Sample records for module power management

  1. Development of Power Supply Management Module for Radio Signal Repeaters of Automatic Metering Reading System in Variable Solar Density Conditions

    NASA Astrophysics Data System (ADS)

    Kondratjevs, K.; Zabasta, A.; Selmanovs-Pless, V.

    2016-02-01

    In recent years, there has been significant research focus that revolves around harvesting and minimising energy consumption by wireless sensor network nodes. When a sensor node is depleted of energy, it becomes unresponsive and disconnected from the network that can significantly influence the performance of the whole network. The purpose of the present research is to create a power supply management module in order to provide stable operating voltage for autonomous operations of radio signal repeaters, sensors or gateways of WSN. The developed management module is composed of a solar panel, lithium battery and power supply management module. The novelty of the research is the management module, which ensures stable and uninterrupted operations of electronic equipment in various power supply modes in different situations, simultaneously ensuring energy protection and sustainability of the module components. The management module is able to provide power supply of 5 V for electronics scheme independently, without power interruption switching between power sources and power flows in different directions.

  2. Power module Data Management System (DMS) study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Computer trades and analyses of selected Power Module Data Management Subsystem issues to support concurrent inhouse MSFC Power Study are provided. The charts which summarize and describe the results are presented. Software requirements and definitions are included.

  3. Exercise of the SSM/PMAD Breadboard. [Space Station Module/Power Management And Distribution

    NASA Technical Reports Server (NTRS)

    Walls, Bryan

    1989-01-01

    The Space Station Module Power Management and Distribution (SSM/PMAD) Breadboard is a test facility designed for advanced development of space power automation. Originally designed for 20-kHz power, the system is being converted to work with direct current (dc). Power levels are on a par with those expected for a Space Station module. Some of the strengths and weaknesses of the SSM/PMAD system in design and function are examined, and the future directions foreseen for the system are outlined.

  4. Intelligent Load Manager (LOADMAN): Application of Expert System Technology to Load Management Problems in Power Generation and Distribution Systems

    DTIC Science & Technology

    1988-08-10

    addrsesed to it, the wall-receptacle module energizes a relay. Modules can be built to use a triac instead and have the capacity to increase or decrease... modulated by other constraints for a safe, functional ana effective power distribution system. 2.2.3 BackuR Equipment Alternate power sources are...environments have limited sensor capability and no remote control capability. However, future enhancements to current equipment, such as frequency- modulated

  5. Automation of Space Station module power management and distribution system

    NASA Technical Reports Server (NTRS)

    Bechtel, Robert; Weeks, Dave; Walls, Bryan

    1990-01-01

    Viewgraphs on automation of space station module (SSM) power management and distribution (PMAD) system are presented. Topics covered include: reasons for power system automation; SSM/PMAD approach to automation; SSM/PMAD test bed; SSM/PMAD topology; functional partitioning; SSM/PMAD control; rack level autonomy; FRAMES AI system; and future technology needs for power system automation.

  6. Implementation strategies for load center automation on the space station module/power management and distribution testbed

    NASA Technical Reports Server (NTRS)

    Watson, Karen

    1990-01-01

    The Space Station Module/Power Management and Distribution (SSM/PMAD) testbed was developed to study the tertiary power management on modules in large spacecraft. The main goal was to study automation techniques, not necessarily develop flight ready systems. Because of the confidence gained in many of automation strategies investigated, it is appropriate to study, in more detail, implementation strategies in order to find better trade-offs for nearer to flight ready systems. These trade-offs particularly concern the weight, volume, power consumption, and performance of the automation system. These systems, in their present implementation are described.

  7. Automation in the Space Station module power management and distribution Breadboard

    NASA Technical Reports Server (NTRS)

    Walls, Bryan; Lollar, Louis F.

    1990-01-01

    The Space Station Module Power Management and Distribution (SSM/PMAD) Breadboard, located at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, models the power distribution within a Space Station Freedom Habitation or Laboratory module. Originally designed for 20 kHz ac power, the system is now being converted to high voltage dc power with power levels on a par with those expected for a space station module. In addition to the power distribution hardware, the system includes computer control through a hierarchy of processes. The lowest level process consists of fast, simple (from a computing standpoint) switchgear, capable of quickly safing the system. The next level consists of local load center processors called Lowest Level Processors (LLP's). These LLP's execute load scheduling, perform redundant switching, and shed loads which use more than scheduled power. The level above the LLP's contains a Communication and Algorithmic Controller (CAC) which coordinates communications with the highest level. Finally, at this highest level, three cooperating Artificial Intelligence (AI) systems manage load prioritization, load scheduling, load shedding, and fault recovery and management. The system provides an excellent venue for developing and examining advanced automation techniques. The current system and the plans for its future are examined.

  8. A distributed control approach for power and energy management in a notional shipboard power system

    NASA Astrophysics Data System (ADS)

    Shen, Qunying

    The main goal of this thesis is to present a power control module (PCON) based approach for power and energy management and to examine its control capability in shipboard power system (SPS). The proposed control scheme is implemented in a notional medium voltage direct current (MVDC) integrated power system (IPS) for electric ship. To realize the control functions such as ship mode selection, generator launch schedule, blackout monitoring, and fault ride-through, a PCON based distributed power and energy management system (PEMS) is developed. The control scheme is proposed as two-layer hierarchical architecture with system level on the top as the supervisory control and zonal level on the bottom as the decentralized control, which is based on the zonal distribution characteristic of the notional MVDC IPS that was proposed as one of the approaches for Next Generation Integrated Power System (NGIPS) by Norbert Doerry. Several types of modules with different functionalities are used to derive the control scheme in detail for the notional MVDC IPS. Those modules include the power generation module (PGM) that controls the function of generators, the power conversion module (PCM) that controls the functions of DC/DC or DC/AC converters, etc. Among them, the power control module (PCON) plays a critical role in the PEMS. It is the core of the control process. PCONs in the PEMS interact with all the other modules, such as power propulsion module (PPM), energy storage module (ESM), load shedding module (LSHED), and human machine interface (HMI) to realize the control algorithm in PEMS. The proposed control scheme is implemented in real time using the real time digital simulator (RTDS) to verify its validity. To achieve this, a system level energy storage module (SESM) and a zonal level energy storage module (ZESM) are developed in RTDS to cooperate with PCONs to realize the control functionalities. In addition, a load shedding module which takes into account the reliability of power supply (in terms of quality of service) is developed. This module can supply uninterruptible power to the mission critical loads. In addition, a multi-agent system (MAS) based framework is proposed to implement the PCON based PEMS through a hardware setup that is composed of MAMBA boards and FPGA interface. Agents are implemented using Java Agent DEvelopment Framework (JADE). Various test scenarios were tested to validate the approach.

  9. On compensation of four wave mixing effect in dispersion managed hybrid WDM-OTDM multicast overlay system with optical phase conjugation modules

    NASA Astrophysics Data System (ADS)

    Singh, Sukhbir; Singh, Surinder

    2017-11-01

    This paper investigated the effect of FWM and its suppression using optical phase conjugation modules in dispersion managed hybrid WDM-OTDM multicast overlay system. Interaction between propagating wavelength signals at higher power level causes new FWM component generation that can significant limit the system performance. OPC module consists of the pump signal and 0.6 km HNLF implemented in midway of optical link to generate destructive phase FWM components. Investigation revealed that by use of even OPC module in optical link reduces the FWM power and mitigate the interaction between wavelength signals at variable signal input power, dispersion parameter (β2) and transmission distance. System performance comparison is also made between without DM-OPC module, with DM and with DM-OPC module in scenario of FWM tolerance. The BER performance of hybrid WDM-OTDM multicast system using OPC module is improved by multiplication factor of 2 as comparable to dispersion managed and coverage distance is increased by factor of 2 as in Singh and Singh (2016).

  10. Automation of the space station core module power management and distribution system

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1988-01-01

    Under the Advanced Development Program for Space Station, Marshall Space Flight Center has been developing advanced automation applications for the Power Management and Distribution (PMAD) system inside the Space Station modules for the past three years. The Space Station Module Power Management and Distribution System (SSM/PMAD) test bed features three artificial intelligence (AI) systems coupled with conventional automation software functioning in an autonomous or closed-loop fashion. The AI systems in the test bed include a baseline scheduler/dynamic rescheduler (LES), a load shedding management system (LPLMS), and a fault recovery and management expert system (FRAMES). This test bed will be part of the NASA Systems Autonomy Demonstration for 1990 featuring cooperating expert systems in various Space Station subsystem test beds. It is concluded that advanced automation technology involving AI approaches is sufficiently mature to begin applying the technology to current and planned spacecraft applications including the Space Station.

  11. Wireless Power Transfer for Autonomous Wearable Neurotransmitter Sensors.

    PubMed

    Nguyen, Cuong M; Kota, Pavan Kumar; Nguyen, Minh Q; Dubey, Souvik; Rao, Smitha; Mays, Jeffrey; Chiao, J-C

    2015-09-23

    In this paper, we report a power management system for autonomous and real-time monitoring of the neurotransmitter L-glutamate (L-Glu). A low-power, low-noise, and high-gain recording module was designed to acquire signal from an implantable flexible L-Glu sensor fabricated by micro-electro-mechanical system (MEMS)-based processes. The wearable recording module was wirelessly powered through inductive coupling transmitter antennas. Lateral and angular misalignments of the receiver antennas were resolved by using a multi-transmitter antenna configuration. The effective coverage, over which the recording module functioned properly, was improved with the use of in-phase transmitter antennas. Experimental results showed that the recording system was capable of operating continuously at distances of 4 cm, 7 cm and 10 cm. The wireless power management system reduced the weight of the recording module, eliminated human intervention and enabled animal experimentation for extended durations.

  12. Wireless Power Transfer for Autonomous Wearable Neurotransmitter Sensors

    PubMed Central

    Nguyen, Cuong M.; Kota, Pavan Kumar; Nguyen, Minh Q.; Dubey, Souvik; Rao, Smitha; Mays, Jeffrey; Chiao, J.-C.

    2015-01-01

    In this paper, we report a power management system for autonomous and real-time monitoring of the neurotransmitter L-glutamate (L-Glu). A low-power, low-noise, and high-gain recording module was designed to acquire signal from an implantable flexible L-Glu sensor fabricated by micro-electro-mechanical system (MEMS)-based processes. The wearable recording module was wirelessly powered through inductive coupling transmitter antennas. Lateral and angular misalignments of the receiver antennas were resolved by using a multi-transmitter antenna configuration. The effective coverage, over which the recording module functioned properly, was improved with the use of in-phase transmitter antennas. Experimental results showed that the recording system was capable of operating continuously at distances of 4 cm, 7 cm and 10 cm. The wireless power management system reduced the weight of the recording module, eliminated human intervention and enabled animal experimentation for extended durations. PMID:26404311

  13. Augmentation of the space station module power management and distribution breadboard

    NASA Technical Reports Server (NTRS)

    Walls, Bryan; Hall, David K.; Lollar, Louis F.

    1991-01-01

    The space station module power management and distribution (SSM/PMAD) breadboard models power distribution and management, including scheduling, load prioritization, and a fault detection, identification, and recovery (FDIR) system within a Space Station Freedom habitation or laboratory module. This 120 VDC system is capable of distributing up to 30 kW of power among more than 25 loads. In addition to the power distribution hardware, the system includes computer control through a hierarchy of processes. The lowest level consists of fast, simple (from a computing standpoint) switchgear that is capable of quickly safing the system. At the next level are local load center processors, (LLP's) which execute load scheduling, perform redundant switching, and shed loads which use more than scheduled power. Above the LLP's are three cooperating artificial intelligence (AI) systems which manage load prioritizations, load scheduling, load shedding, and fault recovery and management. Recent upgrades to hardware and modifications to software at both the LLP and AI system levels promise a drastic increase in speed, a significant increase in functionality and reliability, and potential for further examination of advanced automation techniques. The background, SSM/PMAD, interface to the Lewis Research Center test bed, the large autonomous spacecraft electrical power system, and future plans are discussed.

  14. The Space Station Module Power Management and Distribution automation test bed

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.

    1991-01-01

    The Space Station Module Power Management And Distribution (SSM/PMAD) automation test bed project was begun at NASA/Marshall Space Flight Center (MSFC) in the mid-1980s to develop an autonomous, user-supportive power management and distribution test bed simulating the Space Station Freedom Hab/Lab modules. As the test bed has matured, many new technologies and projects have been added. The author focuses on three primary areas. The first area is the overall accomplishments of the test bed itself. These include a much-improved user interface, a more efficient expert system scheduler, improved communication among the three expert systems, and initial work on adding intermediate levels of autonomy. The second area is the addition of a more realistic power source to the SSM/PMAD test bed; this project is called the Large Autonomous Spacecraft Electrical Power System (LASEPS). The third area is the completion of a virtual link between the SSM/PMAD test bed at MSFC and the Autonomous Power Expert at Lewis Research Center.

