Sample records for module electricity finance

  1. Electricity Market Module - NEMS Documentation

    EIA Publications

    2017-01-01

    Documents the Electricity Market Module as it was used for the Annual Energy Outlook. The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The EMM represents the generation, transmission, and pricing of electricity. It consists of four submodules: the Electricity Capacity Planning (ECP) Submodule, the Electricity Fuel Dispatch (EFD) Submodule, the Electricity Finance and Pricing (EFP) Submodule, and the Electricity Load and Demand (ELD) Submodule.

  2. Modeling renewable portfolio standards for the annual energy outlook 1998 - electricity market module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The EMM represents the generation, transmission, and pricing of electricity. It consists of four submodules: the Electricity Capacity Planning (ECP) Submodule, the Electricity Fuel Dispatch (EFD) Submodule, the Electricity Finance and Pricing (EFP) Submodule, and the Load and Demand-Side Management (LDSM) Submodule. For the Annual Energy Outlook 1998 (AEO98), the EMM has been modified to represent Renewable Portfolio Standards (RPS), which are included in many of the Federal and state proposals for deregulating the electric power industry. A RPS specifies that electricity suppliersmore » must produce a minimum level of generation using renewable technologies. Producers with insufficient renewable generating capacity can either build new plants or purchase {open_quotes}credits{close_quotes} from other suppliers with excess renewable generation. The representation of a RPS involves revisions to the ECP, EFD, and the EFP. The ECP projects capacity additions required to meet the minimum renewable generation levels in future years. The EFD determines the sales and purchases of renewable credits for the current year. The EFP incorporates the cost of building capacity and trading credits into the price of electricity.« less

  3. 78 FR 33757 - Rural Determination and Financing Percentage

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... supplies electricity to an electric utility serving an area that is less than 100 percent rural. By... percentage of the asset(s) can be financed, by amending 7 CFR part 1710. The properties of electricity are... territory is to be supplied with electricity by a RUS-financed project, the Agency proposes that the...

  4. Developing Islamic Financial Products for Financing Solar Energy with a Special Reference to Qatar and Algeria

    NASA Astrophysics Data System (ADS)

    Tabet, Imene Nouar

    Renewable energy has become an important part of the international energy mix. This thesis aims at developing Islamic financial schemes for financing photovoltaic solar energy roof-tops and solar farms. Being an evolving technology based sector with high capital expenditures imposed a challenge for this alternative source of energy to grow especially in countries where electricity costs are low and prices are heavily subsidised. The first two chapters provide a comprehensive overview of solar energy industry with the various policies and financing models that were developed and adopted in various countries. It is found that most of its growth was dependent on government support even in financing. Ijarah Sukuk were developed for financing roof-tops in Qatar, such that the house owners do not have to pay any amount and would get the solar panels at maturity where they would be entitled to their benefit. The cost would be borne by the investors who receive stable rental payments along with their capital throughout the financing period, while electric company would be provided with the electricity at a rate lower than its production cost, hence offering it subsidy savings; the lessee who lives in house would be provided with incentives in the form of electricity-pay break. Although the electricity sector in the country remains highly dependent on government support, the model, in its hypothetical example, provides investors with 8% Internal Rate of Return. On the other hand, Output-sharing Sukuk model is developed for financing solar farms in the context of Algeria, based on the known Islamic financial contract of Muzara'ah. The state-owned electric company contributes the land, the Sukuk holders own the panels, and the developer provides management of the farm. A hypothetical example is also given with calculation of cash flow and investors' Internal Rate of Return which comes to be 7.1029% per annum.

  5. Professional Teacher Education Module Series. Assist Student Vocational Organization Members in Developing and Financing a Yearly Program of Activities, Module H-4 of Category H--Student Vocational Organization.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This fourth in a series of six learning modules on student vocational organizations is designed to assist secondary and postsecondary vocational teachers in developing the competency to assist students in planning a student organization's (or club's) yearly program of activities, in properly managing organization finances, in selecting…

  6. 7 CFR 1786.167 - Restrictions to additional RUS financing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Restrictions to additional RUS financing. 1786.167... additional RUS financing. (a) No borrower that prepays an electric loan at a discount as provided under this... borrower is unable to obtain financing at reasonable terms to restore the system from non-RUS sources...

  7. Financing the Business. PACE Revised. Level 2. Unit 8. Research & Development Series No. 240BB8.

    ERIC Educational Resources Information Center

    Ashmore, M. Catherine; Pritz, Sandra G.

    This unit on financing a small business, the eighth in a series of 18 modules, is on the second level of the revised PACE (Program for Acquiring Competence in Entrepreneurship) comprehensive curriculum. Geared to advanced secondary and beginning postsecondary or adult students, the modules provide an opportunity to learn about and try out…

  8. Financing the Business. Unit 11. Level 1. Instructor Guide. PACE: Program for Acquiring Competence in Entrepreneurship. Third Edition. Research & Development Series No. 301-11.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This instructor guide for a unit on business financing in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 1 of learning--understanding…

  9. Managing the Finances. PACE Revised. Level 2. Unit 16. Research & Development Series No. 240BB16.

    ERIC Educational Resources Information Center

    Ashmore, M. Catherine; Pritz, Sandra G.

    This unit on managing the finances of a small business, the 16th in a series of 18 modules, is on the second level of the revised PACE (Program for Acquiring Competence in Entrepreneurship) comprehensive curriculum. Geared to advanced secondary and beginning postsecondary or adult students, the modules provide an opportunity to learn about and try…

  10. 25 CFR 175.40 - Financing of extensions and upgrades.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Financing of extensions and upgrades. 175.40 Section 175.40 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN ELECTRIC POWER UTILITIES System Extensions and Upgrades § 175.40 Financing of extensions and upgrades. (a) The utility may...

  11. Financing the Business. Unit 11. Level 3. Instructor Guide. PACE: Program for Acquiring Competence in Entrepreneurship. Third Edition. Research & Development Series No. 303-11.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This instructor guide for a unit on business finance in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 3 of learning--starting and…

  12. Financing the Business. Unit 11. Level 2. Instructor Guide. PACE: Program for Acquiring Competence in Entrepreneurship. Third Edition. Research & Development Series No. 302-11. Series No. 302-11.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This instructor guide for a unit on business financing in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 2 of learning--planning for…

  13. Undersea line planned to transmit to an island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The electric utility serving Nantucket Island in Massachusetts, which until now has generated its own power, plans to lay 25 miles of transmission cable to connect with New England's mainland grid. The line will allow the utility to purchase less costly power and retire several old generators, improving both reliability and air quality on the island. Nantucket Electric Co. says the 33-Mw submarine link, costing at least $23 million, probably will connect with a line near the elbow on Cape Cod. The undersea cable will be as deep as 60 ft. Nantucket Electric plans to form a partnership within amore » few months with a mainland utility or private producer that would help finance the project and sell the power. The island utility has preliminary approval by the state Industrial Finance Agency for a tax-exempt bond issue to finance the cable, contingent on its finding a partner.« less

  14. An Exploratory Study on Cognitive Skills and Topics Focused in Learning Objectives of Finance Modules: A UK Perspective

    ERIC Educational Resources Information Center

    Lakshmi, Geeta

    2013-01-01

    Finance is an important subject in many undergraduate programmes. In the UK, the technical competencies in this area are covered by the QAA benchmark in finance (2007). However, the benchmark does not rigidly circumscribe the curriculum and expected competencies. As a result, universities are free to teach the subject from a variety of…

  15. 7 CFR 1724.55 - Dam safety.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...

  16. 7 CFR 1724.55 - Dam safety.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...

  17. 7 CFR 1724.55 - Dam safety.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...

  18. 7 CFR 1724.55 - Dam safety.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...

  19. 7 CFR 1724.55 - Dam safety.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...

  20. 7 CFR 1724.21 - Architectural services contracts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES... RUS financed electric system facilities. (a) RUS Form 220, Architectural Services Contract, must be used by electric borrowers when obtaining architectural services. (b) The borrower shall ensure that...

  1. 7 CFR 1724.53 - Preparation of plans and specifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.53 Preparation of plans and specifications. The provisions of this section apply to all borrower electric system facilities regardless of the source of financing. (a...

  2. 7 CFR 1724.53 - Preparation of plans and specifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.53 Preparation of plans and specifications. The provisions of this section apply to all borrower electric system facilities regardless of the source of financing. (a...

  3. 7 CFR 1724.53 - Preparation of plans and specifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.53 Preparation of plans and specifications. The provisions of this section apply to all borrower electric system facilities regardless of the source of financing. (a...

  4. 7 CFR 1724.53 - Preparation of plans and specifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.53 Preparation of plans and specifications. The provisions of this section apply to all borrower electric system facilities regardless of the source of financing. (a...

  5. The Economics of IRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, K.; Paramonov, D.

    2002-07-01

    IRIS (International Reactor Innovative and Secure) is a small to medium advanced light water cooled modular reactor being developed by an international consortium led by Westinghouse/BNFL. This reactor design is specifically aimed at utilities looking to install new (or replacement) nuclear capacity to match market demands, or at developing countries for their distributed power needs. To determine the optimal configuration for IRIS, analysis was undertaken to establish Generation Costs ($/MWh) and Internal Rate of Return (IRR %) to the Utility at alternative power ratings. This was then combined with global market projections for electricity demand out to 2030, segmented intomore » key geographical regions. Finally this information is brought together to form insights, conclusions and recommendations regarding the optimal design. The resultant analysis reveals a single module sized at 335 MWe, with a construction period of 3 years and a 60-year plant life. Individual modules can be installed in a staggered fashion (3 equivalent to 1005 MWe) or built in pairs (2 sets of twin units' equivalent to 1340 MWe). Uncertainty in Market Clearing Price for electricity, Annual Operating Costs and Construction Costs primarily influence lifetime Net Present Values (NPV) and hence IRR % for Utilities. Generation Costs in addition are also influenced by Fuel Costs, Plant Output, Plant Availability and Plant Capacity Factor. Therefore for a site based on 3 single modules, located in North America, Generations Costs of 28.5 $/MWh are required to achieve an IRR of 20%, a level which enables IRIS to compete with all other forms of electricity production. Plant size is critical to commercial success. Sustained (lifetime) high factors for Plant Output, Availability and Capacity Factor are required to achieve a competitive advantage. Modularity offers Utilities the option to match their investments with market conditions, adding additional capacity as and when the circumstances are right. Construction schedule needs to be controlled. There is a clear trade-off between reducing financing charges and optimising revenue streams. (authors)« less

  6. 7 CFR 1717.852 - Financing purposes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURE POST-LOAN POLICIES AND PROCEDURES COMMON TO INSURED AND GUARANTEED ELECTRIC LOANS Lien... facilities, including real property, used to supply electric and/or steam power to: (i) RE Act beneficiaries... are determined by RUS to be an integral component of the borrower's system of supplying electric and...

  7. 7 CFR 1717.852 - Financing purposes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURE POST-LOAN POLICIES AND PROCEDURES COMMON TO INSURED AND GUARANTEED ELECTRIC LOANS Lien... facilities, including real property, used to supply electric and/or steam power to: (i) RE Act beneficiaries... are determined by RUS to be an integral component of the borrower's system of supplying electric and...

  8. Policies to Spur Energy Access. Executive Summary; Volume 1, Engaging the Private Sector in Expanding Access to Electricity; Volume 2, Case Studies to Public-Private Models to Finance Decentralized Electricity Access

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, Terri; Rai, Neha; Esterly, Sean

    Government policy is one of the most important factors in engaging the private sector in providing universal access to electricity. In particular, the private sector is well positioned to provide decentralized electricity products and services. While policy uncertainty and regulatory barriers can keep enterprises and investors from engaging in the market, targeted policies can create opportunities to leverage private investment and skills to expand electricity access. However, creating a sustainable market requires policies beyond traditional electricity regulation. The report reviews the range of policy issues that impact the development and expansion of a market for decentralized electricity services from establishingmore » an enabling policy environment to catalyzing finance, building human capacity, and integrating energy access with development programs. The case studies in this report show that robust policy frameworks--addressing a wide range of market issues--can lead to rapid transformation in energy access. The report highlights examples of these policies in action Bangladesh, Ethiopia, Mali, Mexico, and Nepal.« less

  9. 7 CFR 1717.852 - Financing purposes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... facilities, including real property, used to supply electric and/or steam power to: (i) RE Act beneficiaries... are determined by RUS to be an integral component of the borrower's system of supplying electric and... electric and/or steam power to end-user customers of the borrower; (3) Investments in a lender required of...

  10. Impact of Financing Instruments and Strategies on the Wind Power Production Costs: A Case of Lithuania

    NASA Astrophysics Data System (ADS)

    Bobinaite, V.; Konstantinaviciute, I.

    2018-04-01

    The paper aims at demonstrating the relevance of financing instruments, their terms and financing strategies in relation to the cost of wind power production and the ability of wind power plant (PP) to participate in the electricity market in Lithuania. The extended approach to the Levelized Cost of Energy (LCOE) is applied. The feature of the extended approach lies in considering the lifetime cost and revenue received from the support measures. The research results have substantiated the relevance of financing instruments, their terms and strategies in relation to their impact on the LCOE and competitiveness of wind PP. It has been found that financing of wind PP through the traditional financing instruments (simple shares and bank loans) makes use of venture capital and bonds coming even in the absence of any support. It has been estimated that strategies consisting of different proportions of hard and soft loans, bonds, own and venture capital result in the average LCOE of 5.1-5.7 EURct/kWh (2000 kW), when the expected electricity selling price is 5.4 EURct/kWh. The financing strategies with higher shares of equity could impact by around 6 % higher LCOE compared to the strategies encompassing higher shares of debt. However, seeking to motivate venture capitalists, bond holders or other new financiers entering the wind power sector, support measures (feed-in tariff or investment subsidy) are relevant in case of 250 kW wind PP. It has been estimated that under the unsupported financing strategies, the average LCOE of 250 kW wind PP will be 7.8-8.8 EURct/kWh, but it will reduce by around 50 % if feed-in tariff or 50 % investment subsidy is applied.

  11. Write Proposals. Module CG B-2 of Category B--Supporting. Competency-Based Career Guidance Modules.

    ERIC Educational Resources Information Center

    Gustafson, Richard A.

    This module is intended to help guidance personnel in a variety of educational and agency settings plan and develop successful proposals to assist in financing the improvement of existing or future career guidance programs. The module is one of a series of competency-based guidance program training packages focusing upon specific professional and…

  12. Small Business Management. Going-Into-Business Modules for Adult and/or Post Secondary Instruction.

    ERIC Educational Resources Information Center

    Rice, Fred; And Others

    Fifteen modules on small business management are provided in this curriculum guide developed for postsecondary vocational instructors. Module titles are as follow: decision making steps; financing a small business; location of a small business; record systems; the balance sheet and profit and loss statement; purchasing; marketing; sales; cash…

  13. [The venture financing of scientifically-innovative projects: teaching experience in medical high school].

    PubMed

    Grachev, S V; Gorodnova, E A

    2008-01-01

    The authors presented an original material, devoted to first experience of teaching of theoretical bases of venture financing of scientifically-innovative projects in medical high school. The results and conclusions were based on data of the questionnaire performed by the authors. More than 90% of young scientist physicians recognized actuality of this problem for realization of their research work results into practice. Thus, experience of teaching of theoretical bases of venture financing of scientifically-innovative projects in medical high school proves reasonability of further development and inclusion the module "The venture financing of scientifically-innovative projects in biomedicine" in the training plan.

  14. 7 CFR 1724.70 - Standard forms of contracts for borrowers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND... construction, procurement, engineering services, and architectural services financed by a loan made or... prescribes RUS procedures in promulgating electric program standard contract forms and identifies those forms...

  15. Industrial Education. Electricity/Electronics Curriculum Guide, Phase II. Instructional Modules, Level II.

    ERIC Educational Resources Information Center

    Lillo, Robert E.; Soffiotto, Nicholas S.

    Designed for students in the ninth grade, this electricity/electronics curriculum guide contains instructional modules for twenty-four units of instruction. Among the modules included are (1) introduction to the world of electricity, (2) electrical safety, (3) the electrical team, (4) resistance and resistors, (5) electric lamps and heating…

  16. Financing the Business. PACE Revised. Level 3. Unit 8. Research & Development Series No. 240CB8.

    ERIC Educational Resources Information Center

    Ashmore, M. Catherine; Pritz, Sandra G.

    This individualized, competency-based unit on financing businesses, the eighth of 18 modules, is on the third level of the revised Program for Acquiring Competence in Entrepreneurship (PACE). Intended for the advanced secondary and postsecondary levels and for adults wanting training or retraining, this unit, together with the other materials at…

  17. What is mLearning and How Can It Be Used to Support Learning and Teaching in Econometrics?

    ERIC Educational Resources Information Center

    Morales, Lucia

    2013-01-01

    The aim of case this study was to analyze the integration of mobile learning technologies in a postgraduate course in Finance (MSc in Finance) at Dublin Institute of Technology, where econometrics is an important course component. Previous experience with students undertaking econometrics modules supported this analysis, where the researcher…

  18. NREL Helps Consumers Tap Into Solar Energy

    Science.gov Websites

    photovoltaic system is sold back to the utility at the same rate as power is purchased from the utility. " who, what and why of financing, purchasing and installing photovoltaic (solar electric) systems in nationwide financing programs for photovoltaic systems and solar thermal systems, which heat indoor air and

  19. Solar Cogeneration of Electricity and Hot Water at DoD Installations

    DTIC Science & Technology

    2014-06-01

    EW-201248) Solar Cogeneration of Electricity and Hot Water at DoD Installations June 2014 This report was prepared under contract to the...2014 ESTCP COST AND PERFORMANCE REPORT Solar Cogeneration of Electricity and Hot Water at DoD Installations W912HQ-12-C-0053 EW-201248Ratson...demonstrate an innovative hybrid electric/thermal solar cogeneration system, document performance and cost advantages, and develop financing models and

  20. RF transmission line and drill/pipe string switching technology for down-hole telemetry

    DOEpatents

    Clark, David D [Santa Fe, NM; Coates, Don M [Santa Fe, NM

    2007-08-14

    A modulated reflectance well telemetry apparatus having an electrically conductive pipe extending from above a surface to a point below the surface inside a casing. An electrical conductor is located at a position a distance from the electrically conductive pipe and extending from above the surface to a point below the surface. Modulated reflectance apparatus is located below the surface for modulating well data into a RF carrier transmitted from the surface and reflecting the modulated carrier back to the surface. A RF transceiver is located at the surface and is connected between the electrically conductive pipe and the electrical conductor for transmitting a RF signal that is confined between the electrically conductive well pipe and the electrical conductor to the modulated reflectance apparatus, and for receiving reflected data on the well from the modulated reflectance apparatus.

  1. Network based management for multiplexed electric vehicle charging

    DOEpatents

    Gadh, Rajit; Chung, Ching Yen; Qui, Li

    2017-04-11

    A system for multiplexing charging of electric vehicles, comprising a server coupled to a plurality of charging control modules over a network. Each of said charging modules being connected to a voltage source such that each charging control module is configured to regulate distribution of voltage from the voltage source to an electric vehicle coupled to the charging control module. Data collection and control software is provided on the server for identifying a plurality of electric vehicles coupled to the plurality of charging control modules and selectively distributing charging of the plurality of charging control modules to multiplex distribution of voltage to the plurality of electric vehicles.

  2. Managing the Finances. PACE Revised. Level 3. Unit 16. Research & Development Series No. 240CB16.

    ERIC Educational Resources Information Center

    Ashmore, M. Catherine; Pritz, Sandra G.

    This individualized, competency-based unit on managing finances, the 16th of 18 modules, is on the third level of the revised Program for Acquiring Competence in Entrepreneurship (PACE). Intended for the advanced secondary and postsecondary levels and for adults wanting training or retraining, this unit, together with the other materials at this…

  3. Retirement Planning Program.

    ERIC Educational Resources Information Center

    Edison State Community Coll., Piqua, OH.

    This curriculum guide was developed for use in Edison State Community College's (ESCC's) Community Pre-Retirement Training Program. The first of the guide's seven modules provides a brief look at retirement, retirement planning, and the ESCC program. The second module focuses on relationships, considering issues such as communication, finances,…

  4. 78 FR 34639 - Supplemental Final Environmental Impact Statement for the Restart of Healy Power Plant Unit #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... Unit 2 of the Healy Power Plant to demonstrate emissions control technologies. In 1994, the DOE... Electric Association (GVEA) since 1967. Healy Unit 2 is a 50 MW coal-fired steam generator owned by AIDEA... RUS. The RUS Electric Program is authorized to make loans and loan guarantees that finance electric...

  5. Module 4: Text Versions | State, Local, and Tribal Governments | NREL

    Science.gov Websites

    own or finance a system. We'll help you understand the different financing types available to local often specific to a particular segment of the market with different amounts of incentives, different system size caps, and different total funds or aggregate capacity. The customer can identify if solar PV

  6. Optimal Assignment Problem Applications of Finite Mathematics to Business and Economics. [and] Difference Equations with Applications. Applications of Difference Equations to Economics and Social Sciences. [and] Selected Applications of Mathematics to Finance and Investment. Applications of Elementary Algebra to Finance. [and] Force of Interest. Applications of Calculus to Finance. UMAP Units 317, 322, 381, 382.

    ERIC Educational Resources Information Center

    Gale, David; And Others

    Four units make up the contents of this document. The first examines applications of finite mathematics to business and economies. The user is expected to learn the method of optimization in optimal assignment problems. The second module presents applications of difference equations to economics and social sciences, and shows how to: 1) interpret…

  7. Electric Field Distribution in High Voltage Power Modules Using Finite Element Simulations

    NASA Astrophysics Data System (ADS)

    Wang, Zhao; Liu, Yaoning

    2018-03-01

    With the development of the high voltage insulated gate bipolar transistor (IGBT) power module, it leads to serious problems concerning the electric field insulation. The electric field capabilities of the silicone gels used in the power module encapsulation directly affect the module insulation. Some solutions have been developed to optimize the electric field and reliability. In this letter, the finite element simulation was used to analyze and localize the maximum electric field position; solutions were proposed to improve the module insulation. It’s demonstrated that BaTiO3 silicone composite is a promising insulation material for high voltage power device.

  8. Your Money: Budget, Banking, Credit, Taxes, & Insurance.

    ERIC Educational Resources Information Center

    Torre, Liz

    Information and accompanying exercises in this learning module are provided to reinforce basic reading, spelling, writing, and math skills while at the same time introducing the fundamentals of personal money management. Written at an elementary level, the module covers five areas of personal finance: (1) planning a household budget on the basis…

  9. Spacehab

    NASA Technical Reports Server (NTRS)

    Rossi, David

    1991-01-01

    Information is given in viewgraph form on the Spacehab company and its work on a pressurized module to be carried on the Space Shuttle. The module augments the Shuttle's capability to support man-tended microgravity experiments. The augmentation modules are designed to duplicate the resources, such as power, environmental control, and data management that are available in the Shuttle's middeck. Topics covered include a company overview, company financing, system overview, module description, payload resources, locker accommodations, program status, and a listing of candidate payloads.

  10. System for adjusting frequency of electrical output pulses derived from an oscillator

    DOEpatents

    Bartholomew, David B.

    2006-11-14

    A system for setting and adjusting a frequency of electrical output pulses derived from an oscillator in a network is disclosed. The system comprises an accumulator module configured to receive pulses from an oscillator and to output an accumulated value. An adjustor module is configured to store an adjustor value used to correct local oscillator drift. A digital adder adds values from the accumulator module to values stored in the adjustor module and outputs their sums to the accumulator module, where they are stored. The digital adder also outputs an electrical pulse to a logic module. The logic module is in electrical communication with the adjustor module and the network. The logic module may change the value stored in the adjustor module to compensate for local oscillator drift or change the frequency of output pulses. The logic module may also keep time and calculate drift.

  11. Hospital financing: calculating inpatient capital costs in Germany with a comparative view on operating costs and the English costing scheme.

    PubMed

    Vogl, Matthias

    2014-04-01

    The paper analyzes the German inpatient capital costing scheme by assessing its cost module calculation. The costing scheme represents the first separated national calculation of performance-oriented capital cost lump sums per DRG. The three steps in the costing scheme are reviewed and assessed: (1) accrual of capital costs; (2) cost-center and cost category accounting; (3) data processing for capital cost modules. The assessment of each step is based on its level of transparency and efficiency. A comparative view on operating costing and the English costing scheme is given. Advantages of the scheme are low participation hurdles, low calculation effort for G-DRG calculation participants, highly differentiated cost-center/cost category separation, and advanced patient-based resource allocation. The exclusion of relevant capital costs, nontransparent resource allocation, and unclear capital cost modules, limit the managerial relevance and transparency of the capital costing scheme. The scheme generates the technical premises for a change from dual financing by insurances (operating costs) and state (capital costs) to a single financing source. The new capital costing scheme will intensify the discussion on how to solve the current investment backlog in Germany and can assist regulators in other countries with the introduction of accurate capital costing. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Module One: Electrical Current; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The student is introduced in this module to some fundamental concepts of electricity. The module is divided into five lessons: electricity and the electron, electron movement, current flow, measurement of current, and the ammeter. Each lesson consists of an overview, a list of study resources, lesson narratives, programed materials, and lesson…

  13. Study of curved glass photovoltaic module and module electrical isolation design requirements

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design of a 1.2 by 2.4 m curved glass superstrate and support clip assembly is presented, along with the results of finite element computer analysis and a glass industry survey conducted to assess the technical and economic feasibility of the concept. Installed costs for four curved glass module array configurations are estimated and compared with cost previously reported for comparable flat glass module configurations. Electrical properties of candidate module encapsulation systems are evaluated along with present industry practice for the design and testing of electrical insulation systems. Electric design requirements for module encapsulation systems are also discussed.

  14. Study of curved glass photovoltaic module and module electrical isolation design requirements

    NASA Astrophysics Data System (ADS)

    1980-06-01

    The design of a 1.2 by 2.4 m curved glass superstrate and support clip assembly is presented, along with the results of finite element computer analysis and a glass industry survey conducted to assess the technical and economic feasibility of the concept. Installed costs for four curved glass module array configurations are estimated and compared with cost previously reported for comparable flat glass module configurations. Electrical properties of candidate module encapsulation systems are evaluated along with present industry practice for the design and testing of electrical insulation systems. Electric design requirements for module encapsulation systems are also discussed.

  15. Electro-Optic Modulator and Method

    DTIC Science & Technology

    An optical intensity modulator which uses a Sagnac interferometer having an electro - optic phase modulator therein. An electric modulation signal is...modulating the optical signals by the electrical signal, the electro - optic effect in the modulator phase shifts the optical signals with respect to one another

  16. Calibration-free absolute frequency response measurement of directly modulated lasers based on additional modulation.

    PubMed

    Zhang, Shangjian; Zou, Xinhai; Wang, Heng; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-10-15

    A calibration-free electrical method is proposed for measuring the absolute frequency response of directly modulated semiconductor lasers based on additional modulation. The method achieves the electrical domain measurement of the modulation index of directly modulated lasers without the need for correcting the responsivity fluctuation in the photodetection. Moreover, it doubles measuring frequency range by setting a specific frequency relationship between the direct and additional modulation. Both the absolute and relative frequency response of semiconductor lasers are experimentally measured from the electrical spectrum of the twice-modulated optical signal, and the measured results are compared to those obtained with conventional methods to check the consistency. The proposed method provides calibration-free and accurate measurement for high-speed semiconductor lasers with high-resolution electrical spectrum analysis.

  17. Fundamentals of Electrical Safety. Module SH-03. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on fundamentals of electrical safety is one of 50 modules concerned with job safety and health. This module describes electricity and how it can affect the human body. Following the introduction, nine objectives (each keyed to a page in the text) the student is expected to accomplish are listed (e.g., Name five common…

  18. Measuring modules for the research of compensators of reactive power with voltage stabilization in MATLAB

    NASA Astrophysics Data System (ADS)

    Vlasayevsky, Stanislav; Klimash, Stepan; Klimash, Vladimir

    2017-10-01

    A set of mathematical modules was developed for evaluation the energy performance in the research of electrical systems and complexes in the MatLab. In the electrotechnical library SimPowerSystems of the MatLab software, there are no measuring modules of energy coefficients characterizing the quality of electricity and the energy efficiency of electrical apparatus. Modules are designed to calculate energy coefficients characterizing the quality of electricity (current distortion and voltage distortion) and energy efficiency indicators (power factor and efficiency) are presented. There are described the methods and principles of building the modules. The detailed schemes of modules built on the elements of the Simulink Library are presented, in this connection, these modules are compatible with mathematical models of electrical systems and complexes in the MatLab. Also there are presented the results of the testing of the developed modules and the results of their verification on the schemes that have analytical expressions of energy indicators.

  19. Electric Utility Deregulation and School Finance in the United States.

    ERIC Educational Resources Information Center

    Walters, Lawrence C.; Cornia, Gary C.

    2001-01-01

    Examines, state-by-state, the decline in assessed property values of electric utilities due to deregulation and the resulting impact on school district revenues. Concludes school revenue shortfall problems are more likely to occur in 12 states. Suggests strategies state governments can employ to respond to lost valuation and revenue. (PKP)

  20. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs

    PubMed Central

    Ponnath, Abhilash; Farris, Hamilton E.

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3–10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene. PMID:25120437

  1. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs.

    PubMed

    Ponnath, Abhilash; Farris, Hamilton E

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.

  2. Method of monolithic module assembly

    DOEpatents

    Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter

    1999-01-01

    Methods for "monolithic module assembly" which translate many of the advantages of monolithic module construction of thin-film PV modules to wafered c-Si PV modules. Methods employ using back-contact solar cells positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The methods of the invention allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  3. Extinction-ratio-independent electrical method for measuring chirp parameters of Mach-Zehnder modulators using frequency-shifted heterodyne.

    PubMed

    Zhang, Shangjian; Wang, Heng; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-06-15

    An extinction-ratio-independent electrical method is proposed for measuring chirp parameters of Mach-Zehnder electric-optic intensity modulators based on frequency-shifted optical heterodyne. The method utilizes the electrical spectrum analysis of the heterodyne products between the intensity modulated optical signal and the frequency-shifted optical carrier, and achieves the intrinsic chirp parameters measurement at microwave region with high-frequency resolution and wide-frequency range for the Mach-Zehnder modulator with a finite extinction ratio. Moreover, the proposed method avoids calibrating the responsivity fluctuation of the photodiode in spite of the involved photodetection. Chirp parameters as a function of modulation frequency are experimentally measured and compared to those with the conventional optical spectrum analysis method. Our method enables an extinction-ratio-independent and calibration-free electrical measurement of Mach-Zehnder intensity modulators by using the high-resolution frequency-shifted heterodyne technique.

  4. Zinc-chlorine battery plant system and method

    DOEpatents

    Whittlesey, Curtis C.; Mashikian, Matthew S.

    1981-01-01

    A zinc-chlorine battery plant system and method of redirecting the electrical current around a failed battery module. The battery plant includes a power conditioning unit, a plurality of battery modules connected electrically in series to form battery strings, a plurality of battery strings electrically connected in parallel to the power conditioning unit, and a bypass switch for each battery module in the battery plant. The bypass switch includes a normally open main contact across the power terminals of the battery module, and a set of normally closed auxiliary contacts for controlling the supply of reactants electrochemically transformed in the cells of the battery module. Upon the determination of a failure condition, the bypass switch for the failed battery module is energized to close the main contact and open the auxiliary contacts. Within a short time, the electrical current through the battery module will substantially decrease due to the cutoff of the supply of reactants, and the electrical current flow through the battery string will be redirected through the main contact of the bypass switch.

  5. Energy Finance Data Warehouse Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangkeun; Chinthavali, Supriya; Shankar, Mallikarjun

    The Office of Energy Policy and Systems Analysis s finance team (EPSA-50) requires a suite of automated applications that can extract specific data from a flexible data warehouse (where datasets characterizing energy-related finance, economics and markets are maintained and integrated), perform relevant operations and creatively visualize them to provide a better understanding of what policy options affect various operators/sectors of the electricity system. In addition, the underlying data warehouse should be structured in the most effective and efficient way so that it can become increasingly valuable over time. This report describes the Energy Finance Data Warehouse (EFDW) framework that hasmore » been developed to accomplish the defined requirement above. We also specifically dive into the Sankey generator use-case scenario to explain the components of the EFDW framework and their roles. An excel-based data warehouse was used in the creation of the energy finance Sankey diagram and other detailed data finance visualizations to support energy policy analysis. The framework also captures the methodology, calculations and estimations analysts used for the calculation as well as relevant sources so newer analysts can build on work done previously.« less

  6. System and method of modulating electrical signals using photoconductive wide bandgap semiconductors as variable resistors

    DOEpatents

    Harris, John Richardson; Caporaso, George J; Sampayan, Stephen E

    2013-10-22

    A system and method for producing modulated electrical signals. The system uses a variable resistor having a photoconductive wide bandgap semiconductor material construction whose conduction response to changes in amplitude of incident radiation is substantially linear throughout a non-saturation region to enable operation in non-avalanche mode. The system also includes a modulated radiation source, such as a modulated laser, for producing amplitude-modulated radiation with which to direct upon the variable resistor and modulate its conduction response. A voltage source and an output port, are both operably connected to the variable resistor so that an electrical signal may be produced at the output port by way of the variable resistor, either generated by activation of the variable resistor or propagating through the variable resistor. In this manner, the electrical signal is modulated by the variable resistor so as to have a waveform substantially similar to the amplitude-modulated radiation.

  7. Millwright Apprenticeship. Related Training Modules. 2.1-2.17 Electricity/Electronics.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet, part of the instructional materials for the Oregon apprenticeship program for millwright training, contains 17 modules covering electricity and electronics. The modules provide information on the following topics: basics of energy, atomic theory, electrical conduction, basics of direct current, introduction to circuits, reading…

  8. Laminated photovoltaic modules using back-contact solar cells

    DOEpatents

    Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter

    1999-09-14

    Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  9. 78 FR 285 - Supplemental Final Environmental Impact Statement for Healy Power Generation Unit #2, Healy, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-03

    ... Valley Electric Association (GVEA) since 1967. Healy Unit 2 is a 50 MW coal- fired steam generator owned by AIDEA, which underwent test operation for two years as part of DOE's Clean Coal Technology Program... RUS. The RUS Electric Program is authorized to make loans and loan guarantees that finance the...

  10. Module Degradation Mechanisms Studied by a Multi-Scale Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Steve; Al-Jassim, Mowafak; Hacke, Peter

    2016-11-21

    A key pathway to meeting the Department of Energy SunShot 2020 goals is to reduce financing costs by improving investor confidence through improved photovoltaic (PV) module reliability. A comprehensive approach to further understand and improve PV reliability includes characterization techniques and modeling from module to atomic scale. Imaging techniques, which include photoluminescence, electroluminescence, and lock-in thermography, are used to locate localized defects responsible for module degradation. Small area samples containing such defects are prepared using coring techniques and are then suitable and available for microscopic study and specific defect modeling and analysis.

  11. Electronic structure and its external electric field modulation of PbPdO2 ultrathin slabs with (002) and (211) preferred orientations.

    PubMed

    Yang, Yanmin; Zhong, Kehua; Xu, Guigui; Zhang, Jian-Min; Huang, Zhigao

    2017-07-31

    The Electronic structure of PbPdO 2 with (002) and (211) preferred orientations were investigated using first-principles calculation. The calculated results indicate that, (002) and (211) orientations exhibit different electric field dependence of band-gap and carrier concentration. The small band gap and more sensitive electric field modulation of band gap were found in (002) orientation. Moreover, the electric field modulation of the resistivity up to 3-4 orders of magnitude is also observed in (002) slab, which reveals that origin of colossal electroresistance. Lastly, electric field modulation of band gap is well explained. This work should be significant for repeating the colossal electroresistance.

  12. Power module assembly

    DOEpatents

    Campbell, Jeremy B [Torrance, CA; Newson, Steve [Redondo Beach, CA

    2011-11-15

    A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.

  13. On the Path to SunShot: Emerging Opportunities and Challenges in Financing Solar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, David; Bolinger, Mark

    This report analyzes solar financing strategies and their role in achieving the U.S. Department of Energy's SunShot goals. Financing is critical to solar deployment, because the costs of solar technologies are paid up front, while their benefits are realized over decades. Solar financing has been shaped by government solar incentives, particularly federal tax incentives, which have spawned complex tax-equity structures that monetize tax benefits for project sponsors who otherwise could not use them efficiently. Although these structures have helped expand solar deployment, they are relatively costly and inefficient. This has spurred solar stakeholders to develop lower-cost financing solutions such asmore » securitization of solar project portfolios, solar-specific loan products, and methods for incorporating residential solar's value into home values. To move solar further toward an unsubsidized SunShot future, additional financial innovation must occur. Development of a larger, more mature U.S. solar industry will likely increase financial transparency and investor confidence, which in turn will enable simpler, lower-cost financing methods. Utility-scale solar might be financed more like conventional generation assets are today, non-residential solar might be financed more like a new roof, and residential solar might be financed more like an expensive appliance. Assuming a constant, SunShot-level installed photovoltaic (PV) system price, such financing innovations could reduce PV's levelized cost of electricity (LCOE) by an estimated 25%-50% compared with historical financing approaches. These results suggest that financing can adapt to changing conditions and might ease the transition away from a reliance on tax incentives while driving solar's LCOE toward the SunShot goals.« less

  14. 7 CFR 1724.71 - Borrower contractual obligations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES RUS..., engineering services and architectural services financed in whole or in part by the RUS loan. Normally, this...

  15. Ash reduction system using electrically heated particulate matter filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  16. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes.

    PubMed

    Chao, Kan; Chen, Bo; Wu, Jiankang

    2010-12-01

    The formation of an electric double layer and electroosmosis are important theoretic foundations associated with microfluidic systems. Field-modulated electroosmotic flows in microchannels can be obtained by applying modulating electric fields in a direction perpendicular to a channel wall. This paper presents a systematic numerical analysis of modulated electroosmotic flows in a microchannel with discrete electrodes on the basis of the Poisson equation of electric fields in a liquid-solid coupled domain, the Navier-Stokes equation of liquid flow, and the Nernst-Planck equation of ion transport. These equations are nonlinearly coupled and are simultaneously solved numerically for the electroosmotic flow velocity, electric potential, and ion concentrations in the microchannel. A number of numerical examples of modulated electroosmotic flows in microchannels with discrete electrodes are presented, including single electrodes, symmetric/asymmetric double electrodes, and triple electrodes. Numerical results indicate that chaotic circulation flows, micro-vortices, and effective fluid mixing can be realized in microchannels by applying modulating electric fields with various electrode configurations. The interaction of a modulating field with an applied field along the channel is also discussed.

  17. Application of electrically invisible antennas to the Modulated Scatterer Technique

    DOE PAGES

    Crocker, Dylan A.; Donnell, Kristen M.

    2015-09-16

    The modulated scatterer technique (MST) has shown promise for applications in microwave imaging, electric field mapping, and materials characterization. Traditionally, MST scatterers are dipoles centrally loaded with an element capable of modulation (e.g., a p-i-n diode). By modulating the load element, signals scattered from the MST scatterer are also modulated. However, due to the small size of such scatterers, it can be difficult to reliably detect the modulated signal. Increasing the modulation depth (MD; a parameter related to how well the scatterer modulates the scattered signal) may improve the detectability of the scattered signal. In an effort to improve themore » MD, the concept of electrically invisible antennas is applied to the design of MST scatterers. Our paper presents simulations and measurements of MST scatterers that have been designed to be electrically invisible during the reverse bias state of the modulated element (a p-i-n diode in this case), while producing detectable scattering during the forward bias state (i.e., operate in an electrically visible state). Furthermore, the results using the new design show significant improvement to the MD of the scattered signal as compared with a traditional MST scatterer (i.e., dipole centrally loaded with a p-i-n diode).« less

  18. Long-Term Modulation of Electrical Synapses in the Mammalian Thalamus

    NASA Astrophysics Data System (ADS)

    Landisman, Carole E.; Connors, Barry W.

    2005-12-01

    Electrical synapses are common between inhibitory neurons in the mammalian thalamus and neocortex. Synaptic modulation, which allows flexibility of communication between neurons, has been studied extensively at chemical synapses, but modulation of electrical synapses in the mammalian brain has barely been examined. We found that the activation of metabotropic glutamate receptors, via endogenous neurotransmitter or by agonist, causes long-term reduction of electrical synapse strength between the inhibitory neurons of the rat thalamic reticular nucleus.

  19. Photovoltaic power generation system free of bypass diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentine, Anthony L.; Okandan, Murat; Nielson, Gregory N.

    A photovoltaic power generation system that includes a solar panel that is free of bypass diodes is described herein. The solar panel includes a plurality of photovoltaic sub-modules, wherein at least two of photovoltaic sub-modules in the plurality of photovoltaic sub-modules are electrically connected in parallel. A photovoltaic sub-module includes a plurality of groups of electrically connected photovoltaic cells, wherein at least two of the groups are electrically connected in series. A photovoltaic group includes a plurality of strings of photovoltaic cells, wherein a string of photovoltaic cells comprises a plurality of photovoltaic cells electrically connected in series. The stringsmore » of photovoltaic cells are electrically connected in parallel, and the photovoltaic cells are microsystem-enabled photovoltaic cells.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, Jason; Dobrzynski, Daniel S.

    A smart charging system for charging a plug-in electric vehicle (PEV) includes an electric vehicle supply equipment (EVSE) configured to supply electrical power to the PEV through a smart charging module coupled to the EVSE. The smart charging module comprises an electronic circuitry which includes a processor. The electronic circuitry includes electronic components structured to receive electrical power from the EVSE, and supply the electrical power to the PEV. The electronic circuitry is configured to measure a charging parameter of the PEV. The electronic circuitry is further structured to emulate a pulse width modulated signal generated by the EVSE. Themore » smart charging module can also include a first coupler structured to be removably couple to the EVSE and a second coupler structured to be removably coupled to the PEV.« less

  1. Industrial Education. Electricity/Electronics Curriculum Guide, Phase II. Instructional Modules, Level III.

    ERIC Educational Resources Information Center

    Lillo, Robert E.; Soffiotto, Nicholas S.

    Designed for students in the tenth grade, this electricity/electronics curriculum guide contains instructional modules for sixteen units of instruction: (1) orientation, (2) introduction to electricity/electronics, (3) electricity/electronics safety, (4) fundamental skills, (5) direct current circuits, (6) graphical illustrations, (7) circuit…

  2. Sensitivity of Rooftop PV Projections in the SunShot Vision Study to Market Assumptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drury, E.; Denholm, P.; Margolis, R.

    2013-01-01

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The SolarDS model was used to simulate rooftop PV demand for this study, based on several PV market assumptions--future electricity rates, customer access to financing, and others--in addition to the SunShot PV price projections. This paper finds that modeled PV demand is highly sensitive to several non-price market assumptions, particularly PV financing parameters.

  3. Argonne's SpEC Module

    ScienceCinema

    Harper, Jason

    2018-03-02

    Jason Harper, an electrical engineer in Argonne National Laboratory's EV-Smart Grid Interoperability Center, discusses his SpEC Module invention that will enable fast charging of electric vehicles in under 15 minutes. The module has been licensed to BTCPower.

  4. Electrical Procedures and Environmental Control Systems. Building Maintenance. Module IV. Instructor's Guide.

    ERIC Educational Resources Information Center

    Sloan, Garry

    This curriculum guide, one of six modules keyed to the building maintenance competency profile developed by industry and education professionals, provides materials for two units on electrical procedures and environmental control systems. Unit 1, on electrical procedures, includes the following lessons: electrical safety; troubleshooting and…

  5. Diesel Electrical Systems. Teacher Edition (Revised).

    ERIC Educational Resources Information Center

    Sprinkle, Tom; Huston, Jane, Ed.

    This module is one of a series of teaching guides that cover diesel mechanics. The module contains eight instructional units that cover the following topics: (1) introduction to electrical systems; (2) electrical circuits; (3) electrical indicator circuits; (4) storage batteries; (5) starting systems and circuits; (6) ignition circuits; (7)…

  6. Ultra-wideband microwave photonic link based on single-sideband modulation

    NASA Astrophysics Data System (ADS)

    Li, Jingnan; Wang, Yunxin; Wang, Dayong; Zhou, Tao; Zhong, Xin; Xu, Jiahao; Yang, Dengcai; Rong, Lu

    2017-10-01

    Comparing with the conventional double-sideband (DSB) modulation in communication system, single-sideband (SSB) modulation only demands half bandwidth of DSB in transmission. Two common ways are employed to implement SSB modulation by using optical filter (OF) or electrical 90° phase shift, respectively. However, the bandwidth of above methods is limited by characteristics of current OF and electrical phase shift. To overcome this problem, an ultra-wideband microwave photonic link based on SSB modulation is proposed and demonstrated. The radio frequency (RF) signal modulates a single-drive dual-parallel Mach-Zehnder modulator, and the SSB modulation is realized by combining an electrical 90° hybrid coupler and an optical bandpass filter. The experimental results indicate that the system can achieve SSB modulation for RF signal from 2 to 40 GHz. The proposed microwave photonic link provides an ultra-wideband approach based on SSB modulation for radio-over-fiber system.

