cytokine-mediated responses were subsequently decoded using a Naive Bayes algorithm that discriminated between no exposure and exposures to IL-1β and TNF (mean successful identification rate 82.9 ± 17.8%, chance level 33%). Recordings obtained in IL-1 receptor-KO mice were devoid of IL-1β-related signals but retained their responses to TNF. Genetic ablation of TRPV1 neurons attenuated the vagus neural signals mediated by IL-1β, and distal lidocaine nerve block attenuated all vagus neural signals recorded. The results obtained in this study using the methodological framework suggest that cytokine-specific information is present in sensory neural signals within the vagus nerve. Copyright © 2018 the Author(s). Published by PNAS.

  18. Factors that affect error potentials during a grasping task: toward a hybrid natural movement decoding BCI.

    PubMed

    Omedes, Jason; Schwarz, Andreas; Müller-Putz, Gernot R; Montesano, Luis

    2018-05-01

    This paper presents a hybrid BCI combining neural correlates of natural movements and interaction error-related potentials (ErrP) to perform a 3D reaching task. It focuses on the impact that design factors of such a hybrid BCI have on the ErrP signatures and in their classification. Approach. Users attempted to control a 3D virtual interface that simulated their own hand, to reach and grasp two different objects. Three factors of interest were modulated during the experimentation: (1) execution speed of the grasping, (2) type of grasping and (3) motor commands generated by motor imagery or real motion. Thirteen healthy subjects carried out the protocol. The peaks and latencies of the ErrP were analyzed for the different factors as well as the classification performance. Main results. ErrP are evoked for erroneous commands decoded from neural correlates of natural movements. The ANOVA analyses revealed that latency and magnitude of the most characteristic ErrP peaks were significantly influenced by the speed at which the grasping was executed, but not the type of grasp. This resulted in an greater accuracy of single-trial decoding of errors for fast movements (75.65%) compared to slow ones (68.99%). Significance. Invariance of ErrP to different type of grasping movements and mental strategies proves this type of hybrid interface to be useful for the design of out of the lab applications such as the operation/control of prosthesis. Factors such as the speed of the movements have to be carefully tuned in order to optimize the performance of the system. . © 2018 IOP Publishing Ltd.

  19. A systematic approach to selecting task relevant neurons.

    PubMed

    Kahn, Kevin; Saxena, Shreya; Eskandar, Emad; Thakor, Nitish; Schieber, Marc; Gale, John T; Averbeck, Bruno; Eden, Uri; Sarma, Sridevi V

    2015-04-30

    Since task related neurons cannot be specifically targeted during surgery, a critical decision to make is to select which neurons are task-related when performing data analysis. Including neurons unrelated to the task degrade decoding accuracy and confound neurophysiological results. Traditionally, task-related neurons are selected as those with significant changes in firing rate when a stimulus is applied. However, this assumes that neurons' encoding of stimuli are dominated by their firing rate with little regard to temporal dynamics. This paper proposes a systematic approach for neuron selection, which uses a likelihood ratio test to capture the contribution of stimulus to spiking activity while taking into account task-irrelevant intrinsic dynamics that affect firing rates. This approach is denoted as the model deterioration excluding stimulus (MDES) test. MDES is compared to firing rate selection in four case studies: a simulation, a decoding example, and two neurophysiology examples. The MDES rankings in the simulation match closely with ideal rankings, while firing rate rankings are skewed by task-irrelevant parameters. For decoding, 95% accuracy is achieved using the top 8 MDES-ranked neurons, while the top 12 firing-rate ranked neurons are needed. In the neurophysiological examples, MDES matches published results when firing rates do encode salient stimulus information, and uncovers oscillatory modulations in task-related neurons that are not captured when neurons are selected using firing rates. These case studies illustrate the importance of accounting for intrinsic dynamics when selecting task-related neurons and following the MDES approach accomplishes that. MDES selects neurons that encode task-related information irrespective of these intrinsic dynamics which can bias firing rate based selection. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Body language in the brain: constructing meaning from expressive movement.