  15. An experimental investigation of using carbon foam-PCM-MWCNTs composite materials for thermal management of electronic devices under pulsed power modes

    NASA Astrophysics Data System (ADS)

    Alshaer, W. G.; Rady, M. A.; Nada, S. A.; Palomo Del Barrio, Elena; Sommier, Alain

    2017-02-01

    The present article reports on a detailed experimental investigation of using carbon foam-PCM-MWCNTs composite materials for thermal management (TM) of electronic devices subjected to pulsed power. The TM module was fabricated by infiltrating paraffin wax (RT65) as a phase change material (PCM) and multi walled carbon nanotubes (MWCNTs) as a thermal conductivity enhancer in a carbon foam as a base structure. Two carbon foam materials of low and high values of thermal conductivities, CF20 and KL1-250 (3.1 and 40 W/m K), were tested as a base structure for the TM modules. Tests were conducted at different power intensities and power cycling/loading modes. Results showed that for all power varying modes and all carbon foams, the infiltration of RT65 into carbon foam reduces the temperature of TM module and results in damping the temperature spikes height. Infiltration of MWCNTS into RT65 further improves the effectiveness of TM module. Temperature damping was more pronounced in stand-alone pulsed power cycles as compared to pulsed power spikes modes. The effectiveness of inclusion of RT65 and RT65/MWCNTs in damping the temperature spikes height is remarkable in TM modules based on KL1-250 as compared to CF-20.

  16. Real power regulation for the utility power grid via responsive loads

    DOEpatents

    McIntyre, Timothy J [Knoxville, TN; Kirby, Brendan J [Knoxville, TN; Kisner, Roger A

    2009-05-19

    A system for dynamically managing an electrical power system that determines measures of performance and control criteria for the electric power system, collects at least one automatic generation control (AGC) input parameter to at least one AGC module and at least one automatic load control (ALC) input parameter to at least one ALC module, calculates AGC control signals and loads as resources (LAR) control signals in response to said measures of performance and control criteria, propagates AGC control signals to power generating units in response to control logic in AGC modules, and propagates LAR control signals to at least one LAR in response to control logic in ALC modules.

  17. Space Station Module Power Management and Distribution System (SSM/PMAD)

    NASA Technical Reports Server (NTRS)

    Miller, William (Compiler); Britt, Daniel (Compiler); Elges, Michael (Compiler); Myers, Chris (Compiler)

    1994-01-01

    This report provides an overview of the Space Station Module Power Management and Distribution (SSM/PMAD) testbed system and describes recent enhancements to that system. Four tasks made up the original contract: (1) common module power management and distribution system automation plan definition; (2) definition of hardware and software elements of automation; (3) design, implementation and delivery of the hardware and software making up the SSM/PMAD system; and (4) definition and development of the host breadboard computer environment. Additions and/or enhancements to the SSM/PMAD test bed that have occurred since July 1990 are reported. These include: (1) rehosting the MAESTRO scheduler; (2) reorganization of the automation software internals; (3) a more robust communications package; (4) the activity editor to the MAESTRO scheduler; (5) rehosting the LPLMS to execute under KNOMAD; implementation of intermediate levels of autonomy; (6) completion of the KNOMAD knowledge management facility; (7) significant improvement of the user interface; (8) soft and incipient fault handling design; (9) intermediate levels of autonomy, and (10) switch maintenance.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narumanchi, S.; Bennion, K.; DeVoto, D.

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  19. Power Electronics Thermal Management R&D (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waye, S.

    2014-11-01

    This project will investigate and develop thermal-management strategies for wide bandgap (WBG)-based power electronics systems. Research will be carried out to deal with thermal aspects at the module- and system-level. Module-level research will focus on die- and substrate-integrated cooling strategies and heat-transfer enhancement technologies. System-level research will focus on thermal-management strategies for the entire power electronics system to enable smart packaging solutions. One challenge with WBG device-based power electronics is that although losses in the form of heat may be lower, the footprint of the components is also likely to be reduced to reduce cost, weight, and volume. Combined withmore » higher operational temperatures, this creates higher heat fluxes which much be removed from a smaller footprint, requiring advanced cooling strategies.« less

  20. Space Station Freedom photovoltaic power module design status

    NASA Technical Reports Server (NTRS)

    Jimenez, Amador P.; Hoberecht, Mark A.

    1989-01-01

    Electric power generation for the Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during phase I operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units to achieve modularization. The design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.

  1. Space Station Freedom photovoltaic power module design status

    NASA Technical Reports Server (NTRS)

    Jimenez, Amador P.; Hoberecht, Mark A.

    1989-01-01

    Electric power generation for Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during Phase 1 operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units (ORU's) to achieve modularization. Design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.

  2. Spectral and Power Stability Tests of Deep UV LEDs for AC Charge Management

    NASA Astrophysics Data System (ADS)

    Sun, Ke-Xun; Higuchi, Sei; Goh, Allex; Allard, Brett; Gill, Dale; Buchman, Saps; Byer, Robert

    2006-11-01

    Deep ultraviolet (UV) LEDs have recently been used in AC charge management experiments to support gravitational reference sensors for future space missions. The UV LED based charge management system offers compact size, light weight, and low power consumption compared to plasma sources. The AC charge management technique, which is enabled by easy modulation of UV LED output, achieves higher dynamic range for charge control. Further, the high modulation frequency, which is out of the gravitational wave detection band, reduces disturbances to the proof mass. However, there is a need to test and possibly improve the lifetime of UV LEDs, which were developed only a year ago. We have initiated a series of spectral and power stability tests for UV LEDs and designed experiments according to the requirements of AC charge management. We operate UV LEDs with a modulated current drive and maintain the operating temperature at 22 °C,28 similar to the LISA spacecraft working condition. The testing procedures involve measuring the baseline spectral shape and output power level prior to the beginning of the tests and then re-measuring the same quantities periodically. As of the date of submission (August 28th, 2006), we have operated a UV LED for more than 2,700 hours.

  3. Artificial intelligence and space power systems automation

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1987-01-01

    Various applications of artificial intelligence to space electrical power systems are discussed. An overview is given of completed, on-going, and planned knowledge-based system activities. These applications include the Nickel-Cadmium Battery Expert System (NICBES) (the expert system interfaced with the Hubble Space Telescope electrical power system test bed); the early work with the Space Station Experiment Scheduler (SSES); the three expert systems under development in the space station advanced development effort in the core module power management and distribution system test bed; planned cooperation of expert systems in the Core Module Power Management and Distribution (CM/PMAD) system breadboard with expert systems for the space station at other research centers; and the intelligent data reduction expert system under development.

  4. Space station automation of common module power management and distribution

    NASA Technical Reports Server (NTRS)

    Miller, W.; Jones, E.; Ashworth, B.; Riedesel, J.; Myers, C.; Freeman, K.; Steele, D.; Palmer, R.; Walsh, R.; Gohring, J.

    1989-01-01

    The purpose is to automate a breadboard level Power Management and Distribution (PMAD) system which possesses many functional characteristics of a specified Space Station power system. The automation system was built upon 20 kHz ac source with redundancy of the power buses. There are two power distribution control units which furnish power to six load centers which in turn enable load circuits based upon a system generated schedule. The progress in building this specified autonomous system is described. Automation of Space Station Module PMAD was accomplished by segmenting the complete task in the following four independent tasks: (1) develop a detailed approach for PMAD automation; (2) define the software and hardware elements of automation; (3) develop the automation system for the PMAD breadboard; and (4) select an appropriate host processing environment.

  5. ePave: A Self-Powered Wireless Sensor for Smart and Autonomous Pavement.

    PubMed

    Xiao, Jian; Zou, Xiang; Xu, Wenyao

    2017-09-26

    "Smart Pavement" is an emerging infrastructure for various on-road applications in transportation and road engineering. However, existing road monitoring solutions demand a certain periodic maintenance effort due to battery life limits in the sensor systems. To this end, we present an end-to-end self-powered wireless sensor-ePave-to facilitate smart and autonomous pavements. The ePave system includes a self-power module, an ultra-low-power sensor system, a wireless transmission module and a built-in power management module. First, we performed an empirical study to characterize the piezoelectric module in order to optimize energy-harvesting efficiency. Second, we developed an integrated sensor system with the optimized energy harvester. An adaptive power knob is designated to adjust the power consumption according to energy budgeting. Finally, we intensively evaluated the ePave system in real-world applications to examine the system's performance and explore the trade-off.

  6. ePave: A Self-Powered Wireless Sensor for Smart and Autonomous Pavement

    PubMed Central

    Xiao, Jian; Zou, Xiang

    2017-01-01

    “Smart Pavement” is an emerging infrastructure for various on-road applications in transportation and road engineering. However, existing road monitoring solutions demand a certain periodic maintenance effort due to battery life limits in the sensor systems. To this end, we present an end-to-end self-powered wireless sensor—ePave—to facilitate smart and autonomous pavements. The ePave system includes a self-power module, an ultra-low-power sensor system, a wireless transmission module and a built-in power management module. First, we performed an empirical study to characterize the piezoelectric module in order to optimize energy-harvesting efficiency. Second, we developed an integrated sensor system with the optimized energy harvester. An adaptive power knob is designated to adjust the power consumption according to energy budgeting. Finally, we intensively evaluated the ePave system in real-world applications to examine the system’s performance and explore the trade-off. PMID:28954430

  7. Concurrent development of fault management hardware and software in the SSM/PMAD. [Space Station Module/Power Management And Distribution

    NASA Technical Reports Server (NTRS)

    Freeman, Kenneth A.; Walsh, Rick; Weeks, David J.

    1988-01-01

    Space Station issues in fault management are discussed. The system background is described with attention given to design guidelines and power hardware. A contractually developed fault management system, FRAMES, is integrated with the energy management functions, the control switchgear, and the scheduling and operations management functions. The constraints that shaped the FRAMES system and its implementation are considered.

  8. Airflow energy harvesting with high wind velocities for industrial applications

    NASA Astrophysics Data System (ADS)

    Chew, Z. J.; Tuddenham, S. B.; Zhu, M.

    2016-11-01

    An airflow energy harvester capable of harvesting energy from vortices at high speed is presented in this paper. The airflow energy harvester is implemented using a modified helical Savonius turbine and an electromagnetic generator. A power management module with maximum power point finding capability is used to manage the harvested energy and convert the low voltage magnitude from the generator to a usable level for wireless sensors. The airflow energy harvester is characterized using vortex generated by air hitting a plate in a wind tunnel. By using an aircraft environment with wind speed of 17 m/s as case study, the output power of the airflow energy harvester is measured to be 126 mW. The overall efficiency of the power management module is 45.76 to 61.2%, with maximum power point tracking efficiency of 94.21 to 99.72% for wind speed of 10 to 18 m/s, and has a quiescent current of 790 nA for the maximum power point tracking circuit.

  9. Autonomously managed electrical power systems

    NASA Technical Reports Server (NTRS)

    Callis, Charles P.

    1986-01-01

    The electric power systems for future spacecraft such as the Space Station will necessarily be more sophisticated and will exhibit more nearly autonomous operation than earlier spacecraft. These new power systems will be more reliable and flexible than their predecessors offering greater utility to the users. Automation approaches implemented on various power system breadboards are investigated. These breadboards include the Hubble Space Telescope power system test bed, the Common Module Power Management and Distribution system breadboard, the Autonomusly Managed Power System (AMPS) breadboard, and the 20 kilohertz power system breadboard. Particular attention is given to the AMPS breadboard. Future plans for these breadboards including the employment of artificial intelligence techniques are addressed.

  10. Design distributed simulation platform for vehicle management system

    NASA Astrophysics Data System (ADS)

    Wen, Zhaodong; Wang, Zhanlin; Qiu, Lihua

    2006-11-01

    Next generation military aircraft requires the airborne management system high performance. General modules, data integration, high speed data bus and so on are needed to share and manage information of the subsystems efficiently. The subsystems include flight control system, propulsion system, hydraulic power system, environmental control system, fuel management system, electrical power system and so on. The unattached or mixed architecture is changed to integrated architecture. That means the whole airborne system is regarded into one system to manage. So the physical devices are distributed but the system information is integrated and shared. The process function of each subsystem are integrated (including general process modules, dynamic reconfiguration), furthermore, the sensors and the signal processing functions are shared. On the other hand, it is a foundation for power shared. Establish a distributed vehicle management system using 1553B bus and distributed processors which can provide a validation platform for the research of airborne system integrated management. This paper establishes the Vehicle Management System (VMS) simulation platform. Discuss the software and hardware configuration and analyze the communication and fault-tolerant method.