  7. 78 FR 48156 - Notice of Commissioner and Staff Attendance at North American Electric Reliability Corporation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ... Committee and Board of Trustees Meetings Board of Trustees Corporate Governance and Human Resources Committee, Compliance Committee, Finance and Audit Committee, and Standards Oversight and Technology...

  8. Renewable Energy Project Financing: Improved Guidance and Information Sharing Needed for DOD Project-Level Officials

    DTIC Science & Technology

    2012-04-01

    certain energy related military construction projects. The Navy used this authority for its geothermal plant at Naval Air Weapons Station China Lake...electric energy generated from solar, wind, biomass, landfill gas, ocean (including tidal, wave, current, and thermal), geothermal , municipal solid...thermal; geothermal , including electricity and heat pumps; municipal solid waste; new hydroelectric generation capacity achieved from increased

  9. Innovations in Wind and Solar PV Financing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cory, K.; Coughlin, J.; Jenkin, T.

    2008-02-01

    There is growing national interest in renewable energy development based on the economic, environmental, and security benefits that these resources provide. Historically, greater development of our domestic renewable energy resources has faced a number of hurdles, primarily related to cost, regulation, and financing. With the recent sustained increase in the costs and associated volatility of fossil fuels, the economics of renewable energy technologies have become increasingly attractive to investors, both large and small. As a result, new entrants are investing in renewable energy and new business models are emerging. This study surveys some of the current issues related to windmore » and solar photovoltaic (PV) energy project financing in the electric power industry, and identifies both barriers to and opportunities for increased investment.« less

  10. Stationary Engineers Apprenticeship. Related Training Modules. 5.1-5.17 Electricity/Electronics.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet of 17 learning modules on electricity/electronics is one of 20 such packets developed for apprenticeship training for stationary engineers. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators,…

  11. Industrial Education. Electricity/Electronics Curriculum Guide, Phase II. Instructional Modules, Level I (9 Week).

    ERIC Educational Resources Information Center

    Lillo, Robert E.; Soffiotto, Nicholas S.

    Designed for students in grades 7 and 8, this electricity/electronics curriculum guide contains instructional modules for ten units of instruction (nine-week class): (1) orientation; (2) understanding electricity; (3) safety; (4) methods to generate electricity; (5) wiring tools and wire; (6) soldering; (7) magnetism and electromagnetism; (8)…

  12. Industrial Education. Electricity/Electronics Curriculum Guide, Phase II. Instructional Modules, Level I (18 Week).

    ERIC Educational Resources Information Center

    Lillo, Robert E.; Soffiotto, Nicholas S.

    Designed for students in grades 7 and 8, this electricity/electronics curriculum guide contains instructional modules for twelve units of instruction: (1) orientation; (2) understanding electricity; (3) safety; (4) methods to generate electricity; (5) wiring tools and wire; (6) soldering; (7) magnetism and electromagnetism; (8) circuits, symbols,…

  13. Avoided electricity subsidy payments can finance substantial appliance efficiency incentive programs: Case study of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leventis, Greg; Gopal, Anand; Rue du Can, Stephane de la

    Numerous countries use taxpayer funds to subsidize residential electricity for a variety of socioeconomic objectives. These subsidies lower the value of energy efficiency to the consumer while raising it for the government. Further, while it would be especially helpful to have stringent Minimum Energy Performance Standards (MEPS) for appliances and buildings in this environment, they are hard to strengthen without imposing a cost on ratepayers. In this secondbest world, where the presence of subsidies limits the government’s ability to strengthen standards, we find that avoided subsidies are a readily available source of financing for energy efficiency incentive programs. Here, wemore » introduce the LBNL Energy Efficiency Revenue Analysis (LEERA) model to estimate the appliance efficiency improvements that can be achieved in Mexico by the revenue neutral financing of incentive programs from avoided subsidy payments. LEERA uses the detailed techno-economic analysis developed by LBNL for the Super-efficient Equipment and Appliance Deployment (SEAD) Initiative to calculate the incremental costs of appliance efficiency improvements. We analyze Mexico’s tariff structures and the long-run marginal cost of supply to calculate the marginal savings for the government from appliance efficiency. We find that avoided subsidy payments alone can finance incentive programs that cover the full incremental cost of refrigerators that are 27% more efficient and TVs that are 32% more efficient than baseline models. We find less substantial market transformation potential for room ACs primarily because AC energy savings occur at less subsidized tariffs.« less

  14. Application of electrically invisible antennas to the modulated scatterer technique

    NASA Astrophysics Data System (ADS)

    Crocker, Dylan Andrew

    The Modulated Scatterer Technique (MST) has shown promise for applications in microwave imaging, electric field mapping, and materials characterization. Traditionally, MST scatterers consist of dipole antennas centrally loaded with a lumped element capable of modulation (commonly a PIN diode). By modulating the load element, the signal scattered from the MST scatterer is also modulated. However, due to the small size of such scatterers, it can be difficult to reliably detect the modulated signal. Increasing the modulation depth (a parameter related to how well the scatterer modulates the scattered signal) may improve the detectability of the scattered signal. In an effort to improve the modulation depth of scatterers commonly used in MST, the concept of electrically invisible antennas is applied to the design of these scatterers and is the focus of this work. Electrical invisibility of linear antennas, such as loaded dipoles, can be achieved by loading a scatterer in such a way that, when illuminated by an electromagnetic wave, the integral of the current induced along the length of the scatterer (and hence the scattered field as well) approaches zero. By designing a scatterer to be capable of modulation between visible (scattering) and invisible (minimum scattering) states, the modulation depth may be improved. This thesis presents simulations and measurements of new MST scatterers that have been designed to be electrically invisible during the reverse bias state of the modulated element (i.e., a PIN diode). Further, the scattering during the forward bias state remains the same as that of a traditional MST scatterer, resulting in an increase in modulation depth. This new MST scatterer design technique may also have application in improving the performance of similar sensors such as radio frequency identification (RFID) tags.

  15. A solar module fabrication process for HALE solar electric UAV's

    NASA Astrophysics Data System (ADS)

    Carey, P. G.; Aceves, R. C.; Colella, N. J.; Williams, K. A.; Sinton, R. A.; Glenn, G. S.

    1994-12-01

    We describe a fabrication process used to manufacture high power-to-weight-ratio flexible solar array modules for use on high-altitude-long-endurance (HALE) solar-electric unmanned air vehicles (UAV's). These modules have achieved power-to-weight ratios of 315 and 396 W/kg for 150 micron-thick monofacial and 110 micron-thick bifacial silicon solar cells, respectively. These calculations reflect average module efficiencies of 15.3% (150 micron) and 14.7% (110 micron) obtained from electrical tests performed by Spectrolab, Inc. under AMO global conditions at 25 C, and include weight contributions from all module components (solar cells, lamination material, bypass diodes, interconnect wires, and adhesive tape used to attach the modules to the wing). The fabrication, testing, and performance of 32 sq m of these modules is described.

  16. Ellipsometer

    NASA Technical Reports Server (NTRS)

    Ducharme, Stephen Paul (Inventor); El Hajj, Hassanayn Machlab (Inventor); Johs, Blaine D. (Inventor); Woollam, John A. (Inventor)

    1997-01-01

    In an ellipsometer, a phase-modulated, polarized light beam is applied to a sample, electrical signals are obtained representing the orthogonal planes of polarization of the light after it has interacted with the sample and the constants of the sample are calculated from the two resulting electrical signals. The phase modulation is sufficiently small so that the calibration errors are negligible. For this purpose, the phase modulator, phase modulates the light within a range of no more than ten degrees peak to peak. The two electrical signals are expanded by Fourier analysis and the coefficients thereof utilized to calculate psi and delta.

  17. Thermal modulation for gas chromatography

    NASA Technical Reports Server (NTRS)

    Waite, J. Hunter (Inventor); Libardoni, Mark (Inventor); Stewart, Kristine (Inventor); Block, Bruce P. (Inventor); Sacks, Richard D. (Inventor); Hasselbrink, Ernest F. (Inventor)

    2007-01-01

    A thermal modulator device for gas chromatography and associated methods. The thermal modulator device includes a recirculating fluid cooling member, an electrically conductive capillary in direct thermal contact with the cooling member, and a power supply electrically coupled to the capillary and operable for controlled resistive heating of the capillary. The capillary can include more than one separate thermally modulated sections.

  18. Low Voltage Alarm Apprenticeship. Related Training Modules. 2.1-5.3 Electricity/Electronics.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet of 29 learning modules on electricity/electronics is 1 of 8 such packets developed for apprenticeship training for low voltage alarm. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, study guide…

  19. Model documentation: Electricity Market Module, Electricity Fuel Dispatch Submodule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report documents the objectives, analytical approach and development of the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

  20. Discharging a DC bus capacitor of an electrical converter system

    DOEpatents

    Kajouke, Lateef A; Perisic, Milun; Ransom, Ray M

    2014-10-14

    A system and method of discharging a bus capacitor of a bidirectional matrix converter of a vehicle are presented here. The method begins by electrically shorting the AC interface of the converter after an AC energy source is disconnected from the AC interface. The method continues by arranging a plurality of switching elements of a second energy conversion module into a discharge configuration to establish an electrical current path from a first terminal of an isolation module, through an inductive element, and to a second terminal of the isolation module. The method also modulates a plurality of switching elements of a first energy conversion module, while maintaining the discharge configuration of the second energy conversion module, to at least partially discharge a DC bus capacitor.

  1. Direct electrical-to-optical conversion and light modulation in micro whispering-gallery-mode resonators

    NASA Technical Reports Server (NTRS)

    Maleki, Lute (Inventor); Levi, Anthony F. J. (Inventor)

    2005-01-01

    Techniques for directly converting an electrical signal into an optical signal by using a whispering gallery mode optical resonator formed of a dielectric material that allows for direct modulation of optical absorption by the electrical signal.

  2. MHD Electrode and wall constructions

    DOEpatents

    Way, Stewart; Lempert, Joseph

    1984-01-01

    Electrode and wall constructions for the walls of a channel transmitting the hot plasma in a magnetohydrodynamic generator. The electrodes and walls are made of a plurality of similar modules which are spaced from one another along the channel. The electrodes can be metallic or ceramic, and each module includes one or more electrodes which are exposed to the plasma and a metallic cooling bar which is spaced from the plasma and which has passages through which a cooling fluid flows to remove heat transmitted from the electrode to the cooling bar. Each electrode module is spaced from and electrically insulated from each adjacent module while interconnected by the cooling fluid which serially flows among selected modules. A wall module includes an electrically insulating ceramic body exposed to the plasma and affixed, preferably by mechanical clips or by brazing, to a metallic cooling bar spaced from the plasma and having cooling fluid passages. Each wall module is, similar to the electrode modules, electrically insulated from the adjacent modules and serially interconnected to other modules by the cooling fluid.

  3. Traveling wave electrode design of electro-optically modulated coupled-cavity surface-emitting lasers.

    PubMed

    Zujewski, Mateusz; Thienpont, Hugo; Panajotov, Krassimir

    2012-11-19

    We present a novel design of an electro-optically modulated coupled-cavity vertical-cavity surface-emitting laser (CC-VCSEL) with traveling wave electrodes of the modulator cavity, which allows to overcome the RC time constant of a traditional lumped electrode structures. The CC-VCSEL optical design is based on longitudinal mode switching which has recently experimentally demonstrated a record modulation speed. We carry out segmented transmission line electrical design of the modulator cavity in order to compensate for the low impedance of the modulator section and to match the 50 Ω electrical network. We have optimized two types of highly efficient modulator structures reaching -3 dB electrical cut-off frequency of f(cut-off) = 330 GHz with maximum reflection of -22 dB in the range from f(LF) = 100 MHz to f(cut-off) and 77 - 89% modulation efficiency.

  4. Electrical power generation by mechanically modulating electrical double layers.

    PubMed

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future.

  5. 2007 Disruptive Technologies Conference - Disruptive Technologies: Turning Lists into Capabilities

    DTIC Science & Technology

    2007-09-05

    Privilege management • Health care, benefits, finance , time and attendance, etc. • Military operations – “Combat Identification” • Friend, Foe, Neutral...Logistics Influence Force Support Corporate Mgt & Support N o im pl ie d pr io ri ti za ti on Movement & Maneuver Surface Warfare Joint Fires Undersea...Starter Generator MEMS Actuators / Valves Atomizer Nozzles Reclaimed Electrical Heat Engine UC Berkely Wankel Engine Exhaust Thermo Electric/Others

  6. Guide to Federal Funding, Financing, and Technical Assistance for Plug-in Electric Vehicles and Charging Stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The U.S. Department of Energy and the U.S. Department of Transportation have published a guide to highlight examples of federal support and technical assistance for plug-in electric vehicles (PEVs) and charging stations. The guide provides a description of each opportunity and a point of contact to assist those interested in advancing PEV technology. The Department of Energy’s Alternative Fuels Data Center provides a comprehensive database of federal and state programs that support plug-in electric vehicles and infrastructure.

  7. 7 CFR 1710.104 - Service to non-RE Act beneficiaries.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... GUARANTEES Loan Purposes and Basic Policies § 1710.104 Service to non-RE Act beneficiaries. (a) To the... made to finance electric facilities to serve consumers that are not RE Act beneficiaries. (b) Loan...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsay, I.

    The author limits his remarks to a discussion of the international generator`s marketplace, especially aimed at the developing countries. He discusses future global electricity demand, generating capacity build, its financing issues, and to the commercial generating opportunities which now abound outside the US.

  9. Thermal modulation for gas chromatography

    NASA Technical Reports Server (NTRS)

    Block, Bruce P. (Inventor); Libardoni, Mark (Inventor); Stewart, Kristine (Inventor); Sacks, Richard D. (Inventor); Hasselbrink, Ernest F. (Inventor); Waite, J. Hunter (Inventor)

    2007-01-01

    A thermal modulator device for gas chromatography and associated methods. The thermal modulator device includes a cooling member, an electrically conductive capillary in direct thermal contact with the cooling member, and a power supply electrically coupled to the capillary and operable for controlled resistive heating of the capillary.

  10. Lunar Module Electrical Power System Design Considerations and Failure Modes

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This slide presentation reviews the design and redesign considerations of the Apollo lunar module electrical power system. Included in the work are graphics showing the lunar module power system. It describes the in-flight failures, and the lessons learned from these failures.

  11. Failure and Degradation Modes of PV modules in a Hot Dry Climate: Results after 4 and 12 years of field exposure

    NASA Astrophysics Data System (ADS)

    Mallineni, Jaya krishna

    This study evaluates two photovoltaic (PV) power plants based on electrical performance measurements, diode checks, visual inspections and infrared scanning. The purpose of this study is to measure degradation rates of performance parameters (Pmax, Isc, Voc, Vmax, Imax and FF) and to identify the failure modes in a "hot-dry desert" climatic condition along with quantitative determination of safety failure rates and reliability failure rates. The data obtained from this study can be used by module manufacturers in determining the warranty limits of their modules and also by banks, investors, project developers and users in determining appropriate financing or decommissioning models. In addition, the data obtained in this study will be helpful in selecting appropriate accelerated stress tests which would replicate the field failures for the new modules and would predict the lifetime for new PV modules. The study was conducted at two, single axis tracking monocrystalline silicon (c-Si) power plants, Site 3 and Site 4c of Salt River Project (SRP). The Site 3 power plant is located in Glendale, Arizona and the Site 4c power plant is located in Mesa, Arizona both considered a "hot-dry" field condition. The Site 3 power plant has 2,352 modules (named as Model-G) which was rated at 250 kW DC output. The mean and median degradation of these 12 years old modules are 0.95%/year and 0.96%/year, respectively. The major cause of degradation found in Site 3 is due to high series resistance (potentially due to solder-bond thermo-mechanical fatigue) and the failure mode is ribbon-ribbon solder bond failure/breakage. The Site 4c power plant has 1,280 modules (named as Model-H) which provide 243 kW DC output. The mean and median degradation of these 4 years old modules are 0.96%/year and 1%/year, respectively. At Site 4c, practically, none of the module failures are observed. The average soiling loss is 6.9% in Site 3 and 5.5% in Site 4c. The difference in soiling level is attributed to the rural and urban surroundings of these two power plants.

  12. Climate Considerations Of The Electricity Supply Systems In Industries

    NASA Astrophysics Data System (ADS)

    Asset, Khabdullin; Zauresh, Khabdullina

    2014-12-01

    The study is focused on analysis of climate considerations of electricity supply systems in a pellet industry. The developed analysis model consists of two modules: statistical data of active power losses evaluation module and climate aspects evaluation module. The statistical data module is presented as a universal mathematical model of electrical systems and components of industrial load. It forms a basis for detailed accounting of power loss from the voltage levels. On the basis of the universal model, a set of programs is designed to perform the calculation and experimental research. It helps to obtain the statistical characteristics of the power losses and loads of the electricity supply systems and to define the nature of changes in these characteristics. Within the module, several methods and algorithms for calculating parameters of equivalent circuits of low- and high-voltage ADC and SD with a massive smooth rotor with laminated poles are developed. The climate aspects module includes an analysis of the experimental data of power supply system in pellet production. It allows identification of GHG emission reduction parameters: operation hours, type of electrical motors, values of load factor and deviation of standard value of voltage.

  13. Photovoltaic system with improved AC connections and method of making same

    DOEpatents

    Cioffi, Philip Michael; Todorovic, Maja Harfman; Herzog, Michael Scott; Korman, Charles Steven; Doherty, Donald M.; Johnson, Neil Anthony

    2018-02-13

    An alternating current (AC) harness for a photovoltaic (PV) system includes a wire assembly having a first end and a second end, the wire assembly having a plurality of lead wires, and at least one AC connection module positioned at a location along a length of the wire assembly between the first end and the second end. Further, the at least one AC connection module includes a first connection terminal electrically coupled to the plurality of lead wires of the wire assembly and constructed to electrically couple the wire assembly with an output of a first PV module of the PV system. The at least one AC connection module also includes a second connection terminal electrically coupled to the plurality of lead wires of the wire assembly and constructed to electrically couple the wire assembly with an output of a second PV module of the PV system.

  14. Propulsion Wheel Motor for an Electric Vehicle

    NASA Technical Reports Server (NTRS)

    Herrera, Eduardo (Inventor); Farrell, Logan Christopher (Inventor); Guo, Raymond (Inventor); Junkin, Lucien Q. (Inventor); Bluethmann, William J. (Inventor); Vitale, Robert L. (Inventor); Weber, Steven J. (Inventor); Lee, Chunhao J. (Inventor); Eggleston, IV, Raymond Edward (Inventor); Figuered, Joshua M. (Inventor); hide

    2016-01-01

    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  15. Control and protection system for an installation for the combined production of electrical and thermal energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agazzone, U.; Ausiello, F.P.

    1981-06-23

    A power-generating installation comprises a plurality of modular power plants each comprised of an internal combustion engine connected to an electric machine. The electric machine is used to start the engine and thereafter operates as a generator supplying power to an electrical network common to all the modular plants. The installation has a control and protection system comprising a plurality of control modules each associated with a respective plant, and a central unit passing control signals to the modules to control starting and stopping of the individual power plants. Upon the detection of abnormal operation or failure of its associatedmore » power plant, each control module transmits an alarm signal back to the central unit which thereupon stops, or prevents the starting, of the corresponding power plant. Parameters monitored by each control module include generated current and inter-winding leakage current of the electric machine.« less

  16. Realization of pure frequency modulation of DFB laser via combined optical and electrical tuning.

    PubMed

    Tian, Chao; Chen, I-Chun Anderson; Park, Seong-Wook; Martini, Rainer

    2013-04-08

    In this paper we present a novel approach to convert AM signal into FM signal in semiconductor lasers via off resonance optical pumping and report on experimental results obtained with a commercial DFB laser. Aside of demonstrating discrete and fast frequency modulation, we achieve pure frequency modulation through combination with electrical modulation suppressing the associated amplitude modulation, which is detrimental to application such as spectroscopy and communication.

  17. Indoor unit for electric heat pump

    DOEpatents

    Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.

    1984-05-22

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.

  18. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 21: Basic Transistor Theory; Module 21T: Multi-Element Vacuum Tubes. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This set of individualized learning modules on transistor theory is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Two modules are included in…

  19. Wind Energy Finance in the United States: Current Practice and Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwabe, Paul D.; Feldman, David J.; Settle, Donald E.

    In the United States, investment in wind energy has averaged nearly $13.6 billion annually since 2006 with more than $140 billion invested cumulatively over that period (BNEF 2017). This sizable investment activity demonstrates the persistent appeal of wind energy and its increasing role in the U.S electricity generation portfolio. Despite its steady investment levels over the last decade, some investors still consider wind energy as a specialized asset class. Limited familiarity with the asset class both limit the pool of potential investors and drive up costs for investors. This publication provides an overview of the wind project development process, capitalmore » sources and financing structures commonly used, and traditional and emerging procurement methods. It also provides a high-level demonstration of how financing rates impact a project's all-in cost of energy. The goal of the publication is to provide a representative and wide-ranging resource for the wind development and financing processes.« less

  20. Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release

    PubMed Central

    Melchior, James R.; Ferris, Mark J.; Stuber, Garret D.; Riddle, David R.; Jones, Sara R.

    2015-01-01

    The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation. PMID:26011081

  1. 7 CFR 1786.201 - Definitions and rules of construction.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FFB. Business day means any such day on which both the Federal Financing Bank and Federal Reserve Bank—New York are open for business. Electric loan means a loan made by FFB and guaranteed by RUS under...

  2. 1. VIEW WEST SOUTHWEST OF BUILDING 7 SHOWING MAIN ENTRANCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW WEST SOUTHWEST OF BUILDING 7 SHOWING MAIN ENTRANCE TO OFFICES; MANAGEMENT AND FINANCE OFFICES WERE LOCATED HERE; BUILDING 23 IS AT RIGHT OF PHOTOGRAPH - Bryant Electric Company, 1421 State Street, Bridgeport, Fairfield County, CT

  3. 76 FR 76905 - Extension of Comment Period for Proposed Rulemaking on Substantially Underserved Trust Areas (SUTA)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... and community development. By financing improvements to rural electric, water and waste, and telecom..., water and waste, and telecom and broadband programs. The proposed rule invited the public to submit...

  4. Photovoltaic Module Reliability Workshop 2011: February 16-17, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, S.

    2013-11-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  5. Module Eight: Induction; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The module covers in greater depth electromagnetic induction, its effects, and how it is used to advantage in electrical circuits; and the physical components, called inductors, designed to take advantage of the phenomenon of electromagnetic induction. This module is divided into four lessons: electromagnetism; inductors and flux density, inducing…

  6. Module Ten: Transformers; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The module introduces a very important electrical device, the transformer. The module is divided into six lessons: transformer construction, transformer theory and operation, turns and voltage ratios, power and current, transformer efficiency, and semiconductor rectifiers. Each lesson consists of an overview, a list of study resources, lesson…

  7. Photovoltaic Module Reliability Workshop 2014: February 25-26, 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, S.

    2014-02-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  8. Basic Electricity. Training Module 3.325.1.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the basic concepts of electricity as applied to water and wastewater treatment. Included are objectives, instructor guides, student handouts, and transparency masters. This module considers definition of terms, voltage, current…

  9. Photovoltaic Module Reliability Workshop 2013: February 26-27, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, S.

    2013-10-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  10. Photovoltaic Module Reliability Workshop 2010: February 18-19, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, J.

    2013-11-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  11. 2016 NREL Photovoltaic Module Reliability Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Sarah

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology - both critical goals for moving PV technologies deeper into the electricity marketplace.

  12. 2015 NREL Photovoltaic Module Reliability Workshops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Sarah

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  13. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XX, TROUBLESHOOTING ELECTRICAL SYSTEMS.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO ACQUAINT THE TRAINEE WITH TROUBLESHOOTING PROCEDURES FOR DIESEL ENGINE ELECTRICAL SYSTEMS. TOPICS ARE (1) TROUBLESHOOTING ELECTRICAL SYSTEMS (INTRODUCTION), (2) TOOLS AND INSTRUMENTS FOR TROUBLESHOOTING, (3) THE BATTERY, (4) PERIODIC BATTERY SERVICING, (5) THE DC CHARGING SYSTEM, (6) PERIODIC…

  14. Trade Electricity. Lighting--Level 2. Standardized Curriculum.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Office of Occupational and Career Education.

    This curriculum guide consists of nine modules on lighting, one of the three divisions of the standardized trade electricity curriculum in high schools in New York City. The nine modules cover the following subjects: armored cable, rigid conduit, electrical metallic tubing, services and meters, fluorescent lighting, metal molding, wiremold, Romex,…

  15. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 25: Special Devices. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on special devices is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Two lessons are included in the module:…

  16. Army Sustainment. Volume 44, Issue 2, March-April 2012

    DTIC Science & Technology

    2012-04-01

    b.a. deGree in criMinal justice adMinistration froM con- cordia colleGe in MicHiGan. He is leVel iii certified in loGistics ManaGeMent and leVel ii...book and unit supply), plant maintenance, finance, and Defense Forces and Public Security (DFPS). Together, these modules provide enhanced...maintenance-related information for all assigned assets. The plant maintenance module provides users with equipment readiness and enhanced personnel

  17. Breakeven Prices for Photovoltaics on Supermarkets in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, S.; Clark, N.; Denholm, P.

    The photovoltaic (PV) breakeven price is the PV system price at which the cost of PV-generated electricity equals the cost of electricity purchased from the grid. This point is also called 'grid parity' and can be expressed as dollars per watt ($/W) of installed PV system capacity. Achieving the PV breakeven price depends on many factors, including the solar resource, local electricity prices, customer load profile, PV incentives, and financing. In the United States, where these factors vary substantially across regions, breakeven prices vary substantially across regions as well. In this study, we estimate current and future breakeven prices formore » PV systems installed on supermarkets in the United States. We also evaluate key drivers of current and future commercial PV breakeven prices by region. The results suggest that breakeven prices for PV systems installed on supermarkets vary significantly across the United States. Non-technical factors -- including electricity rates, rate structures, incentives, and the availability of system financing -- drive break-even prices more than technical factors like solar resource or system orientation. In 2020 (where we assume higher electricity prices and lower PV incentives), under base-case assumptions, we estimate that about 17% of supermarkets will be in utility territories where breakeven conditions exist at a PV system price of $3/W; this increases to 79% at $1.25/W (the DOE SunShot Initiative's commercial PV price target for 2020). These percentages increase to 26% and 91%, respectively, when rate structures favorable to PV are used.« less

  18. Graphene based terahertz phase modulators

    NASA Astrophysics Data System (ADS)

    Kakenov, N.; Ergoktas, M. S.; Balci, O.; Kocabas, C.

    2018-07-01

    Electrical control of amplitude and phase of terahertz radiation (THz) is the key technological challenge for high resolution and noninvasive THz imaging. The lack of active materials and devices hinders the realization of these imaging systems. Here, we demonstrate an efficient terahertz phase and amplitude modulation using electrically tunable graphene devices. Our device structure consists of electrolyte-gated graphene placed at quarter wavelength distance from a reflecting metallic surface. In this geometry, graphene operates as a tunable impedance surface which yields electrically controlled reflection phase. Terahertz time domain reflection spectroscopy reveals the voltage controlled phase modulation of π and the reflection modulation of 50 dB. To show the promises of our approach, we demonstrate a multipixel phase modulator array which operates as a gradient impedance surface.

  19. Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Xun-jun, E-mail: hexunjun@hrbust.edu.cn; Li, Teng-yue; Wang, Lei

    2014-05-07

    In this paper, we design and numerically demonstrate an electrically controllable light-matter interaction in a hybrid material/metamaterial system consisting of an artificially constructed cross cut-wire complementary metamaterial and an atomically thin graphene layer to realize terahertz (THz) wave modulator. By applying a bias voltage between the metamaterial and the graphene layer, this modulator can dynamically control the amplitude and phase of the transmitted wave near 1.43 THz. Moreover, the distributions of current density show that this large modulation depth can be attributed to the resonant electric field parallel to the graphene sheet. Therefore, the modulator performance indicates the enormous potentialmore » of graphene for developing sophisticated THz communication systems.« less

  20. Reception and learning of electric fields in bees

    PubMed Central

    Greggers, Uwe; Koch, Gesche; Schmidt, Viola; Dürr, Aron; Floriou-Servou, Amalia; Piepenbrock, David; Göpfert, Martin C.; Menzel, Randolf

    2013-01-01

    Honeybees, like other insects, accumulate electric charge in flight, and when their body parts are moved or rubbed together. We report that bees emit constant and modulated electric fields when flying, landing, walking and during the waggle dance. The electric fields emitted by dancing bees consist of low- and high-frequency components. Both components induce passive antennal movements in stationary bees according to Coulomb's law. Bees learn both the constant and the modulated electric field components in the context of appetitive proboscis extension response conditioning. Using this paradigm, we identify mechanoreceptors in both joints of the antennae as sensors. Other mechanoreceptors on the bee body are potentially involved but are less sensitive. Using laser vibrometry, we show that the electrically charged flagellum is moved by constant and modulated electric fields and more strongly so if sound and electric fields interact. Recordings from axons of the Johnston organ document its sensitivity to electric field stimuli. Our analyses identify electric fields emanating from the surface charge of bees as stimuli for mechanoreceptors, and as biologically relevant stimuli, which may play a role in social communication. PMID:23536603

  1. Reception and learning of electric fields in bees.

    PubMed

    Greggers, Uwe; Koch, Gesche; Schmidt, Viola; Dürr, Aron; Floriou-Servou, Amalia; Piepenbrock, David; Göpfert, Martin C; Menzel, Randolf

    2013-05-22

    Honeybees, like other insects, accumulate electric charge in flight, and when their body parts are moved or rubbed together. We report that bees emit constant and modulated electric fields when flying, landing, walking and during the waggle dance. The electric fields emitted by dancing bees consist of low- and high-frequency components. Both components induce passive antennal movements in stationary bees according to Coulomb's law. Bees learn both the constant and the modulated electric field components in the context of appetitive proboscis extension response conditioning. Using this paradigm, we identify mechanoreceptors in both joints of the antennae as sensors. Other mechanoreceptors on the bee body are potentially involved but are less sensitive. Using laser vibrometry, we show that the electrically charged flagellum is moved by constant and modulated electric fields and more strongly so if sound and electric fields interact. Recordings from axons of the Johnston organ document its sensitivity to electric field stimuli. Our analyses identify electric fields emanating from the surface charge of bees as stimuli for mechanoreceptors, and as biologically relevant stimuli, which may play a role in social communication.

  2. Vector electric field measurement via position-modulated Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Dwyer, Ryan P.; Smieska, Louisa M.; Tirmzi, Ali Moeed; Marohn, John A.

    2017-10-01

    High-quality spatially resolved measurements of electric fields are critical to understanding charge injection, charge transport, and charge trapping in semiconducting materials. Here, we report a variation of frequency-modulated Kelvin probe force microscopy that enables spatially resolved measurements of the electric field. We measure electric field components along multiple directions simultaneously by employing position modulation and lock-in detection in addition to numeric differentiation of the surface potential. We demonstrate the technique by recording linescans of the in-plane electric field vector in the vicinity of a patch of trapped charge in a 2,7-diphenyl[1]benzothieno[3,2-b][1]benzothiophene (DPh-BTBT) organic field-effect transistor. This technique is simple to implement and should be especially useful for studying electric fields in spatially inhomogeneous samples like organic transistors and photovoltaic blends.

  3. Module Configuration

    DOEpatents

    Oweis, Salah; D'Ussel, Louis; Chagnon, Guy; Zuhowski, Michael; Sack, Tim; Laucournet, Gaullume; Jackson, Edward J.

    2002-06-04

    A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.

  4. Frequency modulation detection in cochlear implant subjects

    NASA Astrophysics Data System (ADS)

    Chen, Hongbin; Zeng, Fan-Gang

    2004-10-01

    Frequency modulation (FM) detection was investigated in acoustic and electric hearing to characterize cochlear-implant subjects' ability to detect dynamic frequency changes and to assess the relative contributions of temporal and spectral cues to frequency processing. Difference limens were measured for frequency upward sweeps, downward sweeps, and sinusoidal FM as a function of standard frequency and modulation rate. In electric hearing, factors including electrode position and stimulation level were also studied. Electric hearing data showed that the difference limen increased monotonically as a function of standard frequency regardless of the modulation type, the modulation rate, the electrode position, and the stimulation level. In contrast, acoustic hearing data showed that the difference limen was nearly a constant as a function of standard frequency. This difference was interpreted to mean that temporal cues are used only at low standard frequencies and at low modulation rates. At higher standard frequencies and modulation rates, the reliance on the place cue is increased, accounting for the better performance in acoustic hearing than for electric hearing with single-electrode stimulation. The present data suggest a speech processing strategy that encodes slow frequency changes using lower stimulation rates than those typically employed by contemporary cochlear-implant speech processors. .

  5. Field-effect modulation of the thermoelectric characteristics of silicon nanowires on plastic substrates.

    PubMed

    Choi, Jinyong; Jeon, Youngin; Cho, Kyoungah; Kim, Sangsig

    2016-12-02

    In this study, we demonstrate the substantial enhancement of the thermoelectric power factors of silicon nanowires (SiNWs) on plastic substrates achievable by field-effect modulation. The Seebeck coefficient and electrical conductivity are adjusted by varying the charge carrier concentration via electrical modulation with a gate voltage in the 0 to ±5 range, thus enhancing the power factors from 2.08 to 935 μW K -2 m -1 ) for n-type SiNWs, and from 453 to 944 μW K -2 m -1 ) for p-type SiNWs. The electrically modulated thermoelectric characteristics of SiNWs are analyzed and discussed.

  6. Indoor unit for electric heat pump

    DOEpatents

    Draper, Robert; Lackey, Robert S.; Fagan, Jr., Thomas J.; Veyo, Stephen E.; Humphrey, Joseph R.

    1984-01-01

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module 10, an air mover module 12, and a resistance heat package module 14, the refrigeration module including all of the indoor refrigerant circuit components including the compressor 36 in a space adjacent the heat exchanger 28, the modules being adapted to be connected to air flow communication in several different ways as shown in FIGS. 4-7 to accommodate placement of the unit in various orientations.

  7. Photovoltaic Module Reliability Workshop 2012: February 28 - March 1, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, S.

    2013-11-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  8. Rugged microelectronic module package supports circuitry on heat sink

    NASA Technical Reports Server (NTRS)

    Johnson, A. L.

    1966-01-01

    Rugged module package for thin film hybrid microcircuits incorporated a rigid, thermally conductive support structure, which serves as a heat sink, and a lead wire block in which T-shaped electrical connectors are potted. It protects the circuitry from shock and vibration loads, dissipates internal heat, and simplifies electrical connections between adjacent modules.

  9. Three-Dimensional Finite-Element Simulation for a Thermoelectric Generator Module

    NASA Astrophysics Data System (ADS)

    Hu, Xiaokai; Takazawa, Hiroyuki; Nagase, Kazuo; Ohta, Michihiro; Yamamoto, Atsushi

    2015-10-01

    A three-dimensional closed-circuit numerical model of a thermoelectric generator (TEG) module has been constructed with COMSOL® Multiphysics to verify a module test system. The Seebeck, Peltier, and Thomson effects and Joule heating are included in the thermoelectric conversion model. The TEG model is employed to simulate the operation of a 16-leg TEG module based on bismuth telluride with temperature-dependent material properties. The module is mounted on a test platform, and simulated by combining the heat conduction process and thermoelectric conversion process. Simulation results are obtained for the terminal voltage, output power, heat flow, and efficiency as functions of the electric current; the results are compared with measurement data. The Joule and Thomson heats in all the thermoelectric legs, as functions of the electric current, are calculated by finite-element volume integration over the entire legs. The Peltier heat being pumped at the hot side and released at the cold side of the module are also presented in relation to the electric current. The energy balance relations between heat and electricity are verified to support the simulation.

  10. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Eleven: Capacitance. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on capacitance is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Seven lessons are included in the module:…

  11. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Two: Voltage. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on voltage is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Six lessons are included in the module: (1)…

  12. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Ten: Transformers. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on transformers is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Six lessons are included in the module:…

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, Jason

    Jason Harper, an electrical engineer in Argonne National Laboratory's EV-Smart Grid Interoperability Center, discusses his SpEC Module invention that will enable fast charging of electric vehicles in under 15 minutes. The module has been licensed to BTCPower.

  14. 75 FR 20832 - National Coal Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... DEPARTMENT OF ENERGY National Coal Council AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the National Coal Council (NCC). The Federal Advisory... Biomass/Coal Blending to Generate Electricity Council Business: [cir] Finance Report by Committee Chairman...

  15. 7 CFR 1710.400 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... alternative energy resources in their service territory. These programs may be considered an essential utility... GENERAL AND PRE-LOAN POLICIES AND PROCEDURES COMMON TO ELECTRIC LOANS AND GUARANTEES Energy Efficiency and... to loans and loan guarantees to finance Energy Efficiency and Conservation programs (EE Programs...

  16. Broadband and high modulation-depth THz modulator using low bias controlled VO2-integrated metasurface.

    PubMed

    Zhou, Gaochao; Dai, Penghui; Wu, Jingbo; Jin, Biaobing; Wen, Qiye; Zhu, Guanghao; Shen, Ze; Zhang, Caihong; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng

    2017-07-24

    An active vanadium dioxide integrated metasurface offering broadband transmitted terahertz wave modulation with large modulation-depth under electrical control is demonstrated. The device consists of metal bias-lines arranged with grid-structure patterned vanadium dioxide (VO 2 ) film on sapphire substrate. Amplitude transmission is continuously tuned from more than 78% to 28% or lower in the frequency range from 0.3 THz to 1.0 THz, by means of electrical bias at temperature of 68 °C. The physical mechanism underlying the device's electrical tunability is investigated and found to be attributed to the ohmic heating. The developed device possessing over 87% modulation depth with 0.7 THz frequency band is expected to have many potential applications in THz regime such as tunable THz attenuator.

  17. Power Generation Evaluated on a Bismuth Telluride Unicouple Module

    NASA Astrophysics Data System (ADS)

    Hu, Xiaokai; Nagase, Kazuo; Jood, Priyanka; Ohta, Michihiro; Yamamoto, Atsushi

    2015-06-01

    The power generated by a thermoelectric unicouple module made of Bi2Te3 alloy was evaluated by use of a newly developed instrument. An electrical load was connected to the module, and the terminal voltage and output power of the module were obtained by altering electric current. Water flow was used to cool the cold side of the module and for heat flow measurement, by monitoring inlet and outlet temperatures. When the electric current was increased, heat flow was enhanced as a result of the Peltier effect and Joule heating. Voltage, power, heat flow, and efficiency as functions of current were determined for hot-side temperatures from 50 to 220°C. Maximum power output and peak conversion efficiency could thus be easily derived for each temperature.

  18. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 32: Intermediate Oscillators; Module 33: Special Devices; Module 34: Linear Integrated Circuits. Students Guide.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This student guidebook is designed for use with the study booklets in modules 32 through 34 included in the military-developed course on basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. An…

  19. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 20: Solid State Power Supplies; 20T: Electron Tube Power Supplies. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This set of individualized learning modules on power supplies is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Two modules are included in the…

  20. Phase modulation of mid-infrared radiation in double-quantum-well structures under a lateral electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balagula, R. M.; Vinnichenko, M. Ya.; Makhov, I. S.

    2017-03-15

    The modulation of polarized radiation by GaAs/AlGaAs structures with tunnel-coupled double quantum wells in a strong lateral electric field is studied. The spectra of the variation in the refractive index under a lateral electric field in the vicinity of the intersubband resonance are experimentally investigated.

  1. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XI, INTRODUCTION TO ELECTRICAL MAINTENANCE FOR OFF-HIGHWAY VEHICLES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO FAMILIARIZE THE TRAINEE WITH THE FUNDAMENTALS OF ELECTRICITY AND MAGNETISM AS THEY RELATE TO DIESEL POWERED EQUIPMENT. TOPICS ARE (1) FUNDAMENTALS OF ELECTRICITY AND MAGNETISM, (2) ELECTROMAGNETIC FIELDS, (3) MAGNETIC FORCE ON A CONDUCTOR, (4) ELECTROMAGNETIC INDUCTION, (5) OHM'S LAW, (6) METER…

  2. Thermal and other tests of photovoltaic modules performed in natural sunlight

    NASA Technical Reports Server (NTRS)

    Stultz, J. W.

    1979-01-01

    The nominal operating cell temperature (NOCT), an effective way to characterize the thermal performance of a photovoltaic module in natural sunlight, is developed. NOCT measurements for more than twenty different modules are presented. Changes in NOCT reflect changes in module design, residential roof mounting, and dirt accumulation. Other test results show that electrical performance is improved by cooling modules with water and by use of a phase change wax. Electrical degradation resulting from the marriage of photovoltaic and solar water heating modules is demonstrated. Cost-effectiveness of each of these techniques is evaluated.

  3. Interface Control Document for the EMPACT Module that Estimates Electric Power Transmission System Response to EMP-Caused Damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werley, Kenneth Alan; Mccown, Andrew William

    The EPREP code is designed to evaluate the effects of an Electro-Magnetic Pulse (EMP) on the electric power transmission system. The EPREP code embodies an umbrella framework that allows a user to set up analysis conditions and to examine analysis results. The code links to three major physics/engineering modules. The first module describes the EM wave in space and time. The second module evaluates the damage caused by the wave on specific electric power (EP) transmission system components. The third module evaluates the consequence of the damaged network on its (reduced) ability to provide electric power to meet demand. Thismore » third module is the focus of the present paper. The EMPACT code serves as the third module. The EMPACT name denotes EMP effects on Alternating Current Transmission systems. The EMPACT algorithms compute electric power transmission network flow solutions under severely damaged network conditions. Initial solutions are often characterized by unacceptible network conditions including line overloads and bad voltages. The EMPACT code contains algorithms to adjust optimally network parameters to eliminate network problems while minimizing outages. System adjustments include automatically adjusting control equipment (generator V control, variable transformers, and variable shunts), as well as non-automatic control of generator power settings and minimal load shedding. The goal is to evaluate the minimal loss of customer load under equilibrium (steady-state) conditions during peak demand.« less

  4. Middle East fuel supply & gas exports for power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, G.K.; Newendorp, T.

    1995-12-31

    The Middle East countries that border on, or are near, the Persian Gulf hold over 65% of the world`s estimated proven crude oil reserves and 32% of the world`s estimated proven natural gas reserves. In fact, approximately 5% of the world`s total proven gas reserves are located in Qatar`s offshore North Field. This large natural gas/condensate field is currently under development to supply three LNG export projects, as well as a sub-sea pipeline proposal to export gas to Pakistan. The Middle East will continue to be a major source of crude oil and oil products to world petroleum markets, includingmore » fuel for existing and future base load, intermediate cycling and peaking electric generation plants. In addition, as the Persian Gulf countries turn their attention to exploiting their natural gas resources, the fast-growing need for electricity in the Asia-Pacific and east Africa areas offers a potential market for both pipeline and LNG export opportunities to fuel high efficiency, gas-fired combustion turbine power plants. Mr. Mitchell`s portion of this paper will discuss the background, status and timing of several Middle Eastern gas export projects that have been proposed. These large gas export projects are difficult and costly to develop and finance. Consequently, any IPP developers that are considering gas-fired projects which require Mid-East LNG as a fuel source, should understand the numerous sources and timing to securing project debt, loan terms and conditions, and, restrictions/credit rating issues associated with securing financing for these gas export projects. Mr. Newendorp`s section of the paper will cover the financing aspects of these projects, providing IPP developers with additional considerations in selecting the primary fuel supply for an Asian-Pacific or east African electric generation project.« less

  5. Empirical testing of an analytical model predicting electrical isolation of photovoltaic models

    NASA Astrophysics Data System (ADS)

    Garcia, A., III; Minning, C. P.; Cuddihy, E. F.

    A major design requirement for photovoltaic modules is that the encapsulation system be capable of withstanding large DC potentials without electrical breakdown. Presented is a simple analytical model which can be used to estimate material thickness to meet this requirement for a candidate encapsulation system or to predict the breakdown voltage of an existing module design. A series of electrical tests to verify the model are described in detail. The results of these verification tests confirmed the utility of the analytical model for preliminary design of photovoltaic modules.