    PubMed

    Tipper, Christine M; Signorini, Giulia; Grafton, Scott T

    2015-01-01

    This fMRI study investigated neural systems that interpret body language-the meaningful emotive expressions conveyed by body movement. Participants watched videos of performers engaged in modern dance or pantomime that conveyed specific themes such as hope, agony, lust, or exhaustion. We tested whether the meaning of an affectively laden performance was decoded in localized brain substrates as a distinct property of action separable from other superficial features, such as choreography, kinematics, performer, and low-level visual stimuli. A repetition suppression (RS) procedure was used to identify brain regions that decoded the meaningful affective state of a performer, as evidenced by decreased activity when emotive themes were repeated in successive performances. Because the theme was the only feature repeated across video clips that were otherwise entirely different, the occurrence of RS identified brain substrates that differentially coded the specific meaning of expressive performances. RS was observed bilaterally, extending anteriorly along middle and superior temporal gyri into temporal pole, medially into insula, rostrally into inferior orbitofrontal cortex, and caudally into hippocampus and amygdala. Behavioral data on a separate task indicated that interpreting themes from modern dance was more difficult than interpreting pantomime; a result that was also reflected in the fMRI data. There was greater RS in left hemisphere, suggesting that the more abstract metaphors used to express themes in dance compared to pantomime posed a greater challenge to brain substrates directly involved in decoding those themes. We propose that the meaning-sensitive temporal-orbitofrontal regions observed here comprise a superordinate functional module of a known hierarchical action observation network (AON), which is critical to the construction of meaning from expressive movement. The findings are discussed with respect to a predictive coding model of action understanding.

  1. Detecting and interpreting conscious experiences in behaviorally non-responsive patients.

    PubMed

    Naci, Lorina; Sinai, Leah; Owen, Adrian M

    2017-01-15

    Decoding the contents of consciousness from brain activity is one of the most challenging frontiers of cognitive neuroscience. The ability to interpret mental content without recourse to behavior is most relevant for understanding patients who may be demonstrably conscious, but entirely unable to speak or move willfully in any way, precluding any systematic investigation of their conscious experience. The lack of consistent behavioral responsivity engenders unique challenges to decoding any conscious experiences these patients may have solely based on their brain activity. For this reason, paradigms that have been successful in healthy individuals cannot serve to interpret conscious mental states in this patient group. Until recently, patient studies have used structured instructions to elicit willful modulation of brain activity according to command, in order to decode the presence of willful brain-based responses in this patient group. In recent work, we have used naturalistic paradigms, such as watching a movie or listening to an audio-story, to demonstrate that a common neural code supports conscious experiences in different individuals. Moreover, we have demonstrated that this code can be used to interpret the conscious experiences of a patient who had remained non-responsive for several years. This approach is easy to administer, brief, and does not require compliance with task instructions. Rather, it engages attention naturally through meaningful stimuli that are similar to the real-world sensory information in a patient's environment. Therefore, it may be particularly suited to probing consciousness and revealing residual brain function in highly impaired, acute, patients in a comatose state, thus helping to improve diagnostication and prognostication for this vulnerable patient group from the critical early stages of severe brain-injury. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Soft-Decision Decoding of Binary Linear Block Codes Based on an Iterative Search Algorithm

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao; Moorthy, H. T.

    1997-01-01

    This correspondence presents a suboptimum soft-decision decoding scheme for binary linear block codes based on an iterative search algorithm. The scheme uses an algebraic decoder to iteratively generate a sequence of candidate codewords one at a time using a set of test error patterns that are constructed based on the reliability information of the received symbols. When a candidate codeword is generated, it is tested based on an optimality condition. If it satisfies the optimality condition, then it is the most likely (ML) codeword and the decoding stops. If it fails the optimality test, a search for the ML codeword is conducted in a region which contains the ML codeword. The search region is determined by the current candidate codeword and the reliability of the received symbols. The search is conducted through a purged trellis diagram for the given code using the Viterbi algorithm. If the search fails to find the ML codeword, a new candidate is generated using a new test error pattern, and the optimality test and search are renewed. The process of testing and search continues until either the MEL codeword is found or all the test error patterns are exhausted and the decoding process is terminated. Numerical results show that the proposed decoding scheme achieves either practically optimal performance or a performance only a fraction of a decibel away from the optimal maximum-likelihood decoding with a significant reduction in decoding complexity compared with the Viterbi decoding based on the full trellis diagram of the codes.