  11. Shielded Metal Arc Welding. Welding Module 4. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching an eight-unit module in shielded metal arc welding. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: safety; theory, power sources, and…

  12. A Design of a Modular GPHS-Stirling Power System for a Lunar Habitation Module

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2005-01-01

    Lunar habitation modules need electricity and potentially heat to operate. Because of the low amounts of radiation emitted by General Purpose Heat Source (GPHS) modules, power plants incorporating these as heat sources could be placed in close proximity to habitation modules. A design concept is discussed for a high efficiency power plant based on a GPHS assembly integrated with a Stirling convertor. This system could provide both electrical power and heat, if required, for a lunar habitation module. The conceptual GPHS/Stirling system is modular in nature and made up of a basic 5.5 KWe Stirling convertor/GPHS module assembly, convertor controller/PMAD electronics, waste heat radiators, and associated thermal insulation. For the specific lunar application under investigation eight modules are employed to deliver 40 KWe to the habitation module. This design looks at three levels of Stirling convertor technology and addresses the issues of integrating the Stirling convertors with the GPHS heat sources assembly using proven technology whenever possible. In addition, issues related to the high-temperature heat transport system, power management, convertor control, vibration isolation, and potential system packaging configurations to ensure safe operation during all phases of deployment will be discussed.

  13. Universal sensor interface module (USIM)

    NASA Astrophysics Data System (ADS)

    King, Don; Torres, A.; Wynn, John

    1999-01-01

    A universal sensor interface model (USIM) is being developed by the Raytheon-TI Systems Company for use with fields of unattended distributed sensors. In its production configuration, the USIM will be a multichip module consisting of a set of common modules. The common module USIM set consists of (1) a sensor adapter interface (SAI) module, (2) digital signal processor (DSP) and associated memory module, and (3) a RF transceiver model. The multispectral sensor interface is designed around a low-power A/D converted, whose input/output interface consists of: -8 buffered, sampled inputs from various devices including environmental, acoustic seismic and magnetic sensors. The eight sensor inputs are each high-impedance, low- capacitance, differential amplifiers. The inputs are ideally suited for interface with discrete or MEMS sensors, since the differential input will allow direct connection with high-impedance bridge sensors and capacitance voltage sources. Each amplifier is connected to a 22-bit (Delta) (Sigma) A/D converter to enable simultaneous samples. The low power (Delta) (Sigma) converter provides 22-bit resolution at sample frequencies up to 142 hertz (used for magnetic sensors) and 16-bit resolution at frequencies up to 1168 hertz (used for acoustic and seismic sensors). The video interface module is based around the TMS320C5410 DSP. It can provide sensor array addressing, video data input, data calibration and correction. The processor module is based upon a MPC555. It will be used for mode control, synchronization of complex sensors, sensor signal processing, array processing, target classification and tracking. Many functions of the A/D, DSP and transceiver can be powered down by using variable clock speeds under software command or chip power switches. They can be returned to intermediate or full operation by DSP command. Power management may be based on the USIM's internal timer, command from the USIM transceiver, or by sleep mode processing management. The low power detection mode is implemented by monitoring any of the sensor analog outputs at lower sample rates for detection over a software controllable threshold.

  14. Space station automation of common module power management and distribution, volume 2

    NASA Technical Reports Server (NTRS)

    Ashworth, B.; Riedesel, J.; Myers, C.; Jakstas, L.; Smith, D.

    1990-01-01

    The new Space Station Module Power Management and Distribution System (SSM/PMAD) testbed automation system is described. The subjects discussed include testbed 120 volt dc star bus configuration and operation, SSM/PMAD automation system architecture, fault recovery and management expert system (FRAMES) rules english representation, the SSM/PMAD user interface, and the SSM/PMAD future direction. Several appendices are presented and include the following: SSM/PMAD interface user manual version 1.0, SSM/PMAD lowest level processor (LLP) reference, SSM/PMAD technical reference version 1.0, SSM/PMAD LLP visual control logic representation's (VCLR's), SSM/PMAD LLP/FRAMES interface control document (ICD) , and SSM/PMAD LLP switchgear interface controller (SIC) ICD.

  15. Thermal control system for Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Hacha, Thomas H.; Howard, Laura

    1994-01-01

    The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. The description and development status of the PVM thermal control system is presented.

  16. Thermal control system for Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Hacha, Thomas H.; Howard, Laura S.

    1992-01-01

    The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. This paper presents the description and development status of the PVM thermal control system.

  17. Power Extension Package (PEP) system definition extension, orbital service module systems analysis study. Volume 12: PEP data item descriptions

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Contractor information requirements necessary to support the power extension package project of the space shuttle program are specified for the following categories of data: project management; configuration management; systems engineering and test; manufacturing; reliability, quality assurance and safety; logistics; training; and operations.

  18. Apollo Onboard Navigation Techniques

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This viewgraph presentation reviews basic navigation concepts, describes coordinate systems and identifies attitude determination techniques including Primary Guidance, Navigation and Control System (PGNCS) IMU management and Command and Service Module Stabilization and Control System/Lunar Module (LM) Abort Guidance System (AGS) attitude management. The presentation also identifies state vector determination techniques, including PGNCS coasting flight navigation, PGNCS powered flight navigation and LM AGS navigation.

  19. Avionics Architecture Standards as an Approach to Obsolescence Management

    DTIC Science & Technology

    2000-10-01

    and goals is one method of system. The term System Architecture refers to a achieving the necessary critical mass of skilled and consistent set of such...Processing Module (GPM), Mass Memory Module executed on the modules within an ASAAC system will (MMM) and Power Conversion Module (PCM). be stored in a central...location, the Mass Memory * MOS -Module Support Layer to Operating System Module (MMM). Therefore, if modules are to be The purpose of the MOS

  20. Support systems of the orbiting quarantine facility

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The physical support systems, the personnel management structure, and the contingency systems necessary to permit the Orbiting Quarantine Facility (OQF) to function as an integrated system are described. The interactions between the subsystems within the preassembled modules are illustrated. The Power Module generates and distributes electrical power throughout each of the four modules, stabilizes the OQF's attitude, and dissipates heat generated throughout the system. The Habitation Module is a multifunctional structure designed to monitor and control all aspects of the system's activities. The Logistics Module stores the supplies needed for 30 days of operation and provides storage for waste materials generated during the mission. The Laboratory Module contains the equipment necessary for executing the protocol, as well as an independent life support system.

  1. A 100 kW-Class Technology Demonstrator for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Carrington, Connie; Howell, Joe; Day, Greg

    2004-01-01

    A first step in the development of solar power from space is the flight demonstration of critical technologies. These fundamental technologies include efficient solar power collection and generation, power management and distribution, and thermal management. In addition, the integration and utilization of these technologies into a viable satellite bus could provide an energy-rich platform for a portfolio of payload experiments such as wireless power transmission (WPT). This paper presents the preliminary design of a concept for a 100 kW-class fiee-flying platform suitable for flight demonstration of technology experiments. Recent space solar power (SSP) studies by NASA have taken a stepping stones approach that lead to the gigawatt systems necessary to cost-effectively deliver power from space. These steps start with a 100 kW-class satellite, leading to a 500 kW and then a 1 MW-class platform. Later steps develop a 100 M W bus that could eventually lead to a 1-2 GW pilot plant for SSP. Our studies have shown that a modular approach is cost effective. Modular designs include individual laser-power-beaming satellites that fly in constellations or that are autonomously assembled into larger structures at geosynchronous orbit (GEO). Microwave power-beamed approaches are also modularized into large numbers of identical units of solar arrays, power converters, or supporting structures for arrays and microwave transmitting antennas. A cost-effective approach to launching these modular units is to use existing Earth-to-orbit (ETO) launch systems, in which the modules are dropped into low Earth orbit (LEO) and then the modules perform their own orbit transfer to GEO using expendable solar arrays to power solar electric thrusters. At GEO, the modules either rendezvous and are assembled robotically into larger platforms, or are deployed into constellations of identical laser power-beaming satellites. Since solar electric propulsion by the modules is cost-effective for both self-transport of the modules from LEO to GEO, and for on-orbit stationkeeping and repositioning capability during the satellite's lifetime, this technology is also critical in technology development for SSP. The 100 kW-class technology demonstrator will utilize advanced solar power collection and generation technologies, power management and distribution, advanced thermal management, and solar electric propulsion. State-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging make the 100 kW satellite feasible for launch on one existing launch vehicle. Early SSP studies showed that a major percentage of the on-orbit mass for power-beaming satellites was from massive power converters at the solar arrays, at the bus, at the power transmitter, or at combinations of these locations. Higher voltage mays and power management and distribution (PMAD) systems reduce or eliminate the need for many of these massive power converters, and could enable direct-drive of high-voltage solar electric thrusters. Lightweight, highly efficient thermal management systems are a critical technology that must be developed and flown for SSP feasibility. Large amounts of power on satellites imply that large amounts of waste heat will need to be managed. In addition, several of the more innovative lightweight configurations proposed for SSP satellites take advantage of solar concentrators that are intractable without advanced thermal management technologies for the solar arrays. These thermal management systems include efficient interfaces with the WPT systems or other high-power technology experiments, lightweight deployable radiators that can be easily integrated into satellite buses, and efficient reliable thermal distribution systems that can pipe heat from the technology experiments to the radiators. In addition to demonstrating the integration and use of these mission-ctical technologies, the 100 kw-class satellite will provide a large experiment deck for a portfolio of technology experiments. Current plans for this technology demonstrator allow 2000 kg of payload capability and up to 100 kW of power. The technology experiments could include one or more wireless power transmission demonstrations, either to the Earth s surface or to a suitable space-based receiver. Technology experiments to quantify the on-orbit performance of critical technologies for SSP or space exploration are welcomed. In addition, the technology experiments provide an opportunity for international cooperation, to advance technology readiness levels of SSP technologies that require flight demonstration. This paper will present the preliminary design for a 100 kW solar-powered satellite and a variety of technology experiments that may be suitable for flight demonstration. In addition, a space-to-Earth-surface WPT experiment will be discussed.

  2. Automating a spacecraft electrical power system using expert systems

    NASA Technical Reports Server (NTRS)

    Lollar, L. F.

    1991-01-01

    Since Skylab, Marshall Space Flight Center (MSFC) has recognized the need for large electrical power systems (EPS's) in upcoming Spacecraft. The operation of the spacecraft depends on the EPS. Therefore, it must be efficient, safe, and reliable. In 1978, as a consequence of having to supply a large number of EPS personnel to monitor and control Skylab, the Electrical power Branch of MSFC began the autonomously managed power system (AMPS) project. This project resulted in the assembly of a 25-kW high-voltage dc test facility and provided the means of getting man out of the loop as much as possible. AMPS includes several embedded controllers which allow a significant level of autonomous operation. More recently, the Electrical Division at MSFC has developed the space station module power management and distribution (SSM/PMAD) breadboard to investigate managing and distributing power in the Space Station Freedom habitation and laboratory modules. Again, the requirement for a high level of autonomy for the efficient operation over the lifetime of the station and for the benefits of enhanced safety has been demonstrated. This paper describes the two breadboards and the hierarchical approach to automation which was developed through these projects.

  3. An architecture for automated fault diagnosis. [Space Station Module/Power Management And Distribution

    NASA Technical Reports Server (NTRS)

    Ashworth, Barry R.

    1989-01-01

    A description is given of the SSM/PMAD power system automation testbed, which was developed using a systems engineering approach. The architecture includes a knowledge-based system and has been successfully used in power system management and fault diagnosis. Architectural issues which effect overall system activities and performance are examined. The knowledge-based system is discussed along with its associated automation implications, and interfaces throughout the system are presented.

  4. ANN based Real-Time Estimation of Power Generation of Different PV Module Types

    NASA Astrophysics Data System (ADS)

    Syafaruddin; Karatepe, Engin; Hiyama, Takashi

    Distributed generation is expected to become more important in the future generation system. Utilities need to find solutions that help manage resources more efficiently. Effective smart grid solutions have been experienced by using real-time data to help refine and pinpoint inefficiencies for maintaining secure and reliable operating conditions. This paper proposes the application of Artificial Neural Network (ANN) for the real-time estimation of the maximum power generation of PV modules of different technologies. An intelligent technique is necessary required in this case due to the relationship between the maximum power of PV modules and the open circuit voltage and temperature is nonlinear and can't be easily expressed by an analytical expression for each technology. The proposed ANN method is using input signals of open circuit voltage and cell temperature instead of irradiance and ambient temperature to determine the estimated maximum power generation of PV modules. It is important for the utility to have the capability to perform this estimation for optimal operating points and diagnostic purposes that may be an early indicator of a need for maintenance and optimal energy management. The proposed method is accurately verified through a developed real-time simulator on the daily basis of irradiance and cell temperature changes.