  6. Full-Field Spectroscopy at Megahertz-frame-rates: Application of Coherent Time-Stretch Transform

    NASA Astrophysics Data System (ADS)

    DeVore, Peter Thomas Setsuda

    Outliers or rogue events are found extensively in our world and have incredible effects. Also called rare events, they arise in the distribution of wealth (e.g., Pareto index), finance, network traffic, ocean waves, and e-commerce (selling less of more). Interest in rare optical events exploded after the sighting of optical rogue waves in laboratory experiments at UCLA. Detecting such tail events in fast streams of information necessitates real-time measurements. The Coherent Time-Stretch Transform chirps a pulsed source of radiation so that its temporal envelope matches its spectral profile (analogous to the far field regime of spatial diffraction), and the mapped spectral electric field is slow enough to be captured by a real-time digitizer. Combining this technique with spectral encoding, the time stretch technique has enabled a new class of ultra-high performance spectrometers and cameras (30+ MHz), and analog-to-digital converters that have led to the discovery of optical rogue waves and detection of cancer cells in blood with one in a million sensitivity. Conventionally, the Coherent Time-Stretch Transform maps the spectrum into the temporal electric field, but the time-dilation process along with inherent fiber losses results in reduction of peak power and loss of sensitivity, a problem exacerbated by extremely narrow molecular linewidths. The loss issue notwithstanding, in many cases the requisite dispersive optical device is not available. By extending the Coherent Time-Stretch Transform to the temporal near field, I have demonstrated, for the first time, phase-sensitive absorption spectroscopy of a gaseous sample at millions of frames per second. As the Coherent Time-Stretch Transform may capture both near and far field optical waves, it is a complete spectro-temporal optical characterization tool. This is manifested as an amplitude-dependent chirp, which implies the ability to measure the complex refractive index dispersion at megahertz frame rates. This technique is not only four orders of magnitude faster than even the fastest (kHz) spectrometers, but will also enable capture of real-time complex dielectric function dynamics of plasmas and chemical reactions (e.g. combustion). It also has applications in high-energy physics, biology, and monitoring fast high-throughput industrial processes. Adding an electro-optic modulator to the Time-Stretch Transform yields time-to-time mapping of electrical waveforms. Known as TiSER, it is an analog slow-motion processor that uses light to reduce the bandwidth of broadband RF signals for capture by high-sensitivity analog-to-digital converters (ADC). However, the electro-optic modulator limits the electrical bandwidth of TiSER. To solve this, I introduced Optical Sideband-only Amplification, wherein electro-optically generated modulation (containing the RF information) is amplified at the expense of the carrier, addressing the two most important problems plaguing electro-optic modulators: (1) low RF bandwidth and (2) high required RF drive voltages. I demonstrated drive voltage reductions of 5x at 10 GHz and 10x at 50 GHz, while simultaneously increasing the RF bandwidth.

  7. Modeling the irradiance and temperature rependence of photovoltaic modules in PVsyst

    DOE PAGES

    Sauer, Kenneth J.; Roessler, Thomas; Hansen, Clifford W.

    2014-11-10

    In order to reliably simulate the energy yield of photovoltaic (PV) systems, it is necessary to have an accurate model of how the PV modules perform with respect to irradiance and cell temperature. Building on previous work that addresses the irradiance dependence, two approaches to fit the temperature dependence of module power in PVsyst have been developed and are applied here to recent multi-irradiance and -temperature data for a standard Yingli Solar PV module type. The results demonstrate that it is possible to match the measured irradiance and temperature dependence of PV modules in PVsyst. As a result, improvements inmore » energy yield prediction using the optimized models relative to the PVsyst standard model are considered significant for decisions about project financing.« less

  8. Engineering study of the module/array interface for large terrestrial photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Three major areas--structural, electrical, and maintenance--were evaluated. Efforts in the structural area included establishing acceptance criteria for materials and members, determining loading criteria, and analyzing glass modules in various framing system configurations. Array support structure design was addressed briefly. Electrical considerations included evaluation of module characteristics, intermodule connectors, array wiring, converters and lightning protection. Plant maintenance features such as array cleaning, failure detection, and module installation and replacement were addressed.

  9. 7 CFR 1724.10 - Standard forms of contracts for borrowers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND..., engineering services, and architectural services financed by a loan made or guaranteed by RUS. This part... how borrowers are required to use RUS standard forms of contracts for engineering and architectural...

  10. 78 FR 40089 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... Procedures and Requirements for Telecommunications Program. OMB Control Number: 0572-0079. Summary Of... makes mortgage loans and loan guarantees to finance telecommunications, electric, and water and waste... the Government's security for loans made by RUS are reasonably adequate and that the loans will be...

  11. Optical Limiting Using the Two-Photon Absorption Electrical Modulation Effect in HgCdTe Photodiode

    PubMed Central

    Cui, Haoyang; Yang, Junjie; Zeng, Jundong; Tang, Zhong

    2013-01-01

    The electrical modulation properties of the output intensity of two-photon absorption (TPA) pumping were analyzed in this paper. The frequency dispersion dependence of TPA and the electric field dependence of TPA were calculated using Wherrett theory model and Garcia theory model, respectively. Both predicted a dramatic variation of TPA coefficient which was attributed into the increasing of the transition rate. The output intensity of the laser pulse propagation in the pn junction device was calculated by using function-transfer method. It shows that the output intensity increases nonlinearly with increasing intensity of incident light and eventually reaches saturation. The output saturation intensity depends on the electric field strength; the greater the electric field, the smaller the output intensity. Consequently, the clamped saturation intensity can be controlled by the electric field. The prior advantage of electrical modulation is that the TPA can be varied extremely continuously, thus adjusting the output intensity in a wide range. This large change provides a manipulate method to control steady output intensity of TPA by adjusting electric field. PMID:24198721

  12. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 23: Multivibrators. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on multivibrators is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Three lessons are included in the…

  13. Characterization of a low concentrator photovoltaics module

    NASA Astrophysics Data System (ADS)

    Butler, B. A.; van Dyk, E. E.; Vorster, F. J.; Okullo, W.; Munji, M. K.; Booysen, P.

    2012-05-01

    Low concentration photovoltaic (LCPV) systems have the potential to reduce the cost per kWh of electricity compared to conventional flat-plate photovoltaics (PV) by up to 50%. The cost-savings are realised by replacing expensive PV cells with relatively cheaper optical components to concentrate incident solar irradiance onto a receiver and by tracking the sun along either 1 axis or 2 axes. A LCPV module consists of three interrelated subsystems, viz., the optical, electrical and the thermal subsystems, which must be considered for optimal module design and performance. Successful integration of these subsystems requires the balancing of cost, performance and reliability. In this study LCPV experimental prototype modules were designed, built and evaluated with respect to optimisation of the three subsystems and overall performance. This paper reports on the optical and electrical evaluation of a prototype LCPV module.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The study was funded by the U.S. Trade and Development Agency on behalf of Kenya's Ministry of Agriculture. The purpose of the report is to determine the economic, technical, and financial viability of implementing bagasse based cogeneration projects in Kenya. The study is divided into the following sections: (1) Executive Summary, (2) Terms of Reference, (3) Bagasse Fuel for Generation, (4) The Electrical Power Situation in Kenya, (5) Export Electricity Potential from Nyando Sugar Belt, (6) Export Potential from Proposed New Sugar Factories; (7) Financial, (8) Project Financing, (9) Demonstration Project.

  15. Numerical investigation of the thermal and electrical performances for combined solar photovoltaic/thermal (PV/T) modules based on internally extruded fin flow channel

    NASA Astrophysics Data System (ADS)

    Deng, Y. C.; Li, Q. P.; Wang, G. J.

    2017-11-01

    A solar photovoltaic/thermal (PV/T) module based on internally extruded fin flow channel was investigated numerically in this paper. First of all, the structures of the thin plate heat exchanger and the PV/T module were presented. Then, a numerical model of the PV/T module considering solar irradiation, fluid flow and heat transfer was developed to analyze the performance of the module. Finally, the steady electrical and thermal efficiencies of the PV/T module at different inlet water temperatures and mass flow rates were achieved. These numerical results supply theory basis for practical application of the PV/T module.

  16. Developing Control System of Electrical Devices with Operational Expense Prediction

    NASA Astrophysics Data System (ADS)

    Sendari, Siti; Wahyu Herwanto, Heru; Rahmawati, Yuni; Mukti Putranto, Dendi; Fitri, Shofiana

    2017-04-01

    The purpose of this research is to develop a system that can monitor and record home electrical device’s electricity usage. This system has an ability to control electrical devices in distance and predict the operational expense. The system was developed using micro-controllers and WiFi modules connected to PC server. The communication between modules is arranged by server via WiFi. Beside of reading home electrical devices electricity usage, the unique point of the proposed-system is the ability of micro-controllers to send electricity data to server for recording the usage of electrical devices. The testing of this research was done by Black-box method to test the functionality of system. Testing system run well with 0% error.

  17. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, Howard D.

    1996-01-01

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.

  18. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 3: General purpose spacecraft segment and module specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The specifications for the Earth Observatory Satellite (EOS) general purpose aircraft segment are presented. The satellite is designed to provide attitude stabilization, electrical power, and a communications data handling subsystem which can support various mission peculiar subsystems. The various specifications considered include the following: (1) structures subsystem, (2) thermal control subsystem, (3) communications and data handling subsystem module, (4) attitude control subsystem module, (5) power subsystem module, and (6) electrical integration subsystem.

  19. Electrical modulation of the complex refractive index in mid-infrared quantum cascade lasers.

    PubMed

    Teissier, J; Laurent, S; Manquest, C; Sirtori, C; Bousseksou, A; Coudevylle, J R; Colombelli, R; Beaudoin, G; Sagnes, I

    2012-01-16

    We have demonstrated an integrated three terminal device for the modulation of the complex refractive index of a distributed feedback quantum cascade laser (QCL). The device comprises an active region to produce optical gain vertically stacked with a control region made of asymmetric coupled quantum wells (ACQW). The optical mode, centered on the gain region, has a small overlap also with the control region. Owing to the three terminals an electrical bias can be applied independently on both regions: on the laser for producing optical gain and on the ACQW for tuning the energy of the intersubband transition. This allows the control of the optical losses at the laser frequency as the absorption peak associated to the intersubband transition can be electrically brought in and out the laser transition. By using this function a laser modulation depth of about 400 mW can be achieved by injecting less than 1 mW in the control region. This is four orders of magnitude less than the electrical power needed using direct current modulation and set the basis for the realisation of electrical to optical transducers.

  20. Contactless Electroluminescence Imaging for Cell and Module Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Steve

    2015-06-14

    Module performance can be characterized by imaging using baseline and periodic images to track defects and degradation. Both thermal images, which can be acquired during sunny operating conditions, and photoluminescence images, which could be acquired at night, can be collected without electrical connection. Electroluminescence (EL) images, which are useful to detect many types of defects such as cracks, interconnect and solder faults, and resistances, have typically required electrical connection to drive current in the cells and modules. Here, a contactless EL imaging technique is proposed, which provides an EL image without the need for electrical connection to drive current throughmore » the module. Such EL imaging has the capability to be collected at night without disruption to daytime power generation.« less

  1. Variable power distribution for zoned regeneration of an electrically heated particulate filter

    DOEpatents

    Bhatia, Garima [Bangalore, IN; Gonze, Eugene V [Pinckney, MI

    2012-04-03

    A system includes a particulate matter (PM) filter with multiple zones, an electric heater and a control module. The electrical heater includes heater segments, which each correspond with a respective one of the zones. The electrical heater is arranged upstream from and is proximate with the PM filter. The control module selectively applies a first energy level to a first one of the zones via a first one of the heater segments to initiate regeneration in the first zone. The control module also selectively applies a second energy level that is less than the first energy level to a second one of the zones via a second one of the heater segments to initiate regeneration in the second zone.

  2. Integrated exhaust and electrically heated particulate filter regeneration systems

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2013-01-08

    A system includes a particulate matter (PM) filter that includes multiple zones. An electrical heater includes heater segments that are associated with respective ones of the zones. The electrical heater is arranged upstream from and proximate with the PM filter. A post-fuel injection system injects fuel into at least one of a cylinder of an engine and an exhaust system. A control module is configured to operate in a first mode that includes activating the electrical heater to heat exhaust of the engine. The control module is also configured to operate in a second mode that includes activating the post-injection system to heat the exhaust. The control module selectively operates in at least one of the first mode and the second mode.

  3. 7 CFR 1717.858 - Lien subordination for rural development investments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... requirements on accounting, financial reporting, record keeping, and irregularities (see § 1717.854(c)(5)). RUS... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE POST-LOAN POLICIES AND PROCEDURES COMMON TO INSURED AND GUARANTEED ELECTRIC LOANS Lien Accommodations and Subordinations for 100 Percent Private Financing § 1717.858...

  4. 7 CFR 1717.858 - Lien subordination for rural development investments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... requirements on accounting, financial reporting, record keeping, and irregularities (see § 1717.854(c)(5)). RUS... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE POST-LOAN POLICIES AND PROCEDURES COMMON TO INSURED AND GUARANTEED ELECTRIC LOANS Lien Accommodations and Subordinations for 100 Percent Private Financing § 1717.858...

  5. 7 CFR 1717.858 - Lien subordination for rural development investments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... requirements on accounting, financial reporting, record keeping, and irregularities (see § 1717.854(c)(5)). RUS... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE POST-LOAN POLICIES AND PROCEDURES COMMON TO INSURED AND GUARANTEED ELECTRIC LOANS Lien Accommodations and Subordinations for 100 Percent Private Financing § 1717.858...

  6. 7 CFR 1717.858 - Lien subordination for rural development investments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... requirements on accounting, financial reporting, record keeping, and irregularities (see § 1717.854(c)(5)). RUS... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE POST-LOAN POLICIES AND PROCEDURES COMMON TO INSURED AND GUARANTEED ELECTRIC LOANS Lien Accommodations and Subordinations for 100 Percent Private Financing § 1717.858...

  7. Compact magnetic energy storage module

    DOEpatents

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  8. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 34: Linear Integrated Circuits. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on linear integrated circuits is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Two lessons are included in…

  9. Compact magnetic energy storage module

    DOEpatents

    Prueitt, Melvin L.

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  10. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 33: Special Devices. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on special devices is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Four lessons are included in the…

  11. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 30: Intermediate Power Supplies. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on intermediate power supplies is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Four lessons are included…

  12. Novel monolithic integration scheme for high-speed electroabsorption modulators and semiconductor optical amplifiers using cascaded structure.

    PubMed

    Lin, Fang-Zheng; Wu, Tsu-Hsiu; Chiu, Yi-Jen

    2009-06-08

    A new monolithic integration scheme, namely cascaded-integration (CI), for improving high-speed optical modulation is proposed and demonstrated. High-speed electroabsorption modulators (EAMs) and semiconductor optical amplifiers (SOAs) are taken as the integrated elements of CI. This structure is based on an optical waveguide defined by cascading segmented EAMs with segmented SOAs, while high-impedance transmission lines (HITLs) are used for periodically interconnecting EAMs, forming a distributive optical re-amplification and re-modulation. Therefore, not only the optical modulation can be beneficial from SOA gain, but also high electrical reflection due to EAM low characteristic impedance can be greatly reduced. Two integration schemes, CI and conventional single-section (SS), with same total EAM- and SOA- lengths are fabricated and compared to examine the concept. Same modulation-depth against with EAM bias (up to 5V) as well as SOA injection current (up to 60mA) is found in both structures. In comparison with SS, a < 1dB extra optical-propagation loss in CI is measured due to multi-sections of electrical-isolation regions between EAMs and SOAs, suggesting no significant deterioration in CI on DC optical modulation efficiency. Lower than -12dB of electrical reflection from D.C. to 30GHz is observed in CI, better than -5dB reflection in SS for frequency of above 5GHz. Superior high-speed electrical properties in CI structure can thus lead to higher speed of electrical-to-optical (EO) response, where -3dB bandwidths are >30GHz and 13GHz for CI and SS respectively. Simulation results on electrical and EO response are quite consistent with measurement, confirming that CI can lower the driving power at high-speed regime, while the optical loss is still kept the same level. Taking such distributive advantage (CI) with optical gain, not only higher-speed modulation with high output optical power can be attained, but also the trade-off issue due to impedance mismatch can be released to reduce the driving power of modulator. Such kind of monolithic integration scheme also has potential for the applications of other high-speed optoelectronics devices.

  13. Thermal and optical performance of encapsulation systems for flat-plate photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Minning, C. P.; Coakley, J. F.; Perrygo, C. M.; Garcia, A., III; Cuddihy, E. F.

    1981-01-01

    The electrical power output from a photovoltaic module is strongly influenced by the thermal and optical characteristics of the module encapsulation system. Described are the methodology and computer model for performing fast and accurate thermal and optical evaluations of different encapsulation systems. The computer model is used to evaluate cell temperature, solar energy transmittance through the encapsulation system, and electric power output for operation in a terrestrial environment. Extensive results are presented for both superstrate-module and substrate-module design schemes which include different types of silicon cell materials, pottants, and antireflection coatings.

  14. Electrical system for pulse-width modulated control of a power inverter using phase-shifted carrier signals and related operating methods

    DOEpatents

    Welchko, Brian A [Torrance, CA

    2012-02-14

    Systems and methods are provided for pulse-width modulated control of power inverter using phase-shifted carrier signals. An electrical system comprises an energy source and a motor. The motor has a first set of windings and a second set of windings, which are electrically isolated from each other. An inverter module is coupled between the energy source and the motor and comprises a first set of phase legs coupled to the first set of windings and a second set of phase legs coupled to the second set of windings. A controller is coupled to the inverter module and is configured to achieve a desired power flow between the energy source and the motor by modulating the first set of phase legs using a first carrier signal and modulating the second set of phase legs using a second carrier signal. The second carrier signal is phase-shifted relative to the first carrier signal.

  15. Electrical capacitance clearanceometer

    NASA Technical Reports Server (NTRS)

    Hester, Norbert J. (Inventor); Hornbeck, Charles E. (Inventor); Young, Joseph C. (Inventor)

    1992-01-01

    A hot gas turbine engine capacitive probe clearanceometer is employed to measure the clearance gap or distance between blade tips on a rotor wheel and its confining casing under operating conditions. A braze sealed tip of the probe carries a capacitor electrode which is electrically connected to an electrical inductor within the probe which is inserted into a turbine casing to position its electrode at the inner surface of the casing. Electrical power is supplied through a voltage controlled variable frequency oscillator having a tuned circuit in which the probe is a component. The oscillator signal is modulated by a change in electrical capacitance between the probe electrode and a passing blade tip surface while an automatic feedback correction circuit corrects oscillator signal drift. A change in distance between a blade tip and the probe electrode is a change in capacitance therebetween which frequency modulates the oscillator signal. The modulated oscillator signal which is then processed through a phase detector and related circuitry to provide an electrical signal is proportional to the clearance gap.

  16. Manifold, bus support and coupling arrangement for solid oxide fuel cells

    DOEpatents

    Parry, Gareth W.

    1989-01-01

    Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperture resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. The piping thus forms a manfold for directing fuel and air to each module in a string and makes electrical contact with the module's anode and cathode to conduct the DC power generated by the SOFC. The piping also provides structureal support for each individual module and maintains each string of modules as a structurally integral unit for ensuring high strength in a large 3-dimensional array of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC.

  17. Modelling of the Installed Capacity of Landfill Power Stations

    NASA Astrophysics Data System (ADS)

    Blumberga, D.; Kuplais, Ģ.; Veidenbergs, I.; Dāce, E.; Gušča, J.

    2009-01-01

    More and more landfills are being developed, in which biogas is produced and accumulated, which can be used for electricity production. Currently, due to technological reasons, electricity generation from biogas has a very low level of efficiency. In order to develop this type of energy production, it is important to find answers to various engineering, economic and ecological issues. The paper outlines the results obtained by creating a model for the calculations of electricity production in landfill power stations and by testing it in the municipal solid waste landfill "Daibe". The algorithm of the mathematical model for the operation of a biogas power station consists of four main modules: • initial data module, • engineering calculation module, • tariff calculation module, and • climate calculation module. As a result, the optimum capacity of the power station in the landfill "Daibe" is determined, as well as the analysis of the landfill's economic data and cost-effectiveness is conducted.

  18. Electrically and spatially controllable PDLC phase gratings for diffraction and modulation of laser beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadjichristov, Georgi B., E-mail: georgibh@issp.bas.bg; Marinov, Yordan G.; Petrov, Alexander G.

    2016-03-25

    We present a study on electrically- and spatially-controllable laser beam diffraction, electrooptic (EO) phase modulation, as well as amplitude-frequency EO modulation by single-layer microscale polymer-dispersed liquid crystal (PDLC) phase gratings (PDLC SLPGs) of interest for device applications. PDLC SLPGs were produced from nematic liquid crystal (LC) E7 in photo-curable NOA65 polymer. The wedge-formed PDLC SLPGs have a continuously variable thickness (2–25 µm). They contain LC droplets of diameters twice as the layer thickness, with a linear-gradient size distribution along the wedge. By applying alternating-current (AC) electric field, the PDLC SLPGs produce efficient: (i) diffraction splitting of transmitted laser beams; (ii)more » spatial redistribution of diffracted light intensity; (iii) optical phase modulation; (iv) amplitude-frequency modulation, all controllable by the driven AC field and the droplet size gradient.« less

  19. Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization

    PubMed Central

    Bueno-Orovio, Alfonso; Kay, David; Grau, Vicente; Rodriguez, Blanca; Burrage, Kevin

    2014-01-01

    Impulse propagation in biological tissues is known to be modulated by structural heterogeneity. In cardiac muscle, improved understanding on how this heterogeneity influences electrical spread is key to advancing our interpretation of dispersion of repolarization. We propose fractional diffusion models as a novel mathematical description of structurally heterogeneous excitable media, as a means of representing the modulation of the total electric field by the secondary electrical sources associated with tissue inhomogeneities. Our results, analysed against in vivo human recordings and experimental data of different animal species, indicate that structural heterogeneity underlies relevant characteristics of cardiac electrical propagation at tissue level. These include conduction effects on action potential (AP) morphology, the shortening of AP duration along the activation pathway and the progressive modulation by premature beats of spatial patterns of dispersion of repolarization. The proposed approach may also have important implications in other research fields involving excitable complex media. PMID:24920109

  20. Ring modulator small-signal response analysis based on pole-zero representation.

    PubMed

    Karimelahi, Samira; Sheikholeslami, Ali

    2016-04-04

    We present a closed-form expression for the small-signal response of a depletion-mode ring modulator and verify it by measurement results. Both electrical and optical behavior of micro-ring modulator as well as the loss variation due to the index modulation is considered in the derivation. This expression suggests that a ring modulator is a third-order system with one real pole, one zero and a pair of complex-conjugate poles. The exact positions of the poles/zero are given and shown to be dependent upon parameters such as electrical bandwidth, coupling condition, optical loss, and sign/value of laser detunings. We show that the location of zero is different for positive and negative detuning, and therefore, the ring modulator frequency response is asymmetric. We use the gain-bandwidth product as a figure of merit and calculate it for various pole/zero locations. We show that gain-bandwidth for the over-coupled ring modulator is superior compared to other coupling conditions. Also, we show that the gain-bandwidth product can be increased to a limit by increasing the electrical bandwidth.

  1. I-V Curves from Photovoltaic Modules Deployed in Tucson

    NASA Astrophysics Data System (ADS)

    Kopp, Emily; Brooks, Adria; Lonij, Vincent; Cronin, Alex

    2011-10-01

    More than 30 Mega Watts of photo-voltaic (PV) modules are connected to the electric power grid in Tucson, AZ. However, predictions of PV system electrical yields are uncertain, in part because PV modules degrade at various rates (observed typically in the range 0% to 3 %/yr). We present I-V curves (PV output current as a function of PV output voltage) as a means to study PV module efficiency, de-ratings, and degradation. A student-made I-V curve tracer for 100-Watt modules will be described. We present I-V curves for several different PV technologies operated at an outdoor test yard, and we compare new modules to modules that have been operated in the field for 10 years.

  2. Method and Apparatus for Improved Spatial Light Modulation

    NASA Technical Reports Server (NTRS)

    Soutar, Colin (Inventor); Juday, Richard D. (Inventor)

    2000-01-01

    A method and apparatus for modulating a light beam in an optical processing system is described. Preferably, an electrically-controlled polarizer unit and/or an analyzer unit are utilized in combination with a spatial light modulator and a controller. Preferably, the spatial light modulator comprises a pixelated birefringent medium such as a liquid crystal video display. The combination of the electrically controlled polarizer unit and analyzer unit make it simple and fast to reconfigure the modulation described by the Jones matrix of the spatial light modulator. A particular optical processing objective is provided to the controller. The controller performs calculations and supplies control signals to the polarizer unit, the analyzer unit, and the spatial light modulator in order to obtain the optical processing objective.

  3. Method and Apparatus for Improved Spatial Light Modulation

    NASA Technical Reports Server (NTRS)

    Colin, Soutar (Inventor); Juday, Richard D. (Inventor)

    1999-01-01

    A method and apparatus for modulating a light beam in an optical processing system is described. Preferably, an electrically-controlled polarizer unit and/or an analyzer unit are utilized in combination with a spatial light modulator and a controller. Preferably, the spatial light modulator comprises a pixelated birefringent medium such as a liquid crystal video display. The combination of the electrically controlled polarizer unit and analyzer unit make it simple and fast to reconfigure the modulation described by the Jones matrix of the spatial light modulator. A particular optical processing objective is provided to the controller. The controller performs calculations and supplies control signals to the polarizer unit, the analyzer unit, and the spatial light modulator in order to obtain die optical processing objective.

  4. Electrical Prototype Power Processor for the 30-cm Mercury electric propulsion engine

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Frye, R. J.

    1978-01-01

    An Electrical Prototpye Power Processor has been designed to the latest electrical and performance requirements for a flight-type 30-cm ion engine and includes all the necessary power, command, telemetry and control interfaces for a typical electric propulsion subsystem. The power processor was configured into seven separate mechanical modules that would allow subassembly fabrication, test and integration into a complete power processor unit assembly. The conceptual mechanical packaging of the electrical prototype power processor unit demonstrated the relative location of power, high voltage and control electronic components to minimize electrical interactions and to provide adequate thermal control in a vacuum environment. Thermal control was accomplished with a heat pipe simulator attached to the base of the modules.

  5. Automation in College Libraries.

    ERIC Educational Resources Information Center

    Werking, Richard Hume

    1991-01-01

    Reports the results of a survey of the "Bowdoin List" group of liberal arts colleges. The survey obtained information about (1) automation modules in place and when they had been installed; (2) financing of automation and its impacts on the library budgets; and (3) library director's views on library automation and the nature of the…

  6. 78 FR 69367 - Golden Valley Electric Association: Healy Power Plant Unit #2 Restart

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ...: Deirdre M. Remley, Environmental Protection Specialist, RUS, Water and Environmental Programs, Engineering...: (202) 720-9640 or email: [email protected] . The ROD is also available at RUS's Web site at... additional engineering and financial review, administrative actions and financing that would facilitate GVEA...

  7. 77 FR 48134 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Combined Notice of Filings 2 Take notice that the Commission received the following electric corporate filings: Docket Numbers: EC12-129-000 Applicants: Baja California Power, Inc, Uluru Finance Limited, China Huaneng Group HK Ltd., Upper Horm Investments Ltd., Overseas International Inc....

  8. National Gas Cool Times, September/October 2000.

    ERIC Educational Resources Information Center

    Natural Gas Cool Times, 2000

    2000-01-01

    Several articles are presented covering the development and use of gas/electric cooling solutions for public schools and colleges. Articles address financing issues; indoor air quality (IAQ) problems and solutions; and the analysis of heating, ventilation, and air conditioning systems. Three examples of how schools solved their cooling problems…

  9. 7 CFR 1710.52 - Loan guarantees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Loan guarantees. 1710.52 Section 1710.52 Agriculture... GENERAL AND PRE-LOAN POLICIES AND PROCEDURES COMMON TO ELECTRIC LOANS AND GUARANTEES Types of Loans and Loan Guarantees § 1710.52 Loan guarantees. RUS provides financing through 100 percent loan guarantees...

  10. 76 FR 41448 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-14

    ... assumptions used; (c) ways to enhance the quality, utility and clarity of the information to be collected; (d) ways to minimize the burden of the collection of information on those who are to respond, including... agency makes loans (direct and guaranteed) to finance electric and telecommunications facilities in rural...

  11. Synaptic Effects of Electric Fields

    NASA Astrophysics Data System (ADS)

    Rahman, Asif

    Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits. Moreover, stimulation polarity has asymmetric effects on synaptic strength making it easier to enhance ongoing plasticity. These results suggest that the susceptibility of brain networks to an electric field depends on the state of synaptic activity. Combining a training task, which activates specific circuits, with TES may lead to functionally-specific effects. Given the simplicity of TES and the complexity of brain function, understanding the mechanisms leading to specificity is fundamental to the rational advancement of TES.

  12. Fuel Cell/Electrochemical Cell Voltage Monitor

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo

    2012-01-01

    A concept has been developed for a new fuel cell individual-cell-voltage monitor that can be directly connected to a multi-cell fuel cell stack for direct substack power provisioning. It can also provide voltage isolation for applications in high-voltage fuel cell stacks. The technology consists of basic modules, each with an 8- to 16-cell input electrical measurement connection port. For each basic module, a power input connection would be provided for direct connection to a sub-stack of fuel cells in series within the larger stack. This power connection would allow for module power to be available in the range of 9-15 volts DC. The relatively low voltage differences that the module would encounter from the input electrical measurement connection port, coupled with the fact that the module's operating power is supplied by the same substack voltage input (and so will be at similar voltage), provides for elimination of high-commonmode voltage issues within each module. Within each module, there would be options for analog-to-digital conversion and data transfer schemes. Each module would also include a data-output/communication port. Each of these ports would be required to be either non-electrical (e.g., optically isolated) or electrically isolated. This is necessary to account for the fact that the plurality of modules attached to the stack will normally be at a range of voltages approaching the full range of the fuel cell stack operating voltages. A communications/ data bus could interface with the several basic modules. Options have been identified for command inputs from the spacecraft vehicle controller, and for output-status/data feeds to the vehicle.

  13. Spatial Light Modulators with Arbitrary Quantum Wells Profiles

    DTIC Science & Technology

    1993-09-27

    phase change in the 1.152Pm wave propagating through the waveguide and appears as an optically bistable intensity signal normal to the control beam ...electrical bistability of a SEED was integrated with a phase modulator to produce optical bistability in an all- optical switch. A control wavelength of...received attention for its use in electrically-addressable spatial light intensity modulator arrays due to its potentially high contrast ratio, large

  14. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Six: Parallel Circuits. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on parallel circuits is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Four lessons are included in the…

  15. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, H.D.

    1996-04-30

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.

  16. A review of test results on parabolic dish solar thermal power modules with dish-mounted Rankine engines and for production of process steam

    NASA Technical Reports Server (NTRS)

    Jaffe, Leonard D.

    1988-01-01

    This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  17. Water heater control module

    DOEpatents

    Hammerstrom, Donald J

    2013-11-26

    An advanced electric water heater control system that interfaces with a high temperature cut-off thermostat and an upper regulating thermostat. The system includes a control module that is electrically connected to the high-temperature cut-off thermostat and the upper regulating thermostat. The control module includes a switch to open or close the high-temperature cut-off thermostat and the upper regulating thermostat. The control module further includes circuitry configured to control said switch in response to a signal selected from the group of an autonomous signal, a communicated signal, and combinations thereof.

  18. Industrial application experiment series

    NASA Technical Reports Server (NTRS)

    Bluhm, S. A.

    1980-01-01

    The deployment of parabolic dish systems into the industrial sector for the purpose of providing users, suppliers, sponsors, and developers with a realistic assessment of system feasibility in selected near-term industrial applications will be accomplished initially through the industrial module experiment and later through additional experiments involving thermal, electric, and combined thermal and electrical systems. The approach is to progress through steps, from single module to multi-module systems, from thermal-only applications to more complex combined thermal and electric applications. The experience of other solar thermal experiments, particularly those involving parabolic dish hardware, will be utilized to the fullest extent possible in experiment planning and implementation.

  19. Method and Apparatus for Characterizing Pressure Sensors using Modulated Light Beam Pressure

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor)

    2003-01-01

    Embodiments of apparatuses and methods are provided that use light sources instead of sound sources for characterizing and calibrating sensors for measuring small pressures to mitigate many of the problems with using sound sources. In one embodiment an apparatus has a light source for directing a beam of light on a sensing surface of a pressure sensor for exerting a force on the sensing surface. The pressure sensor generates an electrical signal indicative of the force exerted on the sensing surface. A modulator modulates the beam of light. A signal processor is electrically coupled to the pressure sensor for receiving the electrical signal.

  20. Calorimetric Measurement for Internal Conversion Efficiency of Photovoltaic Cells/Modules Based on Electrical Substitution Method

    NASA Astrophysics Data System (ADS)

    Saito, Terubumi; Tatsuta, Muneaki; Abe, Yamato; Takesawa, Minato

    2018-02-01

    We have succeeded in the direct measurement for solar cell/module internal conversion efficiency based on a calorimetric method or electrical substitution method by which the absorbed radiant power is determined by replacing the heat absorbed in the cell/module with the electrical power. The technique is advantageous in that the reflectance and transmittance measurements, which are required in the conventional methods, are not necessary. Also, the internal quantum efficiency can be derived from conversion efficiencies by using the average photon energy. Agreements of the measured data with the values estimated from the nominal values support the validity of this technique.

  1. Aviation Maintenance Technology. General. G105 Aviation Electricity and Electronics. Instructor Material.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    These instructor materials for an aviation maintenance technology course contain five instructional modules. The modules cover the following topics: determining the relationship of voltage, current, resistance, and power in electrical circuits; computing and measuring capacitance and inductance; measuring voltage, current, resistance, and…

  2. Applied Physics Modules Selected for Electrical and Electronic Technologies.

    ERIC Educational Resources Information Center

    Waring, Gene

    Designed for individualized use in an applied physics course in postsecondary vocational-technical education, this series of twenty-three learning modules is equivalent to the content of two quarters of a five-credit hour class in electrical technology, electronic service technology, electronic engineering technology, or electromechanical…

  3. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 30: Intermediate Power Supplies; Module 31: RF, IF, and Video Amplifiers. Students Guide.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This student guidebook is designed for use with the study booklets in modules 30-31 included in the military-developed course on basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. An…

  4. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Five: Relationships of Current, Voltage, and Resistance. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on the relationships of current, voltage, and resistance is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptaticn to vocational instructional and curriculum development in a civilian setting.…

  5. Compensation for electrical converter nonlinearities

    DOEpatents

    Perisic, Milun; Ransom, Ray M; Kajouke, Lateef A

    2013-11-19

    Systems and methods are provided for delivering energy from an input interface to an output interface. An electrical system includes an input interface, an output interface, an energy conversion module between the input interface and the output interface, an inductive element between the input interface and the energy conversion module, and a control module. The control module determines a compensated duty cycle control value for operating the energy conversion module to produce a desired voltage at the output interface and operates the energy conversion module to deliver energy to the output interface with a duty cycle that is influenced by the compensated duty cycle control value. The compensated duty cycle control value is influenced by the current through the inductive element and accounts for voltage across the switching elements of the energy conversion module.

  6. Tool for Smart Integration of Solar Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, Alan

    2017-01-31

    Kevala addresses a significant problem in solar deployment - reducing the risk of investing in solar by determining the inherent value of solar electricity based on the location where it is produced. Kevala’s product will transform the way solar assets are proposed, assessed, and financed resulting in lower capital costs, opening new markets and streamlining siting and customer acquisition. Using detailed electricity infrastructure data, pricing information, GIS mapping, and proprietary algorithms, Kevala’s Grid Assessor software lowers financial risk by providing transparency into the current and future value of projects based on their location.

  7. A Web-Based Operating Room Management Educational Tool.

    PubMed

    Tsai, Mitchell H; Haddad, Daniel J; Friend, Alexander F; Bender, S Patrick; Davidson, Melissa L

    2016-08-01

    In 2010, our department instituted a nonclinical, administrative rotation in operating room management for anesthesiology residents. Subsequently, we mandated the rotation for all senior anesthesiology residents in 2013. In 2014, under the auspices of the American Society of Anesthesiologists, we developed a web-based module covering the basics of finance, accounting, and operating room management. A multiple-choice test was given to residents at the beginning and end of the rotation, and we compared the mean scores between residents who took the traditional course and residents who took the web-based module. We found no significant difference between the groups of residents, suggesting that the web-based module is as effective as traditional didactics.

  8. Trade Electricity. Signal Wiring--Level 1. Standardized Curriculum.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Office of Occupational and Career Education.

    This curriculum guide consists of nine modules on signal wiring, one of the three divisions of the standardized trade electricity curriculum in high schools in New York City. The modules cover the following subjects: bells, double contact pushbuttons, annunciator circuits, open circuit burglar alarms, closed circuit burglar alarms, fire alarms,…

  9. Modulation of hippocampal rhythms by subthreshold electric fields and network topology

    PubMed Central

    Berzhanskaya, Julia; Chernyy, Nick; Gluckman, Bruce J.; Schiff, Steven J.; Ascoli, Giorgio A.

    2012-01-01

    Theta (4–12 Hz) and gamma (30–80 Hz) rhythms are considered important for cortical and hippocampal function. Although several neuron types are implicated in rhythmogenesis, the exact cellular mechanisms remain unknown. Subthreshold electric fields provide a flexible, area-specific tool to modulate neural activity and directly test functional hypotheses. Here we present experimental and computational evidence of the interplay among hippocampal synaptic circuitry, neuronal morphology, external electric fields, and network activity. Electrophysiological data are used to constrain and validate an anatomically and biophysically realistic model of area CA1 containing pyramidal cells and two interneuron types: dendritic- and perisomatic-targeting. We report two lines of results: addressing the network structure capable of generating theta-modulated gamma rhythms, and demonstrating electric field effects on those rhythms. First, theta-modulated gamma rhythms require specific inhibitory connectivity. In one configuration, GABAergic axo-dendritic feedback on pyramidal cells is only effective in proximal but not distal layers. An alternative configuration requires two distinct perisomatic interneuron classes, one exclusively receiving excitatory contacts, the other additionally targeted by inhibition. These observations suggest novel roles for particular classes of oriens and basket cells. The second major finding is that subthreshold electric fields robustly alter the balance between different rhythms. Independent of network configuration, positive electric fields decrease, while negative fields increase the theta/gamma ratio. Moreover, electric fields differentially affect average theta frequency depending on specific synaptic connectivity. These results support the testable prediction that subthreshold electric fields can alter hippocampal rhythms, suggesting new approaches to explore their cognitive functions and underlying circuitry. PMID:23053863

  10. World bank's role in the electric power sector: Policies for effective institutional, regulatory, and financial reform. World Bank policy paper. Funcion del banco mundial en el sector de la electricidad: politicas para efectuar una reforma institucional, regulatoria y financiera eficaz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-01-01

    The paper outlines the World Bank's new policies for the energy sector. It recommends several new policies to improve the performance of the electric power sector in developing countries. Bank loans for electric power will go first to countries clearly committed to improving the performance of their power sectors. The Bank will also discourage subsidies on energy prices and will encourage private investment in utilities. And it will provide financing to help the least developed countries import power where local generation is not practical.

  11. Survey of power tower technology

    NASA Astrophysics Data System (ADS)

    Hildebrandt, A. F.; Dasgupta, S.

    1980-05-01

    The history of the power tower programs is reviewed, and attention is given to the current state of heliostat, receiver, and storage design. Economic considerations are discussed, as are simulation studies and implications. Also dealt with are alternate applications for the power tower and some financing and energy aspects of solar electric conversion. It is noted that with a national commitment to solar energy, the power tower concept could generate 40 GW of electricity and double this amount in process heat by the year 2000. Calculations show an energy amplification factor of 20 for solar energy plants; that is, the ratio of the electric energy produced over the lifetime of a power plant to the thermal energy required to produce the plant.

  12. Hybrid plasmonic electro-optical absorption modulator based on epsilon-near-zero characteristics of ITO

    NASA Astrophysics Data System (ADS)

    Abdelatty, M. Y.; Badr, M. M.; Swillam, M. A.

    2018-03-01

    Using transparent conducting oxides (TCOs), like indium-tin-oxide (ITO), for optical modulation attracted research interest because of their epsilon-near-zero (ENZ) characteristics at telecom wavelengths. Utilizing indium-tin-oxide (ITO) in multilayer structure modulators, optical absorption of the active ITO layer can be electrically modulated over a large spectrum range. Although they show advances over common silicon electro-optical modulators (EOMs), they suffer from high insertion losses. To reduce insertion losses and device footprints without sacrificing bandwidth and modulation strength, slot waveguides are promising options because of their high optical confinement. In this paper, we present the study and the design of an electro-optical absorption modulator based on electrically tuning ITO carrier density inside a MOS structure. The device structure is based on dielectric slot waveguide with an ITO plasmonic waveguide modulation section. By changing the dimensions, the effective refractive indices for the slot mode and the off-sate mode of the plasmonic section can be matched. When applying electric field to the plasmonic section (on-state), carriers are generated at the ITO-dielectric interface that result in changing the layer where the electric field is confined from a transparent layer into a lossy layer. A finite difference time domain method with perfect matching layer (PML) absorbing boundary conditions is taken up to simulate and analyze this design. An extinction ratio of 2.3 dB is achieved for a 1-μm-short modulation section, at the telecommunications wavelength (1.55 μm). This EOM has advantages of simple design, easy fabrication, compact size, compatibility with existing silicon photonics platforms, as well as broadband performance.

  13. Advanced capability RFID system

    DOEpatents

    Gilbert, Ronald W.; Steele, Kerry D.; Anderson, Gordon A.

    2007-09-25

    A radio-frequency transponder device having an antenna circuit configured to receive radio-frequency signals and to return modulated radio-frequency signals via continuous wave backscatter, a modulation circuit coupled to the antenna circuit for generating the modulated radio-frequency signals, and a microprocessor coupled to the antenna circuit and the modulation circuit and configured to receive and extract operating power from the received radio-frequency signals and to monitor inputs on at least one input pin and to generate responsive signals to the modulation circuit for modulating the radio-frequency signals. The microprocessor can be configured to generate output signals on output pins to associated devices for controlling the operation thereof. Electrical energy can be extracted and stored in an optional electrical power storage device.

  14. Thermal and Electrical Effects of Partial Shade in Monolithic Thin-Film Photovoltaic Modules: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, Timothy J.; Deceglie, Michael G.; Sun, Xingshu

    2015-09-02

    Photovoltaic cells can be damaged by reverse bias stress, which arises during service when a monolithically integrated thin-film module is partially shaded. We introduce a model for describing a module's internal thermal and electrical state, which cannot normally be measured. Using this model and experimental measurements, we present several results with relevance for reliability testing and module engineering: Modules with a small breakdown voltage experience less stress than those with a large breakdown voltage, with some exceptions for modules having light-enhanced reverse breakdown. Masks leaving a small part of the masked cells illuminated can lead to very high temperature andmore » current density compared to masks covering entire cells.« less

  15. Thermal and Electrical Effects of Partial Shade in Monolithic Thin-Film Photovoltaic Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, Timothy J.; Deceglie, Michael G.; Sun, Xingshu

    2015-06-14

    Photovoltaic cells can be damaged by reverse bias stress, which arises during service when a monolithically integrated thin-film module is partially shaded. We introduce a model for describing a module's internal thermal and electrical state, which cannot normally be measured. Using this model and experimental measurements, we present several results with relevance for reliability testing and module engineering: Modules with a small breakdown voltage experience less stress than those with a large breakdown voltage, with some exceptions for modules having light-enhanced reverse breakdown. Masks leaving a small part of the masked cells illuminated can lead to very high temperature andmore » current density compared to masks covering entire cells.« less

  16. Magneto-electronic properties of graphene nanoribbons in the spatially modulated electric field

    NASA Astrophysics Data System (ADS)

    Chen, S. C.; Wang, T. S.; Lee, C. H.; Lin, M. F.

    2008-09-01

    The Peierls tight-binding model with the nearest-neighbor interactions is used to calculate the magneto-electronic structure of graphene nanoribbons under a spatially modulated electric field along the y-axis. A uniform perpendicular magnetic field could make energy dispersions change into the quasi-Landau levels. Such levels are composed of the dispersionless and parabolic energy bands. A spatially modulated electric field would further induce a lot of oscillating parabolic bands with several band-edge states. It drastically modifies energy dispersions, alters subband spacings, destroys symmetry of energy spectrum about k=0, and changes features of band-edge states (number and energy). The above-mentioned magneto-electronic structures are directly reflected in density of states (DOS). The modulation effect changes shape, number, positions, and intensities of peaks in DOS. The predicted result could be tested by the optical measurements.

