Sample records for module jem pressurized

  1. KENNEDY SPACE CENTER, FLA. - The container with the Japanese Experiment Module (JEM)’s pressurized module is inside the Space Station Processing Facility. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - The container with the Japanese Experiment Module (JEM)’s pressurized module is inside the Space Station Processing Facility. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  2. KENNEDY SPACE CENTER, FLA. - The truck transporting the Pressurized Module of the Japanese Experiment Module (JEM) to KSC’s Space Station Processing Facility arrives on Center. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-04

    KENNEDY SPACE CENTER, FLA. - The truck transporting the Pressurized Module of the Japanese Experiment Module (JEM) to KSC’s Space Station Processing Facility arrives on Center. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  3. KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew take a look at the Japanese Experiment Module (JEM) pressure module in the Space Station Processing Facility. A research laboratory, the pressurized module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo and is Japan's primary contribution to the Station. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-09

    KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew take a look at the Japanese Experiment Module (JEM) pressure module in the Space Station Processing Facility. A research laboratory, the pressurized module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo and is Japan's primary contribution to the Station. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  4. KENNEDY SPACE CENTER, FLA. - At Port Canaveral, the Pressurized Module of the Japanese Experiment Module (JEM) is lifted out of the ship’s cargo hold. The container transport ship carrying JEM departed May 2 from Yokohama Harbor in Japan for the voyage to the United States. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-04

    KENNEDY SPACE CENTER, FLA. - At Port Canaveral, the Pressurized Module of the Japanese Experiment Module (JEM) is lifted out of the ship’s cargo hold. The container transport ship carrying JEM departed May 2 from Yokohama Harbor in Japan for the voyage to the United States. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  5. Development of Japanese experiment module remote manipulator system

    NASA Technical Reports Server (NTRS)

    Matsueda, Tatsuo; Kuwao, Fumihiro; Motohasi, Shoichi; Okamura, Ryo

    1994-01-01

    National Space Development Agency of Japan (NASDA) is developing the Japanese Experiment Module (JEM), as its contribution to the International Space Station. The JEM consists of the pressurized module (PM), the exposed facility (EF), the experiment logistics module pressurized section (ELM-PS), the experiment logistics module exposed section (ELM-ES) and the Remote Manipulator System (RMS). The JEMRMS services for the JEM EF, which is a space experiment platform, consists of the Main Arm (MA), the Small Fine Arm (SFA) and the RMS console. The MA handles the JEM EF payloads, the SFA and the JEM element, such as ELM-ES.

  6. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (right) looks at the newly arrived Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (right) looks at the newly arrived Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  7. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (left) looks at the newly arrived Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (left) looks at the newly arrived Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  8. Japanese Experiment Module (JEM)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Japanese Experiment Module (JEM) pressure module is removed from its shipping crate and moved across the floor of the Space Station Processing Facility at Kennedy Space Center (KSC) to a work stand. A research laboratory, the pressurized module is the first element of the JEM, named 'Kibo' (Hope) to arrive at KSC. Japan's primary contribution to the International Space Station, the module will enhance unique research capabilities of the orbiting complex by providing an additional environment in which astronauts will conduct experiments. The JEM also includes an exposed facility or platform for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  9. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto points to other Space Station elements. Behind him is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto points to other Space Station elements. Behind him is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  10. KENNEDY SPACE CENTER, FLA. - At Port Canaveral, the Pressurized Module of the Japanese Experiment Module (JEM) is lifted out of the ship’s cargo hold. It will be loaded onto the truck bed in the background for transfer to KSC’s Space Station Processing Facility. The container transport ship carrying JEM departed May 2 from Yokohama Harbor in Japan for the voyage to the United States. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-04

    KENNEDY SPACE CENTER, FLA. - At Port Canaveral, the Pressurized Module of the Japanese Experiment Module (JEM) is lifted out of the ship’s cargo hold. It will be loaded onto the truck bed in the background for transfer to KSC’s Space Station Processing Facility. The container transport ship carrying JEM departed May 2 from Yokohama Harbor in Japan for the voyage to the United States. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  11. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility can be seen the U.S. Node 2 (at left) and the Japanese Experiment Module (JEM)’s Pressurized Module (at right). The Italian-built Node 2, the second of three Space Station connecting modules, attaches to the end of the U.S. Lab and will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet. The Pressurized Module is the first element of the JEM to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-08-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility can be seen the U.S. Node 2 (at left) and the Japanese Experiment Module (JEM)’s Pressurized Module (at right). The Italian-built Node 2, the second of three Space Station connecting modules, attaches to the end of the U.S. Lab and will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet. The Pressurized Module is the first element of the JEM to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  12. KENNEDY SPACE CENTER, FLA. - The JEM Pressurized Module is seen in the hold of the ship that carried it from Japan. The National Space Development Agency of Japan (NASDA) built the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, Japan’s primary contribution to the space station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. The JEM also includes two logistics modules, an exposed pallet for space environment experiments and a robotic manipulator system that are still under construction in Japan. The various JEM components will be assembled in space over the course of three space shuttle missions.

    NASA Image and Video Library

    2003-05-30

    KENNEDY SPACE CENTER, FLA. - The JEM Pressurized Module is seen in the hold of the ship that carried it from Japan. The National Space Development Agency of Japan (NASDA) built the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, Japan’s primary contribution to the space station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. The JEM also includes two logistics modules, an exposed pallet for space environment experiments and a robotic manipulator system that are still under construction in Japan. The various JEM components will be assembled in space over the course of three space shuttle missions.

  13. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) gets information about the facility while on a tour of KSC. Behind the group is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) gets information about the facility while on a tour of KSC. Behind the group is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  14. KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman look at the Japanese Experiment Module (JEM) Pressurized Module located in the Space Station Processing Facility. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the JEM, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman look at the Japanese Experiment Module (JEM) Pressurized Module located in the Space Station Processing Facility. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the JEM, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

  15. Status of Japanese Experiment Module (JEM) activities

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The current status of the JEM activities are presented in graphic form. The JEM spacecraft configuration is presented. The JEM configuration consist of the Pressurized Module, the Exposed Facility, the Experiment Logistics Module which consist of a pressurized section and an exposed section; and the Remote Manipulator System. The master schedule of the space station is given. Also the development tests of the structure and mechanism, the electrical power system, the data management system, the thermal control system, the environment control system, the experiment support system, and the remote manipulator system are listed.

  16. JEM Experiment Logistics Module Pressurized Section

    NASA Image and Video Library

    2007-04-02

    In the Space Station Processing Facility, the JEM Experiment Logistics Module Pressurized Section is lowered onto a scale for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  17. JEM Experiment Logistics Module Pressurized Section

    NASA Image and Video Library

    2007-04-02

    An overhead crane moves the JEM Experiment Logistics Module Pressurized Section above the floor of the Space Station Processing Facility to a scale for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  18. JEM Experiment Logistics Module Pressurized Section

    NASA Image and Video Library

    2007-04-02

    In the Space Station Processing Facility, an overhead crane moves the JEM Experiment Logistics Module Pressurized Section toward a scale (at left) for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  19. JEM Experiment Logistics Module Pressurized Section

    NASA Image and Video Library

    2007-04-02

    The JEM Experiment Logistics Module Pressurized Section is lifted from its shipping crate in the Space Station Processing Facility. The module will be moved to a scale for weight and center-of-gravity measurements and then to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  20. JEM Experiment Logistics Module Pressurized Section

    NASA Image and Video Library

    2007-04-02

    In the Space Station Processing Facility, an overhead crane lifts the JEM Experiment Logistics Module Pressurized Section from its shipping container and moves it toward a scale for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  1. KSC-07pd0903

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- The Japanese Experiment Module (JEM) sits on top of a stand in the Space Station Processing Facility. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the Experiment Logistics Module Pressurized Section of the JEM, which will be delivered to the space station on mission STS-123. The JEM will fly on mission STS-124. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  2. Japanese experiment module (JEM)

    NASA Technical Reports Server (NTRS)

    Kato, T.

    1986-01-01

    Japanese hardware elements studied during the definition phase of phase B are described. The hardware is called JEM (Japanese Experiment Module) and will be attached to the Space Station core. JEM consists of a pressurized module, an exposed facility, a scientific/equipment airlock, a local remote manipulator, and experimental logistic module. With all those hardware elements JEM will accommodate general scientific and technology development research (some of the elements are to utilize the advantage of the microgravity environment), and also accommodate control panels for the Space Station Mobile Remote Manipulator System and attached payloads.

  3. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Piers Sellers looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Piers Sellers looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

  4. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Michael Foreman looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Michael Foreman looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

  5. KSC-03PD-1953

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (left) looks at the newly arrived Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  6. KSC-03PD-1952

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (right) looks at the newly arrived Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  7. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (second from left, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.

    NASA Image and Video Library

    2003-10-22

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (second from left, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.

  8. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (center, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.

    NASA Image and Video Library

    2003-10-22

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (center, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.

  9. KENNEDY SPACE CENTER, FLA. - An overview of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - An overview of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

  10. KENNEDY SPACE CENTER, FLA. - A view of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - A view of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

  11. KSC-03PD-1954

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto points to other Space Station elements. Behind him is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  12. Wakata in the JPM

    NASA Image and Video Library

    2013-11-15

    View of Koichi Wakata,Expedition 38 Flight Engineer (FE),in the Japanese Experiment Module (JEM) Pressurized Module (JPM). JEM Small Satellite Orbital Deployer (J-SSOD) installed on the Multi-Purpose Experiment Platform (MPEP),is visible. Photo was taken during Expedition 38. Image was released by astronaut on Twitter.

  13. KENNEDY SPACE CENTER, FLA. - Japanese astronaut Koichi Wakata (left) releases a tray extended from inside the Pressurized Module, or PM, that he was working with. Part of the Japanese Experiment Module (JEM), the PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions. The JEM/PM is in the Space Station Processing Facility.

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - Japanese astronaut Koichi Wakata (left) releases a tray extended from inside the Pressurized Module, or PM, that he was working with. Part of the Japanese Experiment Module (JEM), the PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions. The JEM/PM is in the Space Station Processing Facility.

  14. KSC-03PD-1955

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) gets information about the facility while on a tour of KSC. Behind the group is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  15. KSC-07pd2843

    NASA Image and Video Library

    2007-10-11

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew learn more about the mission payload, the Kibo Experiment Logistics Module Pressurized Section. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis

  16. Projectile Shape Effects Analysis for Space Debris Impact

    NASA Astrophysics Data System (ADS)

    Shiraki, Kuniaki; Yamamoto, Tetsuya; Kamiya, Takeshi

    2002-01-01

    (JEM IST), has a manned pressurized module used as a research laboratory on orbit and planned to be attached to the International Space Station (ISS). Protection system from Micrometeoroids and orbital debris (MM/OD) is very important for crew safety aboard the ISS. We have to design a module with shields attached to the outside of the pressurized wall so that JEM can be protected when debris of diameter less than 20mm impact on the JEM wall. In this case, the ISS design requirement for space debris protection system is specified as the Probability of No Penetration (PNP). The PNP allocation for the JEM is 0.9738 for ten years, which is reallocated as 0.9814 for the Pressurized Module (PM) and 0.9922 for the Experiment Logistics Module-Pressurized Section (ELM-PS). The PNP is calculated with Bumper code provided by NASA with the following data inputs to the calculation. (1) JEM structural model (2) Ballistic Limit Curve (BLC) of shields pressure wall (3) Environmental conditions: Analysis type, debris distribution, debris model, debris density, Solar single aluminum plate bumper (1.27mm thickness). The other is a Stuffed Whipple shield with its second bumper composed of an aluminum mesh, three layers of Nextel AF62 ceramic fabric, and four layers of Kevlar 710 fabric with thermal isolation material Multilayer Insulation (MLI) in the bottom. The second bumper of Stuffed Whipple shields is located at the middle between the first bumper and the 4.8 mm-thick pressurized wall. with Two-Stage Light Gas Gun (TSLGG) tests and hydro code simulation already. The remaining subject is the verification of JEM debris protection shields for velocities ranging from 7 to 15 km/sec. We conducted Conical Shaped Charge (CSC) tests that enable hypervelocity impact tests for the debris velocity range above 10 km/sec as well as hydro code simulation. because of the jet generation mechanism. It is therefore necessary to analyze and compensate the results for a solid aluminum sphere, which is the design requirement.

  17. KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency (ESA) and NASA. Shaking hands after the signing are Alan Thirkettle (center), International Space Station Program manager for Node 2, ESA; and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency (ESA) and NASA. Shaking hands after the signing are Alan Thirkettle (center), International Space Station Program manager for Node 2, ESA; and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  18. KENNEDY SPACE CENTER, FLA. - At ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency and NASA. Shaking hands after the signing are Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA). At right is NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - At ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency and NASA. Shaking hands after the signing are Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA). At right is NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  19. Space robotic experiment in JEM flight demonstration

    NASA Technical Reports Server (NTRS)

    Nagatomo, Masanori; Tanaka, Masaki; Nakamura, Kazuyuki; Tsuda, Shinichi

    1994-01-01

    Japan is collaborating on the multinational space station program. The JEM, Japanese Experiment Module, has both a pressurized module and an Exposed Facility (EF). JEM Remote Manipulator System (JEMRMS) will play a dominant role in handling/servicing payloads and the maintenance of the EF, and consists of two robotic arms, a main arm and a small fine arm. JEM Flight Demonstration (JFD) is a space robotics experiment using the prototype small fine arm to demonstrate its capability, prior to the Space Station operation. The small fine arm will be installed in the Space Shuttle cargo bay and operated by a crew from a dedicated workstation in the Aft Flight Deck of the orbiter.

  20. Officials welcome the arrival of the Japanese Experiment Module

    NASA Image and Video Library

    2007-04-17

    In the Space Station Processing Facility, Scott Higginbotham, payload manager for the International Space Station, discusses the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module (JEM), with Dr. Hidetaka Tanaka, the JEM Project Team resident manager at KSC for the Japanese Aerospace and Exploration Agency (JAXA). Earlier, NASA and JAXA officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.

  1. Marshburn in Kibo

    NASA Image and Video Library

    2013-04-15

    ISS035-E-020060 (15 April 2013) --- NASA astronaut Tom Marshburn works on the Inter Module Ventilation (IMV) Flow Measurement in Kibo Japanese Experiment Module (JEM)aboard the Earth-orbiting International Space Station. Expedition 35 Commander Chris Hadfield, an astronaut with the Canadian Space Agency, and Marshburn set up the velocicalc hardware and measured the IMV flow coming from the JEM Pressurized Module (JPM) IMV overhead aft inlet, starboard aft inlet, and starboard forward outlet. The measurements are part of routine preventative maintenance to ensure quality airflow in the modules.

  2. KSC-07pd2827

    NASA Image and Video Library

    2007-10-11

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew get hands-on experience with the mission payload, the Kibo Experiment Logistics Module Pressurized Section. They are at the center for a crew equipment interface test, which allows familiarization with equipment they will use during the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis

  3. KSC-07pd2828

    NASA Image and Video Library

    2007-10-11

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew get hands-on experience with the mission payload, the Kibo Experiment Logistics Module Pressurized Section. They are at the center for a crew equipment interface test, which allows familiarization with equipment they will use during the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis

  4. KSC-07pd2826

    NASA Image and Video Library

    2007-10-11

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew learn more about the mission payload, the Kibo Experiment Logistics Module Pressurized Section. They are at the center for a crew equipment interface test, which allows familiarization with equipment they will use during the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis

  5. KSC-03PD-2139

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-115 Mission Specialists Joseph Tanner (center) and Heidemarie Stefanyshyn-Piper (right) look at the inside of the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

  6. KSC-03PD-2138

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-115 Mission Specialists Joseph Tanner (left) and Heidemarie Stefanyshyn-Piper (right) look over the Japanese Experiment Module (JEM) Pressurized Module located in the Space Station Processing Facility. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

  7. KSC-03PD-2141

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-115 Mission Specialist Heidemarie Stefanyshyn-Piper (left) gets ready to check out the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

  8. KSC-03PD-2140

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-115 Mission Specialists Heidemarie Stefanyshyn- Piper (left) and Joseph Tanner (center) get ready to check out the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

  9. KSC-07pd0895

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Scott Higginbotham, payload manager for the International Space Station, discusses the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module (JEM), with Dr. Hidetaka Tanaka, the JEM Project Team resident manager at KSC for the Japanese Aerospace and Exploration Agency (JAXA). Earlier, NASA and JAXA officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  10. Node 2 and Japanese Experimental Module (JEM) In Space Station Processing Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Lining the walls of the Space Station Processing Facility at the Kennedy Space Center (KSC) are the launch awaiting U.S. Node 2 (lower left). and the first pressurized module of the Japanese Experimental Module (JEM) (upper right), named 'Kibo' (Hope). Node 2, the 'utility hub' and second of three connectors between International Space Station (ISS) modules, was built in the Torino, Italy facility of Alenia Spazio, an International contractor based in Rome. Japan's major contribution to the station, the JEM, was built by the Space Development Agency of Japan (NASDA) at the Tsukuba Space Center near Tokyo and will expand research capabilities aboard the station. Both were part of an agreement between NASA and the European Space Agency (ESA). The Node 2 will be the next pressurized module installed on the Station. Once the Japanese and European laboratories are attached to it, the resulting roomier Station will expand from the equivalent space of a 3-bedroom house to a 5-bedroom house. The Marshall Space Center in Huntsville, Alabama manages the Node program for NASA.

  11. KSC-03PD-1756

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), stands next to the Japanese Experiment Module after its arrival at Port Canaveral, Fla. Built by the Tsukuba Space Center near Tokyo, the pressurized module is the first element of the JEM, Japans primary contribution to the space station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. The JEM also includes two logistics modules, an exposed pallet for space environment experiments and a robotic manipulator system that are still under construction in Japan. The various JEM components will be assembled in space over the course of three space shuttle missions.

  12. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    The Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Space Station Processing Facility. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  13. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    The Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Space Station Processing Facility for uncrating. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  14. KSC-07pd2829

    NASA Image and Video Library

    2007-10-11

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, STS-123 Mission Specialist Takao Doi (left) and Commander Dominic Gorie confer about the mission payload, the Kibo Experiment Logistics Module Pressurized Section, they are looking over. They are at the center for a crew equipment interface test, which allows familiarization with equipment they will use during the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis

  15. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility observe consoles during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility observe consoles during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  16. KENNEDY SPACE CENTER, FLA. - Technicians in the Space Station Processing Facility work on a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Technicians in the Space Station Processing Facility work on a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  17. KSC-07pd2840

    NASA Image and Video Library

    2007-10-11

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew get hands-on experience with some of the equipment related to the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis

  18. KSC-07pd2842

    NASA Image and Video Library

    2007-10-11

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew get hands-on experience with some of the equipment related to the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis

  19. KSC-07pd2844

    NASA Image and Video Library

    2007-10-11

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew get hands-on experience with some of the equipment related to the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis

  20. KSC-07pd2845

    NASA Image and Video Library

    2007-10-11

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew get hands-on experience with some of the equipment related to the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis

  1. KSC-07pd2841

    NASA Image and Video Library

    2007-10-11

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew get hands-on experience with some of the equipment related to the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis

  2. KENNEDY SPACE CENTER, FLA. - Alan Thirkettle (center), International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Alan Thirkettle (center), International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  3. KSC-03PD-2142

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-120 Mission Specialists Michael Foreman (third from right) and STS-115 Mission Specialists Joseph Tanner (second from right) and Heidemarie Stefanyshyn-Piper (right) look over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. STS-115 will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. STS-120 will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

  4. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility look over paperwork during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility look over paperwork during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  5. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  6. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  7. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), rests inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), rests inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  8. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  9. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), signals success during a Multi-Element Integrated Test (MEIT ) of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), signals success during a Multi-Element Integrated Test (MEIT ) of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  10. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    Inside the Space Station Processing Facility, workers monitor progress as a huge crane is used to remove the top of the crate carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  11. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    Inside the Space Station Processing Facility, the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module is revealed after the top of the crate is removed. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  12. Marshburn performs maintenance on the CDRA in the JPM

    NASA Image and Video Library

    2013-03-08

    ISS034-E-063336 (8 March 2013) --- NASA astronaut Tom Marshburn, Expedition 34 flight engineer, performs maintenance on the Carbon Dioxide Removal Assembly in the Japanese Experiment Module (JEM) Pressurized Module (JPM).

  13. Ford performs maintenance on the CDRA in the JPM

    NASA Image and Video Library

    2013-03-09

    ISS034-E-063052 (9 March 2013) --- NASA astronaut Kevin Ford, Expedition 34 commander, performs maintenance on the Carbon Dioxide Removal Assembly in the Japanese Experiment Module (JEM) Pressurized Module (JPM).

  14. KSC-07pd2833

    NASA Image and Video Library

    2007-10-11

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, STS-123 crew members get a close look at hardware related to the mission. They are at the center for a crew equipment interface test, which allows familiarization with equipment they will use during the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis

  15. KSC-07pd2832

    NASA Image and Video Library

    2007-10-11

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, STS-123 crew members get a close look at hardware related to the mission. They are at the center for a crew equipment interface test, which allows familiarization with equipment they will use during the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis

  16. KSC-07pd2831

    NASA Image and Video Library

    2007-10-11

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, STS-123 crew members get a close look at hardware related to the mission. They are at the center for a crew equipment interface test, which allows familiarization with equipment they will use during the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis

  17. KSC-07pd0896

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. At the podium is Dr. Kichiro Imagawa, project manager of the JEM Development Project Team for JAXA. Seated at right are Russ Romanella, director of International Space Station and Spacecraft Processing; Bill Parsons, director of Kennedy Space Center; Melanie Saunders, associate manager of the International Space Station Program at Johnson Space Center; and Dominic Gorie, commander on mission STS-123 that will deliver the module to the space station. The logistics module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  18. KENNEDY SPACE CENTER, FLA. - Lisa Malone, deputy director of External Relations and Business Development at KSC, emcees a ceremony in the Space Station Processing Facility to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Speakers at the ceremony included KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Lisa Malone, deputy director of External Relations and Business Development at KSC, emcees a ceremony in the Space Station Processing Facility to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Speakers at the ceremony included KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  19. KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. The signing was part of a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. The signing was part of a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  20. KENNEDY SPACE CENTER, FLA. - Japanese astronaut Koichi Wakata (left) works with a tray extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - Japanese astronaut Koichi Wakata (left) works with a tray extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

  1. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata looks over the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata looks over the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

  2. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians on the floor watch as a tray is extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians on the floor watch as a tray is extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

  3. KENNEDY SPACE CENTER, FLA. - Japanese astronaut Koichi Wakata (right) works with a tray extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - Japanese astronaut Koichi Wakata (right) works with a tray extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

  4. Overview for Attached Payload Accommodations and Environments

    NASA Technical Reports Server (NTRS)

    Schaffer, Craig; Cook, Gene; Nabizadeh, Rodney; Phillion, James

    2007-01-01

    External payload accommodations are provided at attach sites on the U.S provided ELC, U.S. Truss, the Japanese Experiment Module Exposed Facility (JEM EF) and the Columbus EPF (External Payload Facilities). The Integrated Truss Segment (ITS) provides the backbone structure for the ISS. It attaches the solar and thermal control arrays to the rest of the complex, and houses cable distribution trays Extravehicular Activity (EVA) support equipment such as handholds and lighting; and providing for Extravehicular Robotic (EVR) accommodations using the Mobile Servicing System (MSS). It also provides logistics and maintenance, and payload attachment sites. The attachment sites accommodate logistics and maintenance and payloads carriers, zenith and nadir. The JEM-EF, a back porch-like attachment to the JEM Pressurized Module, accommodates up to eight payloads, which can be serviced by the crew via the JEM PM's airlock and dedicated robotic arm. The Columbus-EPF is another porch-like platform that can accommodate two zenith and two nadir looking payloads.

  5. Plant Habitat Facility in the JPM

    NASA Image and Video Library

    2017-11-21

    iss053e234714 (Nov. 21, 2017) --- Advanced Plant Habitat (APH) Facility in the Japanese Experiment Module (JEM) Pressurized Module (JPM). The Plant Habitat is a fully automated facility that provides a large, enclosed, environmentally-controlled chamber for plant bioscience research.

  6. KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-08-27

    KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  7. KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and next to it at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and next to it at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  8. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the U.S. Node 2 (center) and the Japanese Experiment Module (JEM), background right, await a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the International Space Station and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The National Space Development Agency of Japan (NASDA) developed their laboratory at the Tsukuba Space Center near Tokyo. It is the first element, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-08-27

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the U.S. Node 2 (center) and the Japanese Experiment Module (JEM), background right, await a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the International Space Station and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The National Space Development Agency of Japan (NASDA) developed their laboratory at the Tsukuba Space Center near Tokyo. It is the first element, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  9. Officials welcome the arrival of the Japanese Experiment Module

    NASA Image and Video Library

    2007-04-17

    In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. At the podium is Russ Romanella, director of International Space Station and Spacecraft Processing. Seated at right are Bill Parsons, director of Kennedy Space Center; Dr. Kichiro Imagawa, project manager of the JEM Development Project Team for JAXA; Melanie Saunders, associate manager of the International Space Station Program at Johnson Space Center; and Dominic Gorie, commander on mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.

  10. Officials welcome the arrival of the Japanese Experiment Module

    NASA Image and Video Library

    2007-04-17

    In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. At the podium is Bill Parsons, director of Kennedy Space Center. Seated at right are Russ Romanella, director of International Space Station and Spacecraft Processing; Dr. Kichiro Imagawa, project manager of the JEM Development Project Team for JAXA; Melanie Saunders, associate manager of the International Space Station Program at Johnson Space Center; and Dominic Gorie, commander on mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.

  11. Hoshide in sleeping bag in JEM module

    NASA Image and Video Library

    2008-06-09

    S124-E-007983 (9 June 2008) --- Japan Aerospace Exploration Agency astronaut Akihiko Hoshide, STS-124 mission specialist, is pictured in his sleeping bag in Kibo Japanese Pressurized Module of the International Space Station while Space Shuttle Discovery is docked with the station.

  12. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata, dressed in blue protective clothing (at right), looks at the inside of the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM), along with technicians. The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata, dressed in blue protective clothing (at right), looks at the inside of the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM), along with technicians. The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

  13. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata (top left) and technicians watch as a tray is extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata (top left) and technicians watch as a tray is extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

  14. KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  15. KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  16. KENNEDY SPACE CENTER, FLA. - NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  17. KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  18. KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

  19. KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  20. KENNEDY SPACE CENTER, FLA. - NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  1. KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

  2. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, media and guests listen intently to remarks during a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony included these speakers: KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, media and guests listen intently to remarks during a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony included these speakers: KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  3. KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left) , deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left) , deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  4. KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  5. KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

  6. KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  7. KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, William Gerstenmaier, International Space Station Program manager, points to one of the components as he speaks to guests and the media gathered in the Space Station Processing Facility. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, William Gerstenmaier, International Space Station Program manager, points to one of the components as he speaks to guests and the media gathered in the Space Station Processing Facility. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  8. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    Several components for delivery to the International Space Station sit in test stands inside the Space Station Processing Facility highbay. To the right, from back to front, are the Japanese Experiment Module, the Raffaello multi-purpose logistics module, and the European Space Agency's Columbus scientific research module. To the left in front is the starboard truss segment S5. Behind it is the test stand that will hold the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  9. Hadfield prepares to insert biological samples in the MELFI-1

    NASA Image and Video Library

    2013-01-07

    View of Canadian Space Agency (CSA) Chris Hadfield,Expedition 34 Flight Engineer (FE),preparing to insert biological samples in the Minus Eighty Laboratory Freezer for International Space Station (ISS) - (MELFI-1),in the Japanese Experiment Module (JEM) Pressurized Module (JPM). Photo was taken during Expedition 34.

  10. FACET Cell installation in Solution Crystallization Observation Facility (SCOF) in the JEM Pressurized Module (JPM)

    NASA Image and Video Library

    2009-04-02

    ISS018-E-044460 (2 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18/19 flight engineer, works in the Kibo laboratory of the International Space Station.

  11. KSC-07pd0897

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, journalists and photographers ask Japanese astronaut Takao Doi about the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, that he will accompany on mission STS-123 to the International Space Station. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the logistics module. The logistics module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  12. KENNEDY SPACE CENTER, FLA. - The Japanese Experiment Module (JEM) is moved on its workstand in the Space Station Processing Facility. The JEM will undergo pre-assembly measurements. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-11-05

    KENNEDY SPACE CENTER, FLA. - The Japanese Experiment Module (JEM) is moved on its workstand in the Space Station Processing Facility. The JEM will undergo pre-assembly measurements. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  13. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, a technician takes readings for pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-11-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, a technician takes readings for pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  14. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians begin pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-11-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians begin pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  15. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians take readings for pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-11-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians take readings for pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  16. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Japanese Experiment Module (JEM) rests on a workstand during pre-assembly measurement activities. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-11-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Japanese Experiment Module (JEM) rests on a workstand during pre-assembly measurement activities. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  17. Water bubble in front of JEM window

    NASA Image and Video Library

    2015-03-20

    View of water bubble formed in front of the Japanese Experiment Module (JEM) window. The JEM Exposed Facility (JEF) is visible in the background through the window and reflected in the water. Scratches visible on the window.

  18. Survey view of EXPRESS Rack 4 in the JPM during Expedition 22

    NASA Image and Video Library

    2009-12-30

    iss022e015850 (12/30/2009) --- The image shows a front view of EXpedite the PRocessing of Experiments to Space Station EXPRESS Rack 4 (Rack 4,JPM/1F5) in the Japanese Experiment Module (JEM) Japanese Pressurized Module (JPM). Equipment visible in the EXPRESS Rack includes the Biotechnology Specimen Temperature Controller (BSTC) and the Gas Supply Module (GSM) support hardware for the CBOSS (Cellular Biotechnology Operations Support Systems) investigations, and the Device for the Study of Critical Liquids and Crystallization (DECLIC).

  19. Officials welcome the arrival of the Japanese Experiment Module

    NASA Image and Video Library

    2007-04-17

    In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. Seen here at right are JAXA representatives, including Japanese astronaut Takao Doi (center of front row), who is a crew member for mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.

  20. Study for verification testing of the helmet-mounted display in the Japanese Experimental Module.

    PubMed

    Nakajima, I; Yamamoto, I; Kato, H; Inokuchi, S; Nemoto, M

    2000-02-01

    Our purpose is to propose a research and development project in the field of telemedicine. The proposed Multimedia Telemedicine Experiment for Extra-Vehicular Activity will entail experiments designed to support astronaut health management during Extra-Vehicular Activity (EVA). Experiments will have relevant applications to the Japanese Experimental Module (JEM) operated by National Space Development Agency of Japan (NASDA) for the International Space Station (ISS). In essence, this is a proposal for verification testing of the Helmet-Mounted Display (HMD), which enables astronauts to verify their own blood pressures and electrocardiograms, and to view a display of instructions from the ground station and listings of work procedures. Specifically, HMD is a device designed to project images and data inside the astronaut's helmet. We consider this R&D proposal to be one of the most suitable projects under consideration in response to NASDA's open invitation calling for medical experiments to be conducted on JEM.

  1. Officials welcome the arrival of the Japanese Experiment Module

    NASA Image and Video Library

    2007-04-17

    In the Space Station Processing Facility, astronaut Takao Doi (left) and Commander Dominic Gorie pose in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, that recently arrived at Kennedy. Doi and Gorie are crew members for mission STS-123 that will deliver the logistics module to the International Space Station. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.

  2. JEM module

    NASA Image and Video Library

    2008-06-06

    S124-E-006729 (6 June 2008) --- One of a series of digital still images documenting the Japanese Experiment Module, or JEM, also called Kibo, in its new home on the International Space Station, this view depicts Kibo's exterior, backdropped by solar array panels for the orbital outpost.

  3. KSC-03pd2710

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata is dressed in protective clothing before entering the Pressurized Module, or PM, behind him. Part of the Japanese Experiment Module (JEM), the PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

  4. KSC-07pd0893

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, astronaut Takao Doi (left) and Commander Dominic Gorie pose in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, that recently arrived at Kennedy. Doi and Gorie are crew members for mission STS-123 that will deliver the logistics module to the International Space Station. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  5. KSC-07pd0894

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, astronaut Takao Doi (left) and Commander Dominic Gorie pose in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, that recently arrived at Kennedy. Doi and Gorie are crew members for mission STS-123 that will deliver the logistics module to the International Space Station. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  6. JEM module

    NASA Image and Video Library

    2008-06-06

    S124-E-006734 (6 June 2008) --- One of a series of digital still images documenting the Japanese Experiment Module, or JEM, also called Kibo, in its new home on the International Space Station, this view depicts Kibo's exterior, backdropped by solar array panels for the orbital outpost and one of its trusses.

  7. JEM module

    NASA Image and Video Library

    2008-06-06

    S124-E-006735 (6 June 2008) --- One of a series of digital still images documenting the Japanese Experiment Module, or JEM, also called Kibo, in its new home on the International Space Station, this view depicts Kibo's exterior, backdropped by solar array panels for the orbital outpost and one of its trusses.

  8. KSC-03pd2711

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata, dressed in protective clothing, talks with workers before entering the Pressurized Module, or PM, behind him. Part of the Japanese Experiment Module (JEM), the PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

  9. KSC-07pd0891

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. Seen here at right are JAXA representatives, including Japanese astronaut Takao Doi (center of front row), who is a crew member for mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  10. Logistics support of the Japanese Experiment Module by the H-II rocket

    NASA Astrophysics Data System (ADS)

    Shibato, Yoji; Eto, Takao; Fukushima, Yukio; Takatsuka, Hitoshi

    1988-10-01

    This paper describes salient design features of the Japanese Experiment Module (JEM), which will be attached to the Space Station. Special attention is given to the logistic support of the JEM (which is planned to become operational in 1990s) by the HOPE orbiter, which will be used for the resupply and the retrieval of the JEM, and the H-II rocket, which will be used to launch the HOPE. The concepts of HOPE and the H-II rocket are discussed together with the estimated logistics requirements of this system. Configuration diagrams are included.

  11. Survey view of EXPRESS Rack 4 in the JPM during Expedition 22

    NASA Image and Video Library

    2009-12-30

    iss022e015852 (12/30/2009) --- The image shows a front view of EXpedite the PRocessing of Experiments to Space Station EXPRESS Rack 4 (Rack 4,JPM/1F5) in the Japanese Experiment Module (JEM) Japanese Pressurized Module (JPM). Equipment visible in the EXPRESS Rack includes the Biotechnology Specimen Temperature Controller (BSTC) and the Gas Supply Module (GSM) support hardware for the CBOSS (Cellular Biotechnology Operations Support Systems) investigations, and the Device for the Study of Critical Liquids and Crystallization (DECLIC). Also visible is the Space Acceleration Measurement System (SAMS) II.

  12. Japanese experiment module data management and communication system

    NASA Astrophysics Data System (ADS)

    Iizuka, Isao; Yamamoto, Harumitsu; Harada, Minoru; Eguchi, Iwao; Takahashi, Masami

    The data management and communications system (DMCS) for the Japanese experiment module (JEM) being developed for the Space Station is described. Data generated by JEM experiments will be transmitted via TDRS (primary link) to the NASDA Operation Control Center. The DMSC will provide data processing, test and graphics handling, schedule planning support, and data display and facilitate subsystems, payloads, emergency operations, status, and diagnostics and healthchecks management. The ground segment includes a mainframe, mass storage, a workstation, and a LAN, with the capability of receiving and manipulating data from the JEM, the Space Station, and the payload. Audio and alert functions are also included. The DMCS will be connected to the interior of the module with through-bulkhead optical fibers.

  13. KSC-08pd1012

    NASA Image and Video Library

    2008-04-24

    CAPE CANAVERAL, Fla. -- In the Vertical Integration Facility at NASA's Kennedy Space Center, the payload canister containing the Japanese Experiment Module -Pressurized Module is being raised to a vertical position. The canister contains the Japanese Experiment Module -Pressurized Module, which will be transported to Launch Pad 39A for space shuttle Discovery’s STS-124 mission. At the pad, the payload will be transferred from the canister into the payload changeout room on the rotating service structure. The changeout room is the enclosed, environmentally controlled portion of the service structure that supports cargo delivery to the pad and subsequent vertical installation into an orbiter's payload bay. On the mission, the STS-124 crew will transport the JEM as well as the Japanese Remote Manipulator System to the International Space Station. The launch of Discovery is targeted for May 31. Photo credit: NASA/Jim Grossmann

  14. KSC-08pd1014

    NASA Image and Video Library

    2008-04-24

    CAPE CANAVERAL, Fla. -- In the Vertical Integration Facility at NASA's Kennedy Space Center, the payload canister containing the Japanese Experiment Module -Pressurized Module is suspended vertically after rotation from the horizontal. The canister contains the Japanese Experiment Module -Pressurized Module, which will be transported to Launch Pad 39A for space shuttle Discovery’s STS-124 mission. At the pad, the payload will be transferred from the canister into the payload changeout room on the rotating service structure. The changeout room is the enclosed, environmentally controlled portion of the service structure that supports cargo delivery to the pad and subsequent vertical installation into an orbiter's payload bay. On the mission, the STS-124 crew will transport the JEM as well as the Japanese Remote Manipulator System to the International Space Station. The launch of Discovery is targeted for May 31. Photo credit: NASA/Jim Grossmann

  15. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), points to data on the console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), points to data on the console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

  16. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), stands inside the Japanese Experiment Module (JEM) that is undergoing a Multi-Element Integrated Test (MEIT) with the U.S. Node 2. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), stands inside the Japanese Experiment Module (JEM) that is undergoing a Multi-Element Integrated Test (MEIT) with the U.S. Node 2. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

  17. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

  18. Japanese plan for SSF utilization

    NASA Technical Reports Server (NTRS)

    Mizuno, Toshio

    1992-01-01

    The Japanese Experiment Module (JEM) program has made significant progress. The JEM preliminary design review was completed in July 1992; construction of JEM operation facilities has begun; and the micro-G airplane, drop shaft, and micro-G experiment rocket are all operational. The national policy for JEM utilization was also established. The Space Experiment Laboratory (SEL) opened in June '92 and will function as a user support center. Eight JEM multiuser facilities are in phase B, and scientific requirements are being defined for 17 candidate multiuser facilities. The National Joint Research Program is about to start. Precursor missions and early Space Station utilization activities are being defined. This paper summarizes the program in outline and graphic form.

  19. KSC-07pd0636

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- A flat bed truck hauls the container with the Experiment Logistics Module Pressurized Section inside away from the Trident wharf. The logistics module is part of the Japanese Experiment Module, known as Kibo. The logistics module is being transported to the Space Station Processing Facility at NASA's Kennedy Space Center. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  20. Advancement of the Wide-angle JEM-EUSO Optical System with Holographic and Fresnel Lenses

    NASA Technical Reports Server (NTRS)

    Takizawa, Y.; Adams, J.H.

    2007-01-01

    JEM-EUSO is a space mission to observe extremely high-energy cosmic rays, evolved from the previous design studies of EUSO. It is adjusted for the Japan Experiment Module (JEM) of the International Space Station (ISS). JEM-EUSO uses a wide-angle refractive telescope in near-ultraviolet wavelength region to observe from ISS the time-and-space-resolved atmospheric fluorescence images of the extensive air showers. The JEM-EUSO optics is re-designed after the ESA-Phase A studies to upgrade the light-collecting-power by using a new material CYTOP, and its overall light-collecting power is about 1.5 times higher than the ESA-Phase A baseline optics. We describe in this paper an optimized optics design that maximizes the sensitivity of JEM-EUSO, and the results of the optics manufacturing tests.

  1. US Plans for the JEM-EUSO

    NASA Technical Reports Server (NTRS)

    Adams, James H.

    2007-01-01

    This viewgraph presentation reviews the planned United States work on the Extreme Universe Space Observatory (EUSO.) The EUSO is to be mounted to the JEM (Japanese Experiment Module). The plans areas for US participation are the Optics Investigations, Trigger Design and Event Reconstruction.

  2. Preparation and Launch of the JEM ISS Elements - A NASA Mission Manager's Perspective

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott A.

    2016-01-01

    The pre-flight launch site preparations and launch of the Japanese Experiment Module (JEM) elements of the International Space Station required an intense multi-year, international collaborative effort between US and Japanese personnel at the Kennedy Space Center (KSC). This presentation will provide a brief overview of KSC, a brief overview of the ISS, and a summary of authors experience managing the NASA team responsible that supported and conducted the JEM element operations.

  3. KSC-07pd0635

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- A flat bed truck hauls the container with the Experiment Logistics Module Pressurized Section inside away from the Trident wharf. The logistics module is part of the Japanese Experiment Module. The logistics module is being transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  4. KSC-07pd0632

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers help guide the container with the Experiment Logistics Module Pressurized Section inside toward the dock. The logistics module is part of the Japanese Experiment Module. The logistics module will be transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  5. Report from JEM-EUSO in the US

    NASA Technical Reports Server (NTRS)

    Adams, Jim

    2009-01-01

    This slide presentation reviews the current status of interest in NASA for the Japanese Experiment Module-Extreme Universe Space Observatory (JEM-EUSO). It reviews the decadal survey performed by the National Research Council (NRC), the Technology Innovation Program, and plans for proposals to fund the experiment,

  6. KSC-07pd0626

    NASA Image and Video Library

    2007-03-12

    KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  7. KSC-07pd0628

    NASA Image and Video Library

    2007-03-12

    KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  8. KSC-07pd0627

    NASA Image and Video Library

    2007-03-12

    KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  9. KSC-07pd0629

    NASA Image and Video Library

    2007-03-12

    KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module is tied up at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  10. ILLUMA-T (Integrated LCRD LEO User Modem and Amplifier Terminal) Payload

    NASA Technical Reports Server (NTRS)

    Seas, Antonios; Gonnsen, Zachary; Yarnall, Timothy

    2018-01-01

    Presentation on ILLUMA-T (Integrated LCRD LEO User Modem and Amplifier Terminal) Payload at the Japanese Experiment Module (JEM) External Payload Interface Coordination Meeting on May 9, 2018 at the Japan Aerospace Exploration Agency (JAXA) in Tsukuba, Japan. Meeting to discuss details of installing payload on JEM.

  11. The Focal Surface of the JEM-EUSO Telescope

    NASA Technical Reports Server (NTRS)

    Kawasaki, Yoshiya

    2007-01-01

    Extreme Universe Space Observatory onboard JEM/EP (JEM-EUSO) is a space mission to study extremely high-energy cosmic rays. The JEM-EUSO instrument is a wide-angle refractive telescope in near-ultraviolet wavelength region to observe time-resolved atmospheric fluorescence images of the extensive air showers from the International Space Station. The focal surface is a spherical curved surface, and its area amounts to about 4.5 square m. The focal surface detector is covered with about 6,000 multi-anode photomultipliers (MAPMTs). The focal surface detector consists of Photo-Detector-Modules, each of which consists of 9 Elementary Cells (ECs). The EC contains 4 units of the MAPMTs. Therefore, about 1,500 ECs or about 160 PDMS are arranged on the whole of the focal surface of JEM- EUSO. The EC is a basic unit of the front-end electronics. The PDM is a, basic unit of the data acquisition system

  12. KSC-07pd0633

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers help guide the container with the Experiment Logistics Module Pressurized Section inside toward a flat bed on the dock. The logistics module is part of the Japanese Experiment Module. The logistics module will be transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  13. KSC-07pd0634

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers help guide the container with the Experiment Logistics Module Pressurized Section inside onto a flat bed on the dock. The logistics module is part of the Japanese Experiment Module. The logistics module will be transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  14. KSC-07pd0631

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers in the hold of a ship attach a crane to the shipping container with the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The ship brought the module from Yokohama, Japan. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  15. KSC-07pd0630

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, the shipping container with the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module is ready for lifting out of the hold of the ship that brought it from Yokohama, Japan. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  16. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers (in protective clothing) brief STS-117 Mission Specialist James Reilly (center) and STS-115 Mission Specialist Joseph Tanner (right) about the Japanese Experiment Module (JEM). Equipment familiarization is a routine part of astronaut training and launch preparations.

    NASA Image and Video Library

    2003-10-21

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers (in protective clothing) brief STS-117 Mission Specialist James Reilly (center) and STS-115 Mission Specialist Joseph Tanner (right) about the Japanese Experiment Module (JEM). Equipment familiarization is a routine part of astronaut training and launch preparations.

  17. Instrument Overview of the JEM-EUSO Mission

    NASA Technical Reports Server (NTRS)

    Kajino, F.; Yamamoto, T.; Sakata, M.; Yamamoto, Y.; Sato, H.; Ebizuka, N.; Ebisuzaki, T.; Uehara, Y.; Ohmori, H.; Kawasaki, Y.; hide

    2007-01-01

    JEM-EUSO with a large and wide-angle telescope mounted on the International Space Station (ISS) has been planned as a space mission to explore extremes of the universe through the investigation of extreme energy cosmic rays by detecting photons which accompany air showers developed in the earth's atmosphere. JEM-EUSO will be launched by Japanese H-II Transfer Vehicle (HTV) and mounted at the Exposed Facility of Japanese Experiment Module (JEM/EF) of the ISS in the second phase of utilization plan. The telescope consists of high transmittance optical Fresnel lenses with a diameter of 2.5m, 200k channels of multi anode-photomultiplier tubes, focal surface front-end, readout, trigger and system electronics. An infrared camera and a LIDAR system will be also used to monitor the earth's atmosphere.

  18. Multi-Gas Monitor (MGM)

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeff; Limero, Thomas

    2015-01-01

    Multi-Gas Monitor is a flight experiment, a technology demonstration to test the ability of tunable diode laser spectroscopy based instrument to stay in calibration long term and follow events and dynamics occurring with the cabin atmosphere. MGM measures 4 gases: oxygen, carbon monoxide, ammonia and water vapor, as well as temperature and pressure. This month marked one year of successful and continuous MGM operation on ISS. The crew successfully tested the ammonia channel using a commercially available inhalant. MGM has detected some interesting dynamics inside Japanese Experiment Module (JEM) as a result of CO2 thruster firings from the SPHERES/RINGS payload and water spikes from dry out cycling of the JEM heat exchangers. Results to date have given us high confidence in the technology such that we believe this could have applications in the energy and medical sectors. This presentation will summarize the testing and results of the unit on ISS and suggest areas of use within the energy and medical arenas.

  19. The JEM-EUSO Program

    NASA Astrophysics Data System (ADS)

    Ricci, Marco; JEM-EUSO Collaboration

    2016-05-01

    The Extreme Universe Space Observatory on-board the Japanese Experiment Module (JEM-EUSO) of the International Space Station (ISS), is a space mission that aims to unveiling the nature and the origin of the Ultra High Energy Cosmic Rays (UHECRs) and to address basic problems of fundamental physics at extreme energies. The instrument is designed to measure the arrival direction, the energy and, possibly, the nature of these particles. Basically, it consists of a wide Field of View (FoV) telescope, based on Fresnel lenses, that looks down from the ISS during night-time to detect UV photons (fluorescence and Cherenkov photons) emitted from air showers. An infrared camera and an atmosphere monitoring system improve the performance of the instrument. The program is proceeding in different steps. While the JEM-EUSO mission is being improved to allow the use of the new carrier Space-X Dragon, the project K-EUSO, a mirror-based telescope to be placed on the Russian module of the ISS, conceived as an improvement of the KLYPVE experiment already approved by the Russian Space Agency Roscosmos, modified with EUSO technology, is in the stage of final definition. Meanwhile, a program of test experiments, pathfinders of the main mission, has been developed: the first, EUSO-Balloon, successfully flew on board a stratospheric balloon in Canada to measure the fluorescence background from the top of the Atmosphere; a second, EUSO-TA on ground, is in operation at the Telescope Array site in Utah. Next steps include: a) Mini-EUSO, approved by Roscosmos and the Italian Space Agency ASI, a small, compact UV telescope to be installed inside the Russian Module of the ISS to measure the UV background from Earth and b) a long duration Super Pressure Balloon Flight (EUSO-SPB) to be flown from New Zealand to observe EAS (Extensive Air Showers) from stratospheric atmosphere altitudes. Scientific, technical and programmatic aspects of all these EUSO-like projects are described.

  20. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (left) and STS-117 Mission Specialist James Reilly (right) are donning protective clothing to interface with the Japanese Experiment Module (JEM), in the background. Equipment familiarization is a routine part of astronaut training and launch preparations.

    NASA Image and Video Library

    2003-10-21

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (left) and STS-117 Mission Specialist James Reilly (right) are donning protective clothing to interface with the Japanese Experiment Module (JEM), in the background. Equipment familiarization is a routine part of astronaut training and launch preparations.

  1. Performances of JEM-EUSO: angular reconstruction. The JEM-EUSO Collaboration

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    Mounted on the International Space Station(ISS), the Extreme Universe Space Observatory, on-board the Japanese Experimental Module (JEM-EUSO), relies on the well established fluorescence technique to observe Extensive Air Showers (EAS) developing in the earth's atmosphere. Focusing on the detection of Ultra High Energy Cosmic Rays (UHECR) in the decade of 1020eV, JEM-EUSO will face new challenges by applying this technique from space. The EUSO Simulation and Analysis Framework (ESAF) has been developed in this context to provide a full end-to-end simulation frame, and assess the overall performance of the detector. Within ESAF, angular reconstruction can be separated into two conceptually different steps. The first step is pattern recognition, or filtering, of the signal to separate it from the background. The second step is to perform different types of fitting in order to search for the relevant geometrical parameters that best describe the previously selected signal. In this paper, we discuss some of the techniques we have implemented in ESAF to perform the geometrical reconstruction of EAS seen by JEM-EUSO. We also conduct thorough tests to assess the performances of these techniques in conditions which are relevant to the scope of the JEM-EUSO mission. We conclude by showing the expected angular resolution in the energy range that JEM-EUSO is expected to observe.

  2. Sharing the knowledge gained from occupational cohort studies: a call for action.

    PubMed

    Behrens, Thomas; Mester, Birte; Fritschi, Lin

    2012-06-01

    An immense body of knowledge has been created by establishing various job-exposure matrices (JEMs) to assess occupational exposures in community- and industry-based cohort studies. These JEMs could be made available to occupational epidemiologists using knowledge-sharing technologies, thereby saving considerable amounts of time and money for researchers investigating occupation-related research questions. In this paper, the authors give an example of how a detailed JEM can be easily transformed into a job-specific module (JSM) for use in community-based studies. OccIDEAS is operationalised as a web-based software, combining the use of JSMs with an individual expert exposure assessment to assess occupational exposures in various industries according to a set of predefined rules. The authors used a JEM focusing on endocrine-disrupting chemicals from a German study on testicular cancer in the automobile industry to create a JSM in OccIDEAS. The JEM was easily translated into OccIDEAS requiring about 50 h of work by an epidemiologist familiar with the German JEM to learn about the OccIDEAS structure, establish the required set of exposure rules and to translate the JEM into OccIDEAS. Language did not represent an obstacle for translation either. To make the data available in an international context, an interpreter had to translate the German tasks and exposures after they were coded into OccIDEAS. JEMs which are constructed based on identifying tasks that determine exposure can be easily transformed into a JSM. Occupational epidemiologists are invited to contribute to the international scope of OccIDEAS by providing their previously established JEMs to make existing data on occupational exposures widely available to the epidemiological community.

  3. The Focal Surface of the JEM-EUSO Instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawasaki, Y.; EUSO Team, ASI, RIKEN; Casolino, M.

    The Extreme Universe Space Observatory on JEM/EF (JEM-EUSO) is a space mission to study extremely high-energy cosmic rays. The JEM-EUSO instrument is a wide-angle refractive telescope in the near-ultraviolet wavelength region which will be mounted to the International Space Station. Its goal is to measure time-resolved fluorescence images of extensive air showers in the atmosphere. In this paper we describe in detail the main features and technological aspects of the focal surface of the instrument. The JEM-EUSO focal surface is a spherically curved surface, with an area of about 4.5m{sup 2}. The focal surface detector is made of more thanmore » 5,000 multi-anode photomultipliers (MAPMTs). Current baseline is Hamamatsu R11265-03-M64. The approach to the focal surface detector is highly modular. Photo-Detector-Modules (PDM) are the basic units that drive the mechanical structure and data acquisition. Each PDM consists of 9 Elementary Cells (ECs). The EC, which is the basic unit of the MAPMT support structure and of the front-end electronics, contains 4 units of MAPMTs. In total, about 1,200 ECs or about 150 PDMs are arranged on the whole of the focal surface of JEM-EUSO.« less

  4. Trigger and Reconstruction Algorithms for the Japanese Experiment Module- Extreme Universe Space Observatory (JEM-EUSO)

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Andreev, Valeri; Christl, M. J.; Cline, David B.; Crawford, Hank; Judd, E. G.; Pennypacker, Carl; Watts, J. W.

    2007-01-01

    The JEM-EUSO collaboration intends to study high energy cosmic ray showers using a large downward looking telescope mounted on the Japanese Experiment Module of the International Space Station. The telescope focal plane is instrumented with approx.300k pixels operating as a digital camera, taking snapshots at approx. 1MHz rate. We report an investigation of the trigger and reconstruction efficiency of various algorithms based on time and spatial analysis of the pixel images. Our goal is to develop trigger and reconstruction algorithms that will allow the instrument to detect energies low enough to connect smoothly to ground-based observations.