  5. The VRLA modular wound design for 42 V mild hybrid systems

    NASA Astrophysics Data System (ADS)

    Trinidad, F.; Gimeno, C.; Gutiérrez, J.; Ruiz, R.; Sainz, J.; Valenciano, J.

    Mild hybrid vehicles with 42 V electrical systems require advanced batteries with low cost, very high reliability and peak power performance. Valve-regulated lead-acid (VRLA) batteries could provide better performance/cost ratio than any other electrochemical couples, by improving their cycle life performance at partial state-of-charge (SoC), charge acceptance of the negative plate and thermal management under power assist conditions. Modular wound designs are being developed for this application, because they can combine the best attributes of the high power VRLA designs (low resistance and high compression) with a more efficient thermal management and could improve reliability by reducing the potential cell failures in manufacturing (better quality control could be assured for individual 3-cell modules than for complete 18-cell block batteries). Thermal management is an important issue for VRLA batteries in a power assist cycling profile. Although water cooling is very efficient, it is not economical and increases the weight of the complete storage system. The modular VRLA design allows air circulation around the external walls of every cell in order to maintain the temperature around 40 °C, even at very high power cycling profiles. In order to increase the life at higher depth-of-discharge (DoD) and consequently to optimise the weight of the complete battery systems, a new 6 V module has been designed with improved thermal management features. Cycle life performance under partial-SoC conditions (around 60% SoC) has been tested in both 6 and 12 V modules. The basic power assist profile as specified by the European car manufacturers is composed of a high power discharge (boost) period followed by a rest (cruise) and recharge in three steps (regenerative braking). Very good results have been obtained for 12 V VRLA spiral wound batteries under power assist profile (more than 200,000 cycles at 1.25% DoD, equivalent to 2500 times the nominal capacity), but smaller 6 V modules, although providing very promising results (50,000 power assist cycles at 2.5% DoD, equivalent to 1250 times the nominal capacity), still need further improvement to comply with the very demanding conditions of mild hybrid vehicles. Failure mode is related to negative active material sulfation, that could be overcome by improving charge acceptance with high surface conducting additives in the active material.

  6. Design of a video capsule endoscopy system with low-power ASIC for monitoring gastrointestinal tract.

    PubMed

    Liu, Gang; Yan, Guozheng; Zhu, Bingquan; Lu, Li

    2016-11-01

    In recent years, wireless capsule endoscopy (WCE) has been a state-of-the-art tool to examine disorders of the human gastrointestinal tract painlessly. However, system miniaturization, enhancement of the image-data transfer rate and power consumption reduction for the capsule are still key challenges. In this paper, a video capsule endoscopy system with a low-power controlling and processing application-specific integrated circuit (ASIC) is designed and fabricated. In the design, these challenges are resolved by employing a microimage sensor, a novel radio frequency transmitter with an on-off keying modulation rate of 20 Mbps, and an ASIC structure that includes a clock management module, a power-efficient image compression module and a power management unit. An ASIC-based prototype capsule, which measures Φ11 mm × 25 mm, has been developed here. Test results show that the designed ASIC consumes much less power than most of the other WCE systems and that its total power consumption per frame is the least. The image compression module can realize high near-lossless compression rate (3.69) and high image quality (46.2 dB). The proposed system supports multi-spectral imaging, including white light imaging and autofluorescence imaging, at a maximum frame rate of 24 fps and with a resolution of 400 × 400. Tests and in vivo trials in pigs have proved the feasibility of the entire system, but further improvements in capsule control and compression performance inside the ASIC are needed in the future.

  7. Integrating the autonomous subsystems management process

    NASA Technical Reports Server (NTRS)

    Ashworth, Barry R.

    1992-01-01

    Ways in which the ranking of the Space Station Module Power Management and Distribution testbed may be achieved and an individual subsystem's internal priorities may be managed within the complete system are examined. The application of these results in the integration and performance leveling of the autonomously managed system is discussed.

  8. An AWG-based 10 Gbit/s colorless WDM-PON system using a chirp-managed directly modulated laser

    NASA Astrophysics Data System (ADS)

    Latif, Abdul; Yu, Chong-xiu; Xin, Xiang-jun; Husain, Aftab; Hussain, Ashiq; Munir, Abid; Khan, Yousaf

    2012-09-01

    We propose an arrayed waveguide grating (AWG)-based 10 Gbit/s per channel full duplex wavelength division multiplexing passive optical network (WDM-PON). A chirp managed directly modulated laser with return-to-zero (RZ) differential phase shift keying (DPSK) modulation technique is utilized for downlink (DL) direction, and then the downlink signal is re-modulated for the uplink (UL) direction using intensity modulation technique with the data rate of 10 Gbit/s per channel. A successful WDM-PON transmission operation with the data rate of 10 Gbit/s per channel over a distance of 25 km without any optical amplification or dispersion compensation is demonstrated with low power penalty.

  9. Interference Resilient Sigma Delta-Based Pulse Oximeter.

    PubMed

    Shokouhian, Mohsen; Morling, Richard; Kale, Izzet

    2016-06-01

    Ambient light and optical interference can severely affect the performance of pulse oximeters. The deployment of a robust modulation technique to drive the pulse oximeter LEDs can reduce these unwanted effects and increases the resilient of the pulse oximeter against artificial ambient light. The time division modulation technique used in conventional pulse oximeters can not remove the effect of modulated light coming from surrounding environment and this may cause huge measurement error in pulse oximeter readings. This paper presents a novel cross-coupled sigma delta modulator which ensures that measurement accuracy will be more robust in comparison with conventional fixed-frequency oximeter modulation technique especially in the presence of pulsed artificial ambient light. Moreover, this novel modulator gives an extra control over the pulse oximeter power consumption leading to improved power management.

  10. A Wind Energy Powered Wireless Temperature Sensor Node

    PubMed Central

    Zhang, Chuang; He, Xue-Feng; Li, Si-Yu; Cheng, Yao-Qing; Rao, Yang

    2015-01-01

    A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally. PMID:25734649

  11. A wind energy powered wireless temperature sensor node.

    PubMed

    Zhang, Chuang; He, Xue-Feng; Li, Si-Yu; Cheng, Yao-Qing; Rao, Yang

    2015-02-27

    A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally.

  12. High-Temperature, Wirebondless, Ultracompact Wide Bandgap Power Semiconductor Modules

    NASA Technical Reports Server (NTRS)

    Elmes, John

    2015-01-01

    Silicon carbide (SiC) and other wide bandgap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and ultrahigh power density for both space and commercial power electronic systems. However, this great potential is seriously limited by the lack of reliable high-temperature device packaging technology. This Phase II project developed an ultracompact hybrid power module packaging technology based on the use of double lead frames and direct lead frame-to-chip transient liquid phase (TLP) bonding that allows device operation up to 450 degC. The new power module will have a very small form factor with 3-5X reduction in size and weight from the prior art, and it will be capable of operating from 450 degC to -125 degC. This technology will have a profound impact on power electronics and energy conversion technologies and help to conserve energy and the environment as well as reduce the nation's dependence on fossil fuels.

  13. Design and experimental evaluation on an advanced multisource energy harvesting system for wireless sensor nodes.

    PubMed

    Li, Hao; Zhang, Gaofei; Ma, Rui; You, Zheng

    2014-01-01

    An effective multisource energy harvesting system is presented as power supply for wireless sensor nodes (WSNs). The advanced system contains not only an expandable power management module including control of the charging and discharging process of the lithium polymer battery but also an energy harvesting system using the maximum power point tracking (MPPT) circuit with analog driving scheme for the collection of both solar and vibration energy sources. Since the MPPT and the power management module are utilized, the system is able to effectively achieve a low power consumption. Furthermore, a super capacitor is integrated in the system so that current fluctuations of the lithium polymer battery during the charging and discharging processes can be properly reduced. In addition, through a simple analog switch circuit with low power consumption, the proposed system can successfully switch the power supply path according to the ambient energy sources and load power automatically. A practical WSNs platform shows that efficiency of the energy harvesting system can reach about 75-85% through the 24-hour environmental test, which confirms that the proposed system can be used as a long-term continuous power supply for WSNs.

  14. Design and Experimental Evaluation on an Advanced Multisource Energy Harvesting System for Wireless Sensor Nodes

    PubMed Central

    Li, Hao; Zhang, Gaofei; Ma, Rui; You, Zheng

    2014-01-01

    An effective multisource energy harvesting system is presented as power supply for wireless sensor nodes (WSNs). The advanced system contains not only an expandable power management module including control of the charging and discharging process of the lithium polymer battery but also an energy harvesting system using the maximum power point tracking (MPPT) circuit with analog driving scheme for the collection of both solar and vibration energy sources. Since the MPPT and the power management module are utilized, the system is able to effectively achieve a low power consumption. Furthermore, a super capacitor is integrated in the system so that current fluctuations of the lithium polymer battery during the charging and discharging processes can be properly reduced. In addition, through a simple analog switch circuit with low power consumption, the proposed system can successfully switch the power supply path according to the ambient energy sources and load power automatically. A practical WSNs platform shows that efficiency of the energy harvesting system can reach about 75–85% through the 24-hour environmental test, which confirms that the proposed system can be used as a long-term continuous power supply for WSNs. PMID:25032233

  15. Energy management of fuel cell/solar cell/supercapacitor hybrid power source

    NASA Astrophysics Data System (ADS)

    Thounthong, Phatiphat; Chunkag, Viboon; Sethakul, Panarit; Sikkabut, Suwat; Pierfederici, Serge; Davat, Bernard

    This study presents an original control algorithm for a hybrid energy system with a renewable energy source, namely, a polymer electrolyte membrane fuel cell (PEMFC) and a photovoltaic (PV) array. A single storage device, i.e., a supercapacitor (ultracapacitor) module, is in the proposed structure. The main weak point of fuel cells (FCs) is slow dynamics because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. The very fast power response and high specific power of a supercapacitor complements the slower power output of the main source to produce the compatibility and performance characteristics needed in a load. The energy in the system is balanced by d.c.-bus energy regulation (or indirect voltage regulation). A supercapacitor module functions by supplying energy to regulate the d.c.-bus energy. The fuel cell, as a slow dynamic source in this system, supplies energy to the supercapacitor module in order to keep it charged. The photovoltaic array assists the fuel cell during daytime. To verify the proposed principle, a hardware system is realized with analog circuits for the fuel cell, solar cell and supercapacitor current control loops, and with numerical calculation (dSPACE) for the energy control loops. Experimental results with small-scale devices, namely, a PEMFC (1200 W, 46 A) manufactured by the Ballard Power System Company, a photovoltaic array (800 W, 31 A) manufactured by the Ekarat Solar Company and a supercapacitor module (100 F, 32 V) manufactured by the Maxwell Technologies Company, illustrate the excellent energy-management scheme during load cycles.

  16. McClellan PV system installation provides key lessons

    NASA Astrophysics Data System (ADS)

    Kauffman, W. R.

    Design features and lessons learned in the installation of a 40 kWp solar cell array to supply power to a market on an airbase are outlined. The fixed-position modules interface with an inverter, ac and dc switchgear, controls, instrumentation, and an energy management system. The power control unit has a peak power tracking feature to maximize output from the 1142 cell modules. The inverter has functioned at over 98 percent efficiency near the 25 kW design range of the array. Moisture sealing to prevent ground faults was found necessary during the installation of the underground cabling.

  17. Analyzing Power Supply and Demand on the ISS

    NASA Technical Reports Server (NTRS)

    Thomas, Justin; Pham, Tho; Halyard, Raymond; Conwell, Steve

    2006-01-01

    Station Power and Energy Evaluation Determiner (SPEED) is a Java application program for analyzing the supply and demand aspects of the electrical power system of the International Space Station (ISS). SPEED can be executed on any computer that supports version 1.4 or a subsequent version of the Java Runtime Environment. SPEED includes an analysis module, denoted the Simplified Battery Solar Array Model, which is a simplified engineering model of the ISS primary power system. This simplified model makes it possible to perform analyses quickly. SPEED also includes a user-friendly graphical-interface module, an input file system, a parameter-configuration module, an analysis-configuration-management subsystem, and an output subsystem. SPEED responds to input information on trajectory, shadowing, attitude, and pointing in either a state-of-charge mode or a power-availability mode. In the state-of-charge mode, SPEED calculates battery state-of-charge profiles, given a time-varying power-load profile. In the power-availability mode, SPEED determines the time-varying total available solar array and/or battery power output, given a minimum allowable battery state of charge.