  17. Design, analysis, and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Garcia, A.; Minning, C.

    1981-01-01

    Thermal, optical, structural, and electrical isolation analyses are decribed. Major factors in the design of terrestrial photovoltaic modules are discussed. Mechanical defects in the different layers of an encapsulation system, it was found, would strongly influence the minimum pottant thickness required for electrical isolation. Structural, optical, and electrical properties, a literature survey indicated, are hevily influenced by the presence of moisture. These items, identified as technology voids, are discussed. Analyses were based upon a 1.2 meter square module using 10.2 cm (4-inch) square cells placed 1.3 mm apart as shown in Figure 2-2. Sizing of the structural support member of a module was determined for a uniform, normal pressure load of 50 psf, corresponding to the pressure difference generated between the front and back surface of a module by a 100 mph wind. Thermal and optical calculations were performed for a wind velocity of 1 meter/sec parallel to the ground and for module tilt (relative to the local horizontal) of 37 deg. Placement of a module in a typical array field is illustrated.

  18. High voltage power supply with modular series resonant inverters

    DOEpatents

    Dreifuerst, Gary R.; Merritt, Bernard T.

    1995-01-01

    A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360.degree./n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit.

  19. High voltage power supply with modular series resonant inverters

    DOEpatents

    Dreifuerst, G.R.; Merritt, B.T.

    1995-07-18

    A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360{degree}/n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit. 11 figs.

  20. Design, analysis, and test verification of advanced encapsulation systems

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Minning, C.

    1981-11-01

    Thermal, optical, structural, and electrical isolation analyses are decribed. Major factors in the design of terrestrial photovoltaic modules are discussed. Mechanical defects in the different layers of an encapsulation system, it was found, would strongly influence the minimum pottant thickness required for electrical isolation. Structural, optical, and electrical properties, a literature survey indicated, are hevily influenced by the presence of moisture. These items, identified as technology voids, are discussed. Analyses were based upon a 1.2 meter square module using 10.2 cm (4-inch) square cells placed 1.3 mm apart as shown in Figure 2-2. Sizing of the structural support member of a module was determined for a uniform, normal pressure load of 50 psf, corresponding to the pressure difference generated between the front and back surface of a module by a 100 mph wind. Thermal and optical calculations were performed for a wind velocity of 1 meter/sec parallel to the ground and for module tilt (relative to the local horizontal) of 37 deg. Placement of a module in a typical array field is illustrated.

  1. Electrical control of antiferromagnetic metal up to 15 nm

    NASA Astrophysics Data System (ADS)

    Zhang, PengXiang; Yin, GuFan; Wang, YuYan; Cui, Bin; Pan, Feng; Song, Cheng

    2016-08-01

    Manipulation of antiferromagnetic (AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moments of FeMn up to 15 nm, using an ionic liquid to exert a substantial electric-field effect. The manipulation is demonstrated by the modulation of exchange spring in [Co/Pt]/FeMn system, where AFM moments in FeMn pin the magnetization rotation of Co/Pt. By carrier injection or extraction, the magnetic anisotropy of the top layer in FeMn is modulated to influence the whole exchange spring and then passes its influence to the [Co/Pt]/FeMn interface, through a distance up to the length of exchange spring that fully screens electric field. Comparing FeMn to IrMn, despite the opposite dependence of exchange bias on gate voltages, the same correlation between carrier density and exchange spring stiffness is demonstrated. Besides the fundamental significance of modulating the spin structures in metallic AFM via all-electrical fashion, the present finding would advance the development of low-power-consumption AFM spintronics.

  2. Solar Thermoelectricity via Advanced Latent Heat Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Michele L.; Rea, J.; Glatzmaier, Greg C.

    2016-05-31

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a 'thermalmore » valve,' which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.« less

  3. Solar thermoelectricity via advanced latent heat storage

    NASA Astrophysics Data System (ADS)

    Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2016-05-01

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  4. Efficient System Design and Sustainable Finance for China's Village Electrification Program: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, S.; Yin, H.; Kline, D. M.

    2006-08-01

    This paper describes a joint effort of the Institute for Electrical Engineering of the Chinese Academy of Sciences (IEE), and the U.S. National Renewable Energy Laboratory (NREL) to support China's rural electrification program. This project developed a design tool that provides guidelines both for off-grid renewable energy system designs and for cost-based tariff and finance schemes to support them. This tool was developed to capitalize on lessons learned from the Township Electrification Program that preceded the Village Electrification Program. We describe the methods used to develop the analysis, some indicative results, and the planned use of the tool in themore » Village Electrification Program.« less

  5. Cash across the City: Participatory Mapping & Teaching for Spatial Justice

    ERIC Educational Resources Information Center

    Rubel, Laurie; Lim, Vivian; Hall-Wieckert, Maren; Katz, Sara

    2016-01-01

    This paper explores teaching mathematics for spatial justice (Soja, 2010), as an extension of teaching mathematics for social justice (Gutstein, 2006). The study is contextualized in a 10-session curricular module focused on the spatial justice of a city's two-tiered system of personal finance institutions (mainstream vs. alternative), piloted…

  6. Home in a Wheelchair: House Design Ideas for Easier Wheelchair Living.

    ERIC Educational Resources Information Center

    Chasin, Joseph

    Intended to aid in the building or purchase of a home suitable for use by a handicapped individual in a wheelchair, the booklet provides detailed design guidelines. Included is information on the decision process, finances, ramps, a car shelter, doors communication devices, electrical needs, windows, elevators and chair lifts, the kitchen, an…

  7. Multiple p-n junction subwavelength gratings for transmission-mode electro-optic modulators

    PubMed Central

    Lee, Ki Young; Yoon, Jae Woong; Song, Seok Ho; Magnusson, Robert

    2017-01-01

    We propose a free-space electro-optic transmission modulator based on multiple p-n-junction semiconductor subwavelength gratings. The proposed device operates with a high-Q guided-mode resonance undergoing electro-optic resonance shift due to direct electrical control. Using rigorous electrical and optical modeling methods, we theoretically demonstrate a modulation depth of 84%, on-state efficiency 85%, and on-off extinction ratio of 19 dB at 1,550 nm wavelength under electrical control signals within a favorably low bias voltage range from −4 V to +1 V. This functionality operates in the transmission mode and sustainable in the high-speed operation regime up to a 10-GHz-scale modulation bandwidth in principle. The theoretical performance prediction is remarkably advantageous over plasmonic tunable metasurfaces in the power-efficiency and absolute modulation-depth aspects. Therefore, further experimental study is of great interest for creating practical-level metasurface components in various application areas. PMID:28417962

  8. Interrogator system for identifying electrical circuits

    DOEpatents

    Jatko, W.B.; McNeilly, D.R.

    1988-04-12

    A system for interrogating electrical leads to correctly ascertain the identity of equipment attached to remote ends of the leads is disclosed. The system includes a source of a carrier signal generated in a controller/receiver to be sent over the leads and an identifier unit at the equipment. The identifier is activated by command of the carrier and uses a portion of the carrier to produce a supply voltage. Each identifier is uniquely programmed for a specific piece of equipment, and causes the impedance of the circuit to be modified whereby the carrier signal is modulated according to that program. The modulation can be amplitude, frequency or phase modulation. A demodulator in the controller/receiver analyzes the modulated carrier signal, and if a verified signal is recognized displays and/or records the information. This information can be utilized in a computer system to prepare a wiring diagram of the electrical equipment attached to specific leads. Specific circuit values are given for amplitude modulation, and the system is particularly described for use with thermocouples. 6 figs.

  9. Interrogator system for identifying electrical circuits

    DOEpatents

    Jatko, William B.; McNeilly, David R.

    1988-01-01

    A system for interrogating electrical leads to correctly ascertain the identity of equipment attached to remote ends of the leads. The system includes a source of a carrier signal generated in a controller/receiver to be sent over the leads and an identifier unit at the equipment. The identifier is activated by command of the carrier and uses a portion of the carrier to produce a supply voltage. Each identifier is uniquely programmed for a specific piece of equipment, and causes the impedance of the circuit to be modified whereby the carrier signal is modulated according to that program. The modulation can be amplitude, frequency or phase modulation. A demodulator in the controller/receiver analyzes the modulated carrier signal, and if a verified signal is recognized displays and/or records the information. This information can be utilized in a computer system to prepare a wiring diagram of the electrical equipment attached to specific leads. Specific circuit values are given for amplitude modulation, and the system is particularly described for use with thermocouples.

  10. Electro- and Magneto-Modulated Ion Transport through Graphene Oxide Membranes

    PubMed Central

    Sun, Pengzhan; Zheng, Feng; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Zhu, Hongwei

    2014-01-01

    The control of ion trans-membrane transport through graphene oxide (GO) membranes is achieved by electric and magnetic fields. Electric field can either increase or decrease the ion transport through GO membranes depending on its direction, and magnetic field can enhance the ion penetration monotonically. When electric field is applied across GO membrane, excellent control of ion fluidic flows can be done. With the magnetic field, the effective anchoring of ions is demonstrated but the modulation of the ion flowing directions does not occur. The mechanism of the electro- and magneto-modulated ion trans-membrane transport is investigated, indicating that the electric fields dominate the ion migration process while the magnetic fields tune the structure of nanocapillaries within GO membranes. Results also show that the ion selectivity of GO membranes can be tuned with the electric fields while the transport of ions can be enhanced synchronously with the magnetic fields. These excellent properties make GO membranes promising in areas such as field-induced mass transport control and membrane separation. PMID:25347969

  11. Temperature Modulation of Electric Fields in Biological Matter

    PubMed Central

    Daniels, Charlotte S.; Rubinsky, Boris

    2011-01-01

    Pulsed electric fields (PEF) have become an important minimally invasive surgical technology for various applications including genetic engineering, electrochemotherapy and tissue ablation. This study explores the hypothesis that temperature dependent electrical parameters of tissue can be used to modulate the outcome of PEF protocols, providing a new means for controlling and optimizing this minimally invasive surgical procedure. This study investigates two different applications of cooling temperatures applied during PEF. The first case utilizes an electrode which simultaneously delivers pulsed electric fields and cooling temperatures. The subsequent results demonstrate that changes in electrical properties due to temperature produced by this configuration can substantially magnify and confine the electric fields in the cooled regions while almost eliminating electric fields in surrounding regions. This method can be used to increase precision in the PEF procedure, and eliminate muscle contractions and damage to adjacent tissues. The second configuration considered introduces a third probe that is not electrically active and only applies cooling boundary conditions. This second study demonstrates that in this probe configuration the temperature induced changes in electrical properties of tissue substantially reduce the electric fields in the cooled regions. This novel treatment can potentially be used to protect sensitive tissues from the effect of the PEF. Perhaps the most important conclusion of this investigation is that temperature is a powerful and accessible mechanism to modulate and control electric fields in biological tissues and can therefore be used to optimize and control PEF treatments. PMID:21695144

  12. Broadband, Spectrally Flat, Graphene-based Terahertz Modulators.

    PubMed

    Shi, Fenghua; Chen, Yihang; Han, Peng; Tassin, Philippe

    2015-12-02

    Advances in the efficient manipulation of terahertz waves are crucial for the further development of terahertz technology, promising applications in many diverse areas, such as biotechnology and spectroscopy, to name just a few. Due to its exceptional electronic and optical properties, graphene is a good candidate for terahertz electro-absorption modulators. However, graphene-based modulators demonstrated to date are limited in bandwidth due to Fabry-Perot oscillations in the modulators' substrate. Here, a novel method is demonstrated to design electrically controlled graphene-based modulators that can achieve broadband and spectrally flat modulation of terahertz beams. In our design, a graphene layer is sandwiched between a dielectric and a slightly doped substrate on a metal reflector. It is shown that the spectral dependence of the electric field intensity at the graphene layer can be dramatically modified by optimizing the structural parameters of the device. In this way, the electric field intensity can be spectrally flat and even compensate for the dispersion of the graphene conductivity, resulting in almost invariant absorption in a wide frequency range. Modulation depths up to 76% can be achieved within a fractional operational bandwidth of over 55%. It is expected that our modulator designs will enable the use of terahertz technology in applications requiring broadband operation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Integration of dye-sensitized solar cells, thermoelectric modules and electrical storage loop system to constitute a novel photothermoelectric generator.

    PubMed

    Chang, Ho; Yu, Zhi-Rong

    2012-08-01

    This study self-develops a novel type of photothermoelectric power generation modules. Dye-sensitized solar cells (DSSCs) serve as the photoelectric conversion system and a copper (Cu) heat-transfer nanofilm coating on both sides of the thermoelectric generator (TEG) acts as a thermoelectric conversion system. Thus module assembly absorbs light and generates electricity by DSSCs, and also recycles waste heat and generates power by the TEG. In addition, a set of pulsating heat pipes (PHP) filled with Cu nanofluid is placed on the cooling side to increase cooling effects and enhance the power generation efficiency. Results show that when the heat source of thermoelectric modules reaches 90 degrees C, TEG power output is increased by 85.7%. Besides, after thermoelectric modules are heated by additional heat source at 80 degrees C, the electrical energy generated by them can let a NiMH cell (1.25 V) be sufficiently charged in about 30 minutes. When photothermoelectric modules is illumined by simulated light, the temperature difference of two sides of TEG can reach 7 degrees C and the thermoelectric conversion efficiency is 2.17%. Furthermore, the power output of the thermoelectric modules is 11.48 mW/cm2, enhancing 1.4 % compared to merely using DSSCs module.

  14. Synchronization modulation of Na/K pumps on Xenopus oocytes

    NASA Astrophysics Data System (ADS)

    Liang, Pengfei; Mast, Jason; Chen, Wei

    We developed a new technique named synchronization modulation to electrically synchronize and modulate the Na/K pump molecules by a specially designed oscillating electric field. This technique is based on the theory of energy-trap in quantum physics as well as the concept of electronic synchrotron accelerator. As a result, the Na-transports are all entrapped into the positive half-cycle of the applied electric field and consequently, all of the K-transports are entrapped into the negative half cycle of the field. To demonstrate the process of the pump synchronization and modulation, we use Xenopus oocytes as a platform and introduce two-electrode whole-cell voltage clamp in measurement of pump current. Practically, we first synchronize the pump molecules running at the same pace (rate and phase) by a specially designed oscillation electric field. Then, we carefully maintain the pump synchronization status and gradually change the field frequency (decrease and increase) to modulate the pump molecules to newer pumping rate. The result shows a separation of the inward K current from the outward Na current, and about 10 time increase of the total (inward plus outward) pump current from the net outward current from the random paced pump molecules. Also, the ratio of the modulated total pump current with synchronized total pump current is consistent with the ratio of their field frequencies.

  15. Digital optical conversion module

    DOEpatents

    Kotter, D.K.; Rankin, R.A.

    1988-07-19

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

  16. Digital optical conversion module

    DOEpatents

    Kotter, Dale K.; Rankin, Richard A.

    1991-02-26

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

  17. Thermal and other tests of photovoltaic modules performed in natural sunlight

    NASA Technical Reports Server (NTRS)

    Stultz, J. W.

    1978-01-01

    The bulk of the testing was the characterization of twenty-nine modules according to their nominal operating cell temperature (NOCT) and the effect on NOCT of changes in module design, various residential roof mounting configurations, and dirt accumulation. Other tests, often performed parallel with the NOCT measurements, evaluated the improvement in electrical performance by cooling the modules with water and by channeling the waste heat into a phase change material (wax). Electrical degradation resulting from the natural marriage of photovoltaic and solar water heating modules was also demonstrated. Cost effectiveness of each of these techniques are evaluated in light of the LSA cost goal of $0.50 per watt.

  18. Systems and methods for compensating for electrical converter nonlinearities

    DOEpatents

    Perisic, Milun; Ransom, Ray M.; Kajouke, Lateef A.

    2013-06-18

    Systems and methods are provided for delivering energy from an input interface to an output interface. An electrical system includes an input interface, an output interface, an energy conversion module coupled between the input interface and the output interface, and a control module. The control module determines a duty cycle control value for operating the energy conversion module to produce a desired voltage at the output interface. The control module determines an input power error at the input interface and adjusts the duty cycle control value in a manner that is influenced by the input power error, resulting in a compensated duty cycle control value. The control module operates switching elements of the energy conversion module to deliver energy to the output interface with a duty cycle that is influenced by the compensated duty cycle control value.

  19. Essays in public economics

    NASA Astrophysics Data System (ADS)

    Seligman, Jason Scott

    2002-01-01

    Three essays in the field of public economics are included in this thesis. Chapter 1 begins this work with an introduction to public economics and places the remaining chapters in context. Like all economic agents, the government must manage its cash position. Chapter 2 considers this activity. Short-term financial requirements cause the government to solicit the market for bills not previously scheduled (Cash Management Bills). Using data from the US Treasury's Proprietary Domestic Finance Database, this chapter shows that these bills have higher costs than normal bills, suggesting that both Treasury and financial markets appreciate that demand is more inelastic for these instruments. In addition, this research identifies several factors that increase finance costs for Treasury in meeting short-term financial need. Chapter 3 explores location choices for generation investment in a re-regulated electricity market. Recently, there have been significant changes in the regulation of electricity in the State of California. These changes may affect generation investment behavior within the State, an important consideration for policy makers. This work identifies the impact of public sector regulatory change on private sector investment outcomes, by comparing the location and scope of electricity generation projects before and after two specific regulatory changes in air quality management and transmission tariff charges, while controlling for expected population growth patterns within the State. Significant changes in location preference are identified using factors for the northern and southern transmission zones, NP15 and SP15, the intermediate zone ZP26, and for areas outside of ISO control. Chapter 4 considers Disability Insurance and individual public pension investment accounts. Current debate on the Social Security Administration's long-term finance of benefits includes proposals for independent private investment via individual accounts. The author investigates what implications disability might have for account balances. A behavioral model is developed to consider incentives for early retirement when a defined benefit program for disability insurance continues to be available. The included simulation uses historic wage series, historic equity market performance, and current OASDI regulations.

  20. Year 3 ASK/FOSS Efficacy Study. CRESST Report 782

    ERIC Educational Resources Information Center

    Osmundson, Ellen; Dai, Yunyun; Herman, Joan

    2011-01-01

    This efficacy study was designed to examine the traditional FOSS curriculum (Delta Publishing, Full Option Science System/FOSS, magnetism and electricity, structures of life, and water modules, 2005), and the new ASK/FOSS curriculum (magnetism and electricity, structures of life, and water modules, 2005), a revised version of the original FOSS…

  1. Trade Electricity. Motors & Controls--Level 3. Standardized Curriculum.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Office of Occupational and Career Education.

    This curriculum guide consists of seven modules on motors and controls, one of the three divisions of the standardized trade electricity curriculum in high schools in New York City. The seven modules cover the following subjects: energy conservation wiring, direct current (DC) motor repair and rewinding, DC motor controls, alternating current (AC)…

  2. Economics of Utility Scale Photovoltaics at Purdue University

    NASA Astrophysics Data System (ADS)

    Arnett, William

    The research for this case study shows that utility scale solar photovoltaics has become a competitive energy investment option, even when a campus operates a power plant at low electricity rates. To evaluate this an economic model called SEEMS (Solar Economic Evaluation Modelling Spreadsheets) was developed to evaluate a number of financial scenarios in Real Time Pricing for universities. The three main financing structures considered are 1) land leasing, 2) university direct purchase, and 3) third party purchase. Unlike other commercially available models SEEMS specifically accounts for real time pricing, where the local utility provides electricity at an hourly rate that changes with the expected demand. In addition, SEEMS also includes a random simulation that allows the model to predict the likelihood of success for a given solar installation strategy. The research showed that there are several options for utility scale solar that are financially attractive. The most practical financing structure is with a third party partnership because of the opportunity to take advantage of tax incentives. Other options could become more attractive if non-financial benefits are considered. The case study for this research, Purdue University, has a unique opportunity to integrate utility-scale solar electricity into its strategic planning. Currently Purdue is updating its master plan which will define how land is developed. Purdue is also developing a sustainability plan that will define long term environmental goals. In addition, the university is developing over 500 acres of land west of campus as part of its Aerospace Innovation District. This research helps make the case for including utility-scale solar electricity as part of the university's strategic planning.

  3. Electrical detection of electron-spin-echo envelope modulations in thin-film silicon solar cells

    NASA Astrophysics Data System (ADS)

    Fehr, M.; Behrends, J.; Haas, S.; Rech, B.; Lips, K.; Schnegg, A.

    2011-11-01

    Electrically detected electron-spin-echo envelope modulations (ED-ESEEM) were employed to detect hyperfine interactions between nuclear spins and paramagnetic sites, determining spin-dependent transport processes in multilayer thin-film microcrystalline silicon solar cells. Electrical detection in combination with a modified Hahn-echo sequence was used to measure echo modulations induced by 29Si, 31P, and 1H nuclei weakly coupled to electron spins of paramagnetic sites in the amorphous and microcrystalline solar cell layers. In the case of CE centers in the μc-Si:H i-layer, the absence of 1H ESEEM modulations indicates that the adjacencies of CE centers are depleted from hydrogen atoms. On the basis of this result, we discuss several models for the microscopic origin of the CE center and conclusively assign those centers to coherent twin boundaries inside of crystalline grains in μc-Si:H.

  4. Dielectric waveguide gas-filled stark shift modulator

    DOEpatents

    Hutchinson, Donald P.; Richards, Roger K.

    2003-07-22

    An optical modulator includes a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide. At least one Stark material is provided in the waveguide. A bias circuit generates a bias signal to produce an electrical field across the Stark material to shift at least one of the Stark absorption frequencies towards the frequency of the optical beam. A circuit for producing a time varying electric field across the Stark material modulates the optical beam. At least a portion of the bias field can be generated by an alternating bias signal, such as a square wave. A method of modulating optical signals includes the steps of providing a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide, the waveguide having at least one Stark material disposed therein, and varying an electric field imposed across the Stark material.

  5. Fatigue degradation and electric recovery in Silicon solar cells embedded in photovoltaic modules

    PubMed Central

    Paggi, Marco; Berardone, Irene; Infuso, Andrea; Corrado, Mauro

    2014-01-01

    Cracking in Silicon solar cells is an important factor for the electrical power-loss of photovoltaic modules. Simple geometrical criteria identifying the amount of inactive cell areas depending on the position of cracks with respect to the main electric conductors have been proposed in the literature to predict worst case scenarios. Here we present an experimental study based on the electroluminescence (EL) technique showing that crack propagation in monocrystalline Silicon cells embedded in photovoltaic (PV) modules is a much more complex phenomenon. In spite of the very brittle nature of Silicon, due to the action of the encapsulating polymer and residual thermo-elastic stresses, cracked regions can recover the electric conductivity during mechanical unloading due to crack closure. During cyclic bending, fatigue degradation is reported. This pinpoints the importance of reducing cyclic stresses caused by vibrations due to transportation and use, in order to limit the effect of cracking in Silicon cells. PMID:24675974

  6. Magnetocaloric effect and its modulation by electric field in La0.325Pr0.3Ca0.375MnO3 films grown on (0 1 1)-PMN-PT substrates

    NASA Astrophysics Data System (ADS)

    Qiao, K. M.; Li, J.; Liu, Y.; Kuang, H.; Wang, J.; Hu, F. X.; Sun, J. R.; Shen, B. G.

    2018-06-01

    In this paper, we have investigated the magnetocaloric effect (MCE) and its modulation by electric field in La0.325Pr0.3Ca0.375MnO3 (LPCMO) films grown on (0 1 1)-oriented PMN-PT substrates. As a typical perovskite manganite with phase separation, the LPCMO bulk shows a considerable MCE, but the MCE of the LPCMO films has never been investigated. We found that the LPCMO films exhibit a MCE over a wide temperature range. A modulation of magnetization by electric field has been observed in the temperature dependent (M-T) and magnetic field dependent (M-H) curves. As a result, enhanced magnetic entropy change and refrigeration capacity by about 4% under an electric field of +6 kV/cm has been demonstrated.

  7. Electrical power systems for Mars

    NASA Technical Reports Server (NTRS)

    Giudici, Robert J.

    1986-01-01

    Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.

  8. Electrical power systems for Mars

    NASA Astrophysics Data System (ADS)

    Giudici, Robert J.

    1986-05-01

    Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.

  9. Solar Electric System

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Heat Pipe Technology, Inc. undertook the development of a PV system that could bring solar electricity to the individual home at reasonable cost. His system employs high efficiency PV modules plus a set of polished reflectors that concentrate the solar energy and enhance the output of the modules. Dinh incorporated a sun tracking system derived from space tracking technology. It automatically follows the sun throughout the day and turns the modules so that they get maximum exposure to the solar radiation, further enhancing the system efficiency.

  10. Grumman evaluates Space Station thermal control and power systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandebo, S.W.

    1985-09-01

    Attention is given to the definition of requirements for the NASA Space Station's electrical power and thermal control systems, which must be highly dependable to minimize the need for external support and will embody a highly flexible modular design concept. Module maintenance will be performed by in-orbit replacement of failed modules, and energy storage system growth will be accomplished by the incorporation of additional modules. Both photovoltaic and solar heat-driven electrical generator concepts are under consideration as the basis of the power system.

  11. MSFC Skylab electrical power systems mission evaluation

    NASA Technical Reports Server (NTRS)

    Woosley, A. P.

    1974-01-01

    The design, development, and operation of the Skylab electrical power system are discussed. The electrical systems for the airlock module of the orbital workshop and the Apollo telescope mount are described. Skylab is considered an integral laboratory, however, both cluster and module hardware distinct sections are included. Significant concept and requirement evolution, testing, and modifications resulting from tests are briefly summarized to aid in understanding the launch configuration description and the procedures and performance discussed for in-orbit operation. Specific problems encountered during Skylab orbital missions are analyzed.

  12. The analysis and compensation of errors of precise simple harmonic motion control under high speed and large load conditions based on servo electric cylinder

    NASA Astrophysics Data System (ADS)

    Ma, Chen-xi; Ding, Guo-qing

    2017-10-01

    Simple harmonic waves and synthesized simple harmonic waves are widely used in the test of instruments. However, because of the errors caused by clearance of gear and time-delay error of FPGA, it is difficult to control servo electric cylinder in precise simple harmonic motion under high speed, high frequency and large load conditions. To solve the problem, a method of error compensation is proposed in this paper. In the method, a displacement sensor is fitted on the piston rod of the electric cylinder. By using the displacement sensor, the real-time displacement of the piston rod is obtained and fed back to the input of servo motor, then a closed loop control is realized. There is compensation of pulses in the next period of the synthetic waves. This paper uses FPGA as the processing core. The software mainly comprises a waveform generator, an Ethernet module, a memory module, a pulse generator, a pulse selector, a protection module, an error compensation module. A durability of shock absorbers is used as the testing platform. The durability mainly comprises a single electric cylinder, a servo motor for driving the electric cylinder, and the servo motor driver.

  13. Environmental testing of block 3 solar cell modules. Part 1: Qualification testing of standard production modules

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.

    1979-01-01

    Qualification tests of solar cell modules are described. These modules continue to show improvement over earlier type modules tested. Cell cracking and delamination are less prevalent, and interconnect problems and electrical degradation from environmental testing are now rare.

  14. Electricity-Electronics Curriculum Guide. Instructional Modules Level II.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Div. of Vocational Education.

    These teacher's materials are for a 24-unit competency-based secondary education course on electricity and electronics designed for California public schools. The 24 units are: (1) an orientation; (2) an introduction to electricity; (3) safety; (4) history of electricity; (5) basic electrical skills; (6) magnetism; (7) the nature of electricity;…

  15. Electrical stimulation modulates injury potentials in rats after spinal cord injury

    PubMed Central

    Zhang, Guanghao; Huo, Xiaolin; Wang, Aihua; Wu, Changzhe; Zhang, Cheng; Bai, Jinzhu

    2013-01-01

    An injury potential is the direct current potential difference between the site of spinal cord injury and the healthy nerves. Its initial amplitude is a significant indicator of the severity of spinal cord injury, and many cations, such as sodium and calcium, account for the major portion of injury potentials. This injury potential, as well as injury current, can be modulated by direct current field stimulation; however, the appropriate parameters of the electrical field are hard to define. In this paper, injury potential is used as a parameter to adjust the intensity of electrical stimulation. Injury potential could be modulated to slightly above 0 mV (as the anode-centered group) by placing the anodes at the site of the injured spinal cord and the cathodes at the rostral and caudal sections, or around –70 mV, which is resting membrane potential (as the cathode-centered group) by reversing the polarity of electrodes in the anode-centered group. In addition, rats receiving no electrical stimulation were used as the control group. Results showed that the absolute value of the injury potentials acquired after 30 minutes of electrical stimulation was higher than the control group rats and much lower than the initial absolute value, whether the anodes or the cathodes were placed at the site of injury. This phenomenon illustrates that by changing the polarity of the electrical field, electrical stimulation can effectively modulate the injury potentials in rats after spinal cord injury. This is also beneficial for the spontaneous repair of the cell membrane and the reduction of cation influx. PMID:25206563

  16. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Characteristics of surface-plasmon liquid-crystal light modulators operating under phase modulation conditions

    NASA Astrophysics Data System (ADS)

    Nazvanov, V. F.; Afonin, O. A.; Grebennikov, A. I.

    1995-10-01

    Electrically and optically controlled liquid-crystal light modulators based on surface plasmons were developed and investigated in an ellipsometric optical system. The characteristics of these modulators were determined and compared under phase and amplitude modulation conditions.

  17. Hotspot Endurance Of Solar-Cell Modules

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Sugimura, R. S.; Ross, R. G., Jr.

    1989-01-01

    Procedure for evaluating modules for use with concentrators now available. Solar simulator illuminates photovoltaic cells through Fresnel lens of concentrator module. Module and test cells inspected visually at 24-h intervals during test and again when test completed. After test, electrical characteristics of module measured for comparison with pretest characteristics.

  18. 40 CFR 86.1702-99 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... this subpart. All-electric range test means a test sequence used to determine the range of an electric vehicle or of a hybrid electric vehicle without the use of its auxiliary power unit. The All-Electric... means any electrical energy storage device consisting of any number of individual battery modules which...

  19. Scaling vectors of attoJoule per bit modulators

    NASA Astrophysics Data System (ADS)

    Sorger, Volker J.; Amin, Rubab; Khurgin, Jacob B.; Ma, Zhizhen; Dalir, Hamed; Khan, Sikandar

    2018-01-01

    Electro-optic modulation performs the conversion between the electrical and optical domain with applications in data communication for optical interconnects, but also for novel optical computing algorithms such as providing nonlinearity at the output stage of optical perceptrons in neuromorphic analog optical computing. While resembling an optical transistor, the weak light-matter-interaction makes modulators 105 times larger compared to their electronic counterparts. Since the clock frequency for photonics on-chip has a power-overhead sweet-spot around tens of GHz, ultrafast modulation may only be required in long-distance communication, not for short on-chip links. Hence, the search is open for power-efficient on-chip modulators beyond the solutions offered by foundries to date. Here, we show scaling vectors towards atto-Joule per bit efficient modulators on-chip as well as some experimental demonstrations of novel plasmonic modulators with sub-fJ/bit efficiencies. Our parametric study of placing different actively modulated materials into plasmonic versus photonic optical modes shows that 2D materials overcompensate their miniscule modal overlap by their unity-high index change. Furthermore, we reveal that the metal used in plasmonic-based modulators not only serves as an electrical contact, but also enables low electrical series resistances leading to near-ideal capacitors. We then discuss the first experimental demonstration of a photon-plasmon-hybrid graphene-based electro-absorption modulator on silicon. The device shows a sub-1 V steep switching enabled by near-ideal electrostatics delivering a high 0.05 dB V-1 μm-1 performance requiring only 110 aJ/bit. Improving on this demonstration, we discuss a plasmonic slot-based graphene modulator design, where the polarization of the plasmonic mode aligns with graphene’s in-plane dimension; where a push-pull dual-gating scheme enables 2 dB V-1 μm-1 efficient modulation allowing the device to be just 770 nm short for 3 dB small signal modulation. Lastly, comparing the switching energy of transistors to modulators shows that modulators based on emerging materials and plasmonic-silicon hybrid integration perform on-par relative to their electronic counter parts. This in turn allows for a device-enabled two orders-of-magnitude improvement of electrical-optical co-integrated network-on-chips over electronic-only architectures. The latter opens technological opportunities in cognitive computing, dynamic data-driven applications systems, and optical analog computer engines including neuromorphic photonic computing.

  20. Application of field-modulated generator systems to dispersed solar thermal electric generation

    NASA Technical Reports Server (NTRS)

    Ramakumar, R.

    1979-01-01

    The state-of-the-art of field modulated generation system (FMGS) is presented, and the application of FMGS to dispersed solar thermal electric generation is discussed. The control and monitoring requirements for solar generation system are defined. A comparison is presented between the FMGS approach and other options and the technological development needs are discussed.

  1. Installation package maxi-therm S-101 heating module

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The installation, operation and maintenance of the Maxi-Therm S-101 Thermosypnon Heating Module is described. The Maxi-Therm S-101 is a packaged unit, complete with air filter, blower, electrical controls, and a thermosyphon liquid to air heat exchanger. It is intended for use in residential solar heating systems and can utilize off-peak electrical power.

  2. A modular Space Station/Base electrical power system - Requirements and design study.

    NASA Technical Reports Server (NTRS)

    Eliason, J. T.; Adkisson, W. B.

    1972-01-01

    The requirements and procedures necessary for definition and specification of an electrical power system (EPS) for the future space station are discussed herein. The considered space station EPS consists of a replaceable main power module with self-contained auxiliary power, guidance, control, and communication subsystems. This independent power source may 'plug into' a space station module which has its own electrical distribution, control, power conditioning, and auxiliary power subsystems. Integration problems are discussed, and a transmission system selected with local floor-by-floor power conditioning and distribution in the station module. This technique eliminates the need for an immediate long range decision on the ultimate space base power sources by providing capability for almost any currently considered option.

  3. A Framework for Assessing the Commercialization of Photovoltaic Power Generation

    NASA Astrophysics Data System (ADS)

    Yaqub, Mahdi

    An effective framework does not currently exist with which to assess the viability of commercializing photovoltaic (PV) power generation in the US energy market. Adopting a new technology, such as utility-scale PV power generation, requires a commercialization assessment framework. The framework developed here assesses the economic viability of a set of alternatives of identified factors. Economic viability focuses on simulating the levelized cost of electricity (LCOE) as a key performance measure to realize `grid parity', or the equivalence between the PV electricity prices and grid electricity prices for established energy technologies. Simulation results confirm that `grid parity' could be achieved without the current federal 30% investment tax credit (ITC) via a combination of three strategies: 1) using economies of scale to reduce the LCOE by 30% from its current value of 3.6 cents/kWh to 2.5 cents/kWh, 2) employing a longer power purchase agreement (PPA) over 30 years at a 4% interest rate, and 3) improving by 15% the "capacity factor", which is the ratio of the total annual generated energy to the full potential annual generation when the utility is continuously operating at its rated output. The lower than commercial-market interest rate of 4% that is needed to realize `grid parity' is intended to replace the current federal 30% ITC subsidy, which does not have a cash inflow to offset the outflow of subsidy payments. The 4% interest rate can be realized through two proposed finance plans: The first plan involves the implementation of carbon fees on polluting power plants to produce the capital needed to lower the utility PPA loan term interest rate from its current 7% to the necessary 4% rate. The second plan entails a proposed public debt finance plan. Under this plan, the US Government leverages its guarantee power to issue bonds and uses the proceeds to finance the construction and operation of PV power plants with PPA loan with a 4% interest rate for a 30-year term instead of the current 15-year average term. Such government-financed PV utilities will sell electricity to the US Government at a lower than retail electricity price as compensation for a favorable interest rate (4% instead of 7%) and a longer PPA term (30 years instead of 15). The life-cycle cash flow simulation of this proposed financial plan ascertains a 20% reduction in PV LCOE. Such cost reduction could be applied as credit to the US government electricity bills with 20% saving. The government could also realize a second compensation from the replaced 30% ITC subsidy because such expenditures would no longer be needed. A comparison between the engineering economy cash flow simulation results of the current utility power PPA practice and the proposed financial plan suggests that the proposed plan would be viable. The simulation results also show that the proposed public debt financial plan does not reach grid parity on its own; rather, it needs to be an integral part of the PV commercialization framework developed in this dissertation. The outcome of this research demonstrates that the effective implementation of the developed framework could facilitate the realization of a commercially successful PV power generation industry.

  4. What if Best Practice Is Too Expensive? Feedback on Oral Presentations and Efficient Use of Resources

    ERIC Educational Resources Information Center

    Leger, Lawrence A.; Glass, Karligash; Katsiampa, Paraskevi; Liu, Shibo; Sirichand, Kavita

    2017-01-01

    We evaluate feedback methods for oral presentations used in training non-quantitative research skills (literature review and various associated tasks). Training is provided through a credit-bearing module taught to MSc students of banking, economics and finance in the UK. Monitoring oral presentations and providing "best practice"…

  5. Is Economics a Good Major for Future Lawyers? Evidence from Earnings Data

    ERIC Educational Resources Information Center

    Winters, John V.

    2016-01-01

    This study reports descriptive data on earnings differences for practicing lawyers by undergraduate major with a focus on economics majors. Some majors do much better than others. Economics majors tend to do very well in both median and mean earnings. Electrical engineering, accounting, finance, and some other majors also do relatively well. This…

  6. Large current modulation and tunneling magnetoresistance change by a side-gate electric field in a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor.

    PubMed

    Kanaki, Toshiki; Yamasaki, Hiroki; Koyama, Tomohiro; Chiba, Daichi; Ohya, Shinobu; Tanaka, Masaaki

    2018-05-08

    A vertical spin metal-oxide-semiconductor field-effect transistor (spin MOSFET) is a promising low-power device for the post scaling era. Here, using a ferromagnetic-semiconductor GaMnAs-based vertical spin MOSFET with a GaAs channel layer, we demonstrate a large drain-source current I DS modulation by a gate-source voltage V GS with a modulation ratio up to 130%, which is the largest value that has ever been reported for vertical spin field-effect transistors thus far. We find that the electric field effect on indirect tunneling via defect states in the GaAs channel layer is responsible for the large I DS modulation. This device shows a tunneling magnetoresistance (TMR) ratio up to ~7%, which is larger than that of the planar-type spin MOSFETs, indicating that I DS can be controlled by the magnetization configuration. Furthermore, we find that the TMR ratio can be modulated by V GS . This result mainly originates from the electric field modulation of the magnetic anisotropy of the GaMnAs ferromagnetic electrodes as well as the potential modulation of the nonmagnetic semiconductor GaAs channel layer. Our findings provide important progress towards high-performance vertical spin MOSFETs.

  7. Study of light-absorbing crystal birefringence and electrical modulation mechanisms for coupled thermal-optical effects.

    PubMed

    Zhou, Ji; He, Zhihong; Ma, Yu; Dong, Shikui

    2014-09-20

    This paper discusses Gaussian laser transmission in double-refraction crystal whose incident light wavelength is within its absorption wave band. Two scenarios for coupled radiation and heat conduction are considered: one is provided with an applied external electric field, the other is not. A circular heat source with a Gaussian energy distribution is introduced to present the crystal's light-absorption process. The electromagnetic field frequency domain analysis equation and energy equation are solved to simulate the phenomenon by using the finite element method. It focuses on the influence of different values such as wavelength, incident light intensity, heat transfer coefficient, ambient temperature, crystal thickness, and applied electric field strength. The results show that the refraction index of polarized light increases with the increase of crystal temperature. It decreases as the strength of the applied electric field increases if it is positive. The mechanism of electrical modulation for the thermo-optical effect is used to keep the polarized light's index of refraction constant in our simulation. The quantitative relation between thermal boundary condition and strength of applied electric field during electrical modulation is determined. Numerical results indicate a possible approach to removing adverse thermal effects such as depolarization and wavefront distortion, which are caused by thermal deposition during linear laser absorption.

  8. Plate-slot polymer waveguide modulator on silicon-on-insulator.

    PubMed

    Qiu, Feng; Spring, Andrew M; Hong, Jianxun; Yokoyama, Shiyoshi

    2018-04-30

    Electro-optic (EO) modulators are vital for efficient "electrical to optical" transitions and high-speed optical interconnects. In this work, we applied an EO polymer to demonstrate modulators on silicon-on-insulator substrates. The fabricated Mach-Zehnder interferometer (MZI) and ring resonator consist of a Si and TiO 2 slot, in which the EO polymer was embedded to realize a low-driving and large bandwidth modulation. The designed optical and electrical constructions are able to provide a highly concentrated TM mode with low propagation loss and effective EO properties. The fabricated MZI modulator shows a π-voltage-length product of 0.66 V·cm and a 3-dB bandwidth of 31 GHz. The measured EO activity is advantageous to exploit the ring modulator with a resonant tunability of 0.065 nm/V and a 3-dB modulation bandwidth up to 13 GHz.

  9. Optimization of Pockels electric field in transverse modulated optical voltage sensor

    NASA Astrophysics Data System (ADS)

    Huang, Yifan; Xu, Qifeng; Chen, Kun-Long; Zhou, Jie

    2018-05-01

    This paper investigates the possibilities of optimizing the Pockels electric field in a transverse modulated optical voltage sensor with a spherical electrode structure. The simulations show that due to the edge effect and the electric field concentrations and distortions, the electric field distributions in the crystal are non-uniform. In this case, a tiny variation in the light path leads to an integral error of more than 0.5%. Moreover, a 2D model cannot effectively represent the edge effect, so a 3D model is employed to optimize the electric field distributions. Furthermore, a new method to attach a quartz crystal to the electro-optic crystal along the electric field direction is proposed to improve the non-uniformity of the electric field. The integral error is reduced therefore from 0.5% to 0.015% and less. The proposed method is simple, practical and effective, and it has been validated by numerical simulations and experimental tests.

  10. Power module assembly with reduced inductance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Terence G.; Stancu, Constantin C.; Jaksic, Marko

    A power module assembly has a plurality of electrically conducting layers, including a first layer and a third layer. One or more electrically insulating layers are operatively connected to each of the plurality of electrically conducting layers. The electrically insulating layers include a second layer positioned between and configured to electrically isolate the first and the third layers. The first layer is configured to carry a first current flowing in a first direction. The third layer is configured to carry a second current flowing in a second direction opposite to the first direction, thereby reducing an inductance of the assembly.more » The electrically insulating layers may include a fourth layer positioned between and configured to electrically isolate the third layer and a fifth layer. The assembly results in a combined substrate and heat sink structure. The assembly eliminates the requirements for connections between separate substrate and heat sink structures.« less

  11. Research on Control System of Three - phase Brushless DC Motor for Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Wang, Zhiwei; Jin, Hai; Guo, Jie; Su, Jie; Wang, Miao

    2017-12-01

    In order to study the three-phase brushless motor control system of electric vehicle, Freescale9S12XS128 chip is used as the control core, and the power MOSFET is used as the inverter device. The software is compiled by Codewarrior software. The speed control link adopts open-loop control, and the control chip collects the external sensor signal voltage Change control PWM signal output control three-phase brushless DC motor speed. The whole system consists of Hall position detection module, current detection module, power drive module and voltage detection module. The basic functions of three-phase brushless DC motor drive control are realized.

  12. Microscopic origin of electric-field-induced modulation of Curie temperature in cobalt

    NASA Astrophysics Data System (ADS)

    Ando, Fuyuki; Yamada, Kihiro T.; Koyama, Tomohiro; Ishibashi, Mio; Shiota, Yoichi; Moriyama, Takahiro; Chiba, Daichi; Ono, Teruo

    2018-07-01

    The Curie temperature T C is one of the most fundamental physical properties of ferromagnetic materials and can be described by the Weiss molecular field theory with the exchange interaction of neighboring atoms. Here, we demonstrate the electrical control of exchange coupling in cobalt films through direct magnetization measurements. We find that the reduction in magnetization with temperature, which is caused by thermal spin wave excitation and scales with Bloch’s law, clearly depends on the applied electric field. Furthermore, we confirm that the correlation between the electric-field-induced modulation of T C and that of exchange coupling follows the Weiss molecular field theory.