  5. Testing of Large Diameter Fresnel Optics for Space Based Observations of Extensive Air Showers

    NASA Technical Reports Server (NTRS)

    Adams, James H.; Christl, Mark J.; Young, Roy M.

    2011-01-01

    The JEM-EUSO mission will detect extensive air showers produced by extreme energy cosmic rays. It operates from the ISS looking down on Earth's night time atmosphere to detect the nitrogen fluorescence and Cherenkov produce by the charged particles in the EAS. The JEM-EUSO science objectives require a large field of view, sensitivity to energies below 50 EeV, and must fit within available ISS resources. The JEM-EUSO optic module uses three large diameter, thin plastic lenses with Fresnel surfaces to meet the instrument requirements. A bread-board model of the optic has been manufactured and has undergone preliminary tests. We report the results of optical performance tests and evaluate the present capability to manufacture these optical elements.

  6. KSC-06pd1684

    NASA Image and Video Library

    2006-07-28

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japan Aerospace Exploration Agency (JAXA) technicians install piping insulation on the Japanese Experiment Module (JEM). The JEM, developed by JAXA for use on the International Space Station, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller

  7. KSC-06pd1685

    NASA Image and Video Library

    2006-07-28

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japan Aerospace Exploration Agency (JAXA) technicians install piping insulation on the Japanese Experiment Module (JEM). The JEM, developed by JAXA for use on the International Space Station, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller

  8. KSC-06pd1682

    NASA Image and Video Library

    2006-07-28

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, a Japan Aerospace Exploration Agency (JAXA) technician inspects the wiring on the Japanese Experiment Module (JEM). The JEM, developed by JAXA for use on the International Space Station, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller

  9. KSC-06pd1683

    NASA Image and Video Library

    2006-07-28

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japan Aerospace Exploration Agency (JAXA) technicians inspect the wiring on the Japanese Experiment Module (JEM). The JEM, developed by JAXA for use on the International Space Station, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller

  10. KSC-06pd1687

    NASA Image and Video Library

    2006-07-28

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Japanese Experiment Module (JEM) awaits its flight to the International Space Station (ISS). The JEM, developed by the Japan Aerospace Exploration Agency (JAXA) for installation on the ISS, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller

  11. KSC-03PD-2461

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Takao Doi, an astronaut with the National Space Development Agency of Japan (NASDA), watches the sensors during a Multi-Equipment Interface Test (MEIT) on the Japanese Experiment Module (JEM). NASDA developed the laboratory at the Tsukuba Space Center near Tokyo. It is the first element, named 'Kibo' (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  12. Space Environment Effects on Materials at Different Positions and Operational Periods of ISS

    NASA Astrophysics Data System (ADS)

    Kimoto, Yugo; Ichikawa, Shoichi; Miyazaki, Eiji; Matsumoto, Koji; Ishizawa, Junichiro; Shimamura, Hiroyuki; Yamanaka, Riyo; Suzuki, Mineo

    2009-01-01

    A space materials exposure experiment was condcuted on the exterior of the Russian Service Module (SM) of the International Space Station (ISS) using the Micro-Particles Capturer and Space Environment Exposure Device (MPAC&SEED) of the Japan Aerospace Exploration Agency (JAXA). Results reveal artificial environment effects such as sample contamination, attitude change effects on AO fluence, and shading effects of UV on ISS. The sample contamination was coming from ISS components. The particles attributed to micrometeoroids and/or debris captured by MPAC might originate from the ISS solar array. Another MPAC&SEED will be aboard the Exposure Facility of the Japanese Experiment Module, KIBO Exposure Facility (EF) on ISS. The JEM/MPAC&SEED is attached to the Space Environment Data Acquisition Equipment-Attached Payload (SEDA-AP) and is exposed to space. Actually, SEDA-AP is a payload on EF to be launched by Space Shuttle flight 2J/A. In fact, SEDA-AP has space environment monitors such as a high-energy particle monitor, atomic oxygen monitor, and plasma monitor to measure in-situ natural space environment data during JEM/MPAC&SEED exposure. Some exposure samples for JEM/MPAC&SEED are identical to SM/MPAC&SEED samples. Consequently, effects on identical materials at different positions and operation periods of ISS will be evaluated. This report summarizes results from space environment monitoring samples for atomic oxygen analysis on SM/MPAC&SEED, along with experimental plans for JEM/MPAC&SEED.

  13. Calibration of photo sensors for the space-based cosmic ray telescope JEM-EUSO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karus, Michael

    2015-02-24

    In order to unveil the mystery of ultra-high energy cosmic rays (UHECRs), the planned fluorescence telescope JEM-EUSO (Extreme Universe Space Observatory on-board Japanese Experiment Module) will observe extensive air showers induced by UHECRs from the International Space Station (ISS) orbit with a huge acceptance. The JEM-EUSO instrument consists of Fresnel optics and a focal surface detector with 5000 multi-anode photomultiplier tubes (MAPMTs), 300000 channels in total. For fluorescence detection of cosmic rays it is essential to calibrate the detector pre-flight with utmost precision and to monitor the performance of the detector throughout the whole mission time. For that purpose amore » calibration stand on-ground was built to measure precisely the performance of Hamamatsu 64 pixel MAPMTs that are planned to be used for JEM-EUSO. To investigate the suitability of alternative detector devices, further research is done with state-of-the-art silicon photomultipliers (SiPMs), namely Hamamatsu multi-pixel photon counters (MPPCs). These will also be tested in the calibration stand and their performance can be compared to conventional photomultiplier tubes.« less

  14. KSC-08pd1013

    NASA Image and Video Library

    2008-04-24

    CAPE CANAVERAL, Fla. -- In the Vertical Integration Facility at NASA's Kennedy Space Center, workers on either side monitor the progress of the payload canister as it is raised to a vertical position. The canister contains the Japanese Experiment Module -Pressurized Module, which will be transported to Launch Pad 39A for space shuttle Discovery’s STS-124 mission. At the pad, the payload will be transferred from the canister into the payload changeout room on the rotating service structure. The changeout room is the enclosed, environmentally controlled portion of the service structure that supports cargo delivery to the pad and subsequent vertical installation into an orbiter's payload bay. On the mission, the STS-124 crew will transport the JEM as well as the Japanese Remote Manipulator System to the International Space Station. The launch of Discovery is targeted for May 31. Photo credit: NASA/Jim Grossmann

  15. KSC-08pd1009

    NASA Image and Video Library

    2008-04-24

    CAPE CANAVERAL, Fla. -- In the Vertical Integration Facility at NASA's Kennedy Space Center, technicians monitor the rotation of the payload canister to a vertical position. The canister contains the Japanese Experiment Module -Pressurized Module. The canister will be transported to Launch Pad 39A for space shuttle Discovery’s STS-124 mission. At the pad, the payload will be transferred from the canister into the payload changeout room on the rotating service structure. The changeout room is the enclosed, environmentally controlled portion of the service structure that supports cargo delivery to the pad and subsequent vertical installation into an orbiter's payload bay. On the mission, the STS-124 crew will transport the JEM as well as the Japanese Remote Manipulator System to the International Space Station. The launch of Discovery is targeted for May 31. Photo credit: NASA/Jim Grossmann

  16. KSC-06pd1686

    NASA Image and Video Library

    2006-07-28

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, processing continues on the Japanese Experiment Module (JEM) for its flight to the International Space Station (ISS). The JEM, developed by the Japan Aerospace Exploration Agency (JAXA) for installation on the ISS, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller

  17. i-LOVE: ISS-JEM lidar for observation of vegetation environment

    NASA Astrophysics Data System (ADS)

    Asai, Kazuhiro; Sawada, Haruo; Sugimoto, Nobuo; Mizutani, Kohei; Ishii, Shoken; Nishizawa, Tomoaki; Shimoda, Haruhisa; Honda, Yoshiaki; Kajiwara, Koji; Takao, Gen; Hirata, Yasumasa; Saigusa, Nobuko; Hayashi, Masatomo; Oguma, Hiroyuki; Saito, Hideki; Awaya, Yoshio; Endo, Takahiro; Imai, Tadashi; Murooka, Jumpei; Kobatashi, Takashi; Suzuki, Keiko; Sato, Ryota

    2012-11-01

    It is very important to watch the spatial distribution of vegetation biomass and changes in biomass over time, representing invaluable information to improve present assessments and future projections of the terrestrial carbon cycle. A space lidar is well known as a powerful remote sensing technology for measuring the canopy height accurately. This paper describes the ISS(International Space Station)-JEM(Japanese Experimental Module)-EF(Exposed Facility) borne vegetation lidar using a two dimensional array detector in order to reduce the root mean square error (RMSE) of tree height due to sloped surface.

  18. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi, who is with the Japanese Aerospace and Exploration Agency, looks at the inside of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. He and other crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi, who is with the Japanese Aerospace and Exploration Agency, looks at the inside of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. He and other crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  19. Space biology initiative program definition review. Trade study 6: Space Station Freedom/spacelab modules compatibility

    NASA Technical Reports Server (NTRS)

    Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Blacknall, Carolyn; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry

    1989-01-01

    The differences in rack requirements for Spacelab, the Shuttle Orbiter, and the United States (U.S.) laboratory module, European Space Agency (ESA) Columbus module, and the Japanese Experiment Module (JEM) of Space Station Freedom are identified. The feasibility of designing standardized mechanical, structural, electrical, data, video, thermal, and fluid interfaces to allow space flight hardware designed for use in the U.S. laboratory module to be used in other locations is assessed.

  20. Indirect probes of supersymmetry breaking in the JEM-EUSO observatory

    NASA Astrophysics Data System (ADS)

    Albuquerque, Ivone F. M.; Cavalcante de Souza, Jairo

    2013-01-01

    In this paper we propose indirect probes of the supersymmetry-breaking scale, through observations in the Extreme Universe Space Observatory onboard the Japanese Experiment Module (JEM-EUSO). We consider scenarios where the lightest supersymmetric particle is the gravitino, and the next-to-lightest supersymmetric particle (NLSP) is a long-lived slepton. We demonstrate that JEM-EUSO will be able to probe models where the NLSP decays, therefore probing supersymmetry-breaking scales below 5×106GeV. The observatory field of view will be large enough to detect a few tens of events per year, depending on its energy threshold. This is complementary to a previous proposal [I. Albuquerque , Phys. Rev. Lett. 92, 221802 (2004)PRLTAO0031-9007] where it was shown that 1km3 neutrino telescopes can directly probe this scale. NLSPs will be produced by the interaction of high-energy neutrinos in the Earth. Here we investigate scenarios where they subsequently decay, either in the atmosphere after escaping the Earth or right before leaving the Earth, producing taus. These can be detected by JEM-EUSO and have two distinctive signatures: one, they are produced in the Earth and go upwards in the atmosphere, which allows discrimination from atmospheric taus, and second, as NLSPs are always produced in pairs, coincident taus will be a strong signature for these events. Assuming that the neutrino flux is equivalent to the Waxman-Bahcall limit, we determine the rate of taus from NLSP decays reaching JEM-EUSO’s field of view.

  1. Airlock Battery Charge module

    NASA Image and Video Library

    2008-06-06

    S124-E-006865 (6 June 2008) --- One of a series of digital still images documenting the Japanese Experiment Module, or JEM, also called Kibo, in its new home on the International Space Station, this view features Kibo's exterior, Earth's horizon and a couple of "visiting" spacecraft. The Space Shuttle Discovery and a Russian Progress resupply craft are seen near foreground.

  2. KENNEDY SPACE CENTER, FLA. - - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (left) learns about the Japanese Experiment Module (JEM) from Jennifer Goldsmith (center), with United Space Alliance at Johnson Space Center, and Louise Kleba (right), with USA at KSC. Crew members are at KSC to become familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (left) learns about the Japanese Experiment Module (JEM) from Jennifer Goldsmith (center), with United Space Alliance at Johnson Space Center, and Louise Kleba (right), with USA at KSC. Crew members are at KSC to become familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  3. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (right) learns about the Japanese Experiment Module (JEM) from Louise Kleba (left), with United Space Alliance at KSC, and Jennifer Goldsmith (center), with USA at Johnson Space Center. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (right) learns about the Japanese Experiment Module (JEM) from Louise Kleba (left), with United Space Alliance at KSC, and Jennifer Goldsmith (center), with USA at Johnson Space Center. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  4. Living Together in Space: The Design and Operation of the Life Support Systems on the International Space Station. Volume 1

    NASA Technical Reports Server (NTRS)

    Wieland, P. O.

    1998-01-01

    The International Space Station (ISS) incorporates elements designed and developed by an international consortium led by the United States (U.S.), and by Russia. For this cooperative effort to succeed, it is crucial that the designs and methods of design of the other partners are understood sufficiently to ensure compatibility. Environmental Control and Life Support (ECLS) is one system in which functions are performed independently on the Russian Segment (RS) and on the U.S./international segments. This document describes, in two volumes, the design and operation of the ECLS Systems (ECLSS) on board the ISS. This current volume, Volume 1, is divided into three chapters. Chapter 1 is a general overview of the ISS, describing the configuration, general requirements, and distribution of systems as related to the ECLSS, and includes discussion of the design philosophies of the partners and methods of verification of equipment. Chapter 2 describes the U.S. ECLSS and technologies in greater detail. Chapter 3 describes the ECLSS in the European Attached Pressurized Module (APM), Japanese Experiment Module (JEM), and Italian Mini-Pressurized Logistics Module (MPLM). Volume II describes the Russian ECLSS and technologies in greater detail. These documents present thorough, yet concise, descriptions of the ISS ECLSS.

  5. Airlock Battery Charge module

    NASA Image and Video Library

    2008-06-06

    S124-E-006862 (6 June 2008) --- One of a series of digital still images documenting the Japanese Experiment Module, or JEM, also called Kibo, in its new home on the International Space Station, this view depicts Kibo's exterior in the distance, joined in the frame by some not so permanent hardware. The pictured components include the visiting Space Shuttle Discovery and a Russian Progress resupply vehicle.

  6. Initial Results Derived from JEM-GLIMS Observations

    NASA Astrophysics Data System (ADS)

    Sato, M.; Ushio, T.; Morimoto, T.; Kobayashi, N.; Takahashi, Y.; Suzuki, M.; Yamazaki, A.; Inan, U.; Linscott, I.; Hobara, Y.

    2012-12-01

    In order to identify the spatial distributions and occurrence conditions of TLEs, JEM-GLIMS (Global Lightning and sprIte MeasurementS on JEM-EF) observations from Japanese Experiment Module - Exposed Facility (JEM-EF) at International Space Station (ISS) will start this year. Science instruments of JEM-GLIMS consist of two kinds of optical detectors and two kinds of radio receivers. The optical instruments are two wide FOV CMOS cameras (LSI) and six-channel spectrophotometers (PH). LSI uses a CMOS device with 512x512 pixels as an imaging sensor and uses a CCTV lens with =25 mm/F=1.4 which becomes 28.3x28.3 deg. FOV. LSI-1 equips a wide band optical filter (766-832 nm) and mainly measures lightning emission, while LSI-2 equips a narrowband optical filter (762+/-7 nm) and mainly measures TLE emission. Five of six PH channels employ the optics with 42.7 deg. conical FOV and use photomultiplier tubes (PMTs) as photon detectors. Each channel of these photometers equips an optical band-pass filter to measure N2 1P, 2P, and LBH emissions. One of six photometers employs a wide-FOV optics (86.8 deg.) and wide-band filter to measure N2 1P lightning emission. All these optical instruments are pointed to the nadir direction. In order to detect whistler wave excited by lightning discharges, one VLF receiver (VLFR) is installed. VLFR consists of a 15 cm nadir-directing monopole antenna and an electronics unit recording waveform data with a sampling frequency of 100 kHz with 14-bit resolution. In addition to this, two sets of VHF receivers (VITF) are also installed to measure VHF pulses emitted by lightning discharges. VITF consists of two patch-type antennas separated by 1.5 m and an electronics unit which records pulse data with a sampling frequency of 200 MHz with 8-bit resolution. Thus, the spatial and temporal evolution of lightning and TLEs can be measured by the two optical instruments, while the electrical characteristics of sprite-inducing lightning discharges can be measured by two radio receivers. JEM-GIMS was successfully launched by H-IIB rocket at 02:06:18 UT on July 21, 2012 and transported to ISS by the HTV-3 cargo transfer spaceship. HTV-3 successfully arrived at ISS on July 27 and our JEM-GLIMS instruments will be installed at JEM-EF on August 9. For the period from September 15 to 21 we will carry out the initial checkout operation, and finally we will start continuous TLE observations from the middle of October. At the presentation we will show the test results obtained during the checkout operations and will present the initial results derived from JEM-GLIMS lightning/TLE observations.

  7. The JEM-EUSO instrument

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    In this paper we describe the main characteristics of the JEM-EUSO instrument. The Extreme Universe Space Observatory on the Japanese Experiment Module (JEM-EUSO) of the International Space Station (ISS) will observe Ultra High-Energy Cosmic Rays (UHECR) from space. It will detect UV-light of Extensive Air Showers (EAS) produced by UHECRs traversing the Earth's atmosphere. For each event, the detector will determine the energy, arrival direction and the type of the primary particle. The advantage of a space-borne detector resides in the large field of view, using a target volume of about 1012 tons of atmosphere, far greater than what is achievable from ground. Another advantage is a nearly uniform sampling of the whole celestial sphere. The corresponding increase in statistics will help to clarify the origin and sources of UHECRs and characterize the environment traversed during their production and propagation. JEM-EUSO is a 1.1 ton refractor telescope using an optics of 2.5 m diameter Fresnel lenses to focus the UV-light from EAS on a focal surface composed of about 5,000 multi-anode photomultipliers, for a total of ≃3ṡ105 channels. A multi-layer parallel architecture handles front-end acquisition, selecting and storing valid triggers. Each processing level filters the events with increasingly complex algorithms using FPGAs and DSPs to reject spurious events and reduce the data rate to a value compatible with downlink constraints.

  8. P1 Truss and JEM Pressurized Module (JPM)

    NASA Image and Video Library

    2009-03-23

    S119-E-007519 (23 March 2009) --- Astronaut Richard Arnold (lower left on port truss), STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Arnold and Joseph Acaba (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks. The Japanese Kibo laboratory is visible at right, and the station’s Canadarm2 is at left. The blackness of space and Earth’s horizon provide the backdrop for the scene.

  9. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (left) looks at an area overhead in the Japanese Experiment Module (JEM). In the center is Jennifer Goldsmith, with United Space Alliance at Johnson Space Center, and at right is Louise Kleba, with USA at KSC. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (left) looks at an area overhead in the Japanese Experiment Module (JEM). In the center is Jennifer Goldsmith, with United Space Alliance at Johnson Space Center, and at right is Louise Kleba, with USA at KSC. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  10. November 2013 Analysis of High Energy Electrons on the Japan Experimental Module (JEM: Kibo)

    NASA Technical Reports Server (NTRS)

    Badavi, Francis F.; Matsumoto, Haruhisa; Koga, Kiyokazu; Mertens, Christopher J.; Slaba, Tony C.; Norbury, John W.

    2015-01-01

    Albedo (precipitating/splash) electrons, created by galactic cosmic rays (GCR) interaction with the upper atmosphere move upwards away from the surface of the earth. In the past validation work these particles were often considered to have negligible contribution to astronaut radiation exposure on the International Space Station (ISS). Estimates of astronaut exposure based on the available Computer Aided Design (CAD) models of ISS consistently underestimated measurements onboard ISS when the contribution of albedo particles to exposure were neglected. Recent measurements of high energy electrons outside ISS Japan Experimental Module (JEM) using Exposed Facility (EF), Space Environment Data Acquisition Equipment - Attached Payload (SEDA-AP) and Standard DOse Monitor (SDOM), indicates the presence of high energy electrons at ISS altitude. In this presentation the status of these energetic electrons is reviewed and mechanism for the creation of these particles inside/outside South Atlantic Anomaly (SAA) region explained. In addition, limited dosimetric evaluation of these electrons at 600 MeV and 10 GeV is presented.

  11. Accommodations for earth-viewing payloads on the international space station

    NASA Astrophysics Data System (ADS)

    Park, B.; Eppler, D. B.

    The design of the International Space Station (ISS) includes payload locations that are external to the pressurized environment. These external or attached payload accommodation locations will allow direct access to the space environment at the ISS orbit and direct viewing of the earth and space. NASA sponsored payloads will have access to several different types of standard external locations; the S3 Truss Sites, the Columbus External Payload Facility (EPF), and the Japanese Experiment Module Exposed Facility (JEM-EF). As the ISS Program develops, it may also be possible to locate external payloads at the P3 Truss Sites or at non-standard locations similar to the handrail-attached payloads that were flown during the MIR Program. Earth-viewing payloads may also be located within the pressurized volume of the US Lab in the Window Observational Research Facility (WORF). Payload accommodations at each of the locations will be described, as well as transport to and retrieval from the site.

  12. Development Status of Optical and Electromagnetic Instruments onboard JEM-GLIMS

    NASA Astrophysics Data System (ADS)

    Sato, Mitsuteru; Ushio, Tomoo; Morimoto, Takeshi; Suzuki, Makoto; Yamazaki, Atsushi; Ishida, Ryohei; Takahashi, Yukihiro; Hobara, Yasuhide; Sakamoto, Yuji; Yoshita, Kengo

    In order to study the generation mechanism of Transient Luminous Events (TLEs), global oc-currence rates and distributions of lightning and TLEs, and the relationship between lightning, TLEs and Terrestrial Gamma-ray Flashes (TGFs), we will carry out the lightning and TLE observation at Exposed Facility of Japanese Experiment Module (JEM-EF) of International Space Station (ISS). In this mission named JEM-GLIMS (Global Lightning and sprIte Mea-surementS on JEM-EF) two kinds of optical instruments and two sets of radio receivers will be integrated into the Multi mission Consolidated Equipment (MCE) which is the bus system and will be installed at JEM-EF. The optical instruments consist of two wide FOV CMOS cameras and six wide FOV photometers, and all these optical instruments are pointed to the nadir direction. CMOS cameras named LSI (Lightning and Sprite Imager) use the STAR-250 device as a detector, which has 512x512 pixels and 25x25 µm pixel size, and have 28.3x28.3 deg. FOV. One CMOS camera with a wide band filter (730-830 nm) mainly measures lightning emission, while another camera with a narrowband filter (766+/-6 nm) mainly measures TLE emission. Five of six photometers named as PH have 42.7 deg. FOV and use photomultiplier tube (PMT) as a photon detector. They equip band-pass filters (150-280 nm, 316+/-5 nm, 337+/-5 nm, 392+/-5 nm, and 762+/-5 nm) for the absolute intensity measurement of the TLE emission. One of six photometers equips a wide-band filter (600-900 nm) to detect light-ning occurring within 86.8 deg. FOV. These output signals will be recorded with the sampling frequency of 20 kHz with a 12-bit resolution. One of two electromagnetic instruments is a VLF receiver (VLFR), which measures electromagnetic waves in the frequency range of 1-40 kHz with 16-bit resolution. Another instrument is VHF interferometer (VITF), which measures VHF pulses generated lightning discharge in the frequency range of 70-100 MHz. JEM-GIMS will be launched in 2011. We have passed the critical design review (CDR) on January and February and have started the fabrication of the proto-flight model. We will present the devel-opment status of the JEM-GLISM optical instruments and discuss the scientific outputs derived from this mission more in detail.

  13. 77 FR 25169 - Shipco Transport Inc. v. Jem Logistics, Inc., and Andi Georgescu, an Individual and D/B/A Jem...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ... FEDERAL MARITIME COMMISSION [Docket No. 12-06] Shipco Transport Inc. v. Jem Logistics, Inc., and Andi Georgescu, an Individual and D/B/A Jem Logistics, Inc.; Notice of Filing of Complaint and...) by Shipco Transport Inc. (Shipco), hereinafter ``Complainant,'' against Jem Logistics, Inc., and Andi...

  14. An overview of VHF lightning observations by digital interferometry from ISS/JEM-GLIMS

    NASA Astrophysics Data System (ADS)

    Morimoto, Takeshi; Kikuchi, Hiroshi; Sato, Mitsuteru; Ushio, Tomoo; Yamazaki, Atsushi; Suzuki, Makoto; Ishida, Ryohei; Sakamoto, Yuji; Yoshida, Kazuya; Hobara, Yasuhide; Sano, Takuki; Abe, Takumi; Kawasaki, Zen-Ichiro

    2016-08-01

    The Global Lightning and sprIte MeasurementS (GLIMS) mission has been conducted at the Exposed Facility of Japanese Experiment Module (JEM-EF) of the International Space Station for more than 30 months. This paper focuses on an electromagnetic (EM) payload of JEM-GLIMS mission, the very high frequency (VHF) broadband digital InTerFerometer (VITF). The JEM-GLIMS mission is designed to conduct comprehensive observations with both EM and optical payloads for lightning activities and related transient luminous events. Its nominal operation continued from November 2012 to December 2014. The extended operation followed for eight months. Through the operation period, the VITF collected more than two million VHF EM waveforms in almost 18,700 datasets. The number of VITF observations synchronized with optical signal is 8049. Active VHF radiations are detected in about 70 % of optical observations without obvious regional or seasonal dependency. Estimations of the EM direction-of-arrival (DOA) are attempted using the broadband digital interferometry. Some results agree with the optical observations, even though DOA estimation is problematic because of a very short antenna baseline and multiple pulses over a short time period, namely burst-type EM waveforms. The world's first lightning observations by means of space-borne VHF interferometry are achieved in this mission. This paper summarizes VITF instruments, the recorded VHF EM signals, and the results of DOA estimations by means of digital interferometry as a preliminary report after termination of the mission.[Figure not available: see fulltext.

  15. The EUSO-Balloon pathfinder

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    EUSO-Balloon is a pathfinder for JEM-EUSO, the Extreme Universe Space Observatory which is to be hosted on-board the International Space Station. As JEM-EUSO is designed to observe Ultra-High Energy Cosmic Rays (UHECR)-induced Extensive Air Showers (EAS) by detecting their ultraviolet light tracks "from above", EUSO-Balloon is a nadir-pointing UV telescope too. With its Fresnel Optics and Photo-Detector Module, the instrument monitors a 50 km2 ground surface area in a wavelength band of 290-430 nm, collecting series of images at a rate of 400,000 frames/sec. The objectives of the balloon demonstrator are threefold: a) perform a full end-to-end test of a JEM-EUSO prototype consisting of all the main subsystems of the space experiment, b) measure the effective terrestrial UV background, with a spatial and temporal resolution relevant for JEM-EUSO. c) detect tracks of ultraviolet light from near space for the first time. The latter is a milestone in the development of UHECR science, paving the way for any future space-based UHECR observatory. On August 25, 2014, EUSO-Balloon was launched from Timmins Stratospheric Balloon Base (Ontario, Canada) by the balloon division of the French Space Agency CNES. From a float altitude of 38 km, the instrument operated during the entire astronomical night, observing UV-light from a variety of ground-covers and from hundreds of simulated EASs, produced by flashers and a laser during a two-hour helicopter under-flight.

  16. Gerst working on JEM airlock satellite deployer

    NASA Image and Video Library

    2014-06-25

    ISS040-E-019318 (25 June 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to transfer a multi-purpose experiment platform and a robotic arm known as the Small Fine Arm through the Kibo module?s scientific airlock. The Small Fine Arm, which attaches to the Kibo?s larger main arm, handles delicate operations involved in exchanging experiments and payloads located on the Exposed Facility.

  17. Gerst working on JEM airlock satellite deployer

    NASA Image and Video Library

    2014-06-25

    ISS040-E-019300 (25 June 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to transfer a multi-purpose experiment platform and a robotic arm known as the Small Fine Arm through the Kibo module?s scientific airlock. The Small Fine Arm, which attaches to the Kibo?s larger main arm, handles delicate operations involved in exchanging experiments and payloads located on the Exposed Facility.

  18. Gerst working on JEM airlock satellite deployer

    NASA Image and Video Library

    2014-06-25

    ISS040-E-019312 (25 June 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to transfer a multi-purpose experiment platform and a robotic arm known as the Small Fine Arm through the Kibo module?s scientific airlock. The Small Fine Arm, which attaches to the Kibo?s larger main arm, handles delicate operations involved in exchanging experiments and payloads located on the Exposed Facility.

  19. Gerst working on JEM airlock satellite deployer

    NASA Image and Video Library

    2014-06-25

    ISS040-E-019307 (25 June 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to transfer a multi-purpose experiment platform and a robotic arm known as the Small Fine Arm through the Kibo module?s scientific airlock. The Small Fine Arm, which attaches to the Kibo?s larger main arm, handles delicate operations involved in exchanging experiments and payloads located on the Exposed Facility.

  20. Gerst working on JEM airlock satellite deployer

    NASA Image and Video Library

    2014-06-25

    ISS040-E-019299 (25 June 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to transfer a multi-purpose experiment platform and a robotic arm known as the Small Fine Arm through the Kibo module?s scientific airlock. The Small Fine Arm, which attaches to the Kibo?s larger main arm, handles delicate operations involved in exchanging experiments and payloads located on the Exposed Facility.

  1. JEM RMS OPS

    NASA Image and Video Library

    2009-09-23

    ISS020-E-042237 (23 Sept. 2009) --- NASA astronaut Nicole Stott and European Space Agency astronaut Frank De Winne, both Expedition 20 flight engineers, work the controls of the JEM Robotic Manipulator System (JEM-RMS) in the Kibo laboratory of the International Space Station. De Winne and Stott used the JEM-RMS to grapple the Exposed Pallet (EP) from the station’s Canadarm2 and berth it to the JEM Exposed Facility / Exposed Facility Unit 10 (JEF EFU10).

  2. JEM RMS OPS

    NASA Image and Video Library

    2009-09-23

    ISS020-E-042225 (23 Sept. 2009) --- NASA astronaut Nicole Stott and European Space Agency astronaut Frank De Winne, both Expedition 20 flight engineers, work the controls of the JEM Robotic Manipulator System (JEM-RMS) in the Kibo laboratory of the International Space Station. De Winne and Stott used the JEM-RMS to grapple the Exposed Pallet (EP) from the station’s Canadarm2 and berth it to the JEM Exposed Facility / Exposed Facility Unit 10 (JEF EFU10).

  3. De Winne and Stott at JEM-RMS controls

    NASA Image and Video Library

    2009-09-23

    ISS020-E-041828 (23 Sept. 2009) --- European Space Agency astronaut Frank De Winne and NASA astronaut Nicole Stott, both Expedition 20 flight engineers, work the controls of the JEM Robotic Manipulator System (JEM-RMS) in the Kibo laboratory of the International Space Station. De Winne and Stott used the JEM-RMS to grapple the Exposed Pallet (EP) from the station’s Canadarm2 and berth it to the JEM Exposed Facility / Exposed Facility Unit 10 (JEF EFU10).

  4. Overview and early results of the Global Lightning and Sprite Measurements mission

    NASA Astrophysics Data System (ADS)

    Sato, M.; Ushio, T.; Morimoto, T.; Kikuchi, M.; Kikuchi, H.; Adachi, T.; Suzuki, M.; Yamazaki, A.; Takahashi, Y.; Inan, U.; Linscott, I.; Ishida, R.; Sakamoto, Y.; Yoshida, K.; Hobara, Y.; Sano, T.; Abe, T.; Nakamura, M.; Oda, H.; Kawasaki, Z.-I.

    2015-05-01

    Global Lightning and Sprite Measurements on Japanese Experiment Module (JEM-GLIMS) is a space mission to conduct the nadir observations of lightning discharges and transient luminous events (TLEs). The main objectives of this mission are to identify the horizontal distribution of TLEs and to solve the occurrence conditions determining the spatial distribution. JEM-GLIMS was successfully launched and started continuous nadir observations in 2012. The global distribution of the detected lightning events shows that most of the events occurred over continental regions in the local summer hemisphere. In some events, strong far-ultraviolet emissions have been simultaneously detected with N2 1P and 2P emissions by the spectrophotometers, which strongly suggest the occurrence of TLEs. Especially, in some of these events, no significant optical emission was measured by the narrowband filter camera, which suggests the occurrence of elves, not sprites. The VLF receiver also succeeded in detecting lightning whistlers, which show clear falling-tone frequency dispersion. Based on the optical data, the time delay from the detected lightning emission to the whistlers was identified as ˜10 ms, which can be reasonably explained by the wave propagation with the group velocity of whistlers. The VHF interferometer conducted the spaceborne interferometric observations and succeeded in detecting VHF pulses. We observed that the VHF pulses are likely to be excited by the lightning discharge possibly related with in-cloud discharges and measured with the JEM-GLIMS optical instruments. Thus, JEM-GLIMS provides the first full set of optical and electromagnetic data of lightning and TLEs obtained by nadir observations from space.

  5. Photometric Characteristics of Sprites and Elves Derived from JEM-GLIMS Nadir Observations (Invited)

    NASA Astrophysics Data System (ADS)

    Sato, M.; Takahashi, Y.; Adachi, T.; Kobayashi, N.; Mihara, M.; Ushio, T.; Morimoto, T.; Suzuki, M.; Yamazaki, A.; Inan, U.; Linscott, I.

    2013-12-01

    The main goal of the JEM-GLIMS mission is to identify the horizontal structures of Transient Luminous Events (TLEs) and spatiotemporal relationship between TLEs and their parent lightning discharges based on the nadir observations from the International Space Station (ISS). For this purpose JEM-GLIMS equips two sets of optical instruments (LSI: CMOS camera, and PH: spectrophotometers) and two sets of radio wave receivers (VLFR: VLF receiver, and VITF: VHF interferometer). As all these instruments are installed at the bottom plane of the bus module facing to the Earth, JEM-GLIMS can carry out the nadir observations continuously. JEM-GLIMS was launched by HTV3 and was successfully installed at the exposed facility of the Japanese Experiment Module (JEM) on August 9, 2012. After the initial checkout operations, JEM-GLIMS finally started continuous observations on November 20, 2012. In the period from November 20, 2012 to June 30, 2013, totally 1597 transient optical events related to lightning flashes and/or TLE emissions were detected by the optical instruments. In 578 of these events, both LSI and PH detected clear transient optical signals well above the noise level. In order to derive sprite events from the detected transient optical events, we analyzed PH light-curve data first and estimated the peak irradiance related to the transient optical flashes. Then, we compared these intensities with the atmospheric transmittance. Finally, LSI image data are examined to clarify the morphological properties of the optical emission. We analyzed a transient optical event detected at 00:56:29.198 UT on December 15, 2012. The peak intensities of PH channels are estimated to be 1.4E-2 W/m2 (150-280 nm), 2.3E-4 W/m2 (316 nm), 5.9E-4 W/m2 (337 nm), 4.0E-4 W/m2 (392 nm), 4.2E-4 W/m2 (762 nm), and 6.3E-2 W/m2 (600-900 nm), respectively. It is found that all these intensities are significantly stronger than the lightning emission affected by the atmospheric transmittance. This fact implies that the light sources exist not only in the troposphere but also in the mesosphere. At the image data obtained by the narrow-band filter camera (LSI-2), a pancake structure with bright spots was confirmed. Thus, we attributed the pancake structure and bright spots to a sprite halo and sprite streamers, respectively. We further analyzed a transient optical event obtained at 01:41:00.466 UT on March 30, 2013. In this event very strong pulse signals are detected only by PH1 (150-280 nm) and PH4 (600-900 nm). Since the field-of-view (FOV) of PH4 is 86.8 deg., which is larger than that of other PH channels (FOV=42.7 deg.), a lightning discharge seems to be occurred within PH4 FOV but without FOV of the other PH channels. Nevertheless, the existence of the strong FUV emission detected by PH1 means the occurrence of elves. At the presentation, we will show the results derived from LSI and PH data analysis and will discuss the photometric characteristics more in detail.

  6. JEM-EUSO Design for Accommodation on the SpaceX Dragon Spacecraft

    NASA Technical Reports Server (NTRS)

    Christl, Mark

    2013-01-01

    The JEM-EUSO mission has been planned for launch on JAXA's H2 Launch Vehicle. Recently, the SpaceX Dragon spacecraft has emerged as an alternative payload carrier for JEM-EUSO. This paper will discuss a concept for the re-design of JEM-EUSO so that it can be launched on Dragon.

  7. External Payload Interfaces on the International Space Station

    NASA Astrophysics Data System (ADS)

    Voels, S. A.; Eppler, D. B.; Park, B.

    2000-12-01

    The International Space Station (ISS) includes multiple payload locations that are external to the pressurized environment and that are suitable for astronomical and space science observations. These external or attached payload accommodation locations allow direct access to the space environment and fields of view that include the earth and/or space. NASA sponsored payloads will have access to several different types of standard external locations; the S3/P3 Truss Sites (with an EXPRESS Pallet interface), the Columbus Exposed Payload Facility (EPF), and the Japanese Experiment Module Exposed Facility (JEM-EF). Payload accommodations at each of the standard locations named above will be described, as well as transport to and retrieval from the site. The Office of Space Science's ISS Research Program Office has an allocation equivalent to 25% of the external space and opportunities for proposing to use this allocation will be as Missions of Opportunity through the normal Explorer (UNEX, SMEX, MIDEX) Announcements of Opportunity.

  8. Element material experiment by EFFU

    NASA Technical Reports Server (NTRS)

    Hashimoto, Yoshihiro; Ichikawa, Masaaki; Takei, Mitsuru; Torii, Yoshihiro; Ota, Kazuo

    1995-01-01

    National Space Development Agency of JAPAN (NASDA) is planning to perform Element Material Exposure Experiment using Exposed Facility Flyer Unit (EFFU). Several materials which will be used on JEM (Japanese Experiment Module for the space station) will be exposed. Space environment monitoring is also planned in this experiment. Several ground based tests are now being performed and getting useful data.

  9. The feasibility of adapting a population-based asthma-specific job exposure matrix (JEM) to NHANES.

    PubMed

    McHugh, Michelle K; Symanski, Elaine; Pompeii, Lisa A; Delclos, George L

    2010-12-01

    To determine the feasibility of applying a job exposure matrix (JEM) for classifying exposures to 18 asthmagens in the National Health and Nutrition Examination Survey (NHANES), 1999-2004. We cross-referenced 490 National Center for Health Statistics job codes used to develop the 40 NHANES occupation groups with 506 JEM job titles and assessed homogeneity in asthmagen exposure across job codes within each occupation group. In total, 399 job codes corresponded to one JEM job title, 32 to more than one job title, and 59 were not in the JEM. Three occupation groups had the same asthmagen exposure across job codes, 11 had no asthmagen exposure, and 26 groups had heterogeneous exposures across jobs codes. The NHANES classification of occupations limits the use of the JEM to evaluate the association between workplace exposures and asthma and more refined occupational data are needed to enhance work-related injury/illness surveillance efforts.

  10. Study of the validity of a job-exposure matrix for psychosocial work factors: results from the national French SUMER survey.

    PubMed

    Niedhammer, Isabelle; Chastang, Jean-François; Levy, David; David, Simone; Degioanni, Stéphanie; Theorell, Töres

    2008-10-01

    To construct and evaluate the validity of a job-exposure matrix (JEM) for psychosocial work factors defined by Karasek's model using national representative data of the French working population. National sample of 24,486 men and women who filled in the Job Content Questionnaire (JCQ) by Karasek measuring the scores of psychological demands, decision latitude, and social support (individual scores) in 2003 (response rate 96.5%). Median values of the three scores in the total sample of men and women were used to define high demands, low latitude, and low support (individual binary exposures). Job title was defined by both occupation and economic activity that were coded using detailed national classifications (PCS and NAF/NACE). Two JEM measures were calculated from the individual scores of demands, latitude and support for each job title: JEM scores (mean of the individual score) and JEM binary exposures (JEM score dichotomized at the median). The analysis of the variance of the individual scores of demands, latitude, and support explained by occupations and economic activities, of the correlation and agreement between individual measures and JEM measures, and of the sensitivity and specificity of JEM exposures, as well as the study of the associations with self-reported health showed a low validity of JEM measures for psychological demands and social support, and a relatively higher validity for decision latitude compared with individual measures. Job-exposure matrix measure for decision latitude might be used as a complementary exposure assessment. Further research is needed to evaluate the validity of JEM for psychosocial work factors.

  11. Occupational exposure to magnetic fields and the risk of brain tumors

    PubMed Central

    Coble, Joseph B.; Dosemeci, Mustafa; Stewart, Patricia A.; Blair, Aaron; Bowman, Joseph; Fine, Howard A.; Shapiro, William R.; Selker, Robert G.; Loeffler, Jay S.; Black, Peter M.; Linet, Martha S.; Inskip, Peter D.

    2009-01-01

    We investigated the association between occupational exposure to extremely low-frequency magnetic fields (MFs) and the risk of glioma and meningioma. Occupational exposure to MF was assessed for 489 glioma cases, 197 meningioma cases, and 799 controls enrolled in a hospital-based case–control study. Lifetime occupational history questionnaires were administered to all subjects; for 24% of jobs, these were supplemented with job-specific questionnaires, or “job modules,” to obtain information on the use of electrically powered tools or equipment at work. Job-specific quantitative estimates for exposure to MF in milligauss were assigned using a previously published job exposure matrix (JEM) with modification based on the job modules. Jobs were categorized as ≤1.5 mG, >1.5 to <3.0 mG, and ≥3.0 mG. Four exposure metrics were evaluated: (1) maximum exposed job; (2) total years of exposure >1.5 mG; (3) cumulative lifetime exposure; and (4) average lifetime exposure. Odds ratios (ORs) were calculated using unconditional logistic regression with adjustment for the age, gender, and hospital site. The job modules increased the number of jobs with exposure ≥3.0 mG from 4% to 7% relative to the JEM. No statistically significant elevation in ORs or trends in ORs across exposure categories was observed using four different exposure metrics for the three tumor types analyzed. Occupational exposure to MFs assessed using job modules was not associated with an increase in the risk for glioma, glioblastoma, or meningioma among the subjects evaluated in this study. PMID:19234232

  12. Validity of a Job-Exposure Matrix for Psychosocial Job Stressors: Results from the Household Income and Labour Dynamics in Australia Survey

    PubMed Central

    Milner, A.; Niedhammer, I.; Chastang, J.-F.; Spittal, M. J.; LaMontagne, A. D.

    2016-01-01

    Introduction A Job Exposure Matrix (JEM) for psychosocial job stressors allows assessment of these exposures at a population level. JEMs are particularly useful in situations when information on psychosocial job stressors were not collected individually and can help eliminate the biases that may be present in individual self-report accounts. This research paper describes the development of a JEM in the Australian context. Methods The Household Income Labour Dynamics in Australia (HILDA) survey was used to construct a JEM for job control, job demands and complexity, job insecurity, and fairness of pay. Population median values of these variables for all employed people (n = 20,428) were used to define individual exposures across the period 2001 to 2012. The JEM was calculated for the Australian and New Zealand Standard Classification of Occupations (ANZSCO) at the four-digit level, which represents 358 occupations. Both continuous and binary exposures to job stressors were calculated at the 4-digit level. We assessed concordance between the JEM-assigned and individually-reported exposures using the Kappa statistic, sensitivity and specificity assessments. We conducted regression analysis using mental health as an outcome measure. Results Kappa statistics indicate good agreement between individually-reported and JEM-assigned dichotomous measures for job demands and control, and moderate agreement for job insecurity and fairness of pay. Job control, job demands and security had the highest sensitivity, while specificity was relatively high for the four exposures. Regression analysis shows that most individually reported and JEM measures were significantly associated with mental health, and individually-reported exposures produced much stronger effects on mental health than the JEM-assigned exposures. Discussion These JEM-based estimates of stressors exposure provide a conservative proxy for individual-level data, and can be applied to a range of health and organisational outcomes. PMID:27049527

  13. Science Goal and Mission Status of JEM-GLIMS

    NASA Astrophysics Data System (ADS)

    Sato, M.; Ushio, T.; Morimoto, T.; Suzuki, M.; Yamazaki, A.; Masayuki, K.; Ishida, R.; Takahashi, Y.; Inan, U. S.; Hobara, Y.; Sakamoto, Y.; Yoshida, K.; Ishikawa, H.; Yoshita, K.

    2009-12-01

    In order to study the generation mechanism of TLEs, global occurrence rates and distributions of lightning and TLEs, and the relationship between lightning, TLEs and TGFs, we will carry out the lightning and TLE observation at Exposed Facility of Japanese Experiment Module (JEM-EF) of International Space Station (ISS). In this mission named JEM-GLIMS (Global Lightning and sprIte MeasurementS on JEM-EF) two kinds of optical instruments and two sets of radio receivers will be integrated into the Multi mission Consolidated Equipment (MCE) which is the bus system and will be installed at JEM-EF finally. The optical instruments consist of two wide FOV CMOS cameras and six wide FOV photometers, and all these optical instruments look the nadir direction. CMOS cameras named LSI (Lightning and Sprite Imager) use the STAR-250 device as a detector, which has 512x512 pixels and 25x25 um pixel size, and have 40 deg. FOV. One CMOS camera with a wide band filter (730-830 nm) mainly measures lightning emission, while another camera with a narrowband filter (766+/-6 nm) mainly measures TLE emission. Five of six photometers named as PH have 40 deg FOV and use photomultiplier tube (PMT) as a photon detector. They equip band-pass filters (150-280 nm, 316+/-5 nm, 337+/-5 nm, 392+/-5 nm, and 762+/-5 nm) for the absolute intensity measurement of the TLE emission. One of six photometers equips a wide-band filter (600-900 nm) to detect lightning occurring within 87 deg FOV. These output signals will be recorded with the sampling frequency of 20 kHz with a 12-bit resolution. One VLF receiver will observe electric field perturbations in the frequency range of 1-40 kHz. One monopole antenna with a 15 cm length will be installed along the nadir direction. Outputs signal from the VLF antenna will be digitally sampled at the VLF electronics by 16-bit resolution with a sampling frequency. There are two sets of VHF antenna, which will be installed at the bottom plate of MCE. VLF antenna will detect VHF pulses in the frequency range of 70-100 MHz and will be recorded by the VHF electronics with 8-bit resolution with 200 MHz sampling frequency. A science instrument handling unit named as SHU is also installed. The function of SHU is to control all the science instruments, to carry out the data acquisition with a trigger function, and to establish the command and telemetry interfaces. JEM-GIMS will be launched at the beginning of 2012. We have passed the preliminary design review (PDR) on July and have started the development of the pre-flight model. We will present the development status of the JEM-GLISM mission and discuss the scientific outputs derived from this mission more in detail.

  14. Use of a crop and job specific exposure matrix for retrospective assessment of long-term exposure in studies of chronic neurotoxic effects of agrichemicals

    PubMed Central

    London, L.; Myers, J. E.

    1998-01-01

    RATIONALE: Job exposure matrices (JEMs) are widely used in occupational epidemiology, particularly when biological or environmental monitoring data are scanty. However, as with most exposure estimates, JEMs may be vulnerable to misclassification. OBJECTIVES: To estimate the long term exposure of farm workers based on a JEM developed for use in a study of the neurotoxic effects of organophosphates and to evaluate the repeatability and validity of the JEM. METHODS: A JEM was constructed with secondary data from industry and expert opinion of the estimate of agrichemical exposure within every possible job activity in the JEM to weight job days for exposure to organophosphates. Cumulative lifetime and average intensity exposure of organophosphate exposure were calculated for 163 pesticide applicators and 84 controls. Repeat questionnaires were given to 29 participants three months later to test repeatability of measurements. The ability of JEM based exposure to predict a known marker of organophosphate exposure was used to validate the JEM. RESULTS: Cumulative lifetime exposure as measured in kg organophosphate exposure, was significantly associated with erythrocyte cholinesterase concentrations (partial r2 = 5%; p < 0.01), controlled for a range of confounders. Repeatability in a subsample of 29 workers of the estimates of cumulative (Pearson's r = 0.67; 95% confidence interval (95% CI) 0.41 to 0.83), and average lifetime intensity of exposure (Pearson's r = 0.60 95% CI 0.31 to 0.79) was adequate. CONCLUSION: The JEM seems promising for farming settings, particularly in developing countries where data on chemical application and biological monitoring are unavailable.   PMID:9624271

  15. Estimation of occupational cosmic radiation exposure among airline personnel: Agreement between a job-exposure matrix, aggregate, and individual dose estimates.

    PubMed

    Talibov, Madar; Salmelin, Raili; Lehtinen-Jacks, Susanna; Auvinen, Anssi

    2017-04-01

    Job-exposure matrices (JEM) are used for exposure assessment in occupational studies, but they can involve errors. We assessed agreement between the Nordic Occupational Cancer Studies JEM (NOCCA-JEM) and aggregate and individual dose estimates for cosmic radiation exposure among Finnish airline personnel. Cumulative cosmic radiation exposure for 5,022 airline crew members was compared between a JEM and aggregate and individual dose estimates. The NOCCA-JEM underestimated individual doses. Intraclass correlation coefficient was 0.37, proportion of agreement 64%, kappa 0.46 compared with individual doses. Higher agreement was achieved with aggregate dose estimates, that is annual medians of individual doses and estimates adjusted for heliocentric potentials. The substantial disagreement between NOCCA-JEM and individual dose estimates of cosmic radiation may lead to exposure misclassification and biased risk estimates in epidemiological studies. Using aggregate data may provide improved estimates. Am. J. Ind. Med. 60:386-393, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. NASA's ECOSTRESS Investigation Being Installed on the International Space Station (Artist's Concept)

    NASA Image and Video Library

    2018-04-17

    NASA's ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) will be installed on International Space Station's Japanese Experiment Module - External Facility (JEM-EF) site 10. The investigation will take advantage of the space station's orbit to measure plant surface temperatures at different times of day, allowing scientists to see how plants respond to water stress throughout the day. https://photojournal.jpl.nasa.gov/catalog/PIA22415

  17. Sensitivity analyses of exposure estimates from a quantitative job-exposure matrix (SYN-JEM) for use in community-based studies.

    PubMed

    Peters, Susan; Kromhout, Hans; Portengen, Lützen; Olsson, Ann; Kendzia, Benjamin; Vincent, Raymond; Savary, Barbara; Lavoué, Jérôme; Cavallo, Domenico; Cattaneo, Andrea; Mirabelli, Dario; Plato, Nils; Fevotte, Joelle; Pesch, Beate; Brüning, Thomas; Straif, Kurt; Vermeulen, Roel

    2013-01-01

    We describe the elaboration and sensitivity analyses of a quantitative job-exposure matrix (SYN-JEM) for respirable crystalline silica (RCS). The aim was to gain insight into the robustness of the SYN-JEM RCS estimates based on critical decisions taken in the elaboration process. SYN-JEM for RCS exposure consists of three axes (job, region, and year) based on estimates derived from a previously developed statistical model. To elaborate SYN-JEM, several decisions were taken: i.e. the application of (i) a single time trend; (ii) region-specific adjustments in RCS exposure; and (iii) a prior job-specific exposure level (by the semi-quantitative DOM-JEM), with an override of 0 mg/m(3) for jobs a priori defined as non-exposed. Furthermore, we assumed that exposure levels reached a ceiling in 1960 and remained constant prior to this date. We applied SYN-JEM to the occupational histories of subjects from a large international pooled community-based case-control study. Cumulative exposure levels derived with SYN-JEM were compared with those from alternative models, described by Pearson correlation ((Rp)) and differences in unit of exposure (mg/m(3)-year). Alternative models concerned changes in application of job- and region-specific estimates and exposure ceiling, and omitting the a priori exposure ranking. Cumulative exposure levels for the study subjects ranged from 0.01 to 60 mg/m(3)-years, with a median of 1.76 mg/m(3)-years. Exposure levels derived from SYN-JEM and alternative models were overall highly correlated (R(p) > 0.90), although somewhat lower when omitting the region estimate ((Rp) = 0.80) or not taking into account the assigned semi-quantitative exposure level (R(p) = 0.65). Modification of the time trend (i.e. exposure ceiling at 1950 or 1970, or assuming a decline before 1960) caused the largest changes in absolute exposure levels (26-33% difference), but without changing the relative ranking ((Rp) = 0.99). Exposure estimates derived from SYN-JEM appeared to be plausible compared with (historical) levels described in the literature. Decisions taken in the development of SYN-JEM did not critically change the cumulative exposure levels. The influence of region-specific estimates needs to be explored in future risk analyses.

  18. Flight model performances of HISUI hyperspectral sensor onboard ISS (International Space Station)

    NASA Astrophysics Data System (ADS)

    Tanii, Jun; Kashimura, Osamu; Ito, Yoshiyuki; Iwasaki, Akira

    2016-10-01

    Hyperspectral Imager Suite (HISUI) is a next-generation Japanese sensor that will be mounted on Japanese Experiment Module (JEM) of ISS (International Space Station) in 2019 as timeframe. HISUI hyperspectral sensor obtains spectral images of 185 bands with the ground sampling distance of 20x31 meter from the visible to shortwave-infrared region. The sensor system is the follow-on mission of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) in the visible to shortwave infrared region. The critical design review of the instrument was accomplished in 2014. Integration and tests of an flight model of HISUI hyperspectral sensor is being carried out. Simultaneously, the development of JEM-External Facility (EF) Payload system for the instrument started. The system includes the structure, the thermal control system, the electrical system and the pointing mechanism. The development status and the performances including some of the tests results of Instrument flight model, such as optical performance, optical distortion and radiometric performance are reported.