  18. Space Station module Power Management And Distribution (PMAD) system

    NASA Technical Reports Server (NTRS)

    Walls, Bryan

    1990-01-01

    This project consists of several tasks which are unified toward experimentally demonstrating the operation of a highly autonomous, user-supportive power management and distribution system for Space Station Freedom (SSF) habitation/laboratory modules. This goal will be extended to a demonstration of autonomous, cooperative power system operation for the whole SSF power system through a joint effort with NASA's Lewis Research Center, using their Autonomous Power System. Short term goals for the space station module power management and distribution include having an operational breadboard reflecting current plans for SSF, improving performance of the system communications, and improving the organization and mutability of the artificial intelligence (AI) systems. In the middle term, intermediate levels of autonomy will be added, user interfaces will be modified, and enhanced modeling capabilities will be integrated in the system. Long term goals involve conversion of all software into Ada, vigorous verification and validation efforts and, finally, seeing an impact of this research on the operation of SSF. Conversion of the system to a DC Star configuration is now in progress, and should be completed by the end of October, 1989. This configuration reflects the latest SSF module architecture. Hardware is now being procured which will improve system communications significantly. The Knowledge-Based Management System (KBMS) is initially developed and the rules from FRAMES have been implemented in the KBMS. Rules in the other two AI systems are also being grouped modularly, making them more tractable, and easier to eventually move into the KBMS. Adding an intermediate level of autonomy will require development of a planning utility, which will also be built using the KBMS. These changes will require having the user interface for the whole system available from one interface. An Enhanced Model will be developed, which will allow exercise of the system through the interface without requiring all of the power hardware to be operational. The functionality of the AI systems will continue to be advanced, including incipient failure detection. Ada conversion will begin with the lowest level processor (LLP) code. Then selected pieces of the higher level functionality will be recorded in Ada and, where possible, moved to the LLP level. Validation and verification will be done on the Ada code, and will complete sometimes after completion of the Ada conversion.

  19. Experimental study of mini SCADA renewable energy management system on microgrid using Raspberry Pi

    NASA Astrophysics Data System (ADS)

    Tridianto, E.; Permatasari, P. D.; Ali, I. R.

    2018-03-01

    Renewable Energy Management System (REMS) is a device that can be able to monitor power through a microgrid. The purpose of this system is to optimize power usage that produced from renewable energy with the result that reduces power demand from the grid. To reach the goal this device manage the load power needs fully supplied by renewable energy when the power produced from renewable energy is higher than load demand, besides power surplus will be stored in battery in this way energy stored in battery can be used when it needed. When the power produced from renewable energy can not satisfy the power demand, power will supply by renewable energy and grid. This device uses power meters for record any power flow through microgrid. In order to manage power flow in microgrid this system use relay module. The user can find out energy consumption (consumed by the load) and production (produced by renewable energy) in a period of time so that the user can switch on the load in right time.

  20. Spacehab

    NASA Technical Reports Server (NTRS)

    Rossi, David

    1991-01-01

    Information is given in viewgraph form on the Spacehab company and its work on a pressurized module to be carried on the Space Shuttle. The module augments the Shuttle's capability to support man-tended microgravity experiments. The augmentation modules are designed to duplicate the resources, such as power, environmental control, and data management that are available in the Shuttle's middeck. Topics covered include a company overview, company financing, system overview, module description, payload resources, locker accommodations, program status, and a listing of candidate payloads.

  1. New Generation Power System for Space Applications

    NASA Technical Reports Server (NTRS)

    Jones, Loren; Carr, Greg; Deligiannis, Frank; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treicler, John; Wester, Gene; Sauers, Jim; hide

    2004-01-01

    The Deep Space Avionics (DSA) Project is developing a new generation of power system building blocks. Using application specific integrated circuits (ASICs) and power switching modules a scalable power system can be constructed for use on multiple deep space missions including future missions to Mars, comets, Jupiter and its moons. The key developments of the DSA power system effort are five power ASICs and a mod ule for power switching. These components enable a modular and scalab le design approach, which can result in a wide variety of power syste m architectures to meet diverse mission requirements and environments . Each component is radiation hardened to one megarad) total dose. The power switching module can be used for power distribution to regular spacecraft loads, to propulsion valves and actuation of pyrotechnic devices. The number of switching elements per load, pyrotechnic firin gs and valve drivers can be scaled depending on mission needs. Teleme try data is available from the switch module via an I2C data bus. The DSA power system components enable power management and distribution for a variety of power buses and power system architectures employing different types of energy storage and power sources. This paper will describe each power ASIC#s key performance characteristics as well a s recent prototype test results. The power switching module test results will be discussed and will demonstrate its versatility as a multip urpose switch. Finally, the combination of these components will illu strate some of the possible power system architectures achievable fro m small single string systems to large fully redundant systems.

  2. Thermal design, analysis and comparison on three concepts of space solar power satellite

    NASA Astrophysics Data System (ADS)

    Yang, Chen; Hou, Xinbin; Wang, Li

    2017-08-01

    Space solar power satellites (SSPS) have been widely studied as systems for collecting solar energy in space and transmitting it wirelessly to earth. A previously designed planar SSPS concept collects solar power in two huge arrays and then transmits it through one side of the power-conduction joint to the antenna. However, the system's one group of power-conduction joints may induce a single point of failure. As an SSPS concept, the module symmetrical concentrator (MSC) architecture has many advantages. This architecture can help avoid the need for a large, potentially failure-prone conductive rotating joint and limit wiring mass. However, the thermal control system has severely restricted the rapid development of MSC, especially in the sandwich module. Because of the synchronous existence of five suns concentration and solar external heat flux, the sandwich module will have a very high temperature, which will surpass the permissible temperature of the solar cells. Recently, an alternate multi-rotary joints (MR) SSPS concept was designed by the China Academy of Space Technology (CAST). This system has multiple joints to avoid the problem of a single point of failure. Meanwhile, this concept has another advantage for reducing the high power and heat removal in joints. It is well known to us that, because of the huge external flux in SSPS, the thermal management sub-system is an important component that cannot be neglected. Based on the three SSPS concepts, this study investigated the thermal design and analysis of a 1-km, gigawatt-level transmitting antenna in SSPS. This study compares the thermal management sub-systems of power-conduction joints in planar and MR SSPS. Moreover, the study considers three classic thermal control architectures of the MSC's sandwich module: tile, step, and separation. The study also presents an elaborate parameter design, analysis and discussion of step architecture. Finally, the results show the thermal characteristics of each SSPS concept, and the three concepts are compared. The design layouts, analysis results and parameter discussions of the thermal management sub-system proposed in this study can help inform future SSPS thermal designs.

  3. A Low Power IoT Sensor Node Architecture for Waste Management Within Smart Cities Context.

    PubMed

    Cerchecci, Matteo; Luti, Francesco; Mecocci, Alessandro; Parrino, Stefano; Peruzzi, Giacomo; Pozzebon, Alessandro

    2018-04-21

    This paper focuses on the realization of an Internet of Things (IoT) architecture to optimize waste management in the context of Smart Cities. In particular, a novel typology of sensor node based on the use of low cost and low power components is described. This node is provided with a single-chip microcontroller, a sensor able to measure the filling level of trash bins using ultrasounds and a data transmission module based on the LoRa LPWAN (Low Power Wide Area Network) technology. Together with the node, a minimal network architecture was designed, based on a LoRa gateway, with the purpose of testing the IoT node performances. Especially, the paper analyzes in detail the node architecture, focusing on the energy saving technologies and policies, with the purpose of extending the batteries lifetime by reducing power consumption, through hardware and software optimization. Tests on sensor and radio module effectiveness are also presented.

  4. A Low Power IoT Sensor Node Architecture for Waste Management Within Smart Cities Context

    PubMed Central

    Cerchecci, Matteo; Luti, Francesco; Mecocci, Alessandro; Parrino, Stefano; Peruzzi, Giacomo

    2018-01-01

    This paper focuses on the realization of an Internet of Things (IoT) architecture to optimize waste management in the context of Smart Cities. In particular, a novel typology of sensor node based on the use of low cost and low power components is described. This node is provided with a single-chip microcontroller, a sensor able to measure the filling level of trash bins using ultrasounds and a data transmission module based on the LoRa LPWAN (Low Power Wide Area Network) technology. Together with the node, a minimal network architecture was designed, based on a LoRa gateway, with the purpose of testing the IoT node performances. Especially, the paper analyzes in detail the node architecture, focusing on the energy saving technologies and policies, with the purpose of extending the batteries lifetime by reducing power consumption, through hardware and software optimization. Tests on sensor and radio module effectiveness are also presented. PMID:29690552

  5. Implementation of a virtual link between power system testbeds at Marshall Spaceflight Center and Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Doreswamy, Rajiv

    1990-01-01

    The Marshall Space Flight Center (MSFC) owns and operates a space station module power management and distribution (SSM-PMAD) testbed. This system, managed by expert systems, is used to analyze and develop power system automation techniques for Space Station Freedom. The Lewis Research Center (LeRC), Cleveland, Ohio, has developed and implemented a space station electrical power system (EPS) testbed. This system and its power management controller are representative of the overall Space Station Freedom power system. A virtual link is being implemented between the testbeds at MSFC and LeRC. This link would enable configuration of SSM-PMAD as a load center for the EPS testbed at LeRC. This connection will add to the versatility of both systems, and provide an environment of enhanced realism for operation of both testbeds.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, Gilberto; Bennion, Kevin; King, Charles

    Thermal management strategies for automotive power electronic systems have evolved over time to reduce system cost and to improve reliability and thermal performance. In this study, we characterized the power electronic thermal management systems of two electric-drive vehicles--the 2012 Nissan LEAF and 2014 Honda Accord Hybrid. Tests were conducted to measure the insulated-gate bipolar transistor-to-coolant thermal resistances for both steady-state and transient conditions at various coolant flow rates. Water-ethylene glycol at a temperature of 65 degrees C was used as the coolant for these experiments. Computational fluid dynamics and finite element analysis models of the vehicle's power electronics thermal managementmore » system were then created and validated using experimentally obtained results. Results indicate that the Accord module provides lower steady-state thermal resistance as compared with the LEAF module. However, the LEAF design may provide improved performance in transient conditions and may have cost benefits.« less

  7. DC-based smart PV-powered home energy management system based on voltage matching and RF module

    PubMed Central

    Hasan, W. Z. W.

    2017-01-01

    The main tool for measuring system efficiency in homes and offices is the energy monitoring of the household appliances’ consumption. With the help of GUI through a PC or smart phone, there are various applications that can be developed for energy saving. This work describes the design and prototype implementation of a wireless PV-powered home energy management system under a DC-distribution environment, which allows remote monitoring of appliances’ energy consumptions and power rate quality. The system can be managed by a central computer, which obtains the energy data based on XBee RF modules that access the sensor measurements of system components. The proposed integrated prototype framework is characterized by low power consumption due to the lack of components and consists of three layers: XBee-based circuit for processing and communication architecture, solar charge controller, and solar-battery-load matching layers. Six precise analogue channels for data monitoring are considered to cover the energy measurements. Voltage, current and temperature analogue signals were accessed directly from the remote XBee node to be sent in real time with a sampling frequency of 11–123 Hz to capture the possible surge power. The performance shows that the developed prototype proves the DC voltage matching concept and is able to provide accurate and precise results. PMID:28934271

  8. DC-based smart PV-powered home energy management system based on voltage matching and RF module.

    PubMed

    Sabry, Ahmad H; Hasan, W Z W; Ab Kadir, Mza; Radzi, M A M; Shafie, S

    2017-01-01

    The main tool for measuring system efficiency in homes and offices is the energy monitoring of the household appliances' consumption. With the help of GUI through a PC or smart phone, there are various applications that can be developed for energy saving. This work describes the design and prototype implementation of a wireless PV-powered home energy management system under a DC-distribution environment, which allows remote monitoring of appliances' energy consumptions and power rate quality. The system can be managed by a central computer, which obtains the energy data based on XBee RF modules that access the sensor measurements of system components. The proposed integrated prototype framework is characterized by low power consumption due to the lack of components and consists of three layers: XBee-based circuit for processing and communication architecture, solar charge controller, and solar-battery-load matching layers. Six precise analogue channels for data monitoring are considered to cover the energy measurements. Voltage, current and temperature analogue signals were accessed directly from the remote XBee node to be sent in real time with a sampling frequency of 11-123 Hz to capture the possible surge power. The performance shows that the developed prototype proves the DC voltage matching concept and is able to provide accurate and precise results.

  9. Power Extension Package (PEP) system definition extension, orbital service module systems analysis study. Volume 10: PEP project plan

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Contents: project plan summary; project and mission objectives; related studies and technology support activities; technical summary; management; procurement approach; project definition items and schedule; resources; management review; controlled items; and safety, reliability, and quality assurance.