  13. Status-Dependent Vasotocin Modulation of Dominance and Subordination in the Weakly Electric Fish Gymnotus omarorum.

    PubMed

    Perrone, Rossana; Silva, Ana C

    2018-01-01

    Dominant-subordinate status emerges from agonistic encounters. The weakly electric fish, Gymnotus omarorum , displays a clear-cut example of non-breeding territorial aggression. The asymmetry in the behavior of dominants and subordinates is outstanding. Dominants are highly aggressive and subordinates signal submission in a precise sequence of locomotor and electric traits: retreating, decreasing their electric organ discharge rate, and emitting transient electric signals. The hypothalamic neuropeptide arginine-vasotocin (AVT) and its mammalian homolog arginine-vasopressin, are key modulators of social behavior, known to adapt their actions to different contexts. By analyzing the effects of pharmacological manipulations of the AVT system in both dominants and subordinates, we show evidence of distinct status-dependent actions of AVT. We demonstrate an endogenous effect of AVT on dominants' aggression levels: blocking the V1a AVT receptor induced a significant decrease in dominants' attack rate. AVT administered to subordinates enhanced the expression of the electric signals of submission, without affecting subordinates' locomotor displays. This study contributes a clear example of status-dependent AVT modulation of agonistic behavior in teleosts, and reveals distinctive activation patterns of the AVT system between dominants and subordinates.

  14. Experimental comparison of direct detection Nyquist SSB transmission based on silicon dual-drive and IQ Mach-Zehnder modulators with electrical packaging.

    PubMed

    Ruan, Xiaoke; Li, Ke; Thomson, David J; Lacava, Cosimo; Meng, Fanfan; Demirtzioglou, Iosif; Petropoulos, Periklis; Zhu, Yixiao; Reed, Graham T; Zhang, Fan

    2017-08-07

    We have designed and fabricated a silicon photonic in-phase-quadrature (IQ) modulator based on a nested dual-drive Mach-Zehnder structure incorporating electrical packaging. We have assessed its use for generating Nyquist-shaped single sideband (SSB) signals by operating it either as an IQ Mach-Zehnder modulator (IQ-MZM) or using just a single branch of the dual-drive Mach-Zehnder modulator (DD-MZM). The impact of electrical packaging on the modulator bandwidth is also analyzed. We demonstrate 40 Gb/s (10Gbaud) 16-ary quadrature amplitude modulation (16-QAM) Nyquist-shaped SSB transmission over 160 km standard single mode fiber (SSMF). Without using any chromatic dispersion compensation, the bit error rates (BERs) of 5.4 × 10 -4 and 9.0 × 10 -5 were measured for the DD-MZM and IQ-MZM, respectively, far below the 7% hard-decision forward error correction threshold. The performance difference between IQ-MZM and DD-MZM is most likely due to the non-ideal electrical packaging. Our work is the first experimental comparison between silicon IQ-MZM and silicon DD-MZM in generating SSB signals. We also demonstrate 50 Gb/s (12.5Gbaud) 16-QAM Nyquist-shaped SSB transmission over 320 km SSMF with a BER of 2.7 × 10 -3 . Both the silicon IQ-MZM and the DD-MZM show potential for optical transmission at metro scale and for data center interconnection.

  15. Off-Grid Electricity Access and its Impact on Micro-Enterprises: Evidence from Rural Uganda

    NASA Astrophysics Data System (ADS)

    Muhoro, Peter N.

    The history of development shows convincingly that no country has substantially reduced poverty without massively increasing the use of electricity. The development of micro-enterprises in rural areas of Uganda is linked with increased access and use of electricity services. In this study, I combine quantitative and qualitative methods, including informal surveys, intra-business energy allocation studies and historical analysis, to analyze off-grid electricity access among micro-enterprises in rural western Uganda. I explore the linkages between of grid electricity access and the influence it has on micro- enterprises. Data is obtained from 56 micro-enterprises located in 11 village-towns within 3 districts in Uganda. In studying the micro-enterprises. the focus is on the services that are provided by electricity from modern energy carriers. The type of equipment used, forms of transportation, technical support, level of understanding and education of the entrepreneur, financing for energy equipment, and the role of donors are discussed in this thesis. Qualitative methods are used to allow for new insights and prioritization of concepts to emerge from the field rattier than from theory. Micro-enterprises in rural Uganda create income for the poor; they are resources for poverty reduction. With price adjustments, it becomes possible for those who live below the poverty line, nominally less than $1 a day, to afford the products and services and therefore mitigating the vicious cycle of poverty. Energy consumption among the micro-enterprises is at an average of 0.13kWh/day. The cost of accessing this amount of electricity attributes to about 50% of total revenue. I find that the "practices" used in off-grid electricity access lead to situations where the entrepreneurs have to evaluate pricing and output of products and services to generate higher profits. Such numbers indicate the need for appropriate technologies and profitable policies to be implemented. The data indicates that without subsidies, credit-based sales and better financing options, it is unlikely that access to electricity will increase beyond the levels established in the existing cash market. Concerns about equity and other social issues indicate a need for careful attention to the implications of policy choices and the processes that influence the use of technology.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smed, T.; Andersson, G.

    In this paper, damping of slow oscillations with active and reactive power modulation of HVDC-links is analyzed with the aim of gaining a physical insight into the problem. The analysis shows that active power modulation is efficient when applied to a short mass-scaled electrical distance from one of the swinging machines, and reactive power modulation is most efficient when there exists a well-defined power flow direction and the modulation is made at a point close to the electrical midpoint between the swinging machines. It is shown that the intuitively appealing feedback signals frequency and derivative of the voltage are appropriatemore » for active and reactive power modulation, respectively. The impact of the constraints imposed by the HVDC equations are analyzed, and it is determined when the implicit reactive power modulation resulting from constant [gamma] control may be detrimental for the damping.« less

  17. Novel Active Combustion Control Valve

    NASA Technical Reports Server (NTRS)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  18. Developing a green lending model for renewable energy project (case study electricity from biogas fuel at Palm Oil Industry)

    NASA Astrophysics Data System (ADS)

    Sukirman, Y. A.

    2018-03-01

    In the last two decades, development initiatives solely aimed to generate economic growth has been placed under scrutiny, particularly amidst the rampant discussion on the quality decline of the environment, growing social divide and climate change along with its implications thereof. Considerations of the negative impacts brought about by the economic development process prompted the move to adopt the sustainable financing model that gives precedence to economic, environmental and social aspects. We introduced Green Lending Model for Renewable Energy Project (Case Study Electricity From Biogas at Palm Oil Industry) based on sustainability financing, which is used as variable to implementing financial institutions’ lending policies. There are two major trends in the literature relating to sustainability and the banking industry: external and internal practices. The external practices strand analyzes the relevance of sustainability to the bank’s communication with shareholders and other stakeholders, and how investors use it as a measure to help achieve optimal portfolio allocation. The internal practices literature, more relevant to the present work, studies how sustainability criteria are integrated into risk management models and lending practices. Its first implementation is in the Palm Oil industry at South Sumatera. The results explained that sustainability is not related to profit either from a short- or long-term perspective. The Sustainable Green Lending Model is related to the Equator Principles and its application is driven to project financing. It also related with short- and long-term risks and opportunities, instead of short-term sustainability impacts.

  19. Electrically-driven pure amplitude and frequency modulation in a quantum cascade laser.

    PubMed

    Shehzad, Atif; Brochard, Pierre; Matthey, Renaud; Blaser, Stéphane; Gresch, Tobias; Maulini, Richard; Muller, Antoine; Südmeyer, Thomas; Schilt, Stéphane

    2018-04-30

    We present pure amplitude modulation (AM) and frequency modulation (FM) achieved electrically in a quantum cascade laser (QCL) equipped with an integrated resistive heater (IH). The QCL output power scales linearly with the current applied to the active region (AR), but decreases with the IH current, while the emission frequency decreases with both currents. Hence, a simultaneous modulation applied to the current of the AR and IH sections with a proper relative amplitude and phase can suppress the AM, resulting in a pure FM, or vice-versa. The adequate modulation parameters depend on the applied modulation frequency. Therefore, they were first determined from the individual measurements of the AM and FM transfer functions obtained for a modulation applied to the current of the AR or IH section, respectively. By optimizing the parameters of the two modulations, we demonstrate a reduction of the spurious AM or FM by almost two orders of magnitude at characteristic frequencies of 1 and 10 kHz compared to the use of the AR current only.

  20. Emergency Victim Care. A Training Manual for Emergency Medical Technicians. Module 12. Water Accidents, Electrical Emergencies, Hazardous Materials and Radiation Accidents. Revised.

    ERIC Educational Resources Information Center

    Ohio State Dept. of Education, Columbus. Div. of Vocational Education.

    This training manual for emergency medical technicians, one of 14 modules that comprise the Emergency Victim Care textbook, covers water accidents, electrical emergencies, and hazardous materials and radiation accidents. Objectives stated for the three chapters are for the students to be able to describe: emergency care for specified water…

  1. Electrically heated particulate filter diagnostic systems and methods

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2009-09-29

    A system that diagnoses regeneration of an electrically heated particulate filter is provided. The system generally includes a grid module that diagnoses a fault of the grid based on at least one of a current signal and a voltage signal. A diagnostic module at least one of sets a fault status and generates a warning signal based on the fault of the grid.

  2. MS Malenchenko and MS Lu conduct electrical work in Zvezda during STS-106

    NASA Image and Video Library

    2000-09-13

    S106-E-5202 (13 September 2000) --- Cosmonaut Yuri I. Malenchenko, mission specialist representing the Russian Aviation and Space Agency, teams up with astronaut Edward T. Lu for some electrical work aboard the Zvezda service module on the International Space Station (ISS). Electrical work was the hallmark of the day as four of the mission specialists aboard ISS (temporarily docked with the Space Shuttle Atlantis) replaced batteries inside the Zarya and Zvezda modules while supply transfer continued around them. Astronaut Edward T. Lu, is out of frame at right.

  3. Modulation of intersubband light absorption and interband photoluminescence in double GaAs/AlGaAs quantum wells under strong lateral electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balagula, R. M., E-mail: rmbal@spbstu.ru; Vinnichenko, M. Ya., E-mail: mvin@spbstu.ru; Makhov, I. S.

    The effect of a lateral electric field on the mid-infrared absorption and interband photoluminescence spectra in double tunnel-coupled GaAs/AlGaAs quantum wells is studied. The results obtained are explained by the redistribution of hot electrons between quantum wells and changes in the space charge in the structure. The hot carrier temperature is determined by analyzing the intersubband light absorption and interband photoluminescence modulation spectra under strong lateral electric fields.

  4. Modular multi-element high energy particle detector

    DOEpatents

    Coon, D.D.; Elliott, J.P.

    1990-01-02

    Multi-element high energy particle detector modules comprise a planar heavy metal carrier of tungsten alloy with planar detector units uniformly distributed over one planar surface. The detector units are secured to the heavy metal carrier by electrically conductive adhesive so that the carrier serves as a common ground. The other surface of each planar detector unit is electrically connected to a feedthrough electrical terminal extending through the carrier for front or rear readout. The feedthrough electrical terminals comprise sockets at one face of the carrier and mating pins projecting from the other face, so that any number of modules may be plugged together to create a stack of modules of any desired number of radiation lengths. The detector units each comprise four, preferably rectangular, p-i-n diode chips arranged around the associated feedthrough terminal to form a square detector unit providing at least 90% detector element coverage of the carrier. Integral spacers projecting from the carriers extend at least partially along the boundaries between detector units to space the p-i-n diode chips from adjacent carriers in a stack. The spacers along the perimeters of the modules are one-half the width of the interior spacers so that when stacks of modules are arranged side by side to form a large array of any size or shape, distribution of the detector units is uniform over the entire array. 5 figs.

  5. An Extensive Unified Thermo-Electric Module Characterization Method

    PubMed Central

    Attivissimo, Filippo; Guarnieri Calò Carducci, Carlo; Lanzolla, Anna Maria Lucia; Spadavecchia, Maurizio

    2016-01-01

    Thermo-Electric Modules (TEMs) are being increasingly used in power generation as a valid alternative to batteries, providing autonomy to sensor nodes or entire Wireless Sensor Networks, especially for energy harvesting applications. Often, manufacturers provide some essential parameters under determined conditions, like for example, maximum temperature difference between the surfaces of the TEM or for maximum heat absorption, but in many cases, a TEM-based system is operated under the best conditions only for a fraction of the time, thus, when dynamic working conditions occur, the performance estimation of TEMs is crucial to determine their actual efficiency. The focus of this work is on using a novel procedure to estimate the parameters of both the electrical and thermal equivalent model and investigate their relationship with the operating temperature and the temperature gradient. The novelty of the method consists in the use of a simple test configuration to stimulate the modules and simultaneously acquire electrical and thermal data to obtain all parameters in a single test. Two different current profiles are proposed as possible stimuli, which use depends on the available test instrumentation, and relative performance are compared both quantitatively and qualitatively, in terms of standard deviation and estimation uncertainty. Obtained results, besides agreeing with both technical literature and a further estimation method based on module specifications, also provides the designer a detailed description of the module behavior, useful to simulate its performance in different scenarios. PMID:27983575

  6. Modular multi-element high energy particle detector

    DOEpatents

    Coon, Darryl D.; Elliott, John P.

    1990-01-02

    Multi-element high energy particle detector modules comprise a planar heavy metal carrier of tungsten alloy with planar detector units uniformly distributed over one planar surface. The detector units are secured to the heavy metal carrier by electrically conductive adhesive so that the carrier serves as a common ground. The other surface of each planar detector unit is electrically connected to a feedthrough electrical terminal extending through the carrier for front or rear readout. The feedthrough electrical terminals comprise sockets at one face of the carrier and mating pins porjecting from the other face, so that any number of modules may be plugged together to create a stack of modules of any desired number of radiation lengths. The detector units each comprise four, preferably rectangular, p-i-n diode chips arranged around the associated feedthrough terminal to form a square detector unit providing at least 90% detector element coverage of the carrier. Integral spacers projecting from the carriers extend at least partially along the boundaries between detector units to space the p-i-n diode chips from adjacent carriers in a stack. The spacers along the perimeters of the modules are one-half the width of the interior spacers so that when stacks of modules are arranged side by side to form a large array of any size or shape, distribution of the detector units is uniform over the entire array.

  7. An Extensive Unified Thermo-Electric Module Characterization Method.

    PubMed

    Attivissimo, Filippo; Guarnieri Calò Carducci, Carlo; Lanzolla, Anna Maria Lucia; Spadavecchia, Maurizio

    2016-12-13

    Thermo-Electric Modules (TEMs) are being increasingly used in power generation as a valid alternative to batteries, providing autonomy to sensor nodes or entire Wireless Sensor Networks, especially for energy harvesting applications. Often, manufacturers provide some essential parameters under determined conditions, like for example, maximum temperature difference between the surfaces of the TEM or for maximum heat absorption, but in many cases, a TEM-based system is operated under the best conditions only for a fraction of the time, thus, when dynamic working conditions occur, the performance estimation of TEMs is crucial to determine their actual efficiency. The focus of this work is on using a novel procedure to estimate the parameters of both the electrical and thermal equivalent model and investigate their relationship with the operating temperature and the temperature gradient. The novelty of the method consists in the use of a simple test configuration to stimulate the modules and simultaneously acquire electrical and thermal data to obtain all parameters in a single test. Two different current profiles are proposed as possible stimuli, which use depends on the available test instrumentation, and relative performance are compared both quantitatively and qualitatively, in terms of standard deviation and estimation uncertainty. Obtained results, besides agreeing with both technical literature and a further estimation method based on module specifications, also provides the designer a detailed description of the module behavior, useful to simulate its performance in different scenarios.

  8. Profitable solutions to climate, oil, and proliferation.

    PubMed

    Lovins, Amory B

    2010-05-01

    Protecting the climate is not costly but profitable (even if avoided climate change is worth zero), mainly because saving fuel costs less than buying fuel. The two biggest opportunities, both sufficiently fast, are oil and electricity. The US, for example, can eliminate its oil use by the 2040s at an average cost of $15 per barrel ($2000), half by redoubled efficiency and half by alternative supplies, and can save three-fourths of its electricity more cheaply than operating a thermal power station. Integrative design permits this by making big energy savings cheaper than small ones, turning traditionally assumed diminishing returns into empirically observed expanding returns. Such efficiency choices accelerate climate-safe, inexhaustible, and resilient energy supply-notably the "micropower" now delivering about a sixth of the world's electricity and 90% of its new electricity. These cheap, fast, market-financeable, globally applicable options offer the most effective, yet most underestimated and overlooked, solutions for climate, proliferation, and poverty.

  9. Identification of advantageous electricity generation options in sub-Saharan Africa integrating existing resources

    NASA Astrophysics Data System (ADS)

    Szabó, Sándor; Moner-Girona, Magda; Kougias, Ioannis; Bailis, Rob; Bódis, Katalin

    2016-10-01

    Pioneering approaches are needed to accelerate universal access to electricity while simultaneously transitioning to reliable, sustainable and affordable energy systems. In sub-Saharan Africa (SSA), the challenges lie in attracting the private sector to complement public investments. Here, we present an integrated ‘low-hanging-fruit’ approach aimed at boosting private investment and speeding up the deployment of renewable energy systems in SSA. We analyse the potential of existing energy infrastructure, where a significant upfront investment has already been made, to be exploited for electricity generation. We develop a comprehensive methodology to identify and select suitable locations in SSA and estimate their potential for exploitation. These locations have been further analysed in terms of power capacity potential, electricity output, investments needed and population to be benefited. This strategy to attract additional finance can easily be reproduced, engaging private investors while simultaneously helping to achieve the United Nations (UN) Sustainable Development Goals on energy.

  10. 77 FR 2269 - Foreign-Trade Zone 18-San Jose, CA, Application for Subzone, Tesla Motors, Inc. (Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-17

    ... components, blower motors, valves, fasteners, electric motors, lithium- ion batteries, electrical assemblies... passenger vehicles and related components, including battery packs, powertrain systems, and electronic... finished electric passenger vehicles, battery packs, powertrain components, and electronic modules (free-3...

  11. Endocannabinoid Release Modulates Electrical Coupling between CCK Cells Connected via Chemical and Electrical Synapses in CA1

    PubMed Central

    Iball, Jonathan; Ali, Afia B.

    2011-01-01

    Electrical coupling between some subclasses of interneurons is thought to promote coordinated firing that generates rhythmic synchronous activity in cortical regions. Synaptic activity of cholecystokinin (CCK) interneurons which co-express cannabinoid type-1 (CB1) receptors are powerful modulators of network activity via the actions of endocannabinoids. We investigated the modulatory actions of endocannabinoids between chemically and electrically connected synapses of CCK cells using paired whole-cell recordings combined with biocytin and double immunofluorescence labeling in acute slices of rat hippocampus at P18–20 days. CA1 stratum radiatum CCK Schaffer collateral-associated cells were coupled electrically with each other as well as CCK basket cells and CCK cells with axonal projections expanding to dentate gyrus. Approximately 50% of electrically coupled cells received facilitating, asynchronously released inhibitory postsynaptic potential (IPSPs) that curtailed the steady-state coupling coefficient by 57%. Tonic CB1 receptor activity which reduces inhibition enhanced electrical coupling between cells that were connected via chemical and electrical synapses. Blocking CB1 receptors with antagonist, AM-251 (5 μM) resulted in the synchronized release of larger IPSPs and this enhanced inhibition further reduced the steady-state coupling coefficient by 85%. Depolarization induced suppression of inhibition (DSI), maintained the asynchronicity of IPSP latency, but reduced IPSP amplitudes by 95% and enhanced the steady-state coupling coefficient by 104% and IPSP duration by 200%. However, DSI did not did not enhance electrical coupling at purely electrical synapses. These data suggest that different morphological subclasses of CCK interneurons are interconnected via gap junctions. The synergy between the chemical and electrical coupling between CCK cells probably plays a role in activity-dependent endocannabinoid modulation of rhythmic synchronization. PMID:22125513

  12. Real power regulation for the utility power grid via responsive loads

    DOEpatents

    McIntyre, Timothy J [Knoxville, TN; Kirby, Brendan J [Knoxville, TN; Kisner, Roger A

    2009-05-19

    A system for dynamically managing an electrical power system that determines measures of performance and control criteria for the electric power system, collects at least one automatic generation control (AGC) input parameter to at least one AGC module and at least one automatic load control (ALC) input parameter to at least one ALC module, calculates AGC control signals and loads as resources (LAR) control signals in response to said measures of performance and control criteria, propagates AGC control signals to power generating units in response to control logic in AGC modules, and propagates LAR control signals to at least one LAR in response to control logic in ALC modules.

  13. Enhancing the pH sensitivity by laterally synergic modulation in dual-gate electric-double-layer transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201; Hui Liu, Yang

    2015-02-16

    The sensitivity of a standard ion-sensitive field-effect transistor is limited to be 59.2 mV/pH (Nernst limit) at room temperature. Here, a concept based on laterally synergic electric-double-layer (EDL) modulation is proposed in order to overcome the Nernst limit. Indium-zinc-oxide EDL transistors with two laterally coupled gates are fabricated, and the synergic modulation behaviors of the two asymmetric gates are investigated. A high sensitivity of ∼168 mV/pH is realized in the dual-gate operation mode. Laterally synergic modulation in oxide-based EDL transistors is interesting for high-performance bio-chemical sensors.

  14. Multiple frequency optical mixer and demultiplexer and apparatus for remote sensing

    NASA Technical Reports Server (NTRS)

    Chen, Jeffrey R. (Inventor)

    2010-01-01

    A pulsed laser system includes a modulator module configured to provide pulsed electrical signals and a plurality of solid-state seed sources coupled to the modulator module and configured to operate, responsive to the pulsed electrical signals, in a pulse mode. Each of the plurality of solid-state seed sources is tuned to a different frequency channel separated from any adjacent frequency channel by a frequency offset. The pulsed laser system also includes a combiner that combines outputs from each of the solid state seed sources into a single optical path and an optical doubler and demultiplexer coupled to the single optical path and providing each doubled seed frequency on a separate output path.

  15. Infusing Aging and Public Policy Content into Gerontology Courses: Collaborative Learning Methods To Teach about Social Security and Medicare.

    ERIC Educational Resources Information Center

    Cianciolo, Patricia K.; Henderson, Tammy L.

    2003-01-01

    Describes modules on Social Security and Medicare for gerontology policy courses. Discusses collaborative exercises in which students explore Internet resources on Social Security and health care finance, identity major concerns about reforms, and enact scenarios about retirees with varying degrees of income and health care security. (Contains 33…

  16. Millivolt Modulation of Plasmonic Metasurface Optical Response via Ionic Conductance.

    PubMed

    Thyagarajan, Krishnan; Sokhoyan, Ruzan; Zornberg, Leonardo; Atwater, Harry A

    2017-08-01

    A plasmonic metasurface with an electrically tunable optical response that operates at strikingly low modulation voltages is experimentally demonstrated. The fabricated metasurface shows up to 30% relative change in reflectance in the visible spectral range upon application of 5 mV and 78% absolute change in reflectance upon application of 100 mV of bias. The designed metasurface consists of nanostructured silver and indium tin oxide (ITO) electrodes which are separated by 5 nm thick alumina. The millivolt-scale optical modulation is attributed to a new modulation mechanism, in which transport of silver ions through alumina dielectric leads to bias-induced nucleation and growth of silver nanoparticles in the ITO counter-electrode, altering the optical extinction response. This transport mechanism, which occurs at applied electric fields of 1 mV nm -1 , provides a new approach to use of ionic transport for electrical control over light-matter interactions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Electrical research on solar cells and photovoltaic materials

    NASA Technical Reports Server (NTRS)

    Orehotsky, J.

    1984-01-01

    The flat-plate solar cell array program which increases the service lifetime of the photovoltaic modules used for terrestrial energy applications is discussed. The current-voltage response characteristics of the solar cells encapsulated in the modules degrade with service time and this degradation places a limitation on the useful lifetime of the modules. The most desirable flat-plate array system involves solar cells consisting of highly polarizable materials with similar electrochemical potentials where the cells are encapsulated in polymers in which ionic concentrations and mobilities are negligibly small. Another possible mechanism limiting the service lifetime of the photovoltaic modules is the gradual loss of the electrical insulation characteristics of the polymer pottant due to water absorption or due to polymer degradation from light or heat effects. The mechanical properties of various polymer pottant materials and of electrochemical corrosion mechanisms in solar cell material are as follows: (1) electrical and ionic resistivity; (2) water absorption kinetics and water solubility limits; and (3) corrosion characterization of various metallization systems used in solar cell construction.

  18. Modulation of electrical potential and conductivity in an atomic-layer semiconductor heterojunction

    PubMed Central

    Kobayashi, Yu; Yoshida, Shoji; Sakurada, Ryuji; Takashima, Kengo; Yamamoto, Takahiro; Saito, Tetsuki; Konabe, Satoru; Taniguchi, Takashi; Watanabe, Kenji; Maniwa, Yutaka; Takeuchi, Osamu; Shigekawa, Hidemi; Miyata, Yasumitsu

    2016-01-01

    Semiconductor heterojunction interfaces have been an important topic, both in modern solid state physics and in electronics and optoelectronics applications. Recently, the heterojunctions of atomically-thin transition metal dichalcogenides (TMDCs) are expected to realize one-dimensional (1D) electronic systems at their heterointerfaces due to their tunable electronic properties. Herein, we report unique conductivity enhancement and electrical potential modulation of heterojunction interfaces based on TMDC bilayers consisted of MoS2 and WS2. Scanning tunneling microscopy/spectroscopy analyses showed the formation of 1D confining potential (potential barrier) in the valence (conduction) band, as well as bandgap narrowing around the heterointerface. The modulation of electronic properties were also probed as the increase of current in conducting atomic force microscopy. Notably, the observed band bending can be explained by the presence of 1D fixed charges around the heterointerface. The present findings indicate that the atomic layer heterojunctions provide a novel approach to realizing tunable 1D electrical potential for embedded quantum wires and ultrashort barriers of electrical transport. PMID:27515115

  19. Evolutionary growth for Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Marshall, Matthew Fisk; Mclallin, Kerry; Zernic, Mike

    1989-01-01

    Over an operational lifetime of at least 30 yr, Space Station Freedom will encounter increased Space Station user requirements and advancing technologies. The Space Station electrical power system is designed with the flexibility to accommodate these emerging technologies and expert systems and is being designed with the necessary software hooks and hardware scars to accommodate increased growth demand. The electrical power system is planned to grow from the initial 75 kW up to 300 kW. The Phase 1 station will utilize photovoltaic arrays to produce the electrical power; however, for growth to 300 kW, solar dynamic power modules will be utilized. Pairs of 25 kW solar dynamic power modules will be added to the station to reach the power growth level. The addition of solar dynamic power in the growth phase places constraints in the initial Space Station systems such as guidance, navigation, and control, external thermal, truss structural stiffness, computational capabilities and storage, which must be planned-in, in order to facilitate the addition of the solar dynamic modules.

  20. Assessment of modularity architecture for recovery process of electric vehicle in supporting sustainable design

    NASA Astrophysics Data System (ADS)

    Baroroh, D. K.; Alfiah, D.

    2018-05-01

    The electric vehicle is one of the innovations to reduce the pollution of the vehicle. Nevertheless, it still has a problem, especially for disposal stage. In supporting product design and development strategy, which is the idea of sustainable design or problem solving of disposal stage, assessment of modularity architecture from electric vehicle in recovery process needs to be done. This research used Design Structure Matrix (DSM) approach to deciding interaction of components and assessment of modularity architecture using the calculation of value from 3 variables, namely Module Independence (MI), Module Similarity (MS), and Modularity for End of Life Stage (MEOL). The result of this research shows that existing design of electric vehicles has the architectural design which has a high value of modularity for recovery process on disposal stage. Accordingly, so it can be reused and recycled in component level or module without disassembly process to support the product that is environmentally friendly (sustainable design) and able reduce disassembly cost.

  1. Thermoelectric Generation Of Current - Theoretical And Experimental Analysis

    NASA Astrophysics Data System (ADS)

    Ruciński, Adam; Rusowicz, Artur

    2017-12-01

    This paper provides some information about thermoelectric technology. Some new materials with improved figures of merit are presented. These materials in Peltier modules make it possible to generate electric current thanks to a temperature difference. The paper indicates possible applications of thermoelectric modules as interesting tools for using various waste heat sources. Some zero-dimensional equations describing the conditions of electric power generation are given. Also, operating parameters of Peltier modules, such as voltage and electric current, are analyzed. The paper shows chosen characteristics of power generation parameters. Then, an experimental stand for ongoing research and experimental measurements are described. The authors consider the resistance of a receiver placed in the electric circuit with thermoelectric elements. Finally, both the analysis of experimental results and conclusions drawn from theoretical findings are presented. Voltage generation of about 1.5 to 2.5 V for the temperature difference from 65 to 85 K was observed when a bismuth telluride thermoelectric couple (traditionally used in cooling technology) was used.

  2. Multi-functional Electric Module for a Vehicle

    NASA Technical Reports Server (NTRS)

    Waligora, Thomas M. (Inventor); Fraser-Chanpong, Nathan (Inventor); Figuered, Joshua M. (Inventor); Reed, Ryan (Inventor); Akinyode, Akinjide Akinniyi (Inventor); Spain, Ivan (Inventor); Dawson, Andrew D. (Inventor); Herrera, Eduardo (Inventor); Markee, Mason M. (Inventor); Bluethmann, William J. (Inventor)

    2015-01-01

    A multi-functional electric module (eModule) is provided for a vehicle having a chassis, a master controller, and a drive wheel having a propulsion-braking module. The eModule includes a steering control assembly, mounting bracket, propulsion control assembly, brake controller, housing, and control arm. The steering control assembly includes a steering motor controlled by steering controllers in response to control signals from the master controller. A mounting feature of the bracket connects to the chassis. The propulsion control assembly and brake controller are in communication with the propulsion-braking module. The control arm connects to the lower portion and contains elements of a suspension system, with the control arm being connectable to the drive wheel via a wheel input/output block. The controllers are responsive to the master controller to control a respective steering, propulsion, and braking function. The steering motor may have a dual-wound stator with windings controlled via the respective steering controllers.

  3. Electrically optical phase controlling for millimeter wave orbital angular momentum multi-modulation communication

    NASA Astrophysics Data System (ADS)

    Wu, Haotian; Tang, Jin; Yu, Zhenliang; Yi, Jun; Chen, Shuqing; Xiao, Jiangnan; Zhao, Chujun; Li, Ying; Chen, Lin; Wen, Shuangchun

    2017-06-01

    Orbital angular momentum (OAM), an emerging and fascinating degree of freedom, has highlighted an innovation in communication and optical manipulation field. The beams with different OAM state, which manifest as the phase front ;twisting; of electromagnetic waves, are mutually orthogonal, which is exactly what a new freedom applied to practical communication eagers for. Herein, we proposed a novel millimeter-wave OAM modulation technique by electrically optical phase controlling. By modulating OAM and phase of optical-millimeter-wave synchronously, the multi-modulation: quadrature orbital angular momentum modulation (QOM) communication system at W band is structured and simulated, allowing a 50 Gbit/s signal transmitting with bit-error rates less than 10-4. Our work might suggest that OAM could be compounded to more complex multi-modulation signal, and revealed a new insight into OAM based high capacity wireless and radio-over-fiber communication.

  4. Electrical modulation and switching of transverse acoustic phonons

    NASA Astrophysics Data System (ADS)

    Jeong, H.; Jho, Y. D.; Rhim, S. H.; Yee, K. J.; Yoon, S. Y.; Shim, J. P.; Lee, D. S.; Ju, J. W.; Baek, J. H.; Stanton, C. J.

    2016-07-01

    We report on the electrical manipulation of coherent acoustic phonon waves in GaN-based nanoscale piezoelectric heterostructures which are strained both from the pseudomorphic growth at the interfaces as well as through external electric fields. In such structures, transverse symmetry within the c plane hinders both the generation and detection of the transverse acoustic (TA) modes, and usually only longitudinal acoustic phonons are generated by ultrafast displacive screening of potential gradients. We show that even for c -GaN, the combined application of lateral and vertical electric fields can not only switch on the normally forbidden TA mode, but they can also modulate the amplitudes and frequencies of both modes. By comparing the transient differential reflectivity spectra in structures with and without an asymmetric potential distribution, the role of the electrical controllability of phonons was demonstrated as changes to the propagation velocities, the optical birefringence, the electrically polarized TA waves, and the geometrically varying optical sensitivities of phonons.

  5. Electric field modulated ferromagnetism in ZnO films deposited at room temperature

    NASA Astrophysics Data System (ADS)

    Bu, Jianpei; Liu, Xinran; Hao, Yanming; Zhou, Guangjun; Cheng, Bin; Huang, Wei; Xie, Jihao; Zhang, Heng; Qin, Hongwei; Hu, Jifan

    2018-04-01

    The ZnO film deposited at room temperature, which is composed of the amorphous-phase background plus a few nanograins or nanoclusters (about 1-2 nm), exhibits room temperature ferromagnetism (FM). Such FM is found to be connected with oxygen vacancies. For the Ta/ZnO/Pt device based on the medium layer ZnO deposited at room temperature, the saturation magnetization not only is modulated between high and low resistive states by electric voltage with DC loop electric current but also increases/decreases through adjusting the magnitudes of positive/negative DC sweeping voltage. Meanwhile, the voltage-controlled conductance quantization is observed in Ta/ZnO/Pt, accompanying the voltage-controlled magnetization. However, the saturation magnetization of the Ta/ZnO/Pt device becomes smaller under positive electric voltage and returns in some extent under negative electric voltage, when the DC loop electric current is not applied.

  6. Electrical, Thermal, and Mechanical Characterization of Novel Segmented-Leg Thermoelectric Modules

    NASA Astrophysics Data System (ADS)

    D'Angelo, Jonathan; Case, Eldon D.; Matchanov, Nuraddin; Wu, Chun-I.; Hogan, Timothy P.; Barnard, James; Cauchy, Charles; Hendricks, Terry; Kanatzidis, Mercouri G.

    2011-10-01

    In this paper we report on the electrical, thermal, and mechanical characterization of segmented-leg PbTe-based thermoelectric modules. This work featured a thermoelectric module measurement system that was constructed and used to measure 47-couple segmented thermoelectric power generation modules fabricated by Tellurex Corporation using n-type Bi2Te3- x Se x to Ag0.86Pb19+ x SbTe20 legs and p-type Bi x Sb2- x Te3 to Ag0.9Pb9Sn9Sb0.6Te20 legs. The modules were measured under vacuum with hot-side and cold-side temperatures of approximately 670 K and 312 K, respectively. In addition, the measurements on the PbTe-based materials are compared with measurements performed on Bi2Te3 reference modules. Efficiency values as high as 6.56% were measured on these modules. In addition to the measurement system description and the measurement results on these modules, infrared images of the modules that were used to help identify nonuniformities are also presented.

  7. Performance degradation of photovoltaic modules at different sites

    NASA Astrophysics Data System (ADS)

    Arab, A. Hadj; Mahammed, I. Hadj; Ould Amrouche, S.; Taghezouit, B.; Yassaa, N.

    2018-05-01

    In this work are presented results of electrical performance measurements of 120 crystalline silicon PV modules following long-term outdoor measurements. A set of 90 PV modules represent the first grid-connected photovoltaic (PV) system in Algeria, installed at the level of the “Centre de Développement des Energies Renouvelables” (CDER) site (Mediterranean coast), Bouzareah. The other 30 PV modules were undertaken in an arid area of the desert region of Ghardaïa site, about 600 km south of Algiers, with measurements collected from different applications. Following different characterization tests, we noticed that the all tested PV modules kept their power-generating rate except a slight reduction. Therefore, a mathematical model has been used to carry out PV module testing at different irradiance and temperature levels. Hence, different PV module parameters have been calculated from the recorded values of the open-circuit voltage, the short-circuit current, the voltage and current at maximum power point. The electrical measurements have indicated different degradations of current-voltage parameters. All the PV modules stated a decrease in the nominal power, which is variable from one module to another.

  8. Analysis of High Power IGBT Short Circuit Failures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pappas, G.

    2005-02-11

    The Next Linear Collider (NLC) accelerator proposal at SLAC requires a highly efficient and reliable, low cost, pulsed-power modulator to drive the klystrons. A solid-state induction modulator has been developed at SLAC to power the klystrons; this modulator uses commercial high voltage and high current Insulated Gate Bipolar Transistor (IGBT) modules. Testing of these IGBT modules under pulsed conditions was very successful; however, the IGBTs failed when tests were performed into a low inductance short circuit. The internal electrical connections of a commercial IGBT module have been analyzed to extract self and mutual partial inductances for the main current pathsmore » as well as for the gate structure. The IGBT module, together with the partial inductances, has been modeled using PSpice. Predictions for electrical paths that carry the highest current correlate with the sites of failed die under short circuit tests. A similar analysis has been carried out for a SLAC proposal for an IGBT module layout. This paper discusses the mathematical model of the IGBT module geometry and presents simulation results.« less

  9. Module Fifteen: Special Topics; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The final module emphasizes utilizing the information learned in modules 1-14 to analyze and evaluate the power supply constructed in Module 0. The module contains the following narrative--power supply evaluation; experiment 1--resistance analysis of the half-wave and semiconductor power supply; experiment 2--voltage analysis of the half-wave and…

  10. Top Five Large-Scale Solar Myths | State, Local, and Tribal Governments |

    Science.gov Websites

    of large-scale photovoltaic (PV) facilities or solar farms tend to include a myriad of misperceptions technologies do use mirrors which can cause glare, most solar farms use PV modules to generate electricity. PV panels in order to convert solar energy into electricity. PV modules are generally less reflective than

  11. Apollo experience report: Lunar module electrical power subsystem

    NASA Technical Reports Server (NTRS)

    Campos, A. B.

    1972-01-01

    The design and development of the electrical power subsystem for the lunar module are discussed. The initial requirements, the concepts used to design the subsystem, and the testing program are explained. Specific problems and the modifications or compromises (or both) imposed for resolution are detailed. The flight performance of the subsystem is described, and recommendations pertaining to power specifications for future space applications are made.

  12. Sol-Gel Material-Enabled Electro-Optic Polymer Modulators

    PubMed Central

    Himmelhuber, Roland; Norwood, Robert A.; Enami, Yasufumi; Peyghambarian, Nasser

    2015-01-01

    Sol-gels are an important material class, as they provide easy modification of material properties, good processability and are easy to synthesize. In general, an electro-optic (EO) modulator transforms an electrical signal into an optical signal. The incoming electrical signal is most commonly information encoded in a voltage change. This voltage change is then transformed into either a phase change or an intensity change in the light signal. The less voltage needed to drive the modulator and the lower the optical loss, the higher the link gain and, therefore, the better the performance of the modulator. In this review, we will show how sol-gels can be used to enhance the performance of electro-optic modulators by allowing for designs with low optical loss, increased poling efficiency and manipulation of the electric field used for driving the modulator. The optical loss is influenced by the propagation loss in the device, as well as the losses occurring during fiber coupling in and out of the device. In both cases, the use of sol-gel materials can be beneficial due to the wide range of available refractive indices and low optical attenuation. The influence of material properties and synthesis conditions on the device performance will be discussed. PMID:26225971

  13. Technical Feasibility Evaluation on The Use of A Peltier Thermoelectric Module to Recover Automobile Exhaust Heat

    NASA Astrophysics Data System (ADS)

    Sugiartha, N.; Sastra Negara, P.

    2018-01-01

    A thermoelectric module composes of integrated p-n semiconductors as hot and cold side junctions and uses Seebeck effect between them to function as a thermoelectric generator (TEG) to directly convert heat into electrical power. Exhaust heat from engines as otherwise wasted to the atmosphere is one of the heat sources freely available to drive the TEG. This paper evaluates technical feasibility on the use of a Peltier thermoelectric module for energy recovery application of such kind of waste heat. An experimental apparatus has been setup to simulate real conditions of automobile engine exhaust piping system. It includes a square section aluminium ducting, an aluminium fin heat sink and a TEC1 12706 thermoelectric module. A heater and a cooling fan are employed to simulate hot exhaust gas and ambient air flows, respectively. Electrical loading is controlled by resistors. Dependent variables measured during the test are cold and hot side temperatures, open and loaded circuit output voltages and electrical current. The test results revealed a promising application of the Peltier thermoelectric module for the engine exhaust heat recovery, though the loaded output power produced and loaded output voltage are still far lower than the commercially thermoelectric module originally purposed for the TEG application.

  14. Histamine and thrombin modulate endothelial focal adhesion through centripetal and centrifugal forces.

    PubMed Central

    Moy, A B; Van Engelenhoven, J; Bodmer, J; Kamath, J; Keese, C; Giaever, I; Shasby, S; Shasby, D M

    1996-01-01

    We examined the contribution of actin-myosin contraction to the modulation of human umbilical vein endothelial cell focal adhesion caused by histamine and thrombin. Focal adhesion was measured as the electrical resistance across a cultured monolayer grown on a microelectrode. Actin-myosin contraction was measured as isometric tension of cultured monolayers grown on a collagen gel. Histamine immediately decreased electrical resistance but returned to basal levels within 3-5 min. Histamine did not increase isometric tension. Thrombin also immediately decreased electrical resistance, but, however, resistance did not return to basal levels for 40-60 min. Thrombin also increased isometric tension, ML-7, an inhibitor of myosin light chain kinase, prevented increases in myosin light chain phosphorylation and increases in tension development in cells exposed to thrombin. ML-7 did not prevent a decline in electrical resistance in cells exposed to thrombin. Instead, ML-7 restored the electrical resistance to basal levels in a shorter period of time (20 min) than cells exposed to thrombin alone. Also, histamine subsequently increased electrical resistance to above basal levels, and thrombin initiated an increase in resistance during the time of peak tension development. Hence, histamine and thrombin modulate endothelial cell focal adhesion through centripetal and centrifugal forces. PMID:8613524

  15. Innovative paths for providing green energy for sustainable global economic growth

    NASA Astrophysics Data System (ADS)

    Singh, Rajendra; Alapatt, G. F.

    2012-10-01

    According to United Nation, world population may reach 10.1 billion by the year 2100. The fossil fuel based global economy is not sustainable. For sustainable global green energy scenario we must consider free fuel based energy conversion, environmental concerns and conservation of water. Photovoltaics (PV) offers a unique opportunity to solve the 21st century's electricity generation because solar energy is essentially unlimited and PV systems provide electricity without any undesirable impact on the environment. Innovative paths for green energy conversion and storage are proposed in areas of R and D, manufacturing and system integration, energy policy and financing. With existing silicon PV system manufacturing, the implementation of new innovative energy policies and new innovative business model can provide immediately large capacity of electricity generation to developed, emerging and underdeveloped economies.

  16. MoREK: The learning media to improve students understanding about electrical circuit in informatics

    NASA Astrophysics Data System (ADS)

    Indrianto; Nur Indah Susanti, Meilia; Arianto, Rakhmat

    2018-03-01

    The needs for labor in the world is already increasing especially in Indonesia. According to the World Bank, Indonesia is a country that ranks 9th in the world’s largest economic growth. To meet that needs, Indonesia needs 55 million workers who are experts in the field of electricity. Therefore, it takes a lot of human resources and has been equipped with knowledge and expertise in the field of electricity. To be able to meet these needs, it takes a better method of learning to increase knowledge and expertise in the field of electricity since college, especially in the field of informatics. Prototype of Electrical Module (The MoREK) requires a Prototype method for the Practicum Module to be created as desired. This method is often used in the real world or it could be said Prototype method is part of the product that expresses the logic and physical external interface that is displayed. For data retrieval is used Pre-experimental method where students will be given pre-test and post-test. The Design of Electrical Module has a purpose to improve the students understanding of Electric Circuit Engineering Courses with the creation of The MoREK so that students are more competent to the course and can meet the needs of manpower or Human Resources (SDM) in the field of electricity. By using The Morek, the score of student learning outcomes increased by 7.8% and informatics students who conduct research in the field of electricity increased to 21%.

  17. Georgetown University Photovoltaic Higher Education National Exemplar Facility (PHENEF)

    NASA Technical Reports Server (NTRS)

    Marshall, N.

    1984-01-01

    Several photographs of this facility using photovoltaic (PV) cells are shown. An outline is given of the systems requirements, system design and wiring topology, a simplified block design, module electrical characteristics, PV module and PV module matching.

  18. Event related desynchronization-modulated functional electrical stimulation system for stroke rehabilitation: a feasibility study.