  19. Focusing ISAR Images using Fast Adaptive Time-Frequency and 3D Motion Detection on Simulated and Experimental Radar Data

    DTIC Science & Technology

    2005-06-01

    Time Fourier Transform WVD Wigner - Ville Distribution GA Genetic Algorithm PSO Particle Swarm Optimization JEM Jet Engine Modulation CPI...of the Wigner - Ville Distribution ( WVD ), cross-terms appear in the time-frequency image. As shown in Figure 9, which is a WVD of range bin 31 of...14 Figure 9. Wigner - Ville Distribution of Unfocused Range Bin 31 (After [3] and [5].) ...15

  20. Evaluation of the validity of job exposure matrix for psychosocial factors at work.

    PubMed

    Solovieva, Svetlana; Pensola, Tiina; Kausto, Johanna; Shiri, Rahman; Heliövaara, Markku; Burdorf, Alex; Husgafvel-Pursiainen, Kirsti; Viikari-Juntura, Eira

    2014-01-01

    To study the performance of a developed job exposure matrix (JEM) for the assessment of psychosocial factors at work in terms of accuracy, possible misclassification bias and predictive ability to detect known associations with depression and low back pain (LBP). We utilized two large population surveys (the Health 2000 Study and the Finnish Work and Health Surveys), one to construct the JEM and another to test matrix performance. In the first study, information on job demands, job control, monotonous work and social support at work was collected via face-to-face interviews. Job strain was operationalized based on job demands and job control using quadrant approach. In the second study, the sensitivity and specificity were estimated applying a Bayesian approach. The magnitude of misclassification error was examined by calculating the biased odds ratios as a function of the sensitivity and specificity of the JEM and fixed true prevalence and odds ratios. Finally, we adjusted for misclassification error the observed associations between JEM measures and selected health outcomes. The matrix showed a good accuracy for job control and job strain, while its performance for other exposures was relatively low. Without correction for exposure misclassification, the JEM was able to detect the association between job strain and depression in men and between monotonous work and LBP in both genders. Our results suggest that JEM more accurately identifies occupations with low control and high strain than those with high demands or low social support. Overall, the present JEM is a useful source of job-level psychosocial exposures in epidemiological studies lacking individual-level exposure information. Furthermore, we showed the applicability of a Bayesian approach in the evaluation of the performance of the JEM in a situation where, in practice, no gold standard of exposure assessment exists.

  1. Developing a job-exposure matrix with exposure uncertainty from expert elicitation and data modeling.

    PubMed

    Fischer, Heidi J; Vergara, Ximena P; Yost, Michael; Silva, Michael; Lombardi, David A; Kheifets, Leeka

    2017-01-01

    Job exposure matrices (JEMs) are tools used to classify exposures for job titles based on general job tasks in the absence of individual level data. However, exposure uncertainty due to variations in worker practices, job conditions, and the quality of data has never been quantified systematically in a JEM. We describe a methodology for creating a JEM which defines occupational exposures on a continuous scale and utilizes elicitation methods to quantify exposure uncertainty by assigning exposures probability distributions with parameters determined through expert involvement. Experts use their knowledge to develop mathematical models using related exposure surrogate data in the absence of available occupational level data and to adjust model output against other similar occupations. Formal expert elicitation methods provided a consistent, efficient process to incorporate expert judgment into a large, consensus-based JEM. A population-based electric shock JEM was created using these methods, allowing for transparent estimates of exposure.

  2. Combining a Job-Exposure Matrix with Exposure Measurements to Assess Occupational Exposure to Benzene in a Population Cohort in Shanghai, China

    PubMed Central

    Friesen, Melissa C.; Coble, Joseph B.; Lu, Wei; Shu, Xiao-Ou; Ji, Bu-Tian; Xue, Shouzheng; Portengen, Lutzen; Chow, Wong-Ho; Gao, Yu-Tang; Yang, Gong; Rothman, Nathaniel; Vermeulen, Roel

    2012-01-01

    Background: Generic job-exposure matrices (JEMs) are often used in population-based epidemiologic studies to assess occupational risk factors when only the job and industry information of each subject is available. JEM ratings are often based on professional judgment, are usually ordinal or semi-quantitative, and often do not account for changes in exposure over time. We present an empirical Bayesian framework that combines ordinal subjective JEM ratings with benzene measurements. Our aim was to better discriminate between job, industry, and time differences in exposure levels compared to using a JEM alone. Methods: We combined 63 221 short-term area air measurements of benzene exposure (1954–2000) collected during routine health and safety inspections in Shanghai, China, with independently developed JEM intensity ratings for each job and industry using a mixed-effects model. The fixed-effects terms included the JEM intensity ratings for job and industry (both ordinal, 0–3) and a time trend that we incorporated as a b-spline. The random-effects terms included job (n = 33) and industry nested within job (n = 399). We predicted the benzene concentration in two ways: (i) a calibrated JEM estimate was calculated using the fixed-effects model parameters for calendar year and JEM intensity ratings; (ii) a job-/industry-specific estimate was calculated using the fixed-effects model parameters and the best linear unbiased predictors from the random effects for job and industry using an empirical Bayes estimation procedure. Finally, we applied the predicted benzene exposures to a prospective population-based cohort of women in Shanghai, China (n = 74 942). Results: Exposure levels were 13 times higher in 1965 than in 2000 and declined at a rate that varied from 4 to 15% per year from 1965 to 1985, followed by a small peak in the mid-1990s. The job-/industry-specific estimates had greater differences between exposure levels than the calibrated JEM estimates (97.5th percentile/2.5th percentile exposure level, BGR95B: 20.4 versus 3.0, respectively). The calibrated JEM and job-/industry-specific estimates were moderately correlated in any given year (Pearson correlation, rp = 0.58). We classified only those jobs and industries with a job or industry JEM exposure probability rating of 3 (>50% of workers exposed) as exposed. As a result, 14.8% of the subjects and 8.7% of the employed person-years in the study population were classified as benzene exposed. The cumulative exposure metrics based on the calibrated JEM and job-/industry-specific estimates were highly correlated (rp = 0.88). Conclusions: We provide a useful framework for combining quantitative exposure data with expert-based exposure ratings in population-based studies that maximized the information from both sources. Our framework calibrated the ratings to a concentration scale between ratings and across time and provided a mechanism to estimate exposure when a job/industry group reported by a subject was not represented in the exposure database. It also allowed the job/industry groups’ exposure levels to deviate from the pooled average for their respective JEM intensity ratings. PMID:21976309

  3. Thin and thick cloud top height retrieval algorithm with the Infrared Camera and LIDAR of the JEM-EUSO Space Mission

    NASA Astrophysics Data System (ADS)

    Sáez-Cano, G.; Morales de los Ríos, J. A.; del Peral, L.; Neronov, A.; Wada, S.; Rodríguez Frías, M. D.

    2015-03-01

    The origin of cosmic rays have remained a mistery for more than a century. JEM-EUSO is a pioneer space-based telescope that will be located at the International Space Station (ISS) and its aim is to detect Ultra High Energy Cosmic Rays (UHECR) and Extremely High Energy Cosmic Rays (EHECR) by observing the atmosphere. Unlike ground-based telescopes, JEM-EUSO will observe from upwards, and therefore, for a properly UHECR reconstruction under cloudy conditions, a key element of JEM-EUSO is an Atmospheric Monitoring System (AMS). This AMS consists of a space qualified bi-spectral Infrared Camera, that will provide the cloud coverage and cloud top height in the JEM-EUSO Field of View (FoV) and a LIDAR, that will measure the atmospheric optical depth in the direction it has been shot. In this paper we will explain the effects of clouds for the determination of the UHECR arrival direction. Moreover, since the cloud top height retrieval is crucial to analyze the UHECR and EHECR events under cloudy conditions, the retrieval algorithm that fulfills the technical requierements of the Infrared Camera of JEM-EUSO to reconstruct the cloud top height is presently reported.

  4. Spherical rotation orientation indication for HEVC and JEM coding of 360 degree video

    NASA Astrophysics Data System (ADS)

    Boyce, Jill; Xu, Qian

    2017-09-01

    Omnidirectional (or "360 degree") video, representing a panoramic view of a spherical 360° ×180° scene, can be encoded using conventional video compression standards, once it has been projection mapped to a 2D rectangular format. Equirectangular projection format is currently used for mapping 360 degree video to a rectangular representation for coding using HEVC/JEM. However, video in the top and bottom regions of the image, corresponding to the "north pole" and "south pole" of the spherical representation, is significantly warped. We propose to perform spherical rotation of the input video prior to HEVC/JEM encoding in order to improve the coding efficiency, and to signal parameters in a supplemental enhancement information (SEI) message that describe the inverse rotation process recommended to be applied following HEVC/JEM decoding, prior to display. Experiment results show that up to 17.8% bitrate gain (using the WS-PSNR end-to-end metric) can be achieved for the Chairlift sequence using HM16.15 and 11.9% gain using JEM6.0, and an average gain of 2.9% for HM16.15 and 2.2% for JEM6.0.

  5. Optical performances of the FM JEM-X masks

    NASA Astrophysics Data System (ADS)

    Reglero, V.; Rodrigo, J.; Velasco, T.; Gasent, J. L.; Chato, R.; Alamo, J.; Suso, J.; Blay, P.; Martínez, S.; Doñate, M.; Reina, M.; Sabau, D.; Ruiz-Urien, I.; Santos, I.; Zarauz, J.; Vázquez, J.

    2001-09-01

    The JEM-X Signal Multiplexing Systems are large HURA codes "written" in a pure tungsten plate 0.5 mm thick. 24.247 hexagonal pixels (25% open) are spread over a total area of 535 mm diameter. The tungsten plate is embedded in a mechanical structure formed by a Ti ring, a pretensioning system (Cu-Be) and an exoskeleton structure that provides the required stiffness. The JEM-X masks differ from the SPI and IBIS masks on the absence of a code support structure covering the mask assembly. Open pixels are fully transparent to X-rays. The scope of this paper is to report the optical performances of the FM JEM-X masks defined by uncertainties on the pixel location (centroid) and size coming from the manufacturing and assembly processes. Stability of the code elements under thermoelastic deformations is also discussed. As a general statement, JEM-X Mask optical properties are nearly one order of magnitude better than specified in 1994 during the ESA instrument selection.

  6. Nuclear inner membrane fusion facilitated by yeast Jem1p is required for spindle pole body fusion but not for the first mitotic nuclear division during yeast mating.

    PubMed

    Nishikawa, Shuh-ichi; Hirata, Aiko; Endo, Toshiya

    2008-11-01

    During mating of budding yeast, Saccharomyces cerevisiae, two haploid nuclei fuse to produce a diploid nucleus. The process of nuclear fusion requires two J proteins, Jem1p in the endoplasmic reticulum (ER) lumen and Sec63p, which forms a complex with Sec71p and Sec72p, in the ER membrane. Zygotes of mutants defective in the functions of Jem1p or Sec63p contain two haploid nuclei that were closely apposed but failed to fuse. Here we analyzed the ultrastructure of nuclei in jem1 Delta and sec71 Delta mutant zygotes using electron microscope with the freeze-substituted fixation method. Three-dimensional reconstitution of nuclear structures from electron microscope serial sections revealed that Jem1p facilitates nuclear inner-membrane fusion and spindle pole body (SPB) fusion while Sec71p facilitates nuclear outer-membrane fusion. Two haploid SPBs that failed to fuse could duplicate, and mitotic nuclear division of the unfused haploid nuclei started in jem1 Delta and sec71 Delta mutant zygotes. This observation suggests that nuclear inner-membrane fusion is required for SPB fusion, but not for SPB duplication in the first mitotic cell division.

  7. Beyond the job exposure matrix (JEM): the task exposure matrix (TEM).

    PubMed

    Benke, G; Sim, M; Fritschi, L; Aldred, G

    2000-09-01

    The job exposure matrix (JEM) has been employed to assign cumulative exposure to workers in many epidemiological studies. In these studies, where quantitative data are available, all workers with the same job title and duration are usually assigned similar cumulative exposures, expressed in mgm(-3)xyears. However, if the job is composed of multiple tasks, each with its own specific exposure profile, then assigning all workers within a job the same mean exposure can lead to misclassification of exposure. This variability of exposure within job titles is one of the major weaknesses of JEMs. A method is presented for reducing the variability in the JEM methodology, which has been called the task exposure matrix (TEM). By summing the cumulative exposures of a worker over all the tasks worked within a job title, it is possible to address the variability of exposure within the job title, and reduce possible exposure misclassification. The construction of a TEM is outlined and its application in the context of a study in the primary aluminium industry is described. The TEM was found to assign significantly different cumulative exposures to the majority of workers in the study, compared with the JEM and the degree of difference in cumulative exposure between the JEM and the TEM varied greatly between contaminants.

  8. A regenerable carbon dioxide removal and oxygen recovery system for the Japanese Experiment Module.

    PubMed

    Otsuji, K; Hirao, M; Satoh, S

    1987-01-01

    The Japanese Space Station Program is now under Phase B study by the National Space Development Agency of Japan in participation with the U.S. Space Station Program. A Japanese Space Station participation will be a dedicated pressurized module to be attached to the U.S. Space Station, and is called Japanese Experiment Module (JEM). Astronaut scientists will conduct various experimental operations there. Thus an environment control and life support system is required. Regenerable carbon dioxide removal and collection technique as well as oxygen recovery technique has been studied and investigated for several years. A regenerable carbon dioxide removal subsystem using steam desorbed solid amine and an oxygen recovery subsystem using Sabatier methane cracking have a good possibility for the application to the Japanese Experiment Module. Basic performance characteristics of the carbon dioxide removal and oxygen recovery subsystem are presented according to the results of a fundamental performance test program. The trace contaminant removal process is also investigated and discussed. The solvent recovery plant for the regeneration of various industrial solvents, such as hydrocarbons, alcohols and so on, utilizes the multi-bed solvent adsorption and steam desorption process, which is very similar to the carbon dioxide removal subsystem. Therefore, to develop essential components including adsorption tank (bed), condenser. process controller and energy saving system, the technology obtained from the experience to construct solvent recovery plant can be easily and effectively applicable to the carbon dioxide removal subsystem. The energy saving efficiency is evaluated for blower power reduction, steam reduction and waste heat utilization technique. According to the above background, the entire environment control and life support system for the Japanese Experiment Module including the carbon dioxide removal and oxygen recovery subsystem is evaluated and proposed.

  9. A review of job-exposure matrix methodology for application to workers exposed to radiation from internally deposited plutonium or other radioactive materials.

    PubMed

    Liu, Hanhua; Wakeford, Richard; Riddell, Anthony; O'Hagan, Jacqueline; MacGregor, David; Agius, Raymond; Wilson, Christine; Peace, Mark; de Vocht, Frank

    2016-03-01

    Any potential health effects of radiation emitted from radionuclides deposited in the bodies of workers exposed to radioactive materials can be directly investigated through epidemiological studies. However, estimates of radionuclide exposure and consequent tissue-specific doses, particularly for early workers for whom monitoring was relatively crude but exposures tended to be highest, can be uncertain, limiting the accuracy of risk estimates. We review the use of job-exposure matrices (JEMs) in peer-reviewed epidemiological and exposure assessment studies of nuclear industry workers exposed to radioactive materials as a method for addressing gaps in exposure data, and discuss methodology and comparability between studies. We identified nine studies of nuclear worker cohorts in France, Russia, the USA and the UK that had incorporated JEMs in their exposure assessments. All these JEMs were study or cohort-specific, and although broadly comparable methodologies were used in their construction, this is insufficient to enable the transfer of any one JEM to another study. Moreover there was often inadequate detail on whether, or how, JEMs were validated. JEMs have become more detailed and more quantitative, and this trend may eventually enable better comparison across, and the pooling of, studies. We conclude that JEMs have been shown to be a valuable exposure assessment methodology for imputation of missing exposure data for nuclear worker cohorts with data not missing at random. The next step forward for direct comparison or pooled analysis of complete cohorts would be the use of transparent and transferable methods.

  10. Evaluation of the Validity of Job Exposure Matrix for Psychosocial Factors at Work

    PubMed Central

    Solovieva, Svetlana; Pensola, Tiina; Kausto, Johanna; Shiri, Rahman; Heliövaara, Markku; Burdorf, Alex; Husgafvel-Pursiainen, Kirsti; Viikari-Juntura, Eira

    2014-01-01

    Objective To study the performance of a developed job exposure matrix (JEM) for the assessment of psychosocial factors at work in terms of accuracy, possible misclassification bias and predictive ability to detect known associations with depression and low back pain (LBP). Materials and Methods We utilized two large population surveys (the Health 2000 Study and the Finnish Work and Health Surveys), one to construct the JEM and another to test matrix performance. In the first study, information on job demands, job control, monotonous work and social support at work was collected via face-to-face interviews. Job strain was operationalized based on job demands and job control using quadrant approach. In the second study, the sensitivity and specificity were estimated applying a Bayesian approach. The magnitude of misclassification error was examined by calculating the biased odds ratios as a function of the sensitivity and specificity of the JEM and fixed true prevalence and odds ratios. Finally, we adjusted for misclassification error the observed associations between JEM measures and selected health outcomes. Results The matrix showed a good accuracy for job control and job strain, while its performance for other exposures was relatively low. Without correction for exposure misclassification, the JEM was able to detect the association between job strain and depression in men and between monotonous work and LBP in both genders. Conclusions Our results suggest that JEM more accurately identifies occupations with low control and high strain than those with high demands or low social support. Overall, the present JEM is a useful source of job-level psychosocial exposures in epidemiological studies lacking individual-level exposure information. Furthermore, we showed the applicability of a Bayesian approach in the evaluation of the performance of the JEM in a situation where, in practice, no gold standard of exposure assessment exists. PMID:25268276

  11. Impact of aggregating exposure information from cases and controls when building a population-based job-exposure matrix from past expert evaluations.

    PubMed

    Kirkham, Tracy L; Siemiatycki, Jack; Labrèche, France; Lavoué, Jérôme

    2016-07-01

    To assess whether the inclusion of data from cases would bias a job-exposure matrix (JEM), we evaluated whether exposures were systematically different between cases and controls from a large historical case-control study. Data included 10 381 jobs assessed for occupational exposure to 294 agents within a lung cancer case-control study. For each sex, 1 JEM was developed from case jobs, and 1 from control jobs: with occupation (four-digit occupational codes), time period (1945-1959, 1960-1984, 1985-1995) and agent axes. We estimated concordance in exposure status (defined as probability of exposure threshold ≥5%) and exposure metrics of probability and intensity of exposure, between the 2 JEMs. Of all hypothetical occupation-period-agent combinations, most had no or few observations. Among males there were 8136 common cells (24-occupational codes, 3-periods, 226-agents), containing sufficient observations for comparison with 92% concordance in exposure status; discordance was equally likely to be towards cases or controls. Females had 1710 common cells (9-occupational codes, 3-periods, 114-agents) with 93% concordance in exposure status; discordant cells were more likely to reflect greater exposure among cases. Among concordantly exposed cells, probability and intensity of exposures were highly correlated between the case JEM and control JEM (Kendall τ>0.50), and absolute differences were small (median difference in probability <1.5%, median ratio in intensity=1.00) for both sexes. Agreement between the case JEM and control JEM was high, suggesting that aggregating the case and control information in our study into a single JEM is justifiable given the benefits of increased sample size. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Microbolometer characterization with the electronics prototype of the IRCAM for the JEM-EUSO mission

    NASA Astrophysics Data System (ADS)

    Martín, Yolanda; Joven, Enrique; Reyes, Marcos; Licandro, Javier; Maroto, Oscar; Díez-Merino, Laura; Tomas, Albert; Carbonell, Jordi; Morales de los Ríos, J. A.; del Peral, Luis; Rodríguez-Frías, M. D.

    2014-08-01

    JEM-EUSO is a space observatory that will be attached to the Japanese module of the International Space Station (ISS) to observe the UV photon tracks produced by Ultra High Energy Cosmic Rays (UHECR) interacting with atmospheric nuclei. The observatory comprises an Atmospheric Monitoring System (AMS) to gather data about the status of the atmosphere, including an infrared camera (IRCAM) for cloud coverage and cloud top height detection. This paper describes the design and characterization tests of IRCAM, which is the responsibility of the Spanish JEM-EUSO Consortium. The core of IRCAM is a 640x480 microbolometer array, the ULIS 04171, sensitive to radiation in the range 7 to 14 microns. The microbolometer array has been tested using the Front End Electronics Prototype (FEEP). This custom designed electronics corresponds to the Breadboard Model, a design built to verify the camera requirements in the laboratory. The FEEP controls the configuration of the microbolometer, digitizes the detector output, sends data to the Instrument Control Unit (ICU), and controls the microbolometer temperature to a 10 mK stability. Furthermore, the FEEP allows IRCAM to preprocess images by the addition of a powerful FPGA. This prototype has been characterized in the laboratories of Instituto de Astrofisica de Canarias (IAC). Main results, including detector response as a function of the scene temperature, NETD and Non-Uniformity Correction (NUC) are shown. Results about thermal resolution meet the system requirements with a NETD lower than 1K including the narrow band filters which allow us to retrieve the clouds temperature using stereovision algorithms.

  13. Estimation of the IC to CG Ratio Using JEM-GLIMS and Ground-based Lightning Network Data

    NASA Astrophysics Data System (ADS)

    Bandholnopparat, K.; Sato, M.; Takahashi, Y.; Adachi, T.; Ushio, T.

    2017-12-01

    The ratio between intracloud (IC) discharge and cloud-to-ground (CG) discharge, which is denoted by Z, is the important parameter for the studies on the climatological differences of thunderstorm structures and for the quantitative evaluation of lightning contributions to the global electric circuit. However, the latitudinal, regional, and seasonal dependences of Z-value are not fully clarified. The purposes of this study are (i) to develop new methods to identify IC and CG discharges using optical data obtained by the Global Lightning and Sprite Measurements on Japanese Experiment Module (JEM-GLIMS) from space and ground-based lightning data, (ii) to estimate Z-value and its latitudinal, regional, and seasonal dependences. As a first step, we compared the JEM-GLIMS data to the ground-based lightning data obtained by JLDN, NLDN, WWLLN, and GEON in order to distinguish the lightning discharge type detected by JEM-GLIMS. As a next step, we have calculated intensity ratios between the blue and red PH channels, that is, PH2(337 nm)/PH3(762 nm), PH5(316 nm)/PH3, PH6(392 nm)/PH3, PH2/PH4(599-900 nm), PH5/PH4, and PH6/PH4 for each lightning event. From these analyses, it is found that 447 and 454 of 8355 lightning events were identified to be CG and IC discharges, respectively. It is also found that the PH intensity ratio of IC discharges is clearly higher than that of CG discharges. In addition, the difference of the PH2/PH3, PH2/PH4, and PH6/PH4 ratio between IC and CG cases is relatively large, which means these three ratios are the useful proxy to classify the discharge types for other 7454 lightning events. Finally, the estimated Z-value varies from 0.18 - 0.84 from the equator to the higher latitude. The decrease of the Z-value from the equator to the higher latitude is confirmed both in the northern and the southern hemispheres. Although this latitudinal dependence of the Z-value is similar to previous studies, i.e., Boccippio et al. (2001), the estimated absolute Z-value is smaller than that in previous studies. The reason of the smaller absolute Z-value may be because JEM-GLIMS used the high threshold for the event triggering and missed many lightning events having lower optical energies. At the presentation, we will show the regional and seasonal dependences of the Z-value in detail.

  14. Measurement of TeV electrons on ISS/JEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torii, S.; Tateyama, N.; Tamura, T.

    1999-01-22

    By using the JEM (Japanese Experiment Module) facility on ISS, we are planning to carry out a precise measurement of the flux and energy spectrum of cosmic-ray electrons of 10 GeV to several TeV. Since the electrons over several 100 GeV could be contributed only from the nearby sources within a distance less than 1 kpc, it is expected in the high energy region that the energy spectrum has a structural component and the distribution of the arrival directions presents anisotropy. By helping to localize and identify the nearest cosmic ray sources, these data should help to resolve the long-termmore » puzzle. The instrument used for the observation is a kind of scintilating-fiber/lead imaging calorimeter that has been used for the balloon observations. We are developing an improved detector having a geometrical factor of 0.5 m{sup 2}sr and a higher rejection power against the background protons ({>=}10{sup 4}). It is expected to observe nearly 500 electrons over 1 TeV during the one-year observation.« less

  15. Mini-EUSO: A Precursor Mission on the International Space Station for the Observation of Atmosphere and Earth in the UV Light

    NASA Astrophysics Data System (ADS)

    Ricci, Marco

    For any experiment aiming at the observation of Ultra High Energy Cosmic Rays (UHECRs) from space, one key measurement is related to the UV emissions produced in the Earth's atmosphere. In view of the planned missions under study (KLYPVE-EUSO, JEM-EUSO, EUSO-FF) at the International Space Station (ISS) and on board of free-flyer satellites, a small, compact UV telescope, Mini-EUSO, is being developed by the JEM-EUSO International Collaboration to be placed at the UV-transparent, nadir looking window of the Russian module of the ISS. In addition to the main purpose of mapping the Earth in the UV range (300-400 nm), Mini-EUSO will also perform studies of atmospheric phenomena, observation of meteors, strange quark matter search and space debris tracking. It will as well enhance the technological readiness level of the EUSO concept and instruments. Mini-EUSO is a mission approved and selected by the Italian Space Agency (ASI) and, under the name "UV atmosphere", by the Russian Space Agency Roscosmos.

  16. KSC-08pd2916

    NASA Image and Video Library

    2008-09-24

    CAPE CANAVERAL, Fla. - On the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, ramps are in place for the offloading of the primary cargo from the Russian Antonov AH-124-100 cargo airplane. The plane carries the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station: the Kibo Exposed Facility, or EF, and the Experiment Logistics Module Exposed Section, or ELM-ES. The EF provides a multipurpose platform where science experiments can be deployed and operated in the exposed environment. The payloads attached to the EF can be exchanged or retrieved by Kibo's robotic arm, the JEM Remote Manipulator System. The ELM-ES will be attached to the end of the EF to provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be detached from the EF and returned to the ground aboard the space shuttle. The two JEM components will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch in May 2009. Photo credit: NASA/Jim Grossmann

  17. KSC-08pd2915

    NASA Image and Video Library

    2008-09-24

    CAPE CANAVERAL, Fla. - On the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, workers remove material from a cargo box before offloading the primary cargo from the Russian Antonov AH-124-100 cargo airplane. The plane carries the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station: the Kibo Exposed Facility, or EF, and the Experiment Logistics Module Exposed Section, or ELM-ES. The EF provides a multipurpose platform where science experiments can be deployed and operated in the exposed environment. The payloads attached to the EF can be exchanged or retrieved by Kibo's robotic arm, the JEM Remote Manipulator System. The ELM-ES will be attached to the end of the EF to provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be detached from the EF and returned to the ground aboard the space shuttle. The two JEM components will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch in May 2009. Photo credit: NASA/Jim Grossmann

  18. KSC-08pd2914

    NASA Image and Video Library

    2008-09-24

    CAPE CANAVERAL, Fla. - On the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, equipment is removed from the Russian Antonov AH-124-100 cargo airplane to facilitate offloading of the primary cargo, the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station. The components are the Kibo Exposed Facility, or EF, and the Experiment Logistics Module Exposed Section, or ELM-ES. The EF provides a multipurpose platform where science experiments can be deployed and operated in the exposed environment. The payloads attached to the EF can be exchanged or retrieved by Kibo's robotic arm, the JEM Remote Manipulator System. The ELM-ES will be attached to the end of the EF to provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be detached from the EF and returned to the ground aboard the space shuttle. The two JEM components will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch in May 2009. Photo credit: NASA/Jim Grossmann

  19. Parmitano in Japanese Experiment Module (JEM)

    NASA Image and Video Library

    2013-07-23

    ISS036-E-024483 (23 July 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, holds a bag while performing evening prep work in the Kibo laboratory of the International Space Station. Parmitano is wearing a Thermolab Double Sensor on his forehead which is used on the Circadian Rhythms Experiment. This experiment examines the hypothesis that long-term spaceflights significantly affect the synchronization of the circadian rhythms in human beings due to changes of a non-24 hour light-dark cycle.

  20. Comparison of expert and job-exposure matrix-based retrospective exposure assessment of occupational carcinogens in The Netherlands Cohort Study.

    PubMed

    Offermans, Nadine S M; Vermeulen, Roel; Burdorf, Alex; Peters, Susan; Goldbohm, R Alexandra; Koeman, Tom; van Tongeren, Martie; Kauppinen, T; Kant, Ijmert; Kromhout, Hans; van den Brandt, Piet A

    2012-10-01

    Reliable retrospective exposure assessment continues to be a challenge in most population-based studies. Several methodologies exist for estimating exposures retrospectively, of which case-by-case expert assessment and job-exposure matrices (JEMs) are commonly used. This study evaluated the reliability of exposure estimates for selected carcinogens obtained through three JEMs by comparing the estimates with case-by-case expert assessment within the Netherlands Cohort Study (NLCS). The NLCS includes 58,279 men aged 55-69 years at enrolment in 1986. For a subcohort of these men (n=1630), expert assessment is available for exposure to asbestos, polycyclic aromatic hydrocarbons (PAHs) and welding fumes. Reliability of the different JEMs (DOMJEM (asbestos, PAHs), FINJEM (asbestos, PAHs and welding fumes) and Asbestos JEM (asbestos) was determined by assessing the agreement between these JEMs and the expert assessment. Expert assessment revealed the lowest prevalence of exposure for all three exposures (asbestos 9.3%; PAHs 5.3%; welding fumes 11.7%). The DOMJEM showed the highest level of agreement with the expert assessment for asbestos and PAHs (κs=0.29 and 0.42, respectively), closely followed by the FINJEM. For welding fumes, concordance between the expert assessment and FINJEM was high (κ=0.70). The Asbestos JEM showed poor agreement with the expert asbestos assessment (κ=0.10). This study shows case-by-case expert assessment to result in the lowest prevalence of occupational exposure in the NLCS. Furthermore, the DOMJEM and FINJEM proved to be rather similar in agreement when compared with the expert assessment. The Asbestos JEM appeared to be less appropriate for use in the NLCS.

  1. Incident CTS in a large pooled cohort study: associations obtained by a Job Exposure Matrix versus associations obtained from observed exposures.

    PubMed

    Dale, Ann Marie; Ekenga, Christine C; Buckner-Petty, Skye; Merlino, Linda; Thiese, Matthew S; Bao, Stephen; Meyers, Alysha Rose; Harris-Adamson, Carisa; Kapellusch, Jay; Eisen, Ellen A; Gerr, Fred; Hegmann, Kurt T; Silverstein, Barbara; Garg, Arun; Rempel, David; Zeringue, Angelique; Evanoff, Bradley A

    2018-03-29

    There is growing use of a job exposure matrix (JEM) to provide exposure estimates in studies of work-related musculoskeletal disorders; few studies have examined the validity of such estimates, nor did compare associations obtained with a JEM with those obtained using other exposures. This study estimated upper extremity exposures using a JEM derived from a publicly available data set (Occupational Network, O*NET), and compared exposure-disease associations for incident carpal tunnel syndrome (CTS) with those obtained using observed physical exposure measures in a large prospective study. 2393 workers from several industries were followed for up to 2.8 years (5.5 person-years). Standard Occupational Classification (SOC) codes were assigned to the job at enrolment. SOC codes linked to physical exposures for forceful hand exertion and repetitive activities were extracted from O*NET. We used multivariable Cox proportional hazards regression models to describe exposure-disease associations for incident CTS for individually observed physical exposures and JEM exposures from O*NET. Both exposure methods found associations between incident CTS and exposures of force and repetition, with evidence of dose-response. Observed associations were similar across the two methods, with somewhat wider CIs for HRs calculated using the JEM method. Exposures estimated using a JEM provided similar exposure-disease associations for CTS when compared with associations obtained using the 'gold standard' method of individual observation. While JEMs have a number of limitations, in some studies they can provide useful exposure estimates in the absence of individual-level observed exposures. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Development of a Job-Task-Exposure Matrix to assess occupational exposure to disinfectants among U.S. nurses

    PubMed Central

    Quinot, C; Dumas, O; Henneberger, PK; Varraso, R; Wiley, AS; Speizer, FE; Goldberg, M; Zock, JP; Camargo, CA; Le Moual, N

    2016-01-01

    Objectives Occupational exposure to disinfectants is associated with work-related asthma, especially in healthcare workers. However, little is known about the specific products involved. To evaluate disinfectant exposures, we designed job-exposure (JEM) and job-task-exposure (JTEM) matrices, which are thought to be less prone to differential misclassification bias than self-reported exposure. We then compared the three assessment methods: self-reported exposure, JEM, and JTEM. Methods Disinfectant use was assessed by an occupational questionnaire in 9,073 U.S. female registered nurses without asthma, aged 49–68 years, drawn from the Nurses’ Health Study II. A JEM was created based on self-reported frequency of use (1–3, 4–7 days/week) of 7 disinfectants and sprays in 8 nursing jobs. We then created a JTEM combining jobs and disinfection tasks to further reduce misclassification. Exposure was evaluated in 3 classes (low, medium, high) using product-specific cut-offs (e.g., <30%, 30–49.9%, ≥50%, respectively, for alcohol); the cut-offs were defined from the distribution of self-reported exposure per job/task. Results The most frequently reported disinfectants were alcohol (weekly use: 39%), bleach (22%) and sprays (20%). More nurses were classified as highly exposed by JTEM (alcohol 41%, sprays 41%, bleach 34%) than by JEM (21%, 30%, 26%, respectively). Agreement between JEM and JTEM was fair-to-moderate (kappa: 0.3–0.5) for most disinfectants. JEM and JTEM exposure estimates were heterogeneous in most nursing jobs, except in emergency room and education/administration. Conclusion The JTEM may provide more accurate estimates than the JEM, especially for nursing jobs with heterogeneous tasks. Use of the JTEM is likely to reduce exposure misclassification. PMID:27566782

  3. Evaluating Exposure-Response Associations for Non-Hodgkin Lymphoma with Varying Methods of Assigning Cumulative Benzene Exposure in the Shanghai Women's Health Study.

    PubMed

    Friesen, Melissa C; Bassig, Bryan A; Vermeulen, Roel; Shu, Xiao-Ou; Purdue, Mark P; Stewart, Patricia A; Xiang, Yong-Bing; Chow, Wong-Ho; Ji, Bu-Tian; Yang, Gong; Linet, Martha S; Hu, Wei; Gao, Yu-Tang; Zheng, Wei; Rothman, Nathaniel; Lan, Qing

    2017-01-01

    To provide insight into the contributions of exposure measurements to job exposure matrices (JEMs), we examined the robustness of an association between occupational benzene exposure and non-Hodgkin lymphoma (NHL) to varying exposure assessment methods. NHL risk was examined in a prospective population-based cohort of 73087 women in Shanghai. A mixed-effects model that combined a benzene JEM with >60000 short-term, area benzene inspection measurements was used to derive two sets of measurement-based benzene estimates: 'job/industry-specific' estimates (our presumed best approach) were derived from the model's fixed effects (year, JEM intensity rating) and random effects (occupation, industry); 'calibrated JEM' estimates were derived using only the fixed effects. 'Uncalibrated JEM' (using the ordinal JEM ratings) and exposure duration estimates were also calculated. Cumulative exposure for each subject was calculated for each approach based on varying exposure definitions defined using the JEM's probability ratings. We examined the agreement between the cumulative metrics and evaluated changes in the benzene-NHL associations. For our primary exposure definition, the job/industry-specific estimates were moderately to highly correlated with all other approaches (Pearson correlation 0.61-0.89; Spearman correlation > 0.99). All these metrics resulted in statistically significant exposure-response associations for NHL, with negligible gain in model fit from using measurement-based estimates. Using more sensitive or specific exposure definitions resulted in elevated but non-significant associations. The robust associations observed here with varying benzene assessment methods provide support for a benzene-NHL association. While incorporating exposure measurements did not improve model fit, the measurements allowed us to derive quantitative exposure-response curves. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2017.

  4. Effects of Cosmic Ray Interactions with the Focal Surface of JEM-EUSO

    NASA Astrophysics Data System (ADS)

    Rowley, C.; Adams, J. H.; Bonemente, M.

    2013-12-01

    The JEM-EUSO mission promises an entirely new perspective on ultra high energy cosmic ray (UHECR) detection. Bound for the International Space Station, its field of view is far greater than that of ground based instruments. However, being space-based, it is itself subject to cosmic ray (CR) impacts (abet much lower energy ones). In this poster, we discuss the effects this may have on the triggering algorithms implemented on JEM-EUSO. We conclude that the mean photoelectron rate due to CRs is 6.73×10-3 s-1 and that the fractional number of triggers per Gate Timing Unit (GTU) is 4.34×10-10 GTU-1 at a trigger level of 1 photoelectron. This is small and will have little effect on the triggering of JEM-EUSO.

  5. Matgéné: a program to develop job-exposure matrices in the general population in France.

    PubMed

    Févotte, Joëlle; Dananché, Brigitte; Delabre, Laurène; Ducamp, Stephane; Garras, Loïc; Houot, Marie; Luce, Danièle; Orlowski, Ewa; Pilorget, Corinne; Lacourt, Aude; Brochard, Patrick; Goldberg, Marcel; Imbernon, Ellen

    2011-10-01

    Matgéné is a program to develop job-exposure matrices (JEMs) adapted to the general population in France for the period since 1950. The aim is to create retrospective exposure assessment tools for estimating the prevalence of occupational exposure to various agents that can then be correlated to health-related parameters. JEMs were drawn up by a team of six industrial hygienists who based their assessments on available occupational measurement, economic and statistical data, and several thousand job descriptions from epidemiological studies performed in France since 1984. Each JEM is specific to one agent, assessing exposure for a set of homogeneous combinations (occupation × activity × period) according to two occupational classifications (ISCO 1968 and PCS 1994) and one economic activities classification (NAF 2000). The cells of the JEM carry an estimate of the probability and level of exposure. Level is estimated by the duration and intensity of exposure-linked tasks or by description of the tasks when exposure measurement data are lacking for the agent in question. The JEMs were applied to a representative sample of the French population in 2007, and prevalence for each exposure was estimated in various population groups. All documents and data are available on a dedicated website. By the end of 2010, 18 JEMs have been developed and eight are under development, concerning a variety of chemical agents: organic and mineral dust, mineral fibers, and solvents. By implementation in the French population, exposure prevalences were calculated at different dates and for complete careers, and attributable risk fractions were estimated for certain pathologies. Some of these results were validated by comparison with those of other programs. Initial Matgéné JEMs results are in agreement with the French and international literature, thus validating the methodology. Exposure estimates precision, however, vary between agents and according to the amount of exposure measurement data available. These JEMs are important epidemiological tools, and improving their quality will require investment in occupational health data harvesting, especially in the case of low-level exposures.

  6. Calibrating a population-based job-exposure matrix using inspection measurements to estimate historical occupational exposure to lead for a population-based cohort in Shanghai, China

    PubMed Central

    Koh, Dong-Hee; Bhatti, Parveen; Coble, Joseph B.; Stewart, Patricia A; Lu, Wei; Shu, Xiao-Ou; Ji, Bu-Tian; Xue, Shouzheng; Locke, Sarah J.; Portengen, Lutzen; Yang, Gong; Chow, Wong-Ho; Gao, Yu-Tang; Rothman, Nathaniel; Vermeulen, Roel; Friesen, Melissa C.

    2012-01-01

    The epidemiologic evidence for the carcinogenicity of lead is inconsistent and requires improved exposure assessment to estimate risk. We evaluated historical occupational lead exposure for a population-based cohort of women (n=74,942) by calibrating a job-exposure matrix (JEM) with lead fume (n=20,084) and lead dust (n=5,383) measurements collected over four decades in Shanghai, China. Using mixed-effect models, we calibrated intensity JEM ratings to the measurements using fixed-effects terms for year and JEM rating. We developed job/industry-specific estimates from the random-effects terms for job and industry. The model estimates were applied to subjects’ jobs when the JEM probability rating was high for either job or industry; remaining jobs were considered unexposed. The models predicted that exposure increased monotonically with JEM intensity rating and decreased 20–50-fold over time. The cumulative calibrated JEM estimates and job/industry-specific estimates were highly correlated (Pearson correlation=0.79–0.84). Overall, 5% of the person-years and 8% of the women were exposed to lead fume; 2% of the person-years and 4% of the women were exposed to lead dust. The most common lead-exposed jobs were manufacturing electronic equipment. These historical lead estimates should enhance our ability to detect associations between lead exposure and cancer risk in future epidemiologic analyses. PMID:22910004

  7. Safety Assessment of Multi Purpose Small Payload Rack(MSPR)

    NASA Astrophysics Data System (ADS)

    Mizutani, Yoshinobu; Takada, Satomi; Murata, Kosei; Ozawa, Daisaku; Kobayashi, Ryoji; Nakamura, Yasuhiro

    2010-09-01

    We are reporting summary of preliminary safety assessment for Multi Purpose Small Payload Rack(MSPR), which is one of the micro gravity experiment facilities that are being developed for the 2nd phase JEM utilization(JEM: Japanese Experiment Module) that will be launched on H-II Transfer Vehicle(HTV) 2nd flight in 2011. MSPR is used for multi-purpose micro-g experiment providing experimental spaces and work stations. MSPR has three experimental spaces; first, there is a space called Work Volume(WV) with capacity volume of approximately 350 litters, in which multiple resources including electricity, communication, and moving image functions can be used. Within this space, installation of devices can be done by simple, prompt attachment by Velcro and pins with high degree of flexibility. Second, there is Small Experiment Area(SEA), with capacity volume of approximately 70 litters, in which electricity, communication, and moving image functions can also be used in the same way as WV. These spaces protect experiment devices and specimens from contingent loads by the crewmembers. Third, there is Work Bench with area of 0.5 square meters, on which can be used for maintenance, inspection and data operations of installed devices, etc. This bench can be stored in the rack during contingency. Chamber for Combustion Experiment(CCE) that is planned to be installed in WV is a pressure-resistant experimental container that can be used to seal hazardous materials from combustion experiments. This CCE has double sealing design in chamber itself, which resist gas leakage under normal the temperature and pressure. Electricity, communication, moving image function can be used in the same way as WV. JAXA Phase 2 Safety Review Panel(SRP) has been held in April, 2010. For safety analysis of MSPR, hazards were identified based on Fault Tree Analysis methodology and then these hazards were classified into either eight ISS standard-type hazards or eight unique-type hazards that requires special controls based on ISS common safety assessment methodology. Safety evaluation results are reported in the Safety Assessment Report(SAR) 1). Regarding structural failure, unique hazards are especially evaluated considering not only the tolerance for launch load but also load by crewmembers or orbital loads. Regarding electrical shock, electricity design up to secondary power is evaluated in unique hazard from a view point of Electrical design suitable for high voltage(32VDC or more) circuit. Regarding rupture/leakage of pressure system, hazards of fuel supply line, waste line for combustion gas, and pressure system including CCE are evaluated. Also evaluation for contamination due to hazardous gas leakage from CCE is conducted. External propagation of fire from CCE is also evaluated. In this report, we will show the overview of the result of safety assessment and future plan toward critical design phase activity.

  8. The Data Processor of the JEM-EUSO pathfinders

    NASA Astrophysics Data System (ADS)

    Scotti, V.; Osteria, G.

    2014-06-01

    JEM-EUSO is a wide-angle refractive UV telescope being proposed for attachment to the Japanese Experiment Module on ISS. The main goal of the mission is to study Extreme Energy Cosmic Rays. Two pathfinder mission are now in progress: EUSO-TA and EUSO-Balloon. The EUSO-TA project foresees the installation of a telescope prototype in the Telescope Array site. The aim of this project is to calibrate the telescope with the TA fluorescence detector. An initial run of one year starting from 2013 is foreseen. EUSO-Balloon is a pathfinder mission in which a prototype telescope will be mounted on a stratospheric balloon. The main aim of this mission is to perform a end-to-end test of all the key technologies and instrumentation of JEM-EUSO detectors and to prove the global detection chain. EUSO-Balloon will measure the UV background fundamental for the development of the simulations. EUSO-Balloon has the potential to detect Extensive Air Showers from above, paving the way for any future space-based EECR observatory. We will present the Data Processor of the pathfinders. The DP is the component of the Electronics System which performs data management and instrument control. The DP controls front-end electronics, performs 2nd level trigger filtering, tags events with arrival time and payload position through a GPS system, manages mass memory for data storage, measures live and dead time of the telescope, provides signals for time synchronization of the event, performs housekeeping monitor and handles interface to the telemetry system. We will describe the main components of the DP, the state-of-the-art and the results of the tests carried out.

  9. An Overview of Three-year JEM-GLIMS Nadir Observations of Lightning and TLEs

    NASA Astrophysics Data System (ADS)

    Sato, M.; Ushio, T.; Morimoto, T.; Adachi, T.; Kikuchi, H.; Suzuki, M.; Yamazaki, A.; Takahashi, Y.; Inan, U.; Linscott, I.; Hobara, Y.

    2015-12-01

    JEM-GLIMS nadir observations of lightning and TLEs at the ISS started from November 2012 and successfully ended on August 2015. For three-year observation period, JEM-GLIMS succeeded in detecting over 8,000 lightning events and 670 TLEs. The detected optical emissions of sprites showed clear horizontal displacement with the range of 10-20 km from the peak location of the +CG emissions and from the +CG locations detected by NLDN and WWLLN. Using VITF electric field waveform data, source locations of VHF pulses excited by the parent CG discharges are estimated. It is found that the possible VHF source locations were mostly located within the area of the parent lightning emissions. These facts may imply that the center region of the neutralized charge by CG discharges in the thundercloud located near the return stroke point and that the some seed conditions were established in advance at the sprite location before the occurrence of sprites. The global occurrence distributions and rates of lightning discharges and TLEs are also estimated. The estimated mean global occurrence rate of lightning discharges is ~1.5 events/s, which is smaller number than that derived from MicroLab-1/OTD and TRMM/LIS measurements. This may be originated in the fact that JEM-GLISM detected only intense lightning optical events due to the high threshold level for the event triggering. To the contrary, the estimated mean global occurrence rate of TLEs is ~9.8 events/min, which is two times higher than the ISUAL result. It is likely that JEM-GLIMS could detect dimmer optical emissions of TLEs than ISUAL since the distance between the JEM-GLIMS instruments and TLEs is much closer. At the presentation, we will summarize the results derived from three-year JEM-GLIMS nadir observations. We will discuss possible occurrence conditions of sprites, properties of global occurrence rates of lightning and TLEs, and their LT dependences more in detail.

  10. Update of an occupational asthma-specific job exposure matrix to assess exposure to 30 specific agents.

    PubMed

    Le Moual, Nicole; Zock, Jan-Paul; Dumas, Orianne; Lytras, Theodore; Andersson, Eva; Lillienberg, Linnéa; Schlünssen, Vivi; Benke, Geza; Kromhout, Hans

    2018-07-01

    We aimed to update an asthmagen job exposure matrix (JEM) developed in the late 1990s. Main reasons were: the number of suspected and recognised asthmagens has since tripled; understanding of the aetiological role of irritants in asthma and methodological insights in application of JEMs have emerged in the period. For each agent of the new occupational asthma-specific JEM (OAsJEM), a working group of three experts out of eight evaluated exposure for each International Standard Classification of Occupations, 1988 (ISCO-88) job code into three categories: 'high' (high probability of exposure and moderate-to-high intensity), 'medium' (low-to-moderate probability or low intensity) and 'unexposed'. Within a working group, experts evaluated exposures independently from each other. If expert assessments were inconsistent the final decision was taken by consensus. Specificity was favoured over sensitivity, that is, jobs were classified with high exposure only if the probability of exposure was high and the intensity moderate-to-high. In the final review, all experts checked assigned exposures and proposed/improved recommendations for expert re-evaluation after default application of the JEM. The OAsJEM covers exposures to 30 sensitisers/irritants, including 12 newly recognised, classified into seven broad groups. Initial agreement between the three experts was mostly fair to moderate (κ values 0.2-0.5). Out of 506 ISCO-88 codes, the majority was classified as unexposed (from 82.6% (organic solvents) to 99.8% (persulfates)) and a minority as 'high-exposed' (0.2% (persulfates) to 2.6% (organic solvents)). The OAsJEM developed to improve occupational exposure assessment may improve evaluations of associations with asthma in epidemiological studies and contribute to assessment of the burden of work-related asthma. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Overview of Doing Business with SPAWAR Systems Command (SPAWAR)

    DTIC Science & Technology

    2011-08-22

    School Girls Day Out FY07 – 1 school FY08 – 34 schools FY09 – 35 schools FY10 – 47 schools Material World Modules International Autonomous Underwater...s it e , a n d a ls o f rom t h e foll o vn n g link: e-CC Self -Service News The 23rd P.nnual Na v y Gold Coast Small Business O pportunity Conf...Opportunities 1. Requirements Office: Joint Program Manager - Information Systems (JPMIS) 2. Joint Effects Model (JEM) Increment 1 Sustainment 3

  12. Laser Pulse Production for NASA's Global Ecosystem Dynamics Investigation (GEDI) Lidar

    NASA Technical Reports Server (NTRS)

    Stysley, Paul R.; Coyle, D. Barry; Clarke, Greg B.; Frese, Erich; Blalock, Gordon; Morey, Peter; Kay, Richard B.; Poulios, Demetrios; Hersh, Michael

    2016-01-01

    The Lasers and Electro-Optics Branch at Goddard Space Flight Center has been tasked with building the Lasers for the Global Ecosystems Dynamics Investigation (GEDI) Lidar Mission, to be installed on the Japanese Experiment Module (JEM) on the International Space Station (ISS). GEDI will use three NASA-developed lasers, each coupled with a Beam Dithering Unit (BDU) to produce three sets of staggered footprints on the Earth's surface to accurately measure global biomass. We will report on the design, assembly progress, test results, and delivery process of this laser system.

  13. Laser Pulse Production for NASA's Global Ecosystem Dynamics Investigation (GEDI) Lidar

    NASA Technical Reports Server (NTRS)

    Stysley, Paul R.; Coyle, D. Barry; Clarke, Greg B.; Frese, Erich; Blalock, Gordon; Morey, Peter; Kay, Richard B.; Poulios, Demetrios; Hersh, Michael

    2016-01-01

    The Lasers and Electro-Optics Branch at Goddard Space Flight Center has been tasked with building the Lasers for the Global Ecosystems Dynamics Investigation (GEDI) Lidar Mission, to be installed on the Japanese Experiment Module (JEM) on the International Space Station (ISS)1. GEDI will use three NASA-developed lasers, each coupled with a Beam Dithering Unit (BDU) to produce three sets of staggered footprints on the Earth's surface to accurately measure global biomass. We will report on the design, assembly progress, test results, and delivery process of this laser system.