  10. Ground Vehicle Power and Mobility (GVPM) Powertrain Overview

    DTIC Science & Technology

    2011-08-11

    efficient on-board electrical power generation • Improved Fuel Efficiency • Thermoelectric Waste Heat Recovery • Advanced Engine Cycle Demo...Thermal Management • Militarized Power train Control Module and strategies devices for military vehicle transmissions FY11 FY12 FY13...Transmission): - Medium Combat Application (20-40 tons) - Medium Tactical Application (15-30 tons) Thermoelectric Waste Heat Recovery Energy Analysis

  11. Air pollution effects due to deregulation of the electric industry

    NASA Astrophysics Data System (ADS)

    Davoodi, Khojasteh Riaz

    The Energy Policy Act of 1992 introduced the concept of open-access into the electric utility industry which allows privately-owned utilities to transmit power produced by non-utility generators and independent power producers (IPPs). In April 1996, the Federal Energy Regulatory Commission (FERC) laid down the final rules (Orders No. 888 & No. 889), which required utilities to open their transmission lines to any power producer and charge them no more than what they pay for the use of their own lines. These rules set the stage for the retail sale of electricity to industrial, commercial and residential utility customers; non-utility generators (Nugs); and power marketers. These statutory, regulatory and administrative changes create for the electric utility industry two different forces that contradict each other. The first is the concept of competition among utility companies; this places a greater emphasis on electric power generation cost control and affects generation/fuel mix selection and demand side management (DSM) activities. The second force, which is converse to the first, is that utilities are major contributors to the air pollution burden in the United States and environmental concerns are forcing them to reduce emissions of air pollutants by using more environmentally friendly fuels and implementing energy saving programs. This study evaluates the impact of deregulation within the investor owned electric utilities and how this deregulation effects air quality by investigating the trend in demand side management programs and generation/fuel mix. A survey was conducted of investor owned utilities and independent power producers. The results of the survey were analyzed by analysis of variance and regression analysis to determine the impact to Air Pollution. An air Quality Impact model was also developed in this study. This model consists of six modules: (1) demand side management and (2) consumption of coal, (3) gas, (4) renewable, (5) oil and (6) nuclear sources until the year 2005. Each module was analyzed separately and the result from each module was transferred into the Air Quality Impact model. The model assesses the changes in electricity generation within each module due to deregulation and these changes can then be correlated to the emission of air pollutants in the United States.

  12. Medlay: A Reconfigurable Micro-Power Management to Investigate Self-Powered Systems.

    PubMed

    Kokert, Jan; Beckedahl, Tobias; Reindl, Leonhard M

    2018-01-17

    In self-powered microsystems, a power management is essential to extract, transfer and regulate power from energy harvesting sources to loads such as sensors. The challenge is to consider all of the different structures and components available and build the optimal power management on a microscale. The purpose of this paper is to streamline the design process by creating a novel reconfigurable testbed called Medlay. First, we propose a uniform interface for management functions e.g., power conversion, energy storing and power routing. This interface results in a clear layout because power and status pins are strictly separated, and inputs and outputs have fixed positions. Medlay is the ready-to-use and open-hardware platform based on the interface. It consists of a base board and small modules incorporating e.g., dc-dc converters, power switches and supercapacitors. Measurements confirm that Medlay represents a system on one circuit board, as parasitic effects of the interconnections are negligible. The versatility regarding different setups on the testbed is determined to over 250,000 combinations by layout graph grammar. Lastly, we underline the applicability by recreating three state-of-the-art systems with the testbed. In conclusion, Medlay facilitates building and testing power management in a very compact, clear and extensible fashion.

  13. Medlay: A Reconfigurable Micro-Power Management to Investigate Self-Powered Systems

    PubMed Central

    Beckedahl, Tobias

    2018-01-01

    In self-powered microsystems, a power management is essential to extract, transfer and regulate power from energy harvesting sources to loads such as sensors. The challenge is to consider all of the different structures and components available and build the optimal power management on a microscale. The purpose of this paper is to streamline the design process by creating a novel reconfigurable testbed called Medlay. First, we propose a uniform interface for management functions e.g., power conversion, energy storing and power routing. This interface results in a clear layout because power and status pins are strictly separated, and inputs and outputs have fixed positions. Medlay is the ready-to-use and open-hardware platform based on the interface. It consists of a base board and small modules incorporating e.g., dc-dc converters, power switches and supercapacitors. Measurements confirm that Medlay represents a system on one circuit board, as parasitic effects of the interconnections are negligible. The versatility regarding different setups on the testbed is determined to over 250,000 combinations by layout graph grammar. Lastly, we underline the applicability by recreating three state-of-the-art systems with the testbed. In conclusion, Medlay facilitates building and testing power management in a very compact, clear and extensible fashion. PMID:29342110

  14. Triboelectric Nanogenerator Enabled Body Sensor Network for Self-Powered Human Heart-Rate Monitoring.

    PubMed

    Lin, Zhiming; Chen, Jun; Li, Xiaoshi; Zhou, Zhihao; Meng, Keyu; Wei, Wei; Yang, Jin; Wang, Zhong Lin

    2017-09-26

    Heart-rate monitoring plays a critical role in personal healthcare management. A low-cost, noninvasive, and user-friendly heart-rate monitoring system is highly desirable. Here, a self-powered wireless body sensor network (BSN) system is developed for heart-rate monitoring via integration of a downy-structure-based triboelectric nanogenerator (D-TENG), a power management circuit, a heart-rate sensor, a signal processing unit, and Bluetooth module for wireless data transmission. By converting the inertia energy of human walking into electric power, a maximum power of 2.28 mW with total conversion efficiency of 57.9% was delivered at low operation frequency, which is capable of immediately and sustainably driving the highly integrated BSN system. The acquired heart-rate signal by the sensor would be processed in the signal process circuit, sent to an external device via the Bluetooth module, and displayed on a personal cell phone in a real-time manner. Moreover, by combining a TENG-based generator and a TENG-based sensor, an all-TENG-based wireless BSN system was developed, realizing continuous and self-powered heart-rate monitoring. This work presents a potential method for personal heart-rate monitoring, featured as being self-powered, cost-effective, noninvasive, and user-friendly.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, Gilbert

    The objective for this project is to develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter). Device- and system-level thermal analyses are conducted to determine the thermal limitations of current automotive power modules under elevated device temperature conditions. Additionally, novel cooling concepts and material selection will be evaluated to enable high-temperature silicon and WBG devices in power electronics components. WBG devices (silicon carbide [SiC], gallium nitride [GaN]) promise to increase efficiency, but will be driven as hard as possible. This creates challenges for thermal management and reliability.

  16. Managing autonomy levels in the SSM/PMAD testbed. [Space Station Power Management and Distribution

    NASA Technical Reports Server (NTRS)

    Ashworth, Barry R.

    1990-01-01

    It is pointed out that when autonomous operations are mixed with those of a manual nature, concepts concerning the boundary of operations and responsibility become clouded. The space station module power management and distribution (SSM/PMAD) automation testbed has the need for such mixed-mode capabilities. The concept of managing the SSM/PMAD testbed in the presence of changing levels of autonomy is examined. A knowledge-based approach to implementing autonomy management in the distributed SSM/PMAD utilizing a centralized planning system is presented. Its knowledge relations and system-wide interactions are discussed, along with the operational nature of the currently functioning SSM/PMAD knowledge-based systems.

  17. Innovative power management, attitude determination and control tile for CubeSat standard NanoSatellites

    NASA Astrophysics Data System (ADS)

    Ali, Anwar; Mughal, M. Rizwan; Ali, Haider; Reyneri, Leonardo

    2014-03-01

    Electric power supply (EPS) and attitude determination and control subsystem (ADCS) are the most essential elements of any aerospace mission. Efficient EPS and precise ADCS are the core of any spacecraft mission. So keeping in mind their importance, they have been integrated and developed on a single tile called CubePMT module. Modular power management tiles (PMTs) are already available in the market but they are less efficient, heavier in weight, consume more power and contain less number of subsystems. Commercial of the shelf (COTS) components have been used for CubePMT implementation which are low cost and easily available from the market. CubePMT is developed on the design approach of AraMiS architecture: a project developed at Politecnico di Torino that provides low cost and higher performance space missions with dimensions larger than CubeSats. The feature of AraMiS design approach is its modularity. These modules can be reused for multiple missions which helps in significant reduction of the overall budget, development and testing time. One has just to reassemble the required subsystems to achieve the targeted specific mission.

  18. Systems and methods for detecting and processing

    DOEpatents

    Johnson, Michael M [Livermore, CA; Yoshimura, Ann S [Tracy, CA

    2006-03-28

    Embodiments of the present invention provides systems and method for detecting. Sensing modules are provided in communication with one or more detectors. In some embodiments, detectors are provided that are sensitive to chemical, biological, or radiological agents. Embodiments of sensing modules include processing capabilities to analyze, perform computations on, and/or run models to predict or interpret data received from one or more detectors. Embodiments of sensing modules form various network configurations with one another and/or with one or more data aggregation devices. Some embodiments of sensing modules include power management functionalities.

  19. Highly Automated Module Production Incorporating Advanced Light Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perelli-Minetti, Michael; Roof, Kyle

    2015-08-11

    The objective was to enable a high volume, cost effective solution for increasing the amount of light captured by PV modules through utilization of an advanced Light Re-directing Film and to follow a phased approach to develop and implement this new technology in order to achieve an expected power gain of up to 12 watts per module. Full size PV modules were manufactured using a new Light Redirecting Film (LRF) material applied to two different areas of PV modules in order to increase the amount of light captured by the modules. One configuration involved applying thin strips of LRF filmmore » over the tabbing ribbon on the cells in order to redirect the light that is normally absorbed by the tabbing ribbon to the active areas of the cells. A second configuration involved applying thin strips of LRF film over the white spaces between cells within a module in order to capture some of the light that is normally reflected from the white areas back through the front glass of the modules. Significant power increases of 1.4% (3.9 watts) and 1.0% (3.2 watts), respectively, compared to standard PV modules were measured under standard test conditions. The performance of PV modules with LRF applied to the tabbing ribbon was modeled. The results showed that the power increase provided by LRF depended greatly on the angle of incident light with the optimum performance only occurring when the light was within a narrow range of being perpendicular to the solar module. The modeling showed that most of the performance gain would be lost when the angle of incident light was greater than 28 degrees off axis. This effect made the orientation of modules with LRF applied to tabbing ribbons very important as modules mounted in “portrait” mode were predicted to provide little to no power gain from LRF under real world conditions. Based on these results, modules with LRF on tabbing ribbons would have to be mounted in “landscape” mode to realize a performance advantage. In addition, modeling showed that under diffuse lighting conditions such as when the sky is overcast, there would be no significant performance advantage for modules with LRF. Modules were sent to an outside contractor to measure the power performance under different angles of incident light in order to validate the modeling results. The measured data agreed very well with the modeling predictions and showed that the power gain for modules with LRF applied to tabbing ribbons was completely lost at an angle of 25 degrees off of perpendicular. At even larger angles, the power was lower than standard modules. From 35 degrees to 55 degrees off axis, the power loss was about 1.4% or equal to the power gain at the optimum condition of perfectly on-axis light.« less

  20. TD-LTE Wireless Private Network QoS Transmission Protection

    NASA Astrophysics Data System (ADS)

    Zhang, Jianming; Cheng, Chao; Wu, Zanhong

    With the commencement of construction of the smart grid, the demand power business for reliability and security continues to improve, the reliability transmission of power TD-LTE Wireless Private Network are more and more attention. For TD-LTE power private network, it can provide different QoS services according to the user's business type, to protect the reliable transmission of business. This article describes in detail the AF module of PCC in the EPC network, specifically introduces set up AF module station and QoS mechanisms in the EPS load, fully considers the business characteristics of the special power network, establishing a suitable architecture for mapping QoS parameters, ensuring the implementation of each QoS business. Through using radio bearer management, we can achieve the reliable transmission of each business on physical channel.

  1. Space station common module power system network topology and hardware development

    NASA Technical Reports Server (NTRS)

    Landis, D. M.

    1985-01-01

    Candidate power system newtork topologies for the space station common module are defined and developed and the necessary hardware for test and evaluation is provided. Martin Marietta's approach to performing the proposed program is presented. Performance of the tasks described will assure systematic development and evaluation of program results, and will provide the necessary management tools, visibility, and control techniques for performance assessment. The plan is submitted in accordance with the data requirements given and includes a comprehensive task logic flow diagram, time phased manpower requirements, a program milestone schedule, and detailed descriptions of each program task.