  3. From classic motor imagery to complex movement intention decoding: The noninvasive Graz-BCI approach.

    PubMed

    Müller-Putz, G R; Schwarz, A; Pereira, J; Ofner, P

    2016-01-01

    In this chapter, we give an overview of the Graz-BCI research, from the classic motor imagery detection to complex movement intentions decoding. We start by describing the classic motor imagery approach, its application in tetraplegic end users, and the significant improvements achieved using coadaptive brain-computer interfaces (BCIs). These strategies have the drawback of not mirroring the way one plans a movement. To achieve a more natural control-and to reduce the training time-the movements decoded by the BCI need to be closely related to the user's intention. Within this natural control, we focus on the kinematic level, where movement direction and hand position or velocity can be decoded from noninvasive recordings. First, we review movement execution decoding studies, where we describe the decoding algorithms, their performance, and associated features. Second, we describe the major findings in movement imagination decoding, where we emphasize the importance of estimating the sources of the discriminative features. Third, we introduce movement target decoding, which could allow the determination of the target without knowing the exact movement-by-movement details. Aside from the kinematic level, we also address the goal level, which contains relevant information on the upcoming action. Focusing on hand-object interaction and action context dependency, we discuss the possible impact of some recent neurophysiological findings in the future of BCI control. Ideally, the goal and the kinematic decoding would allow an appropriate matching of the BCI to the end users' needs, overcoming the limitations of the classic motor imagery approach. © 2016 Elsevier B.V. All rights reserved.

  4. STS-96 FD Highlights and Crew Activities Report: Flight Day 06

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On this sixth day of the STS-96 Discovery mission, the flight crew, Commander Kent V. Rominger, Pilot Rick D. Husband, and Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette, and Valery Ivanovich Tokarev are seen performing logistics transfer activities within the Discovery/International Space Station orbiting complex. Ochoa, Jernigan, Husband and Barry devote a significant part of their day to the transfer of bags of different sizes and shapes from the SPACEHAB module in Discovery's cargo bay to resting places inside the International Space Station. Payette and Tokarev complete the maintenance on the storage batteries. Barry and Tokarev complete installation of the remaining sound mufflers over the fans in Zarya. Barry then measures the sound levels at different positions inside the module. Rominger and Tokarev conduct a news conference with Russian reporters from the Mission Control Center in Moscow.

  5. Multiformat decoder for a DSP-based IP set-top box

    NASA Astrophysics Data System (ADS)

    Pescador, F.; Garrido, M. J.; Sanz, C.; Juárez, E.; Samper, D.; Antoniello, R.

    2007-05-01

    Internet Protocol Set-Top Boxes (IP STBs) based on single-processor architectures have been recently introduced in the market. In this paper, the implementation of an MPEG-4 SP/ASP video decoder for a multi-format IP STB based on a TMS320DM641 DSP is presented. An initial decoder for PC platform was fully tested and ported to the DSP. Using this code an optimization process was started achieving a 90% speedup. This process allows real-time MPEG-4 SP/ASP decoding. The MPEG-4 decoder has been integrated in an IP STB and tested in a real environment using DVD movies and TV channels with excellent results.

  6. HEVC real-time decoding

    NASA Astrophysics Data System (ADS)

    Bross, Benjamin; Alvarez-Mesa, Mauricio; George, Valeri; Chi, Chi Ching; Mayer, Tobias; Juurlink, Ben; Schierl, Thomas

    2013-09-01

    The new High Efficiency Video Coding Standard (HEVC) was finalized in January 2013. Compared to its predecessor H.264 / MPEG4-AVC, this new international standard is able to reduce the bitrate by 50% for the same subjective video quality. This paper investigates decoder optimizations that are needed to achieve HEVC real-time software decoding on a mobile processor. It is shown that HEVC real-time decoding up to high definition video is feasible using instruction extensions of the processor while decoding 4K ultra high definition video in real-time requires additional parallel processing. For parallel processing, a picture-level parallel approach has been chosen because it is generic and does not require bitstreams with special indication.

  7. Approximate maximum likelihood decoding of block codes

    NASA Technical Reports Server (NTRS)

    Greenberger, H. J.

    1979-01-01

    Approximate maximum likelihood decoding algorithms, based upon selecting a small set of candidate code words with the aid of the estimated probability of error of each received symbol, can give performance close to optimum with a reasonable amount of computation. By combining the best features of various algorithms and taking care to perform each step as efficiently as possible, a decoding scheme was developed which can decode codes which have better performance than those presently in use and yet not require an unreasonable amount of computation. The discussion of the details and tradeoffs of presently known efficient optimum and near optimum decoding algorithms leads, naturally, to the one which embodies the best features of all of them.