  14. Meteor studies in the framework of the JEM-EUSO program

    NASA Astrophysics Data System (ADS)

    Abdellaoui, G.; Abe, S.; Acheli, A.; Adams, J. H.; Ahmad, S.; Ahriche, A.; Albert, J.-N.; Allard, D.; Alonso, G.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Aouimeur, W.; Arai, Y.; Arsene, N.; Asano, K.; Attallah, R.; Attoui, H.; Ave Pernas, M.; Bacholle, S.; Bakiri, M.; Baragatti, P.; Barrillon, P.; Bartocci, S.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, A.; Belov, K.; Benadda, B.; Benmessai, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Bisconti, F.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Boudaoud, R.; Bozzo, E.; Briggs, M. S.; Bruno, A.; Caballero, K. S.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Capel, F.; Caramete, A.; Caramete, L.; Carlson, P.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellina, A.; Castellini, G.; Catalano, C.; Catalano, O.; Cellino, A.; Chikawa, M.; Chiritoi, G.; Christl, M. J.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Di Martino, M.; Djemil, T.; Djenas, S. A.; Dulucq, F.; Dupieux, M.; Dutan, I.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Eser, J.; Fang, K.; Fenu, F.; Fernández-González, S.; Fernández-Soriano, J.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Fouka, M.; Franceschi, A.; Franchini, S.; Fuglesang, C.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; García-Ortega, E.; Garipov, G.; Gascón, E.; Geary, J.; Gelmini, G.; Genci, J.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guehaz, R.; Guzmán, A.; Hachisu, Y.; Haiduc, M.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Hidber, W.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Isgrò, F.; Itow, Y.; Jammer, T.; Joven, E.; Judd, E. G.; Jung, A.; Jochum, J.; Kajino, F.; Kajino, T.; Kalli, S.; Kaneko, I.; Kang, D.; Kanouni, F.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Kedadra, A.; Khales, H.; Khrenov, B. A.; Kim, Jeong-Sook; Kim, Soon-Wook; Kim, Sug-Whan; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lahmar, H.; Lakhdari, F.; Larsson, O.; Lee, J.; Licandro, J.; Lim, H.; López Campano, L.; Maccarone, M. C.; Mackovjak, S.; Mahdi, M.; Maravilla, D.; Marcelli, L.; Marcos, J. L.; Marini, A.; Martens, K.; Martín, Y.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Matthews, J. N.; Mebarki, N.; Medina-Tanco, G.; Mehrad, L.; Mendoza, M. A.; Merino, A.; Mernik, T.; Meseguer, J.; Messaoud, S.; Micu, O.; Mimouni, J.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Nadji, B.; Nagano, M.; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Nardelli, A.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Painter, W.; Panasyuk, M. I.; Panico, B.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perdichizzi, M.; Pérez-Grande, I.; Perfetto, F.; Peter, T.; Picozza, P.; Pierog, T.; Pindado, S.; Piotrowski, L. W.; Piraino, S.; Placidi, L.; Plebaniak, Z.; Pliego, S.; Pollini, A.; Popescu, E. M.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Rabanal, J.; Radu, A. A.; Rahmani, M.; Reardon, P.; Reyes, M.; Rezazadeh, M.; Ricci, M.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez Cano, G.; Sagawa, H.; Sahnoune, Z.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sanchez, J. C.; Sánchez, J. L.; Santangelo, A.; Santiago Crúz, L.; Sanz-Andrés, A.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Sledd, J.; Słomińska, K.; Sobey, A.; Stan, I.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tahi, H.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Talai, M. C.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Traïche, M.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Vankova, G.; Vigorito, C.; Villaseñor, L.; Vlcek, B.; von Ballmoos, P.; Vrabel, M.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J., Jr.; Weber, M.; Weigand Muñoz, R.; Weindl, A.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, S.; Young, R.; Zgura, I. S.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2017-09-01

    We summarize the state of the art of a program of UV observations from space of meteor phenomena, a secondary objective of the JEM-EUSO international collaboration. Our preliminary analysis indicates that JEM-EUSO, taking advantage of its large FOV and good sensitivity, should be able to detect meteors down to absolute magnitude close to 7. This means that JEM-EUSO should be able to record a statistically significant flux of meteors, including both sporadic ones, and events produced by different meteor streams. Being unaffected by adverse weather conditions, JEM-EUSO can also be a very important facility for the detection of bright meteors and fireballs, as these events can be detected even in conditions of very high sky background. In the case of bright events, moreover, exhibiting some persistence of the meteor train, preliminary simulations show that it should be possible to exploit the motion of the ISS itself and derive at least a rough 3D reconstruction of the meteor trajectory. Moreover, the observing strategy developed to detect meteors may also be applied to the detection of nuclearites, exotic particles whose existence has been suggested by some theoretical investigations. Nuclearites are expected to move at higher velocities than meteoroids, and to exhibit a wider range of possible trajectories, including particles moving upward after crossing the Earth. Some pilot studies, including the approved Mini-EUSO mission, a precursor of JEM-EUSO, are currently operational or in preparation. We are doing simulations to assess the performance of Mini-EUSO for meteor studies, while a few meteor events have been already detected using the ground-based facility EUSO-TA.

  15. Electric shocks at work in Europe: development of a job exposure matrix.

    PubMed

    Huss, Anke; Vermeulen, Roel; Bowman, Joseph D; Kheifets, Leeka; Kromhout, Hans

    2013-04-01

    Electric shocks have been suggested as a potential risk factor for neurological disease, in particular for amyotrophic lateral sclerosis. While actual exposure to shocks is difficult to measure, occurrence and variation of electric injuries could serve as an exposure proxy. We assessed risk of electric injury, using occupational accident registries across Europe to develop an electric shock job-exposure-matrix (JEM). Injury data were obtained from five European countries, and the number of workers per occupation and country from EUROSTAT was compiled at a 3-digit International Standard Classification of Occupations 1988 level. We pooled accident rates across countries with a random effects model and categorised jobs into low, medium and high risk based on the 75th and 90th percentile. We next compared our JEM to a JEM that classified extremely low frequency magnetic field exposure of jobs into low, medium and high. Of 116 job codes, occupations with high potential for electric injury exposure were electrical and electronic equipment mechanics and fitters, building frame workers and finishers, machinery mechanics and fitters, metal moulders and welders, assemblers, mining and construction labourers, metal-products machine operators, ships' decks crews and power production and related plant operators. Agreement between the electrical injury and magnetic field JEM was 67.2%. Our JEM classifies occupational titles according to risk of electric injury as a proxy for occurrence of electric shocks. In addition to assessing risk potentially arising from electric shocks, this JEM might contribute to disentangling risks from electric injury from those of extremely low frequency magnetic field exposure.

  16. A population-based job exposure matrix for power-frequency magnetic fields.

    PubMed

    Bowman, Joseph D; Touchstone, Jennifer A; Yost, Michael G

    2007-09-01

    A population-based job exposure matrix (JEM) was developed to assess personal exposures to power-frequency magnetic fields (MF) for epidemiologic studies. The JEM compiled 2,317 MF measurements taken on or near workers by 10 studies in the United States, Sweden, New Zealand, Finland, and Italy. A database was assembled from the original data for six studies plus summary statistics grouped by occupation from four other published studies. The job descriptions were coded into the 1980 Standard Occupational Classification system (SOC) and then translated to the 1980 job categories of the U.S. Bureau of the Census (BOC). For each job category, the JEM database calculated the arithmetic mean, standard deviation, geometric mean, and geometric standard deviation of the workday-average MF magnitude from the combined data. Analysis of variance demonstrated that the combining of MF data from the different sources was justified, and that the homogeneity of MF exposures in the SOC occupations was comparable to JEMs for solvents and particulates. BOC occupation accounted for 30% of the MF variance (p < 10(-6)), and the contrast (ratio of the between-job variance to the total of within- and between-job variances) was 88%. Jobs lacking data had their exposures inferred from measurements on similar occupations. The JEM provided MF exposures for 97% of the person-months in a population-based case-control study and 95% of the jobs on death certificates in a registry study covering 22 states. Therefore, we expect this JEM to be useful in other population-based epidemiologic studies.

  17. Development and evaluation of a tool for retrospective exposure assessment of selected endocrine disrupting chemicals and EMF in the car manufacturing industry.

    PubMed

    Mester, Birte; Schmeisser, Nils; Lünzmann, Hauke; Pohlabeln, Hermann; Langner, Ingo; Behrens, Thomas; Ahrens, Wolfgang

    2011-08-01

    A system for retrospective occupational exposure assessment combining the efficiency of a job exposure matrix (JEM) and the precision of a subsequent individual expert exposure assessment (IEEA) was developed. All steps of the exposure assessment were performed by an interdisciplinary expert panel in the context of a case-control study on male germ cell cancer nested in the car manufacturing industries. An industry-specific JEM was developed and automatic exposure estimation was performed based on this JEM. A subsample of exposure ratings was done by IEEA to identify determinants of disagreement between the JEM and the individual review. Possible determinants were analyzed by calculating odds ratios (ORs) of disagreement between ratings with regard to different dimensions (e.g. high versus low intensity of exposure). Disagreement in ≥20% of the sampled exposure ratings with a statistically significant OR was chosen as a threshold for inclusion of the exposure ratings into a final IEEA. The most important determinants of disagreement between JEM and individual review were working outside of the production line (disagreement 80%), low probability of exposure (disagreement 25%), and exposure depending on specific activities like usage of specific lacquers (disagreement 32%) for jobs within the production line. These determinants were the selection criteria of exposure ratings for the subsequent final IEEA. Combining a JEM and a subsequent final IEEA for a selected subset of exposure ratings is a feasible and labor-saving approach for exposure assessment in large occupational epidemiological studies.

  18. Status of Fundamental Physics Program

    NASA Technical Reports Server (NTRS)

    Lee, Mark C.

    2003-01-01

    Update of the Fundamental Physics Program. JEM/EF Slip. 2 years delay. Reduced budget. Community support and advocacy led by Professor Nick Bigelow. Reprogramming led by Fred O Callaghan/JPL team. LTMPF M1 mission (DYNAMX and SUMO). PARCS. Carrier re baselined on JEM/EF.

  19. Study of the validity of a job-exposure matrix for the job strain model factors: an update and a study of changes over time.

    PubMed

    Niedhammer, Isabelle; Milner, Allison; LaMontagne, Anthony D; Chastang, Jean-François

    2018-03-08

    The objectives of the study were to construct a job-exposure matrix (JEM) for psychosocial work factors of the job strain model, to evaluate its validity, and to compare the results over time. The study was based on national representative data of the French working population with samples of 46,962 employees (2010 SUMER survey) and 24,486 employees (2003 SUMER survey). Psychosocial work factors included the job strain model factors (Job Content Questionnaire): psychological demands, decision latitude, social support, job strain and iso-strain. Job title was defined by three variables: occupation and economic activity coded using standard classifications, and company size. A JEM was constructed using a segmentation method (Classification and Regression Tree-CART) and cross-validation. The best quality JEM was found using occupation and company size for social support. For decision latitude and psychological demands, there was not much difference using occupation and company size with or without economic activity. The validity of the JEM estimates was higher for decision latitude, job strain and iso-strain, and lower for social support and psychological demands. Differential changes over time were observed for psychosocial work factors according to occupation, economic activity and company size. This study demonstrated that company size in addition to occupation may improve the validity of JEMs for psychosocial work factors. These matrices may be time-dependent and may need to be updated over time. More research is needed to assess the validity of JEMs given that these matrices may be able to provide exposure assessments to study a range of health outcomes.

  20. Evaluation of cumulative PCB exposure estimated by a job exposure matrix versus PCB serum concentrations

    PubMed Central

    Ruder, Avima M.; Succop, Paul; Waters, Martha A.

    2015-01-01

    Although polychlorinated biphenyls (PCBs) have been banned in many countries for more than three decades, exposures to PCBs continue to be of concern due to their long half-lives and carcinogenic effects. In National Institute for Occupational Safety and Health studies, we are using semiquantitative plant-specific job exposure matrices (JEMs) to estimate historical PCB exposures for workers (n=24,865) exposed to PCBs from 1938 to 1978 at three capacitor manufacturing plants. A subcohort of these workers (n=410) employed in two of these plants had serum PCB concentrations measured at up to four times between 1976 and 1989. Our objectives were to evaluate the strength of association between an individual worker’s measured serum PCB levels and the same worker’s cumulative exposure estimated through 1977 with the (1) JEM and (2) duration of employment, and to calculate the explained variance the JEM provides for serum PCB levels using (3) simple linear regression. Consistent strong and statistically significant associations were observed between the cumulative exposures estimated with the JEM and serum PCB concentrations for all years. The strength of association between duration of employment and serum PCBs was good for highly chlorinated (Aroclor 1254/HPCB) but not less chlorinated (Aroclor 1242/LPCB) PCBs. In the simple regression models, cumulative occupational exposure estimated using the JEMs explained 14–24 % of the variance of the Aroclor 1242/LPCB and 22–39 % for Aroclor 1254/HPCB serum concentrations. We regard the cumulative exposure estimated with the JEM as a better estimate of PCB body burdens than serum concentrations quantified as Aroclor 1242/LPCB and Aroclor 1254/HPCB. PMID:23475397

  1. Design of the front end electronics for the infrared camera of JEM-EUSO, and manufacturing and verification of the prototype model

    NASA Astrophysics Data System (ADS)

    Maroto, Oscar; Diez-Merino, Laura; Carbonell, Jordi; Tomàs, Albert; Reyes, Marcos; Joven-Alvarez, Enrique; Martín, Yolanda; Morales de los Ríos, J. A.; del Peral, Luis; Rodríguez-Frías, M. D.

    2014-07-01

    The Japanese Experiment Module (JEM) Extreme Universe Space Observatory (EUSO) will be launched and attached to the Japanese module of the International Space Station (ISS). Its aim is to observe UV photon tracks produced by ultra-high energy cosmic rays developing in the atmosphere and producing extensive air showers. The key element of the instrument is a very wide-field, very fast, large-lense telescope that can detect extreme energy particles with energy above 1019 eV. The Atmospheric Monitoring System (AMS), comprising, among others, the Infrared Camera (IRCAM), which is the Spanish contribution, plays a fundamental role in the understanding of the atmospheric conditions in the Field of View (FoV) of the telescope. It is used to detect the temperature of clouds and to obtain the cloud coverage and cloud top altitude during the observation period of the JEM-EUSO main instrument. SENER is responsible for the preliminary design of the Front End Electronics (FEE) of the Infrared Camera, based on an uncooled microbolometer, and the manufacturing and verification of the prototype model. This paper describes the flight design drivers and key factors to achieve the target features, namely, detector biasing with electrical noise better than 100μV from 1Hz to 10MHz, temperature control of the microbolometer, from 10°C to 40°C with stability better than 10mK over 4.8hours, low noise high bandwidth amplifier adaptation of the microbolometer output to differential input before analog to digital conversion, housekeeping generation, microbolometer control, and image accumulation for noise reduction. It also shows the modifications implemented in the FEE prototype design to perform a trade-off of different technologies, such as the convenience of using linear or switched regulation for the temperature control, the possibility to check the camera performances when both microbolometer and analog electronics are moved further away from the power and digital electronics, and the addition of switching regulators to demonstrate the design is immune to the electrical noise the switching converters introduce. Finally, the results obtained during the verification phase are presented: FEE limitations, verification results, including FEE noise for each channel and its equivalent NETD and microbolometer temperature stability achieved, technologies trade-off, lessons learnt, and design improvement to implement in future project phases.

  2. Research Opportunities on the Low Temperature Microgravity Physics Facility (LTMPF) on the International Space Station

    NASA Technical Reports Server (NTRS)

    Liu, Feng-Chuan; Adriaans, Mary Jayne; Pensinger, John; Israelsson, Ulf

    2000-01-01

    The Low Temperature Microgravity Physics Facility (LTMPF) is a state-of-the-art facility for long duration science Investigations whose objectives can only be achieved in microgravity and at low temperature. LTMPF consists of two reusable, cryogenic facilities with self-contained electronics, software and communication capabilities. The Facility will be first launched by Japanese HIIA Rocket in 2003 and retrieved by the Space Shuttle, and will have at least five months cryogen lifetime on the Japanese Experiment Module Exposed Facility (JEM EF) of the International Space Station. A number of high precision sensors of temperature, pressure and capacitance will be available, which can be further tailored to accommodate a wide variety of low temperature experiments. This paper will describe the LTMPF and its goals and design requirements. Currently there are six candidate experiments in the flight definition phase to fly on LTMPF. Future candidate experiments will be selected through the NASA Research Announcement process. Opportunities for utilization and collaboration with international partners will also be discussed. This work is being carried out by the Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration. The work was funded by NASA Microgravity Research Division.

  3. EUSO@TurLab: An experimental replica of ISS orbits

    NASA Astrophysics Data System (ADS)

    Bertaina, M.; Bowaire, A.; Cambursano, S.; Caruso, R.; Contino, G.; Cotto, G.; Crivello, F.; Forza, R.; Guardone, N.; Manfrin, M.; Mignone, M.; Mulas, R.; Suino, G.; Tibaldi, P. S.

    2015-03-01

    The EUSO@TurLab project is an on-going activity aimed to reproduce atmospheric and luminous conditions that JEM-EUSO will encounter on its orbits around the Earth. The use of the TurLab facility, part of the Department of Physics of the University of Torino, allows the simulation of different surface conditions in a very dark and rotating environment in order to test the response of JEM-EUSO's sensors and sensitivity. The experimental setup currently in operation has been used to check the potential of the TurLab facility for the above purposes, and the acquired data will be used to test the concept of JEM-EUSO's trigger system.

  4. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2015-02-27

    ISS042E290579 (02/27/2015) --- On Feb. 27 2015, a series of CubeSats, small experimental satellites, were deployed via a special device mounted on the Japanese Experiment Module (JEM) Remote Manipulator System (JEMRMS). Deployed satellites included twelve Dove sats, one TechEdSat-4, one GEARRSat, one LambdaSat, one MicroMas. These satellites perform a variety of functions from capturing new Earth imagery, to using microwave scanners to create 3D images of hurricanes, to even developing new methods for returning science samples back to Earth from space. The small satellites were deployed through the first week in March.

  5. Reconstruction of 10(exp 20)ev Showers in EUSO and JEM EUSO

    NASA Technical Reports Server (NTRS)

    Andreev, V.; Adams, J.; Cline, D.

    2007-01-01

    We describe the procedure to reconstruct 10(exp 20) ev showers in Extreme Universe Space Observatory (EUSO). We show the angular and energy resolution is excellent. We now apply this to the newly proposed Japanese JEM-EUSO and will present results at the meeting.

  6. 76 FR 24914 - Digital River Education Services, Inc., a Division of Digital River, Inc., Including Workers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ...) Wages Are Paid Through Journey Education Marketing (JEM), Including On-Site Lease Workers From Serenity... Serenity Staffing, Accountemps, Silicon Valley and Liaison Resources, Austin and Dallas, Texas. The notice... Journey Education Marketing (JEM), and including on-site leased workers from Serenity Staffing...

  7. Job Exposure Matrix for Electric Shock Risks with Their Uncertainties

    PubMed Central

    Vergara, Ximena P.; Fischer, Heidi J.; Yost, Michael; Silva, Michael; Lombardi, David A.; Kheifets, Leeka

    2015-01-01

    We present an update to an electric shock job exposure matrix (JEM) that assigned ordinal electric shocks exposure for 501 occupational titles based on electric shocks and electrocutions from two available data sources and expert judgment. Using formal expert elicitation and starting with data on electric injury, we arrive at a consensus-based JEM. In our new JEM, we quantify exposures by adding three new dimensions: (1) the elicited median proportion; (2) the elicited 25th percentile; and (3) and the elicited 75th percentile of those experiencing occupational electric shocks in a working lifetime. We construct the relative interquartile range (rIQR) based on uncertainty interval and the median. Finally, we describe overall results, highlight examples demonstrating the impact of cut point selection on exposure assignment, and evaluate potential impacts of such selection on epidemiologic studies of the electric work environment. In conclusion, novel methods allowed for consistent exposure estimates that move from qualitative to quantitative measures in this population-based JEM. Overlapping ranges of median exposure in various categories reflect our limited knowledge about this exposure. PMID:25856552

  8. Job exposure matrix for electric shock risks with their uncertainties.

    PubMed

    Vergara, Ximena P; Fischer, Heidi J; Yost, Michael; Silva, Michael; Lombardi, David A; Kheifets, Leeka

    2015-04-08

    We present an update to an electric shock job exposure matrix (JEM) that assigned ordinal electric shocks exposure for 501 occupational titles based on electric shocks and electrocutions from two available data sources and expert judgment. Using formal expert elicitation and starting with data on electric injury, we arrive at a consensus-based JEM. In our new JEM, we quantify exposures by adding three new dimensions: (1) the elicited median proportion; (2) the elicited 25th percentile; and (3) and the elicited 75th percentile of those experiencing occupational electric shocks in a working lifetime. We construct the relative interquartile range (rIQR) based on uncertainty interval and the median. Finally, we describe overall results, highlight examples demonstrating the impact of cut point selection on exposure assignment, and evaluate potential impacts of such selection on epidemiologic studies of the electric work environment. In conclusion, novel methods allowed for consistent exposure estimates that move from qualitative to quantitative measures in this population-based JEM. Overlapping ranges of median exposure in various categories reflect our limited knowledge about this exposure.

  9. Status and expected perfomance of the MAXI mission for the JEM/ISS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kataoka, J.; Kawai, N.

    2008-12-24

    MAXI (Monitor of All-sky X-ray Image) is the first payload to be attached on JEM-EF (Kibo exposed facility) of ISS. It provides an all sky X-ray image every ISS orbit. Only with a few weeks scan, MAXI is expected to make a milli-Crab X-ray all sky map excluding bright region around the sun. Thus, MAXI does not only inform X-ray novae and transients rapidly to world astronomers if once they occur, but also observes long-term variability of Galact ic and extra-Galactic X-ray sources. MAXI also provides an X-ray source catalogue at that time with diffuse cosmic X-ray background. MAXI consistsmore » of two kinds of detectors, position sensitive gas-proportional counters for 2-30 keV X-rays and CCD cameras for 0.5-10 keV X-rays. All instruments of MAXI are now in final phase of pre-launching tests of their flight modules. We are also carrying out performance tests for X-ray detectors and collimators. Data processing and analysis software including alert system on ground are being developed by mission team. In this paper we report an overview of final instruments of MAXI and capability of MAXI.« less

  10. TANPOPO: Microbe and micrometeoroid capture experiments on International Space Station.

    NASA Astrophysics Data System (ADS)

    Yamagishi, Akihiko; Kobayashi, Kensei; Yano, Hajime; Yokobori, Shinichi; Hashimoto, Hirofumi; Kawai, Hideyuki; Yamashita, Masamichi

    There is a long history of the microbe-collection experiments at high altitude. Microbes have been collected using balloons, aircraft and meteorological rockets from 1936 to 1976. Spore forming fungi and Bacilli, and Micrococci have been isolated in these experiments. It is not clear how high do microbes go up. If the microbes might have been present even at higher altitudes, the fact would endorse the possibility of interplanetary migration of life. TANPOPO, dandelion, is the name of a grass whose seeds with floss are spread by the wind. We propose the analyses of interplanetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module (JEM) of the International Space Station (ISS). Ultra low-density aerogel will be used to capture micrometeoroid and debris. Particles captured by aerogel will be used for several analyses after the initial inspection of the gel and tracks. Careful analysis of the tracks in the aerogel will provide the size and velocity dependence of debris flux. The particles will be analyzed for mineralogical, organic and microbiological characteristics. Aerogels are ready for production in Japan. Aerogels and trays are space proven. All the analytical techniques are ready. The Tanpopo mission was accepted as a candidate experiments on Exposed Facility of ISS-JEM.

  11. Evidence for Na+ Influx via the NtpJ Protein of the KtrII K+ Uptake System in Enterococcus hirae

    PubMed Central

    Kawano, Miyuki; Abuki, Ryoko; Igarashi, Kazuei; Kakinuma, Yoshimi

    2000-01-01

    The ntpJ gene, a cistron located at the tail end of the vacuolar-type Na+-ATPase (ntp) operon of Enterococcus hirae, encodes a transporter of the KtrII K+ uptake system. We found that K+ accumulation in the ntpJ-disrupted mutant JEM2 was markedly enhanced by addition of valinomycin at pH 10. Studies of the membrane potential (ΔΨ; inside negative) by 3,3′-dihexyloxacarbocyanine iodide fluorescence revealed that the ΔΨ was hyperpolarized at pH 10 in JEM2; the ΔΨ values of the parent strain ATCC 9790 and JEM2, estimated by determining the equilibrium distribution of K+ or Rb+ in the presence of valinomycin, were −118 and −160 mV, respectively. ΔΨ generation at pH 10 was accomplished by an electrogenic Na+ efflux via the Na+-ATPase, whose levels in the two strains were quite similar. Na+ uptake driven by an artificially imposed ΔΨ (inside negative) was missing in JEM2, suggesting that NtpJ mediates Na+ movement in addition to K+ movement. Finally, the growth of JEM2 arrested in K+-limited high-Na+ medium at pH 10 was restored by addition of valinomycin. These results suggest that NtpJ mediates electrogenic transport of K+ as well as Na+, that it likely mediates K+ and Na+ cotransport, and that Na+ movement via NtpJ is the major Na+ reentry pathway at high pH values. PMID:10762252

  12. The Cloud-Aerosol Transport System (CATS): A New Earth Science Capability for ISS (Invited)

    NASA Astrophysics Data System (ADS)

    McGill, M. J.; Yorks, J. E.; Scott, S.; Kupchock, A.; Selmer, P.

    2013-12-01

    The Cloud-Aerosol Transport System (CATS) is a lidar remote sensing instrument developed for deployment to the International Space Station (ISS). The CATS lidar will provide range-resolved profile measurements of atmospheric aerosol and cloud distributions and properties. The CATS instrument uses a high repetition rate laser operating at three wavelengths (1064, 532, and 355 nm) to derive properties of cloud/aerosol layers including: layer height, layer thickness, backscatter, optical depth, extinction, and depolarization-based discrimination of particle type. The CATS mission was designed to capitalize on the Space Station's unique orbit and facilities to continue existing Earth Science data records, to provide observational data for use in forecast models, and to demonstrate new technologies for use in future missions. The CATS payload will be installed on the Japanese Experiment Module - Exposed Facility (JEM-EF). The payload is designed to operate on-orbit for at least six months, and up to three years. The payload is completed and currently scheduled for a mid-2014 launch. The ISS and, in particular, the JEM-EF, is an exciting new platform for spaceborne Earth observations. The ability to leverage existing aircraft instrument designs coupled with the lower cost possible for ISS external attached payloads permits rapid and cost effective development of spaceborne sensors. The CATS payload is based on existing instrumentation built and operated on the high-altitude NASA ER-2 aircraft. The payload is housed in a 1.5 m x 1 m x 0.8 m volume that attaches to the JEM-EF. The allowed volume limits the maximum size for the collecting telescope to 60 cm diameter. Figure 1 shows a schematic layout of the CATS payload, with the primary instrument components identified. Figure 2 is a photo of the completed payload. CATS payload cut-away view. Completed CATS payload assembly.

  13. On-orbit performance of the Compact Infrared Camera (CIRC) onboard ALOS-2

    NASA Astrophysics Data System (ADS)

    Sakai, Michito; Katayama, Haruyoshi; Kato, Eri; Nakajima, Yasuhiro; Kimura, Toshiyoshi; Nakau, Koji

    2015-10-01

    Compact Infrared Camera (CIRC) is a technology demonstration instrument equipped with an uncooled infrared array detector (microbolometer) for space application. Microbolometers have an advantage of not requiring cooling system such as a mechanical cooler and are suitable for resource-limited sensor systems. Another characteristic of the CIRC is its use of an athermal optical system and a shutterless system. The CIRC is small in size (approximately 200 mm), is light weight (approximately 3 kg), and has low electrical power consumption (<20 W) owing to these characteristics. The main objective of CIRC is to detect wildfires, which are major and chronic disasters affecting various countries of Southeast Asia, particularly considering the effects of global warming and climate change. One of the CIRCs was launched in May 24, 2014 as a technology demonstration payload of the Advanced Land Observation Satellite-2 (ALOS- 2). Since the initial functional verification phase (July 4-14, 2014), the CIRC has demonstrated functions according to its intended design. We also confirmed that the noise equivalent differential temperature of the CIRC observation data is less than 0.2 K, the temperature accuracy is within ±4 K, and the spatial resolution is less than 210 m in the calibration validation phase after the initial functional verification phase. The CIRC also detects wildfires in various areas and observes volcano activities and urban heat islands in the operational phase. The other CIRC will be launched in 2015 onboard the CALorimetric Electron Telescope (CALET) of the Japanese Experiment Module (JEM) of the International Space Station. Installation of the CIRCs on the ALOS-2 and on the JEM/CALET is expected to increase the observation frequency. In this study, we present the on-orbit performance including observational results of the CIRC onboard the ALOS-2 and the current status of the CIRC onboard the JEM/CALET.

  14. Risks for the development of outcomes related to occupational allergies: an application of the asthma-specific job exposure matrix compared with self-reports and investigator scores on job-training-related exposure.

    PubMed

    Suarthana, E; Heederik, D; Ghezzo, H; Malo, J-L; Kennedy, S M; Gautrin, D

    2009-04-01

    Risks for development of occupational sensitisation, bronchial hyper-responsiveness, rhinoconjunctival and chest symptoms at work associated with continued exposure to high molecular weight (HMW) allergens were estimated with three exposure assessment methods. A Cox regression analysis with adjustment for atopy and smoking habit was carried out in 408 apprentices in animal health technology, pastry making, and dental hygiene technology with an 8-year follow-up after training. The risk of continued exposure after training, estimated by the asthma-specific job exposure matrix (JEM), was compared with self-reports and investigator scores on job-training-related exposure. Associations between outcomes and work duration in job(s) related to training were also evaluated. Exposure to animal-derived HMW allergens, subsequent to the apprenticeship period, as estimated by the JEM, was associated with a significantly increased risk for occupational sensitisation (hazard ratio (HR) 6.4; 95% CI 2.3 to 18.2) and rhinoconjunctival symptoms at work (HR 2.6; 95% CI 1.1 to 6.2). Exposure to low molecular weight (LMW) agents significantly increased the risk of developing bronchial hyper-responsiveness (HR 2.3; 95% CI 1.1 to 5.4). Exposure verification appeared to be important to optimise the sensitivity and the specificity, as well as HRs produced by the JEM. Self-reports and investigator scores also indicated that further exposure to HMW allergens increased the risk of developing occupational allergies. The agreement between self-reports, investigator scores, and the JEM were moderate to good. There was no significant association between respiratory outcomes and work duration in jobs related to training. The asthma-specific JEM could estimate the risk of various outcomes of occupational allergies associated with exposure to HMW and LMW allergens, but it is relatively labour intensive. Exposure verification is an important integrated step in the JEM that optimised the performance of the matrix.

  15. Development and Validation of a Job Exposure Matrix for Physical Risk Factors in Low Back Pain

    PubMed Central

    Solovieva, Svetlana; Pehkonen, Irmeli; Kausto, Johanna; Miranda, Helena; Shiri, Rahman; Kauppinen, Timo; Heliövaara, Markku; Burdorf, Alex; Husgafvel-Pursiainen, Kirsti; Viikari-Juntura, Eira

    2012-01-01

    Objectives The aim was to construct and validate a gender-specific job exposure matrix (JEM) for physical exposures to be used in epidemiological studies of low back pain (LBP). Materials and Methods We utilized two large Finnish population surveys, one to construct the JEM and another to test matrix validity. The exposure axis of the matrix included exposures relevant to LBP (heavy physical work, heavy lifting, awkward trunk posture and whole body vibration) and exposures that increase the biomechanical load on the low back (arm elevation) or those that in combination with other known risk factors could be related to LBP (kneeling or squatting). Job titles with similar work tasks and exposures were grouped. Exposure information was based on face-to-face interviews. Validity of the matrix was explored by comparing the JEM (group-based) binary measures with individual-based measures. The predictive validity of the matrix against LBP was evaluated by comparing the associations of the group-based (JEM) exposures with those of individual-based exposures. Results The matrix includes 348 job titles, representing 81% of all Finnish job titles in the early 2000s. The specificity of the constructed matrix was good, especially in women. The validity measured with kappa-statistic ranged from good to poor, being fair for most exposures. In men, all group-based (JEM) exposures were statistically significantly associated with one-month prevalence of LBP. In women, four out of six group-based exposures showed an association with LBP. Conclusions The gender-specific JEM for physical exposures showed relatively high specificity without compromising sensitivity. The matrix can therefore be considered as a valid instrument for exposure assessment in large-scale epidemiological studies, when more precise but more labour-intensive methods are not feasible. Although the matrix was based on Finnish data we foresee that it could be applicable, with some modifications, in other countries with a similar level of technology. PMID:23152793

  16. Development of an agricultural job-exposure matrix for British Columbia, Canada.

    PubMed

    Wood, David; Astrakianakis, George; Lang, Barbara; Le, Nhu; Bert, Joel

    2002-09-01

    Farmers in British Columbia (BC), Canada have been shown to have unexplained elevated proportional mortality rates for several cancers. Because agricultural exposures have never been documented systematically in BC, a quantitative agricultural Job-exposure matrix (JEM) was developed containing exposure assessments from 1950 to 1998. This JEM was developed to document historical exposures and to facilitate future epidemiological studies. Available information regarding BC farming practices was compiled and checklists of potential exposures were produced for each crop. Exposures identified included chemical, biological, and physical agents. Interviews with farmers and agricultural experts were conducted using the checklists as a starting point. This allowed the creation of an initial or 'potential' JEM based on three axes: exposure agent, 'type of work' and time. The 'type of work' axis was determined by combining several variables: region, crop, job title and task. This allowed for a complete description of exposures. Exposure assessments were made quantitatively, where data allowed, or by a dichotomous variable (exposed/unexposed). Quantitative calculations were divided into re-entry and application scenarios. 'Re-entry' exposures were quantified using a standard exposure model with some modification while application exposure estimates were derived using data from the North American Pesticide Handlers Exposure Database (PHED). As expected, exposures differed between crops and job titles both quantitatively and qualitatively. Of the 290 agents included in the exposure axis; 180 were pesticides. Over 3000 estimates of exposure were conducted; 50% of these were quantitative. Each quantitative estimate was at the daily absorbed dose level. Exposure estimates were then rated as high, medium, or low based on comparing them with their respective oral chemical reference dose (RfD) or Acceptable Daily Intake (ADI). This data was mainly obtained from the US Environmental Protection Agency (EPA) Integrated Risk Information System database. Of the quantitative estimates, 74% were rated as low (< 100%) and only 10% were rated as high (>500%). The JEM resulting from this study fills a void concerning exposures for BC farmers and farm workers. While only limited validation of assessments were possible, this JEM can serve as a benchmark for future studies. Preliminary analysis at the BC Cancer Agency (BCCA) using the JEM with prostate cancer records from a large cancer and occupation study/survey has already shown promising results. Development of this JEM provides a useful model for developing historical quantitative exposure estimates where is very little documented information available.

  17. NASDA's view of ground control in mission operations

    NASA Technical Reports Server (NTRS)

    Tateno, Satoshi

    1993-01-01

    This paper presents an overview of the present status and future plans of the National Space Development Agency of Japan 's (NASDA's) ground segment and related space missions. The described ground segment consists of the tracking and data acquisition (T&DA) system and the Earth Observation Center (EOC) system. In addition to these systems, the current plan of the Engineering Support Center (ESC) for the Japanese Experiment Module (JEM) attached to Space Station Freedom is introduced. Then, NASDA's fundamental point of view on the future trend of operations and technologies in the coming new space era is discussed. Within the discussion, the increasing importance of international cooperation is also mentioned.

  18. Hitchhiker On Space Station

    NASA Technical Reports Server (NTRS)

    Daelemans, Gerard; Goldsmith, Theodore

    1999-01-01

    The NASA/GSFC Shuttle Small Payloads Projects Office (SSPPO) has been studying the feasibility of migrating Hitchhiker customers past present and future to the International Space Station via a "Hitchhiker like" carrier system. SSPPO has been tasked to make the most use of existing hardware and software systems and infrastructure in its study of an ISS based carrier system. This paper summarizes the results of the SSPPO Hitchhiker on International Space Station (ISS) study. Included are a number of "Hitchhiker like" carrier system concepts that take advantage of the various ISS attached payload accommodation sites. Emphasis will be given to a HH concept that attaches to the Japanese Experiment Module - Exposed Facility (JEM-EF).

  19. SMILES/AOS: acousto-optical spectrometer for high resolution submillimeter-wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Mazuray, L.; Barthès, J.-C.; Bayle, F.; Castel, D.; Claviere, P.; Delbru, F.; Doittau, P.-O.; Gladin, L.; Guilleux, P.; Halbout, S.; Lavielle, D.; Varin, J.-L.; de Zotti, S.; Rosolen, C.; Ozeki, H.

    2017-11-01

    An acousto-optical spectrometer (AOS) is employed in order to meet scientific mission objectives of submillimeter-wave limb-emission sounder (SMILES) to be aboard the Japanese Experiment Module (JEM) of International space station (ISS). AOS is developed by ASTRIUM for the Japanese space agency (NASDA). The capability of multi channel detection with AOS is suitable for observing multi-chemical species in a wide frequency region. Low noise of the AOS enables us to obtain the spectra with a very high sensitivity. Several technical concerns relating to important instrumental characteristics of AOS are discussed and expected performance of the design are overviewed.

  20. Robotics EP Payloads

    NASA Image and Video Library

    2009-09-24

    ISS020-E-041981 (24 Sept. 2009) --- The exterior of the Japanese Kibo complex of the International Space Station and the station's Canadarm2 (bottom) are featured in this image photographed by an Expedition 20 crew member on the station. European Space Agency astronaut Frank De Winne and NASA astronaut Nicole Stott, both Expedition 20 flight engineers, used the controls of the Japanese Experiment Module Robotic Manipulator System (JEM-RMS) in Kibo to grapple and transfer two Japanese payloads from the Exposed Pallet to their Exposed Facility locations -- first HICO/Hyperspectral Imager for the Coastal Ocean & RAIDS/Remote Atmospheric and Ionospheric Detection System (HREP), then Superconducting Submillimeter-wave Limb-emission Sounder (SMILES).

  1. Science Objectives of the JEM EUSO Mission on International Space Station

    NASA Technical Reports Server (NTRS)

    Takahashi, Yoshiyuki

    2007-01-01

    JEM-EUSO space observatory is planned with a very large exposure factor which will exceed the critical exposure factor required for observing the most of the sources within the propagational horizon of about one hundred Mpc. The main science objective of JEM-EUSO is the source-identifying astronomy in particle channel with extremey-high-energy particles. Quasi-linear tracking of the source objects through galactic magnetic field should become feasible at energy > 10(exp 20) eV for all-sky. The individual GZK profile in high statistics experiments should differ from source to source due to different distance unless Lorentz invariance is somehow limited. hi addition, JEM-EUSO has three exploratory test observations: (i), extremely high energy neutrinos beginning at E > 10(exp 19) eV: neutrinos as being expected to have a slowly increasing cross section in the Standard Model, and in particular, hundreds of times more in the extra-dimension models. (ii). fundamental physics at extreme Super LHC (Large Hadronic Collider) energies with the hierarchical unified energy much below the GUT scale, and (iii). global atmospheric observation, including large-scale and local plasma discharges, night-glow, meteorites, and others..

  2. Development and verification of hardware for life science experiments in the Japanese Experiment Module "Kibo" on the International Space Station.

    PubMed

    Ishioka, Noriaki; Suzuki, Hiromi; Asashima, Makoto; Kamisaka, Seiichiro; Mogami, Yoshihiro; Ochiai, Toshimasa; Aizawa-Yano, Sachiko; Higashibata, Akira; Ando, Noboru; Nagase, Mutsumu; Ogawa, Shigeyuki; Shimazu, Toru; Fukui, Keiji; Fujimoto, Nobuyoshi

    2004-03-01

    Japan Aerospace Exploration Agency (JAXA) has developed a cell biology experiment facility (CBEF) and a clean bench (CB) as a common hardware in which life science experiments in the Japanese Experiment Module (JEM known as "Kibo") of the International Space Station (ISS) can be performed. The CBEF, a CO2 incubator with a turntable that provides variable gravity levels, is the basic hardware required to carry out the biological experiments using microorganisms, cells, tissues, small animals, plants, etc. The CB provides a closed aseptic operation area for life science and biotechnology experiments in Kibo. A phase contrast and fluorescence microscope is installed inside CB. The biological experiment units (BEU) are designed to run individual experiments using the CBEF and the CB. A plant experiment unit (PEU) and two cell experiment units (CEU type1 and type2) for the BEU have been developed.

  3. Occupational COPD and job exposure matrices: a systematic review and meta-analysis

    PubMed Central

    Sadhra, Steven; Kurmi, Om P; Sadhra, Sandeep S; Lam, Kin Bong Hubert; Ayres, Jon G

    2017-01-01

    Background The association between occupational exposure and COPD reported previously has mostly been derived from studies relying on self-reported exposure to vapors, gases, dust, or fumes (VGDF), which could be subjective and prone to biases. The aim of this study was to assess the strength of association between exposure and COPD from studies that derived exposure by job exposure matrices (JEMs). Methods A systematic search of JEM-based occupational COPD studies published between 1980 and 2015 was conducted in PubMed and EMBASE, followed by meta-analysis. Meta-analysis was performed using a random-effects model, with results presented as a pooled effect estimate with 95% confidence intervals (CIs). The quality of study (risk of bias and confounding) was assessed by 13 RTI questionnaires. Heterogeneity between studies and its possible sources were assessed by Egger test and meta-regression, respectively. Results In all, 61 studies were identified and 29 were included in the meta-analysis. Based on JEM-based studies, there was 22% (pooled odds ratio =1.22; 95% CI 1.18–1.27) increased risk of COPD among those exposed to airborne pollutants arising from occupation. Comparatively, higher risk estimates were obtained for general populations JEMs (based on expert consensus) than workplace-based JEM were derived using measured exposure data (1.26; 1.20–1.33 vs 1.14; 1.10–1.19). Higher risk estimates were also obtained for self-reported exposure to VGDF than JEMs-based exposure to VGDF (1.91; 1.72–2.13 vs 1.10; 1.06–1.24). Dusts, particularly biological dusts (1.33; 1.17–1.51), had the highest risk estimates for COPD. Although the majority of occupational COPD studies focus on dusty environments, no difference in risk estimates was found for the common forms of occupational airborne pollutants. Conclusion Our findings highlight the need to interpret previous studies with caution as self-reported exposure to VGDF may have overestimated the risk of occupational COPD. PMID:28260879

  4. Comparison of exposure assessment methods in a lung cancer case-control study: performance of a lifelong task-based questionnaire for asbestos and PAHs.

    PubMed

    Bourgkard, Eve; Wild, Pascal; Gonzalez, Maria; Févotte, Joëlle; Penven, Emmanuelle; Paris, Christophe

    2013-12-01

    To describe the performance of a lifelong task-based questionnaire (TBQ) in estimating exposures compared with other approaches in the context of a case-control study. A sample of 93 subjects was randomly selected from a lung cancer case-control study corresponding to 497 jobs. For each job, exposure assessments for asbestos and polycyclic aromatic hydrocarbons (PAHs) were obtained by expertise (TBQ expertise) and by algorithm using the TBQ (TBQ algorithm) as well as by expert appraisals based on all available occupational data (REFERENCE expertise) considered to be the gold standard. Additionally, a Job Exposure Matrix (JEM)-based evaluation for asbestos was also obtained. On the 497 jobs, the various evaluations were contrasted using Cohen's κ coefficient of agreement. Additionally, on the total case-control population, the asbestos dose-response relationship based on the TBQ algorithm was compared with the JEM-based assessment. Regarding asbestos, the TBQ-exposure estimates agreed well with the REFERENCE estimate (TBQ expertise: level-weighted κ (lwk)=0.68; TBQ algorithm: lwk=0.61) but less so with the JEM estimate (TBQ expertise: lwk=0.31; TBQ algorithm: lwk=0.26). Regarding PAHs, the agreements between REFERENCE expertise and TBQ were less good (TBQ expertise: lwk=0.43; TBQ algorithm: lwk=0.36). In the case-control study analysis, the dose-response relationship between lung cancer and cumulative asbestos based on the JEM is less steep than with the TBQ-algorithm exposure assessment and statistically non-significant. Asbestos-exposure estimates based on the TBQ were consistent with the REFERENCE expertise and yielded a steeper dose-response relationship than the JEM. For PAHs, results were less clear.

  5. Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS) - Cyclops

    NASA Technical Reports Server (NTRS)

    Smith, James P.; Lamb, Craig R.; Ballard, Perry G.

    2013-01-01

    Access to space for satellites in the 50-100 kg class is a challenge for the small satellite community. Rideshare opportunities are limited and costly, and the small sat must adhere to the primary payloads schedule and launch needs. Launching as an auxiliary payload on an Expendable Launch Vehicle presents many technical, environmental, and logistical challenges to the small satellite community. To assist the community in mitigating these challenges and in order to provide the community with greater access to space for 50-100 kg satellites, the NASA International Space Station (ISS) and Engineering communities in collaboration with the Department of Defense (DOD) Space Test Program (STP) is developing a dedicated 50-100 kg class ISS small satellite deployment system. The system, known as Cyclops, will utilize NASA's ISS resupply vehicles to launch small sats to the ISS in a controlled pressurized environment in soft stow bags. The satellites will then be processed through the ISS pressurized environment by the astronaut crew allowing satellite system diagnostics prior to orbit insertion. Orbit insertion is achieved through use of the Japan Aerospace Exploration Agency's Experiment Module Robotic Airlock (JEM Airlock) and one of the ISS Robotic Arms. Cyclops' initial satellite deployment demonstration of DOD STP's SpinSat and UT/TAMU's Lonestar satellites will be toward the end of 2013 or beginning of 2014. Cyclops will be housed on-board the ISS and used throughout its lifetime. The anatomy of Cyclops, its concept of operations for satellite deployment, and its satellite interfaces and requirements will be addressed further in this paper.

  6. Introduction to Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Kohrs, Richard

    1992-01-01

    NASA field centers and contractors are organized to develop 'work packages' for Space Station Freedom. Marshall Space Flight Center and Boeing are building the U.S. laboratory and habitation modules, nodes, and environmental control and life support system; Johnson Space Center and McDonnell Douglas are responsible for truss structure, data management, propulsion systems, thermal control, and communications and guidance; Lewis Research Center and Rocketdyne are developing the power system. The Canadian Space Agency (CSA) is contributing a Mobile Servicing Center, Special Dextrous Manipulator, and Mobile Servicing Center Maintenance Depot. The National Space Development Agency of Japan (NASDA) is contributing a Japanese Experiment Module (JEM), which includes a pressurized module, logistics module, and exposed experiment facility. The European Space Agency (ESA) is contributing the Columbus laboratory module. NASA ground facilities, now in various stages of development to support Space Station Freedom, include: Marshall Space Flight Center's Payload Operations Integration Center and Payload Training Complex (Alabama), Johnson Space Center's Space Station Control Center and Space Station Training Facility (Texas), Lewis Research Center's Power System Facility (Ohio), and Kennedy Space Center's Space Station Processing Facility (Florida). Budget appropriations impact the development of the Space Station. In Fiscal Year 1988, Congress appropriated only half of the funds that NASA requested for the space station program ($393 million vs. $767 million). In FY 89, NASA sought $967 million for the program, and Congress appropriated $900 million. NASA's FY 90 request was $2.05 billion compared to an appropriation of $1.75 billion; the FY 91 request was $2.45 billion, and the appropriation was $1.9 billion. After NASA restructured the Space Station Freedom program in response to directions from Congress, the agency's full budget request of $2.029 billion for Space Station Freedom in FY 92 was appropriated. For FY 93, NASA is seeking $2.25 billion for the program; the planned budget for FY 94 is $2.5 billion. Further alterations to the hardware configuration for Freedom would be a serious setback; NASA intends 'to stick with the current baseline' and continue planning for utilization.

  7. Regulation of brain insulin signaling: A new function for tau

    PubMed Central

    Gratuze, Maud; Planel, Emmanuel

    2017-01-01

    In this issue of JEM, Marciniak et al. (https://doi.org/10.1084/jem.20161731) identify a putative novel function of tau protein as a regulator of insulin signaling in the brain. They find that tau deletion impairs hippocampal response to insulin through IRS-1 and PTEN dysregulation and suggest that, in Alzheimer’s disease, impairment of brain insulin signaling might occur via tau loss of function. PMID:28652305

  8. Nightshift work job exposure matrices and urinary 6-sulfatoxymelatonin levels among healthy Chinese women.

    PubMed

    Ji, Bu-Tian; Gao, Yu-Tang; Shu, Xiao-Ou; Yang, Gong; Yu, Kai; Xue, Shou-Zheng; Li, Hong-Lan; Liao, Linda M; Blair, Aaron; Rothman, Nathaniel; Zheng, Wei; Chow, Wong-Ho

    2012-11-01

    Six-sulfatoxymelatonin (aMT6s) is a primary urinary metabolite of melatonin. We examined the association between aMT6s levels and shift work estimated by a job exposure matrix (JEM) among healthy participants of the Shanghai Women's Health Study. Creatinine-adjusted aMT6s levels were measured in the urine samples of 300 women and related to JEM shift work categories. Adjusted geometric means of aMT6s levels from urine samples collected before 08:00 hours were lower among persons holding nighttime shift work jobs. The adjusted aMT6s levels (ng/mg creatinine) were 8.36 [95% confidence intervals (95% CI) 4.47-15.6], 6.37 (95% CI 3.53-11.5), 6.20 (95% CI 3.33-11.5), 3.81 (95% CI 2.02-7.19), and 3.70 (95% CI 1.92-7.11) from the lowest (never held a shift work job) to the highest (current job likely involved all-night shift work) shift work JEM scores (P=0.05). Our results indicate that nightshift work JEM scores were significantly and inversely associated with aMT6s levels in early morning spot urine samples collected between 07:00-08:00 hours.

  9. Earth Observations Capabilities of the International Space Station

    NASA Astrophysics Data System (ADS)

    Eppler, Dean B.; Scott, Karen P.

    The International Space Station (ISS) is presently being assembled through the joint efforts of the United States, Russia, Canada, Japan, the European Space Agency and Brazil, and will be an orbiting, multi-use facility expected to remain on-orbit into the next decade. The orbital inclination of 51.6 degrees allows the ISS to overfly approximately 75% of the Earth's land area and approximately 95% of the Earth's population. Due to the westward precession of orbit tracks, the ISS will overfly the same location approximately every three days, with the identical lighting conditions being repeated every three months. The ISS has two basic capabilities for Earth observations: a fused silica window in the Destiny laboratory, and sites on the external truss and partner modules that accommodate external payloads. The Destiny laboratory has a window port built into its nadir facing side. The window consists of 3 panes of Corning 7940 fused silica which are approximately 56 cm in diameter, providing an approximately 51 cm clear aperture. In 1996, the ISS Program agreed to upgrade the glass in the Destiny window to a set of stringent optical performance requirements. The window has a wavefront error of 1/15 wavelength peak-to-valley over a 15.2 cm aperture relative to a reference wavelength of 632.8 nm, which will allow up to a 30 cm telescope to be flown. The flight article window was radiometrically calibrated in May of 2000, indicating that the window had better than 95% transmittance in the visible region, with a steep drop-off in the ultraviolet and a gradual drop-off in the infrared from the visible through the near and short wave infrared spectra. Utilization of the optical performance of the Destiny window requires the use of the Window Observational Research Facility (WORF). The WORF is essentially an Express rack with a 0.8 m^3 payload volume centered on the Destiny window. The payload volume provides mounting surfaces for window payload hardware, including a stiff lower payload shelf designed to minimize transmission of ISS vibrations into the payload. The interior of the WORF will be sealed by means of an aisle-side hatch. The interior of the payload volume will be painted flat black, to allow investigations of faint upper atmosphere phenomenon such as aurora. WORF will provide power, data and cooling water for up to three payloads simultaneously. Power will be 28 Volts DC. WORF will also provide an average downlink data on the order of 2 Mpbs. Investigators will be able to operate their payloads autonomously from their institution, with data going through the Huntsville Operations Support Center at Marshall Space Flight Center. It is generally expected that WORF payloads will operate autonomously, although crewmembers can operate payloads from the Destiny laboratory aisle using an externally mounted laptop. The WORF design accommodates crew observations as well. The WORF includes a variety of crew stabilization devices, as well as brackets to allow vibration-free operation of still cameras and video recorders. The four external payload accommodations that will be discussed are the USOS Truss Segment 3 (S3), the EXPRESS Pallet System (ExPS) when mounted on S3, the Columbus Exposed Payload Facility (CEPF), and the Japanese Experiment Module - Exposed Facility (JEM-EF). The S3 has four sites available for payloads. Two of these sites are on the nadir side of the truss and provide terrestrial viewing. The current NASA long-term plans are to mount an EXPRESS Pallet on each of the sites The ExPS is a facility that can be attached at the NASA primary external locations on the S3 Truss to support up to six smaller payloads. The ExPS consists of the EXPRESS Pallet, the EXPRESS Pallet Controller and the EXPRESS Pallet Adapters. User developed payloads are attached and interfaced to the EXPRESS Pallet Adapter and through this EXPRESS Pallet Adapter, the EXPRESS Pallet System provides the payloads with an attachment location, power, and data. The CEPF consists of two mounted structures attached to the starboard end-cone of the Columbus module. Each of these structures has accommodations for attaching two external payloads. One of the four sites provides and excellent nadir view and two of the other sites provides a significant nadir viewing opportunity. The mechanical attachment is compatible with that of the EXPRESS Pallet. The JEM-EF is module-sized structure attached to port end-cone of the JEM Pressurized Module. There are ten locations for attaching payloads and each of the locations provides simultaneous nadir and zenith viewing.

  10. Tolerogenic insulin peptide therapy precipitates type 1 diabetes.

    PubMed

    Bergman, Marie-Louise; Lopes-Carvalho, Thiago; Martins, Ana-Catarina; Grieco, Fabio A; Eizirik, Décio L; Demengeot, Jocelyne

    2017-07-03

    Daniel et al. (https://doi.org/10.1084/jem.20110574) have previously published in JEM a study on the preventive effect of tolerogenic vaccination with a strong agonist insulin mimetope in type 1 diabetes. Our study now challenges these results and shows that osmotic pump delivery of the modified insulin peptide R22E did not prevent hyperglycemia, accelerated disease onset, increased its incidence, and worsened insulitis. © 2017 Bergman et al.

  11. A role for astroglia in prion diseases.

    PubMed

    Aguzzi, Adriano; Liu, Yingjun

    2017-12-04

    In this issue of JEM, Krejciova et al. (https://doi.org/10.1084/jem.20161547) report that astrocytes derived from human iPSCs can replicate human CJD prions. These observations provide a new, potentially very valuable model for studying human prions in cellula and for identifying antiprion compounds that might serve as clinical candidates. Furthermore, they add to the evidence that astrocytes may not be just innocent bystanders in prion diseases. © 2017 Aguzzi and Liu.