  2. Advanced Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Perotti, J.

    2003-01-01

    Current and future requirements of the aerospace sensors and transducers field make it necessary for the design and development of new data acquisition devices and instrumentation systems. New designs are sought to incorporate self-health, self-calibrating, self-repair capabilities, allowing greater measurement reliability and extended calibration cycles. With the addition of power management schemes, state-of-the-art data acquisition systems allow data to be processed and presented to the users with increased efficiency and accuracy. The design architecture presented in this paper displays an innovative approach to data acquisition systems. The design incorporates: electronic health self-check, device/system self-calibration, electronics and function self-repair, failure detection and prediction, and power management (reduced power consumption). These requirements are driven by the aerospace industry need to reduce operations and maintenance costs, to accelerate processing time and to provide reliable hardware with minimum costs. The project's design architecture incorporates some commercially available components identified during the market research investigation like: Field Programmable Gate Arrays (FPGA) Programmable Analog Integrated Circuits (PAC IC) and Field Programmable Analog Arrays (FPAA); Digital Signal Processing (DSP) electronic/system control and investigation of specific characteristics found in technologies like: Electronic Component Mean Time Between Failure (MTBF); and Radiation Hardened Component Availability. There are three main sections discussed in the design architecture presented in this document. They are the following: (a) Analog Signal Module Section, (b) Digital Signal/Control Module Section and (c) Power Management Module Section. These sections are discussed in detail in the following pages. This approach to data acquisition systems has resulted in the assignment of patent rights to Kennedy Space Center under U.S. patent # 6,462,684. Furthermore, NASA KSC commercialization office has issued licensing rights to Circuit Avenue Netrepreneurs, LLC , a minority-owned business founded in 1999 located in Camden, NJ.

  3. Micro-Thermoelectric Generation Modules Fabricated with Low-Cost Mechanical Machining Processes

    NASA Astrophysics Data System (ADS)

    Liu, Dawei; Jin, A. J.; Peng, Wenbo; Li, Qiming; Gao, Hu; Zhu, Lianjun; Li, Fu; Zhu, Zhixiang

    2017-05-01

    Micro/small-scale thermoelectric generation modules are able to produce continuous, noise-free and reliable electricity power using low temperature differences that widely exist in nature or industry. These advantages bring them great application prospects in the fields of remote monitoring, microelectronics/micro-electromechanical systems (MEMS), medical apparatus and smart management system, which often require a power source free of maintenance and vibration. In this work, a prototypical thermoelectric module (12 mm × 12 mm × 0.8 mm) with 15 pairs of micro-scale thermoelectric legs (0.2 mm in width and 0.6 mm in height for each leg) is fabricated using a low-cost mechanical machining process. In this process, cutting and polishing are the main methods for the preparation of thermoelectric pairs from commercial polycrystalline materials and for the fabrication of electrode patterns. The as-fabricated module is tested for its power generation properties with the hot side heated by an electrical heater and the cold side by cold air. With the heater temperature of 375 K, the thermoelectric potential is about 9.1 mV, the short circuit current is about 14.5 mA, and the maximum output power is about 32.8 μW. The finite element method is applied to analyze the heat transfer of the module during our test. The temperature difference and heat flux are simulated, according to which the output powers at different temperatures are calculated, and the result is relatively consistent compared to the test results.

  4. Power Management System Design for Solar-Powered UAS

    DTIC Science & Technology

    2015-12-01

    PV cells would have their own MPPT modules, which would enable two major advantages. The first can be considered more important to land-based solar ...The efficiency of the PV array is represented by ηpv. R represents the solar irradiance, and θ represents the angle between the array and the sun...SYSTEM DESIGN FOR SOLAR -POWERED UAS by Robert T. Fauci III December 2015 Thesis Advisor: Alejandro Hernandez Co-Advisor: Kevin Jones

  5. SUNRAYCE 1995: Working safely with lead-acid batteries and photovoltaic power systems

    NASA Astrophysics Data System (ADS)

    Dephillips, M. P.; Moskowitz, P. D.; Fthenakis, V. M.

    1994-05-01

    This document is a power system and battery safety handbook for participants in the SUNRAYCE 95 solar powered electric vehicle program. The topics of the handbook include batteries, photovoltaic modules, safety equipment needed for working with sulfuric acid electrolyte and batteries, battery transport, accident response, battery recharging and ventilation, electrical risks on-board vehicle, external electrical risks, electrical risk management strategies, and general maintenance including troubleshooting, hydrometer check and voltmeter check.

  6. Minimizing forced outage risk in generator bidding

    NASA Astrophysics Data System (ADS)

    Das, Dibyendu

    Competition in power markets has exposed the participating companies to physical and financial uncertainties. Generator companies bid to supply power in a day-ahead market. Once their bids are accepted by the ISO they are bound to supply power. A random outage after acceptance of bids forces a generator to buy power from the expensive real-time hourly spot market and sell to the ISO at the set day-ahead market clearing price, incurring losses. A risk management technique is developed to assess this financial risk associated with forced outages of generators and then minimize it. This work presents a risk assessment module which measures the financial risk of generators bidding in an open market for different bidding scenarios. The day-ahead power market auction is modeled using a Unit Commitment algorithm and a combination of Normal and Cauchy distributions generate the real time hourly spot market. Risk profiles are derived and VaRs are calculated at 98 percent confidence level as a measure of financial risk. Risk Profiles and VaRs help the generators to analyze the forced outage risk and different factors affecting it. The VaRs and the estimated total earning for different bidding scenarios are used to develop a risk minimization module. This module will develop a bidding strategy of the generator company such that its estimated total earning is maximized keeping the VaR below a tolerable limit. This general framework of a risk management technique for the generating companies bidding in competitive day-ahead market can also help them in decisions related to building new generators.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waye, Scot

    Power electronics that use high-temperature devices pose a challenge for thermal management. With the devices running at higher temperatures and having a smaller footprint, the heat fluxes increase from previous power electronic designs. This project overview presents an approach to examine and design thermal management strategies through cooling technologies to keep devices within temperature limits, dissipate the heat generated by the devices and protect electrical interconnects and other components for inverter, converter, and charger applications. This analysis, validation, and demonstration intends to take a multi-scale approach over the device, module, and system levels to reduce size, weight, and cost.

  8. International Space Station Electric Power System Performance Code-SPACE

    NASA Technical Reports Server (NTRS)

    Hojnicki, Jeffrey; McKissock, David; Fincannon, James; Green, Robert; Kerslake, Thomas; Delleur, Ann; Follo, Jeffrey; Trudell, Jeffrey; Hoffman, David J.; Jannette, Anthony; hide

    2005-01-01

    The System Power Analysis for Capability Evaluation (SPACE) software analyzes and predicts the minute-by-minute state of the International Space Station (ISS) electrical power system (EPS) for upcoming missions as well as EPS power generation capacity as a function of ISS configuration and orbital conditions. In order to complete the Certification of Flight Readiness (CoFR) process in which the mission is certified for flight each ISS System must thoroughly assess every proposed mission to verify that the system will support the planned mission operations; SPACE is the sole tool used to conduct these assessments for the power system capability. SPACE is an integrated power system model that incorporates a variety of modules tied together with integration routines and graphical output. The modules include orbit mechanics, solar array pointing/shadowing/thermal and electrical, battery performance, and power management and distribution performance. These modules are tightly integrated within a flexible architecture featuring data-file-driven configurations, source- or load-driven operation, and event scripting. SPACE also predicts the amount of power available for a given system configuration, spacecraft orientation, solar-array-pointing conditions, orbit, and the like. In the source-driven mode, the model must assure that energy balance is achieved, meaning that energy removed from the batteries must be restored (or balanced) each and every orbit. This entails an optimization scheme to ensure that energy balance is maintained without violating any other constraints.

  9. Power-efficient dual-rate optical transceiver.

    PubMed

    Zuo, Yongrong; Kiamiley, Fouad E; Wang, Xiaoqing; Gui, Ping; Ekman, Jeremy; Wang, Xingle; McFadden, Michael J; Haney, Michael W

    2005-11-20

    A dual-rate (2 Gbit/s and 100 Mbit/s) optical transceiver designed for power-efficient connections within and between modern high-speed digital systems is described. The transceiver can dynamically adjust its data rate according to performance requirements, allowing for power-on-demand operation. Dynamic power management permits energy saving and lowers device operating temperatures, improving the reliability and lifetime of optoelectronic-devices such as vertical-cavity surface-emitting lasers (VCSELs). To implement dual-rate functionality, we include in the transmitter and receiver circuits separate high-speed and low-power data path modules. The high-speed module is designed for gigabit operation to achieve high bandwidth. A simpler low-power module is designed for megabit data transmission with low power consumption. The transceiver is fabricated in a 0.5 microm silicon-on-sapphire complementary metal-oxide semiconductor. The VCSEL and photodetector devices are attached to the transceiver's integrated circuit by flip-chip bonding. A free-space optical link system is constructed to demonstrate correct dual-rate functionality. Experimental results show reliable link operation at 2 Gbit/s and 100 Mbit/s data transfer rates with approximately 104 and approximately 9 mW power consumption, respectively. The transceiver's switching time between these two data rates is demonstrated as 10 micros, which is limited by on-chip register reconfiguration time. Improvement of this switching time can be obtained by use of dedicated input-output pads for dual-rate control signals.

  10. Status of Japanese Experiment Module (JEM) activities

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The current status of the JEM activities are presented in graphic form. The JEM spacecraft configuration is presented. The JEM configuration consist of the Pressurized Module, the Exposed Facility, the Experiment Logistics Module which consist of a pressurized section and an exposed section; and the Remote Manipulator System. The master schedule of the space station is given. Also the development tests of the structure and mechanism, the electrical power system, the data management system, the thermal control system, the environment control system, the experiment support system, and the remote manipulator system are listed.

  11. Photovoltaic stand-alone modular systems, phase 2

    NASA Technical Reports Server (NTRS)

    Naff, G. J.; Marshall, N. A.

    1983-01-01

    The final hardware and system qualification phase of a two part stand-alone photovoltaic (PV) system development is covered. The final design incorporated modular, power blocks capable of expanding incrementally from 320 watts to twenty kilowatts (PK). The basic power unit (PU) was nominally rated 1.28 kWp. The controls units, power collection buses and main lugs, electrical protection subsystems, power switching, and load management circuits are housed in a common control enclosure. Photo-voltaic modules are electrically connected in a horizontal daisy-chain method via Amp Solarlok plugs mating with compatible connectors installed on the back side of each photovoltaic module. A pair of channel rails accommodate the mounting of the modules into a frameless panel support structure. Foundations are of a unique planter (tub-like) configuration to allow for world-wide deployment without restriction as to types of soil. One battery string capable of supplying approximately 240 ampere hours nominal of carryover power is specified for each basic power unit. Load prioritization and shedding circuits are included to protect critical loads and selectively shed and defer lower priority or noncritical power demands. The baseline system, operating at approximately 2 1/2 PUs (3.2 kW pk.) was installed and deployed. Qualification was successfully complete in March 1983; since that time, the demonstration system has logged approximately 3000 hours of continuous operation under load without major incident.

  12. Photovoltaic stand-alone modular systems, phase 2

    NASA Astrophysics Data System (ADS)

    Naff, G. J.; Marshall, N. A.

    1983-07-01

    The final hardware and system qualification phase of a two part stand-alone photovoltaic (PV) system development is covered. The final design incorporated modular, power blocks capable of expanding incrementally from 320 watts to twenty kilowatts (PK). The basic power unit (PU) was nominally rated 1.28 kWp. The controls units, power collection buses and main lugs, electrical protection subsystems, power switching, and load management circuits are housed in a common control enclosure. Photo-voltaic modules are electrically connected in a horizontal daisy-chain method via Amp Solarlok plugs mating with compatible connectors installed on the back side of each photovoltaic module. A pair of channel rails accommodate the mounting of the modules into a frameless panel support structure. Foundations are of a unique planter (tub-like) configuration to allow for world-wide deployment without restriction as to types of soil. One battery string capable of supplying approximately 240 ampere hours nominal of carryover power is specified for each basic power unit. Load prioritization and shedding circuits are included to protect critical loads and selectively shed and defer lower priority or noncritical power demands. The baseline system, operating at approximately 2 1/2 PUs (3.2 kW pk.) was installed and deployed. Qualification was successfully complete in March 1983; since that time, the demonstration system has logged approximately 3000 hours of continuous operation under load without major incident.

  13. System-wide power management control via clock distribution network

    DOEpatents

    Coteus, Paul W.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Reed, Don D.

    2015-05-19

    An apparatus, method and computer program product for automatically controlling power dissipation of a parallel computing system that includes a plurality of processors. A computing device issues a command to the parallel computing system. A clock pulse-width modulator encodes the command in a system clock signal to be distributed to the plurality of processors. The plurality of processors in the parallel computing system receive the system clock signal including the encoded command, and adjusts power dissipation according to the encoded command.