    PubMed

    Takahashi, Mitsuru; Takeda, Kotaro; Otaka, Yohei; Osu, Rieko; Hanakawa, Takashi; Gouko, Manabu; Ito, Koji

    2012-08-16

    We developed an electroencephalogram-based brain computer interface system to modulate functional electrical stimulation (FES) to the affected tibialis anterior muscle in a stroke patient. The intensity of FES current increased in a stepwise manner when the event-related desynchronization (ERD) reflecting motor intent was continuously detected from the primary cortical motor area. We tested the feasibility of the ERD-modulated FES system in comparison with FES without ERD modulation. The stroke patient who presented with severe hemiparesis attempted to perform dorsiflexion of the paralyzed ankle during which FES was applied either with or without ERD modulation. After 20 minutes of training, the range of movement at the ankle joint and the electromyography amplitude of the affected tibialis anterior muscle were significantly increased following the ERD-modulated FES compared with the FES alone. The proposed rehabilitation technique using ERD-modulated FES for stroke patients was feasible. The system holds potentials to improve the limb function and to benefit stroke patients.

  19. Specific energy yield comparison between crystalline silicon and amorphous silicon based PV modules

    NASA Astrophysics Data System (ADS)

    Ferenczi, Toby; Stern, Omar; Hartung, Marianne; Mueggenburg, Eike; Lynass, Mark; Bernal, Eva; Mayer, Oliver; Zettl, Marcus

    2009-08-01

    As emerging thin-film PV technologies continue to penetrate the market and the number of utility scale installations substantially increase, detailed understanding of the performance of the various PV technologies becomes more important. An accurate database for each technology is essential for precise project planning, energy yield prediction and project financing. However recent publications showed that it is very difficult to get accurate and reliable performance data of theses technologies. This paper evaluates previously reported claims the amorphous silicon based PV modules have a higher annual energy yield compared to crystalline silicon modules relative to their rated performance. In order to acquire a detailed understanding of this effect, outdoor module tests were performed at GE Global Research Center in Munich. In this study we examine closely two of the five reported factors that contribute to enhanced energy yield of amorphous silicon modules. We find evidence to support each of these factors and evaluate their relative significance. We discuss aspects for improvement in how PV modules are sold and identify areas for further study further study.

  20. Apollo Lunar Module Electrical Power System Overview

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    Objectives include: a) Describe LM Electrical System original specifications; b) Describe the decision to change from fuel cells to batteries and other changes; c) Describe the Electrical system; and d) Describe the Apollo 13 failure from the LM perspective.

  1. Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Tian, Hai-Ting; Pan, Xiong; Song, Ning-Fang

    2010-03-01

    The phase modulation and the closed-loop controller can generate electrical crosstalk-coupling in digital closed-loop fibre optic gyro. Four electrical cross-coupling paths are verified by the open-loop testing approach. It is found the variation of ramp amplitude will lead to the alternation of gyro bias. The amplitude and the phase parameters of the electrical crosstalk signal are measured by lock-in amplifier, and the variation of gyro bias is confirmed to be caused by the alternation of phase according to the amplitude of the ramp. A digital closed-loop fibre optic gyro electrical crosstalk-coupling model is built by approximating the electrical cross-coupling paths as a proportion and integration segment. The results of simulation and experiment show that the modulation signal electrical crosstalk-coupling can cause the dead zone of the gyro when a small angular velocity is inputted, and it could also lead to a periodic vibration of the bias error of the gyro when a large angular velocity is inputted.

  2. Nanosecond liquid crystalline optical modulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borshch, Volodymyr; Shiyanovskii, Sergij V.; Lavrentovich, Oleg D.

    2016-07-26

    An optical modulator includes a liquid crystal cell containing liquid crystal material having liquid crystal molecules oriented along a quiescent director direction in the unbiased state, and a voltage source configured to apply an electric field to the liquid crystal material wherein the direction of the applied electric field does not cause the quiescent director direction to change. An optical source is arranged to transmit light through or reflect light off the liquid crystal cell with the light passing through the liquid crystal material at an angle effective to undergo phase retardation in response to the voltage source applying themore » electric field. The liquid crystal material may have negative dielectric anisotropy, and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is transverse to the quiescent director direction. Alternatively, the liquid crystal material may have positive dielectric anisotropy and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is parallel with the quiescent director direction.« less

  3. Hybrid thermoelectric solar collector design and analysis

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.; Shaheen, K. E.

    1982-01-01

    A flat-plate solar collector is conceived where energy cascades through thermoelectric power modules generating direct-current electricity. The intent of this work was to choose a collector configuration and to perform a steady-state thermal performance assessment. A set of energy balance equations were written and solved numerically for the purpose of optimizing collector thermal and electrical performance. The collector design involves finned columns of thermoelectric modules imbedded in the absorber plate (hot junction) over a parallel array of vertical tubes. The thermoelectric power output is limited by the small hot-junction/cold-junction temperature difference which can be maintained under steady-state conditions. The electric power per unit tube pass area is found to have a maximum as a function of a geometric parameter, while electric power is maximized with respect to an electric resistance ratio. Although the electric power efficiency is small, results indicate that there is sufficient electric power production to drive a coolant circulator, suggesting the potential for a stand-alone system.

  4. Applications of ethylene vinyl acetate as an encapsulation material for terrestrial photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Coulbert, C. D.; Liang, R. H.; Gupta, A.; Willis, P.; Baum, B.

    1983-01-01

    Terrestrial photovoltaic modules must undergo substantial reductions in cost in order to become economically attractive as practical devices for large scale production of electricity. Part of the cost reductions must be realized by the encapsulation materials that are used to package, protect, and support the solar cells, electrical interconnects, and other ancillary components. As many of the encapsulation materials are polymeric, cost reductions necessitate the use of low cost polymers. The performance and status of ethylene vinyl acetate, a low cost polymer that is being investigated as an encapsulation material for terrestrial photovoltaic modules, are described.

  5. A review of test results on solar thermal power modules with dish-mounted Stirling and Brayton cycle engines

    NASA Technical Reports Server (NTRS)

    Jaffe, Leonard D.

    1988-01-01

    This paper presents results of development tests of various solar thermal parabolic dish modules and assemblies that used dish-mounted Brayton or Stirling cycle engines for production of electric power. These tests indicate that early modules achieve net efficiencies up to 29 percent in converting sunlight to electricity, as delivered to the grid. Various equipment deficiencies were observed and a number of malfunctions occurred. The performance measurements, as well as the malfunctions and other test experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  6. Electrical insulation design requirements and reliability goals

    NASA Astrophysics Data System (ADS)

    Ross, R. G., Jr.

    1983-11-01

    The solar cells in a photovoltaic module which must be electrically isolated from module exterior surfaces to satisfy a variety of safety and operating considerations are discussed. The performance and reliability of the insulation system are examined. Technical requirements involve the capability of withstanding the differential voltage from the solar cells to the module frame. The maximum system voltage includes consideration of maximum open circuit array voltages achieved under low-temperature, high-irradiance conditions, and transient overvoltages due to system feedback of lightning transients. The latter is bounded by the characteristics of incorporated voltage limiting devices such as MOVs.

  7. The Tucson Electric Power Solar Test Yard

    NASA Astrophysics Data System (ADS)

    Lonij, Vincent; Orsburn, Sean; Salhab, Anas; Kopp, Emily; Brooks, Adria; Jayadevan, Vijai; Greenberg, James; St. Germaine, Michael; Allen, Nate; Jones, Sarah; Hardesty, Garrett; Cronin, Alex

    2011-10-01

    In collaboration with Tucson Electric Power we studied the performance of twenty different grid-tied photovoltaic systems, consisting of over 600 PV modules in all. We added data acquisition hardware to monitor DC power from the modules, AC power from the inverters, PV module temperatures, and meteorological data such as the irradiance incident on the PV systems. We report measurements of PV system yields and efficiencies over periods of minutes, days, and years. We also report temperature and irradiance coefficients of efficiency and measurements of long-term degradation. We also use our data to validate models that predict the output from PV systems.

  8. Electrical production testing of the D0 Silicon microstrip tracker detector modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D0, SMT Production Testing Group; /Fermilab

    The D0 Silicon Microstrip Tracker (SMT) is the innermost system of the D0 detector in Run 2. It consists of 912 detector units, corresponding to 5 different types of assemblies, which add up to a system with 792,576 readout channels. The task entrusted to the Production Testing group was to thoroughly debug, test and grade each detector module before its installation in the tracker. This note describes the production testing sequence and the procedures by which the detector modules were electrically tested and characterized at the various stages of their assembly.

  9. Investigation of test methods, material properties, and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Photovoltaic (PV) modules consist of a string of electrically interconnected silicon solar cells capable of producing practical quantities of electrical power when exposed to sunlight. To insure high reliability and long term performance, the functional components of the solar cell module must be adequately protected from the environment by some encapsulation technique. The encapsulation system must provide mechanical support for the cells and corrosion protection for the electrical components. The goal of the program is to identify and develop encapsulation systems consistent with the PV module operating requirements of 30 year life and a target cost of $0.70 per peak watt ($70 per square meter) (1980 dollars). Assuming a module efficiency of ten percent, which is equivalent to a power output of 100 watts per square meter in midday sunlight, the capital cost of the modules may be calculated to be $70.00 per square meter. Out of this cost goal, only 20 percent is available for encapsulation due to the high cost of the cells, interconnects, and other related components. The encapsulation cost allocation may then be stated as $14.00 per square meter, included all coatings, pottant and mechanical supports for the cells.

  10. A modular neural network scheme applied to fault diagnosis in electric power systems.

    PubMed

    Flores, Agustín; Quiles, Eduardo; García, Emilio; Morant, Francisco; Correcher, Antonio

    2014-01-01

    This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system.

  11. A Modular Neural Network Scheme Applied to Fault Diagnosis in Electric Power Systems

    PubMed Central

    Flores, Agustín; Morant, Francisco

    2014-01-01

    This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system. PMID:25610897

  12. First-principles calculations on strain and electric field induced band modulation and phase transition of bilayer WSe2sbnd MoS2 heterostructure

    NASA Astrophysics Data System (ADS)

    Lei, Xiang; Yu, Ke

    2018-04-01

    A purposeful modulation of physical properties of material via change external conditions has long captured people's interest and can provide many opportunities to improve the specific performance of electronic devices. In this work, a comprehensive first-principles survey was performed to elucidate that the bandgap and electronic properties of WSe2sbnd MoS2 heterostructure exhibited unusual response to exterior strain and electric field in comparison with pristine structures. It demonstrates that the WSe2sbnd MoS2 is a typical type-II heterostructure, and thus the electron-hole pairs can be effectively spatially separated. The external effects can trigger the electronic phase transition from semiconducting to metallic state, which originates from the internal electric evolution induced energy-level shift. Interestingly, the applied strain shows no direction-depended character for the modulation of bandgap of WSe2sbnd MoS2 heterostructure, while it exists in the electric field tuning processes and strongly depends on the direction of the electric field. Our findings elucidate the tunable electronic property of bilayer WSe2sbnd MoS2 heterostructure, and would provide a valuable reference to design the electronic nanodevices.

  13. A Thruster Sub-System Module (TSSM) for solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.

    1975-01-01

    Solar Electric Propulsion (SEP) is currently being studied for possible use in a number of near-earth and planetary missions. Thruster systems for these missions could be integrated directly into a spacecraft or modularized into a Thruster Sub-System Module (TSSM). A TSSM for electric propulsion missions would consist of a 30-cm ion thruster, thruster gimbal system, propellant storage and feed system, associated Power Processing Unit (PPU), thermal control system and complete supporting structure. The TSSM would be wholly self-contained and be essentially a plug-in or strap-on electric stage with simple mechanical, thermal, electrical and propellant interfaces. The TSSM described in this report is designed for a broad range of missions requiring from two to ten TSSM's mounted in a 2 by x configuration. The thermal control system is designed to accommodate waste heat from the power processor based on realistic efficiencies when the TSSM is operating from 0.7 to 3.5 AU's. The modules are 0.61 M (2 ft) wide by 2.29 M (7.5 ft) long and have a dry weight including propellant tank of 54.4 kg (120 lb). The propellant tank will hold 145.1 kg (320 lb) of mercury.

  14. Electric-field assisted spin torque nano-oscillator and binary frequency shift keying modulation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangli; Chen, Hao-Hsuan; Zhang, Zongzhi; Liu, Yaowen

    2018-04-01

    Electric-controlled magnetization precession introduces technologically relevant possibility for developing spin torque nano-oscillators (STNO) with potential applications in microwave emission. Using the perpendicularly magnetized magnetic tunnel junction (MTJ), we show that the magnetization oscillation frequency can be tuned by the co-action of electric field and spin polarized current. The dynamical phase diagram of MTJ-based STNO is analytically predicted through coordinate transformation from the laboratory frame to the rotation frame, by which the nonstationary out-of-plane magnetization precession process is therefore transformed into the stationary process in the rotation frame. Furthermore, using this STNO as a microwave source, we numerically demonstrate that the bit signal can be transmitted by a binary frequency shift keying (BFSK) modulation technique. The BFSK scheme shows good modulation features with no transient state.

  15. Solar thermal power systems point-focusing distributed receiver technology project. Volume 2: Detailed report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The accomplishments of the Point-Focusing Distributed Receiver Technology Project during fiscal year 1979 are detailed. Present studies involve designs of modular units that collect and concentrate solar energy via highly reflective, parabolic-shaped dishes. The concentrated energy is then converted to heat in a working fluid, such as hot gas. In modules designed to produce heat for industrial applications, a flexible line conveys the heated fluid from the module to a heat transfer network. In modules designed to produce electricity the fluid carries the heat directly to an engine in a power conversion unit located at the focus of the concentrator. The engine is mechanically linked to an electric generator. A Brayton-cycle engine is currently being developed as the most promising electrical energy converter to meet near-future needs.

  16. Losses analysis of soft magnetic ring core under sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) excitations

    NASA Astrophysics Data System (ADS)

    Gao, Hezhe; Li, Yongjian; Wang, Shanming; Zhu, Jianguo; Yang, Qingxin; Zhang, Changgeng; Li, Jingsong

    2018-05-01

    Practical core losses in electrical machines differ significantly from those experimental results using the standardized measurement method, i.e. Epstein Frame method. In order to obtain a better approximation of the losses in an electrical machine, a simulation method considering sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) waveforms is proposed. The influence of the pulse width modulation (PWM) parameters on the harmonic components in SPWM and SVPWM is discussed by fast Fourier transform (FFT). Three-level SPWM and SVPWM are analyzed and compared both by simulation and experiment. The core losses of several ring samples magnetized by SPWM, SVPWM and sinusoidal alternating current (AC) are obtained. In addition, the temperature rise of the samples under SPWM, sinusoidal excitation are analyzed and compared.

  17. Control of the Earth's electric field intensity through solar wind modulation of galactic cosmic radiation: Support for a proposed atmospheric electrical sun-weather mechanism

    NASA Technical Reports Server (NTRS)

    Markson, R.

    1980-01-01

    The ionospheric potential and galactic cosmic radiation, found to be inversely correlated with the solar wind velocity are examined as being germane to weather modification. Since the ionospheric potential is proportional to the fair weather electric field intensity and cosmic radiation is the dominant source of atmospheric ionization, it is concluded that the Earth's overall electric field varies in phase with atmospheric ionization and that the latter is modulated by the solar wind. A proposed mechanism, in which solar control of ionizing radiation influences atmospheric electrification and thus possibly cloud physical processes is discussed. An experimental approach to critically test the proposed mechanism through comparison of the temporal variation of the Earth's electric field with conditions in the interplanetary medium is outlined.

  18. Advance release of data for the 1980 Statistical Year Book of the electric utility industry. [Monograph; data tables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    This monograph consists of 25 data tables that will be included in the subject year book, revealing such information as: total US installed generating capacity; installed capacity by states; installed capacity by ownership and type of prime mover; capability - peak load - kWh requirements; generation by states; generation by fuel; sales by years and classes of service; ultimate customers - by years and classes of service; revenues - by years and classes of service; average use and revenue per customer; average revenues per kWh sold; consumption of fossil fuels for electric generation; construction expenditures; and public-utility long-term financing.

  19. System design and specifications. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A design summary of the Earth Observatory Satellite (EOS) is presented. The systems considered in the summary are: (1) the spacecraft structure, (2) electrical power modules, (3) communications and data handling module, (4) attitude determination module, (5) actuation module, and (6) solar array and drive module. The documents which provide the specifications for the systems and the equipment are identified.

  20. General Purpose Heat Source Simulator

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2008-01-01

    The General Purpose Heat Source (GPHS) project seeks to combine the development of an electrically heated, single GPHS module simulator with the evaluation of potential nuclear surface power systems. The simulator is designed to match the form, fit, and function of actual GPHS modules which normally generate heat through the radioactive decay of Pu238. The use of electrically heated modules rather than modules containing Pu238 facilitates the testing of the subsystems and systems without sacrificing the quantity and quality of the test data gathered. Current GPHS activities are centered on developing robust heater designs with sizes and weights which closely match those of actual Pu238 fueled GPHS blocks. Designs are being pursued which will allow operation up to 1100 C.

  1. MS Malenchenko conducts electrical work in Zvezda during STS-106

    NASA Image and Video Library

    2000-09-13

    S106-E-5197 (13 September 2000) --- Cosmonaut Yuri I. Malenchenko, mission specialist representing the Russian Aviation and Space Agency, works aboard the Zvezda service module on the International Space Station (ISS). Electrical work was the hallmark of the day as four of the mission specialists aboard ISS (temporarily docked with the Space Shuttle Atlantis) replaced batteries inside the Zarya and Zvezda modules while supply transfer continued around them.

  2. Thermoelectric heat exchange element

    DOEpatents

    Callas, James J.; Taher, Mahmoud A.

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  3. Modulation and detection of single neuron activity using spin transfer nano-oscillators

    NASA Astrophysics Data System (ADS)

    Algarin, Jose Miguel; Ramaswamy, Bharath; Venuti, Lucy; Swierzbinski, Matthew; Villar, Pablo; Chen, Yu-Jin; Krivorotov, Ilya; Weinberg, Irving N.; Herberholz, Jens; Araneda, Ricardo; Shapiro, Benjamin; Waks, Edo

    2017-09-01

    The brain is a complex network of interconnected circuits that exchange electrical signals with each other. These electrical signals provide insight on how neural circuits code information, and give rise to sensations, thoughts, emotions and actions. Currents methods to detect and modulate these electrical signals use implanted electrodes or optical fields with light sensitive dyes in the brain. These techniques require complex surgeries or suffer low resolution. In this talk we explore a new method to both image and stimulate single neurons using spintronics. We propose using a Spin Transfer Nano-Oscillators (STNOs) as a nanoscale sensor that converts neuronal action potentials to microwave field oscillations that can be detected wirelessly by magnetic induction. We will describe our recent proof-of-concept demonstration of both detection and wireless modulation of neuronal activity using STNOs. For detection we use electrodes to connect a STNO to a lateral giant crayfish neuron. When we stimulate the neuron, the STNO responds to the neuronal activity with a corresponding microwave signal. For modulation, we stimulate the STNOs wirelessly using an inductively coupled solenoid. The STNO rectifies the induced microwave signal to produce a direct voltage. This direct voltage from the STNO, when applied in the vicinity of a mammalian neuron, changes the frequency of electrical signals produced by the neuron.

  4. User handbook for block IV silicon solar cell modules

    NASA Technical Reports Server (NTRS)

    Smokler, M. I.

    1982-01-01

    The essential electrical and mechanical characteristics of block 4 photovoltaic solar cell modules are described. Such module characteristics as power output, nominal operating voltage, current-voltage characteristics, nominal operating cell temperature, and dimensions are tabulated. The limits of the environmental and other stress tests to which the modules are subjected are briefly described.

  5. Hands-On Learning Modules for Interdisciplinary Environments: An Example with a Focus on Weather Radar Applications

    ERIC Educational Resources Information Center

    Chilson, P. B.; Yeary, M. B.

    2012-01-01

    Learning modules provide an effective means of encouraging cognition and active learning. This paper discusses several such modules that have been developed within a course on weather radar applications intended for students from Electrical Engineering and Meteorology. The modules were designed both to promote interdisciplinary exchange between…

  6. Development and bottlenecks of renewable electricity generation in China: a critical review.

    PubMed

    Hu, Yuanan; Cheng, Hefa

    2013-04-02

    This review provides an overview on the development and status of electricity generation from renewable energy sources, namely hydropower, wind power, solar power, biomass energy, and geothermal energy, and discusses the technology, policy, and finance bottlenecks limiting growth of the renewable energy industry in China. Renewable energy, dominated by hydropower, currently accounts for more than 25% of the total electricity generation capacity. China is the world's largest generator of both hydropower and wind power, and also the largest manufacturer and exporter of photovoltaic cells. Electricity production from solar and biomass energy is at the early stages of development in China, while geothermal power generation has received little attention recently. The spatial mismatch in renewable energy supply and electricity demand requires construction of long-distance transmission networks, while the intermittence of renewable energy poses significant technical problems for feeding the generated electricity into the power grid. Besides greater investment in research and technology development, effective policies and financial measures should also be developed and improved to better support the healthy and sustained growth of renewable electricity generation. Meanwhile, attention should be paid to the potential impacts on the local environment from renewable energy development, despite the wider benefits for climate change.

  7. Encoding of the amplitude modulation of pulsatile electrical stimulation in the feline cochlear nucleus by neurons in the inferior colliculus; effects of stimulus pulse rate

    NASA Astrophysics Data System (ADS)

    McCreery, Douglas; Han, Martin; Pikov, Victor; Yadav, Kamal; Pannu, Satinderpall

    2013-10-01

    Objectives. Persons without a functional auditory nerve cannot benefit from cochlear implants, but some hearing can be restored by an auditory brainstem implant (ABI) with stimulating electrodes implanted on the surface of the cochlear nucleus (CN). Most users benefit from their ABI, but speech recognition tends to be poorer than for users of cochlear implants. Psychophysical studies suggest that poor modulation detection may contribute to the limited performance of ABI users. In a cat model, we determined how the pulse rate of the electrical stimulus applied within or on the CN affects temporal and rate encoding of amplitude modulation (AM) by neurons in the central nucleus of the inferior colliculus (ICC). Approach. Stimulating microelectrodes were implanted chronically in and on the cats' CN, and multi-site recording microelectrodes were implanted chronically into the ICC. Encoding of AM pulse trains by neurons in the ICC was characterized as vector strength (VS), the synchrony of neural activity with the AM, and as the mean rate of neuronal action potentials (neuronal spike rate (NSR)). Main results. For intranuclear microstimulation, encoding of AM as VS was up to 3 dB greater when stimulus pulse rate was increased from 250 to 500 pps, but only for neuronal units with low best acoustic frequencies, and when the electrical stimulation was modulated at low frequencies (10-20 Hz). For stimulation on the surface of the CN, VS was similar at 250 and 500 pps, and the dynamic range of the VS was reduced for pulse rates greater than 250 pps. Modulation depth was encoded strongly as VS when the maximum stimulus amplitude was held constant across a range of modulation depth. This ‘constant maximum’ protocol allows enhancement of modulation depth while preserving overall dynamic range. However, modulation depth was not encoded as strongly as NSR. Significance. The findings have implications for improved sound processors for present and future ABIs. The performance of ABIs may benefit from using pulse rates greater than those presently used in most ABIs, and by sound processing strategies that enhance the modulation depth of the electrical stimulus while preserving dynamic range.

  8. Method and apparatus for resonant frequency waveform modulation

    DOEpatents

    Taubman, Matthew S [Richland, WA

    2011-06-07

    A resonant modulator device and process are described that provide enhanced resonant frequency waveforms to electrical devices including, e.g., laser devices. Faster, larger, and more complex modulation waveforms are obtained than can be obtained by use of conventional current controllers alone.

  9. Evaluation of Temperature-Dependent Effective Material Properties and Performance of a Thermoelectric Module

    NASA Astrophysics Data System (ADS)

    Chien, Heng-Chieh; Chu, En-Ting; Hsieh, Huey-Lin; Huang, Jing-Yi; Wu, Sheng-Tsai; Dai, Ming-Ji; Liu, Chun-Kai; Yao, Da-Jeng

    2013-07-01

    We devised a novel method to evaluate the temperature-dependent effective properties of a thermoelectric module (TEM): Seebeck coefficient ( S m), internal electrical resistance ( R m), and thermal conductance ( K m). After calculation, the effective properties of the module are converted to the average material properties of a p- n thermoelectric pillar pair inside the module: Seebeck coefficient ( S TE), electrical resistivity ( ρ TE), and thermal conductivity ( k TE). For a commercial thermoelectric module (Altec 1091) chosen to verify the novel method, the measured S TE has a maximum value at bath temperature of 110°C; ρ TE shows a positive linear trend dependent on the bath temperature, and k TE increases slightly with increasing bath temperature. The results show the method to have satisfactory measurement performance in terms of practicability and reliability; the data for tests near 23°C agree with published values.

  10. Manifold, bus support and coupling arrangement for solid oxide fuel cells

    DOEpatents

    Parry, G.W.

    1988-04-21

    Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperature resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC. 11 figs.

  11. Apparatus and method for compensating for clock drift in downhole drilling components

    DOEpatents

    Hall, David R [Provo, UT; Pixton, David S [Lehi, UT; Johnson, Monte L [Orem, UT; Bartholomew, David B [Springville, UT; Hall, Jr., H. Tracy

    2007-08-07

    A precise downhole clock that compensates for drift includes a prescaler configured to receive electrical pulses from an oscillator. The prescaler is configured to output a series of clock pulses. The prescaler outputs each clock pulse after counting a preloaded number of electrical pulses from the oscillator. The prescaler is operably connected to a compensator module for adjusting the number loaded into the prescaler. By adjusting the number that is loaded into the prescaler, the timing may be advanced or retarded to more accurately synchronize the clock pulses with a reference time source. The compensator module is controlled by a counter-based trigger module configured to trigger the compensator module to load a value into the prescaler. Finally, a time-base logic module is configured to calculate the drift of the downhole clock by comparing the time of the downhole clock with a reference time source.

  12. Thin film module electrical configuration versus electrical performance

    NASA Technical Reports Server (NTRS)

    Morel, D. L.

    1985-01-01

    The as made and degraded states of thin film silicon (TFS) based modules have been modelled in terms of series resistance losses. The origins of these losses lie in interface and bulk regions of the devices. When modules degrade under light exposure, increases occur in both the interface and bulk components of the loss based on series resistance. Actual module performance can thus be simulated by use of only one unknown parameter, shunt losses. Use of the simulation to optimize module design indicates that the current design of 25 cells per linear foot is near optimum. Degradation performance suggests a shift to approx. 35 cells to effect maximum output for applications not constrained to 12 volts. Earlier studies of energy based performance and tandem structures should be updated to include stability factors, not only the initial loss factor tested here, but also appropriate annealing factors.

  13. Modulation of acetylcholine release from rat striatal slices by the GABA/benzodiazepine receptor complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supavilai, P.; Karobath, M.

    1985-02-04

    GABA, THIP and muscimol enhance spontaneous and inhibit electrically induced release of tritium labelled compounds from rat striatal slices which have been pre-labelled with /sup 3/H-choline. Baclofen is inactive in this model. Muscimol can inhibit electrically induced release of tritiated material by approximately 75% with half maximal effects at 2 ..mu..M. The response to muscimol can be blocked by the GABA antagonists bicuculline methobromide, picrotoxin, anisatin, R 5135 and CPTBO (cyclopentylbicyclophosphate). Drugs which act on the benzodiazepine receptor (BR) require the presence of muscimol to be effective and they modulate the effects of muscimol in a bidirectional manner. Thus BRmore » agonists enhance and inverse BR agonists attenuate the inhibitory effects of muscimol on electrically induced release. Ro15-1788, a BR antagonist, does not modulate the inhibitory effects of muscimol but antagonizes the actions of clonazepam, a BR agonist, and of DMCM, an inverse BR agonist. These results demonstrate that a GABA/benzodiazepine receptor complex can modulate acetylcholine release from rat striatal slices in vitro. 24 references, 3 figures, 5 table.« less

  14. Differential carrier lifetime and transport effects in electrically injected III-nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Rashidi, A.; Nami, M.; Monavarian, M.; Aragon, A.; DaVico, K.; Ayoub, F.; Mishkat-Ul-Masabih, S.; Rishinaramangalam, A.; Feezell, D.

    2017-07-01

    This work describes a small-signal microwave method for determining the differential carrier lifetime and transport effects in electrically injected InGaN/GaN light-emitting diodes (LEDs). By considering the carrier diffusion, capture, thermionic escape, and recombination, the rate equations are used to derive an equivalent small-signal electrical circuit for the LEDs, from which expressions for the input impedance and modulation response are obtained. The expressions are simultaneously fit to the experimental data for the input impedance and modulation response for nonpolar InGaN/GaN micro-LEDs on free-standing GaN substrates. The fittings are used to extract the transport related circuit parameters and differential carrier lifetimes. The dependence of the parameters on the device diameter and current density is reported. We also derive approximations for the modulation response under low and high injection levels and show that the transport of carriers affects the modulation response of the device, especially at low injection levels. The methods presented are relevant to the design of high-speed LEDs for visible-light communication.

  15. Electrical Currents and Adhesion of Edge-Delete Regions of EVA-to-Glass Module Packaging: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, T. J.; Jorgensen, G. J.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Electrical conductivity pathways from the grounded frame to the cell area in a PV module are reviewed here. Electrical conductivity pathways from the grounded frame to the cell area in a PV module are reviewed here. Measurements are made on 4 inch x 8 inch soda lime (SL) glass substrates with contact patterns defined using 3-mil and 10-mil diameter bead-blast removal of the SnO{sub 2} coating to study the dominant path, which is the EVA/glass interface. The remaining SnO{sub 2} contact strips are separated by what would simulate the module edge deletemore » regions. EVA encapsulated bead-blast surface resistances are 8 x 10{sup 15} ohm/sq compared to 8 x 10{sup 12} ohm/sq for native SL glass surfaces. Adhesion strengths to bead-blast surfaces are 25 to 30 lbs/in. Stress test results on these interfaces after removal from damp heat suggest corrosion of the glass at the glass-EVA interface.« less

  16. Electric-field control of a hydrogenic donor's spin in a semiconductor

    NASA Astrophysics Data System (ADS)

    de, Amrit; Pryor, Craig E.; Flatté, Michael E.

    2009-03-01

    The orbital wave function of an electron bound to a single donor in a semiconductor can be modulated by an applied AC electric field, which affects the electron spin dynamics via the spin-orbit interaction. Numerical calculations of the spin dynamics of a single hydrogenic donor (Si) using a real-space multi-band k.p formalism show that in addition to breaking the high symmetry of the hydrogenic donor state, the g-tensor has a strong nonlinear dependence on the applied fields. By explicitly integrating the time dependent Schr"odinger equation it is seen that Rabi oscillations can be obtained for electric fields modulated at sub-harmonics of the Larmor frequency. The Rabi frequencies obtained from sub-harmonic modulation depend on the magnitudes of the AC and DC components of the electric field. For a purely AC field, the highest Rabi frequency is obtained when E is driven at the 2nd sub-harmonic of the Larmor frequency. Apart from suggesting ways to measure g-tensor anisotropies and nonlinearities, these results also suggest the possibility of direct frequency domain measurements of Rabi frequencies.

  17. Fast E-sail Uranus entry probe mission

    NASA Astrophysics Data System (ADS)

    Janhunen, Pekka; Lebreton, Jean-Pierre; Merikallio, Sini; Paton, Mark; Mengali, Giovanni; Quarta, Alessandro A.

    2014-12-01

    The electric solar wind sail is a novel propellantless space propulsion concept. According to numerical estimates, the electric solar wind sail can produce a large total impulse per propulsion system mass. Here we consider using a 0.5 N electric solar wind sail for boosting a 550 kg spacecraft to Uranus in less than 6 years. The spacecraft is a stack consisting of the electric solar wind sail module which is jettisoned roughly at Saturn distance, a carrier module and a probe for Uranus atmospheric entry. The carrier module has a chemical propulsion ability for orbital corrections and it uses its antenna for picking up the probe's data transmission and later relaying it to Earth. The scientific output of the mission is similar to what the Galileo Probe did at Jupiter. Measurements of the chemical and isotope composition of the Uranian atmosphere can give key constraints to different formation theories of the Solar System. A similar method could also be applied to other giant planets and Titan by using a fleet of more or less identical probes.

  18. Self-triggering superconducting fault current limiter

    DOEpatents

    Yuan, Xing [Albany, NY; Tekletsadik, Kasegn [Rexford, NY

    2008-10-21

    A modular and scaleable Matrix Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. The matrix fault current limiter comprises a fault current limiter module that includes a superconductor which is electrically coupled in parallel with a trigger coil, wherein the trigger coil is magnetically coupled to the superconductor. The current surge doing a fault within the electrical power network will cause the superconductor to transition to its resistive state and also generate a uniform magnetic field in the trigger coil and simultaneously limit the voltage developed across the superconductor. This results in fast and uniform quenching of the superconductors, significantly reduces the burnout risk associated with non-uniformity often existing within the volume of superconductor materials. The fault current limiter modules may be electrically coupled together to form various "n" (rows).times."m" (columns) matrix configurations.

  19. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    NASA Technical Reports Server (NTRS)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  20. MS Lu conducts electrical work in Zvezda during STS-106

    NASA Image and Video Library

    2000-09-13

    S106-E-5213 (13 September 2000) --- Astronaut Edward T. Lu follows printed guidelines as he assumes the role of an electrician onboard the Zvezda service module on the International Space Station (ISS). Electrical work was the hallmark of the day as four of the mission specialists aboard ISS (temporarily docked with the Space Shuttle Atlantis) replaced batteries inside the Zarya and Zvezda modules while supply transfer continued around them.

  1. Electrical Transport and Channel Length Modulation in Semiconducting Carbon Nanotube Field-Effect Transistors

    DTIC Science & Technology

    2013-11-25

    a ballistic one-dimensional conductor is / = £>(£) ■ VgiE)[fR(E) - fdEME , (1) where Vg(E) is the group velocity, D(E) is the density of states... AEROSPACE REPORT NO. ATR-2013-01138 Electrical Transport and Channel Length Modulation in Semiconducting Carbon Nanotube Field-Effect Transistors...SCIENCES LABORATORIES The Aerospace Corporation functions as an "architect-engineer" for national security programs, specializing in advanced military

  2. High frequency modulation circuits based on photoconductive wide bandgap switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampayan, Stephen

    Methods, systems, and devices for high voltage and/or high frequency modulation. In one aspect, an optoelectronic modulation system includes an array of two or more photoconductive switch units each including a wide bandgap photoconductive material coupled between a first electrode and a second electrode, a light source optically coupled to the WBGP material of each photoconductive switch unit via a light path, in which the light path splits into multiple light paths to optically interface with each WBGP material, such that a time delay of emitted light exists along each subsequent split light path, and in which the WBGP materialmore » conducts an electrical signal when a light signal is transmitted to the WBGP material, and an output to transmit the electrical signal conducted by each photoconductive switch unit. The time delay of the photons emitted through the light path is substantially equivalent to the time delay of the electrical signal.« less

  3. Electric-field-induced structural modulation of epitaxial BiFeO3 multiferroic thin films as studied using x-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Bark, Chung W.; Ryu, Sangwoo; Koo, Yang M.; Jang, Hyun M.; Youn, Hwa S.

    2007-01-01

    An in situ method, called synchrotron x-ray microdiffraction, was introduced to examine the electric-field-induced structural modulation of the epitaxially grown pseudotetragonal BiFeO3 thin film. To evaluate the d spacing (d001) from the measured intensity contour in the 2θ-χ space, the peak position in each diffraction profile was determined by applying two-dimensional Lorentzian fitting. By tracing the change of d spacing as a function of the applied electric field and by examining the Landau free energy function for P4mm symmetry, the authors were able to estimate the two important parameters that characterize the field-induced structural modulation. The estimated linear piezoelectric coefficient (d33) at zero-field limit is 15pm /V, and the effective nonlinear electrostrictive coefficient (Qeff) is as low as ˜8.0×10-3m4/C2.

  4. Demonstration of an optical directed half-subtracter using integrated silicon photonic circuits.

    PubMed

    Liu, Zilong; Zhao, Yongpeng; Xiao, Huifu; Deng, Lin; Meng, Yinghao; Guo, Xiaonan; Liu, Guipeng; Tian, Yonghui; Yang, Jianhong

    2018-04-01

    An integrated silicon photonic circuit consisting of two silicon microring resonators (MRRs) is proposed and experimentally demonstrated for the purpose of half-subtraction operation. The thermo-optic modulation scheme is employed to modulate the MRRs due to its relatively simple fabrication process. The high and low levels of the electrical pulse signal are utilized to define logic 1 and 0 in the electrical domain, respectively, and the high and low levels of the optical power represent logic 1 and 0 in the optical domain, respectively. Two electrical pulse sequences regarded as the operands are applied to the corresponding micro-heaters fabricated on the top of the MRRs to achieve their dynamic modulations. The final operation results of bit-wise borrow and difference are obtained at their corresponding output ports in the form of light. At last, the subtraction operation of two bits with the operation speed of 10 kbps is demonstrated successfully.

  5. Rational modulation of neuronal processing with applied electric fields.

    PubMed

    Bikson, Marom; Radman, Thomas; Datta, Abhishek

    2006-01-01

    Traditional approaches to electrical stimulation, using trains of supra-threshold pulses to trigger action potentials, may be replaced or augmented by using 'rational' sub-threshold stimulation protocols that incorporate knowledge of single neuron geometry, inhomogeneous tissue properties, and nervous system information coding. Sub-threshold stimulation, at intensities (well) below those sufficient to trigger action potentials, may none-the-less exert a profound effect on brain function through modulation of concomitant neuronal activity. For example, small DC fields may coherently polarize a network of neurons and thus modulate the simultaneous processing of afferent synaptic input as well as resulting changes in synaptic plasticity. Through 'activity-dependent plasticity', sub-threshold fields may allow specific targeting of pathological networks and are thus particularly suitable to overcome the poor anatomical focus of noninvasive (transcranial) electrical stimulation. Additional approaches to improve targeting in transcranial stimulation using novel electrode configurations are also introduced.

  6. The Next Linear Collider Program

    Science.gov Websites

    /graphics.htm Snowmass 2001 http://snowmass2001.org/ Electrical Systems Modulators http://www -project.slac.stanford.edu/lc/local/electrical/e_home.htm DC Magnet Power http://www-project.slac.stanford.edu/lc/local /electrical/e_home.htm Global Systems http://www-project.slac.stanford.edu/lc/local/electrical/e_home.htm

  7. Articulated, Performance-Based Instruction Objectives Guide for Electricity/Industrial Electricity. Development Period, July, 1983--June, 1984. Edition I.

    ERIC Educational Resources Information Center

    Henderson, Wm. Edward, Jr., Ed.

    This curriculum guide is designed to assist vocational educators in presenting an articulated, performance-based course in electricity and industrial electricity. Addressed in the individual units of the course (included in 11 modules) are the following topics: safety, leadership, communication skills, career preparation, good work habits and…

  8. Nature's Energy, Module B. Fourth Grade. Pilot Form.

    ERIC Educational Resources Information Center

    Pasco County Schools, Dade City, FL.

    This booklet is one of a set of learning modules on energy for use by students and teachers in the fourth grade. This module examines man's use of fossil fuels, electricity production, and other energy sources. Included are laboratory activities and values exercises. (BT)

  9. Electricity/Electronics. Career Education Guide.

    ERIC Educational Resources Information Center

    Dependents Schools (DOD), Washington, DC. European Area.

    The curriculum guide is designed to provide high school students with realistic training in electricity/electronics theory and practice and to prepare them for entry into an occupation or continuing postsecondary education. The learning modules are grouped into three areas: electrical technology, radio-television technology, and industrial…

  10. Huygens' optical vector wave field synthesis via in-plane electric dipole metasurface.

    PubMed

    Park, Hyeonsoo; Yun, Hansik; Choi, Chulsoo; Hong, Jongwoo; Kim, Hwi; Lee, Byoungho

    2018-04-16

    We investigate Huygens' optical vector wave field synthesis scheme for electric dipole metasurfaces with the capability of modulating in-plane polarization and complex amplitude and discuss the practical issues involved in realizing multi-modulation metasurfaces. The proposed Huygens' vector wave field synthesis scheme identifies the vector Airy disk as a synthetic unit element and creates a designed vector optical field by integrating polarization-controlled and complex-modulated Airy disks. The metasurface structure for the proposed vector field synthesis is analyzed in terms of the signal-to-noise ratio of the synthesized field distribution. The design of practical metasurface structures with true vector modulation capability is possible through the analysis of the light field modulation characteristics of various complex modulated geometric phase metasurfaces. It is shown that the regularization of meta-atoms is a key factor that needs to be considered in field synthesis, given that it is essential for a wide range of optical field synthetic applications, including holographic displays, microscopy, and optical lithography.

  11. Validity of High School Physic Module With Character Values Using Process Skill Approach In STKIP PGRI West Sumatera

    NASA Astrophysics Data System (ADS)

    Anaperta, M.; Helendra, H.; Zulva, R.

    2018-04-01

    This study aims to describe the validity of physics module with Character Oriented Values Using Process Approach Skills at Dynamic Electrical Material in high school physics / MA and SMK. The type of research is development research. The module development model uses the development model proposed by Plomp which consists of (1) preliminary research phase, (2) the prototyping phase, and (3) assessment phase. In this research is done is initial investigation phase and designing. Data collecting technique to know validation is observation and questionnaire. In the initial investigative phase, curriculum analysis, student analysis, and concept analysis were conducted. In the design phase and the realization of module design for SMA / MA and SMK subjects in dynamic electrical materials. After that, the formative evaluation which include self evaluation, prototyping (expert reviews, one-to-one, and small group. At this stage validity is performed. This research data is obtained through the module validation sheet, which then generates a valid module.

  12. Bandstructure modulation for Si-h and Si-g nanotubes in a transverse electric field: Tight binding approach

    NASA Astrophysics Data System (ADS)

    Chegel, Raad; Behzad, Somayeh

    2013-11-01

    We have investigated the electronic properties of SiNTs, under the external electric field, using Tight Binding (TB) approximation. It was found that the energy levels, energy gaps, and density of states (DOS) strongly depend on the electric field strength. The large electric strength leads to coupling the neighbor subbands and induce destruction of subband degeneracy, increase of low-energy states, and strong modulation of energy gap which these effects reflect in the DOS spectrum. It has been shown that, the band gap reduction of Si g-NTs is linearly proportional to the electric field strength. The band gap variation for Si h-NTs increases first and later decreases (Metallic) or first remains constant and then decreases (semiconductor). Also we show that the larger diameter tubes are more sensitive to the field strength than smaller ones. The semiconducting metallic transition or vice versa can be achieved through an increasing of applied fields. Number and position of peaks in DOS spectrum are dependent on electric field strength.

  13. Space Charge Modulated Electrical Breakdown

    PubMed Central

    Li, Shengtao; Zhu, Yuanwei; Min, Daomin; Chen, George

    2016-01-01

    Electrical breakdown is one of the most important physical phenomena in electrical and electronic engineering. Since the early 20th century, many theories and models of electrical breakdown have been proposed, but the origin of one key issue, that the explanation for dc breakdown strength being twice or higher than ac breakdown strength in insulating materials, remains unclear. Here, by employing a bipolar charge transport model, we investigate the space charge dynamics in both dc and ac breakdown processes. We demonstrate the differences in charge accumulations under both dc and ac stresses and estimate the breakdown strength, which is modulated by the electric field distortion induced by space charge. It is concluded that dc breakdown initializes in the bulk whereas ac breakdown initializes in the vicinity of the sample-electrode interface. Compared with dc breakdown, the lower breakdown strength under ac stress and the decreasing breakdown strength with an increase in applied frequency, are both attributed to the electric field distortion induced by space charges located in the vicinity of the electrodes. PMID:27599577

  14. Reduced energy consumption by massive thermoelectric waste heat recovery in light duty trucks

    NASA Astrophysics Data System (ADS)

    Magnetto, D.; Vidiella, G.

    2012-06-01

    The main objective of the EC funded HEATRECAR project is to reduce the energy consumption and curb CO2 emissions of vehicles by massively harvesting electrical energy from the exhaust system and re-use this energy to supply electrical components within the vehicle or to feed the power train of hybrid electrical vehicles. HEATRECAR is targeting light duty trucks and focuses on the development and the optimization of a Thermo Electric Generator (TEG) including heat exchanger, thermoelectric modules and DC/DC converter. The main objective of the project is to design, optimize and produce a prototype system to be tested on a 2.3l diesel truck. The base case is a Thermo Electric Generator (TEG) producing 1 KWel at 130 km/h. We present the system design and estimated output power from benchmark Bi2Te3 modules. We discuss key drivers for the optimization of the thermal-to-electric efficiency, such as materials, thermo-mechanical aspects and integration.