  12. Regulation of brain insulin signaling: A new function for tau.

    PubMed

    Gratuze, Maud; Planel, Emmanuel

    2017-08-07

    In this issue of JEM, Marciniak et al. (https://doi.org/10.1084/jem.20161731) identify a putative novel function of tau protein as a regulator of insulin signaling in the brain. They find that tau deletion impairs hippocampal response to insulin through IRS-1 and PTEN dysregulation and suggest that, in Alzheimer's disease, impairment of brain insulin signaling might occur via tau loss of function. © 2017 Gratuze and Planel.

  13. Induced Contamination Predictions for JAXA's MPAC&SEED Devices

    NASA Technical Reports Server (NTRS)

    Steagall, Courtney; Smith, Kendall; Huang, Alvin; Soares, Carlos; Mikatarian, Ron

    2008-01-01

    Externally mounted ISS payloads are exposed to the induced ISS environment, including material outgassing and thruster plume contamination. The Boeing Space Environments Team developed analytical and semiempirical models to predict material outgassing and thruster plume induced contamination. JAXA s SM/MPAC&SEED experiment provides an unique opportunity to compare induced contamination predications with measurements. Analysis results are qualitatively consistent with XPS measurements. Calculated depth of contamination within a factor of 2-3 of measured contamination. Represents extremely good agreement, especially considering long duration of experiment and number of outgassing sources. Despite XPS limitations in quantifying plume contamination, the measured and predicted results are of similar scale for the wake-facing surfaces. JAXA s JEM/MPAC&SEED experiment will also be exposed to induced contamination due to JEM and ISS hardware. Predicted material outgassing induced contamination to JEM/MPAC&SEED ranges from 44 to 262 (depending on surface temperature) for a 3 year exposure duration.

  14. A balloon-borne prototype for demonstrating the concept of JEM-EUSO

    NASA Astrophysics Data System (ADS)

    von Ballmoos, P.; Santangelo, A.; Adams, J. H.; Barrillon, P.; Bayer, J.; Bertaina, M.; Cafagna, F.; Casolino, M.; Dagoret, S.; Danto, P.; Distratis, G.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Evrard, J.; Gorodetzky, Ph.; Haungs, A.; Jung, A.; Kawasaki, Y.; Medina-Tanco, G.; Mot, B.; Osteria, G.; Parizot, E.; Park, I. H.; Picozza, P.; Prévôt, G.; Prieto, H.; Ricci, M.; Rodríguez Frías, M. D.; Roudil, G.; Scotti, V.; Szabelski, J.; Takizawa, Y.; Tusno, K.

    2014-05-01

    EUSO-BALLOON has been conceived as a pathfinder for JEM-EUSO, a mission concept for a space-borne wide-field telescope monitoring the Earth's nighttime atmosphere with the objective of recording the ultraviolet light from tracks initiated by ultra-high energy cosmic rays. Through a series of stratospheric balloon flights performed by the French Space Agency CNES, EUSO-BALLOON will serve as a test-bench for the key technologies of JEM-EUSO. EUSO-BALLOON shall perform an end-to-end test of all subsystems and components, and prove the global detection chain while improving our knowledge of the atmospheric and terrestrial ultraviolet background. The balloon-instrument also has the potential to detect for the first time UV-light generated by atmospheric air-shower from above, marking a milestone in the development of UHECR science, and paving the way for any future large scale, space-based ultra-high energy cosmic ray observatory.

  15. [Reliability and validity of a generic job exposure matrix applied on a small-business].

    PubMed

    Haro-García, Luis; Celis-Quintal, Germán; López-Rojas, Pablo; Sánchez-Román, Francisco Raúl; Juárez-Pérez, Cuauhtémoc Arturo

    2007-01-01

    to evaluate the reliability and validity of a generic job exposure matrix (JEM) applied in a small business. procedures to evaluate a JEM integrated by six sections: the number of exposed workers per area, frequency of exposure, time of exposure time, level of exposure, safety controls, and proximity to source of exposure, was evaluated. The JEM also obtains information about possible health effects from exposure to occupational/environment agents. Two observers estimated the risk of exposure to epoxy resins on 31 workers of an epoxy resin facility in Mexico City. The rater agreements between the two observers were assessed through percent agreement (PA), weighted kappa (kappa(w)) and the intraclass correlation coefficient (ICC). disagreements were greater for the number of exposed workers (PA = 61.3, kappa(w) = 0.24, ICC = 0.33), level of exposure (PA= 66.7, kappa(w) = 0.25, ICC= 0.56), and safety controls (PA = 54.8, kappa(w) = 0.23, ICC = 0.69) sections. Percent agreement and kappa(w) were 64% and 0.58, respectively. In accordance with Landis and Koch, Altman, Fleiss, and Byrt classifications for the interpretation of kappa value, the weighted kappa (0.58) ranged from moderate to a fair good level. despite the discordance in some sections, the JEM proved to be useful to identify the risk of exposure in this type of small business.

  16. Relation Between Sprite Distribution and Source Locations of VHF Pulses Derived From JEM- GLIMS Measurements

    NASA Astrophysics Data System (ADS)

    Sato, Mitsuteru; Mihara, Masahiro; Ushio, Tomoo; Morimoto, Takeshi; Kikuchi, Hiroshi; Adachi, Toru; Suzuki, Makoto; Yamazaki, Atsushi; Takahashi, Yukihiro

    2015-04-01

    JEM-GLIMS is continuing the comprehensive nadir observations of lightning and TLEs using optical instruments and electromagnetic wave receivers since November 2012. For the period between November 20, 2012 and November 30, 2014, JEM-GLIMS succeeded in detecting 5,048 lightning events. A total of 567 events in 5,048 lightning events were TLEs, which were mostly elves events. To identify the sprite occurrences from the transient optical flash data, it is necessary to perform the following data analysis: (1) a subtraction of the appropriately scaled wideband camera data from the narrowband camera data; (2) a calculation of intensity ratio between different spectrophotometer channels; and (3) an estimation of the polarization and CMC for the parent CG discharges using ground-based ELF measurement data. From a synthetic comparison of these results, it is confirmed that JEM-GLISM succeeded in detecting sprite events. The VHF receiver (VITF) onboard JEM-GLIMS uses two patch-type antennas separated by a 1.6-m interval and can detect VHF pulses emitted by lightning discharges in the 70-100 MHz frequency range. Using both an interferometric technique and a group delay technique, we can estimate the source locations of VHF pulses excited by lightning discharges. In the event detected at 06:41:15.68565 UT on June 12, 2014 over central North America, sprite was distributed with a horizontal displacement of 20 km from the peak location of the parent lightning emission. In this event, a total of 180 VHF pulses were simultaneously detected by VITF. From the detailed data analysis of these VHF pulse data, it is found that the majority of the source locations were placed near the area of the dim lightning emission, which may imply that the VHF pulses were associated with the in-cloud lightning current. At the presentation, we will show detailed comparison between the spatiotemporal characteristics of sprite emission and source locations of VHF pulses excited by the parent lightning discharges of sprites.

  17. The Cosmic Ray Energetics And Mass Project

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk; Iss-Cream Collaboration

    2017-01-01

    The balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment was flown for 161 days in six flights over Antarctica, the longest known exposure for a single balloon project. Elemental spectra were measured for Z = 1- 26 nuclei over a wide energy range from 1010 to >1014 eV. Building on the success of those balloon flights, one of the two balloon payloads was transformed for exposure on the International Space Station (ISS) Japanese Experiment Module Exposed Facility (JEM-EF). This ISS-CREAM instrument is configured with redundant and complementary particle detectors. The four layers of its finely segmented Silicon Charge Detector provide precise charge measurements, and its ionization calorimeter provides energy measurements. In addition, scintillator-based Top and Bottom Counting Detectors and the Boronated Scintillator Detector distinguish electrons from nuclei. An order of magnitude increase in data collecting power is expected to reach the highest energies practical with direct measurements. Following completion of its qualification tests at NASA Goddard Space Flight Center, the ISS-CREAM payload was delivered to NASA Kennedy Space Center in August 2015 to await its launch to the ISS. While waiting for ISS-CREAM to launch, the other balloon payload including a Transition Radiation Detector, which is too large for the JEM-EF envelope, has been prepared for another Antarctic balloon flight in 2016. This so-called Boron And Carbon Cosmic rays in the Upper Stratosphere (BACCUS) payload will investigate cosmic ray propagation history. The overall project status and future plans will be presented.

  18. Blog and Podcast Watch: Neurologic Emergencies

    PubMed Central

    Grock, Andrew; Joshi, Nikita; Swaminathan, Anand; Rezaie, Salim; Gaafary, Chris; Lin, Michelle

    2016-01-01

    Introduction The WestJEM Blog and Podcast Watch presents high quality open-access educational blogs and podcasts in emergency medicine (EM) based on the ongoing ALiEM Approved Instructional Resources (AIR) and AIR-Professional series. Both series critically appraise resources using an objective scoring rubric. This installment of the Blog and Podcast Watch highlights the topic of neurologic emergencies from the AIR series. Methods The AIR series is a continuously building curriculum that follows the Council of Emergency Medicine Residency Director’s (CORD) annual testing schedule. For each module, relevant content is collected from the top 50 Social Media Index sites published within the previous 12 months, and scored by eight board members using five equally weighted measurement outcomes: Best Evidence in Emergency Medicine (BEEM) score, accuracy, educational utility, evidence based, and references. Resources scoring ≥30 out of 35 available points receive an AIR label. Resources scoring 27–29 receive an honorable mention label, if the executive board agrees that the post is accurate and educationally valuable. Results A total of 125 blog posts and podcasts were evaluated. Key educational pearls from the 14 AIR posts are summarized, and the 20 honorable mentions are listed. Conclusion The WestJEM Blog and Podcast Watch series is based on the AIR and AIR-Pro series, which attempts to identify high quality educational content on open-access blogs and podcasts. This series provides an expert-based, post-publication curation of educational social media content for EM clinicians with this installment focusing on neurologic emergencies. PMID:27833680

  19. Blog and Podcast Watch: Neurologic Emergencies.

    PubMed

    Grock, Andrew; Joshi, Nikita; Swaminathan, Anand; Rezaie, Salim; Gaafary, Chris; Lin, Michelle

    2016-11-01

    The WestJEM Blog and Podcast Watch presents high quality open-access educational blogs and podcasts in emergency medicine (EM) based on the ongoing ALiEM Approved Instructional Resources (AIR) and AIR-Professional series. Both series critically appraise resources using an objective scoring rubric. This installment of the Blog and Podcast Watch highlights the topic of neurologic emergencies from the AIR series. The AIR series is a continuously building curriculum that follows the Council of Emergency Medicine Residency Director's (CORD) annual testing schedule. For each module, relevant content is collected from the top 50 Social Media Index sites published within the previous 12 months, and scored by eight board members using five equally weighted measurement outcomes: Best Evidence in Emergency Medicine (BEEM) score, accuracy, educational utility, evidence based, and references. Resources scoring ≥30 out of 35 available points receive an AIR label. Resources scoring 27-29 receive an honorable mention label, if the executive board agrees that the post is accurate and educationally valuable. A total of 125 blog posts and podcasts were evaluated. Key educational pearls from the 14 AIR posts are summarized, and the 20 honorable mentions are listed. The WestJEM Blog and Podcast Watch series is based on the AIR and AIR-Pro series, which attempts to identify high quality educational content on open-access blogs and podcasts. This series provides an expert-based, post-publication curation of educational social media content for EM clinicians with this installment focusing on neurologic emergencies.

  20. Blog and Podcast Watch: Orthopedic Emergencies.

    PubMed

    Grock, Andrew; Rezaie, Salim; Swaminathan, Anand; Min, Alice; Shah, Kaushal H; Lin, Michelle

    2017-04-01

    The WestJEM Blog and Podcast Watch presents high quality open-access educational blogs and podcasts in emergency medicine (EM) based on the ongoing ALiEM Approved Instructional Resources (AIR) and AIR-Professional series. Both series critically appraise resources using an objective scoring rubric. This installment of the Blog and Podcast Watch highlights the topic of orthopedic emergencies from the AIR series. The AIR series is a continuously building curriculum that follows the Council of Emergency Medicine Residency Directors (CORD) annual testing schedule. For each module, relevant content is collected from the top 50 Social Media Index sites published within the previous 12 months, and scored by eight AIR board members using five equally weighted measurement outcomes: Best Evidence in Emergency Medicine (BEEM) score, accuracy, educational utility, evidence based, and references. Resources scoring ≥30 out of 35 available points receive an AIR label. Resources scoring 27-29 receive an honorable mention label, if the executive board agrees that the post is accurate and educationally valuable. A total of 87 blog posts and podcasts were evaluated. Key educational pearls from the three AIR posts and the 14 honorable mentions are summarized. The WestJEM Blog and Podcast Watch series is based on the AIR and AIR-Pro series, which attempts to identify high quality educational content on open-access blogs and podcasts. This series provides an expert-based, post-publication curation of educational social media content for EM clinicians with this installment focusing on orthopedic emergencies.

  1. Blog and Podcast Watch: Orthopedic Emergencies

    PubMed Central

    Grock, Andrew; Rezaie, Salim; Swaminathan, Anand; Min, Alice; Shah, Kaushal H.; Lin, Michelle

    2017-01-01

    Introduction The WestJEM Blog and Podcast Watch presents high quality open-access educational blogs and podcasts in emergency medicine (EM) based on the ongoing ALiEM Approved Instructional Resources (AIR) and AIR-Professional series. Both series critically appraise resources using an objective scoring rubric. This installment of the Blog and Podcast Watch highlights the topic of orthopedic emergencies from the AIR series. Methods The AIR series is a continuously building curriculum that follows the Council of Emergency Medicine Residency Directors (CORD) annual testing schedule. For each module, relevant content is collected from the top 50 Social Media Index sites published within the previous 12 months, and scored by eight AIR board members using five equally weighted measurement outcomes: Best Evidence in Emergency Medicine (BEEM) score, accuracy, educational utility, evidence based, and references. Resources scoring ≥30 out of 35 available points receive an AIR label. Resources scoring 27–29 receive an honorable mention label, if the executive board agrees that the post is accurate and educationally valuable. Results A total of 87 blog posts and podcasts were evaluated. Key educational pearls from the three AIR posts and the 14 honorable mentions are summarized. Conclusion The WestJEM Blog and Podcast Watch series is based on the AIR and AIR-Pro series, which attempts to identify high quality educational content on open-access blogs and podcasts. This series provides an expert-based, post-publication curation of educational social media content for EM clinicians with this installment focusing on orthopedic emergencies. PMID:28435507

  2. Integrating workplace exposure databases for occupational medicine services and epidemiologic studies at a former nuclear weapons facility.

    PubMed

    Ruttenber, A J; McCrea, J S; Wade, T D; Schonbeck, M F; LaMontagne, A D; Van Dyke, M V; Martyny, J W

    2001-02-01

    We outline methods for integrating epidemiologic and industrial hygiene data systems for the purpose of exposure estimation, exposure surveillance, worker notification, and occupational medicine practice. We present examples of these methods from our work at the Rocky Flats Plant--a former nuclear weapons facility that fabricated plutonium triggers for nuclear weapons and is now being decontaminated and decommissioned. The weapons production processes exposed workers to plutonium, gamma photons, neutrons, beryllium, asbestos, and several hazardous chemical agents, including chlorinated hydrocarbons and heavy metals. We developed a job exposure matrix (JEM) for estimating exposures to 10 chemical agents in 20 buildings for 120 different job categories over a production history spanning 34 years. With the JEM, we estimated lifetime chemical exposures for about 12,000 of the 16,000 former production workers. We show how the JEM database is used to estimate cumulative exposures over different time periods for epidemiological studies and to provide notification and determine eligibility for a medical screening program developed for former workers. We designed an industrial hygiene data system for maintaining exposure data for current cleanup workers. We describe how this system can be used for exposure surveillance and linked with the JEM and databases on radiation doses to develop lifetime exposure histories and to determine appropriate medical monitoring tests for current cleanup workers. We also present time-line-based graphical methods for reviewing and correcting exposure estimates and reporting them to individual workers.

  3. Development of an occupational airborne chemical exposure matrix

    PubMed Central

    Kurmi, O. P.; Chambers, H.; Lam, K. B. H.; Fishwick, D.

    2016-01-01

    Background Population-based studies of the occupational contribution to chronic obstructive pulmonary disease generally rely on self-reported exposures to vapours, gases, dusts and fumes (VGDF), which are susceptible to misclassification. Aims To develop an airborne chemical job exposure matrix (ACE JEM) for use with the UK Standard Occupational Classification (SOC 2000) system. Methods We developed the ACE JEM in stages: (i) agreement of definitions, (ii) a binary assignation of exposed/not exposed to VGDF, fibres or mists (VGDFFiM), for each of the individual 353 SOC codes and (iii) assignation of levels of exposure (L; low, medium and high) and (iv) the proportion of workers (P) likely to be exposed in each code. We then expanded the estimated exposures to include biological dusts, mineral dusts, metals, diesel fumes and asthmagens. Results We assigned 186 (53%) of all SOC codes as exposed to at least one category of VGDFFiM, with 23% assigned as having medium or high exposure. We assigned over 68% of all codes as not being exposed to fibres, gases or mists. The most common exposure was to dusts (22% of codes with >50% exposed); 12% of codes were assigned exposure to fibres. We assigned higher percentages of the codes as exposed to diesel fumes (14%) compared with metals (8%). Conclusions We developed an expert-derived JEM, using a strict set of a priori defined rules. The ACE JEM could also be applied to studies to assess risks of diseases where the main route of occupational exposure is via inhalation. PMID:27067914

  4. Development of an occupational airborne chemical exposure matrix.

    PubMed

    Sadhra, S S; Kurmi, O P; Chambers, H; Lam, K B H; Fishwick, D

    2016-07-01

    Population-based studies of the occupational contribution to chronic obstructive pulmonary disease generally rely on self-reported exposures to vapours, gases, dusts and fumes (VGDF), which are susceptible to misclassification. To develop an airborne chemical job exposure matrix (ACE JEM) for use with the UK Standard Occupational Classification (SOC 2000) system. We developed the ACE JEM in stages: (i) agreement of definitions, (ii) a binary assignation of exposed/not exposed to VGDF, fibres or mists (VGDFFiM), for each of the individual 353 SOC codes and (iii) assignation of levels of exposure (L; low, medium and high) and (iv) the proportion of workers (P) likely to be exposed in each code. We then expanded the estimated exposures to include biological dusts, mineral dusts, metals, diesel fumes and asthmagens. We assigned 186 (53%) of all SOC codes as exposed to at least one category of VGDFFiM, with 23% assigned as having medium or high exposure. We assigned over 68% of all codes as not being exposed to fibres, gases or mists. The most common exposure was to dusts (22% of codes with >50% exposed); 12% of codes were assigned exposure to fibres. We assigned higher percentages of the codes as exposed to diesel fumes (14%) compared with metals (8%). We developed an expert-derived JEM, using a strict set of a priori defined rules. The ACE JEM could also be applied to studies to assess risks of diseases where the main route of occupational exposure is via inhalation. © Crown copyright 2016.

  5. Calibration aspects of the JEM-EUSO mission

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    The JEM-EUSO telescope will be, after calibration, a very accurate instrument which yields the number of received photons from the number of measured photo-electrons. The project is in phase A (demonstration of the concept) including already operating prototype instruments, i.e. many parts of the instrument have been constructed and tested. Calibration is a crucial part of the instrument and its use. The focal surface (FS) of the JEM-EUSO telescope will consist of about 5000 photo-multiplier tubes (PMTs), which have to be well calibrated to reach the required accuracy in reconstructing the air-shower parameters. The optics system consists of 3 plastic Fresnel (double-sided) lenses of 2.5 m diameter. The aim of the calibration system is to measure the efficiencies (transmittances) of the optics and absolute efficiencies of the entire focal surface detector. The system consists of 3 main components: (i) Pre-flight calibration devices on ground, where the efficiency and gain of the PMTs will be measured absolutely and also the transmittance of the optics will be. (ii) On-board relative calibration system applying two methods: a) operating during the day when the JEM-EUSO lid will be closed with small light sources on board. b) operating during the night, together with data taking: the monitoring of the background rate over identical sites. (iii) Absolute in-flight calibration, again, applying two methods: a) measurement of the moon light, reflected on high altitude, high albedo clouds. b) measurements of calibrated flashes and tracks produced by the Global Light System (GLS). Some details of each calibration method will be described in this paper.

  6. ALiEM Blog and Podcast Watch: Procedures in Emergency Medicine.

    PubMed

    Joshi, Nikita; Morley, Eric J; Taira, Taku; Branzetti, Jeremy; Grock, Andrew

    2017-10-01

    The WestJEM Blog and Podcast Watch presents high-quality, open-access educational blogs and podcasts in emergency medicine (EM) based on the ongoing Academic Life in EM (ALiEM) Approved Instructional Resources (AIR) and AIR-Professional series. Both series critically appraise resources using an objective scoring rubric. This installment of the Blog and Podcast Watch highlights the topic of procedure emergencies from the AIR Series. The AIR Series is a continuously building curriculum that follows the Council of Emergency Medicine Residency Directors' (CORD) annual testing schedule. For each module, relevant content is collected from the top 50 Social Media Index sites published within the previous 12 months, and scored by eight AIR board members using five equally weighted measurement outcomes: Best Evidence in Emergency Medicine (BEEM) score, accuracy, educational utility, evidence based, and references. Resources scoring ≥30 out of 35 available points receive an AIR label. Resources scoring 27-29 receive an "honorable mention" label if the executive board agrees that the post is accurate and educationally valuable. A total of 85 blog posts and podcasts were evaluated in June 2016. This report summarizes key educational pearls from the three AIR posts and the 10 Honorable Mentions. The WestJEM Blog and Podcast Watch series is based on the AIR and AIR-Pro series, which attempts to identify high-quality educational content on open-access blogs and podcasts. This series provides an expert-based, post-publication curation of educational social media content for EM clinicians, with this installment focusing on procedure emergencies within the AIR series.

  7. ALiEM Blog and Podcast Watch: Procedures in Emergency Medicine

    PubMed Central

    Joshi, Nikita; Morley, Eric J.; Taira, Taku; Branzetti, Jeremy; Grock, Andrew

    2017-01-01

    Introduction The WestJEM Blog and Podcast Watch presents high-quality, open-access educational blogs and podcasts in emergency medicine (EM) based on the ongoing Academic Life in EM (ALiEM) Approved Instructional Resources (AIR) and AIR-Professional series. Both series critically appraise resources using an objective scoring rubric. This installment of the Blog and Podcast Watch highlights the topic of procedure emergencies from the AIR Series. Methods The AIR Series is a continuously building curriculum that follows the Council of Emergency Medicine Residency Directors’ (CORD) annual testing schedule. For each module, relevant content is collected from the top 50 Social Media Index sites published within the previous 12 months, and scored by eight AIR board members using five equally weighted measurement outcomes: Best Evidence in Emergency Medicine (BEEM) score, accuracy, educational utility, evidence based, and references. Resources scoring ≥30 out of 35 available points receive an AIR label. Resources scoring 27–29 receive an “honorable mention” label if the executive board agrees that the post is accurate and educationally valuable. Results A total of 85 blog posts and podcasts were evaluated in June 2016. This report summarizes key educational pearls from the three AIR posts and the 10 Honorable Mentions. Conclusion The WestJEM Blog and Podcast Watch series is based on the AIR and AIR-Pro series, which attempts to identify high-quality educational content on open-access blogs and podcasts. This series provides an expert-based, post-publication curation of educational social media content for EM clinicians, with this installment focusing on procedure emergencies within the AIR series. PMID:29085547

  8. The EUSO-SPB Mission

    NASA Astrophysics Data System (ADS)

    Wiencke, Lawrence; Adams, Jim; Olinto, Angela; JEM-EUSO Collaboration

    2016-03-01

    The Extreme Universe Space Observatory on a super pressure balloon (EUSO-SPB) mission will make the first fluorescence observations of high energy cosmic ray extensive air showers by looking down on the atmosphere from near space. EUSO-SPB follows a successful overnight flight in August 2014 of the JEM-EUSO prototype mission named EUSO-Balloon. EUSO-Balloon recorded artificial tracks and pulses that were generated by a laser and optical flashers that were flown in a helicopter under the balloon. Preparations are underway for EUSO-SPB with the potential for a flight of 50 days duration. The planned launch site is Wanaka, New Zealand. We describe the mission, the updated instrument, and expected detection rates of extensive air showers events produced by cosmic primaries.

  9. ESA Press Event: See Mars Express before its departure to the Red Planet

    NASA Astrophysics Data System (ADS)

    2002-08-01

    There will be ten participants: four ESA astronauts (Pedro Duque, Leopold Eyharts, Paolo Nespoli and Thomas Reiter), four Japanese astronauts from NASDA (Takao Doi, Koichi Wakata, Satoshi Furukawa and Aikihido Hoshide) and two NASA astronauts (Nicole Passonno Stott and Stephanie D. Wilson). The main objective of this training session is to prepare the astronauts for the tasks they will have to perform when the Japanese experiment module (JEM) and ESA's Columbus laboratory are docked with the core of the International Space Station over the years ahead. After completing their training and certification, the astronauts will be assigned to long-duration missions to the ISS. The advanced training at the EAC will focus on the Columbus systems and the Automated Transfer Vehicle (ATV). It will consist of 24 classroom lectures on the Columbus and ATV systems and 4 on payloads, and 2 sessions in the Columbus Trainer. Instructors are being provided by Astrium for the Columbus systems and Alenia Spazio for the ATV, with ESA/EAC staff as mentors for the Columbus payloads. The astronauts are scheduled to visit Astrium in Bremen on 30 August to get acquainted with the flight unit of the Columbus laboratory module currently undergoing integration. This group of astronauts started their advanced training in April 2001 at NASA's Johnson Space Center (JSC), Houston, where they attended a first course on the US segment of the International Space Station. This was followed by training on the JEM system at NASDA's Tsukuba Space Center, Japan, in December 2001 - January 2002 and additional training at the JSC in May 2002. At the beginning of next year the group will be returning to Tsukuba for training on Japanese payloads. Hands-on sessions on Columbus Payload Training Models are scheduled for the second half of 2003, again at ESA's European Astronaut Centre. On Thursday 5 September, between 16:30 and 18:30 hrs, the astronauts and other ESA specialists will be available for interviews. Media representatives interested in meeting them are requested to complete the attached reply form and to fax it by Tuesday 3 September to Maren Stock at ESA/EAC.

  10. Creation of a retrospective job-exposure matrix using surrogate measures of exposure for a cohort of US career firefighters from San Francisco, Chicago and Philadelphia

    PubMed Central

    Dahm, Matthew M; Bertke, Stephen; Allee, Steve; Daniels, Robert D

    2015-01-01

    Objectives To construct a cohort-specific job-exposure matrix (JEM) using surrogate metrics of exposure for a cancer study on career firefighters from the Chicago, Philadelphia and San Francisco Fire Departments. Methods Departmental work history records, along with data on historical annual fire-runs and hours, were collected from 1950 to 2009 and coded into separate databases. These data were used to create a JEM based on standardised job titles and fire apparatus assignments using several surrogate exposure metrics to estimate firefighters’ exposure to the combustion byproducts of fire. The metrics included duration of exposure (cumulative time with a standardised exposed job title and assignment), fire-runs (cumulative events of potential fire exposure) and time at fire (cumulative hours of potential fire exposure). Results The JEM consisted of 2298 unique job titles alongside 16 174 fire apparatus assignments from the three departments, which were collapsed into 15 standardised job titles and 15 standardised job assignments. Correlations were found between fire-runs and time at fires (Pearson coefficient=0.92), duration of exposure and time at fires (Pearson coefficient=0.85), and duration of exposure and fire-runs (Pearson coefficient=0.82). Total misclassification rates were found to be between 16–30% when using duration of employment as an exposure surrogate, which has been traditionally used in most epidemiological studies, compared with using the duration of exposure surrogate metric. Conclusions The constructed JEM successfully differentiated firefighters based on gradient levels of potential exposure to the combustion byproducts of fire using multiple surrogate exposure metrics. PMID:26163543

  11. Creation of a retrospective job-exposure matrix using surrogate measures of exposure for a cohort of US career firefighters from San Francisco, Chicago and Philadelphia.

    PubMed

    Dahm, Matthew M; Bertke, Stephen; Allee, Steve; Daniels, Robert D

    2015-09-01

    To construct a cohort-specific job-exposure matrix (JEM) using surrogate metrics of exposure for a cancer study on career firefighters from the Chicago, Philadelphia and San Francisco Fire Departments. Departmental work history records, along with data on historical annual fire-runs and hours, were collected from 1950 to 2009 and coded into separate databases. These data were used to create a JEM based on standardised job titles and fire apparatus assignments using several surrogate exposure metrics to estimate firefighters' exposure to the combustion byproducts of fire. The metrics included duration of exposure (cumulative time with a standardised exposed job title and assignment), fire-runs (cumulative events of potential fire exposure) and time at fire (cumulative hours of potential fire exposure). The JEM consisted of 2298 unique job titles alongside 16,174 fire apparatus assignments from the three departments, which were collapsed into 15 standardised job titles and 15 standardised job assignments. Correlations were found between fire-runs and time at fires (Pearson coefficient=0.92), duration of exposure and time at fires (Pearson coefficient=0.85), and duration of exposure and fire-runs (Pearson coefficient=0.82). Total misclassification rates were found to be between 16-30% when using duration of employment as an exposure surrogate, which has been traditionally used in most epidemiological studies, compared with using the duration of exposure surrogate metric. The constructed JEM successfully differentiated firefighters based on gradient levels of potential exposure to the combustion byproducts of fire using multiple surrogate exposure metrics. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. SYN-JEM: A Quantitative Job-Exposure Matrix for Five Lung Carcinogens.

    PubMed

    Peters, Susan; Vermeulen, Roel; Portengen, Lützen; Olsson, Ann; Kendzia, Benjamin; Vincent, Raymond; Savary, Barbara; Lavoué, Jérôme; Cavallo, Domenico; Cattaneo, Andrea; Mirabelli, Dario; Plato, Nils; Fevotte, Joelle; Pesch, Beate; Brüning, Thomas; Straif, Kurt; Kromhout, Hans

    2016-08-01

    The use of measurement data in occupational exposure assessment allows more quantitative analyses of possible exposure-response relations. We describe a quantitative exposure assessment approach for five lung carcinogens (i.e. asbestos, chromium-VI, nickel, polycyclic aromatic hydrocarbons (by its proxy benzo(a)pyrene (BaP)) and respirable crystalline silica). A quantitative job-exposure matrix (JEM) was developed based on statistical modeling of large quantities of personal measurements. Empirical linear models were developed using personal occupational exposure measurements (n = 102306) from Europe and Canada, as well as auxiliary information like job (industry), year of sampling, region, an a priori exposure rating of each job (none, low, and high exposed), sampling and analytical methods, and sampling duration. The model outcomes were used to create a JEM with a quantitative estimate of the level of exposure by job, year, and region. Decreasing time trends were observed for all agents between the 1970s and 2009, ranging from -1.2% per year for personal BaP and nickel exposures to -10.7% for asbestos (in the time period before an asbestos ban was implemented). Regional differences in exposure concentrations (adjusted for measured jobs, years of measurement, and sampling method and duration) varied by agent, ranging from a factor 3.3 for chromium-VI up to a factor 10.5 for asbestos. We estimated time-, job-, and region-specific exposure levels for four (asbestos, chromium-VI, nickel, and RCS) out of five considered lung carcinogens. Through statistical modeling of large amounts of personal occupational exposure measurement data we were able to derive a quantitative JEM to be used in community-based studies. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  13. Upper arm elevation and repetitive shoulder movements: a general population job exposure matrix based on expert ratings and technical measurements.

    PubMed

    Dalbøge, Annett; Hansson, Gert-Åke; Frost, Poul; Andersen, Johan Hviid; Heilskov-Hansen, Thomas; Svendsen, Susanne Wulff

    2016-08-01

    We recently constructed a general population job exposure matrix (JEM), The Shoulder JEM, based on expert ratings. The overall aim of this study was to convert expert-rated job exposures for upper arm elevation and repetitive shoulder movements to measurement scales. The Shoulder JEM covers all Danish occupational titles, divided into 172 job groups. For 36 of these job groups, we obtained technical measurements (inclinometry) of upper arm elevation and repetitive shoulder movements. To validate the expert-rated job exposures against the measured job exposures, we used Spearman rank correlations and the explained variance[Formula: see text] according to linear regression analyses (36 job groups). We used the linear regression equations to convert the expert-rated job exposures for all 172 job groups into predicted measured job exposures. Bland-Altman analyses were used to assess the agreement between the predicted and measured job exposures. The Spearman rank correlations were 0.63 for upper arm elevation and 0.64 for repetitive shoulder movements. The expert-rated job exposures explained 64% and 41% of the variance of the measured job exposures, respectively. The corresponding calibration equations were y=0.5%time+0.16×expert rating and y=27°/s+0.47×expert rating. The mean differences between predicted and measured job exposures were zero due to calibration; the 95% limits of agreement were ±2.9% time for upper arm elevation >90° and ±33°/s for repetitive shoulder movements. The updated Shoulder JEM can be used to present exposure-response relationships on measurement scales. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Development of retrospective quantitative and qualitative job-exposure matrices for exposures at a beryllium processing facility.

    PubMed

    Couch, James R; Petersen, Martin; Rice, Carol; Schubauer-Berigan, Mary K

    2011-05-01

    To construct a job-exposure matrix (JEM) for an Ohio beryllium processing facility between 1953 and 2006 and to evaluate temporal changes in airborne beryllium exposures. Quantitative area- and breathing-zone-based exposure measurements of airborne beryllium were made between 1953 and 2006 and used by plant personnel to estimate daily weighted average (DWA) exposure concentrations for sampled departments and operations. These DWA measurements were used to create a JEM with 18 exposure metrics, which was linked to the plant cohort consisting of 18,568 unique job, department and year combinations. The exposure metrics ranged from quantitative metrics (annual arithmetic/geometric average DWA exposures, maximum DWA and peak exposures) to descriptive qualitative metrics (chemical beryllium species and physical form) to qualitative assignment of exposure to other risk factors (yes/no). Twelve collapsed job titles with long-term consistent industrial hygiene samples were evaluated using regression analysis for time trends in DWA estimates. Annual arithmetic mean DWA estimates (overall plant-wide exposures including administration, non-production, and production estimates) for the data by decade ranged from a high of 1.39 μg/m(3) in the 1950s to a low of 0.33 μg/m(3) in the 2000s. Of the 12 jobs evaluated for temporal trend, the average arithmetic DWA mean was 2.46 μg/m(3) and the average geometric mean DWA was 1.53 μg/m(3). After the DWA calculations were log-transformed, 11 of the 12 had a statistically significant (p < 0.05) decrease in reported exposure over time. The constructed JEM successfully differentiated beryllium exposures across jobs and over time. This is the only quantitative JEM containing exposure estimates (average and peak) for the entire plant history.

  15. Occupational Risk Factors for COPD Phenotypes in the Multi-Ethnic Study of Atherosclerosis (MESA) Lung Study

    PubMed Central

    Doney, Brent; Hnizdo, Eva; Graziani, Monica; Kullman, Greg; Burchfiel, Cecil; Baron, Sherry; Fujishiro, Kaori; Enright, Paul; Hankinson, John L.; Stukovsky, Karen Hinckley; Martin, Christopher J.; Donohue, Kathleen M.; Barr, R. Graham

    2014-01-01

    Introduction The contribution of occupational exposure to the risk of chronic obstructive pulmonary disease COPD in population-based studies is of interest. We compared the performance of self-reported exposure to a newly developed JEM in exposure-response evaluation. Methods We used cross-sectional data from Multi-Ethnic Study of Atherosclerosis (MESA), a population-based sample of 45–84 year olds free of clinical cardiovascular disease at baseline. MESA ascertained the most recent job and employment, and the MESA Lung Study measured spirometry, and occupational exposures for 3686 participants. Associations between health outcomes (spirometry defined airflow limitation and Medical Research Council-defined chronic bronchitis) and occupational exposure [self-reported occupational exposure to vapor-gas, dust, or fumes (VGDF), severity of exposure, and a job-exposure matrix (JEM)-derived score] were evaluated using logistic regression models adjusted for non-occupational risk factors. Results The prevalence of airflow limitation was associated with self-reported exposure to vapor-gas (OR 2.6, 95%CI 1.1–2.3), severity of VGDF exposure (P-trend<0.01), and JEM dust exposure (OR 2.4, 95%CI 1.1–5.0), and with organic dust exposure in females; these associations were generally of greater magnitude among never smokers. The prevalence of chronic bronchitis and wheeze was associated with exposure to VGDF. The association between airflow limitation and the combined effect of smoking and VGDF exposure showed an increasing trend. Self-reported vapor-gas, dust, fumes, years and severity of exposure were associated with increased prevalence of chronic bronchitis and wheeze (P<0.001). Conclusions Airflow limitation was associated with self-reported VGDF exposure, its severity, and JEM-ascertained dust exposure in smokers and never-smokers in this multiethnic study. PMID:24568208

  16. Contribution of job-exposure matrices for exposure assessment in occupational safety and health monitoring systems: application from the French national occupational disease surveillance and prevention network.

    PubMed

    Florentin, Arnaud; Zmirou-Navier, Denis; Paris, Christophe

    2017-08-01

    To detect new hazards ("signals"), occupational health monitoring systems mostly rest on the description of exposures in the jobs held and on reports by medical doctors; these are subject to declarative bias. Our study aims to assess whether job-exposure matrices (JEMs) could be useful tools for signal detection by improving exposure reporting. Using the French national occupational disease surveillance and prevention network (RNV3P) data from 2001 to 2011, we explored the associations between disease and exposure prevalence for 3 well-known pathology/exposure couples and for one debatable couple. We compared the associations measured when using physicians' reports or applying the JEMs, respectively, for these selected diseases and across non-selected RNV3P population or for cases with musculoskeletal disorders, used as two reference groups; the ratio of exposure prevalences according to the two sources of information were computed for each disease category. Our population contained 58,188 subjects referred with pathologies related to work. Mean age at diagnosis was 45.8 years (95% CI 45.7; 45.9), and 57.2% were men. For experts, exposure ratios increase with knowledge on exposure causality. As expected, JEMs retrieved more exposed cases than experts (exposure ratios between 12 and 194), except for the couple silica/silicosis, but not for the MSD control group (ratio between 0.2 and 0.8). JEMs enhanced the number of exposures possibly linked with some conditions, compared to experts' assessment, relative to the whole database or to a reference group; they are less likely to suffer from declarative bias than reports by occupational health professionals.

  17. International Space Station (ISS)

    NASA Image and Video Library

    1999-01-01

    The International Space Station (ISS) is an unparalleled international scientific and technological cooperative venture that will usher in a new era of human space exploration and research and provide benefits to people on Earth. On-Orbit assembly began on November 20, 1998, with the launch of the first ISS component, Zarya, on a Russian Proton rocket. The Space Shuttle followed on December 4, 1998, carrying the U.S.-built Unity cornecting Module. Sixteen nations are participating in the ISS program: the United States, Canada, Japan, Russia, Brazil, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. The ISS will include six laboratories and be four times larger and more capable than any previous space station. The United States provides two laboratories (United States Laboratory and Centrifuge Accommodation Module) and a habitation module. There will be two Russian research modules, one Japanese laboratory, referred to as the Japanese Experiment Module (JEM), and one European Space Agency (ESA) laboratory called the Columbus Orbital Facility (COF). The station's internal volume will be roughly equivalent to the passenger cabin volume of two 747 jets. Over five years, a total of more than 40 space flights by at least three different vehicles - the Space Shuttle, the Russian Proton Rocket, and the Russian Soyuz rocket - will bring together more than 100 different station components and the ISS crew. Astronauts will perform many spacewalks and use new robotics and other technologies to assemble ISS components in space.

  18. International Space Station Assembly

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The International Space Station (ISS) is an unparalleled international scientific and technological cooperative venture that will usher in a new era of human space exploration and research and provide benefits to people on Earth. On-Orbit assembly began on November 20, 1998, with the launch of the first ISS component, Zarya, on a Russian Proton rocket. The Space Shuttle followed on December 4, 1998, carrying the U.S.-built Unity cornecting Module. Sixteen nations are participating in the ISS program: the United States, Canada, Japan, Russia, Brazil, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. The ISS will include six laboratories and be four times larger and more capable than any previous space station. The United States provides two laboratories (United States Laboratory and Centrifuge Accommodation Module) and a habitation module. There will be two Russian research modules, one Japanese laboratory, referred to as the Japanese Experiment Module (JEM), and one European Space Agency (ESA) laboratory called the Columbus Orbital Facility (COF). The station's internal volume will be roughly equivalent to the passenger cabin volume of two 747 jets. Over five years, a total of more than 40 space flights by at least three different vehicles - the Space Shuttle, the Russian Proton Rocket, and the Russian Soyuz rocket - will bring together more than 100 different station components and the ISS crew. Astronauts will perform many spacewalks and use new robotics and other technologies to assemble ISS components in space.

  19. Evaluation of proposed Skylab and SSP soap products.

    NASA Technical Reports Server (NTRS)

    Durfee, R. L.; Spurlock, J. M.; Whitmore, F. C.

    1973-01-01

    Four candidate cleansing agents evaluated in terms of potential hazards to crew members included two soaps (Neutrogena bar soap and Olive Leaf Liquid), one nonfoaming surfactant (Miranol JEM), and one laundry detergent (sodium dodecylbenzene sulfonate). None of the four exhibited adverse dermatological effects from skin patch tests or supported growth of potentially pathogenic microorganisms. Aqueous solutions of Neutrogena did support a mold species. Neutrogena and Miranol JEM were used in a simulated Skylab personal hygiene regimen with no adverse effects on skin or skin microflora. Based on our results, each of these agents appear to be a promising candidate material for the use intended.

  20. Occupational exposures and chronic obstructive pulmonary disease (COPD): comparison of a COPD-specific job exposure matrix and expert-evaluated occupational exposures

    PubMed Central

    Kurth, Laura; Doney, Brent; Weinmann, Sheila

    2017-01-01

    Objectives To compare the occupational exposure levels assigned by our National Institute for Occupational Safety and Health chronic obstructive pulmonary disease-specific job exposure matrix (NIOSH COPD JEM) and by expert evaluation of detailed occupational information for various jobs held by members of an integrated health plan in the Northwest USA. Methods We analysed data from a prior study examining COPD and occupational exposures. Jobs were assigned exposure levels using 2 methods: (1) the COPD JEM and (2) expert evaluation. Agreement (Cohen’s κ coefficients), sensitivity and specificity were calculated to compare exposure levels assigned by the 2 methods for 8 exposure categories. Results κ indicated slight to moderate agreement (0.19–0.51) between the 2 methods and was highest for organic dust and overall exposure. Sensitivity of the matrix ranged from 33.9% to 68.5% and was highest for sensitisers, diesel exhaust and overall exposure. Specificity ranged from 74.7% to 97.1% and was highest for fumes, organic dust and mineral dust. Conclusions This COPD JEM was compared with exposures assigned by experts and offers a generalisable approach to assigning occupational exposure. PMID:27777373

  1. Cosmic ray oriented performance studies for the JEM-EUSO first level trigger

    NASA Astrophysics Data System (ADS)

    Abdellaoui, G.; Abe, S.; Acheli, A.; Adams, J. H.; Ahmad, S.; Ahriche, A.; Albert, J.-N.; Allard, D.; Alonso, G.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Aouimeur, W.; Arai, Y.; Arsene, N.; Asano, K.; Attallah, R.; Attoui, H.; Ave Pernas, M.; Bacholle, S.; Bakiri, M.; Baragatti, P.; Barrillon, P.; Bartocci, S.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, A.; Belov, K.; Benadda, B.; Benmessai, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Bisconti, F.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Boudaoud, R.; Bozzo, E.; Briggs, M. S.; Bruno, A.; Caballero, K. S.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Capel, F.; Caramete, A.; Caramete, L.; Carlson, P.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellina, A.; Castellini, G.; Catalano, C.; Catalano, O.; Cellino, A.; Chikawa, M.; Chiritoi, G.; Christl, M. J.; Connaughton, V.; Conti, L.; Contino, G.; Cordero, G.; Cotto, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Di Martino, M.; Djemil, T.; Djenas, S. A.; Dulucq, F.; Dupieux, M.; Dutan, I.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Eser, J.; Fang, K.; Fenu, F.; Fernández-González, S.; Fernández-Soriano, J.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Forza, R.; Fouka, M.; Franceschi, A.; Franchini, S.; Fuglesang, C.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; García-Ortega, E.; Garipov, G.; Gascón, E.; Geary, J.; Gelmini, G.; Genci, J.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guardone, N.; Guarino, F.; Guehaz, R.; Guzmán, A.; Hachisu, Y.; Haiduc, M.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Hidber, W.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Jammer, T.; Joven, E.; Judd, E. G.; Jung, A.; Jochum, J.; Kajino, F.; Kajino, T.; Kalli, S.; Kaneko, I.; Kang, D.; Kanouni, F.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Kedadra, A.; Khales, H.; Khrenov, B. A.; Kim, Jeong-Sook; Kim, Soon-Wook; Kim, Sug-Whan; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lahmar, H.; Lakhdari, F.; Larsson, O.; Lee, J.; Licandro, J.; Lim, H.; López Campano, L.; Maccarone, M. C.; Mackovjak, S.; Mahdi, M.; Manfrin, M.; Maravilla, D.; Marcelli, L.; Marcos, J. L.; Marini, A.; Martens, K.; Martín, Y.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Matthews, J. N.; Mebarki, N.; Medina-Tanco, G.; Mehrad, L.; Mendoza, M. A.; Merino, A.; Mernik, T.; Meseguer, J.; Messaoud, S.; Micu, O.; Mignone, M.; Mimouni, J.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Nadji, B.; Nagano, M.; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Painter, W.; Panasyuk, M. I.; Panico, B.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Pérez-Grande, I.; Perfetto, F.; Peter, T.; Picozza, P.; Pierog, T.; Pindado, S.; Piotrowski, L. W.; Piraino, S.; Placidi, L.; Plebaniak, Z.; Pliego, S.; Pollini, A.; Popescu, E. M.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Rabanal, J.; Radu, A. A.; Rahmani, M.; Reardon, P.; Reyes, M.; Rezazadeh, M.; Ricci, M.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez Cano, G.; Sagawa, H.; Sahnoune, Z.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sanchez, J. C.; Sánchez, J. L.; Santangelo, A.; Santiago Crúz, L.; Sanz-Andrés, A.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Sledd, J.; Słomińska, K.; Sobey, A.; Stan, I.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tahi, H.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Talai, M. C.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Traïche, M.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Vankova, G.; Vigorito, C.; Villaseñor, L.; Vlcek, B.; von Ballmoos, P.; Vrabel, M.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weigand Muñoz, R.; Weindl, A.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, S.; Young, R.; Zgura, I. S.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2017-09-01

    JEM-EUSO is a space mission designed to investigate Ultra-High Energy Cosmic Rays and Neutrinos (E > 5 ṡ 1019 eV) from the International Space Station (ISS). Looking down from above its wide angle telescope is able to observe their air showers and collect such data from a very wide area. Highly specific trigger algorithms are needed to drastically reduce the data load in the presence of both atmospheric and human activity related background light, yet retain the rare cosmic ray events recorded in the telescope. We report the performance in offline testing of the first level trigger algorithm on data from JEM-EUSO prototypes and laboratory measurements observing different light sources: data taken during a high altitude balloon flight over Canada, laser pulses observed from the ground traversing the real atmosphere, and model landscapes reproducing realistic aspect ratios and light conditions as would be seen from the ISS itself. The first level trigger logic successfully kept the trigger rate within the permissible bounds when challenged with artificially produced as well as naturally encountered night sky background fluctuations and while retaining events with general air-shower characteristics.

  2. Investigation of the Interplanetary Transfer of Microbes in the Tanpopo Mission at the Exposed Facility of the International Space Station.

    PubMed

    Kawaguchi, Yuko; Yokobori, Shin-Ichi; Hashimoto, Hirofumi; Yano, Hajime; Tabata, Makoto; Kawai, Hideyuki; Yamagishi, Akihiko

    2016-05-01

    The Tanpopo mission will address fundamental questions on the origin of terrestrial life. The main goal is to test the panspermia hypothesis. Panspermia is a long-standing hypothesis suggesting the interplanetary transport of microbes. Another goal is to test the possible origin of organic compounds carried from space by micrometeorites before the terrestrial origin of life. To investigate the panspermia hypothesis and the possible space origin of organic compounds, we performed space experiments at the Exposed Facility (EF) of the Japanese Experiment Module (JEM) of the International Space Station (ISS). The mission was named Tanpopo, which in Japanese means dandelion. We capture any orbiting microparticles, such as micrometeorites, space debris, and terrestrial particles carrying microbes as bioaerosols, by using blocks of silica aerogel. We also test the survival of microbial species and organic compounds in the space environment for up to 3 years. The goal of this review is to introduce an overview of the Tanpopo mission with particular emphasis on the investigation of the interplanetary transfer of microbes. The Exposed Experiment Handrail Attachment Mechanism with aluminum Capture Panels (CPs) and Exposure Panels (EPs) was exposed on the EF-JEM on May 26, 2015. The first CPs and EPs will be returned to the ground in mid-2016. Possible escape of terrestrial microbes from Earth to space will be evaluated by investigating the upper limit of terrestrial microbes by the capture experiment. Possible mechanisms for transfer of microbes over the stratosphere and an investigation of the effect of the microbial cell-aggregate size on survivability in space will also be discussed. Panspermia-Astrobiology-Low-Earth orbit. Astrobiology 16, 363-376.

  3. Error analyses of JEM/SMILES standard products on L2 operational system

    NASA Astrophysics Data System (ADS)

    Mitsuda, C.; Takahashi, C.; Suzuki, M.; Hayashi, H.; Imai, K.; Sano, T.; Takayanagi, M.; Iwata, Y.; Taniguchi, H.

    2009-12-01

    SMILES (Superconducting Submillimeter-wave Limb-Emission Sounder) , which has been developed by Japan Aerospace Exploration Agency (JAXA) and National Institute of Information and Communications Technology (NICT), is planned to be launched in September, 2009 and will be on board the Japanese Experiment Module (JEM) of the International Space Station (ISS). The SMILES measures the atmospheric limb emission from stratospheric minor constituents in 640 GHz band. Target species on L2 operational system are O3, ClO, HCl, HNO3, HOCl, CH3CN, HO2, BrO, and O3 isotopes (18OOO, 17OOO and O17OO). The SMILES carries 4 K cooled Superconductor-Insulator-Superconductor mixers to carry out high-sensitivity observations. In sub-millimeter band, water vapor absorption is an important factor to decide the tropospheric and stratospheric brightness temperature. The uncertainty of water vapor absorption influences the accuracy of molecular vertical profiles. Since the SMILES bands are narrow and far from H2O lines, it is a good approximation to assume this uncertainly as linear function of frequency. We include 0th and 1st coefficients of ‘baseline’ function, not water vapor profile, in state vector and retrieve them to remove influence of the water vapor uncertainty. We performed retrieval simulations using spectra computed by L2 operatinal forward model for various H2O conditions (-/+ 5, 10% difference between true profile and a priori profile in the stratosphere and -/+ 10, 20% one in the troposphere). The results show that the incremental errors of molecules are smaller than 10% of measurements errors when height correlation of baseline coefficients and temperature are assumed to be 10 km. In conclusion, the retrieval of the baseline coefficients effectively suppresses profile error due to bias of water vapor profile.

  4. Space hands-on universe telescope and orbiting wide-angle light-collector telescope to be built on the Japanese experiment module exposure facility of the international space station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Y.; Ebisuzaki, T.; Pennypacker, C.

    1999-01-01

    A concept study to build great observatories on, and deploy from, the ISS is presented. Use of the ISS infra-structure including robotic arms and astronauts{close_quote} EVA would permit a construction of very large optical telescopes. We envisage that the second phase of the ISS after its initial construction can landmark a new era for both ISS and Space Sciences. Ultimately, this study would plan a 10-or 20-meter class space telescope. For its first step, we envisioned an immediate extension of the Exposed Facility of ISS for building a {open_quotes}Work-bench{close_quotes} for this purpose. Initial activities can begin with two modest-sized telescopesmore » soon after the ISS construction. These early missions being studied are space Hands-On Universe Telescope (SHOUT) and Orbiting Wide-angle Light-collector (OWL). SHOUT is a 1-m telescope for science education. It will be built and adjusted on the exposure module of the Japanese Experiment Module (JEM) of the International Space Station by using a robotic arm and the EVA of astronauts. We also seek the possibility to release it from ISS after its perfection on orbit, so that it is free from the vibrations and gas contaminations on and around the ISS. SHOUT is an engineering prototype of 10-m Space Telescope (Space SUBARU Telescope). It would be scaled from the Space-SUBARU telescope so that the testing with the SHOUT would warrant the required specifications for the 10-meter Space-SUBARU construction on the ISS. The goal of the test with the SHOUT is to warrant a spatial resolution of 0.01 arc-seconds using the active/adaptive optics. It will test the following three major engineering challenges: (1) active/adaptive optics in space; (2) building of large structures by astronauts; and (3) release of a spacecraft from ISS to a free-flying orbit. The present feasibility study for the next generation great observatories that are to be built on the JEM Exposure Facility (EF) has been already funded by the Japan Space Forum, under the auspices of the National Space Development Agency (NASDA) of Japan. Included in this study are SHOUT, Space SUBARU telescope as well as OWL, Large Area gamma-ray Telescope (LAGT), and Space Submilimeter and Infrared Telescope (S-SIT). {copyright} {ital 1999 American Institute of Physics.}« less

  5. Development of a total hydrocarbon ordinal job-exposure matrix for workers responding to the Deepwater Horizon disaster: The GuLF STUDY.