  8. Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65

    PubMed Central

    Huang, Xi-Ping; Karpiak, Joel; Kroeze, Wesley K.; Zhu, Hu; Chen, Xin; Moy, Sheryl S.; Saddoris, Kara A.; Nikolova, Viktoriya; Farrell, Martilias S.; Wang, Sheng; Mangano, Thomas J.; Deshpande, Deepak A.; Jiang, Alice; Penn, Raymond B.; Jin, Jian; Koller, Beverly H.; Kenakin, Terry; Shoichet, Brian K.; Roth, Bryan L.

    2016-01-01

    At least 120 non-olfactory G protein-coupled receptors in the human genome are ”orphans” for which endogenous ligands are unknown, and many have no selective ligands, hindering elucidation of their biological functions and clinical relevance. Among these is GPR68, a proton receptor that lacks small molecule modulators for probing its biology. Yeast-based screens against GPR68 identified the benzodiazepine drug lorazepam as a non-selective GPR68 positive allosteric modulator. Over 3000 GPR68 homology models were refined to recognize lorazepam in a putative allosteric site. Docking 3.1 million molecules predicted new GPR68 modulators many of which were confirmed in functional assays. One potent GPR68 modulator—ogerin– suppressed recall in fear conditioning in wild-type, but not in GPR68 knockout mice. The same approach led to the discovery of allosteric agonists and negative allosteric modulators for GPR65. Combining physical and structure-based screening may be broadly useful for ligand discovery for understudied and orphan GPCRs. PMID:26550826

  9. KSC-08pd1462

    NASA Image and Video Library

    2008-05-29

    CAPE CANAVERAL, Fla. -- At Launch Pad 39A at Kennedy Space Center, replacement parts for the Zvezda service module toilet on the International Space Station are loaded aboard space shuttle Discovery. The toilet malfunctioned last week and was initially repaired by replacing a microprocessor valve. After the station crew members experienced additional difficulties with the toilet, they were directed to use Soyuz toilet facilities at first and are using the main toilet again after rigging a urine bypass. The spare toilet parts have been added to Discovery’s manifest for delivery to the station on the STS-124 mission. On the 14-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is scheduled for 5:02 p.m. EDT May 31. Photo credit: NASA/Dimitri Gerondidakis

  10. KSC-08pd1464

    NASA Image and Video Library

    2008-05-29

    CAPE CANAVERAL, Fla. -- At Launch Pad 39A at Kennedy Space Center, technicians load replacement parts for the Zvezda service module toilet on the International Space Station aboard space shuttle Discovery. The toilet malfunctioned last week and was initially repaired by replacing a microprocessor valve. After the station crew members experienced additional difficulties with the toilet, they were directed to use Soyuz toilet facilities at first and are using the main toilet again after rigging a urine bypass. The spare toilet parts have been added to Discovery’s manifest for delivery to the station on the STS-124 mission. On the 14-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is scheduled for 5:02 p.m. EDT May 31. Photo credit: NASA/Dimitri Gerondidakis

  11. KSC-08pd1463

    NASA Image and Video Library

    2008-05-29

    CAPE CANAVERAL, Fla. -- At Launch Pad 39A at Kennedy Space Center, technicians load replacement parts for the Zvezda service module toilet on the International Space Station aboard space shuttle Discovery. The toilet malfunctioned last week and was initially repaired by replacing a microprocessor valve. After the station crew members experienced additional difficulties with the toilet, they were directed to use Soyuz toilet facilities at first and are using the main toilet again after rigging a urine bypass. The spare toilet parts have been added to Discovery’s manifest for delivery to the station on the STS-124 mission. On the 14-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is scheduled for 5:02 p.m. EDT May 31. Photo credit: NASA/Dimitri Gerondidakis

  12. KSC-08pd1465

    NASA Image and Video Library

    2008-05-29

    CAPE CANAVERAL, Fla. -- At Launch Pad 39A at Kennedy Space Center, a technician loads replacement parts for the Zvezda service module toilet on the International Space Station aboard space shuttle Discovery. The toilet malfunctioned last week and was initially repaired by replacing a microprocessor valve. After the station crew members experienced additional difficulties with the toilet, they were directed to use Soyuz toilet facilities at first and are using the main toilet again after rigging a urine bypass. The spare toilet parts have been added to Discovery’s manifest for delivery to the station on the STS-124 mission. On the 14-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is scheduled for 5:02 p.m. EDT May 31. Photo credit: NASA/Dimitri Gerondidakis