  15. Three essays in transportation energy and environmental policy

    NASA Astrophysics Data System (ADS)

    Hajiamiri, Sara

    Concerns about climate change, dependence on oil, and unstable gasoline prices have led to significant efforts by policymakers to cut greenhouse gas (GHG) emissions and oil consumption. The transportation sector is one of the principle emitters of CO2 in the US. It accounts for two-thirds of total U.S. oil consumption and is almost entirely dependent on oil. Within the transportation sector, the light-duty vehicle (LDV) fleet is the main culprit. It is responsible for more than 65 percent of the oil used and for more than 60 percent of total GHG emissions. If a significant fraction of the LDV fleet is gradually replaced by more fuel-efficient technologies, meaningful reductions in GHG emissions and oil consumption will be achieved. This dissertation investigates the potential benefits and impacts of deploying more fuel-efficient vehicles in the LDV fleet. Findings can inform decisions surrounding the development and deployment of the next generation of LDVs. The first essay uses data on 2003 and 2006 model gasoline-powered passenger cars, light trucks and sport utility vehicles to investigate the implicit private cost of improving vehicle fuel efficiencies through reducing other desired attributes such as weight (that is valued for its perceived effect on personal safety) and horsepower. Breakeven gasoline prices that would justify the estimated implicit costs were also calculated. It is found that to justify higher fuel efficiency standards from a consumer perspective, either the external benefits need to be very large or technological advances will need to greatly reduce fuel efficiency costs. The second essay estimates the private benefits and societal impacts of electric vehicles. The findings from the analysis contribute to policy deliberations on how to incentivize the purchase and production of these vehicles. A spreadsheet model was developed to estimate the private benefits and societal impacts of purchasing and utilizing three electric vehicle technologies instead of a similar-sized conventional gasoline-powered vehicle (CV). The electric vehicle technologies considered are gasoline-powered hybrid and plug-in hybrid electric vehicles and battery electric vehicles. It is found that the private benefits are positive, but smaller than the expected short-term cost premiums on these technologies, which suggest the need for government support if a large-scale adoption of electric vehicles is desired. Also, it is found that the net present values of the societal benefits that are not internalized by the vehicle purchaser are not likely to exceed $1,700. This estimate accounts for changes in GHG emissions, criteria air pollutants, gasoline consumption and the driver's contribution to congestion. The third essay explores the implications of a large-scale adoption of electric vehicles on transportation finance. While fuel efficiency improvements are desirable with respect to goals for achieving energy security and environmental improvement, it has adverse implications for the current system of transportation finance. Reductions in gasoline consumption relative to the amount of driving that takes place would result in a decline in fuel tax revenues that are needed to fund planning, construction, maintenance, and operation of highways and public transit systems. In this paper the forgone fuel tax revenue that results when an electric vehicle replaces a similar-sized CV is estimated. It is found that under several vehicle electrification scenarios, the combined federal and state trust funds could decline by as much as 5 percent by 2020 and as much as 12.5 percent by 2030. Alternative fee systems that tie more directly to transportation system use rather then to fuel consumption could reconcile energy security, environmental, and transportation finance goals.

  16. Monolithic interconnected module with a tunnel junction for enhanced electrical and optical performance

    DOEpatents

    Murray, Christopher S.; Wilt, David M.

    2000-01-01

    An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMS), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.

  17. Apollo experience report: Command and service module electrical power distribution on subsystem

    NASA Technical Reports Server (NTRS)

    Munford, R. E.; Hendrix, B.

    1974-01-01

    A review of the design philosophy and development of the Apollo command and service modules electrical power distribution subsystem, a brief history of the evolution of the total system, and some of the more significant components within the system are discussed. The electrical power distribution primarily consisted of individual control units, interconnecting units, and associated protective devices. Because each unit within the system operated more or less independently of other units, the discussion of the subsystem proceeds generally in descending order of complexity; the discussion begins with the total system, progresses to the individual units of the system, and concludes with the components within the units.

  18. Solar power roof shingle

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G.

    1975-01-01

    Silicon solar cell module provides both all-weather protection and electrical power. Module consists of array of circular silicon solar cells bonded to fiberglass substrate roof shingle with fluorinated ethylene propylene encapsulant.

  19. High-speed optical transmission system using 1.55-μm directly modulated lasers

    NASA Astrophysics Data System (ADS)

    Kim, Hoon

    2018-01-01

    We present the small-signal frequency responses of single-mode fiber used in directly modulated laser/direct detection (DML/DD) and externally modulated transmitter/direct detection (EXT/DD) systems, and compare the dispersion tolerance of these two systems. We find out that DML/DD system could be more tolerant to fiber chromatic dispersion than EXT/DD system when an electrical equalizer is employed at the receiver. We also present the transmission of 56- Gb/s 4-level pulse amplitude modulation signals generated from a 1.55-μm DML over 20-km standard single-mode fiber with the aid of a linear electrical equalizer. The performance behavior of this system with respect to the transmission distance is explained by using the frequency response.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tauke-Pedretti, Anna; Skogen, Erik J; Vawter, Gregory A

    An optical sampler includes a first and second 1.times.n optical beam splitters splitting an input optical sampling signal and an optical analog input signal into n parallel channels, respectively, a plurality of optical delay elements providing n parallel delayed input optical sampling signals, n photodiodes converting the n parallel optical analog input signals into n respective electrical output signals, and n optical modulators modulating the input optical sampling signal or the optical analog input signal by the respective electrical output signals, and providing n successive optical samples of the optical analog input signal. A plurality of output photodiodes and eADCsmore » convert the n successive optical samples to n successive digital samples. The optical modulator may be a photodiode interconnected Mach-Zehnder Modulator. A method of sampling the optical analog input signal is disclosed.« less

  1. Module Embedded Micro-inverter Smart Grid Ready Residential Solar Electric System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agamy, Mohammed

    The “Module Embedded Micro-inverter Smart Grid Ready Residential Solar Electric System” program is focused on developing innovative concepts for residential photovoltaic (PV) systems with the following objectives: to create an Innovative micro-inverter topology that reduces the cost from the best in class micro-inverter and provides high efficiency (>96% CEC - California Energy Commission), and 25+ year warranty, as well as reactive power support; integrate micro-inverter and PV module to reduce system price by at least $0.25/W through a) accentuating dual use of the module metal frame as a large area heat spreader reducing operating temperature, and b) eliminating redundant wiringmore » and connectors; and create micro-inverter controller handles smart grid and safety functions to simplify implementation and reduce cost.« less

  2. A single-cell correlative nanoelectromechanosensing approach to detect cancerous transformation: monitoring the function of F-actin microfilaments in the modulation of the ion channel activity

    NASA Astrophysics Data System (ADS)

    AbdolahadThe Authors With Same Contributions., Mohammad; Saeidi, Ali; Janmaleki, Mohsen; Mashinchian, Omid; Taghinejad, Mohammad; Taghinejad, Hossein; Azimi, Soheil; Mahmoudi, Morteza; Mohajerzadeh, Shams

    2015-01-01

    Cancerous transformation may be dependent on correlation between electrical disruptions in the cell membrane and mechanical disruptions of cytoskeleton structures. Silicon nanotube (SiNT)-based electrical probes, as ultra-accurate signal recorders with subcellular resolution, may create many opportunities for fundamental biological research and biomedical applications. Here, we used this technology to electrically monitor cellular mechanosensing. The SiNT probe was combined with an electrically activated glass micropipette aspiration system to achieve a new cancer diagnostic technique that is based on real-time correlation between mechanical and electrical behaviour of single cells. Our studies demonstrated marked changes in the electrical response following increases in the mechanical aspiration force in healthy cells. In contrast, such responses were extremely weak for malignant cells. Confocal microscopy results showed the impact of actin microfilament remodelling on the reduction of the electrical response for aspirated cancer cells due to the significant role of actin in modulating the ion channel activity in the cell membrane.Cancerous transformation may be dependent on correlation between electrical disruptions in the cell membrane and mechanical disruptions of cytoskeleton structures. Silicon nanotube (SiNT)-based electrical probes, as ultra-accurate signal recorders with subcellular resolution, may create many opportunities for fundamental biological research and biomedical applications. Here, we used this technology to electrically monitor cellular mechanosensing. The SiNT probe was combined with an electrically activated glass micropipette aspiration system to achieve a new cancer diagnostic technique that is based on real-time correlation between mechanical and electrical behaviour of single cells. Our studies demonstrated marked changes in the electrical response following increases in the mechanical aspiration force in healthy cells. In contrast, such responses were extremely weak for malignant cells. Confocal microscopy results showed the impact of actin microfilament remodelling on the reduction of the electrical response for aspirated cancer cells due to the significant role of actin in modulating the ion channel activity in the cell membrane. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06102k

  3. MODULATING EMISSIONS FROM ELECTRIC GENERATING UNITS AS A FUNCTION OF METEOROLOGICAL VARIABLES

    EPA Science Inventory

    Electric Generating Units (EGUs) are an important source of emissions of nitrogen oxides (NOx), which react with volatile organic compounds (VOCs) in the presence of sunlight to form ozone. Emissions from EGUs are believed to vary depending on short-term demands for electricity;...

  4. High-Performance Silicon-Germanium-Based Thermoelectric Modules for Gas Exhaust Energy Scavenging

    NASA Astrophysics Data System (ADS)

    Romanjek, K.; Vesin, S.; Aixala, L.; Baffie, T.; Bernard-Granger, G.; Dufourcq, J.

    2015-06-01

    Some of the energy used in transportation and industry is lost as heat, often at high-temperatures, during conversion processes. Thermoelectricity enables direct conversion of heat into electricity, and is an alternative to the waste-heat-recovery technology currently used, for example turbines and other types of thermodynamic cycling. The performance of thermoelectric (TE) materials and modules has improved continuously in recent decades. In the high-temperature range ( T hot side > 500°C), silicon-germanium (SiGe) alloys are among the best TE materials reported in the literature. These materials are based on non-toxic elements. The Thermoelectrics Laboratory at CEA (Commissariat à l'Energie Atomique et aux Energies Alternatives) has synthesized n and p-type SiGe pellets, manufactured TE modules, and integrated these into thermoelectric generators (TEG) which were tested on a dedicated bench with hot air as the source of heat. SiGe TE samples of diameter 60 mm were created by spark-plasma sintering. For n-type SiGe doped with phosphorus the peak thermoelectric figure of merit reached ZT = 1.0 at 700°C whereas for p-type SiGe doped with boron the peak was ZT = 0.75 at 700°C. Thus, state-of-the-art conversion efficiency was obtained while also achieving higher production throughput capacity than for competing processes. A standard deviation <4% in the electrical resistance of batches of ten pellets of both types was indicative of high reproducibility. A silver-paste-based brazing technique was used to assemble the TE elements into modules. This assembly technique afforded low and repeatable electrical contact resistance (<3 nΩ m2). A test bench was developed for measuring the performance of TE modules at high temperatures (up to 600°C), and thirty 20 mm × 20 mm TE modules were produced and tested. The results revealed the performance was reproducible, with power output reaching 1.9 ± 0.2 W for a 370 degree temperature difference. When the temperature difference was increased to 500°C, electrical power output increased to >3.6 W. An air-water heat exchanger was developed and 30 TE modules were clamped and connected electrically. The TEG was tested under vacuum on a hot-air test bench. The measured output power was 45 W for an air flow of 16 g/s at 750°C. The hot surface of the TE module reached 550°C under these conditions. Silicon-germanium TE modules can survive such temperatures, in contrast with commercial modules based on bismuth telluride, which are limited to 400°C.

  5. On enhancing energy harvesting performance of the photovoltaic modules using an automatic cooling system and assessing its economic benefits of mitigating greenhouse effects on the environment

    NASA Astrophysics Data System (ADS)

    Wang, Jen-Cheng; Liao, Min-Sheng; Lee, Yeun-Chung; Liu, Cheng-Yue; Kuo, Kun-Chang; Chou, Cheng-Ying; Huang, Chen-Kang; Jiang, Joe-Air

    2018-02-01

    The performance of photovoltaic (PV) modules under outdoor operation is greatly affected by their location and environmental conditions. The temperature of a PV module gradually increases as it is exposed to solar irradiation, resulting in degradation of its electrical characteristics and power generation efficiency. This study adopts wireless sensor network (WSN) technology to develop an automatic water-cooling system for PV modules in order to improve their PV power generation efficiency. A temperature estimation method is developed to quickly and accurately estimate the PV module temperatures based on weather data provided from the WSN monitoring system. Further, an estimation method is also proposed for evaluation of the electrical characteristics and output power of the PV modules, which is performed remotely via a control platform. The automatic WSN-based water-cooling mechanism is designed to avoid the PV module temperature from reaching saturation. Equipping each PV module with the WSN-based cooling system, the ambient conditions are monitored automatically so that the temperature of the PV module is controlled by sprinkling water on the panel surface. The field-test experiment results show an increase in the energy harvested by the PV modules of approximately 17.75% when using the proposed WSN-based cooling system.

  6. In-line thermoelectric module

    DOEpatents

    Pento, Robert; Marks, James E.; Staffanson, Clifford D.

    2000-01-01

    A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture. The hot members may have a T-shape and the cold members an hourglass shape to facilitate heat transfer. The direction of heat transfer through the hot members may be perpendicular to the direction of heat transfer through the cold members, and both of these heat transfer directions may be perpendicular to the direction of current flow through the module.

  7. Electrical Stimulation Modulates High γ Activity and Human Memory Performance

    PubMed Central

    Berry, Brent M.; Miller, Laura R.; Khadjevand, Fatemeh; Ezzyat, Youssef; Wanda, Paul; Sperling, Michael R.; Lega, Bradley; Stead, S. Matt

    2018-01-01

    Direct electrical stimulation of the brain has emerged as a powerful treatment for multiple neurological diseases, and as a potential technique to enhance human cognition. Despite its application in a range of brain disorders, it remains unclear how stimulation of discrete brain areas affects memory performance and the underlying electrophysiological activities. Here, we investigated the effect of direct electrical stimulation in four brain regions known to support declarative memory: hippocampus (HP), parahippocampal region (PH) neocortex, prefrontal cortex (PF), and lateral temporal cortex (TC). Intracranial EEG recordings with stimulation were collected from 22 patients during performance of verbal memory tasks. We found that high γ (62–118 Hz) activity induced by word presentation was modulated by electrical stimulation. This modulatory effect was greatest for trials with “poor” memory encoding. The high γ modulation correlated with the behavioral effect of stimulation in a given brain region: it was negative, i.e., the induced high γ activity was decreased, in the regions where stimulation decreased memory performance, and positive in the lateral TC where memory enhancement was observed. Our results suggest that the effect of electrical stimulation on high γ activity induced by word presentation may be a useful biomarker for mapping memory networks and guiding therapeutic brain stimulation. PMID:29404403

  8. Compact electro-optical module with polymer waveguides on a flexible substrate for high-density board-level communication

    NASA Astrophysics Data System (ADS)

    Weiss, J. R. M.; Lamprecht, T.; Meier, N.; Dangel, R.; Horst, F.; Jubin, D.; Beyeler, R.; Offrein, B. J.

    2010-02-01

    We report on the co-packaging of electrical CMOS transceiver and VCSEL chip arrays on a flexible electrical substrate with optical polymer waveguides. The electro-optical components are attached to the substrate edge and butt-coupled to the waveguides. Electrically conductive silver-ink connects them to the substrate at an angle of 90°. The final assembly contacts the surface of a package laminate with an integrated compressible connector. The module can be folded to save space, requires only a small footprint on the package laminate and provides short electrical high-speed signal paths. With our approach, the electro-optical package becomes a compact electro-optical module with integrated polymer waveguides terminated with either optical connectors (e.g., at the card edge) or with an identical assembly for a second processor on the board. Consequently, no costly subassemblies and connectors are needed, and a very high integration density and scalability to virtually arbitrary channel counts and towards very high data rates (20+ Gbps) become possible. Future cost targets of much less than US$1 per Gbps will be reached by employing standard PCB materials and technologies that are well established in the industry. Moreover, our technology platform has both electrical and optical connectivity and functionality.

  9. Stakeholder views on financing carbon capture and storage demonstration projects in China.

    PubMed

    Reiner, David; Liang, Xi

    2012-01-17

    Chinese stakeholders (131) from 68 key institutions in 27 provinces were consulted in spring 2009 in an online survey of their perceptions of the barriers and opportunities in financing large-scale carbon dioxide capture and storage (CCS) demonstration projects in China. The online survey was supplemented by 31 follow-up face-to-face interviews. The National Development and Reform Commission (NDRC) was widely perceived as the most important institution in authorizing the first commercial-scale CCS demonstration project and authorization was viewed as more similar to that for a power project than a chemicals project. There were disagreements, however, on the appropriate size for a demonstration plant, the type of capture, and the type of storage. Most stakeholders believed that the international image of the Chinese Government could benefit from demonstrating commercial CCS and that such a project could also create advantages for Chinese companies investing in CCS technologies. In more detailed interviews with 16 financial officials, we found striking disagreements over the perceived risks of demonstrating CCS. The rate of return seen as appropriate for financing demonstration projects was split between stakeholders from development banks (who supported a rate of 5-8%) and those from commercial banks (12-20%). The divergence on rate alone could result in as much as a 40% difference in the cost of CO(2) abatement and 56% higher levelized cost of electricity based on a hypothetical case study of a typical 600-MW new build ultrasupercritical pulverized coal-fired (USCPC) power plant. To finance the extra operational costs, there were sharp divisions over which institutions should bear the brunt of financing although, overall, more than half of the support was expected to come from foreign and Chinese governments.

  10. Automatic acquisition of domain and procedural knowledge

    NASA Technical Reports Server (NTRS)

    Ferber, H. J.; Ali, M.

    1988-01-01

    The design concept and performance of AKAS, an automated knowledge-acquisition system for the development of expert systems, are discussed. AKAS was developed using the FLES knowledge base for the electrical system of the B-737 aircraft and employs a 'learn by being told' strategy. The system comprises four basic modules, a system administration module, a natural-language concept-comprehension module, a knowledge-classification/extraction module, and a knowledge-incorporation module; details of the module architectures are explored.

  11. Third World PVs hit the roof.

    PubMed

    Lenssen, N

    1992-01-01

    Rural areas in developing countries have no hope of benefiting from electricity generation programs because of a lack of resources. Currently the common practice is to use kerosene lamps for light, disposable batteries for radios, and auto batteries for television. The auto battery must be hauled by pack animal to a charging station. An alternative that is growing in popularity is the installation of photovoltaic (PV) systems in each house. The advantages include very low operating costs (sunshine is free), long life (PV cells last 20 years), they can be installed in any home without regard for power grids. The biggest disadvantage is very high initial cost. To solve this problem many programs have been developed to finance systems. Enersol Associates started with $10,000 seed money and developed a loan program that has helped bring electricity to 1500 homes in the Dominican Republic. The Solar Electric Light and Fund started with $150,000 and has brought electricity to 3500 homes in Sri Lanka. The United Nations Development Program gave $7 million to Zimbabwe to fund a project that is expected to bring electricity to 20,000 homes over the next 5 years.

  12. CHIPS. Volume 29, Issue 1, January - March 2011

    DTIC Science & Technology

    2011-03-01

    services, like electricity, heating or cable television. Bank/Finance Fraud: • They may create counterfeit checks using their victim’s name or...consolidating disparate, stove- piped networks into a single, modern, cost-effective enterprise network with a high level of service that meets...Holland, NGEN program manager. “If NMCI is not the most secure network in the world, it is certainly close. There is no shortfall flexibility

  13. Air Force Third Party Financing Management Guide.

    DTIC Science & Technology

    1984-05-01

    lhe Public Utility Regulatory Policies Act of 1978 ( PURPA ) a l,s qualifying cogenerators to sell their power back to the utilities al the utilities...Conditions favorable to the sale of cogenerated or independrt~y produced power created by the Public Utility Regulatory Policies Act ( PURPA ) of 1978; o...electrical energy. The Public Utility Regulatory Policies Act of 1978 ( PURPA ) allows qualifying cogenerators to sell their powcr back to the

  14. Demonstration of 4×100 Gbps discrete multitone transmission using electric absorption modulated laser at 1550-nm for dense wavelength division multiplexing intradata center connect

    NASA Astrophysics Data System (ADS)

    Xu, Yuming; Yu, Jianjun; Li, Xinying

    2017-03-01

    We experimentally demonstrate 4 lanes up to 400 Gbps discrete multitone transmission using an electric absorption modulated laser (EML) at 1550-nm for dense wavelength division multiplexing (DWDM) intradata center connects. This is the first demonstration of 4×100 Gb/s transmission using EML at 1550-nm, and it is compatible with the DWDM system at C-band.

  15. Flexible Solar Cells

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Solar cell "modules" are plastic strips coated with thin films of photovoltaic silicon that collect solar energy for instant conversion into electricity. Lasers divide the thin film coating into smaller cells to build up voltage. Developed by Iowa Thin Film Technologies under NASA and DOE grants, the modules are used as electrical supply for advertising displays, battery rechargers for recreational vehicles, and to power model airplanes. The company is planning other applications both in consumer goods and as a power source in underdeveloped countries.

  16. GRC-2013-C-02448

    NASA Image and Video Library

    2009-06-23

    Environmental Portrait, Electrical Power Systems Employee, hardware for the High Power 300-Volt Power Processing Unit (PPU). The Printed Circuit Boards (PCBs) are the Discharge Module Inverter and the Pulse Width Modulation (PWM) Controller

  17. A Design of a Modular GPHS-Stirling Power System for a Lunar Habitation Module

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2005-01-01

    Lunar habitation modules need electricity and potentially heat to operate. Because of the low amounts of radiation emitted by General Purpose Heat Source (GPHS) modules, power plants incorporating these as heat sources could be placed in close proximity to habitation modules. A design concept is discussed for a high efficiency power plant based on a GPHS assembly integrated with a Stirling convertor. This system could provide both electrical power and heat, if required, for a lunar habitation module. The conceptual GPHS/Stirling system is modular in nature and made up of a basic 5.5 KWe Stirling convertor/GPHS module assembly, convertor controller/PMAD electronics, waste heat radiators, and associated thermal insulation. For the specific lunar application under investigation eight modules are employed to deliver 40 KWe to the habitation module. This design looks at three levels of Stirling convertor technology and addresses the issues of integrating the Stirling convertors with the GPHS heat sources assembly using proven technology whenever possible. In addition, issues related to the high-temperature heat transport system, power management, convertor control, vibration isolation, and potential system packaging configurations to ensure safe operation during all phases of deployment will be discussed.

  18. A coaxial-output capacitor-loaded annular pulse forming line.

    PubMed

    Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo

    2018-04-01

    A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the pulse rise time is about 5 ns.

  19. A coaxial-output capacitor-loaded annular pulse forming line

    NASA Astrophysics Data System (ADS)

    Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo

    2018-04-01

    A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the pulse rise time is about 5 ns.

  20. Module Eleven: Capacitance; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    In this module the student will learn about another circuit quantity, capacitance, and discover the effects of this component on circuit current, voltage, and power. The module is divided into seven lessons: the capacitor, theory of capacitance, total capacitance, RC (resistive-capacitive circuit) time constant, capacitive reactance, phase and…

  1. Tractor Mechanic Check Sheets for Modules.

    ERIC Educational Resources Information Center

    Clemson Univ., SC. Vocational Education Media Center.

    Forms for student self-checks and the instructor's final checklist (student evaluation) are provided for use with thirty-three learning modules on maintaining and servicing fuel and electrical systems in tractor mechanics. The student self-check asks the students questions about their understanding of the modules' content. The instructor's…

  2. Millwright Apprenticeship. Related Training Modules. 1.1-1.8 Safety.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet, part of the instructional materials for the Oregon apprenticeship program for millwright training, contains eight modules covering safety. The modules provide information on the following topics: general safety, hand tool safety, power tool safety, fire safety, hygiene, safety and electricity, types of fire and fire prevention, and…

  3. Interferometric phase locking of two electronic oscillators with a cascade electro-optic modulator

    NASA Astrophysics Data System (ADS)

    Chao, C. H.; Chien, P. Y.; Chang, L. W.; Juang, F. Y.; Hsia, C. H.; Chang, C. C.

    1993-01-01

    An optical-type electrical phase-locked-loop system based on a cascade electro-optic modulator has been demonstrated. By using this technique, a set of optical-type phase detectors, operating at any harmonic frequencies of two applied phase-modulation signals, has been implemented.

  4. Popular Science Recognizes Innovative Solar Technologies

    Science.gov Websites

    photovoltaic (solar electric) modules to produce standard household current are listed among the magazine's photovoltaic module that produces standard household, or alternating current (AC). Ascension Technology's SunSineTM 300 AC photovoltaic module has a built-in microinverter that eliminates the need for direct

  5. Assessing personal financial management in patients with bipolar disorder and its relation to impulsivity and response inhibition.

    PubMed

    Cheema, Marvi K; MacQueen, Glenda M; Hassel, Stefanie

    2015-01-01

    Impulsivity and risk-taking behaviours are reported in bipolar disorder (BD). We examined whether financial management skills are related to impulsivity in patients with BD. We assessed financial management skills using the Executive Personal Finance Scale (EPFS), impulsivity using the Barratt Impulsiveness Scale (BIS) and response inhibition using an emotional go/no-go task in bipolar individuals (N = 21) and healthy controls (HC; N = 23). Patients had fewer financial management skills and higher levels of impulsivity than HC. In patients and controls, increased impulsivity was associated with poorer personal financial management. Patients and HC performed equally on the emotional go/no-go task. Higher BIS scores were associated with faster reaction times in HC. In patients, however, higher BIS scores were associated with slower reaction times, possibly indicating compensatory cognitive strategies to counter increased impulsivity. Patients with BD may have reduced abilities to manage personal finances, when compared against healthy participants. Difficulty with personal finance management may arise in part as a result of increased levels of impulsivity. Patients may learn to compensate for increased impulsivity by modulating response times in our experimental situations although whether such compensatory strategies generalize to real-world situations is unknown.

  6. The secretogranin-II derived peptide secretoneurin modulates electric behavior in the weakly pulse type electric fish, Brachyhypopomus gauderio.

    PubMed

    Pouso, Paula; Quintana, Laura; López, Gabriela C; Somoza, Gustavo M; Silva, Ana C; Trudeau, Vance L

    2015-10-01

    Secretoneurin (SN) in the preoptic area and pituitary of mammals and fish has a conserved close association with the vasopressin and oxytocin systems, members of a peptide family that are key in the modulation of sexual and social behaviors. Here we show the presence of SN-immunoreactive cells and projections in the brain of the electric fish, Brachyhypopomus gauderio. Secretoneurin colocalized with vasotocin (AVT) and isotocin in cells and fibers of the preoptic area. In the rostral pars distalis of the pituitary, many cells were both SN and prolactin-positive. In the hindbrain, at the level of the command nucleus of the electric behavior (pacemaker nucleus; PN), some of SN-positive fibers colocalized with AVT. We also explored the potential neuromodulatory role of SN on electric behavior, specifically on the rate of the electric organ discharge (EOD) that signals arousal, dominance and subordinate status. Each EOD is triggered by the command discharge of the PN, ultimately responsible for the basal EOD rate. SN modulated diurnal basal EOD rate in freely swimming fish in a context-dependent manner; determined by the initial value of EOD rate. In brainstem slices, SN partially mimicked the in vivo behavioral effects acting on PN firing rate. Taken together, our results suggest that SN may regulate electric behavior, and that its effect on EOD rate may be explained by direct action of SN at the PN level through either neuroendocrine and/or endocrine mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Electrically induced contraction levels of the quadriceps femoris muscles in healthy men: the effects of three patterns of burst-modulated alternating current and volitional muscle fatigue.

    PubMed

    Parker, Michael G; Broughton, Alex J; Larsen, Ben R; Dinius, Josh W; Cimbura, Mac J; Davis, Matthew

    2011-12-01

    The purpose of this study was to compare electrically induced contraction levels produced by three patterns of alternating current in fatigued and nonfatigued skeletal muscles. Eighteen male volunteers without health conditions, with a mean (SD) age of 24.9 (3.4) yrs were randomly exposed to a fatiguing volitional isometric quadriceps contraction and one of three patterns of 2.5-KHz alternating current; two were modulated at 50 bursts per second (10% burst duty cycle with five cycles per burst and 90% burst duty cycle with 45 cycles per burst), and one pattern was modulated at 100 bursts per second (10% burst duty cycle with 2.5 cycles per burst). The electrically induced contraction levels produced by the three patterns of electrical stimulation were compared before and after the fatiguing contraction. The 10% burst duty cycles produced 42.9% (95% confidence interval, 29.1%-56.7%) and 32.1% (95% confidence interval, 18.2%-45.9%) more muscle force (P < 0.001) than did the 90% burst duty cycle pattern. There was no significant interaction effect (P = 0.392) of electrical stimulation patterns and fatigue on the electrically induced contraction levels. The lower burst duty cycle (10%) patterns of electrical stimulation produced stronger muscle contractions. Furthermore, the stimulation patterns had no influence on the difference in muscle force before and after the fatiguing quadriceps contraction. Consequently, for clinical applications in which high forces are desired, the patterns using the 10% burst duty cycle may be helpful.

  8. Systems and methods for deactivating a matrix converter

    DOEpatents

    Ransom, Ray M.

    2013-04-02

    Systems and methods are provided for deactivating a matrix conversion module. An electrical system comprises an alternating current (AC) interface, a matrix conversion module coupled to the AC interface, an inductive element coupled between the AC interface and the matrix conversion module, and a control module. The control module is coupled to the matrix conversion module, and in response to a shutdown condition, the control module is configured to operate the matrix conversion module to deactivate the first conversion module when a magnitude of a current through the inductive element is less than a threshold value.

  9. Activity and accomplishments of dish/Stirling electric power system development

    NASA Technical Reports Server (NTRS)

    Livingston, F. R.

    1985-01-01

    The development of the solar parabolic-dish/Stirling-engine electricity generating plant known as the dish/Stirling electric power system is described. The dish/Stirling electric power system converts sunlight to electricity more efficiently than any known existing solar electric power system. The fabrication and characterization of the test bed concentrators that were used for Stirling module testing and of the development of parabolic dish concentrator No. 2, an advanced solar concentrator unit considered for use with the Stirling power conversion unit is discussed.

  10. NASA welding assessment program

    NASA Technical Reports Server (NTRS)

    Stofel, E. J.

    1984-01-01

    A long duration test was conducted for comparing various methods of attaching electrical interconnects to solar cells for near Earth orbit spacecraft. Representative solar array modules were thermally cycled for 36,000 cycles between -80 and +80 C. The environmental stress of more than 6 years on a near Earth spacecraft as it cycles in and out of the earth's shadow was simulated. Evaluations of the integrity of these modules were made by visual and by electrical examinations before starting the cycling and then at periodic intervals during the cycling tests. Modules included examples of parallel gap and of ultrasonic welding, as well as soldering. The materials and fabrication processes are state of the art, suitable for forming large solar arrays of spacecraft quality. The modules survived this extensive cycling without detectable degradation in their ability to generate power under sunlight illumination.

  11. Optical and thermal simulation for wide acceptance angle CPV module

    NASA Astrophysics Data System (ADS)

    Ahmad, Nawwar; Ota, Yasuyuki; Araki, Kenji; Lee, Kan-Hua; Yamaguchi, Masafumi; Nishioka, Kensuke

    2017-09-01

    Concentrator photovoltaic (CPV) technology has the potential to decrease the cost of systems in the near future by using less expensive optical elements in the system which replace the receiving surface aperture and concentrate the sunlight onto small solar cells. One of the main concerns of CPV is the need for high precision tracking system and the relation to the acceptance angle. In this paper, we proposed a CPV module with concentration ratio larger than 100 times and wide acceptance angle. An optical simulation for the module with S-TIM2 glass as a lens material was conducted to estimate the optical performance of the module. Thermal and electrical simulation was also conducted using COMSOL Multiphysics and SPICE respectively to evaluate the working temperature and electrical characteristics of the multijunction solar cell under concentration conditions.

  12. Device for use in a furnace exhaust stream for thermoelectric generation

    DOEpatents

    Polcyn, Adam D.

    2013-06-11

    A device for generating voltage or electrical current includes an inner elongated member mounted in an outer elongated member, and a plurality of thermoelectric modules mounted in the space between the inner and the outer members. The outer and/or inner elongated members each include a plurality of passages to move a temperature altering medium through the members so that the device can be used in high temperature environments, e.g. the exhaust system of an oxygen fired glass melting furnace. The modules are designed to include a biasing member and/or other arrangements to compensate for differences in thermal expansion between the first and the second members. In this manner, the modules remain in contact with the first and second members. The voltage generated by the modules can be used to power electrical loads.

  13. Firefighter safety and photovoltaic installations research project

    NASA Astrophysics Data System (ADS)

    Backstrom, Robert; Dini, Dave

    2012-10-01

    Under the United States Department of Homeland Security (DHS) Assistance to Fire Fighters grant, UL LLC examined fire service concerns of photovoltaic (PV) systems. These concerns included firefighter vulnerability to electrical and casualty hazards when mitigating a fire involving photovoltaic (PV) modules systems. Findings include: 1. The electric shock hazard due to application of water is dependent on voltage, water conductivity, distance and spray pattern of the suppression stream. 2. Outdoor weather exposure rated electrical enclosures are not resistant to water penetration by fire hose streams. 3. Firefighter's gloves and boots afford limited protection against electrical shock provided the insulating surface is intact and dry. 4. "Turning off" an array is not a simple matter of opening a disconnect switch. 5. Tarps offer varying degrees of effectiveness. 6. Fire equipment scene lighting and exposure fires may illuminate PV systems sufficiently to cause a lock-on hazard. 7. Severely damaged PV arrays are capable of producing hazardous conditions. 8. Damage to modules from tools may result in both electrical and fire hazards. 9. Severing of conductors in both metal and plastic conduit results in electrical and fire hazards. 10. Responding personnel must stay away from the roofline in the event of modules or sections of an array sliding off the roof. 11. Fires under an array but above the roof may breach roofing materials and decking allowing fire to propagate into the attic space. Several tactical considerations were developed utilizing the data from the experiments.

  14. 49.6 Gb/s direct detection DMT transmission over 40 km single mode fibre using an electrically packaged silicon photonic modulator.

    PubMed

    Lacava, C; Cardea, I; Demirtzioglou, I; Khoja, A E; Ke, Li; Thomson, D J; Ruan, X; Zhang, F; Reed, G T; Richardson, D J; Petropoulos, P

    2017-11-27

    We present the characterization of a silicon Mach-Zehnder modulator with electrical packaging and show that it exhibits a large third-order intermodulation spurious-free dynamic range (> 100 dB Hz 2/3 ). This characteristic renders the modulator particularly suitable for the generation of high spectral efficiency discrete multi-tone signals and we experimentally demonstrate a single-channel, direct detection transmission system operating at 49.6 Gb/s, exhibiting a baseband spectral efficiency of 5 b/s/Hz. Successful transmission is demonstrated over various lengths of single mode fibre up to 40 km, without the need of any amplification or dispersion compensation.

  15. Transport properties in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe

    NASA Astrophysics Data System (ADS)

    Lu, Jian-Duo; Li, Yun-Bao; Liu, Hong-Yu; Peng, Shun-Jin; Zhao, Fei-Xiang

    2016-09-01

    Based on the transfer-matrix method, a systematic investigation of electron transport properties is done in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe. The strong dependence of the electron transmission and the conductance on the incident angle of carriers is clearly seen. The height, position as well as width of the barrier also play an important role on the electron transport properties. These interesting results are very useful for understanding the tunneling mechanism in the monolayer graphene and helpful for designing the graphene-based electrical device modulated by the realistic magnetic field and the electrical barrier.

  16. Electroresponsive Aqueous Silk Protein As “Smart” Mechanical Damping Fluid

    PubMed Central

    2015-01-01

    Here we demonstrate the effectiveness of an electroresponsive aqueous silk protein polymer as a smart mechanical damping fluid. The aqueous polymer solution is liquid under ambient conditions, but is reversibly converted into a gel once subjected to an electric current, thereby increasing or decreasing in viscosity. This nontoxic, biodegradable, reversible, edible fluid also bonds to device surfaces and is demonstrated to reduce friction and provide striking wear protection. The friction and mechanical damping coefficients are shown to modulate with electric field exposure time and/or intensity. Damping coefficient can be modulated electrically, and then preserved without continued power for longer time scales than conventional “smart” fluid dampers. PMID:24750065

  17. Laboratory evaluation of advanced battery technologies for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Kulaga, J. E.; Hogrefe, R. L.; Tummilo, A. F.; Webster, C. E.

    1989-03-01

    During 1988, battery technology evaluations were performed for the Department of Energy and Electric Power Research Institute at the Argonne Analysis and Diagnostic Laboratory. Cells and multicell modules from four developers were examined to determine their performance and life characteristics for electric vehicle propulsion applications. The results provide an interim measure of the progress being made in battery R and D programs, a comparison of battery technologies, and a source of basic data for modeling and continuing R and D. This paper summarizes the performance and life characterizations of twelve single cells and six 3- to 24-cell modules that encompass four technologies (Na/S, Ni/Fe, lead-acid, and Fe/Air).

  18. Electrical insulator assembly with oxygen permeation barrier

    DOEpatents

    Van Der Beck, R.R.; Bond, J.A.

    1994-03-29

    A high-voltage electrical insulator for electrically insulating a thermoelectric module in a spacecraft from a niobium-1% zirconium alloy wall of a heat exchanger filled with liquid lithium while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator has a single crystal alumina layer (SxAl[sub 2]O[sub 3], sapphire) with a niobium foil layer bonded thereto on the surface of the alumina crystal facing the heat exchanger wall, and a molybdenum layer bonded to the niobium layer to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface. 3 figures.

  19. High power solid state laser modulator

    DOEpatents

    Birx, Daniel L.; Ball, Don G.; Cook, Edward G.

    2004-04-27

    A multi-stage magnetic modulator provides a pulse train of .+-.40 kV electrical pulses at a 5-7 kHz repetition rate to a metal vapor laser. A fractional turn transformer steps up the voltage by a factor of 80 to 1 and magnetic pulse compression is used to reduce the pulse width of the pulse train. The transformer is fabricated utilizing a rod and plate stack type of construction to achieve a high packing factor. The pulses are controlled by an SCR stack where a plurality of SCRs are electrically connected in parallel, each SCR electrically connected to a saturable inductor, all saturable inductors being wound on the same core of magnetic material for enhanced power handling characteristics.

  20. Optimization of power generating thermoelectric modules utilizing LNG cold energy

    NASA Astrophysics Data System (ADS)

    Jeong, Eun Soo

    2017-12-01

    A theoretical investigation to optimize thermoelectric modules, which convert LNG cold energy into electrical power, is performed using a novel one-dimensional analytic model. In the model the optimum thermoelement length and external load resistance, which maximize the energy conversion ratio, are determined by the heat supplied to the cold heat reservoir, the hot and cold side temperatures, the thermal and electrical contact resistances and the properties of thermoelectric materials. The effects of the thermal and electrical contact resistances and the heat supplied to the cold heat reservoir on the maximum energy conversion ratio, the optimum thermoelement length and the optimum external load resistance are shown.

  1. Theory of unfolded cyclotron accelerator

    NASA Astrophysics Data System (ADS)

    Rax, J.-M.; Robiche, J.

    2010-10-01

    An acceleration process based on the interaction between an ion, a tapered periodic magnetic structure, and a circularly polarized oscillating electric field is identified and analyzed, and its potential is evaluated. A Hamiltonian analysis is developed in order to describe the interplay between the cyclotron motion, the electric acceleration, and the magnetic modulation. The parameters of this universal class of magnetic modulation leading to continuous acceleration without Larmor radius increase are expressed analytically. Thus, this study provides the basic scaling of what appears as a compact unfolded cyclotron accelerator.

  2. Module comprising IC memory stack dedicated to and structurally combined with an IC microprocessor chip

    NASA Technical Reports Server (NTRS)

    Carson, John C. (Inventor); Indin, Ronald J. (Inventor); Shanken, Stuart N. (Inventor)

    1994-01-01

    A computer module is disclosed in which a stack of glued together IC memory chips is structurally integrated with a microprocessor chip. The memory provided by the stack is dedicated to the microprocessor chip. The microprocessor and its memory stack may be connected either by glue and/or by solder bumps. The solder bumps can perform three functions--electrical interconnection, mechanical connection, and heat transfer. The electrical connections in some versions are provided by wire bonding.

  3. MS Malenchenko conducts electrical work in Zvezda during STS-106

    NASA Image and Video Library

    2000-09-13

    S106-E-5200 (13 September 2000) --- Cosmonaut Yuri I. Malenchenko, mission specialist representing the Russian Aviation and Space Agency, works aboard the Zvezda service module on the International Space Station (ISS). Electrical work was the hallmark of this day as four of the mission specialists aboard ISS (temporarily docked with the Space Shuttle Atlantis) replaced batteries inside the Zarya and Zvezda modules while supply transfer continued around them. Astronaut Edward T. Lu, mission specialist, is out of frame at right.

  4. Lock-in detection for pulsed electrically detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Hoehne, Felix; Dreher, Lukas; Behrends, Jan; Fehr, Matthias; Huebl, Hans; Lips, Klaus; Schnegg, Alexander; Suckert, Max; Stutzmann, Martin; Brandt, Martin S.

    2012-04-01

    We show that in pulsed electrically detected magnetic resonance (pEDMR) signal modulation in combination with a lock-in detection scheme can reduce the low-frequency noise level by one order of magnitude and in addition removes the microwave-induced non-resonant background. This is exemplarily demonstrated for spin-echo measurements in phosphorus-doped silicon. The modulation of the signal is achieved by cycling the phase of the projection pulse used in pEDMR for the readout of the spin state.

  5. Qualification test results for DOE solar photovoltaic flat panel procurement - PRDA 38

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.

    1980-01-01

    Twelve types of prototypes modules for the DOE Photovoltaic Flat Panel Procurement (PRDA 38) were subjected to qualification tests at the Jet Propulsion Laboratory according to a new specification. Environmental exposures were carried out separately and included temperature cycling, humidity, wind simulation, and hail. The most serious problems discovered were reduced insulation resistance to ground and ground continuity of the metal frames, electrical degradation, erratic power readings, and delamination. The electrical and physical characteristics of the newly received modules are also given.

  6. Dynamic Optical Grating Device and Associated Method for Modulating Light

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Chu, Sang-Hyon (Inventor)

    2012-01-01

    A dynamic optical grating device and associated method for modulating light is provided that is capable of controlling the spectral properties and propagation of light without moving mechanical components by the use of a dynamic electric and/or magnetic field. By changing the electric field and/or magnetic field, the index of refraction, the extinction coefficient, the transmittivity, and the reflectivity fo the optical grating device may be controlled in order to control the spectral properties of the light reflected or transmitted by the device.

  7. PV technology and success of solar electricity in Vietnam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dung, T.Q.

    1997-12-31

    Since 1990 the PV Technology and the Solar electricity have been strongly developed in Vietnam. The PV experts of Solarlab have studied and set up an appropriate PV Technology responding to local Market needs. It has not only stood well but has been also transferred to Mali Republic and Lao P.D.R. The PV off grid systems of Solarlab demonstrate good efficiency and low prices. Over 60 solar stations and villages have been built to provide solar lighting for about 3000 families along the country in remote, mountainous areas and islands. 400 families are using stand-alone Solar Home Systems. The Solarmore » electricity has been chosen for Rural Electrification and National Telecommunication Network in remote and mountainous regions. Many International projects in cooperation with FONDEM-France, SELF USA and Governmental PV projects have been realized by Solarlab. The experiences of maintenance, management and finance about PV development in Vietnam are also mentioned.« less

  8. Study Modules for Calculus-Based General Physics. [Includes Modules 24-26: Electric Potential; Ohm's Law; and Capacitors].

    ERIC Educational Resources Information Center

    Fuller, Robert G., Ed.; And Others

    This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  9. Systems and methods for reducing transient voltage spikes in matrix converters

    DOEpatents

    Kajouke, Lateef A.; Perisic, Milun; Ransom, Ray M.

    2013-06-11

    Systems and methods are provided for delivering energy using an energy conversion module that includes one or more switching elements. An exemplary electrical system comprises a DC interface, an AC interface, an isolation module, a first conversion module between the DC interface and the isolation module, and a second conversion module between the AC interface and the isolation module. A control module is configured to operate the first conversion module to provide an injection current to the second conversion module to reduce a magnitude of a current through a switching element of the second conversion module before opening the switching element.

  10. Electrical Motor Current Signal Analysis using a Modulation Signal Bispectrum for the Fault Diagnosis of a Gearbox Downstream

    NASA Astrophysics Data System (ADS)

    Haram, M.; Wang, T.; Gu, F.; Ball, A. D.