    PubMed

    Stewart, Patricia A; Stenzel, Mark R; Ramachandran, Gurumurthy; Banerjee, Sudipto; Huynh, Tran B; Groth, Caroline P; Kwok, Richard K; Blair, Aaron; Engel, Lawrence S; Sandler, Dale P

    2018-05-01

    The GuLF STUDY is a cohort study investigating the health of workers who responded to the Deepwater Horizon oil spill in the Gulf of Mexico in 2010. The objective of this effort was to develop an ordinal job-exposure matrix (JEM) of airborne total hydrocarbons (THC), dispersants, and particulates to estimate study participants' exposures. Information was collected on participants' spill-related tasks. A JEM of exposure groups (EGs) was developed from tasks and THC air measurements taken during and after the spill using relevant exposure determinants. THC arithmetic means were developed for the EGs, assigned ordinal values, and linked to the participants using determinants from the questionnaire. Different approaches were taken for combining exposures across EGs. EGs for dispersants and particulates were based on questionnaire responses. Considerable differences in THC exposure levels were found among EGs. Based on the maximum THC level participants experienced across any job held, ∼14% of the subjects were identified in the highest exposure category. Approximately 10% of the cohort was exposed to dispersants or particulates. Considerable exposure differences were found across the various EGs, facilitating investigation of exposure-response relationships. The JEM is flexible to allow for different assumptions about several possibly relevant exposure metrics.

  6. Berkson error adjustment and other exposure surrogates in occupational case-control studies, with application to the Canadian INTEROCC study.

    PubMed

    Oraby, Tamer; Sivaganesan, Siva; Bowman, Joseph D; Kincl, Laurel; Richardson, Lesley; McBride, Mary; Siemiatycki, Jack; Cardis, Elisabeth; Krewski, Daniel

    2018-05-01

    Many epidemiological studies assessing the relationship between exposure and disease are carried out without data on individual exposures. When this barrier is encountered in occupational studies, the subject exposures are often evaluated with a job-exposure matrix (JEM), which consists of mean exposure for occupational categories measured on a comparable group of workers. One of the objectives of the seven-country case-control study of occupational exposure and brain cancer risk, INTEROCC, was to investigate the relationship of occupational exposure to electromagnetic fields (EMF) in different frequency ranges and brain cancer risk. In this paper, we use the Canadian data from INTEROCC to estimate the odds of developing brain tumours due to occupational exposure to EMF. The first step was to find the best EMF exposure surrogate among the arithmetic mean, the geometric mean, and the mean of log-normal exposure distribution for each occupation in the JEM, in comparison to Berkson error adjustments via numerical approximation of the likelihood function. Contrary to previous studies of Berkson errors in JEMs, we found that the geometric mean was the best exposure surrogate. This analysis provided no evidence that cumulative lifetime exposure to extremely low frequency magnetic fields increases brain cancer risk, a finding consistent with other recent epidemiological studies.

  7. The trigger system of the JEM-EUSO Project

    NASA Astrophysics Data System (ADS)

    Bertaina, M.; Ebisuzaki, T.; Hamada, T.; Ikeda, H.; Kawasai, Y.; Sawabe, T.; Takahashi, Y.; JEM-EUSO Collaboration

    The trigger system of JEM-EUSO should face different major challenging points: a) cope with the limited down-link transmission rate from the ISS to Earth, by operating a severe on-board and on-time data reduction; b) use very fast, low power consuming and radiation hard electronics; c) have a high signal-over-noise performance and flexibility in order to lower as much as possible the energy threshold of the detector, adjust the system to a variable nightglow background, and trigger on different categories of events (images insisting on the same pixels or crossing huge portions of the entire focal surface). Based on the above stringent requirements, the main ingredients for the trigger logic are: the Gate Time Unit (GTU); the minimum number Nthresh of photo-electrons piling up in a GTU in a pixel to be fired; the persistency level Npers, in which fired pixels are over threshold; the localization and correlation in space and time of the fired pixels, that distinguish a real EAS from an accidental background enhancement. The core of the trigger logic is the Track Trigger Algorithm that has been specifically developed for this purpose. Its characteristics, preliminary performance and its possible implementation on FPGA or DSP will be discussed together with a general overview of the architecture of the triggering system of JEM-EUSO.

  8. Utilization of a terrestrial cyanobacterium, Nostoc sp. HK-01, for space habitation

    NASA Astrophysics Data System (ADS)

    Kimura, Shunta; Tomita-Yokotani, Kaori; Arai, Mayumi; Yamashita, Masamichi; Katoh, Hiroshi; Ajioka, Reiko; Inoue, Kotomi

    2016-07-01

    A terrestrial cyanobacterium, Nostoc sp. HK-01 (hereafter HK-01), has several useful abilities for space habitation; photosynthesis, nitrogen fixation, and space environmental tolerances to vacuum, UV, gamma-ray, heavy particle beam, low and high temperature. Space environmental tolerances are important for transportation to Mars. HK-01 can grow on Martian regolith simulant (MRS) in vitro. Furthermore, HK-01 is useful as food. HK-01 may be utilized as oxygen supply, soil formation and food material for bio-chemical circulation in closed bio-ecosystems, including space habitation such as Mars. HK-01 was adopted as a biological material for the "TANPOPO" mission (JAXA et al.,), because of their high environmental tolerances. The "TANPOPO" mission is performing the space exposure experiments on the Japan Experimental Module (JEM) of the International Space Station (ISS). The results of these experiments will show the ability of HK-01 to survive in space.

  9. Joint Europa Mission (JEM) : A multi-scale study of Europa to characterize its habitability and search for life.

    NASA Astrophysics Data System (ADS)

    Blanc, Michel; Prieto Ballesteros, Olga; Andre, Nicolas; Cooper, John F.

    2017-04-01

    Europa is the closest and probably the most promising target to perform a comprehensive characterization of habitability and search for extant life. We propose that NASA and ESA join forces to design an ambitious planetary mission we call JEM (for Joint Europa Mission) to reach this objective. JEM will be assigned the following overarching goal: Understand Europa as a complex system responding to Jupiter system forcing, characterize the habitability of its potential biosphere, and search for life in its surface, sub-surface and exosphere. Our observation strategy to address these goals will combine three scientific measurement sequences: measurements on a high-latitude, low-latitude Europan orbit providing a continuous and global mapping of planetary fields (magnetic and gravity) and of the neutral and charged environment during a period of three months; in-situ measurements at the surface, using a soft lander operating during 35 days, to search for bio-signatures at the surface and sub-surface and operate a geophysical station; measurements of the chemical composition of the very low exosphere and plumes in search for biomolecules. The implementation of these three observation sequences will rest on the combination of two science platforms equipped with the most advanced instrumentation: a soft lander to perform all scientific measurements at the surface and sub-surface at a selected landing site, and a carrier/relay/orbiter to perform the orbital survey and descent sequences. In this concept, the orbiter will perform science operations during the relay phase on a carefully optimized halo orbit of the Europa-Jupiter system before moving to its final Europan orbit. The design of both orbiter and lander instruments will have to accommodate the very challenging radiation mitigation and Planetary Protection issues. The proposed lander science platform is composed of a geophysical station and of two complementary astrobiology facilities dedicated to bio-signature characterization experiments operating respectively in the solid and in the liquid phases, fed by a common articulated arm. The "Astrobiology Wet Laboratory" will be a specific European contribution. We propose an innovative distribution of roles to make JEM an appealing and affordable joint venture for the two agencies: while NASA would provide an SLS launcher, the lander stack and mission operations, ESA would provide the carrier-orbiter-relay platform. The delivery of the orbiter by ESA could take advantage of a double European heritage: an adaptation of the ORION ESM bus to JEM, complemented by avionics derived from JUICE.

  10. The CALorimetric Electron Telescope (CALET) Launch and Early On-Orbit Performance

    NASA Astrophysics Data System (ADS)

    Guzik, T. Gregory; Calet Collaboration

    2016-03-01

    The CALET space experiment, has been developed by collaborators in Japan, Italy and the United States, will study electrons to 20 TeV, gamma rays above 10 GeV and nuclei with Z =1 to 40 up to 1,000 TeV during a five-year mission on the International Space Station. The instrument consists of a particle charge identification module, a thin imaging calorimeter (3 r.l. in total) with tungsten plates interleaving scintillating fiber planes, and a thick calorimeter (27 r.l.) composed of lead tungstate logs. CALET has the depth, imaging capabilities and energy resolution for excellent separation between hadrons, electrons and gamma rays. The instrument was launched into orbit on August 19, 2015 and on August 25, 2015 was mounted as an attached payload on the International Space Station (ISS) Japanese Experiment Module - Exposed Facility (JEM-EF). The experiment has successfully completed on-orbit checkout and has now been transitioned to normal science operations. This presentation summarizes the instrument design, science goals and early on-orbit performance. This effort is supported by NASA in the United States, by JAXA in Japan, and ASI in Italy.

  11. KSC-2009-3940

    NASA Image and Video Library

    2009-07-10

    CAPE CANAVERAL, Fla. – A lightning strike on Launch Pad 39A at NASA's Kennedy Space Center in Florida is captured by an Operational Television camera. Eleven lightning strikes occurred within .35 miles of the pad during a thunderstorm July 10 as space shuttle Endeavour was prepared for launch. Mission managers decided to delay Endeavour's planned liftoff July 11 as a precaution to allow engineers and safety personnel time to analyze data and retest systems on the orbiter and solid rockets boosters. The next launch attempt for the STS-127 mission is planned for Sunday, July 12, at 7:13 p.m. EDT. The Operational Television cameras can be used to triangulate the location of lightning strikes. Other detection systems include the Cloud-To-Ground Lightning Surveillance System, Strikenet/National Lightning Detection Network, Lightning Induced Voltage Instrumentation System and the Catenary Wire Lightning Instrumentation System. Endeavour will deliver the Japanese Experiment Module's Exposed Facility, or JEM-EF, and the Experiment Logistics Module-Exposed Section, or ELM-ES, in the final of three flights dedicated to the assembly of the Japan Aerospace Exploration Agency's Kibo laboratory complex on the International Space Station. STS-127 is the 29th flight for the assembly of the space station. Photo credit: NASA/Analex

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinney, M.J.; Jenkins, S.

    Project JEM (Jarvis Enhancement of Males) is a pre-college program directed toward stimulating disadvantaged, talented African American males in grades four, five, and six to attend college and major in mathematics, science, computer science, or related technical areas needed by the US Department of Energy. Twenty young African American male students were recruited from Gladewater Independent School District (ISD), Longview ISD, Hawkins ISD, Tyler ISD, Winona ISD and big Sandy ISD. Students enrolled in the program range from ages 10 to 13 and are in grades four, five and six. Student participants in the 1997 Project JEM Program attended Saturdaymore » Academy sessions and a four week intensive, summer residential program. The information here provides a synopsis of the activities which were conducted through each program component.« less

  13. Use of the Finnish Information System on Occupational Exposure (FINJEM) in epidemiologic, surveillance, and other applications.

    PubMed

    Kauppinen, Timo; Uuksulainen, Sanni; Saalo, Anja; Mäkinen, Ilpo; Pukkala, Eero

    2014-04-01

    This paper reviews the use of the Finnish Information System on Occupational Exposure (Finnish job-exposure matrix, FINJEM) in different applications in Finland and other countries. We describe and discuss studies on FINJEM and studies utilizing FINJEM in regard to the validity of exposure estimates, occupational epidemiology, hazard surveillance and prevention, the assessment of health risks and the burden of disease, the assessment of exposure trends and future hazards, and the construction of job-exposure matrices (JEMs) in countries other than Finland. FINJEM can be used as an exposure assessment tool in occupational epidemiology, particularly in large register-based studies. It also provides information for hazard surveillance at the national level. It is able to identify occupations with high average exposures to chemical agents and can therefore serve the priority setting of prevention. However, it has only limited use at the workplace level due to the variability of exposure between workplaces. The national estimates of exposure and their temporal trends may contribute to the assessment of both the recent and future burden of work-related health outcomes. FINJEM has also proved to be useful in the construction of other national JEMs, for example in the Nordic Occupational Cancer study in the Nordic countries. FINJEM is a quantitative JEM, which can serve many purposes and its comprehensive documentation also makes it potentially useful in countries other than Finland.

  14. Occupational exposures and chronic obstructive pulmonary disease (COPD): comparison of a COPD-specific job exposure matrix and expert-evaluated occupational exposures.

    PubMed

    Kurth, Laura; Doney, Brent; Weinmann, Sheila

    2017-03-01

    To compare the occupational exposure levels assigned by our National Institute for Occupational Safety and Health chronic obstructive pulmonary disease-specific job exposure matrix (NIOSH COPD JEM) and by expert evaluation of detailed occupational information for various jobs held by members of an integrated health plan in the Northwest USA. We analysed data from a prior study examining COPD and occupational exposures. Jobs were assigned exposure levels using 2 methods: (1) the COPD JEM and (2) expert evaluation. Agreement (Cohen's κ coefficients), sensitivity and specificity were calculated to compare exposure levels assigned by the 2 methods for 8 exposure categories. κ indicated slight to moderate agreement (0.19-0.51) between the 2 methods and was highest for organic dust and overall exposure. Sensitivity of the matrix ranged from 33.9% to 68.5% and was highest for sensitisers, diesel exhaust and overall exposure. Specificity ranged from 74.7% to 97.1% and was highest for fumes, organic dust and mineral dust. This COPD JEM was compared with exposures assigned by experts and offers a generalisable approach to assigning occupational exposure. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. CFE experiment In JEM

    NASA Image and Video Library

    2011-10-07

    ISS029-E-020901 (7 Oct. 2011) --- NASA astronaut Mike Fossum, Expedition 29 commander, points to the Capillary Flow Experiment (CFE) experiment in the Kibo laboratory of the International Space Station.

  16. PREFACE: Joint European Magnetic Symposia - JEMS 2010

    NASA Astrophysics Data System (ADS)

    Spałek, Jozef

    2011-07-01

    Conference banner The Joint European Magnetic Symposia JEMS 2010 took place in the complex Auditorium Maximum of the Jagiellonian University in Kraków, Poland, between 23-28 August 2010. It followed the series of the conferences in Grenoble (2001), Dresden (2004), San Sebastian (2006), and Dublin (2008). The next Symposia will be held in 2012 in Parma (Italy). The Symposia cover a broad range of aspects of magnetism and magnetic materials, as well as providing a forum for the magnetism community to discuss new concepts, properties, and developments in all branches of fundamental and applied magnetism. The JEMS 2010 Symposia were organized by the Institute of Physics of Jagiellonian University, in cooperation with AGH University of Science and Technology (Kraków), Cracow University of Technology, Institute of Nuclear Physics of the Polish Academy of Sciences in Kraków, and the Silesian University in Katowice. I thank the Local Committee, and in particular Professor Krzysztof Tomala, for their hard work long before, during, and after the Conference. We dedicate this volume to Professor Henryk Szymczak from the Institute of Physics of the Polish Academy of Sciences for his long lasting service to the magnetism community and the organizational effort in bringing this Conference to our community. Thank you Henryk! The Conference contained Plenary Sessions and 16 Symposia, which are listed below. Most of them had two chairpersons (also listed), one from abroad and one from Poland. I believe that a collective chairmanship of the Symposia is very helpful in both their organization, as well as in the reviewing process of the papers submitted to the Conference Proceedings. I would like to cordially thank all the persons listed below, who have contributed enormously to the success of our meeting. The Proceedings comprises 116 invited and contributed papers. I thank the Co-editors for their continuing work long after the Conference. Arrivederci in Parma! Jozef SpałekChairman of JEMS 2010 Symposia 1. Plenary, Semi-plenary, Tutorials 2. Magnetization Processes Spin Excitations and Ultrafast DynamicsCoordinator: Andrzej Maziewski (Bialystok) 3. Hard Magnetic Materials and MagnetocaloricsCoordinator: Henryk Figiel (Kraków) 4. Magnetic HydridesCoordinators: Ladislav Havela (Praha), Zbigniew Tarnawski (Kraków) 5. Interface of Magnetic Thin FilmsCoordinators: Jürgen Fassbender (Dresden), N-T H Kim-Ngan (Kraków) 6. Magnonic CrystalsCoordinators: Bahram Djafari-Rouhani (Lille), Henryk Puszkarski (Poznan) 7. Magnetism of Metals, Alloys, and IntermetallicsCoordinator: Andrzej Szytula (Kraków) 8. Molecular MagnetismCoordinators: Stephen Blundell (Oxford), Maria Balanda (Kraków) 9. Magnetooptics of NanomagnetsCoordinators: Kamil Postava (Ostrava), Marek Kisielewski (Bialystok) 10. NanomagnetismCoordinators: Marek Przybylski (Halle), Jürgen Kirschner (Halle) 11. Other topics - Biomagnetism, Domain Walls, InstrumentationCoordinator: Henryk Figiel (Kraków) 12. Magnetic Perovskites and MultiferroicsCoordinator: Henryk Szymczak (Warszawa) 13. Magnetic Semiconductors and InsulatorsCoordinators: Klaus Baerner (Göttingen), Tadeusz Gron (Katowice) 14. Magnetic Shape Memory Effects and Related PhenomenaCoordinators: Oliver Gutfleisch (Dresden), Sebastian Fähler (Dresden) 15. Soft Magnetic MaterialsCoordinators: Julian González (San Sebastian), Krzysztof Kulakowski (Kraków) 16. SpintronicsCoordinator: Maciej Sawicki (Warszawa) 17. Strongly Correlated Electron Systems, Magnetism and SuperconductivityCoordinator: Andrzej Slebarski (Katowice) The next Joint European Magnetic Symposia, JEMS 2012, will be held in Parma, Italy, 9-14 September 2012.www.jems2012.itCo-Chairs:Franca Albertini, Institute of Materials for Electronics and Magnetism (IMEM), CNR, ParmaRoberto De Renzi, Department of Physics, University of Parma

  17. The EUSO program: Imaging of ultra-high energy cosmic rays by high-speed UV-video from space

    NASA Astrophysics Data System (ADS)

    Fuglesang, Christer; JEM-EUSO Collaboration

    2017-11-01

    The Extreme-Energy Cosmic Rays (EECR), with energy above 5•1019 eV, are very interesting objects to study that can provide new information about our universe. At the same time EECRs are exceptionally challenging to study because they are so rare. To obtain a reasonably large statistical sample, the JEM-EUSO collaboration aims to place a telescope into space. Various technologies are being developed and studied to achieve this goal. Several pathfinders are used for validation and testing. In particular, during 2017 a long-duration super-pressure balloon flight will observe the first high energy cosmic rays from above using the fluorescence technique, and a small test unit, Mini-EUSO, will be sent to ISS to measure the UV-background from Earth night side. In addition, these missions will provide various scientific results.

  18. International Space Station: Expedition 2000

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Live footage of the International Space Station (ISS) presents an inside look at the groundwork and assembly of the ISS. Footage includes both animation and live shots of a Space Shuttle liftoff. Phil West, Engineer; Dr. Catherine Clark, Chief Scientist ISS; and Joe Edwards, Astronaut, narrate the video. The first topic of discussion is People and Communications. Good communication is a key component in our ISS endeavor. Dr. Catherine Clark uses two soup cans attached by a string to demonstrate communication. Bill Nye the Science Guy talks briefly about science aboard the ISS. Charlie Spencer, Manager of Space Station Simulators, talks about communication aboard the ISS. The second topic of discussion is Engineering. Bonnie Dunbar, Astronaut at Johnson Space Flight Center, gives a tour of the Japanese Experiment Module (JEM). She takes us inside Node 2 and the U.S. Lab Destiny. She also shows where protein crystal growth experiments are performed. Audio terminal units are used for communication in the JEM. A demonstration of solar arrays and how they are tested is shown. Alan Bell, Project Manager MRMDF (Mobile Remote Manipulator Development Facility), describes the robot arm that is used on the ISS and how it maneuvers the Space Station. The third topic of discussion is Science and Technology. Dr. Catherine Clark, using a balloon attached to a weight, drops the apparatus to the ground to demonstrate Microgravity. The bursting of the balloon is observed. Sherri Dunnette, Imaging Technologist, describes the various cameras that are used in space. The types of still cameras used are: 1) 35 mm, 2) medium format cameras, 3) large format cameras, 4) video cameras, and 5) the DV camera. Kumar Krishen, Chief Technologist ISS, explains inframetrics, infrared vision cameras and how they perform. The Short Arm Centrifuge is shown by Dr. Millard Reske, Senior Life Scientist, to subject astronauts to forces greater than 1-g. Reske is interested in the physiological effects of the eyes and the muscular system after their exposure to forces greater than 1-g.

  19. Sensitivity of the orbiting JEM-EUSO mission to large-scale anisotropies

    NASA Astrophysics Data System (ADS)

    Weiler, Thomas; Anchordoqui, Luis; Denton, Peter

    2013-04-01

    Uniform sky coverage and very large apertures are advantages of future extreme-energy, space-based cosmic-ray observatories. In this talk we will quantify the advantage of an all-sky/4pi observatory such as JEM-EUSO over the one to two steradian coverage of a ground-based observatory such as Auger. We exploit the availability of spherical harmonics in the case of 4pi coverage. The resulting Y(lm) coefficients will likely become a standard analysis tool for near-future, space-based, cosmic-ray astronomy. We demonstrate the use of Y(lm)'s with extractions of simulated dipole and quadrupole anisotropies. (A dipole anisotropy is expected if a single source-region such as Cen A dominates the sky, while a quadrupole moment is expected if a 2D source region such as the Supergalactic Plane dominates the sky.)

  20. Silica exposure assessment in a mortality study of Vermont granite workers.

    PubMed

    Verma, Dave K; Vacek, Pamela M; des Tombe, Karen; Finkelstein, Murray; Branch, Barbara; Gibbs, Graham W; Graham, William G

    2011-02-01

    A study of past silica and respirable dust exposures in the Vermont granite industry was conducted to develop a job exposure matrix (JEM) that used 5204 industrial hygiene measurements made from 1924-2004. The construction of the JEM involved data entry from several original sources into an Excel database that was reviewed later to ensure accuracy. Exposure measurements by job or location were grouped in two broad categories of quarry or shed and then into 22 job classes. Missing exposure data by time period were computed, taking into account improvements in dust control and periods of significant reduction in dustiness. Percent free silica (α-quartz) in respirable dust was estimated to be 11.0% based on previous published studies in Vermont and on data in the current database. About 60% of all measurement data (primarily from years prior to 1972) were obtained using the impinger and expressed in millions of particles per cubic foot (mppcf), which were converted to equivalent respirable free silica concentrations using the conversion of 10 mppcf = 0.1 mg/m(3) of respirable silica. For impinger data, respirable dust was calculated by multiplying respirable silica by a factor of 9.091 to reflect that the respirable silica was 11.0% respirable dust. This JEM has been used in a recent epidemiologic study to assess mortality in Vermont granite workers and to examine the relationships among mortality from silicosis, lung cancer, and other nonmalignant respiratory diseases.

  1. KSC-2009-3974

    NASA Image and Video Library

    2009-07-12

    CAPE CANAVERAL, Fla. – A NASA Security helicopter watches over the Astrovan as it takes the crew of STS-127 to the space shuttle Endeavour at Launch Pad 39A at NASA's Kennedy Space Center in Cape Canaveral, Florida. Endeavour is set to launch at 7:13p.m. EDT with the crew of STS-127 and start a 16-day mission that will feature five spacewalks and complete construction of the Japan Aerospace Exploration Agency's Kibo laboratory. This is the fourth launch attempt for the STS-127 mission. The first two launch attempts on June 13 and June 17 were scrubbed when a hydrogen gas leak occurred during tanking due to a misaligned Ground Umbilical Carrier Plate. Mission managers also decided to delay tanking on July 11 for a launch attempt later in the day to allow engineers and safety personnel time to analyze data captured during lightning strikes near the pad on July 10. Endeavour will deliver the Japanese Experiment Module's Exposed Facility, or JEM-EF, and the Experiment Logistics Module-Exposed Section, or ELM-ES, in the final of three flights dedicated to the assembly of the Japan Aerospace Exploration Agency's Kibo laboratory complex on the International Space Station. STS-127 is the 29th flight for the assembly of the space station. Photo credit: NASA/Bill Ingalls

  2. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOEpatents

    Zafred, P.R.; Dederer, J.T.; Gillett, J.E.; Basel, R.A.; Antenucci, A.B.

    1996-11-12

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas and pressurized fuel gas into modules containing fuel cells, where the modules are each enclosed by a module housing surrounded by an axially elongated pressure vessel, and where there is a purge gas volume between the module housing and pressure vessel; passing pressurized purge gas through the purge gas volume to dilute any unreacted fuel gas from the modules; and passing exhaust gas and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transportable when the pressure vessel is horizontally disposed, providing a low center of gravity. 11 figs.

  3. Flight model of HISUI hyperspectral sensor onboard ISS (International Space Station)

    NASA Astrophysics Data System (ADS)

    Tanii, Jun; Kashimura, Osamu; Ito, Yoshiyuki; Iwasaki, Akira

    2017-09-01

    Hyperspectral Imager Suite (HISUI) is a next-generation Japanese sensor that will be mounted on Japanese Experiment Module (JEM) of ISS (International Space Station) in 2019 as timeframe. HISUI hyperspectral sensor obtains spectral images of 185 bands with the ground sampling distance of 20x31 meter from the visible to shortwave-infrared wavelength region. The sensor is the follow-on mission of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) in the visible to shortwave infrared region. The critical design review of the instrument was accomplished in 2014. Integration and tests of a Flight Model (FM) of HISUI hyperspectral sensor have been completed in the beginning of 2017. Simultaneously, the development of JEMExternal Facility (EF) Payload system for the instrument is being carried out. The system includes the structure, the thermal control sub-system and the electrical sub-system. The tests results of flight model, such as optical performance, optical distortion and radiometric performance are reported.

  4. EUSO-TA prototype telescope

    NASA Astrophysics Data System (ADS)

    Bisconti, Francesca; JEM-EUSO Collaboration

    2016-07-01

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  5. First observations of speed of light tracks by a fluorescence detector looking down on the atmosphere

    NASA Astrophysics Data System (ADS)

    Abdellaoui, G.; Abe, S.; Adams, J. H., Jr.; Ahriche, A.; Allard, D.; Allen, L.; Alonso, G.; Anchordoqui, L.; Anzalone, A.; Arai, Y.; Asano, K.; Attallah, R.; Attoui, H.; Ave Pernas, M.; Bacholle, S.; Bakiri, M.; Baragatti, P.; Barrillon, P.; Bartocci, S.; Bayer, J.; Beldjilali, B.; Belenguer, T.; Belkhalfa, N.; Bellotti, R.; Belov, A.; Belov, K.; Benmessai, K.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Bisconti, F.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Bobik, P.; Bogomilov, M.; Bozzo, E.; Bruno, A.; Caballero, K. S.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Capel, F.; Caramete, A.; Caramete, L.; Carlson, P.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellina, A.; Catalano, C.; Catalano, O.; Cellino, A.; Chikawa, M.; Chiritoi, G.; Christl, M. J.; Connaughton, V.; Conti, L.; Cordero, G.; Cotto, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Cummings, A.; Dagoret-Campagne, S.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Di Martino, M.; Diaz Damian, A.; Djemil, T.; Dutan, I.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Eser, J.; Fenu, F.; Fernández-González, S.; Fernández-Soriano, J.; Ferrarese, S.; Flamini, M.; Fornaro, C.; Fouka, M.; Franceschi, A.; Franchini, S.; Fuglesang, C.; Fujii, T.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; García-Ortega, E.; Garipov, G.; Gascón, E.; Genci, J.; Giraudo, G.; González Alvarado, C.; Gorodetzky, P.; Greg, R.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Haiduc, M.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Hidber Cruz, W.; Ikeda, D.; Inoue, N.; Inoue, S.; Isgrò, F.; Itow, Y.; Jammer, T.; Jeong, S.; Joven, E.; Judd, E. G.; Jung, A.; Jochum, J.; Kajino, F.; Kajino, T.; Kalli, S.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Kedadra, A.; Khales, H.; Khrenov, B. A.; Kim, Jeong-Sook; Kim, Soon-Wook; Kleifges, M.; Klimov, P. A.; Kolev, D.; Krantz, H.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; La Barbera, A.; Lachaud, C.; Lahmar, H.; Lakhdari, F.; Larson, R.; Larsson, O.; Lee, J.; Licandro, J.; López Campano, L.; Maccarone, M. C.; Mackovjak, S.; Mahdi, M.; Maravilla, D.; Marcelli, L.; Marcos, J. L.; Marini, A.; Marszał, W.; Martens, K.; Martín, Y.; Martinez, O.; Martucci, M.; Masciantonio, G.; Mase, K.; Mastafa, M.; Matev, R.; Matthews, J. N.; Mebarki, N.; Medina-Tanco, G.; Mendoza, M. A.; Menshikov, A.; Merino, A.; Meseguer, J.; Meyer, S. S.; Mimouni, J.; Miyamoto, H.; Mizumoto, Y.; Monaco, A.; Morales de los Ríos, J. A.; Moretto, C.; Nagataki, S.; Naitamor, S.; Napolitano, T.; Naslund, W.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Pagliaro, A.; Painter, W.; Panasyuk, M. I.; Panico, B.; Pasqualino, G.; Parizot, E.; Park, I. H.; Pastircak, B.; Patzak, T.; Paul, T.; Pérez-Grande, I.; Perfetto, F.; Peter, T.; Picozza, P.; Pindado, S.; Piotrowski, L. W.; Piraino, S.; Placidi, L.; Plebaniak, Z.; Pliego, S.; Pollini, A.; Polonski, Z.; Popescu, E. M.; Prat, P.; Prévôt, G.; Prieto, H.; Puehlhofer, G.; Putis, M.; Rabanal, J.; Radu, A. A.; Reyes, M.; Rezazadeh, M.; Ricci, M.; Rodríguez Frías, M. D.; Rodencal, M.; Ronga, F.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez Cano, G.; Sagawa, H.; Sahnoune, Z.; Saito, A.; Sakaki, N.; Salazar, H.; Sanchez Balanzar, J. C.; Sánchez, J. L.; Santangelo, A.; Sanz-Andrés, A.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Spataro, B.; Stan, I.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Talai, M. C.; Tenzer, C.; Thomas, S. B.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Traïche, M.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tubbs, J.; Turriziani, S.; Uchihori, Y.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Vankova, G.; Vigorito, C.; Villaseñor, L.; Vlcek, B.; von Ballmoos, P.; Vrabel, M.; Wada, S.; Watanabe, J.; Watts, J., Jr.; Weber, M.; Weigand Muñoz, R.; Weindl, A.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, S.; Young, R.; Zgura, I. S.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2018-05-01

    EUSO-Balloon is a pathfinder mission for the Extreme Universe Space Observatory onboard the Japanese Experiment Module (JEM-EUSO). It was launched on the moonless night of the 25th of August 2014 from Timmins, Canada. The flight ended successfully after maintaining the target altitude of 38 km for five hours. One part of the mission was a 2.5 hour underflight using a helicopter equipped with three UV light sources (LED, xenon flasher and laser) to perform an inflight calibration and examine the detectors capability to measure tracks moving at the speed of light. We describe the helicopter laser system and details of the underflight as well as how the laser tracks were recorded and found in the data. These are the first recorded laser tracks measured from a fluorescence detector looking down on the atmosphere. Finally, we present a first reconstruction of the direction of the laser tracks relative to the detector.

  6. Gerst in JEM

    NASA Image and Video Library

    2014-05-30

    ISS040-E-006553 (30 May 2014) --- In the International Space Station’s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, replaces the failed Xenon lamp, which is used for JAXA’s Resist Tubule experiment.

  7. Gerst in hatch between Node 2 and JEM

    NASA Image and Video Library

    2014-05-29

    ISS040-E-006038 (30 May 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, floats through the hatch between the Kibo laboratory and the Harmony node of the International Space Station.

  8. Gerst in hatch between Node 2 and JEM

    NASA Image and Video Library

    2014-05-29

    ISS040-E-006037 (30 May 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, floats through the hatch between the Kibo laboratory and the Harmony node of the International Space Station.

  9. Gerst in hatch between Node 2 and JEM

    NASA Image and Video Library

    2014-05-29

    ISS040-E-006039 (30 May 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, floats through the hatch between the Kibo laboratory and the Harmony node of the International Space Station.

  10. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOEpatents

    Zafred, Paolo R.; Dederer, Jeffrey T.; Gillett, James E.; Basel, Richard A.; Antenucci, Annette B.

    1996-01-01

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas, (O) and pressurized fuel gas, (F), into fuel cell modules, (10 and 12), containing fuel cells, where the modules are each enclosed by a module housing (18), surrounded by an axially elongated pressure vessel (64), where there is a purge gas volume, (62), between the module housing and pressure vessel; passing pressurized purge gas, (P), through the purge gas volume, (62), to dilute any unreacted fuel gas from the modules; and passing exhaust gas, (82), and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transpatable when the pressure vessel (64) is horizontally disposed, providing a low center of gravity.

  11. Chamitoff works on the SAIBO Rack in the JEM during Expedition 17

    NASA Image and Video Library

    2008-07-30

    ISS017-E-012001 (30 July 2008) --- NASA astronaut Greg Chamitoff, Expedition 17 flight engineer, uses a computer while working with an experiment in the Kibo laboratory of the International Space Station.

  12. Development of an exposure measurement database on five lung carcinogens (ExpoSYN) for quantitative retrospective occupational exposure assessment.

    PubMed

    Peters, Susan; Vermeulen, Roel; Olsson, Ann; Van Gelder, Rainer; Kendzia, Benjamin; Vincent, Raymond; Savary, Barbara; Williams, Nick; Woldbæk, Torill; Lavoué, Jérôme; Cavallo, Domenico; Cattaneo, Andrea; Mirabelli, Dario; Plato, Nils; Dahmann, Dirk; Fevotte, Joelle; Pesch, Beate; Brüning, Thomas; Straif, Kurt; Kromhout, Hans

    2012-01-01

    SYNERGY is a large pooled analysis of case-control studies on the joint effects of occupational carcinogens and smoking in the development of lung cancer. A quantitative job-exposure matrix (JEM) will be developed to assign exposures to five major lung carcinogens [asbestos, chromium, nickel, polycyclic aromatic hydrocarbons (PAH), and respirable crystalline silica (RCS)]. We assembled an exposure database, called ExpoSYN, to enable such a quantitative exposure assessment. Existing exposure databases were identified and European and Canadian research institutes were approached to identify pertinent exposure measurement data. Results of individual air measurements were entered anonymized according to a standardized protocol. The ExpoSYN database currently includes 356 551 measurements from 19 countries. In total, 140 666 personal and 215 885 stationary data points were available. Measurements were distributed over the five agents as follows: RCS (42%), asbestos (20%), chromium (16%), nickel (15%), and PAH (7%). The measurement data cover the time period from 1951 to present. However, only a small portion of measurements (1.4%) were performed prior to 1975. The major contributing countries for personal measurements were Germany (32%), UK (22%), France (14%), and Norway and Canada (both 11%). ExpoSYN is a unique occupational exposure database with measurements from 18 European countries and Canada covering a time period of >50 years. This database will be used to develop a country-, job-, and time period-specific quantitative JEM. This JEM will enable data-driven quantitative exposure assessment in a multinational pooled analysis of community-based lung cancer case-control studies.

  13. Electronically scanned pressure sensor module with in SITU calibration capability

    NASA Technical Reports Server (NTRS)

    Gross, C. (Inventor)

    1978-01-01

    This high data rate pressure sensor module helps reduce energy consumption in wind tunnel facilities without loss of measurement accuracy. The sensor module allows for nearly a two order of magnitude increase in data rates over conventional electromechanically scanned pressure sampling techniques. The module consists of 16 solid state pressure sensor chips and signal multiplexing electronics integrally mounted to a four position pressure selector switch. One of the four positions of the pressure selector switch allows the in situ calibration of the 16 pressure sensors; the three other positions allow 48 channels (three sets of 16) pressure inputs to be measured by the sensors. The small size of the sensor module will allow mounting within many wind tunnel models, thus eliminating long tube lengths and their corresponding slow pressure response.

  14. BCAT5 Video Setup In JEM

    NASA Image and Video Library

    2011-09-21

    ISS029-E-010998 (21 Sept. 2011) --- NASA astronaut Mike Fossum, Expedition 29 commander, prepares a camcorder for recording documentary video of the Binary Colloidal Alloy Test-5 (BCAT-5) payload operations in the Kibo laboratory of the International Space Station.

  15. BCAT5 Video Setup In JEM

    NASA Image and Video Library

    2011-09-21

    ISS029-E-010999 (21 Sept. 2011) --- NASA astronaut Mike Fossum, Expedition 29 commander, prepares a camcorder for recording documentary video of the Binary Colloidal Alloy Test-5 (BCAT-5) payload operations in the Kibo laboratory of the International Space Station.

  16. Recommendation of Sensors for Vehicle Transmission Diagnostics

    DTIC Science & Technology

    2012-05-01

    and a pressure switch module form the Control value module. A thermistor is contained within the pressure switch module in order to monitor the sump...fluid temperature. Sensor information is provided to the TCM through various sensors such as throttle position, speed sensor, pressure switch module

  17. A miniature 48-channel pressure sensor module capable of in situ calibration

    NASA Technical Reports Server (NTRS)

    Gross, C.; Juanarena, D. B.

    1977-01-01

    A new high data rate pressure sensor module with in situ calibration capability has been developed by the Langley Research Center to help reduce energy consumption in wind-tunnel facilities without loss of measurement accuracy. The sensor module allows for nearly a two order of magnitude increase in data rates over conventional electromechanically scanned pressure sampling techniques. This module consists of 16 solid state pressure sensor chips and signal multiplexing electronics integrally mounted to a four position pressure selector switch. One of the four positions of the pressure selector switch allows the in situ calibration of the 16 pressure sensors; the three other positions allow 48 channels (three sets of 16) pressure inputs to be measured by sensors. The small size of the sensor module will allow mounting within many wind-tunnel models, thus eliminating long tube lengths and their corresponding slow pressure response.

  18. System for detecting operating errors in a variable valve timing engine using pressure sensors

    DOEpatents

    Wiles, Matthew A.; Marriot, Craig D

    2013-07-02

    A method and control module includes a pressure sensor data comparison module that compares measured pressure volume signal segments to ideal pressure volume segments. A valve actuation hardware remedy module performs a hardware remedy in response to comparing the measured pressure volume signal segments to the ideal pressure volume segments when a valve actuation hardware failure is detected.

  19. 76 FR 50271 - Investigations Regarding Certifications of Eligibility To Apply for Worker Adjustment Assistance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... Interactive Media Glendale, CA 07/20/11 07/12/11 Group (Workers). 80303 Vallejo Times Herald Vallejo, CA 07/20...). 80305 General Advertising Cincinnati, OH........ 07/21/11 07/20/11 Products (State/One-Stop). 80306 JEM...

  20. Barratt signs mission decal in the JEM during Joint Operations

    NASA Image and Video Library

    2009-07-25

    S127-E-008623 (25 July 2009) --- Flight day 11 activities for the joint shuttle-station crews included the traditional autographing of the station. Astronaut Mike Barratt, Expedition 20 flight engineer, has the pen in this frame. Photo credit: NASA

  1. Cassidy in JEM

    NASA Image and Video Library

    2013-07-24

    ISS036-E-025489 (24 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, performs in-flight maintenance on the Marangoni Inside experiment in the Fluid Physics Experiment Facility (FPEF) which is part of a Japanese science rack in the International Space Station?s Kibo laboratory.

  2. Cassidy in JEM

    NASA Image and Video Library

    2013-07-24

    ISS036-E-025487 (24 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, performs in-flight maintenance on the Marangoni Inside experiment in the Fluid Physics Experiment Facility (FPEF) which is part of a Japanese science rack in the International Space Station?s Kibo laboratory.

  3. Cassidy in JEM

    NASA Image and Video Library

    2013-07-24

    ISS036-E-025484 (24 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, performs in-flight maintenance on the Marangoni Inside experiment in the Fluid Physics Experiment Facility (FPEF) which is part of a Japanese science rack in the International Space Station?s Kibo laboratory.

  4. Cassidy in JEM

    NASA Image and Video Library

    2013-07-24

    ISS036-E-025491 (24 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, performs in-flight maintenance on the Marangoni Inside experiment in the Fluid Physics Experiment Facility (FPEF) which is part of a Japanese science rack in the International Space Station?s Kibo laboratory.

  5. Development of a job-exposure matrix for exposure to total and fine particulate matter in the aluminum industry.

    PubMed

    Noth, Elizabeth M; Dixon-Ernst, Christine; Liu, Sa; Cantley, Linda; Tessier-Sherman, Baylah; Eisen, Ellen A; Cullen, Mark R; Hammond, S Katharine

    2014-01-01

    Increasing evidence indicates that exposure to particulate matter (PM) at environmental concentrations increases the risk of cardiovascular disease, particularly PM with an aerodynamic diameter of less than 2.5 μm (PM(2.5)). Despite this, the health impacts of higher occupational exposures to PM(2.5) have rarely been evaluated. In part, this research gap derives from the absence of information on PM(2.5) exposures in the workplace. To address this gap, we have developed a job-exposure matrix (JEM) to estimate exposure to two size fractions of PM in the aluminum industry. Measurements of total PM (TPM) and PM(2.5) were used to develop exposure metrics for an epidemiologic study. TPM exposures for distinct exposure groups (DEGs) in the JEM were calculated using 8385 personal TPM samples collected at 11 facilities (1980-2011). For eight of these facilities, simultaneous PM(2.5) and TPM personal monitoring was conducted from 2010 to 2011 to determine the percent of TPM that is composed of PM(2.5) (%PM(2.5)) in each DEG. The mean TPM from the JEM was then multiplied by %PM(2.5) to calculate PM(2.5) exposure concentrations in each DEG. Exposures in the smelters were substantially higher than in fabrication units; mean TPM concentrations in smelters and fabrication facilities were 3.86 and 0.76 mg/m(3), and the corresponding mean PM(2.5) concentrations were 2.03 and 0.40 mg/m(3). Observed occupational exposures in this study generally exceeded environmental PM(2.5) concentrations by an order of magnitude.

  6. Development of a job-exposure matrix for exposure to total and fine particulate matter in the aluminum industry

    PubMed Central

    Noth, Elizabeth M.; Dixon-Ernst, Christine; Liu, Sa; Cantley, Linda; Tessier-Sherman, Baylah; Eisen, Ellen A.; Cullen, Mark R.; Hammond, S. Katharine

    2014-01-01

    Increasing evidence indicates that exposure to particulate matter (PM) at environmental concentrations increases the risk of cardiovascular disease, particularly PM with an aerodynamic diameter of less than 2.5μm (PM2.5). Despite this, the health impacts of higher occupational exposures to PM2.5 have rarely been evaluated. In part, this research gap derives from the absence of information on PM2.5 exposures in the workplace. To address this gap, we have developed a job-exposure matrix (JEM) to estimate exposure to two size fractions of PM in the aluminum industry. Measurements of total PM (TPM) and PM2.5 were used to develop exposure metrics for an epidemiologic study. TPM exposures for distinct exposure groups (DEGs) in the JEM were calculated using 8,385 personal TPM samples collected at 11 facilities (1980-2011). For 8 of these facilities, simultaneous PM2.5 and TPM personal monitoring was conducted from 2010-2011 to determine the percent of TPM that is composed of PM2.5 (%PM2.5) in each DEG. The mean TPM from the JEM was then multiplied by %PM2.5 to calculate PM2.5 exposure concentrations in each DEG. Exposures in the smelters were substantially higher than in fabrication units; mean TPM concentrations in smelters and fabrication facilities were 3.86 mg/m3 and 0.76 mg/m3, and the corresponding mean PM2.5 concentrations were 2.03 mg/m3 and 0.40 mg/m3. Observed occupational exposures in this study generally exceeded environmental PM2.5 concentrations by an order of magnitude. PMID:24022670

  7. Validation of a semi-quantitative job exposure matrix at a Söderberg aluminum smelter.

    PubMed

    Friesen, M C; Demers, P A; Spinelli, J J; Le, N D

    2003-08-01

    We tested the validity of a job exposure matrix (JEM) for coal tar pitch volatiles (CTPV) at a Söderberg aluminum smelter. The JEM had been developed by a committee of company hygienists and union representatives for an earlier study of cancer incidence and mortality. Our aim was to test the validity and reliability of the expert-based assignments. Personal CTPV exposure measurements (n = 1879) overlapped 11 yr of the JEM. The arithmetic mean was calculated for 35 job/time period combinations (35% of the exposed work history), categorized using the original exposure intervals, and compared with the expert-based assignments. The expert-based and the measurement-based exposure assignments were only moderately correlated (Spearman's rho = 0.42; weighted kappa = 0.39, CI 0.10-0.69). Only 40% of the expert-based medium category assignments were correctly assigned, with better agreement in the low (84%) and high (100%) categories. Pot operation jobs exhibited better agreement (rho = 0.60) than the maintenance and pot shell repair jobs (rho = 0.25). The mid-point value of the medium category was overestimated by 0.3 mg/m(3). The expert-based exposure assignments may be improved by better characterizing the transitions between exposure categories, by accounting for exposure differences between pot lines and by re-examining the category mid-point values used in calculating the cumulative exposure. Lack of historical exposure measurements often requires reliance on expert knowledge to assess exposure levels. Validating the experts' estimates against available exposure measurements may help to identify weaknesses in the exposure assessment where improvements may be possible, as was shown here.

  8. The JEM-EUSO Mission to Explore the Extreme Universe

    NASA Astrophysics Data System (ADS)

    Ebisuzaki, Toshikazu; Takahashi, Y.; Kajino, F.; Mase, H.; Santangelo, A.; Teshima, M.; Parizot, E.; Gorodetzky, P.; Catalano, O.; Picozza, P.; Casolino, M.; Panasyuk, M.; Khrenov, B. A.; Park, I. H.; Peter, T.; Medina-Tanco, G.; Rodriguez-Frias, D.; Szabelski, J.; Bobik, P.

    2010-06-01

    The JEM-EUSO mission explores the origin of the extreme energy comic-rays (EECRs) above 1020 eV and challenges to the limit of the basic physics, through the observations, of their arrival directions and energies. It is designed to observe more than 1,000 events of EECRs above 7×1019 eV in its five-year operation with an exposure larger than 1 million km2.sr.year. The super-wide-field (60 degrees) telescope with a diameter of about 2.5 m looks down the atmosphere of the night-side of the earth to detect near UV photons (330-400 nm, both fluorescent and Cherenkov photons) emitted from the giant air-shower produced by an EECR. The arrival direction map with 1,000 events naturally tells us the origin of the EECRs and allows us to identify the EECR sources to known astronomical objects. The comparison among the energy spectra of the spatially resolved individual sources will clarify the acceleration/emission mechanism, and also finally confirm the Greisen-Zatse'pin-Kuzmin process for the validation of Lorentz invariance up to γ~1011. Neutral components (neutrinos and gamma rays) can also be detected as well, if their fluxes are high enough. The JEM-EUSO mission is planned to be launched by a H2B rocket about 2015 and transferred to ISS by H2 Transfer Vehicle (HTV). It will be attached to the external experiment platform of ``KIBO'' which completed July 2009 by STS-127 mission of the space shuttle. The first flight of HTV by H2B rocket was successfully done in September and October 2009.

  9. Sedentary work and the risk of breast cancer in premenopausal and postmenopausal women: a pooled analysis of two case-control studies.

    PubMed

    Boyle, Terry; Fritschi, Lin; Kobayashi, Lindsay C; Heyworth, Jane S; Lee, Derrick G; Si, Si; Aronson, Kristan J; Spinelli, John J

    2016-11-01

    There is limited research on the association between sedentary behaviour and breast cancer risk, particularly whether sedentary behaviour is differentially associated with premenopausal and postmenopausal breast cancer. We pooled data from 2 case-control studies from Australia and Canada to investigate this association. This pooled analysis included 1762 incident breast cancer cases and 2532 controls. Participants in both studies completed a lifetime occupational history and self-rated occupational physical activity level. A job-exposure matrix (JEM) was also applied to job titles to assess sedentary work. Logistic regression analyses (6 pooled and 12 study-specific) were conducted to estimate associations between both self-reported and JEM-assessed sedentary work and breast cancer risk among premenopausal and postmenopausal women. No association was observed in the 6 pooled analyses, and 10 of the study-specific analyses also showed null results. 2 study-specific analyses provided inconsistent and contradictory results, with 1 showing statistically significant increased risk of breast cancer for self-reported sedentary work among premenopausal women cancer in the Canadian study, and the other a non-significant inverse association between JEM-assessed sedentary work and breast cancer risk among postmenopausal women in the Australian study. While a suggestion of increased risk was seen for premenopausal women in the Canadian study when using the self-reported measure, overall this pooled study does not provide evidence that sedentary work is associated with breast cancer risk. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Occupational Exposures and Subclinical Interstitial Lung Disease. The MESA (Multi-Ethnic Study of Atherosclerosis) Air and Lung Studies.

    PubMed

    Sack, Coralynn S; Doney, Brent C; Podolanczuk, Anna J; Hooper, Laura G; Seixas, Noah S; Hoffman, Eric A; Kawut, Steven M; Vedal, Sverre; Raghu, Ganesh; Barr, R Graham; Lederer, David J; Kaufman, Joel D

    2017-10-15

    The impact of a broad range of occupational exposures on subclinical interstitial lung disease (ILD) has not been studied. To determine whether occupational exposures to vapors, gas, dust, and fumes (VGDF) are associated with high-attenuation areas (HAA) and interstitial lung abnormalities (ILA), which are quantitative and qualitative computed tomography (CT)-based measurements of subclinical ILD, respectively. We performed analyses of participants enrolled in MESA (Multi-Ethnic Study of Atherosclerosis), a population-based cohort aged 45-84 years at recruitment. HAA was measured at baseline and on serial cardiac CT scans in 5,702 participants. ILA was ascertained in a subset of 2,312 participants who underwent full-lung CT scanning at 10-year follow-up. Occupational exposures were assessed by self-reported VGDF exposure and by job-exposure matrix (JEM). Linear mixed models and logistic regression were used to determine whether occupational exposures were associated with log-transformed HAA and ILA. Models were adjusted for age, sex, race/ethnicity, education, employment status, tobacco use, and scanner technology. Each JEM score increment in VGDF exposure was associated with 2.64% greater HAA (95% confidence interval [CI], 1.23-4.19%). Self-reported vapors/gas exposure was associated with an increased odds of ILA among those currently employed (1.76-fold; 95% CI, 1.09-2.84) and those less than 65 years old (1.97-fold; 95% CI, 1.16-3.35). There was no consistent evidence that occupational exposures were associated with progression of HAA over the follow-up period. JEM-assigned and self-reported exposures to VGDF were associated with measurements of subclinical ILD in community-dwelling adults.

  11. Forrester and Kopra pose in Army T-shirts in JEM

    NASA Image and Video Library

    2009-09-07

    S128-E-008350 (7 Sept. 2009) --- NASA astronauts Patrick Forrester (left) and Tim Kopra, both STS-128 mission specialists, pose for a photo in the Kibo laboratory of the International Space Station while Space Shuttle Discovery remains docked with the station.

  12. Physics Goals and Status of JEM-EUSO and its Test Experiments

    NASA Astrophysics Data System (ADS)

    Haungs, Andreas; JEM-EUSO Collaboration

    2015-08-01

    The JEM-EUSO mission aims to explore the origin of the extreme energy cosmic rays (EECRs) through the observation of air-shower fluorescence light from space. The superwide- field telescope looks down from the International Space Station onto the night sky to detect UV photons (fluorescence and Cherenkov photons) emitted from air showers. Such a space detector offers the remarkable opportunity to observe a huge volume of atmosphere at once and will achieve an unprecedented statistics within a few years of operation. Several test experiments are currently in operation: e.g., one to observe the fluorescence background from the edge of the Atmosphere (EUSO-Balloon), or another to demonstrate on ground the capability of detecting air showers with a EUSO-type telescope (EUSO-TA). In this contribution a short review on the scientific objectives of the mission and an update of the instrument definition, performances and status, as well as status of the test experiments will be given.