  13. Identifying candidate driver genes by integrative ovarian cancer genomics data

    NASA Astrophysics Data System (ADS)

    Lu, Xinguo; Lu, Jibo

    2017-08-01

    Integrative analysis of molecular mechanics underlying cancer can distinguish interactions that cannot be revealed based on one kind of data for the appropriate diagnosis and treatment of cancer patients. Tumor samples exhibit heterogeneity in omics data, such as somatic mutations, Copy Number Variations CNVs), gene expression profiles and so on. In this paper we combined gene co-expression modules and mutation modulators separately in tumor patients to obtain the candidate driver genes for resistant and sensitive tumor from the heterogeneous data. The final list of modulators identified are well known in biological processes associated with ovarian cancer, such as CCL17, CACTIN, CCL16, CCL22, APOB, KDF1, CCL11, HNF1B, LRG1, MED1 and so on, which can help to facilitate the discovery of biomarkers, molecular diagnostics, and drug discovery.

  14. Miniaturization of flight deflection measurement system

    NASA Technical Reports Server (NTRS)

    Fodale, Robert (Inventor); Hampton, Herbert R. (Inventor)

    1990-01-01

    A flight deflection measurement system is disclosed including a hybrid microchip of a receiver/decoder. The hybrid microchip decoder is mounted piggy back on the miniaturized receiver and forms an integral unit therewith. The flight deflection measurement system employing the miniaturized receiver/decoder can be used in a wind tunnel. In particular, the miniaturized receiver/decoder can be employed in a spin measurement system due to its small size and can retain already established control surface actuation functions.

  15. Fast and Flexible Successive-Cancellation List Decoders for Polar Codes

    NASA Astrophysics Data System (ADS)

    Hashemi, Seyyed Ali; Condo, Carlo; Gross, Warren J.

    2017-11-01

    Polar codes have gained significant amount of attention during the past few years and have been selected as a coding scheme for the next generation of mobile broadband standard. Among decoding schemes, successive-cancellation list (SCL) decoding provides a reasonable trade-off between the error-correction performance and hardware implementation complexity when used to decode polar codes, at the cost of limited throughput. The simplified SCL (SSCL) and its extension SSCL-SPC increase the speed of decoding by removing redundant calculations when encountering particular information and frozen bit patterns (rate one and single parity check codes), while keeping the error-correction performance unaltered. In this paper, we improve SSCL and SSCL-SPC by proving that the list size imposes a specific number of bit estimations required to decode rate one and single parity check codes. Thus, the number of estimations can be limited while guaranteeing exactly the same error-correction performance as if all bits of the code were estimated. We call the new decoding algorithms Fast-SSCL and Fast-SSCL-SPC. Moreover, we show that the number of bit estimations in a practical application can be tuned to achieve desirable speed, while keeping the error-correction performance almost unchanged. Hardware architectures implementing both algorithms are then described and implemented: it is shown that our design can achieve 1.86 Gb/s throughput, higher than the best state-of-the-art decoders.

  16. Security-enhanced chaos communication with time-delay signature suppression and phase encryption.

    PubMed

    Xue, Chenpeng; Jiang, Ning; Lv, Yunxin; Wang, Chao; Li, Guilan; Lin, Shuqing; Qiu, Kun

    2016-08-15

    A security-enhanced chaos communication scheme with time delay signature (TDS) suppression and phase-encrypted feedback light is proposed, in virtue of dual-loop feedback with independent high-speed phase modulation. We numerically investigate the property of TDS suppression in the intensity and phase space and quantitatively discuss security of the proposed system by calculating the bit error rate of eavesdroppers who try to crack the system by directly filtering the detected signal or by using a similar semiconductor laser to synchronize the link signal and extract the data. The results show that TDS embedded in the chaotic carrier can be well suppressed by properly setting the modulation frequency, which can keep the time delay a secret from the eavesdropper. Moreover, because the feedback light is encrypted, without the accurate time delay and key, the eavesdropper cannot reconstruct the symmetric operation conditions and decode the correct data.