    2012-05-01

    Motor current signal analysis has been an effective way for many years of monitoring electrical machines themselves. However, little work has been carried out in using this technique for monitoring their downstream equipment because of difficulties in extracting small fault components in the measured current signals. This paper investigates the characteristics of electrical current signals for monitoring the faults from a downstream gearbox using a modulation signal bispectrum (MSB), including phase effects in extracting small modulating components in a noisy measurement. An analytical study is firstly performed to understand amplitude, frequency and phase characteristics of current signals due to faults. It then explores the performance of MSB analysis in detecting weak modulating components in current signals. Experimental study based on a 10kw two stage gearbox, driven by a three phase induction motor, shows that MSB peaks at different rotational frequencies can be based to quantify the severity of gear tooth breakage and the degrees of shaft misalignment. In addition, the type and location of a fault can be recognized based on the frequency at which the change of MSB peak is the highest among different frequencies.

  11. Covert laser remote sensing and vibrometry

    NASA Technical Reports Server (NTRS)

    Maleki, Lutfollah (Inventor); Yu, Nan (Inventor); Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy (Inventor)

    2012-01-01

    Designs of single-beam laser vibrometry systems and methods. For example, a method for detecting vibrations of a target based on optical sensing is provided to include operating a laser to produce a laser probe beam at a laser frequency and modulated at a modulation frequency onto a target; collecting light at or near the laser to collect light from the target while the target is being illuminated by the laser probe beam through an optical receiver aperture; using a narrow-band optical filter centered at the laser frequency to filter light collected from the optical receiver aperture to transmit light at the laser frequency while blocking light at other frequencies; using an optical detector to convert filtered light from the narrow-band optical filter to produce a receiver electrical signal; using a lock-in amplifier to detect and amplify the receiver electrical signal at the modulation frequency while rejecting signal components at other frequencies to produce an amplified receiver electrical signal; processing the amplified receiver electrical signal to extract information on vibrations of the target carried by reflected laser probe beam in the collected light; and controlling optical power of the laser probe beam at the target to follow optical power of background illumination at the target.

  12. Grid parity analysis of stand-alone hybrid microgrids: A comparative study of Germany, Pakistan, South Africa and the United States

    NASA Astrophysics Data System (ADS)

    Siddiqui, Jawad M.

    Grid parity for alternative energy resources occurs when the cost of electricity generated from the source is lower than or equal to the purchasing price of power from the electricity grid. This thesis aims to quantitatively analyze the evolution of hybrid stand-alone microgrids in the US, Germany, Pakistan and South Africa to determine grid parity for a solar PV/Diesel/Battery hybrid system. The Energy System Model (ESM) and NREL's Hybrid Optimization of Multiple Energy Resources (HOMER) software are used to simulate the microgrid operation and determine a Levelized Cost of Electricity (LCOE) figure for each location. This cost per kWh is then compared with two distinct estimates of future retail electricity prices at each location to determine grid parity points. Analysis results reveal that future estimates of LCOE for such hybrid stand-alone microgrids range within the 35-55 cents/kWh over the 25 year study period. Grid parity occurs earlier in locations with higher power prices or unreliable grids. For Pakistan grid parity is already here, while Germany hits parity between the years 2023-2029. Results for South Africa suggest a parity time range of the years 2040-2045. In the US, places with low grid prices do not hit parity during the study period. Sensitivity analysis results reveal the significant impact of financing and the cost of capital on these grid parity points, particularly in developing markets of Pakistan and South Africa. Overall, the study helps conclude that variations in energy markets may determine the fate of emerging energy technologies like microgrids. However, policy interventions have a significant impact on the final outcome, such as the grid parity in this case. Measures such as eliminating uncertainty in policies and improving financing can help these grids overcome barriers in developing economies, where they may find a greater use much earlier in time.

  13. Engineering evaluation of a sodium hydroxide thermal energy storage module

    NASA Technical Reports Server (NTRS)

    Perdue, D. G.; Gordon, L. H.

    1980-01-01

    An engineering evaluation of thermal energy storage prototypes was performed in order to assess the development status of latent heat storage media. The testing and the evaluation of a prototype sodium hydroxide module is described. This module stored off-peak electrical energy as heat for later conversion to domestic hot water needs.

  14. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XVI, LEARNING ABOUT AC GENERATOR (ALTERNATOR) PRINCIPLES (PART I).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES OF ALTERNATING CURRENT GENERATORS USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE REVIEWING ELECTRICAL FUNDAMENTALS, AND OPERATING PRINCIPLES OF ALTERNATORS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL PROGRAMED TRAINING FILM "AC GENERATORS…

  15. Module Twelve: Series AC Resistive-Reactive Circuits; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The module covers series circuits which contain both resistive and reactive components and methods of solving these circuits for current, voltage, impedance, and phase angle. The module is divided into six lessons: voltage and impedance in AC (alternating current) series circuits, vector computations, rectangular and polar notation, variational…

  16. VFDs: Are They Electrical Parasites?

    ERIC Educational Resources Information Center

    Frank, Ned

    2013-01-01

    Variable Frequency Drives (VFDs) are electronic speed controllers used mainly to modulate and reduce the overall speed and power consumption of an electrical motor. They can be used as soft starters for equipment that has a large rotational mass, thus reducing belt ware and large electrical peaks when starting large pieces of equipment. VFDs have…

  17. Solar Electric Propulsion System Integration Technology (SEPSIT). Volume 2: Encke rendezvous mission and space vehicle functional description

    NASA Technical Reports Server (NTRS)

    Gardner, J. A.

    1972-01-01

    A solar electric propulsion system integration technology study is discussed. Detailed analyses in support of the solar electric propulsion module were performed. The thrust subsystem functional description is presented. The space vehicle and the space mission to which the propulsion system is applied are analyzed.

  18. Electric control of the heat flux through electrophononic effects

    NASA Astrophysics Data System (ADS)

    Seijas-Bellido, Juan Antonio; Aramberri, Hugo; Íñiguez, Jorge; Rurali, Riccardo

    2018-05-01

    We demonstrate a fully electric control of the heat flux, which can be continuously modulated by an externally applied electric field in PbTiO3, a prototypical ferroelectric perovskite, revealing the mechanisms by which experimentally accessible fields can be used to tune the thermal conductivity by as much as 50% at room temperature.

  19. Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module

    DOEpatents

    Pitel, Ira J.

    1987-02-03

    The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage.

  20. Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module

    DOEpatents

    Pitel, I.J.

    1987-02-03

    The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage. 19 figs.

  1. Development of instruction in hospital electrical safety for medical education.

    PubMed

    Yoo, J H; Broderick, W A

    1978-01-01

    Although hospital electrical safety is receiving increased attention in the literature of engineers, it is not, at present, reflected in the curricula of medical schools. A possible reason for this omission is that biomedical and/or clinical engineers knowledgeable in electrical safety are not usually trained to teach. One remedy for this problem is to combine the knowledge of engineers with that of instructional developers to design a systematic curriculum for a course in hospital electrical safety. This paper describes such an effort at the University of Texas Health Science Center at San Antonio (UTHSCSA). A biomedical engineer and an instructional developer designed an instructional module in hospital electrical safety; the engineer taught the module, and both evaluated the results. The process and outcome of their collaboration are described. This model was effectively applied in the classroom as a four-hour segment in hospital electrical safety for first-year medical students at UTHSCSA. It is hoped that an additional benefit of this system will be that it offers an opportunity for continuing improvement in this kind of instruction at other medical schools and hospitals.

  2. Discovery of Enhanced Magnetoelectric Coupling through Electric Field Control of Two-Magnon Scattering within Distorted Nanostructures.

    PubMed

    Xue, Xu; Zhou, Ziyao; Dong, Guohua; Feng, Mengmeng; Zhang, Yijun; Zhao, Shishun; Hu, Zhongqiang; Ren, Wei; Ye, Zuo-Guang; Liu, Yaohua; Liu, Ming

    2017-09-26

    Electric field control of dynamic spin interactions is promising to break through the limitation of the magnetostatic interaction based magnetoelectric (ME) effect. In this work, electric field control of the two-magnon scattering (TMS) effect excited by in-plane lattice rotation has been demonstrated in a La 0.7 Sr 0.3 MnO 3 (LSMO)/Pb(Mn 2/3 Nb 1/3 )-PbTiO 3 (PMN-PT) (011) multiferroic heterostructure. Compared with the conventional strain-mediated ME effect, a giant enhancement of ME effect up to 950% at the TMS critical angle is precisely determined by angular resolution of the ferromagnetic resonance (FMR) measurement. Particularly, a large electric field modulation of magnetic anisotropy (464 Oe) and FMR line width (401 Oe) is achieved at 173 K. The electric-field-controllable TMS effect and its correlated ME effect have been explained by electric field modulation of the planar spin interactions triggered by spin-lattice coupling. The enhancement of the ME effect at various temperatures and spin dynamics control are promising paradigms for next-generation voltage-tunable spintronic devices.

  3. The design and development of a rectangular, shingle-type photovoltaic module

    NASA Astrophysics Data System (ADS)

    Shepard, N. F., Jr.

    A shingle-type photovoltaic module has been designed and developed to meet the requirements of specifications for residential applications. The module is ideally suited for installation directly to the sheathing of a sloping, south-facing roof of a residential, industrial, or commercial building. The design requirements are examined, taking into account also module safety requirements. Aspects of module design and analysis are discussed, giving attention to installation details, solar cells and electrical circuit design, the encapsulation system, substrate lamination, and the module-to-module interconnecting cable. Details of module assembly experience and test and outdoor exposure experience are also considered.

  4. The design and development of a rectangular, shingle-type photovoltaic module

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1982-01-01

    A shingle-type photovoltaic module has been designed and developed to meet the requirements of specifications for residential applications. The module is ideally suited for installation directly to the sheathing of a sloping, south-facing roof of a residential, industrial, or commercial building. The design requirements are examined, taking into account also module safety requirements. Aspects of module design and analysis are discussed, giving attention to installation details, solar cells and electrical circuit design, the encapsulation system, substrate lamination, and the module-to-module interconnecting cable. Details of module assembly experience and test and outdoor exposure experience are also considered.

  5. Elsevier's maritime dictionary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakr, M.

    1987-01-01

    This is a dictionary for terms relating to maritime activities, and provides the terminology in three international languages. It also provides maritime terminology in Arabic. The dictionary covers the most recent terms used in satellite navigation and telecommunication. Its other topics include: acoustics, insurance, containers, cargo, bulk chemicals, carriage of dangerous goods, chemistry, radiocommunication, economics, electricity, environment, finance, fire protection, fishing vessels, hydrography, legal matters, meteorology, navigation, optics, pollution, radars, satellites, shipbuilding, stability, mechanics, and life-saving appliances.

  6. Southeast Asia Report.

    DTIC Science & Technology

    1984-03-29

    January) -- Strong and Confident on Rivers "] [Text] Battalion leader Somsanith led us to the river port, where the com- batants of Company 2 were...fulfilling their regular combat task. Sitting in a small boat equipped with 2 12. 7-mm guns, he told us the following: "At the time the battalion was...PLANNING, TRADE AND FINANCE INEFFICIENT USE OF ELECTRICITY CRITICIZED Hanoi NHAN DAN in Vietnamese 18 Jan 84 p 2 [Article by Binh Nguyen: "Making

  7. Financing future power generation in Italy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esposito, P.

    1998-07-01

    Under Italian law, independent power generation fueled by renewable and so-called ``assimilated'' sources must be given incentives. To implement this provision, a resolution known as ``CIP 6'' and a decree setting forth the procedure to sell such electricity to ENEL were issued. CIP 6 has recently been revoked and new incentives have been announced. In the meantime, CIP 6 continues to apply to various projects which have been approved but not yet constructed.

  8. High-resolution photoluminescence electro-modulation microscopy by scanning lock-in

    NASA Astrophysics Data System (ADS)

    Koopman, W.; Muccini, M.; Toffanin, S.

    2018-04-01

    Morphological inhomogeneities and structural defects in organic semiconductors crucially determine the charge accumulation and lateral transport in organic thin-film transistors. Photoluminescence Electro-Modulation (PLEM) microscopy is a laser-scanning microscopy technique that relies on the modulation of the thin-film fluorescence in the presence of charge-carriers to image the spatial distribution of charges within the active organic semiconductor. Here, we present a lock-in scheme based on a scanning beam approach for increasing the PLEM microscopy resolution and contrast. The charge density in the device is modulated by a sinusoidal electrical signal, phase-locked to the scanning beam of the excitation laser. The lock-in detection scheme is achieved by acquiring a series of images with different phases between the beam scan and the electrical modulation. Application of high resolution PLEM to an organic transistor in accumulation mode demonstrates its potential to image local variations in the charge accumulation. A diffraction-limited precision of sub-300 nm and a signal to noise ratio of 21.4 dB could be achieved.

  9. An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency.

    PubMed

    Fan, Yuancheng; Qiao, Tong; Zhang, Fuli; Fu, Quanhong; Dong, Jiajia; Kong, Botao; Li, Hongqiang

    2017-01-16

    Electromagnetically induced transparency (EIT) is a promising technology for the enhancement of light-matter interactions, and recent demonstrations of the EIT analogue realized in artificial micro-structured medium have remarkably reduced the extreme requirement for experimental observation of EIT spectrum. In this paper, we propose to electrically control the EIT-like spectrum in a metamaterial as an electromagnetic modulator. A diode acting as a tunable resistor is loaded in the gap of paired wires to inductively tune the magnetic resonance, which induces remarkable modulation on the EIT-like spectrum through the metamaterial sample. The experimental measurements confirmed that the prediction of electromagnetic modulation in three narrow bands on the EIT-like spectrum, and a modulation contrast of up to 31 dB was achieved on the transmission through the metamaterial. Our results may facilitate the study on active/dynamical technology in translational metamaterials, which connect extraordinary manipulations on the flow of light in metamaterials, e.g., the exotic EIT, and practical applications in industry.

  10. Electrical manipulation of perpendicular magnetic anisotropy in a Pt/Co/Pt trilayer grown on PMN-PT(0 1 1) substrate

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Sun, L.; Luo, Y. M.; Zhang, D.; Liang, J. H.; Wu, Y. Z.

    2018-03-01

    Strain-induced modulation of perpendicular magnetic anisotropy (PMA) is demonstrated in a wedge-shaped Pt/Co/Pt sandwich grown on PMN-PT(0 1 1) substrate using magnetic torque measurements. An anisotropic in-plane strain is generated by applying an electric field across the PMN-PT substrate and transferred to the ferromagnetic Pt/Co/Pt sandwich. The critical thickness of spin reorientation transition is tuned to the thicker region of the Pt/Co/Pt wedge. The strain-induced change of PMA is quantitatively extracted. Only the first order anisotropy term is tuned by the electric field, while the second order anisotropy term has negligible electric field-dependence. Both of the volume and interface contributions of the first order anisotropy term show tunable electric field modulation. These results may benefit the understanding of strain-mediated magnetoelectric coupling effect in artificial multiferroic structures containing a ferromagnetic layer with PMA.

  11. Analysis of electric field distribution in GaAs metal-semiconductor field effect transistor with a field-modulating plate

    NASA Astrophysics Data System (ADS)

    Hori, Yasuko; Kuzuhara, Masaaki; Ando, Yuji; Mizuta, Masashi

    2000-04-01

    Electric field distribution in the channel of a field effect transistor (FET) with a field-modulating plate (FP) has been theoretically investigated using a two-dimensional ensemble Monte Carlo simulation. This analysis revealed that the introduction of FP is effective in canceling the influence of surface traps under forward bias conditions and in reducing the electric field intensity at the drain side of the gate edge under pinch-off bias conditions. This study also found that a partial overlap of the high-field region under the gate and that at the FP electrode is important for reducing the electric field intensity. The optimized metal-semiconductor FET with FP (FPFET) (LGF˜0.2 μm) exhibited a much lower peak electric field intensity than a conventional metal-semiconductor FET. Based on these numerically calculated results, we have proposed a design procedure to optimize the power FPFET structure with extremely high breakdown voltages while maintaining reasonable gain performance.

  12. Solar dynamic power for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Labus, Thomas L.; Secunde, Richard R.; Lovely, Ronald G.

    1989-01-01

    The Space Station Freedom Program is presently planned to consist of two phases. At the completion of Phase 1, Freedom's manned base will consist of a transverse boom with attached manned modules and 75 kW of available electric power supplied by photovoltaic (PV) power sources. In Phase 2, electric power available to the manned base will be increased to 125 kW by the addition of two solar dynamic (SD) power modules, one at each end of the transverse boom. Power for manned base growth beyond Phase 2 will be supplied by additional SD modules. Studies show that SD power for the growth eras will result in life cycle cost savings of $3 to $4 billion when compared to PV-supplied power. In the SD power modules for Space Station Freedom, an offset parabolic concentrator collects and focuses solar energy into a heat receiver. To allow full power operation over the entire orbit, the receiver includes integral thermal energy storage by means of the heat of fusion of a salt mixture. Thermal energy is removed from the receiver and converted to electrical energy by a power conversion unit (PCU) which includes a closed brayton cycle (CBC) heat engine and an alternator. The receiver/PCU/radiator combination will be completely assembled and charged with gas and cooling fluid on earth before launch to orbit. The concentrator subassemblies will be pre-aligned and stowed in the orbiter bay before launch. On orbit, the receiver/PCU/radiator assembly will be installed as a unit. The pre-aligned concentrator panels will then be latched together and the total concentrator attached to the receiver/PCU/radiator by the astronauts. After final electric connections are made and checkout is complete, the SD power module will be ready for operation.

  13. Solar dynamic power for space station freedom

    NASA Technical Reports Server (NTRS)

    Labus, Thomas L.; Secunde, Richard R.; Lovely, Ronald G.

    1989-01-01

    The Space Station Freedom Program is presently planned to consist of two phases. At the completion of Phase 1, Freedom's manned base will consist of a transverse boom with attached manned modules and 75 kW of available electric power supplied by photovoltaic (PV) power sources. In Phase 2, electric power available to the manned base will be increased to 125 kW by the addition of two solar dynamic (SD) power modules, one at each end of the transverse boom. Power for manned base growth beyond Phase 2 will be supplied by additional SD modules. Studies show that SD power for the growth eras will result in life cycle cost savings of $3 to $4 billion when compared to PV-supplied power. In the SD power modules for Space Station Freedom, an offset parabolic concentrator collects and focuses solar energy into a heat receiver. To allow full power operation over the entire orbit, the receiver includes integral thermal energy storage by means of the heat of fusion of a salt mixture. Thermal energy is removed from the receiver and converted to electrical energy by a power conversion unit (PCU) which includes a closed brayton cycle (CBC) heat engine and an alternator. The receiver/PCU/radiator combination will be completely assembled and charged with gas and cooling fluid on Earth before launch to orbit. The concentrator subassemblies will be pre-aligned and stowed in the orbiter bay before launch. On orbit, the receiver/PCU/radiator assembly will be installed as a unit. The pre-aligned concentrator panels will then be latched together and the total concentrator attached to the receiver/PCU/radiator by the astronauts. After final electric connections are made and checkout is complete, the SD power module will be ready for operation.

  14. Phasic action of the tensor muscle modulates the calling song in cicadas

    PubMed

    Fonseca; Hennig

    1996-01-01

    The effect of tensor muscle contraction on sound production by the tymbal was investigated in three species of cicadas (Tettigetta josei, Tettigetta argentata and Tympanistalna gastrica). All species showed a strict time correlation between the activity of the tymbal motoneurone and the discharge of motor units in the tensor nerve during the calling song. Lesion of the tensor nerve abolished the amplitude modulation of the calling song, but this modulation was restored by electrical stimulation of the tensor nerve or by mechanically pushing the tensor sclerite. Electrical stimulation of the tensor nerve at frequencies higher than 30­40 Hz changed the sound amplitude. In Tett. josei and Tett. argentata there was a gradual increase in sound amplitude with increasing frequency of tensor nerve stimulation, while in Tymp. gastrica there was a sudden reduction in sound amplitude at stimulation frequencies higher than 30 Hz. This contrasting effect in Tymp. gastrica was due to a bistable tymbal frame. Changes in sound pulse amplitude were positively correlated with changes in the time lag measured from tymbal motoneurone stimulation to the sound pulse. The tensor muscle acted phasically because electrical stimulation of the tensor nerve during a time window (0­10 ms) before electrical stimulation of the tymbal motoneurone was most effective in eliciting amplitude modulations. In all species, the tensor muscle action visibly changed the shape of the tymbal. Despite the opposite effects of the tensor muscle on sound pulse amplitude observed between Tettigetta and Tympanistalna species, the tensor muscle of both acts by modulating the shape of the tymbal, which changes the force required for the tymbal muscle to buckle the tymbal.

  15. Subsecond Sensory Modulation of Serotonin Levels in a Primary Sensory Area and Its Relation to Ongoing Communication Behavior in a Weakly Electric Fish.

    PubMed

    Fotowat, Haleh; Harvey-Girard, Erik; Cheer, Joseph F; Krahe, Rüdiger; Maler, Leonard

    2016-01-01

    Serotonergic neurons of the raphe nuclei of vertebrates project to most regions of the brain and are known to significantly affect sensory processing. The subsecond dynamics of sensory modulation of serotonin levels and its relation to behavior, however, remain unknown. We used fast-scan cyclic voltammetry to measure serotonin release in the electrosensory system of weakly electric fish, Apteronotus leptorhynchus . These fish use an electric organ to generate a quasi-sinusoidal electric field for communicating with conspecifics. In response to conspecific signals, they frequently produce signal modulations called chirps. We measured changes in serotonin concentration in the hindbrain electrosensory lobe (ELL) with a resolution of 0.1 s concurrently with chirping behavior evoked by mimics of conspecific electric signals. We show that serotonin release can occur phase locked to stimulus onset as well as spontaneously in the ELL region responsible for processing these signals. Intense auditory stimuli, on the other hand, do not modulate serotonin levels in this region, suggesting modality specificity. We found no significant correlation between serotonin release and chirp production on a trial-by-trial basis. However, on average, in the trials where the fish chirped, there was a reduction in serotonin release in response to stimuli mimicking similar-sized same-sex conspecifics. We hypothesize that the serotonergic system is part of an intricate sensory-motor loop: serotonin release in a sensory area is triggered by sensory input, giving rise to motor output, which can in turn affect serotonin release at the timescale of the ongoing sensory experience and in a context-dependent manner.

  16. Subsecond Sensory Modulation of Serotonin Levels in a Primary Sensory Area and Its Relation to Ongoing Communication Behavior in a Weakly Electric Fish

    PubMed Central

    Krahe, Rüdiger; Maler, Leonard

    2016-01-01

    Abstract Serotonergic neurons of the raphe nuclei of vertebrates project to most regions of the brain and are known to significantly affect sensory processing. The subsecond dynamics of sensory modulation of serotonin levels and its relation to behavior, however, remain unknown. We used fast-scan cyclic voltammetry to measure serotonin release in the electrosensory system of weakly electric fish, Apteronotus leptorhynchus. These fish use an electric organ to generate a quasi-sinusoidal electric field for communicating with conspecifics. In response to conspecific signals, they frequently produce signal modulations called chirps. We measured changes in serotonin concentration in the hindbrain electrosensory lobe (ELL) with a resolution of 0.1 s concurrently with chirping behavior evoked by mimics of conspecific electric signals. We show that serotonin release can occur phase locked to stimulus onset as well as spontaneously in the ELL region responsible for processing these signals. Intense auditory stimuli, on the other hand, do not modulate serotonin levels in this region, suggesting modality specificity. We found no significant correlation between serotonin release and chirp production on a trial-by-trial basis. However, on average, in the trials where the fish chirped, there was a reduction in serotonin release in response to stimuli mimicking similar-sized same-sex conspecifics. We hypothesize that the serotonergic system is part of an intricate sensory–motor loop: serotonin release in a sensory area is triggered by sensory input, giving rise to motor output, which can in turn affect serotonin release at the timescale of the ongoing sensory experience and in a context-dependent manner. PMID:27844054

  17. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.

    2010-09-01

    The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designingmore » a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.« less

  18. Space biology initiative program definition review. Trade study 6: Space Station Freedom/spacelab modules compatibility

    NASA Technical Reports Server (NTRS)

    Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Blacknall, Carolyn; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry

    1989-01-01

    The differences in rack requirements for Spacelab, the Shuttle Orbiter, and the United States (U.S.) laboratory module, European Space Agency (ESA) Columbus module, and the Japanese Experiment Module (JEM) of Space Station Freedom are identified. The feasibility of designing standardized mechanical, structural, electrical, data, video, thermal, and fluid interfaces to allow space flight hardware designed for use in the U.S. laboratory module to be used in other locations is assessed.

  19. Homogenized modeling methodology for 18650 lithium-ion battery module under large deformation

    PubMed Central

    Tang, Liang; Cheng, Pengle

    2017-01-01

    Effective lithium-ion battery module modeling has become a bottleneck for full-size electric vehicle crash safety numerical simulation. Modeling every single cell in detail would be costly. However, computational accuracy could be lost if the module is modeled by using a simple bulk material or rigid body. To solve this critical engineering problem, a general method to establish a computational homogenized model for the cylindrical battery module is proposed. A single battery cell model is developed and validated through radial compression and bending experiments. To analyze the homogenized mechanical properties of the module, a representative unit cell (RUC) is extracted with the periodic boundary condition applied on it. An elastic–plastic constitutive model is established to describe the computational homogenized model for the module. Two typical packing modes, i.e., cubic dense packing and hexagonal packing for the homogenized equivalent battery module (EBM) model, are targeted for validation compression tests, as well as the models with detailed single cell description. Further, the homogenized EBM model is confirmed to agree reasonably well with the detailed battery module (DBM) model for different packing modes with a length scale of up to 15 × 15 cells and 12% deformation where the short circuit takes place. The suggested homogenized model for battery module makes way for battery module and pack safety evaluation for full-size electric vehicle crashworthiness analysis. PMID:28746390

  20. Homogenized modeling methodology for 18650 lithium-ion battery module under large deformation.

    PubMed

    Tang, Liang; Zhang, Jinjie; Cheng, Pengle

    2017-01-01

    Effective lithium-ion battery module modeling has become a bottleneck for full-size electric vehicle crash safety numerical simulation. Modeling every single cell in detail would be costly. However, computational accuracy could be lost if the module is modeled by using a simple bulk material or rigid body. To solve this critical engineering problem, a general method to establish a computational homogenized model for the cylindrical battery module is proposed. A single battery cell model is developed and validated through radial compression and bending experiments. To analyze the homogenized mechanical properties of the module, a representative unit cell (RUC) is extracted with the periodic boundary condition applied on it. An elastic-plastic constitutive model is established to describe the computational homogenized model for the module. Two typical packing modes, i.e., cubic dense packing and hexagonal packing for the homogenized equivalent battery module (EBM) model, are targeted for validation compression tests, as well as the models with detailed single cell description. Further, the homogenized EBM model is confirmed to agree reasonably well with the detailed battery module (DBM) model for different packing modes with a length scale of up to 15 × 15 cells and 12% deformation where the short circuit takes place. The suggested homogenized model for battery module makes way for battery module and pack safety evaluation for full-size electric vehicle crashworthiness analysis.

  1. Photovoltaic module encapsulation design and materials section, volume 2

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1984-01-01

    Tests for chemical structure, material properties, water absorption, aging and curing agent of Ethylene Vinyl Acetate (EVA) and UV absorption studies are carried out. A computer model was developed for thermal optical modeling, to investigate dependence between module operating temperature and solar insolation, and heat dissapation behavior. Structural analyses were performed in order to determine the stress distribution under wind and heat conditions. Curves are shown for thermal loading conditions. An electrical isolation was carried out to investigate electrical stress aging of non-metallic encapsulation materials and limiting material flaws, and to develop a computer model of electrical fields and stresses in encapsulation materials. In addition, a mathematical model was developed and tests were conducted to predict hygroscopic and thermal expansion and contraction on a plastic coated wooden substrate. Thermal cycle and humidity freezing cycle tests, partial discharge tests, and hail impact tests were also carried out. Finally, the effects of soiling on the surface of photovoltaic modules were investigated. Two antisoiling coatings, a fluorinated silane and perflourodecanoic acid were considered.

  2. Characterization, performance, and prediction of a lead-acid battery under simulated electric vehicle driving requirements

    NASA Technical Reports Server (NTRS)

    Ewashinka, J. G.; Bozek, J. M.

    1981-01-01

    A state-of-the-art 6-V battery module in current use by the electric vehicle industry was tested at the NASA Lewis Research Center to determine its performance characteristics under the SAE J227a driving schedules B, C, and D. The primary objective of the tests was to determine the effects of periods of recuperation and long and short periods of electrical regeneration in improving the performance of the battery module and hence extendng the vehicle range. A secondary objective was to formulate a computer program that would predict the performance of this battery module for the above driving schedules. The results show excellent correlation between the laboratory tests and predicted results. The predicted performance compared with laboratory tests was within +2.4 to -3.7 percent for the D schedule, +0.5 to -7.1 percent for the C schedule, and better than -11.4 percent for the B schedule.

  3. Characterization, performance, and prediction of a lead-acid battery under simulated electric vehicle driving requirements

    NASA Astrophysics Data System (ADS)

    Ewashinka, J. G.; Bozek, J. M.

    1981-05-01

    A state-of-the-art 6-V battery module in current use by the electric vehicle industry was tested at the NASA Lewis Research Center to determine its performance characteristics under the SAE J227a driving schedules B, C, and D. The primary objective of the tests was to determine the effects of periods of recuperation and long and short periods of electrical regeneration in improving the performance of the battery module and hence extendng the vehicle range. A secondary objective was to formulate a computer program that would predict the performance of this battery module for the above driving schedules. The results show excellent correlation between the laboratory tests and predicted results. The predicted performance compared with laboratory tests was within +2.4 to -3.7 percent for the D schedule, +0.5 to -7.1 percent for the C schedule, and better than -11.4 percent for the B schedule.

  4. Low frequency piezoresonance defined dynamic control of terahertz wave propagation

    NASA Astrophysics Data System (ADS)

    Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G.; Bhalla, Amar S.; Guo, Ruyan

    2016-11-01

    Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.

  5. Low frequency piezoresonance defined dynamic control of terahertz wave propagation.

    PubMed

    Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G; Bhalla, Amar S; Guo, Ruyan

    2016-11-30

    Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO 3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.

  6. Saccade Modulation by Optical and Electrical Stimulation in the Macaque Frontal Eye Field

    PubMed Central

    Grimaldi, Piercesare; Schweers, Nicole

    2013-01-01

    Recent studies have demonstrated that strong neural modulations can be evoked with optogenetic stimulation in macaque motor cortex without observing any evoked movements (Han et al., 2009, 2011; Diester et al., 2011). It remains unclear why such perturbations do not generate movements and if conditions exist under which they may evoke movements. In this study, we examine the effects of five optogenetic constructs in the macaque frontal eye field and use electrical microstimulation to assess whether optical perturbation of the local network leads to observable motor changes during optical, electrical, and combined stimulation. We report a significant increase in the probability of evoking saccadic eye movements when low current electrical stimulation is coupled to optical stimulation compared with when electrical stimulation is used alone. Experiments combining channelrhodopsin 2 (ChR2) and electrical stimulation with simultaneous fMRI revealed no discernible fMRI activity at the electrode tip with optical stimulation but strong activity with electrical stimulation. Our findings suggest that stimulation with current ChR2 optogenetic constructs generates subthreshold activity that contributes to the initiation of movements but, in most cases, is not sufficient to evoke a motor response. PMID:24133271

  7. Chronic intravitreous infusion of ciliary neurotrophic factor modulates electrical retinal stimulation thresholds in the RCS rat.

    PubMed

    Kent, Tiffany L; Glybina, Inna V; Abrams, Gary W; Iezzi, Raymond

    2008-01-01

    To determine whether the sustained intravitreous delivery of CNTF modulates cortical response thresholds to electrical retinal stimulation in the RCS rat model of retinal degeneration. Animals were assigned to four groups: untreated, nonsurgical control and infusion groups of 10 ng/d CNTF, 1 ng/d CNTF, and PBS vehicle control. Thresholds for electrically evoked cortical potentials (EECPs) were recorded in response to transcorneal electrical stimulation of the retina at p30 and again at p60, after a three-week infusion. As the retina degenerated over time, EECP thresholds in response to electrical retinal stimulation increased. Eyes treated with 10 ng/d CNTF demonstrated significantly greater retinal sensitivity to electrical stimulation when compared with all other groups. In addition, eyes treated with 1 ng/d CNTF demonstrated significantly greater retinal sensitivity than both PBS-treated and untreated control groups. Retinal sensitivity to electrical stimulation was preserved in animals treated with chronic intravitreous infusion of CNTF. These data suggest that CNTF-mediated retinal neuroprotection may be a novel therapy that can lower stimulus thresholds in patients about to undergo retinal prosthesis implantation. Furthermore, it may maintain the long-term efficacy of these devices in patients.

  8. Evoked potentials after painful cutaneous electrical stimulation depict pain relief during a conditioned pain modulation.

    PubMed

    Höffken, Oliver; Özgül, Özüm S; Enax-Krumova, Elena K; Tegenthoff, Martin; Maier, Christoph

    2017-08-29

    Conditioned pain modulation (CPM) evaluates the pain modulating effect of a noxious conditioning stimulus (CS) on another noxious test stimulus (TS), mostly based solely on subjective pain ratings. We used painful cutaneous electrical stimulation (PCES) to induce TS in a novel CPM-model. Additionally, to evaluate a more objective parameter, we recorded the corresponding changes of cortical evoked potentials (PCES-EP). We examined the CPM-effect in 17 healthy subjects in a randomized controlled cross-over design during immersion of the non-dominant hand into 10 °C or 24 °C cold water (CS). Using three custom-built concentric surface electrodes, electrical stimuli were applied on the dominant hand, inducing pain of 40-60 on NRS 0-100 (TS). At baseline, during and after CS we assessed the electrically induced pain intensity and electrically evoked potentials recorded over the central electrode (Cz). Only in the 10 °C-condition, both pain (52.6 ± 4.4 (baseline) vs. 30.3 ± 12.5 (during CS)) and amplitudes of PCES-EP (42.1 ± 13.4 μV (baseline) vs. 28.7 ± 10.5 μV (during CS)) attenuated during CS and recovered there after (all p < 0.001). In the 10 °C-condition changes of subjective pain ratings during electrical stimulation and amplitudes of PCES-EP correlated significantly with each other (r = 0.5) and with CS pain intensity (r = 0.5). PCES-EPs are a quantitative measure of pain relief, as changes in the electrophysiological response are paralleled by a consistent decrease in subjective pain ratings. This novel CPM paradigm is a feasible method, which could help to evaluate the function of the endogenous pain modulation processes. German Clinical Trials Register DRKS-ID: DRKS00012779 , retrospectively registered on 24 July 2017.

  9. Practical design considerations for photovoltaic power station

    NASA Astrophysics Data System (ADS)

    Swanson, T. D.

    Aspects of photovoltaic (PV) technology are discussed along with generic PV design considerations, taking into account the resource sunlight, PV modules and their reliability, questions of PV system design, the support structure subsystem, and a power conditioning unit subsystem. A description is presented of two recent projects which demonstrate the translation of an idea into actual working PV systems. A privately financed project in Denton, Maryland, went on line in early December, 1982, and began providing power to the local utility grid. It represents the first intermediate size, grid-connected, privately financed power station in the U.S. Based on firm quotes, the actual cost of this system is about $13/W peak. The other project, called the PV Breeder, is an energy independent facility which utilizes solar power to make new solar cells. It is also the first large industrial structure completely powered by the sun.

  10. Economics of hydrogen production and liquefaction updated to 1980

    NASA Technical Reports Server (NTRS)

    Baker, C. R.

    1979-01-01

    Revised costs for generating and liquefying hydrogen in mid-1980 are presented. Plant investments were treated as straight-forward escalations resulting from inflation. Operating costs, however, were derived in terms of the unit cost of coal, fuel gas and electrical energy to permit the determination of the influence of these parameters on the cost of liquid hydrogen. Inflationary influence was recognized by requiring a 15% discounted rate of return on investment for Discounted Cash Flow financing analysis, up from 12% previously. Utility financing was revised to require an 11% interest rate on debt. The scope of operation of the hydrogen plant was revised from previous studies to include only the hydrogen generation and liquefaction facilities. On-site fuel gas and power generation, originally a part of the plant complex, was eliminated. Fuel gas and power are now treated as purchased utilities. Costs for on-site generation of fuel gas however, are included.

  11. Visualizing Carrier Transport in Metal Halide Perovskite Nanoplates via Electric Field Modulated Photoluminescence Imaging.

    PubMed

    Hu, Xuelu; Wang, Xiao; Fan, Peng; Li, Yunyun; Zhang, Xuehong; Liu, Qingbo; Zheng, Weihao; Xu, Gengzhao; Wang, Xiaoxia; Zhu, Xiaoli; Pan, Anlian

    2018-05-09

    Metal halide perovskite nanostructures have recently been the focus of intense research due to their exceptional optoelectronic properties and potential applications in integrated photonics devices. Charge transport in perovskite nanostructure is a crucial process that defines efficiency of optoelectronic devices but still requires a deep understanding. Herein, we report the study of the charge transport, particularly the drift of minority carrier in both all-inorganic CsPbBr 3 and organic-inorganic hybrid CH 3 NH 3 PbBr 3 perovskite nanoplates by electric field modulated photoluminescence (PL) imaging. Bias voltage dependent elongated PL emission patterns were observed due to the carrier drift at external electric fields. By fitting the drift length as a function of electric field, we obtained the carrier mobility of about 28 cm 2 V -1 S -1 in the CsPbBr 3 perovskite nanoplate. The result is consistent with the spatially resolved PL dynamics measurement, confirming the feasibility of the method. Furthermore, the electric field modulated PL imaging is successfully applied to the study of temperature-dependent carrier mobility in CsPbBr 3 nanoplates. This work not only offers insights for the mobile carrier in metal halide perovskite nanostructures, which is essential for optimizing device design and performance prediction, but also provides a novel and simple method to investigate charge transport in many other optoelectronic materials.

  12. Modulating protein behaviors on responsive surface by external electric fields: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Xie, Yun; Pan, Yufang; Zhang, Rong; Liang, Ying; Li, Zhanchao

    2015-01-01

    Molecular dynamics simulations were employed to investigate the modulation of protein behaviors on the electrically responsive zwitterionic phosphorylcholine self-assembled monolayers (PC-SAMs). Results show that PC-SAMs could sensitively respond to the applied electric fields and exhibit three states with different charge distributions, namely both the negatively charged phosphate groups and the positively charged choline groups are exposed to the solution in the absence of electric fields (state 1), phosphate groups exposed in the presence of positive electric fields (state 2), and choline groups exposed in the presence of negative electric fields (state 3). Under state 1, the adsorption of Cyt c on the PC-SAM is reversible and the orientations of Cyt c are randomly distributed. Under state 2, the adsorption of Cyt c is enhanced due to the electrostatic attractions between the exposed phosphate groups and the positively charged protein; when adsorbed on the PC-SAMs, Cyt c tends to adopt the orientation with the heme plane perpendicular to the surface plane, and the percentage of this orientation increases as the field strength rises up. Under state 3, the adsorption of Cyt c is retarded because of the electrostatic repulsions between the exposed choline groups and the protein; however, if the gaps between PC chains are large enough, Cyt c could insert into the PC-SAM and access the phosphate groups after overcoming a slight energy barrier. Under three states, the basic backbone structures of Cyt c are well kept within the simulation time since the conformation of Cyt c is mainly affected by the surface-generated electric fields, whose strengths are modulated by the external electric fields and are not strong enough to deform protein. The results indicate the possibility of regulating protein behaviors, including promoting or retarding protein adsorption and regulating protein orientations, on responsive surfaces by applying electric fields on the surfaces without worrying protein deformation, which may be helpful in the applications of protein separation and controlled drug delivery.

  13. Simulation Analysis of Tilted Polyhedron-Shaped Thermoelectric Elements

    NASA Astrophysics Data System (ADS)

    Meng, Xiangning; Suzuki, Ryosuke O.

    2015-06-01

    The generation of thermoelectricity is considered a promising approach to harness the waste heat generated in industries, automobiles, gas fields, and other man-made processes. The waste heat can be converted to electricity via a thermoelectric (TE) generator. In this light, the generator performance depends on the geometric configuration of its constituent elements as well as their material properties. Our previous work reported TE behaviors for modules consisting of parallelogram-shaped elements, because elements with tilted laminate structures provide increased mechanical stability and efficient heat-transferring ability from the hot surface to the cold surface. Here, we study TE elements in the shape of a polyhedron that is obtained by mechanically truncating the edges of a parallelogram element in order to further enhance the generator performance and reduce TE material usage. The TE performance of the modules consisting of these polyhedron elements is numerically simulated by using the finite-volume method. The output power, voltage, and current of the polyhedral TE module are greater than those of the parallelogram-element module. The polyhedron shape positively affects heat transfer and the flow of electric charges in the light of increasing the efficiency of conversion from heat to electricity. By varying the shape of the truncated portions, we determine the optimal shape that enables homogeneous heat flux distribution and slow diffusion of thermal energy to obtain the better efficiency of conversion of heat into electricity. We believe that the findings of our study can significantly contribute to the design policy in TE generation.

  14. Note: extraction of temperature-dependent interfacial resistance of thermoelectric modules.

    PubMed

    Chen, Min

    2011-11-01

    This article discusses an approach for extracting the temperature dependency of the electrical interfacial resistance associated with thermoelectric devices. The method combines a traditional module-level test rig and a nonlinear numerical model of thermoelectricity to minimize measurement errors on the interfacial resistance. The extracted results represent useful data to investigating the characteristics of thermoelectric module resistance and comparing performance of various modules. © 2011 American Institute of Physics

  15. Electrical control of superparamagnetism

    NASA Astrophysics Data System (ADS)

    Yamada, Kihiro T.; Koyama, Tomohiro; Kakizakai, Haruka; Miwa, Kazumoto; Ando, Fuyuki; Ishibashi, Mio; Kim, Kab-Jin; Moriyama, Takahiro; Ono, Shimpei; Chiba, Daichi; Ono, Teruo

    2017-01-01

    The electric field control of superparamagnetism is realized using a Cu/Ni system, in which the deposited Ni shows superparamagnetic behavior above the blocking temperature. An electric double-layer capacitor (EDLC) with the Cu/Ni electrode and a nonmagnetic counter electrode is fabricated to examine the electric field effect on magnetism in the magnetic electrode. By changing the voltage applied to the EDLC, the blocking temperature of the system is clearly modulated.

  16. Investigation of surface charge density on solid-liquid interfaces by modulating the electrical double layer.

    PubMed

    Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu

    2015-05-20

    A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid-liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid-liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid-liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid-liquid interfaces.

  17. Waterworks Operator Training Manual.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    Sixteen self-study waterworks operators training modules are provided. Module titles are the following: basic mathematics, basic chemistry, analysis procedures, microbiology, basic electricity, hydraulics, chlorination, plant operation, surface water, ground water, pumps, cross connections, distribution systems, safety, public relations, and…

  18. Overview of Avionics and Electrical Ground Support Equipment

    NASA Technical Reports Server (NTRS)

    Clarke, Sean C.

    2011-01-01

    Presents an overview of the Crew Module Avionics and the associated Electrical Ground Support Equipment for the Pad Abort 1 flight test of the Orion Program. A limited selection of the technical challenges and solutions are highlighted.

  19. World Energy Projection System Plus Model Documentation: Electricity Module

    EIA Publications

    2017-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Electricity Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  20. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators.

    PubMed

    Yao, Yu; Shankar, Raji; Kats, Mikhail A; Song, Yi; Kong, Jing; Loncar, Marko; Capasso, Federico

    2014-11-12

    Dynamically reconfigurable metasurfaces open up unprecedented opportunities in applications such as high capacity communications, dynamic beam shaping, hyperspectral imaging, and adaptive optics. The realization of high performance metasurface-based devices remains a great challenge due to very limited tuning ranges and modulation depths. Here we show that a widely tunable metasurface composed of optical antennas on graphene can be incorporated into a subwavelength-thick optical cavity to create an electrically tunable perfect absorber. By switching the absorber in and out of the critical coupling condition via the gate voltage applied on graphene, a modulation depth of up to 100% can be achieved. In particular, we demonstrated ultrathin (thickness < λ0/10) high speed (up to 20 GHz) optical modulators over a broad wavelength range (5-7 μm). The operating wavelength can be scaled from the near-infrared to the terahertz by simply tailoring the metasurface and cavity dimensions.

Top