  13. Preliminary analysis of EUSO—TA data

    NASA Astrophysics Data System (ADS)

    Fenu, F.; Piotrowski, L. W.; Shin, H.; Jung, A.; Bacholle, S.; Bisconti, F.; Capel, F.; Eser, J.; Kawasaki, Y.; Kuznetsov, E.; Larsson, O.; Mackovjak, S.; Miyamoto, H.; Plebaniak, Z.; Prevot, G.; Putis, M.; Shinozaki, K.; Adams, J.; Bertaina, M.; Bobik, P.; Casolino, M.; Matthews, J. N.; Ricci, M.; Wiencke, L.; EUSO-TA Collaboration

    2016-05-01

    The EUSO-TA detector is a pathfinder for the JEM-EUSO project and is currently installed in Black Rock Mesa (Utah) on the site of the Telescope Array fluorescence detectors. Aim of this experiment is to validate the observation principle of JEM-EUSO on air showers measured from ground. The experiment gets data in coincidence with the TA triggers to increase the likelihood of cosmic ray detection. In this framework the collaboration is also testing the detector response with respect to several test events from lasers and LED flashers. Moreover, another aim of the project is the validation of the stability of the data acquisition chain in real sky condition and the optimization of the trigger scheme for the rejection of background. Data analysis is ongoing to identify cosmic ray events in coincidence with the TA detector. In this contribution we will show the response of the EUSO-TA detector to all the different typologies of events and we will show some preliminary results on the trigger optimization performed on such data.

  14. INTEGRAL IBIS, SPI, and JEM-X observations of LVT151012

    NASA Astrophysics Data System (ADS)

    Savchenko, V.; Bazzano, A.; Bozzo, E.; Brandt, S.; Chenevez, J.; Courvoisier, T. J.-L.; Diehl, R.; Ferrigno, C.; Hanlon, L.; von Kienlin, A.; Kuulkers, E.; Laurent, P.; Lebrun, F.; Lutovinov, A.; Martin-Carrillo, A.; Mereghetti, S.; Natalucci, L.; Roques, J. P.; Siegert, T.; Sunyaev, R.; Ubertini, P.

    2017-07-01

    During the first observing run of LIGO, two gravitational wave events and one lower-significance trigger (LVT151012) were reported by the LIGO/Virgo collaboration. At the time of LVT151012, the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) was pointing at a region of the sky coincident with the high localization probability area of the event and thus permitted us to search for its electromagnetic counterpart (both prompt and afterglow emission). The imaging instruments on board INTEGRAL (IBIS/ISGRI, IBIS/PICsIT, SPI, and the two JEM-X modules) have been exploited to attempt the detection of any electromagnetic emission associated with LVT151012 over three decades in energy (from 3 keV to 8 MeV). The omni-directional instruments on board the satellite, I.e., the SPI-ACS and the IBIS/Veto, complemented the capabilities of the IBIS/ISGRI and IBIS/PICsIT for detections outside their imaging field of view in order to provide an efficient monitoring of the entire LVT151012 localization region at energies above 75 keV. We did not find any significant transient source that was spatially and/or temporally coincident with LVT151012, obtaining tight upper limits on the associated hard X-ray and γ-ray radiation. For typical spectral models, the upper limits on the fluence of the emission from any 1 s counterpart of LVT151012 ranges from Fγ = 3.5 × 10-8 erg cm-2 (20-200 keV), within the field of view of the imaging instruments, to Fγ = 7.1 × 10-7 erg cm-2 (75-2000 keV), considering the least favorable location of the counterpart for a detection by the omni-directional instruments. These results can be interpreted as a tight constraint on the ratio of the isotropic equivalent energy released in the electromagnetic emission to the total energy of the gravitational waves: E75-2000 keV/EGW< 4.4 × 10-5. Finally, we provide an exhaustive summary of the capabilities of all instruments on board INTEGRAL to hunt for γ-ray counterparts of gravitational wave events, exploiting both serendipitousand pointed follow-up observations. This will serve as a reference for all future searches.

  15. Development of the compact infrared camera (CIRC) for Earth observation

    NASA Astrophysics Data System (ADS)

    Naitoh, Masataka; Katayama, Haruyoshi; Harada, Masatomo; Nakamura, Ryoko; Kato, Eri; Tange, Yoshio; Sato, Ryota; Nakau, Koji

    2017-11-01

    The Compact Infrared Camera (CIRC) is an instrument equipped with an uncooled infrared array detector (microbolometer). We adopted the microbolometer, because it does not require a cooling system such as a mechanical cooler, and athermal optics, which does not require an active thermal control of optics. This can reduce the size, cost, and electrical power consumption of the sensor. The main mission of the CIRC is to demonstrate the technology for detecting wildfire, which are major and chronic disasters affecting many countries in the Asia-Pacific region. It is possible to increase observational frequency of wildfires, if CIRCs are carried on a various satellites by taking advantages of small size and light weight. We have developed two CIRCs. The first will be launched in JFY 2013 onboard Advanced Land Observing Satellite-2 (ALOS- 2), and the second will be launched in JFY 2014 onboard CALorimetric Electron Telescope (CALET) of the Japanese Experiment Module (JEM) at the International Space Station(ISS). We have finished the ground Calibration of the first CIRC onboard ALOS-2. In this paper, we provide an overview of the CIRC and its results of ground calibration.

  16. Remote Advanced Payload Test Rig (RAPTR) Portable Payload Test System for the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Calvert, John; Freas, George, II

    2017-01-01

    The RAPTR was developed to test ISS payloads for NASA. RAPTR is a simulation of the Command and Data Handling (C&DH) interfaces of the ISS (MIL-STD 1553B, Ethernet and TAXI) and is designed to facilitate rapid testing and deployment of payload experiments to the ISS. The ISS Program's goal is to reduce the amount of time it takes a payload developer to build, test and fly a payload, including payload software. The RAPTR meets this need with its user oriented, visually rich interface. Additionally, the Analog and Discrete (A&D) signals of the following payload types may be tested with RAPTR: (1) EXPRESS Sub Rack Payloads; (2) ELC payloads; (3) External Columbus payloads; (4) External Japanese Experiment Module (JEM) payloads. The automated payload configuration setup and payload data inspection infrastructure is found nowhere else in ISS payload test systems. Testing can be done with minimal human intervention and setup, as the RAPTR automatically monitors parameters in the data headers that are sent to, and come from the experiment under test.

  17. Diurnal variation climatology of short-lived at atmospheric compositions (ClO, BrO, HO2 and HOCl) derived from SMILES NICT data

    NASA Astrophysics Data System (ADS)

    Kreyling, Daniel; Sagawa, Hideo; Kasai, Yasuko

    2013-04-01

    We present a diurnal variation climatology for short-lived at atmospheric compositions, such as ClO, BrO, HO2 and HOCl, as well as for longer life time species, like O3 and HCl from observations of unprecedented sensitivity with the Superconducting SubMIllimeter wave Limb-Emission Sounder (SMILES), which is installed on the Japanese Experiment Module (JEM) at the International Space Station (ISS). With its non sun synchronous orbit, SMILES measurements comprise observations at all local times. The target altitude range is between lower stratosphere and mesopause. Differences in diurnal variation chemistry of strato-, and mesospheric BrO and ClO of the diurnal climatology are presented. The data employed is produced by the SMILES level 2 retrieval algorithm version 2.1.5 at the National Institute of Information and Communications Technology (NICT). The SMILES climatology data sets are available via the SMILES data distribution homepage in NICT at https://smiles-p6.nict.go.jp/products/research_latitude-longitude.jsf

  18. Cold-stage microscopy system for fast-frozen liquids.

    PubMed

    Talmon, Y; Davis, H T; Scriven, L E; Thomas, E L

    1979-06-01

    The least artifact-laden fixation technique for examining colloidal suspensions, microemulsions, and other microstructured liquids in the electron microscope appears to be thermal fixation, i.e., ultrafast freezing of the liquid specimen. For rapid-enough cooling and for observation in TEM/STEM a thin sample is needed. The need is met by trapping a thin layer ( approximately 100 nm) of liquid between two polyimide films ( approximately 40 nm thickness) mounted on copper grids and immersing the resulting sandwich in liquid nitrogen at its melting point. For liquids containing water, polyimides films are used since this polymer is far less susceptible to the electron beam damage observed for the commonly used polymer films such as Formvar and collodion in contact with ice. Transfer of the frozen sample into the microscope column without deleterious frost deposition and warming is accomplished with a new transfer module for the cooling stage of the JEOL JEM-100CX microscope, which makes a true cold stage out of a device originally intended for cooling specimens inside the column. Sample results obtained with the new fast-freeze, cold-stage microscopy system are given.

  19. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-1: Pressurized Water Reactors.

    ERIC Educational Resources Information Center

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical pressurized water reactor (PWR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating its use with a simplified model. The heart of the module is the PWR…

  20. Creep Burst Testing of a Woven Inflatable Module

    NASA Technical Reports Server (NTRS)

    Selig, Molly M.; Valle, Gerard D.; James, George H.; Oliveras, Ovidio M.; Jones, Thomas C.; Doggett, William R.

    2015-01-01

    A woven Vectran inflatable module 88 inches in diameter and 10 feet long was tested at the NASA Johnson Space Center until failure from creep. The module was pressurized pneumatically to an internal pressure of 145 psig, and was held at pressure until burst. The external environment remained at standard atmospheric temperature and pressure. The module burst occurred after 49 minutes at the target pressure. The test article pressure and temperature were monitored, and video footage of the burst was captured at 60 FPS. Photogrammetry was used to obtain strain measurements of some of the webbing. Accelerometers on the test article measured the dynamic response. This paper discusses the test article, test setup, predictions, observations, photogrammetry technique and strain results, structural dynamics methods and quick-look results, and a comparison of the module level creep behavior to the strap level creep behavior.

  1. A new electronic scanner of pressure designed for installation in wind-tunnel models

    NASA Technical Reports Server (NTRS)

    Coe, C. T.; Parra, G. T.; Kauffman, R. C.

    1981-01-01

    A new electronic scanner of pressure (ESOP) has been developed by NASA Ames Research Center for installation in wind-tunnel models. An ESOP system includes up to 20 pressure modules, each with 48 pressure transducers, an A/D converter, a microprocessor, a data controller, a monitor unit, and a heater controller. The system is sized so that the pressure modules and A/D converter module can be installed within an average-size model tested in the Ames Aerodynamics Division wind tunnels. This paper describes the ESOP system, emphasizing the main element of the system - the pressure module. The measured performance of the overall system is also presented.

  2. Optimization of the Pressurized Logistics Module - A Space Station Freedom analytical study

    NASA Technical Reports Server (NTRS)

    Scallan, J. M.

    1991-01-01

    The analysis for determining the optimum cylindrical length of the Space Station Freedom (SSF) Pressurized Logistics Module, whose task is to transport the SSF pressurized cargo via the NSTS Shuttle Orbiter, is described. The major factors considered include the NSTS net launch lift capability, the pressurized cargo requirements, and the mass properties of the module structures, mechanisms, and subsystems.

  3. A hybrid electronically scanned pressure module for cryogenic environments

    NASA Technical Reports Server (NTRS)

    Chapman, J. J.; Hopson, P., Jr.; Kruse, N.

    1995-01-01

    Pressure is one of the most important parameters measured when testing models in wind tunnels. For models tested in the cryogenic environment of the National Transonic Facility at NASA Langley Research Center, the technique of utilizing commercially available multichannel pressure modules inside the models is difficult due to the small internal volume of the models and the requirement of keeping the pressure transducer modules within an acceptable temperature range well above the -173 degrees C tunnel temperature. A prototype multichannel pressure transducer module has been designed and fabricated with stable, repeatable sensors and materials optimized for reliable performance in the cryogenic environment. The module has 16 single crystal silicon piezoresistive pressure sensors electrostatically bonded to a metalized Pyrex substrate for sensing the wind tunnel model pressures. An integral temperature sensor mounted on each silicon micromachined pressure sensor senses real-time temperature fluctuations to within 0.1 degrees C to correct for thermally induced non-random sensor drift. The data presented here are from a prototype sensor module tested in the 0.3 M cryogenic tunnel and thermal equilibrium conditions in an environmental chamber which approximates the thermal environment (-173 degrees C to +60 degrees C) of the National Transonic Facility.

  4. 15. VIEW OF MODULE H, THE HIGH PRESSURE ASSEMBLY AREA. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF MODULE H, THE HIGH PRESSURE ASSEMBLY AREA. PROCESSES IN THIS MODULE OCCURRED UNDER HIGH PRESSURES AND TEMPERATURES. (5/70) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  5. Pressure tracking control of vehicle ABS using piezo valve modulator

    NASA Astrophysics Data System (ADS)

    Jeon, Juncheol; Choi, Seung-Bok

    2011-03-01

    This paper presents a wheel slip control for the ABS(anti-lock brake system) of a passenger vehicle using a controllable piezo valve modulator. The ABS is designed to optimize for braking effectiveness and good steerability. As a first step, the principal design parameters of the piezo valve and pressure modulator are appropriately determined by considering the braking pressure variation during the ABS operation. The proposed piezo valve consists of a flapper, pneumatic circuit and a piezostack actuator. In order to get wide control range of the pressure, the pressure modulator is desired. The modulator consists of a dual-type cylinder filled with different substances (fluid and gas) and a piston rod moving vertical axis to transmit the force. Subsequently, a quarter car wheel slip model is formulated and integrated with the governing equation of the piezo valve modulator. A sliding mode controller to achieve the desired slip rate is then designed and implemented. Braking control performances such as brake pressure and slip rate are evaluated via computer simulations.

  6. 78 FR 21126 - Agency Forms Undergoing Paperwork Reduction Act Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... aims of this project NIOSH has developed a survey designed to collect information about work history..., which will significantly enhance the existing JEMs and develop a survey questionnaire for asthma in... completed using data exclusively from this survey. While aim 2 will be completed using asthma outcome data...

  7. Training a Joint and Expeditionary Mindset

    DTIC Science & Technology

    2006-12-01

    associated with the JEM constructs and for using them to create effective computer-mediated training scenarios. The pedagogic model enables development of...ensure the instructional rigor of scenarios and provide a sound basis for determining performance indicators. The pedagogical model enables development...and Subordinate Constructs ........................................................................... 3 Pedagogical Fram ew ork

  8. Standoff Spectroscopy via Remote Generation of a Backward-Propagating Laser Beam

    DTIC Science & Technology

    2011-02-04

    nighttime probing of stratospheric ozone and measurements in polar and equatorial regions. Appl Opt 28:3616–3624. 2. Bisson SE, Goldsmith JEM, Mitchell...MG (1999) Narrow-band, narrow-field-of-view Raman Lidar with combined day and night capability for tropospheric water-vapor profile measurements. Appl

  9. A new lead to NLRP3 inhibition

    PubMed Central

    2017-01-01

    The discovery of a small molecule inhibitor that targets the inflammasome sensor NLRP3 offers a new path for the development of selective inflammasome blockers with potential therapeutic benefit in a wide range of human diseases (in this issue, see Jiang et al., https://doi.org/10.1084/jem.20171419). PMID:29061692

  10. Electronically-Scanned Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Coe, C. F.; Parra, G. T.; Kauffman, R. C.

    1984-01-01

    Sensors not pneumatically switched. Electronic pressure-transducer scanning system constructed in modular form. Pressure transducer modules and analog to digital converter module small enough to fit within cavities of average-sized wind-tunnel models. All switching done electronically. Temperature controlled environment maintained within sensor modules so accuracy maintained while ambient temperature varies.

  11. Cryogenic Pressure Calibrator for Wide Temperature Electronically Scanned (ESP) Pressure Modules

    NASA Technical Reports Server (NTRS)

    Faulcon, Nettie D.

    2001-01-01

    Electronically scanned pressure (ESP) modules have been developed that can operate in ambient and in cryogenic environments, particularly Langley's National Transonic Facility (NTF). Because they can operate directly in a cryogenic environment, their use eliminates many of the operational problems associated with using conventional modules at low temperatures. To ensure the accuracy of these new instruments, calibration was conducted in a laboratory simulating the environmental conditions of NTF. This paper discusses the calibration process by means of the simulation laboratory, the system inputs and outputs and the analysis of the calibration data. Calibration results of module M4, a wide temperature ESP module with 16 ports and a pressure range of +/- 4 psid are given.

  12. Health Instruction Packages: How to Take a Blood Pressure.

    ERIC Educational Resources Information Center

    Lancaster, Carolyn; And Others

    Text, illustrations, and exercises are utilized in these four learning modules to teach dental hygiene students, nursing students, and the general public how to measure blood pressure. The first module, "Can You Take a Blood Pressure?" by Carolyn Lancaster, defines blood pressure, distinguishes between systolic and diastolic pressure and…

  13. 77 FR 35405 - Proposed Data Collections Submitted for Public Comment and Recommendations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... survey designed to collect information about work history, workplace exposures and asthma health from... JEMs and develop a survey questionnaire for asthma in healthcare. Since asthma continues to be a... this survey. While aim 2 will be completed using asthma outcome data from the survey and exposure data...

  14. DomeGene Experiment at Cell Biology Experiment Facility (CBEF) in JPM

    NASA Image and Video Library

    2009-03-18

    ISS018-E-040985 (18 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18 flight engineer, uses a computer at the Japanese Remote Manipulator System (JEM-RMS) work station in the Kibo laboratory of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station.

  15. DomeGene Experiment at Cell Biology Experiment Facility (CBEF) in JPM

    NASA Image and Video Library

    2009-03-18

    ISS018-E-040986 (18 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18 flight engineer, uses a computer at the Japanese Remote Manipulator System (JEM-RMS) work station in the Kibo laboratory of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station.

  16. A new lead to NLRP3 inhibition.

    PubMed

    Lamkanfi, Mohamed; Dixit, Vishva M

    2017-11-06

    The discovery of a small molecule inhibitor that targets the inflammasome sensor NLRP3 offers a new path for the development of selective inflammasome blockers with potential therapeutic benefit in a wide range of human diseases (in this issue, see Jiang et al., https://doi.org/10.1084/jem.20171419). © 2017 Lamkanfi and Dixit.

  17. Early Results from the RAIDS Experiment on the ISS

    NASA Astrophysics Data System (ADS)

    Budzien, S. A.; Bishop, R. L.; Stephan, A. W.; Christensen, A. B.; Hecht, J. H.; Straus, P. R.

    2009-12-01

    The Remote Atmospheric and Ionospheric Detection System (RAIDS) is a suite of three photometers, three spectrometers, and two spectrographs which span the wavelength range 55-874 nm and remotely sense the thermosphere and ionosphere by scanning and imaging the limb. RAIDS was scheduled to fly to the Japanese Experiment Module—Exposed Facility (JEM-EF) aboard the International Space Station (ISS) in September 2009. RAIDS along with a companion hyperspectral imaging experiment will serve as the first US payload on the JEM-EF. The scientific objectives of the new RAIDS experiment are to study the temperature of the lower thermosphere (100-200 km), to measure composition and chemistry of the lower thermosphere and ionosphere, and to measure the initial source of OII 83.4 nm emission. RAIDS will provide valuable data useful for exploring tidal effects in the thermosphere and ionosphere system, validating dayside ionospheric remote sensing methods, and studying local time variations in important chemical and thermal processes. Early observational results from the RAIDS experiment will be presented. The RAIDS sensor suite performs multispectral limb scanning from the open end of the HICO-RAIDS Experiment Payload aboard the ISS.

  18. A perspective of Genes and Environment for the development of environmental mutagen research in Asia.

    PubMed

    Yagi, Takashi

    2017-01-01

    Two years have passed since the Japanese Environmental Society (JEMS) made the official journal Genes and Environment (G&E) open access. Current subjects on environmental mutagen research to further advance this field are described herein, and the roles of JEMS and G&E are discussed. Various important subjects are being investigated in current research fields such as severe environmental pollution in Asian countries; the identification of new hazardous substances and elucidation of mutation mechanisms using newly developed techniques; the development of new genotoxicity assays including in silico predictions using information technology and artificial intelligence as well as bioassays. International exchange by scientists is important for advancing these research fields through international conferences such as the 12th International Conference and 5th Asian Congress on Environmental Mutagens and the 7th International Workshop on Genotoxicity Testing that will be held in 2017. G&E provides a common platform for high quality environmental mutagen research, contributes to the dissemination of Asian environmental mutagen research, and potentiates the level of research being conducted.

  19. Development of a Job-Exposure Matrix (AsbJEM) to Estimate Occupational Exposure to Asbestos in Australia.

    PubMed

    van Oyen, Svein C; Peters, Susan; Alfonso, Helman; Fritschi, Lin; de Klerk, Nicholas H; Reid, Alison; Franklin, Peter; Gordon, Len; Benke, Geza; Musk, Arthur W

    2015-07-01

    Occupational exposure data on asbestos are limited and poorly integrated in Australia so that estimates of disease risk and attribution of disease causation are usually calculated from data that are not specific for local conditions. To develop a job-exposure matrix (AsbJEM) to estimate occupational asbestos exposure levels in Australia, making optimal use of the available exposure data. A dossier of all available exposure data in Australia and information on industry practices and controls was provided to an expert panel consisting of three local industrial hygienists with thorough knowledge of local and international work practices. The expert panel estimated asbestos exposures for combinations of occupation, industry, and time period. Intensity and frequency grades were estimated to enable the calculation of annual exposure levels for each occupation-industry combination for each time period. Two indicators of asbestos exposure intensity (mode and peak) were used to account for different patterns of exposure between occupations. Additionally, the probable type of asbestos fibre was determined for each situation. Asbestos exposures were estimated for 537 combinations of 224 occupations and 60 industries for four time periods (1943-1966; 1967-1986; 1987-2003; ≥2004). Workers in the asbestos manufacturing, shipyard, and insulation industries were estimated to have had the highest average exposures. Up until 1986, 46 occupation-industry combinations were estimated to have had exposures exceeding the current Australian exposure standard of 0.1 f ml(-1). Over 90% of exposed occupations were considered to have had exposure to a mixture of asbestos varieties including crocidolite. The AsbJEM provides empirically based quantified estimates of asbestos exposure levels for Australian jobs since 1943. This exposure assessment application will contribute to improved understanding and prediction of asbestos-related diseases and attribution of disease causation. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  20. Method and Apparatus for Characterizing Pressure Sensors using Modulated Light Beam Pressure

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor)

    2003-01-01

    Embodiments of apparatuses and methods are provided that use light sources instead of sound sources for characterizing and calibrating sensors for measuring small pressures to mitigate many of the problems with using sound sources. In one embodiment an apparatus has a light source for directing a beam of light on a sensing surface of a pressure sensor for exerting a force on the sensing surface. The pressure sensor generates an electrical signal indicative of the force exerted on the sensing surface. A modulator modulates the beam of light. A signal processor is electrically coupled to the pressure sensor for receiving the electrical signal.

  1. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2007-02-20

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  2. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward [Allentown, PA; Carolan, Michael Francis [Allentown, PA; Chen, Christopher M [Allentown, PA; Armstrong, Phillip Andrew [Orefield, PA; Wahle, Harold W [North Canton, OH; Ohrn, Theodore R [Alliance, OH; Kneidel, Kurt E [Alliance, OH; Rackers, Keith Gerard [Louisville, OH; Blake, James Erik [Uniontown, OH; Nataraj, Shankar [Allentown, PA; Van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson [West Jordan, UT

    2012-02-14

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  3. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward [Allentown, PA; Carolan, Michael Francis [Allentown, PA; Chen, Christopher M [Allentown, PA; Armstrong, Phillip Andrew [Orefield, PA; Wahle, Harold W [North Canton, OH; Ohrn, Theodore R [Alliance, OH; Kneidel, Kurt E [Alliance, OH; Rackers, Keith Gerard [Louisville, OH; Blake, James Erik [Uniontown, OH; Nataraj, Shankar [Allentown, PA; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson [West Jordan, UT

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  4. A cryogenic multichannel electronically scanned pressure module

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Fox, Robert L.; Adcock, Edward E.; Kahng, Seun K.

    1992-01-01

    Consideration is given to a cryogenic multichannel electronically scanned pressure (ESP) module developed and tested over an extended temperature span from -184 to +50 C and a pressure range of 0 to 5 psig. The ESP module consists of 32 pressure sensor dice, four analog 8 differential-input multiplexers, and an amplifier circuit, all of which are packaged in a physical volume of 2 x 1 x 5/8 in with 32 pressure and two reference ports. Maximum nonrepeatability is measured at 0.21 percent of full-scale output. The ESP modules have performed consistently well over 15 times over the above temperature range and continue to work without any sign of degradation. These sensors are also immune to repeated thermal shock tests over a temperature change of 220 C/sec.

  5. A Project-Based Engineering and Leadership Workshop for High School Students

    ERIC Educational Resources Information Center

    Ryder, Linda Sue; Pegg, Jerine; Wood, Nathan

    2012-01-01

    Summer outreach programs provide pre-college participants an introduction to college life and exposure to engineering in an effort to raise the level of interest and bring more students into engineering fields. The Junior Engineering, Mathematics, and Science (JEMS) program is a project-based summer workshop in which teams of high school students…

  6. Use of hydrostatic pressure for modulation of protein chemical modification and enzymatic selectivity.

    PubMed

    Makarov, Alexey A; Helmy, Roy; Joyce, Leo; Reibarkh, Mikhail; Maust, Mathew; Ren, Sumei; Mergelsberg, Ingrid; Welch, Christopher J

    2016-05-11

    Using hydrostatic pressure to induce protein conformational changes can be a powerful tool for altering the availability of protein reactive sites and for changing the selectivity of enzymatic reactions. Using a pressure apparatus, it has been demonstrated that hydrostatic pressure can be used to modulate the reactivity of lysine residues of the protein ubiquitin with a water-soluble amine-specific homobifunctional coupling agent. Fewer reactive lysine residues were observed when the reaction was carried out under elevated pressure of 3 kbar, consistent with a pressure-induced conformational change of ubiquitin that results in fewer exposed lysine residues. Additionally, modulation of the stereoselectivity of an enzymatic transamination reaction was observed at elevated hydrostatic pressure. In one case, the minor diasteromeric product formed at atmospheric pressure became the major product at elevated pressure. Such pressure-induced alterations of protein reactivity may provide an important new tool for enzymatic reactions and the chemical modification of proteins.

  7. S1P and the birth of platelets

    PubMed Central

    Galvani, Sylvain; Rafii, Shahin; Nachman, Ralph

    2012-01-01

    Recent work has highlighted the multitude of biological functions of sphingosine 1-phosphate (S1P), which include roles in hematopoietic cell trafficking, organization of immune organs, vascular development, and neuroinflammation. Indeed, a functional antagonist of S1P1 receptor, FTY720/Gilenya, has entered the clinic as a novel therapeutic for multiple sclerosis. In this issue of the JEM, Zhang et al. highlight yet another function of this lipid mediator: thrombopoiesis. The S1P1 receptor is required for the growth of proplatelet strings in the bloodstream and the shedding of platelets into the circulation. Notably, the sharp gradient of S1P between blood and the interstitial fluids seems to be essential to ensure the production of platelets, and S1P appears to cooperate with the CXCL12–CXCR4 axis. Pharmacologic modulation of the S1P1 receptor altered circulating platelet numbers acutely, suggesting a potential therapeutic strategy for controlling thrombocytopenic states. However, the S1P4 receptor may also regulate thrombopoiesis during stress-induced accelerated platelet production. This work reveals a novel physiological action of the S1P/S1P1 duet that could potentially be harnessed for clinical translation. PMID:23166370

  8. Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases

    NASA Astrophysics Data System (ADS)

    Li, Hejie; Rieker, Gregory B.; Liu, Xiang; Jeffries, Jay B.; Hanson, Ronald K.

    2006-02-01

    Tunable diode laser absorption measurements at high pressures by use of wavelength-modulation spectroscopy (WMS) require large modulation depths for optimum detection of molecular absorption spectra blended by collisional broadening or dense spacing of the rovibrational transitions. Diode lasers have a large and nonlinear intensity modulation when the wavelength is modulated over a large range by injection-current tuning. In addition to this intensity modulation, other laser performance parameters are measured, including the phase shift between the frequency modulation and the intensity modulation. Following published theory, these parameters are incorporated into an improved model of the WMS signal. The influence of these nonideal laser effects is investigated by means of wavelength-scanned WMS measurements as a function of bath gas pressure on rovibrational transitions of water vapor near 1388 nm. Lock-in detection of the magnitude of the 2f signal is performed to remove the dependence on detection phase. We find good agreement between measurements and the improved model developed for the 2f component of the WMS signal. The effects of the nonideal performance parameters of commercial diode lasers are especially important away from the line center of discrete spectra, and these contributions become more pronounced for 2f signals with the large modulation depths needed for WMS at elevated pressures.

  9. Field-effect Flow Control in Polymer Microchannel Networks

    NASA Technical Reports Server (NTRS)

    Sniadecki, Nathan; Lee, Cheng S.; Beamesderfer, Mike; DeVoe, Don L.

    2003-01-01

    A new Bio-MEMS electroosmotic flow (EOF) modulator for plastic microchannel networks has been developed. The EOF modulator uses field-effect flow control (FEFC) to adjust the zeta potential at the Parylene C microchannel wall. By setting a differential EOF pumping rate in two of the three microchannels at a T-intersection with EOF modulators, the induced pressure at the intersection generated pumping in the third, field-free microchannel. The EOF modulators are able to change the magnitude and direction of the pressure pumping by inducing either a negative or positive pressure at the intersection. The flow velocity is tracked by neutralized fluorescent microbeads in the microchannels. The proof-of-concept of the EOF modulator described here may be applied to complex plastic ,microchannel networks where individual microchannel flow rates are addressable by localized induced-pressure pumping.

  10. Method for pressure modulation of turbine sidewall cavities

    DOEpatents

    Leone, Sal Albert; Book, Matthew David; Banares, Christopher R.

    2002-01-01

    A method is provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.

  11. System for pressure modulation of turbine sidewall cavities

    DOEpatents

    Leone, Sal Albert; Book, Matthew David; Banares, Christopher R.

    2002-01-01

    A system and method are provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.

  12. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) joins others for a tour. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) joins others for a tour. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  13. Feasibility of controlling speed-dependent low-frequency brake vibration amplification by modulating actuation pressure

    NASA Astrophysics Data System (ADS)

    Sen, Osman Taha; Dreyer, Jason T.; Singh, Rajendra

    2014-12-01

    In this article, a feasibility study of controlling the low frequency torque response of a disc brake system with modulated actuation pressure (in the open loop mode) is conducted. First, a quasi-linear model of the torsional system is introduced, and analytical solutions are proposed to incorporate the modulation effect. Tractable expressions for three different modulation schemes are obtained, and conditions that would lead to a reduction in the oscillatory amplitudes are identified. Second, these conditions are evaluated with a numerical model of the torsional system with clearance nonlinearity, and analytical solutions are verified in terms of the trends observed. Finally, a laboratory experiment with a solenoid valve is built to modulate actuation pressure with a constant duty cycle, and time-frequency domain data are acquired. Measurements are utilized to assess analytical observations, and all methods show that the speed-dependent brake torque amplitudes can be altered with an appropriate modulation of actuation pressure.

  14. Interactive simulation system for artificial ventilation on the internet: virtual ventilator.

    PubMed

    Takeuchi, Akihiro; Abe, Tadashi; Hirose, Minoru; Kamioka, Koichi; Hamada, Atsushi; Ikeda, Noriaki

    2004-12-01

    To develop an interactive simulation system "virtual ventilator" that demonstrates the dynamics of pressure and flow in the respiratory system under the combination of spontaneous breathing, ventilation modes, and ventilator options. The simulation system was designed to be used by unexperienced health care professionals as a self-training tool. The system consists of a simulation controller and three modules: respiratory, spontaneous breath, and ventilator. The respiratory module models the respiratory system by three resistances representing the main airway, the right and left lungs, and two compliances also representing the right and left lungs. The spontaneous breath module generates inspiratory negative pressure produced by a patient. The ventilator module generates driving force of pressure or flow according to the combination of the ventilation mode and options. These forces are given to the respiratory module through the simulation controller. The simulation system was developed using HTML, VBScript (3000 lines, 100 kB) and ActiveX control (120 kB), and runs on Internet Explorer (5.5 or higher). The spontaneous breath is defined by a frequency, amplitude and inspiratory patterns in the spontaneous breath module. The user can construct a ventilation mode by setting a control variable, phase variables (trigger, limit, and cycle), and options. Available ventilation modes are: controlled mechanical ventilation (CMV), continuous positive airway pressure, synchronized intermittent mandatory ventilation (SIMV), pressure support ventilation (PSV), SIMV + PSV, pressure-controlled ventilation (PCV), pressure-regulated volume control (PRVC), proportional assisted ventilation, mandatory minute ventilation (MMV), bilevel positive airway pressure (BiPAP). The simulation system demonstrates in a graph and animation the airway pressure, flow, and volume of the respiratory system during mechanical ventilation both with and without spontaneous breathing. We developed a web application that demonstrated the respiratory mechanics and the basic theory of ventilation mode.

  15. Automated cuff pressure modulation: a novel device to reduce endotracheal tube injury.

    PubMed

    Chadha, Neil K; Gordin, Arie; Luginbuehl, Igor; Patterson, Greg; Campisi, Paolo; Taylor, Glenn; Forte, Vito

    2011-01-01

    To assess whether dynamically modulating endotracheal tube (ETT) cuff pressure, by decreasing it during each ventilatory cycle instead of maintaining a constant level, would reduce the extent of intubation-related laryngotracheal injury. Single-blind, randomized controlled animal study using a previously validated live porcine model of accelerated intubation-related tracheal injury. Animal research facility. Ten piglets (weight, 16-20 kg each) were anesthetized and underwent intubation using a cuffed ETT. The animals were randomized into the following 2 groups: 5 pigs had a novel device to modulate their cuff pressure from 25 cm H₂O during inspiration to 7 cm H₂O during expiration, and 5 pigs had a constant cuff pressure of 25 cm H₂O. Both groups underwent ventilation under hypoxic conditions for 4 hours. Laryngotracheal mucosal injury after blinded histopathological assessment. The modulated-pressure group showed significantly less overall laryngotracheal damage than the constant-pressure group (mean grades, 1.2 vs 2.1; P < .001). Subglottic damage and tracheal damage were significantly less severe in the modulated-pressure group (mean grades, 1.0 vs 2.2; P < .001, and 1.9 vs 3.2; P < .001, respectively). There was no significant difference in glottic or supraglottic damage between the groups (P = .06 and .27, respectively). This novel device reduces the risk of subglottic and tracheal injury by modulating ETT cuff pressure in synchronization with the ventilatory cycle. This finding could have far-reaching implications for reducing the risk of airway injury in patients undergoing long-term intubation. Further clinical study of this device is warranted.

  16. Habitat Demonstration Unit (HDU) Vertical Cylinder Habitat

    NASA Technical Reports Server (NTRS)

    Howe, Alan; Kennedy, Kriss J.; Gill, Tracy R.; Tri, Terry O.; Toups, Larry; Howard, Robert I.; Spexarth, Gary R.; Cavanaugh, Stephen; Langford, William M.; Dorsey, John T.

    2014-01-01

    NASA's Constellation Architecture Team defined an outpost scenario optimized for intensive mobility that uses small, highly mobile pressurized rovers supported by portable habitat modules that can be carried between locations of interest on the lunar surface. A compact vertical cylinder characterizes the habitat concept, where the large diameter maximizes usable flat floor area optimized for a gravity environment and allows for efficient internal layout. The module was sized to fit into payload fairings for the Constellation Ares V launch vehicle, and optimized for surface transport carried by the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) mobility system. Launch and other loads are carried through the barrel to a top and bottom truss that interfaces with a structural support unit (SSU). The SSU contains self-leveling feet and docking interfaces for Tri-ATHLETE grasping and heavy lift. A pressurized module needed to be created that was appropriate for the lunar environment, could be easily relocated to new locations, and could be docked together in multiples for expanding pressurized volume in a lunar outpost. It was determined that horizontally oriented pressure vessels did not optimize floor area, which takes advantage of the gravity vector for full use. Hybrid hard-inflatable habitats added an unproven degree of complexity that may eventually be worked out. Other versions of vertically oriented pressure vessels were either too big, bulky, or did not optimize floor area. The purpose of the HDU vertical habitat module is to provide pressurized units that can be docked together in a modular way for lunar outpost pressurized volume expansion, and allow for other vehicles, rovers, and modules to be attached to the outpost to allow for IVA (intra-vehicular activity) transfer between them. The module is a vertically oriented cylinder with a large radius to allow for maximal floor area and use of volume. The modular, 5- m-diameter HDU vertical habitat module consists of a 2-m-high barrel with 0.6-mhigh end domes forming the 56-cubicmeter pressure vessel, and a 19-squaremeter floor area. The module has up to four docking ports located orthogonally from each other around the perimeter, and up to one docking port each on the top or bottom end domes. In addition, the module has mounting trusses top and bottom for equipment, and to allow docking with the ATHLETE mobility system. Novel or unique features of the HDU vertical habitat module include the nodelike function with multiple pressure hatches for docking with other versions of itself and other modules and vehicles; the capacity to be carried by an ATHLETE mobility system; and the ability to attach inflatable 'attic' domes to the top for additional pressurized volume.

  17. Smart Nanofibers Self-Assembled from Dumbbell-Shaped Rod Amphiphiles

    DTIC Science & Technology

    2011-09-01

    using JEOL-JEM 2100. MALDI-TOF-MS was performed on a Bruker Microflex LRF20 using α-cyano-4-hydroxy cinnamic acid (CHCA) as matrix. Preparative high...and 4,4’-biphenyl diboronic acid (28.8 mg, 0.12 mmol) were dissolved in degassed THF (25 ml). Degassed 2 M aqueous Na2CO3 (25 ml) was added to the

  18. Identification and Characterization of a Gene Cluster Mediating Enteroaggregative Escherichia Coli Aggregative Adherence Fimbria I Biogenesis

    DTIC Science & Technology

    1994-08-01

    microscopy were performed by standard methods with fluoresceinated forward and reverse pUC primers (ABI) with a JOEL JEM 1200 EX 11 transr-ission...MyfB 11 enzrocolinca 41 220 uous plasmid regions required for AAF/I expre:sion and AA. PapD E. cobi 34 200 In this paper. we present a detailed analysis

  19. IGR J16318-4848: 7 Years of INTEGRAL Observations

    NASA Technical Reports Server (NTRS)

    Barragan, Laura; Wilms, Joern; kreykenbohm, Ingo; Hanke, manfred; Fuerst, Felix; Pottschmidt, Katja; Rothschild, Richard

    2011-01-01

    Since the discovery of IGR 116318-4848 in 2003 January, INTEGRAL has accumulated more than 5.8 Ms in IBIS/ISGRI. We present the first extensive analysis of the archival INTEGRAL data (IBIS/ISGRI, and JEM-X when available) for this source, together with the observations carried out by XMM-Newton (twice in 2003, and twice in 2004) and Suzaku (2006). The source is very variable in the long-term, with periods of low activity, where the source is almost not detected, and flares with a luminosity approximately 10 times greater than its average value (5.4 cts/s). IGR 116318-4848 is a HMXB containing a sgB[e] star and a compact object (most probably a neutron star) deeply embedded in the stellar wind of the mass donor. The variability of the source (also in the short-term) can be ascribed to the wind of the optical star being very clumpy. We study the variation of the spectral parameters in time scales of INTEGRAL revolutions. The photoelectric absorption is, with NH around 10(exp 24)/ square cm, unusually high. During brighter phases the strong K-alpha iron line known from XMM-Newton and Suzaku observations is also detectable with the JEM-X instrument.

  20. Pressurized solid oxide fuel cell integral air accumular containment

    DOEpatents

    Gillett, James E.; Zafred, Paolo R.; Basel, Richard A.

    2004-02-10

    A fuel cell generator apparatus contains at least one fuel cell subassembly module in a module housing, where the housing is surrounded by a pressure vessel such that there is an air accumulator space, where the apparatus is associated with an air compressor of a turbine/generator/air compressor system, where pressurized air from the compressor passes into the space and occupies the space and then flows to the fuel cells in the subassembly module, where the air accumulation space provides an accumulator to control any unreacted fuel gas that might flow from the module.

  1. An electronic scanner of pressure for wind tunnel models

    NASA Technical Reports Server (NTRS)

    Kauffman, Ronald C.; Coe, Charles F.

    1986-01-01

    An electronic scanner of pressure (ESOP) has been developed by NASA Ames Research Center for installation in wind tunnel models. An ESOP system consists of up to 20 pressure modules (PMs), each with 48 pressure transducers and a heater, an analog-to-digital (A/D) converter module, a microprocessor, a data controller, a monitor unit, a control and processing unit, and a heater controller. The PMs and the A/D converter module are sized to be installed in the models tested in the Ames Aerodynamics Division wind tunnels. A unique feature of the pressure module is the lack of moving parts such as a pneumatic switch used in other systems for in situ calibrations. This paper describes the ESOP system and the results of the initial testing of the system. The initial results indicate the system meets the original design goal of 0.15 percent accuracy.

  2. Pressure modulation algorithm to separate cerebral hemodynamic signals from extracerebral artifacts.

    PubMed

    Baker, Wesley B; Parthasarathy, Ashwin B; Ko, Tiffany S; Busch, David R; Abramson, Kenneth; Tzeng, Shih-Yu; Mesquita, Rickson C; Durduran, Turgut; Greenberg, Joel H; Kung, David K; Yodh, Arjun G

    2015-07-01

    We introduce and validate a pressure measurement paradigm that reduces extracerebral contamination from superficial tissues in optical monitoring of cerebral blood flow with diffuse correlation spectroscopy (DCS). The scheme determines subject-specific contributions of extracerebral and cerebral tissues to the DCS signal by utilizing probe pressure modulation to induce variations in extracerebral blood flow. For analysis, the head is modeled as a two-layer medium and is probed with long and short source-detector separations. Then a combination of pressure modulation and a modified Beer-Lambert law for flow enables experimenters to linearly relate differential DCS signals to cerebral and extracerebral blood flow variation without a priori anatomical information. We demonstrate the algorithm's ability to isolate cerebral blood flow during a finger-tapping task and during graded scalp ischemia in healthy adults. Finally, we adapt the pressure modulation algorithm to ameliorate extracerebral contamination in monitoring of cerebral blood oxygenation and blood volume by near-infrared spectroscopy.

  3. NASA CF6 jet engine diagnostics program: Long-term CF6-6D low-pressure turbine deterioration

    NASA Technical Reports Server (NTRS)

    Smith, J. J.

    1979-01-01

    Back-to-back performance tests were run on seven airline low pressure turbine (LPT) modules and four new CF6-6D modules. Back-to-back test cell runs, in which an airline LPT module was directly compared to a new production module, were included. The resulting change, measured in fuel burn, equaled the level of LPT module deterioration. Three of the LPT modules were analytically inspected followed by a back-to-back test cell run to evaluate current refurbishment techniques.

  4. KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (left) accompanies Executive Director of NASDA Koji Yamamoto (third from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (left) accompanies Executive Director of NASDA Koji Yamamoto (third from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  5. Ventilation-Induced Modulation of Pulse Oximeter Waveforms: A Method for the Assessment of Early Changes in Intravascular Volume During Spinal Fusion Surgery in Pediatric Patients.

    PubMed

    Alian, Aymen A; Atteya, Gourg; Gaal, Dorothy; Golembeski, Thomas; Smith, Brian G; Dai, Feng; Silverman, David G; Shelley, Kirk

    2016-08-01

    Scoliosis surgery is often associated with substantial blood loss, requiring fluid resuscitation and blood transfusions. In adults, dynamic preload indices have been shown to be more reliable for guiding fluid resuscitation, but these indices have not been useful in children undergoing surgery. The aim of this study was to introduce frequency-analyzed photoplethysmogram (PPG) and arterial pressure waveform variables and to study the ability of these parameters to detect early bleeding in children during surgery. We studied 20 children undergoing spinal fusion. Electrocardiogram, arterial pressure, finger pulse oximetry (finger PPG), and airway pressure waveforms were analyzed using time domain and frequency domain methods of analysis. Frequency domain analysis consisted of calculating the amplitude density of PPG and arterial pressure waveforms at the respiratory and cardiac frequencies using Fourier analysis. This generated 2 measurements: The first is related to slow mean arterial pressure modulation induced by ventilation (also known as DC modulation when referring to the PPG), and the second corresponds to pulse pressure modulation (AC modulation or changes in the amplitude of pulse oximeter plethysmograph when referring to the PPG). Both PPG and arterial pressure measurements were divided by their respective cardiac pulse amplitude to generate DC% and AC% (normalized values). Standard hemodynamic data were also recorded. Data at baseline and after bleeding (estimated blood loss about 9% of blood volume) were presented as median and interquartile range and compared using Wilcoxon signed-rank tests; a Bonferroni-corrected P value <0.05 was considered statistically significant. There were significant increases in PPG DC% (median [interquartile range] = 359% [210 to 541], P = 0.002), PPG AC% (160% [87 to 251], P = 0.003), and arterial DC% (44% [19 to 84], P = 0.012) modulations, respectively, whereas arterial AC% modulations showed nonsignificant increase (41% [1 to 85], P = 0.12). The change in PPG DC% was significantly higher than that in PPG AC%, arterial DC%, arterial AC%, and systolic blood pressure with P values of 0.008, 0.002, 0.003, and 0.002, respectively. Only systolic blood pressure showed significant changes (11% [4 to 21], P = 0.003) between bleeding phase and baseline. Finger PPG and arterial waveform parameters (using frequency analysis) can track changes in blood volume during the bleeding phase, suggesting the potential for a noninvasive monitor for tracking changes in blood volume in pediatric patients. PPG waveform baseline modulation (PPG DC%) was more sensitive to changes in venous blood volume when compared with respiration-induced modulation seen in the arterial pressure waveform.

  6. ORION - Crew Module Side Hatch: Proof Pressure Test Anomaly Investigation

    NASA Technical Reports Server (NTRS)

    Evernden, Brent A.; Guzman, Oscar J.

    2018-01-01

    The Orion Multi-Purpose Crew Vehicle program was performing a proof pressure test on an engineering development unit (EDU) of the Orion Crew Module Side Hatch (CMSH) assembly. The purpose of the proof test was to demonstrate structural capability, with margin, at 1.5 times the maximum design pressure, before integrating the CMSH to the Orion Crew Module structural test article for subsequent pressure testing. The pressure test was performed at lower pressures of 3 psig, 10 psig and 15.75 psig with no apparent abnormal behavior or leaking. During pressurization to proof pressure of 23.32 psig, a loud 'pop' was heard at 21.3 psig. Upon review into the test cell, it was noted that the hatch had prematurely separated from the proof test fixture, thus immediately ending the test. The proof pressure test was expected be a simple verification but has since evolved into a significant joint failure investigation from both Lockheed Martin and NASA.

  7. Tongue Pressure Modulation during Swallowing: Water versus Nectar-Thick Liquids

    ERIC Educational Resources Information Center

    Steele, Catriona M.; Bailey, Gemma L.; Molfenter, Sonja M.

    2010-01-01

    Purpose: Evidence of tongue-palate pressure modulation during swallowing between thin and nectar-thick liquids stimuli has been equivocal. This mirrors a lack of clear evidence in the literature of tongue and hyoid movement modulation between nectar-thick and thin liquid swallows. In the current investigation, the authors sought to confirm whether…

  8. When The Shooting Stops: Recovery From Active Shooter Events For K-12 Schools

    DTIC Science & Technology

    2017-12-01

    ems -insider/articles/2014/02/a-new-response.html. 2 Ashby, Cornelia, and William O. Jenkins Jr. Emergency Management: Most School Districts Have...of Emergency Medical Services, March 18, 2014, http://www.jems.com/ ems -insider/ articles/2014/02/a-new-response.html. xviii THIS PAGE...Gang violence  Bomb threats  Domestic violence and abuse  Cyber attacks  Suicide 72

  9. Occupational Exposure to Vapor-Gas, Dust, and Fumes in a Cohort of Rural Adults in Iowa Compared with a Cohort of Urban Adults.

    PubMed

    Doney, Brent C; Henneberger, Paul K; Humann, Michael J; Liang, Xiaoming; Kelly, Kevin M; Cox-Ganser, Jean M

    2017-11-03

    Many rural residents work in the field of agriculture; however, employment in nonagricultural jobs also is common. Because previous studies in rural communities often have focused on agricultural workers, much less is known about the occupational exposures in other types of jobs in rural settings. Characterizing airborne occupational exposures that can contribute to respiratory diseases is important so that differences between rural and urban working populations can be assessed. 1994-2011. This investigation used data from the baseline questionnaire completed by adult rural residents participating in the Keokuk County Rural Health Study (KCRHS). The distribution of jobs and occupational exposures to vapor-gas, dust, and fumes (VGDF) among all participants was analyzed and stratified by farming status (current, former, and never) then compared with a cohort of urban workers from the Multi-Ethnic Study of Atherosclerosis (MESA). Occupational exposure in the last job was assessed with a job-exposure matrix (JEM) developed for chronic obstructive pulmonary disease (COPD). The COPD JEM assesses VGDF exposure at levels of none or low, medium, and high. The 1,699 KCRHS (rural) participants were more likely to have medium or high occupational VGDF exposure (43.2%) at their last job than their urban MESA counterparts (15.0% of 3,667 participants). One fifth (20.8%) of the rural participants currently farmed, 43.1% were former farmers, and approximately one third (36.1%) had never farmed. These three farming groups differed in VGDF exposure at the last job, with the prevalence of medium or high exposure at 80.2% for current farmers, 38.7% for former farmers, and 27.4% for never farmers, and all three percentages were higher than the 15.0% medium or high level of VGDF exposure for urban workers. Rural workers, including those who had never farmed, were more likely to experience occupational VGDF exposure than urban workers. The occupational exposures of rural adults assessed using the COPD JEM will be used to investigate their potential association with obstructive respiratory health problems (e.g., airflow limitation and chronic bronchitis). This assessment might highlight occupations in need of preventive interventions.

  10. Experimental investigation of a spiral-wound pressure-retarded osmosis membrane module for osmotic power generation.

    PubMed

    Kim, Yu Chang; Kim, Young; Oh, Dongwook; Lee, Kong Hoon

    2013-03-19

    Pressure-retarded osmosis (PRO) uses a semipermeable membrane to produce renewable energy from salinity-gradient energy. A spiral-wound (SW) design is one module configuration of the PRO membrane. The SW PRO membrane module has two different flow paths, axial and spiral, and two different spacers, net and tricot, for draw- and feed-solution streams, respectively. This study used an experimental approach to investigate the relationship between two interacting flow streams in a prototype SW PRO membrane module, and the adverse impact of a tricot fabric spacer (as a feed spacer) on the PRO performance, including water flux and power density. The presence of the tricot spacer inside the membrane envelope caused a pressure drop due to flow resistance and reduced osmotic water permeation due to the shadow effect. The dilution of the draw solution by water permeation resulted in the reduction of the osmotic pressure difference along a pressure vessel. For a 0.6 M NaCl solution and tap water, the water flux and corresponding maximum power density were 3.7 L m(-2)h(-1) and 1.0 W/m(2) respectively at a hydraulic pressure difference of 9.8 bar. The thickness and porosity of the tricot spacer should be optimized to achieve high SW PRO module performance.

  11. High Pressure Angle Gears: Comparison to Typical Gear Designs

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Zabrajsek, Andrew J.

    2010-01-01

    A preliminary study has been completed to determine the feasibility of using high-pressure angle gears in aeronautic and space applications. Tests were conducted in the NASA Glenn Research Center (GRC) Spur Gear Test Facility at speeds up to 10,000 rpm and 73 N*m (648 in.*lb) for 3.18, 2.12, and 1.59 module gears (8, 12, and 16 diametral pitch gears), all designed to operate in the same test facility. The 3.18 module (8-diametral pitch), 28 tooth, 20deg pressure angle gears are the GRC baseline test specimen. Also, 2.12 module (12-diametral pitch), 42 tooth, 25deg pressure angle gears were tested. Finally 1.59 module (16-diametral pitch), 56 tooth, 35deg pressure angle gears were tested. The high-pressure angle gears were the most efficient when operated in the high-speed aerospace mode (10,000 rpm, lubricated with a synthetic turbine engine oil), and produced the lowest wear rates when tested with a perfluoroether-based grease. The grease tests were conducted at 150 rpm and 71 N*m (630 in.*lb).

  12. KSC-07pd0898

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Scott Higginbotham, payload manager for the International Space Station, stands in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The module will be delivered to the space station on mission STS-123. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the logistics module. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  13. KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (second from left) accompanies Executive Director of NASDA Koji Yamamoto (fourth from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (second from left) accompanies Executive Director of NASDA Koji Yamamoto (fourth from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  14. ULF Generation by Modulated Ionospheric Heating

    NASA Astrophysics Data System (ADS)

    Chang, C.; Labenski, J.; Wallace, T.; Papadopoulos, K.

    2013-12-01

    Modulated ionospheric heating experiments designed to generate ULF waves using the HAARP heater have been conducted since 2007. Artificial ULF waves in the Pc1 frequency range were observed from space and by ground induction magnetometers located in the vicinity of the heater as well as at long distances. Two distinct generation mechanisms of artificial ULF waves were identified. The first was electroject modulation under geomagnetically disturbed conditions. The second was pressure modulation in the E and F regions of the ionosphere under quiet conditions. Ground detections of ULF waves near the heater included both Shear Alfven waves and Magnetosonic waves generated by electrojet and/or pressure modulations. Distant ULF detections involved Magnetosonic wave propagation in the Alfvenic duct with pressure modulation as the most likely source. Summary of our observations and theoretical interpretations will be presented at the meeting. We would like to acknowledge the support provided by the staff at the HAARP facility during our ULF experiments.