  17. Human motor cortical activity recorded with Micro-ECoG electrodes, during individual finger movements.

    PubMed

    Wang, W; Degenhart, A D; Collinger, J L; Vinjamuri, R; Sudre, G P; Adelson, P D; Holder, D L; Leuthardt, E C; Moran, D W; Boninger, M L; Schwartz, A B; Crammond, D J; Tyler-Kabara, E C; Weber, D J

    2009-01-01

    In this study human motor cortical activity was recorded with a customized micro-ECoG grid during individual finger movements. The quality of the recorded neural signals was characterized in the frequency domain from three different perspectives: (1) coherence between neural signals recorded from different electrodes, (2) modulation of neural signals by finger movement, and (3) accuracy of finger movement decoding. It was found that, for the high frequency band (60-120 Hz), coherence between neighboring micro-ECoG electrodes was 0.3. In addition, the high frequency band showed significant modulation by finger movement both temporally and spatially, and a classification accuracy of 73% (chance level: 20%) was achieved for individual finger movement using neural signals recorded from the micro-ECoG grid. These results suggest that the micro-ECoG grid presented here offers sufficient spatial and temporal resolution for the development of minimally-invasive brain-computer interface applications.

  18. On-target diagnosing of few-cycle pulses by high-order-harmonic generation

    NASA Astrophysics Data System (ADS)

    Brambila, Danilo S.; Husakou, Anton; Ivanov, Misha; Zhavoronkov, Nickolai

    2017-12-01

    We propose an approach to determine the residual phase distortion directly in the interaction region of few-cycle laser radiation with a gaseous target. We describe how the spectra of the generated high harmonics measured as a function of externally introduced dispersion into the driving few-cycle laser pulse can be used to decode small amounts of second- and third-order spectral phase, including the sign. The diagnosis is based on the analysis of several key features in the high-harmonic spectrum: the depth of spectral modulation, the position of the cutoff, and the symmetry of the spectrum with respect to the introduced dispersion. The approach is applicable to pulses without carrier-envelope phase (CEP) stabilization. Surprisingly, we find that for nearly-single-cycle pulses with nonstabilized CEP, deep spectral modulations in the harmonic spectra emerge for positively rather than negatively chirped pulses, in contrast to the case of CEP-stabilized pulses.

  19. Neuronal activity determines distinct gliotransmitter release from a single astrocyte

    PubMed Central

    Covelo, Ana

    2018-01-01

    Accumulating evidence indicates that astrocytes are actively involved in brain function by regulating synaptic activity and plasticity. Different gliotransmitters, such as glutamate, ATP, GABA or D-serine, released form astrocytes have been shown to induce different forms of synaptic regulation. However, whether a single astrocyte may release different gliotransmitters is unknown. Here we show that mouse hippocampal astrocytes activated by endogenous (neuron-released endocannabinoids or GABA) or exogenous (single astrocyte Ca2+ uncaging) stimuli modulate putative single CA3-CA1 hippocampal synapses. The astrocyte-mediated synaptic modulation was biphasic and consisted of an initial glutamate-mediated potentiation followed by a purinergic-mediated depression of neurotransmitter release. The temporal dynamic properties of this biphasic synaptic regulation depended on the firing frequency and duration of the neuronal activity that stimulated astrocytes. Present results indicate that single astrocytes can decode neuronal activity and, in response, release distinct gliotransmitters to differentially regulate neurotransmission at putative single synapses. PMID:29380725

  20. Three-dimensional cross point readout detector design for including depth information

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Jae; Baek, Cheol-Ha

    2018-04-01

    We designed a depth-encoding positron emission tomography (PET) detector using a cross point readout method with wavelength-shifting (WLS) fibers. To evaluate the characteristics of the novel detector module and the PET system, we used the DETECT2000 to perform optical photon transport in the crystal array. The GATE was also used. The detector module is made up of four layers of scintillator arrays, the five layers of WLS fiber arrays, and two sensor arrays. The WLS fiber arrays in each layer cross each other to transport light to each sensor array. The two sensor arrays are coupled to the forward and left sides of the WLS fiber array, respectively. The identification of three-dimensional pixels was determined using a digital positioning algorithm. All pixels were well decoded, with the system resolution ranging from 2.11 mm to 2.29 mm at full width at half maximum (FWHM).

Top