  15. Fluid pumping apparatus

    DOEpatents

    West, Phillip B.

    2006-01-17

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  16. Liners for ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Miller, Christopher Francis

    2010-08-10

    Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

  17. System Measures Pressures Aboard A Compressor Rotor

    NASA Technical Reports Server (NTRS)

    Freedman, Robert J.; Senyitko, Richard G.; Blumenthal, Philip Z.

    1994-01-01

    Rotating pressure-measuring instrumentation includes on-board calibration standard. Computer-controlled, multichannel instrumentation system acquires pressure measurements from sensors mounted in 1.52-m-diameter rotor of compressor. Includes 5 miniature, electronically scanned pressure (ESP) modules, each containing 48 piezoresistive pressure sensors, pneumatic calibration valve, and electronic circuits for addressing and amplifying output of each sensor. Modules mounted on centerline of rotor, on instrumentation tower located inside nose cone of rotor. Subsystem designed to convert analog signal to distinct frequency without significantly affecting accuracy.

  18. Modular robot

    DOEpatents

    Ferrante, Todd A.

    1997-01-01

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold.

  19. Continuously phase-modulated standing surface acoustic waves for separation of particles and cells in microfluidic channels containing multiple pressure nodes

    NASA Astrophysics Data System (ADS)

    Lee, Junseok; Rhyou, Chanryeol; Kang, Byungjun; Lee, Hyungsuk

    2017-04-01

    This paper describes continuously phase-modulated standing surface acoustic waves (CPM-SSAW) and its application for particle separation in multiple pressure nodes. A linear change of phase in CPM-SSAW applies a force to particles whose magnitude depends on their size and contrast factors. During continuous phase modulation, we demonstrate that particles with a target dimension are translated in the direction of moving pressure nodes, whereas smaller particles show oscillatory movements. The rate of phase modulation is optimized for separation of target particles from the relationship between mean particle velocity and period of oscillation. The developed technique is applied to separate particles of a target dimension from the particle mixture. Furthermore, we also demonstrate human keratinocyte cells can be separated in the cell and bead mixture. The separation technique is incorporated with a microfluidic channel spanning multiple pressure nodes, which is advantageous over separation in a single pressure node in terms of throughput.

  20. Pressure modulation algorithm to separate cerebral hemodynamic signals from extracerebral artifacts

    PubMed Central

    Baker, Wesley B.; Parthasarathy, Ashwin B.; Ko, Tiffany S.; Busch, David R.; Abramson, Kenneth; Tzeng, Shih-Yu; Mesquita, Rickson C.; Durduran, Turgut; Greenberg, Joel H.; Kung, David K.; Yodh, Arjun G.

    2015-01-01

    Abstract. We introduce and validate a pressure measurement paradigm that reduces extracerebral contamination from superficial tissues in optical monitoring of cerebral blood flow with diffuse correlation spectroscopy (DCS). The scheme determines subject-specific contributions of extracerebral and cerebral tissues to the DCS signal by utilizing probe pressure modulation to induce variations in extracerebral blood flow. For analysis, the head is modeled as a two-layer medium and is probed with long and short source-detector separations. Then a combination of pressure modulation and a modified Beer-Lambert law for flow enables experimenters to linearly relate differential DCS signals to cerebral and extracerebral blood flow variation without a priori anatomical information. We demonstrate the algorithm’s ability to isolate cerebral blood flow during a finger-tapping task and during graded scalp ischemia in healthy adults. Finally, we adapt the pressure modulation algorithm to ameliorate extracerebral contamination in monitoring of cerebral blood oxygenation and blood volume by near-infrared spectroscopy. PMID:26301255

  1. KSC-07pd0902

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- The Experiment Logistics Module Pressurized Section of the Japanese Experiment Module sits on top of a stand in the Space Station Processing Facility. Earlier, NASA and Japanese Space Agency (JAXA) officials welcomed the arrival of the logistics module, which will be delivered to the space station on mission STS-123. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  2. KSC-07pd0901

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- After a welcoming ceremony for the Experiment Logistics Module Pressurized Section of the Japanese Experiment Module, STS-123 Commander Dominic Gorie talks to the media. Earlier, NASA and Japanese Space Agency (JAXA) officials welcomed the arrival of the logistics module, which will be delivered to the space station on mission STS-123. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  3. KSC-07pd0899

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Scott Higginbotham and Chuong Nguyen, payload manager and deputy payload manager respectively for the International Space Station, stand in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the logistics module. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  4. Liquid jet response to internal modulated ultrasonic radiation pressure and stimulated drop production.

    PubMed

    Lonzaga, Joel B; Osterhoudt, Curtis F; Thiessen, David B; Marston, Philip L

    2007-06-01

    Experimental evidence shows that a liquid jet in air is an acoustic waveguide having a cutoff frequency inversely proportional to the jet diameter. Ultrasound applied to the jet supply liquid can propagate within the jet when the acoustic frequency is near to or above the cutoff frequency. Modulated radiation pressure is used to stimulate large amplitude deformations and the breakup of the jet into drops. The jet response to the modulated internal ultrasonic radiation pressure was monitored along the jet using (a) an optical extinction method and (b) images captured by a video camera. The jet profile oscillates at the frequency of the radiation pressure modulation and where the response is small, the amplitude was found to increase in proportion to the square of the acoustic pressure amplitude as previously demonstrated for oscillating drops [P.L. Marston and R.E. Apfel, J. Acoust. Soc. Am. 67, 27-37 (1980)]. Small amplitude deformations initially grow approximately exponentially with axial distance along the jet. Though aspects of the perturbation growth can be approximated from Rayleigh's analysis of the capillary instability, some detailed features of the observed jet response to modulated ultrasound are unexplained neglecting the effects of gravity.

  5. Validation of the SunTech Medical Advantage Model 2 Series Automated Blood Pressure Module in Pregnancy.

    PubMed

    Kuper, Spencer G; Dotson, Kristin N; Anderson, Sarah B; Harris, Stacy L; Harper, Lorie M; Tita, Alan T

    2018-06-15

     We sought to validate the SunTech Medical Advantage Model 2 Series with firmware LX 3.40.8 algorithm noninvasive blood pressure module in a pregnant population, including those with preeclampsia.  Validation study of an oscillometric noninvasive blood pressure module using the ANSI/AAMI ISO 81060-2:2013 standard guidelines. Pregnant women were enrolled into three subgroups: normotensive, hypertensive without proteinuria, and preeclampsia (hypertensive with random protein-to-creatinine ratio ≥ 0.3 or a 24-hour urine protein > 300 mg). Two trained research nurses, blinded to each other's measurements, used a mercury sphygmomanometer to validate the module by following the protocol set forth in the ANSI/AAMI ISO 81060-2:2013 standard guidelines.  A total of 45 patients, 15 in each subgroup, were included. The mean systolic and diastolic differences with standard deviations between the module and the mean observers' measurements for all participants were -2.3 ± 7.3 and 0.2 ± 6.5 mm Hg, respectively. The systolic and diastolic standard deviations of the mean of the individual patient's paired module and observers' measurements were 6.27 and 5.98 mm Hg, respectively. The test device, relative to a mercury sphygmomanometer, underestimated the systolic blood pressure in patients with preeclampsia by at least 10 mm Hg in 24% (11/45) of paired measurements.  The SunTech Medical Advantage Model 2 Series with firmware LX 3.40.8 algorithm noninvasive blood pressure module is validated in pregnancy, including patients with preeclampsia; however, it may underestimate systolic blood pressure measurements in patients with preeclampsia. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  6. Tonic blood pressure modulates the relationship between baroreceptor cardiac reflex sensitivity and cognitive performance.

    PubMed

    Del Paso, Gustavo A Reyes; González, M Isabel; Hernández, José Antonio; Duschek, Stefan; Gutiérrez, Nicolás

    2009-09-01

    This study explored the effects of tonic blood pressure on the association between baroreceptor cardiac reflex sensitivity and cognitive performance. Sixty female participants completed a mental arithmetic task. Baroreceptor reflex sensitivity was assessed using sequence analysis. An interaction was found, indicating that the relationship between baroreceptor reflex sensitivity and cognitive performance is modulated by blood pressure levels. Reflex sensitivity was inversely associated to performance indices in the subgroup of participants with systolic blood pressure above the mean, whereas the association was positive in participants with systolic values below the mean. These results are in accordance with the findings in the field of pain perception and suggest that tonic blood pressure modulates the inhibitory effects of baroreceptor stimulation on high central nervous functions.

  7. Electrical Pressurization Concept for the Orion MPCV European Service Module Propulsion System

    NASA Technical Reports Server (NTRS)

    Meiss, Jan-Hendrik; Weber, Jorg; Ierardo, Nicola; Quinn, Frank D.; Paisley, Jonathan

    2015-01-01

    The paper presents the design of the pressurization system of the European Service Module (ESM) of the Orion Multi-Purpose Crew Vehicle (MPCV). Being part of the propulsion subsystem, an electrical pressurization concept is implemented to condition propellants according to the engine needs via a bang-bang regulation system. Separate pressurization for the oxidizer and the fuel tank permits mixture ratio adjustments and prevents vapor mixing of the two hypergolic propellants during nominal operation. In case of loss of pressurization capability of a single side, the system can be converted into a common pressurization system. The regulation concept is based on evaluation of a set of tank pressure sensors and according activation of regulation valves, based on a single-failure tolerant weighting of three pressure signals. While regulation is performed on ESM level, commanding of regulation parameters as well as failure detection, isolation and recovery is performed from within the Crew Module, developed by Lockheed Martin Space System Company. The overall design and development maturity presented is post Preliminary Design Review (PDR) and reflects the current status of the MPCV ESM pressurization system.

  8. In-line pressure-flow module for in vitro modelling of haemodynamics and biosensor validation

    NASA Technical Reports Server (NTRS)

    Koenig, S. C.; Schaub, J. D.; Ewert, D. L.; Swope, R. D.; Convertino, V. A. (Principal Investigator)

    1997-01-01

    An in-line pressure-flow module for in vitro modelling of haemodynamics and biosensor validation has been developed. Studies show that good accuracy can be achieved in the measurement of pressure and of flow, in steady and pulstile flow systems. The model can be used for development, testing and evaluation of cardiovascular-mechanical-electrical anlogue models, cardiovascular prosthetics (i.e. valves, vascular grafts) and pressure and flow biosensors.

  9. An investigation into the effects of frequency-modulated transcutaneous electrical nerve stimulation (TENS) on experimentally-induced pressure pain in healthy human participants.

    PubMed

    Chen, Chih-Chung; Johnson, Mark I

    2009-10-01

    Frequency-modulated transcutaneous electrical nerve stimulation (TENS) delivers currents that fluctuate between preset boundaries over a fixed period of time. This study compared the effects of constant-frequency TENS and frequency-modulated TENS on blunt pressure pain in healthy human volunteers. Thirty-six participants received constant-frequency TENS (80 pps), frequency-modulated TENS (20 to 100 pps), and placebo (no current) TENS at a strong nonpainful intensity in a randomized cross-over manner. Pain threshold was taken from the forearm using pressure algometry. There were no statistical differences between constant-frequency TENS and frequency-modulated TENS after 20 minutes (OR = 1.54; CI, 0.29, 8.23, P = 1.0). Both constant-frequency TENS and frequency-modulated TENS were superior to placebo TENS (OR = 59.5, P < .001 and OR = 38.5, P < .001, respectively). Frequency-modulated TENS does not influence hypoalgesia to any greater extent than constant-frequency TENS when currents generate a strong nonpainful paraesthesia at the site of pain. The finding that frequency-modulated TENS and constant-frequency TENS were superior to placebo TENS provides further evidence that a strong yet nonpainful TENS intensity is a prerequisite for hypoalgesia. This study provides evidence that TENS, delivered at a strong nonpainful intensity, increases pain threshold to pressure algometry in healthy participants over and above that seen with placebo (no current) TENS. Frequency-modulated TENS does not increase hypoalgesia to any appreciable extent to that seen with constant-frequency TENS.

  10. Method and apparatus for coupling seismic sensors to a borehole wall

    DOEpatents

    West, Phillip B.

    2005-03-15

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  11. KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (center, foreground) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (center, foreground) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  12. KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (third from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (third from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  13. KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (left) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (second from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (left) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (second from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  14. KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (second from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (second from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  15. KENNEDY SPACE CENTER, FLA. - Executive Director of NASDA Koji Yamamoto (left) is welcomed to KSC by Center Director Roy Bridges Jr. (right). Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module. His visit includes a tour of the Columbia Debris Hangar.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - Executive Director of NASDA Koji Yamamoto (left) is welcomed to KSC by Center Director Roy Bridges Jr. (right). Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module. His visit includes a tour of the Columbia Debris Hangar.

  16. India-United States Security Cooperation: Past, Present, and Future

    DTIC Science & Technology

    2011-12-16

    IOR Indian Ocean Region ISI Inter-Services Intelligence JeM Jaish-e-Mohammad ix JTG Joint Technical Group LCA Light Combat Aircraft LeT...community’s senior expert who has written and consulted on issues ranging from terrorism to nuclear policy, political stability, and foreign relations... resulted in the happy situation of simultaneous expansion of relations with all the major powers, growing weight in Asia and the Indian Ocean regions

  17. Opto-Electronically Efficient Conjugated Polymers by Stress-Induced Molecular Constraints

    DTIC Science & Technology

    2012-07-15

    TEM, JEOL JEM-2010) and checked by weight losses obtained from the thermogravimetric scans (TGA, Perkin-Elmer).[49-55] Scheme 1. Grafting P3HT...further analysis of the conduction pathways, e.g., the linear resistance networks,[40] but even without it, the jump frequency is predicted to...Nanocomposites: CNT Surface grafting, p-p interactions, and Gold Nanoparticles adsorption effect, Mater Thesis, Department of Materials Science and Engineering

  18. Self-reported Occupational Exposures Relevant for Cancer among 28,000 Offshore Oil Industry Workers Employed between 1965 and 1999

    PubMed Central

    Stenehjem, Jo S; Friesen, Melissa C; Eggen, Tone; Kjærheim, Kristina; Bråtveit, Magne; Grimsrud, Tom K

    2016-01-01

    The objective of this study was to examine self-reported frequency of occupational exposure reported by 28,000 Norwegian offshore oil workers in a 1998 survey. Predictors of self-reported exposure frequency were identified to aid future refinements of an expert-based job-exposure-time matrix (JEM). We focus here on reported frequencies for skin contact with oil and diesel, exposure to oil vapor from shaker, to exhaust fumes, vapor from mixing chemicals used for drilling, natural gas, chemicals used for water injection and processing, and to solvent vapor. Exposure frequency was reported by participants as the exposed proportion of the work shift, defined by six categories, in their current or last position offshore (between 1965 and 1999). Binary Poisson regression models with robust variance were used to examine the probabilities of reporting frequent exposure (≥¼ vs. <¼ of work shift) according to main activity, time period, supervisory position, type of company, type of installation, work schedule, and education. Holding a non-supervisory position, working shifts, being employed in the early period of the offshore industry, and having only compulsory education increased the probability of reporting frequent exposure. The identified predictors and group-level patterns may aid future refinement of the JEM previously developed for the present cohort. PMID:25671393

  19. Self-reported Occupational Exposures Relevant for Cancer among 28,000 Offshore Oil Industry Workers Employed between 1965 and 1999.

    PubMed

    Stenehjem, Jo S; Friesen, Melissa C; Eggen, Tone; Kjærheim, Kristina; Bråtveit, Magne; Grimsrud, Tom K

    2015-01-01

    The objective of this study was to examine self-reported frequency of occupational exposure reported by 28,000 Norwegian offshore oil workers in a 1998 survey. Predictors of self-reported exposure frequency were identified to aid future refinements of an expert-based job-exposure-time matrix (JEM). We focus here on reported frequencies for skin contact with oil and diesel; exposure to oil vapor from shaker, to exhaust fumes, vapor from mixing chemicals used for drilling, natural gas, chemicals used for water injection and processing, and to solvent vapor. Exposure frequency was reported by participants as the exposed proportion of the work shift, defined by six categories, in their current or last position offshore (between 1965 and 1999). Binary Poisson regression models with robust variance were used to examine the probabilities of reporting frequent exposure (≥¼ vs. <¼ of work shift) according to main activity, time period, supervisory position, type of company, type of installation, work schedule, and education. Holding a non-supervisory position, working shifts, being employed in the early period of the offshore industry, and having only compulsory education increased the probability of reporting frequent exposure. The identified predictors and group-level patterns may aid future refinement of the JEM previously developed for the present cohort.

  20. Diesel Exhaust Exposure and the Risk of Lung Cancer—A Review of the Epidemiological Evidence

    PubMed Central

    Sun, Yi; Bochmann, Frank; Nold, Annette; Mattenklott, Markus

    2014-01-01

    To critically evaluate the association between diesel exhaust (DE) exposure and the risk of lung cancer, we conducted a systematic review of published epidemiological evidences. To comprehensively identify original studies on the association between DE exposure and the risk of lung cancer, literature searches were performed in literature databases for the period between 1970 and 2013, including bibliographies and cross-referencing. In total, 42 cohort studies and 32 case-control studies were identified in which the association between DE exposures and lung cancer was examined. In general, previous studies suffer from a series of methodological limitations, including design, exposure assessment methods and statistical analysis used. A lack of objective exposure information appears to be the main problem in interpreting epidemiological evidence. To facilitate the interpretation and comparison of previous studies, a job-exposure matrix (JEM) of DE exposures was created based on around 4,000 historical industrial measurements. The values from the JEM were considered during interpretation and comparison of previous studies. Overall, neither cohort nor case-control studies indicate a clear exposure-response relationship between DE exposure and lung cancer. Epidemiological studies published to date do not allow a valid quantification of the association between DE and lung cancer. PMID:24473109

  1. Lifetime test and heritage on orbit of coolers for space use

    NASA Astrophysics Data System (ADS)

    Narasaki, Katsuhiro; Tsunematsu, Shoji; Ootsuka, Kiyomi; Kanao, Kenichi; Okabayashi, Akinobu; Mitsuda, Kazuhisa; Murakami, Hiroshi; Nakagawa, Takao; Kikuchi, Kenichi; Sato, Ryota; Sugita, Hiroyuki; Sato, Youichi; Murakami, Masahide; Kobayashi, Masanori

    2012-04-01

    This report describes the results and operating status of ground lifetime testing and achievements on orbit of coolers for space use. Ground lifetime tests of coolers of three types were conducted to demonstrate their long life and reliability. Three single-stage Stirling coolers were tested for 89,016, 71,871 and 68,273 h from 1998, a two-stage Stirling cooler was tested for 72,906 h, and a 4-K class cooler with a two-stage Stirling cooler and a Joule-Thomson cooler was tested for over 2.5 years. After lifetime tests were completed, a few coolers were investigated to determine the cause of the cooling performance degradation. Additionally, the filled gas of the coolers was analyzed. These coolers have shown good results on orbit. Three single-stage Stirling coolers were carried on the X-ray astronomical satellite "SUZAKU" (launched in July 2005), Japanese lunar polar orbiter "KAGUYA" (launched in September 2007), and the Japanese Venus Climate Orbiter "AKATSUKI" (launched in June 2010). Two units of a two-stage Stirling cooler were carried on the infrared astronomical satellite "AKARI" launched in February 2006. A 4-K class cooler was carried on the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) aboard the Japanese Experiment Module (JEM) of the International Space Station (ISS). SMILES was launched in September 2009.

  2. A Study of the Time Dependence in Fracture Processes Relating to Service Life Prediction of Adhesive Joints and Advanced Composites.

    DTIC Science & Technology

    1981-04-30

    fluid temperature should exceed 145°F. The flow control module contains all the hydraulic circuit elements necessary for both the pressure line to and...are contained in three basic modules : 1) the hydraulic power supply, 2) a flow control module containing valving, accumulators and filters, and 3) the...hydraulic transient overpressures, is located in the flow control module , as are the high and low pressure filters. The load frame (MTS Systems Corp

  3. System design of the Pioneer Venus spacecraft. Volume 5: Probe vehicle studies

    NASA Technical Reports Server (NTRS)

    Nolte, L. J.; Stephenson, D. S.

    1973-01-01

    A summary of the key issues and studies conducted for the Pioneer Venus spacecraft and the resulting probe designs are presented. The key deceleration module issues are aerodynamic configuration and heat shield material selection. The design and development of the pressure vessel module are explained. Thermal control and science integration of the pressure vessel module are explained. The deceleration module heat shield, parachute and separation/despin are reported. The Thor/Delta and Atlas/Centaur baseline descriptions are provided.

  4. Modular robot

    DOEpatents

    Ferrante, T.A.

    1997-11-11

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.

  5. KSC-07pd0900

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- After a welcoming ceremony for the Experiment Logistics Module Pressurized Section of the Japanese Experiment Module, astronaut Takao Doi (right) talks with Kumiko Tanabe, a public affairs representative of the Japanese Aerospace and Exploration Agency. The logistics module will be delivered to the space station on mission STS-123. Doi is a crew member on that mission.The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  6. Static Feed Water Electrolysis Subsystem Testing and Component Development

    NASA Technical Reports Server (NTRS)

    Koszenski, E. P.; Schubert, F. H.; Burke, K. A.

    1983-01-01

    A program was carried out to develop and test advanced electrochemical cells/modules and critical electromechanical components for a static feed (alkaline electrolyte) water electrolysis oxygen generation subsystem. The accomplishments were refurbishment of a previously developed subsystem and successful demonstration for a total of 2980 hours of normal operation; achievement of sustained one-person level oxygen generation performance with state-of-the-art cell voltages averaging 1.61 V at 191 ASF for an operating temperature of 128F (equivalent to 1.51V when normalized to 180F); endurance testing and demonstration of reliable performance of the three-fluid pressure controller for 8650 hours; design and development of a fluid control assembly for this subsystem and demonstration of its performance; development and demonstration at the single cell and module levels of a unitized core composite cell that provides expanded differential pressure tolerance capability; fabrication and evaluation of a feed water electrolyte elimination five-cell module; and successful demonstration of an electrolysis module pressurization technique that can be used in place of nitrogen gas during the standby mode of operation to maintain system pressure and differential pressures.

  7. Purification of complex samples: Implementation of a modular and reconfigurable droplet-based microfluidic platform with cascaded deterministic lateral displacement separation modules

    PubMed Central

    Pudda, Catherine; Boizot, François; Verplanck, Nicolas; Revol-Cavalier, Frédéric; Berthier, Jean; Thuaire, Aurélie

    2018-01-01

    Particle separation in microfluidic devices is a common problematic for sample preparation in biology. Deterministic lateral displacement (DLD) is efficiently implemented as a size-based fractionation technique to separate two populations of particles around a specific size. However, real biological samples contain components of many different sizes and a single DLD separation step is not sufficient to purify these complex samples. When connecting several DLD modules in series, pressure balancing at the DLD outlets of each step becomes critical to ensure an optimal separation efficiency. A generic microfluidic platform is presented in this paper to optimize pressure balancing, when DLD separation is connected either to another DLD module or to a different microfluidic function. This is made possible by generating droplets at T-junctions connected to the DLD outlets. Droplets act as pressure controllers, which perform at the same time the encapsulation of DLD sorted particles and the balance of output pressures. The optimized pressures to apply on DLD modules and on T-junctions are determined by a general model that ensures the equilibrium of the entire platform. The proposed separation platform is completely modular and reconfigurable since the same predictive model applies to any cascaded DLD modules of the droplet-based cartridge. PMID:29768490

  8. Mobile Lunar Base Concepts

    NASA Astrophysics Data System (ADS)

    Cohen, Marc M.

    2004-02-01

    This paper describes three innovative concepts for a mobile lunar base. These concept combine design research for habitat architecture, mobility systems, habitability, radiation protection, human factors, and living and working environments on the lunar surface. The mobile lunar base presents several key advantages over conventional static base notions. These advantages concern landing zone safety, the requirement to move modules over the lunar surface, and the ability to stage mobile reconnaissance with effective systemic redundancy. All of these concerns lead to the consideration of a mobile walking habitat module and base design. The key issues involve landing zone safety, the ability to transport habitat modules across the surface, and providing reliability and redundancy to exploration traverses in pressurized vehicles. With self-ambulating lunar base modules, it will be feasible to have each module separate itself from its retro-rocket thruster unit, and walk five to ten km away from the LZ to a pre-selected site. These mobile modules can operate in an autonomous or teleoperated mode to navigate the lunar surface. At the site of the base, the mobile modules can combine together; make pressure port connections among themselves, to create a multi-module pressurized lunar base.

  9. KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (second from left) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (fourth from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (second from left) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (fourth from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  10. Prospective Analyses of Hormone Levels, Alcohol Intake, and Body Fat Distribution in Relation to Breast Cancer Risk

    DTIC Science & Technology

    1998-07-01

    for reproducibility and validity (40,41). More extensive dietary questionnaires were included in the 1984, 1986, and 1990 follow-up; over 80 nutritional ...DJH, RB, FES); Departments of Epidemiology (SEH, WCW, JEM, GAC, DJH, DS) Environmental Health (FES), Nutrition (WCW), and Biostatistics (DS), Harvard...McDermott A, Rosner BA. Regression calibration methods for correcting measurement-error bias in nutritional epidemiology. Am J Clin Nutr 1997; 65

  11. Stress-controlled thermoelectric module for energy harvesting and its application for the significant enhancement of the power factor of Bi2Te3-based thermoelectrics

    NASA Astrophysics Data System (ADS)

    Korobeinikov, Igor V.; Morozova, Natalia V.; Lukyanova, Lidia N.; Usov, Oleg A.; Kulbachinskii, Vladimir A.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V.

    2018-01-01

    We propose a model of a thermoelectric module in which the performance parameters can be controlled by applied tuneable stress. This model includes a miniature high-pressure anvil-type cell and a specially designed thermoelectric module that is compressed between two opposite anvils. High thermally conductive high-pressure anvils that can be made, for instance, of sintered technical diamonds with enhanced thermal conductivity, would enable efficient heat absorption or rejection from a thermoelectric module. Using a high-pressure cell as a prototype of a stress-controlled thermoelectric converter, we investigated the effect of applied high pressure on the power factors of several single-crystalline thermoelectrics, including binary p-type Bi2Te3, and multi-component (Bi,Sb)2Te3 and Bi2(Te,Se,S)3 solid solutions. We found that a moderate applied pressure of a few GPa significantly enhances the power factors of some of these thermoelectrics. Thus, they might be more efficiently utilized in stress-controlled thermoelectric modules. In the example of one of these thermoelectrics crystallizing in the same rhombohedral structure, we examined the crystal lattice stability under moderate high pressures. We uncovered an abnormal compression of the rhombohedral lattice of (Bi0.25,Sb0.75)2Te3 along the c-axis in a hexagonal unit cell, and detected two phase transitions to the C2/m and C2/c monoclinic structures above 9.5 and 18 GPa, respectively.

  12. A Venturi microregulator array module for distributed pressure control

    PubMed Central

    Chang, Dustin S.; Langelier, Sean M.; Zeitoun, Ramsey I.

    2010-01-01

    Pressure-driven flow control systems are a critical component in many microfluidic devices. Compartmentalization of this functionality into a stand-alone module possessing a simple interface would allow reduction of the number of pneumatic interconnects required for fluidic control. Ideally, such a module would also be sufficiently compact for implementation in portable platforms. In our current work, we show the feasibility of using a modular array of Venturi pressure microregulators for coordinated droplet manipulation. The arrayed microregulators share a single pressure input and are capable of outputting electronically controlled pressures that can be independently set between ±1.3 kPa. Because the Venturi microregulator operates by thermal perturbation of a choked gas flow, this output range corresponds to a temperature variation between 20 and 95°C. Using the array, we demonstrate loading, splitting, merging, and independent movement of multiple droplets in a valveless microchannel network. PMID:20938490

  13. Respiratory modulation of oscillometric cuff pressure pulses and Korotkoff sounds during clinical blood pressure measurement in healthy adults.

    PubMed

    Chen, Diliang; Chen, Fei; Murray, Alan; Zheng, Dingchang

    2016-05-10

    Accurate blood pressure (BP) measurement depends on the reliability of oscillometric cuff pressure pulses (OscP) and Korotkoff sounds (KorS) for automated oscillometric and manual techniques. It has been widely accepted that respiration is one of the main factors affecting BP measurement. However, little is known about how respiration affects the signals from which BP measurement is obtained. The aim was to quantify the modulation effect of respiration on oscillometric pulses and KorS during clinical BP measurement. Systolic and diastolic BPs were measured manually from 40 healthy subjects (from 23 to 65 years old) under normal and regular deep breathing. The following signals were digitally recorded during linear cuff deflation: chest motion from a magnetometer to obtain reference respiration, cuff pressure from an electronic pressure sensor to derive OscP, and KorS from a digital stethoscope. The effects of respiration on both OscP and KorS were determined from changes in their amplitude associated with respiration between systole and diastole. These changes were normalized to the mean signal amplitude of OscP and KorS to derive the respiratory modulation depth. Reference respiration frequency, and the frequencies derived from the amplitude modulation of OscP and KorS were also calculated and compared. Respiratory modulation depth was 14 and 40 % for OscP and KorS respectively under normal breathing condition, with significant increases (both p < 0.05) to 16 and 49 % with deeper breathing. There was no statistically significant difference between the reference respiration frequency and those derived from the oscillometric and Korotkoff signals (both p > 0.05) during deep breathing, and for the oscillometric signal during normal breathing (p > 0.05). Our study confirmed and quantified the respiratory modulation effect on the oscillometric pulses and KorS during clinical BP measurement, with increased modulation depth under regular deeper breathing.

  14. Clayey Landslide Initiation and Acceleration Strongly Modulated by Soil Swelling

    NASA Astrophysics Data System (ADS)

    Schulz, William H.; Smith, Joel B.; Wang, Gonghui; Jiang, Yao; Roering, Joshua J.

    2018-02-01

    Largely unknown mechanisms restrain motion of clay-rich, slow-moving landslides that are widespread worldwide and rarely accelerate catastrophically. We studied a clayey, slow-moving landslide typical of thousands in Northern California, USA, to decipher hydrologic-mechanical interactions that modulate landslide dynamics. Similar to some other studies, observed pore-water pressures correlated poorly with landslide reactivation and speed. In situ and laboratory measurements strongly suggested that variable pressure along the landslide's lateral shear boundaries resulting from seasonal soil expansion and contraction modulated its reactivation and speed. Slope-stability modeling suggested that the landslide's observed behavior could be predicted by including transient swell pressure as a resistance term, whereas modeling considering only transient hydrologic conditions predicted movement five to six months prior to when it was observed. All clayey soils swell to some degree; hence, our findings suggest that swell pressure likely modulates motion of many landslides and should be considered to improve forecasts of clayey landslide initiation and mobility.

  15. Clayey landslide initiation and acceleration strongly modulated by soil swelling

    USGS Publications Warehouse

    Schulz, William; Smith, Joel B.; Wang, Gonghui; Jiang, Yao; Roering, Joshua J.

    2018-01-01

    Largely unknown mechanisms restrain motion of clay-rich, slow-moving landslides that are widespread worldwide and rarely accelerate catastrophically. We studied a clayey, slow-moving landslide typical of thousands in northern California, USA, to decipher hydrologic-mechanical interactions that modulate landslide dynamics. Similar to some other studies, observed pore-water pressures correlated poorly with landslide reactivation and speed. In situ and laboratory measurements strongly suggested that variable pressure along the landslide's lateral shear boundaries resulting from seasonal soil expansion and contraction modulated its reactivation and speed. Slope-stability modeling suggested that the landslide's observed behavior could be predicted by including transient swell pressure as a resistance term, whereas modeling considering only transient hydrologic conditions predicted movement 5–6 months prior to when it was observed. All clayey soils swell to some degree; hence, our findings suggest that swell pressure likely modulates motion of many landslides and should be considered to improve forecasts of clayey landslide initiation and mobility.

  16. Vibration Sensitivity of a Wide-Temperature Electronically Scanned Pressure Measurement (ESP) Module

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Garza, Frederico R.

    2001-01-01

    A vibration sensitivity test was conducted on a Wide-Temperature ESP module. The test object was Module "M4," a 16-channel, 4 psi unit scheduled for installation in the Arc Sector of NTF. The module was installed on a vibration exciter and loaded to positive then negative full-scale pressures (+/-2.5 psid). Test variables were the following: Vibration frequencies: 20, 55, 75 Hz. Vibration level: 1 g. Vibration axes: X, Y, Z. The pressure response was measured on each channel, first without and then with the vibration turned on, and the difference analyzed by means of the statistical t-test. The results show that the vibration sensitivity does not exceed 0.01% Full Scale Output per g (with the exception of one channel on one axis) to a 95 percent confidence level. This specification, limited by the resolution of the pressure source, lies well below the total uncertainty specification of 0.1 percent Full Scale Output.

  17. Ultrasonic speech translator and communications system

    DOEpatents

    Akerman, M.A.; Ayers, C.W.; Haynes, H.D.

    1996-07-23

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.

  18. Alkali vapor pressure modulation on the 100 ms scale in a single-cell vacuum system for cold atom experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dugrain, Vincent; Reichel, Jakob; Rosenbusch, Peter

    2014-08-15

    We describe and characterize a device for alkali vapor pressure modulation on the 100 ms timescale in a single-cell cold atom experiment. Its mechanism is based on optimized heat conduction between a current-modulated alkali dispenser and a heat sink at room temperature. We have studied both the short-term behavior during individual pulses and the long-term pressure evolution in the cell. The device combines fast trap loading and relatively long trap lifetime, enabling high repetition rates in a very simple setup. These features make it particularly suitable for portable atomic sensors.

  19. A multi-run chemistry module for the production of [18F]FDG

    NASA Astrophysics Data System (ADS)

    Sipe, B.; Murphy, M.; Best, B.; Zigler, S.; Lim, J.; Dorman, E.; Mangner, T.; Weichelt, M.

    2001-07-01

    We have developed a new chemistry module for the production of up to four batches of [18F]FDG. Prior to starting a batch sequence, the module automatically performs a series of self-diagnostic tests, including a reagent detection sequence. The module then executes a user-defined production sequence followed by an automated process to rinse tubing, valves, and the reaction vessel prior to the next production sequence. Process feedback from the module is provided to a graphical user interface by mass flow controllers, radiation detectors, a pressure switch, a pressure transducer, and an IR temperature sensor. This paper will describe the module, the operating system, and the results of multi-site trials, including production data and quality control results.

  20. Application of the FADS system on the Re-entry Module

    NASA Astrophysics Data System (ADS)

    Zhen, Huang

    2016-07-01

    The aerodynamic model for Flush Air Data Sensing System (FADS) is built based on the surface pressure distribution obtained through the pressure orifices laid on specific positions of the surface,and the flight parameters,such as angle of attack,angle of side-slip,Mach number,free-stream static pressure and dynamic pressure are inferred from the aerodynamic model.The flush air data sensing system (FADS) has been used on several flight tests of aircraft and re-entry vehicle,such as,X-15,space shuttle,F-14,X-33,X-43A and so on. This paper discusses the application of the FADS on the re-entry module with blunt body to obtain high-precision aerodynamic parameters.First of all,a basic theory and operating principle of the FADS is shown.Then,the applications of the FADS on typical aircrafts and re-entry vehicles are described.Thirdly,the application mode on the re-entry module with blunt body is discussed in detail,including aerodynamic simulation,pressure distribution,trajectory reconstruction and the hardware shoule be used,such as flush air data sensing system(FADS),inertial navigation system (INS),data acquisition system,data storage system.Finally,ablunt module re-entry flight test from low earth orbit (LEO) is planned to obtain aerodynamic parameters and amend the aerodynamic model with this FADS system data.The results show that FADS system can be applied widely in re-entry module with blunt bodies.

  1. Occupational Exposure to Vapor-Gas, Dust, and Fumes in a Cohort of Rural Adults in Iowa Compared with a Cohort of Urban Adults

    PubMed Central

    Henneberger, Paul K.; Humann, Michael J.; Liang, Xiaoming; Kelly, Kevin M.; Cox-Ganser, Jean M.

    2017-01-01

    Problem/Condition Many rural residents work in the field of agriculture; however, employment in nonagricultural jobs also is common. Because previous studies in rural communities often have focused on agricultural workers, much less is known about the occupational exposures in other types of jobs in rural settings. Characterizing airborne occupational exposures that can contribute to respiratory diseases is important so that differences between rural and urban working populations can be assessed. Reporting Period 1994–2011. Description of System This investigation used data from the baseline questionnaire completed by adult rural residents participating in the Keokuk County Rural Health Study (KCRHS). The distribution of jobs and occupational exposures to vapor-gas, dust, and fumes (VGDF) among all participants was analyzed and stratified by farming status (current, former, and never) then compared with a cohort of urban workers from the Multi-Ethnic Study of Atherosclerosis (MESA). Occupational exposure in the last job was assessed with a job-exposure matrix (JEM) developed for chronic obstructive pulmonary disease (COPD). The COPD JEM assesses VGDF exposure at levels of none or low, medium, and high. Results The 1,699 KCRHS (rural) participants were more likely to have medium or high occupational VGDF exposure (43.2%) at their last job than their urban MESA counterparts (15.0% of 3,667 participants). One fifth (20.8%) of the rural participants currently farmed, 43.1% were former farmers, and approximately one third (36.1%) had never farmed. These three farming groups differed in VGDF exposure at the last job, with the prevalence of medium or high exposure at 80.2% for current farmers, 38.7% for former farmers, and 27.4% for never farmers, and all three percentages were higher than the 15.0% medium or high level of VGDF exposure for urban workers. Interpretation Rural workers, including those who had never farmed, were more likely to experience occupational VGDF exposure than urban workers. Public Health Action The occupational exposures of rural adults assessed using the COPD JEM will be used to investigate their potential association with obstructive respiratory health problems (e.g., airflow limitation and chronic bronchitis). This assessment might highlight occupations in need of preventive interventions. PMID:29095802

  2. Spin polarization of {sup 87}Rb atoms with ultranarrow linewidth diode laser: Numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Z. G.; Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha, 410073; College of Science, National University of Defense Technology, Changsha, 410073

    2016-08-15

    In order to polarize {sup 87}Rb vapor effectively with ultranarrow linewidth diode laser, we studied the polarization as a function of some parameters including buffer gas pressure and laser power. Moreover, we also discussed the methods which split or modulate the diode laser frequency so as to pump the two ground hyperfine levels efficiently. We obtained some useful results through numerical simulation. If the buffer gas pressure is so high that the hyperfine structure is unresolved, the polarization is insensitive to laser frequency at peak absorption point so frequency splitting and frequency modulation methods do not show improvement. At lowmore » pressure and laser power large enough, where the hyperfine structure is clearly resolved, frequency splitting and frequency modulation methods can increase polarization effectively. For laser diodes, frequency modulation is easily realized with current modulation, so this method is attractive since it does not add any other components in the pumping laser system.« less

  3. Spin Electronics

    DTIC Science & Technology

    2003-08-01

    more recent review by Ramirez (1997). The discussion of half-metals will be limited to oxides including Fe3O4 (Penicaud et al. 1992) and CrO2 (Watts...Mater. 103, 212. Ramirez , A.P. 1997. J. of Phys. Condensed Matter 9, 8171. Santos, T.S. et al. 2001. Abstracts, Proceedings of 46th Annual Conf. on...Appendix B. Site Reports � Europe 65 Site: INESC Rua Alves Redol 9 1000 Lisboa, Portugal http://www.inesc-mn.pt (interview conducted at JEMS

  4. Identification and Evaluation of Methods to Determine Ability Requirements for Air Force Occupational Specialties

    DTIC Science & Technology

    1989-08-01

    specific elements identified as useful for selection (Primoff & Eyde , 1988). The JEM approach uses a slightly different scale when test development is not...related to GATB scores and tests developed to measure specific elements (Primoff & Eyde , 1988). Of the ability taxonomies reviewed in this study, the...only formative at this point in time, the results of recent research in cognitive psychology and in use of the computer as a testing medium have not

  5. Filtering NetCDF Files by Using the EverVIEW Slice and Dice Tool

    USGS Publications Warehouse

    Conzelmann, Craig; Romañach, Stephanie S.

    2010-01-01

    Network Common Data Form (NetCDF) is a self-describing, machine-independent file format for storing array-oriented scientific data. It was created to provide a common interface between applications and real-time meteorological and other scientific data. Over the past few years, there has been a growing movement within the community of natural resource managers in The Everglades, Fla., to use NetCDF as the standard data container for datasets based on multidimensional arrays. As a consequence, a need surfaced for additional tools to view and manipulate NetCDF datasets, specifically to filter the files by creating subsets of large NetCDF files. The U.S. Geological Survey (USGS) and the Joint Ecosystem Modeling (JEM) group are working to address these needs with applications like the EverVIEW Slice and Dice Tool, which allows users to filter grid-based NetCDF files, thus targeting those data most important to them. The major functions of this tool are as follows: (1) to create subsets of NetCDF files temporally, spatially, and by data value; (2) to view the NetCDF data in table form; and (3) to export the filtered data to a comma-separated value (CSV) file format. The USGS and JEM will continue to work with scientists and natural resource managers across The Everglades to solve complex restoration problems through technological advances.

  6. Systems and methods for pressure and temperature measurement

    DOEpatents

    Challener, William Albert; Airey, Li

    2016-12-06

    A measurement system in one embodiment includes an acquisition module and a determination module. The acquisition module is configured to acquire resonant frequency information corresponding to a sensor disposed in a remote location from the acquisition module. The resonant frequency information includes first resonant frequency information for a first resonant frequency of the sensor corresponding to environmental conditions of the remote location, and also includes second resonant frequency information for a different, second resonant frequency of the sensor corresponding to the environmental conditions of the remote location. The determination module is configured to use the first resonant frequency information and the second resonant frequency information to determine the temperature and the pressure at the remote location.

  7. Progress Toward Efficient Laminar Flow Analysis and Design

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.; Campbell, Matthew L.; Streit, Thomas

    2011-01-01

    A multi-fidelity system of computer codes for the analysis and design of vehicles having extensive areas of laminar flow is under development at the NASA Langley Research Center. The overall approach consists of the loose coupling of a flow solver, a transition prediction method and a design module using shell scripts, along with interface modules to prepare the input for each method. This approach allows the user to select the flow solver and transition prediction module, as well as run mode for each code, based on the fidelity most compatible with the problem and available resources. The design module can be any method that designs to a specified target pressure distribution. In addition to the interface modules, two new components have been developed: 1) an efficient, empirical transition prediction module (MATTC) that provides n-factor growth distributions without requiring boundary layer information; and 2) an automated target pressure generation code (ATPG) that develops a target pressure distribution that meets a variety of flow and geometry constraints. The ATPG code also includes empirical estimates of several drag components to allow the optimization of the target pressure distribution. The current system has been developed for the design of subsonic and transonic airfoils and wings, but may be extendable to other speed ranges and components. Several analysis and design examples are included to demonstrate the current capabilities of the system.

  8. KENNEDY SPACE CENTER, FLA. - On a KSC visit, Executive Director of NASDA Koji Yamamoto (kneeling, left) reaches out to a piece of Columbia debris in the Columbia Debris Hangar. At right is Shuttle Launch Director Mike Leinbach, who is explaining recovery and reconstruction efforts. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - On a KSC visit, Executive Director of NASDA Koji Yamamoto (kneeling, left) reaches out to a piece of Columbia debris in the Columbia Debris Hangar. At right is Shuttle Launch Director Mike Leinbach, who is explaining recovery and reconstruction efforts. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  9. Ion transport membrane module and vessel system with directed internal gas flow

    DOEpatents

    Holmes, Michael Jerome; Ohrn, Theodore R.; Chen, Christopher Ming-Poh

    2010-02-09

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  10. Preliminary feasibility analysis of a pressure modulator radiometer for remote sensing of tropospheric constituents

    NASA Technical Reports Server (NTRS)

    Orr, H. D., III; Rarig, P. L.

    1981-01-01

    A pressure modulator radiometer operated in a nadir viewing mode from the top of a midlatitude summer model of the atmosphere was theoretically studied for monitoring the mean volumetric mixing ratio of carbon monoxide in the troposphere. The mechanical characteristics of the instrument on the Nimbus 7 stratospheric and mesospheric sounder experiment are assumed and CO is assumed to be the only infrared active constituent. A line by line radiative transfer computer program is used to simulate the upwelling radiation reaching the top of the atmosphere. The performance of the instrument is examined as a function of the mean pressure in and the length of the instrument gas correlation cell. Instrument sensitivity is described in terms of signal to noise ratio for a 10 percent change in CO mixing ratio. Sensitivity to mixing ratio changes is also studied. It is concluded that tropospheric monitoring requires a pressure modulator drive having a larger swept volume and producing higher compression ratios at higher mean cell pressures than the Nimbus 7 design.

  11. Development and testing of thermal energy storage modules for use in active solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1981-01-01

    The project development requirements and criteria are presented along with technical data for the modules. Performance tests included: ducting, temperature, pressure and air flow measurements, dry and wet bulb temperature; duct pressure measurements; and air conditioning apparatus checks; installation, operation, and maintenance instructions are included.

  12. Ultrasonic speech translator and communications system

    DOEpatents

    Akerman, M. Alfred; Ayers, Curtis W.; Haynes, Howard D.

    1996-01-01

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system (20) includes an ultrasonic transmitting device (100) and an ultrasonic receiving device (200). The ultrasonic transmitting device (100) accepts as input (115) an audio signal such as human voice input from a microphone (114) or tape deck. The ultrasonic transmitting device (100) frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device (200) converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output (250).

  13. Heart Rate and Blood Pressure Variability under Moon, Mars and Zero Gravity Conditions During Parabolic Flights

    NASA Astrophysics Data System (ADS)

    Aerts, Wouter; Joosen, Pieter; Widjaja, Devy; Varon, Carolina; Vandeput, Steven; Van Huffel, Sabine; Aubert, Andre E.

    2013-02-01

    Gravity changes during partial-G parabolic flights (0g -0.16g - 0.38g) lead to changes in modulation of the autonomic nervous system (ANS), studied via the heart rate variability (HRV) and blood pressure variability (BPV). HRV and BPV were assessed via classical time and frequency domain measures. Mean systolic and diastolic blood pressure show both increasing trends towards higher gravity levels. The parasympathetic and sympathetic modulation show both an increasing trend with decreasing gravity, although the modulation is sympathetic predominant during reduced gravity. For the mean heart rate, a non-monotonic relation was found, which can be explained by the increased influence of stress on the heart rate. This study shows that there is a relation between changes in gravity and modulations in the ANS. With this in mind, countermeasures can be developed to reduce postflight orthostatic intolerance.

  14. Indoor modeling of the wind pressure in solar installations with flat and step-like frames for HCPV modules

    NASA Astrophysics Data System (ADS)

    Rumyantsev, Valery D.; Ashcheulov, Yury V.; Chekalin, Alexander V.; Chumakov, Yury S.; Shvarts, Maxim Z.; Timofeev, Vladimir V.

    2014-09-01

    As a rule, the HCPV modules are mounted on solar trackers in a form of a flat panel. Wind pressure is one of the key factors limiting the operation capabilities of such type solar installations. At the PV Lab of the Ioffe Institute, the sun-trackers with step-like frame for modules have been proposed and developed, which have a potential for significant reduction of wind pressure. Such a reduction is realized in a wide range of the frame tilt angles the most typical for day-light operation of solar installations. In the present work, theoretical consideration and indoor experiments with mechanical models of installation frames have been carried out. A wind tunnel has been used as an experimental instrument for quantitative comparison in conventional units of expected wind loads on module frames of different designs.

  15. Microinjection of acetylcholine into cerebellar fastigial nucleus induces blood depressor response in anesthetized rats.

    PubMed

    Zhang, Changzheng; Luo, Wen; Zhou, Peiling; Sun, Tingzhe

    2016-08-26

    It is well known that the cerebellar fastigial nucleus (FN) is involved in cardiovascular modulation, and has direct evidence of cholinergic activity; however, whether and how acetylcholine (ACh) in the FN modulates blood pressure has not been investigated. In this study, we analyzed mean arterial pressure, maximal change in mean arterial pressure, and the reaction time of blood pressure changes after microinjection of cholinergic reagents into the FN in anesthetized rats. The results showed that ACh evoked a concentration-dependent (10, 30 and 100mM) effect on blood pressure down-regulation. The muscarinic ACh (mACh) receptor antagonist atropine, but not the nicotinic ACh (nACh) receptor antagonist mecamylamine, blocked the ACh-mediated depressor response. The mACh receptor agonist oxotremorine M, rather than nACh receptor agonist nicotine, mimicked the ACh-mediated blood pressure decrease in a dose-dependent manner (10, 30 and 100mM). These results indicate that cholinergic input in the cerebellar FN exerts a depressor effect on systemic blood pressure regulation, and such effects are substantially contributed by mACh rather than nACh receptors, although the precise mechanism concerning the role of mACh receptor in FN-mediated blood pressure modulation remains to be elucidated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Support arrangement for core modules of nuclear reactors

    DOEpatents

    Bollinger, Lawrence R.

    1987-01-01

    A support arrangement is provided for the core modules of a nuclear reactor which provides support access through the control drive mechanisms of the reactor. This arrangement provides axial support of individual reactor core modules from the pressure vessel head in a manner which permits attachment and detachment of the modules from the head to be accomplished through the control drive mechanisms after their leadscrews have been removed. The arrangement includes a module support nut which is suspended from the pressure vessel head and screw threaded to the shroud housing for the module. A spline lock prevents loosening of the screw connection. An installation tool assembly, including a cell lifting and preloading tool and a torquing tool, fits through the control drive mechanism and provides lifting of the shroud housing while disconnecting the spline lock, as well as application of torque to the module support nut.

  17. Support arrangements for core modules of nuclear reactors. [PWR

    DOEpatents

    Bollinger, L.R.

    1983-11-03

    A support arrangement is provided for the core modules of a nuclear reactor which provides support access through the control drive mechanisms of the reactor. This arrangement provides axial support of individual reactor core modules from the pressure vessel head in a manner which permits attachment and detachment of the modules from the head to be accomplished through the control drive mechanisms after their leadscrews have been removed. The arrangement includes a module support nut which is suspended from the pressure vessel head and screw threaded to the shroud housing for the module. A spline lock prevents loosening of the screw connection. An installation tool assembly, including a cell lifting and preloading tool and a torquing tool, fits through the control drive mechanism and provides lifting of the shroud housing while disconnecting the spline lock, as well as application of torque to the module support nut.

  18. Coupled incompressible Smoothed Particle Hydrodynamics model for continuum-based modelling sediment transport

    NASA Astrophysics Data System (ADS)

    Pahar, Gourabananda; Dhar, Anirban

    2017-04-01

    A coupled solenoidal Incompressible Smoothed Particle Hydrodynamics (ISPH) model is presented for simulation of sediment displacement in erodible bed. The coupled framework consists of two separate incompressible modules: (a) granular module, (b) fluid module. The granular module considers a friction based rheology model to calculate deviatoric stress components from pressure. The module is validated for Bagnold flow profile and two standardized test cases of sediment avalanching. The fluid module resolves fluid flow inside and outside porous domain. An interaction force pair containing fluid pressure, viscous term and drag force acts as a bridge between two different flow modules. The coupled model is validated against three dambreak flow cases with different initial conditions of movable bed. The simulated results are in good agreement with experimental data. A demonstrative case considering effect of granular column failure under full/partial submergence highlights the capability of the coupled model for application in generalized scenario.

  19. Thermodynamic analysis of energy density in pressure retarded osmosis: The impact of solution volumes and costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimund, Kevin K.; McCutcheon, Jeffrey R.; Wilson, Aaron D.

    A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, π, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy densitymore » of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is π/(1+√w⁻¹), which is lower than the maximum power density operating pressure, Δπ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at “maximum power density operating pressure” requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.« less

  20. Diffusion of radon through concrete block walls: A significant source of indoor radon

    USGS Publications Warehouse

    Lively, R.S.; Goldberg, L.F.

    1999-01-01

    Basement modules located in southern Minnesota have been the site of continuous radon and environmental measurements during heating seasons since 1993. Concentrations of radon within the basement modules ranged from 70 Bq.m-3 to over 4000 Bq.m-3 between November to April during the three measurement periods. In the soil gas for the same times, concentrations of radon ranged between 25,000 and 70,000 Bq.m-3. Levels of radon within the basement modules changed by factors of five or more within 24 h, in concert with pressure gradients of 4 to 20 Pa that developed between the basement modules and their surroundings. Diffusion is identified as the principal method by which radon is transferred into and out of the basement modules, and appears to be relatively independent of insulating materials and vapour retarders. The variability of radon and correlations with differential pressure gradients may be related to air currents in the block walls and soil that interrupt radon diffusing inward. This yields a net decrease of radon in the basement modules by decay and outward diffusion. Levels of radon within the basement modules increase when the pressure differential is zero and air flow ceases, allowing diffusion gradients to be re-established. Radon levels in both the soil and the basement modules then increase until an equilibrium is achieved.

Top