  14. Development of an automated electrical power subsystem testbed for large spacecraft

    NASA Technical Reports Server (NTRS)

    Hall, David K.; Lollar, Louis F.

    1990-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed two autonomous electrical power system breadboards. The first breadboard, the autonomously managed power system (AMPS), is a two power channel system featuring energy generation and storage and 24-kW of switchable loads, all under computer control. The second breadboard, the space station module/power management and distribution (SSM/PMAD) testbed, is a two-bus 120-Vdc model of the Space Station power subsystem featuring smart switchgear and multiple knowledge-based control systems. NASA/MSFC is combining these two breadboards to form a complete autonomous source-to-load power system called the large autonomous spacecraft electrical power system (LASEPS). LASEPS is a high-power, intelligent, physical electrical power system testbed which can be used to derive and test new power system control techniques, new power switching components, and new energy storage elements in a more accurate and realistic fashion. LASEPS has the potential to be interfaced with other spacecraft subsystem breadboards in order to simulate an entire space vehicle. The two individual systems, the combined systems (hardware and software), and the current and future uses of LASEPS are described.

  15. Skylab technology electrical power system

    NASA Technical Reports Server (NTRS)

    Woosley, A. P.; Smith, O. B.; Nassen, H. S.

    1974-01-01

    The solar array/battery power systems for the Skylab vehicle were designed to operate in a solar inertial pointing mode to provide power continuously to the Skylab. Questions of power management are considered, taking into account difficulties caused by the reduction in power system performance due to the effects of structural failure occurring during the launching process. The performance of the solar array of the Apollo Telescope Mount Power System is discussed along with the Orbital Workshop solar array performance and the Airlock Module power conditioning group performance. A list is presented of a number of items which have been identified during mission monitoring and are recommended for electrical power system concepts, designs, and operation for future spacecraft.

  16. Superlattice-based thin-film thermoelectric modules with high cooling fluxes

    PubMed Central

    Bulman, Gary; Barletta, Phil; Lewis, Jay; Baldasaro, Nicholas; Manno, Michael; Bar-Cohen, Avram; Yang, Bao

    2016-01-01

    In present-day high-performance electronic components, the generated heat loads result in unacceptably high junction temperatures and reduced component lifetimes. Thermoelectric modules can, in principle, enhance heat removal and reduce the temperatures of such electronic devices. However, state-of-the-art bulk thermoelectric modules have a maximum cooling flux qmax of only about 10 W cm−2, while state-of-the art commercial thin-film modules have a qmax <100 W cm−2. Such flux values are insufficient for thermal management of modern high-power devices. Here we show that cooling fluxes of 258 W cm−2 can be achieved in thin-film Bi2Te3-based superlattice thermoelectric modules. These devices utilize a p-type Sb2Te3/Bi2Te3 superlattice and n-type δ-doped Bi2Te3−xSex, both of which are grown heteroepitaxially using metalorganic chemical vapour deposition. We anticipate that the demonstration of these high-cooling-flux modules will have far-reaching impacts in diverse applications, such as advanced computer processors, radio-frequency power devices, quantum cascade lasers and DNA micro-arrays. PMID:26757675

  17. Design and engineering analysis of material procurement mobile operation platform

    NASA Astrophysics Data System (ADS)

    Ding, H.; Li, J.

    2014-03-01

    The material procurement mobile operation platform (MPMOP) consists of six modules, including network operation, truck transportation, remote communication, satellite positioning, power supply and environment regulation. The MPMOP is designed to have six major functions, including online procurement, command control, remote communication, satellite positioning, information management and auxiliary decision. The paper implements an engineering analysis on the MPMOP from three aspects, including transportation transfinite, centroid, and power dissipation.

  18. Battery management systems (BMS) optimization for electric vehicles (EVs) in Malaysia

    NASA Astrophysics Data System (ADS)

    Salehen, P. M. W.; Su'ait, M. S.; Razali, H.; Sopian, K.

    2017-04-01

    Following the UN Climate Change Conference 2009 in Copenhagen, Denmark, Malaysia seriously committed on "Go Green" campaign with the aim to reduce 40% GHG emission by the year 2020. Therefore, the National Green Technology Policy has been legalised in 2009 with transportation as one of its focused sectors, which include hybrid (HEVs), electric vehicles (EVs) and fuel cell vehicles with the purpose of to keep up with the worst scenario. While the number of registered cars has been increasing by 1 million yearly, the amount has doubled in the last two decades. Consequently, CO2 emission in Malaysia reaches up to 97.1% and will continue to increase mainly due to the activities in the transportation sector. Nevertheless, Malaysia is now moving towards on green car which battery-based EVs. This type of transportation mainly needs power performance optimization, which is controlled by the Batteries Management System (BMS). BMS is an essential module which leads to reliable power management, optimal power performance and safe vehicle that lead back for power optimization in EVs. Thus, this paper proposes power performance optimization for various setups of lithium-ion cathode with graphene anode using MATLAB/SIMULINK software for better management performance and extended EVs driving range.

  19. Evaluation of 3D printed optofluidic smart glass prototypes.

    PubMed

    Wolfe, Daniel; Goossen, K W

    2018-01-22

    Smart glass or smart windows are an innovative technology used for thermal management, energy efficiency, and privacy applications. Notable commercially available smart glass relies on an electric stimuli to modulate the glass from a transparent to a translucent mode of operation. However, the current market technologies, such as electrochromic, polymer dispersed liquid crystal, and suspended particle devices are expensive and suffer from solar absorption, poor transmittance modulation, and in some cases, continuous power consumption. The authors of this paper present a novel optofluidic smart glass prototype capable of modulating visible light transmittance from 8% to 85%.

  20. Agent-based power sharing scheme for active hybrid power sources

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenhua

    The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles.

  1. Advanced medium-voltage bidirectional dc-dc conversion systems for future electric energy delivery and management systems

    NASA Astrophysics Data System (ADS)

    Fan, Haifeng

    2011-12-01

    The distributed renewable energy generation and utilization are constantly growing, and are expected to be integrated with the conventional grid. The growing pressure for innovative solutions will demand power electronics to take an even larger role in future electric energy delivery and management systems, since power electronics are required for the conversion and control of electric energy by most dispersed generation systems Furthermore, power electronics systems can provide additional intelligent energy management, grid stability and power quality capabilities. Medium-voltage isolated dc-dc converter will become one of the key interfaces for grid components with moderate power ratings. To address the demand of medium voltage (MV) and high power capability for future electric energy delivery and management systems, the power electronics community and industry have been reacting in two different ways: developing semiconductor technology or directly connecting devices in series/parallel to reach higher nominal voltages and currents while maintaining conventional converter topologies; and by developing new converter topologies with traditional semiconductor technology, known as multilevel converters or modular converters. The modular approach uses the well-known, mature, and cheaper power semiconductor devices by adopting new converter topologies. The main advantages of the modular approach include: significant improvement in reliability by introducing desired level of redundancy; standardization of components leading to reduction in manufacturing cost and time; power systems can be easily reconfigured to support varying input-output specifications; and possibly higher efficiency and power density of the overall system. Input-series output-parallel (ISOP) modular configuration is a good choice to realize MV to low voltage (LV) conversion for utility application. However, challenges still remain. First of all, for the high-frequency MV utility application, the low switching loss and conduction loss are must-haves for high efficiency, while bidirectional power flow capability is a must for power management requirement. To address the demand, the phase-shift dual-halfbridge (DHB) is proposed as the constituent module of ISOP configuration for MV application. The proposed ISOP DHB converter employs zero-voltage-switching (ZVS) technique combined with LV MOSFETs to achieve low switching and conduction losses under high frequency operation, and therefore high efficiency and high power density, and bidirectional power flow as well. Secondly, a large load range of high efficiency is desired rather than only a specific load point due to the continuous operation and large load variation range of utility application, which is of high importance because of the rising energy cost. This work proposes a novel DHB converter with an adaptive commutation inductor. By utilizing an adaptive inductor as the main energy transfer element, the output power can be controlled by not only the phase shift but also the commutation inductance, which allows the circulating energy to be optimized for different load conditions to maintain ZVS under light load conditions and minimize additional conduction losses under heavy load conditions as well. As a result, the efficiency at both light and heavy load can be significantly improved compared with the conventional DHB converter, and therefore extended high-efficiency range can be achieved. In addition, current stress of switch devices can be reduced. The theoretical analysis is presented and validated by the experimental results on a 50 kHz, 1 kW dc-dc converter module. Thirdly, input-voltage sharing and output-current sharing are critical to assure the advantages of the ISOP modular configuration. To solve this issue, an identically distributed control scheme is proposed in this work. The proposed control scheme, using only one distributed voltage loop to realize both input-voltage and output-current sharing, provides plug-and-play capability, possible high-level fault tolerance, and easy implementation. Another unique advantage of the proposed ISOP DHB converter is the power rating can be easily extended further by directly connecting multiple ISOP DHB converters in input-parallel-outparallel (IPOP) while no additional control is needed. The proposed control scheme is elaborated using the large-signal average model. Further, the stability of the control schemes is analyzed in terms of the constituent modules' topology as well as the configuration, and then an important fact that the stability of control scheme depends on not only the configuration but also the constituent module topology is first revealed in this work. Finally, the simulation and experimental results of an ISOP DHB converter consisting of three modules are presented to verify the proposed control scheme and the high frequency high efficiency operation.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, Gilbert; Bennion, Kevin

    This project will develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter designs). The use of WBG-based devices in automotive power electronics will improve efficiency and increase driving range in electric-drive vehicles; however, the implementation of this technology is limited, in part, due to thermal issues. This project will develop system-level thermal models to determine the thermal limitations of current automotive power modules under elevated device temperature conditions. Additionally, novel cooling concepts and material selection will be evaluated to enable high-temperature silicon and WBG devices in power electronics components.more » WBG devices (silicon carbide [SiC], gallium nitride [GaN]) promise to increase efficiency, but will be driven as hard as possible. This creates challenges for thermal management and reliability.« less

  3. Numerical study on the thermal management system of a liquid metal battery module

    NASA Astrophysics Data System (ADS)

    Guo, Zhenlin; Xu, Cheng; Li, Wei; Zhu, Fangfang; Li, Haomiao; Wang, Kangli; Cheng, Shijie; Jiang, Kai

    2018-07-01

    Liquid metal battery (LMB), with three-liquid-layer structure and high operating temperature (300-700 °C), is a newly emerging technology for large scale energy storage applications. A thermal management system is critical to achieve satisfied LMB performance and extend the life of batteries. In this work, an improved coupling model composing of a 3D heat-transfer model and a 1D electrochemical model is developed for the thermal analysis of a Li||Sb-Sn LMBs module (5.5 kWh). Key results including transient values, the contribution ratio of heat sources, temperature homogeneity and distribution, as well as the energy efficiency of the battery module, are presented. Based on the coupling model, the changeable-power-heating mode, sand filling material and vacuum insulation are further proposed to achieve the high energy efficiency and optimal performance of the LMBs module. Moreover, the LMBs module can achieve "self-heating" when operated at 0.2 C charge/discharge, under the vacuum insulation (0.01 W m-1 K-1 thermal conductivity, 100 mm thickness), requiring no external heating to keep the batteries at operating temperature.

  4. Thermal Performance Benchmarking: Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Xuhui

    In FY16, the thermal performance of the 2014 Honda Accord Hybrid power electronics thermal management systems were benchmarked. Both experiments and numerical simulation were utilized to thoroughly study the thermal resistances and temperature distribution in the power module. Experimental results obtained from the water-ethylene glycol tests provided the junction-to-liquid thermal resistance. The finite element analysis (FEA) and computational fluid dynamics (CFD) models were found to yield a good match with experimental results. Both experimental and modeling results demonstrate that the passive stack is the dominant thermal resistance for both the motor and power electronics systems. The 2014 Accord power electronicsmore » systems yield steady-state thermal resistance values around 42- 50 mm to the 2nd power K/W, depending on the flow rates. At a typical flow rate of 10 liters per minute, the thermal resistance of the Accord system was found to be about 44 percent lower than that of the 2012 Nissan LEAF system that was benchmarked in FY15. The main reason for the difference is that the Accord power module used a metalized-ceramic substrate and eliminated the thermal interface material layers. FEA models were developed to study the transient performance of 2012 Nissan LEAF, 2014 Accord, and two other systems that feature conventional power module designs. The simulation results indicate that the 2012 LEAF power module has lowest thermal impedance at a time scale less than one second. This is probably due to moving low thermally conductive materials further away from the heat source and enhancing the heat spreading effect from the copper-molybdenum plate close to the insulated gate bipolar transistors. When approaching steady state, the Honda system shows lower thermal impedance. Measurement results of the thermal resistance of the 2015 BMW i3 power electronic system indicate that the i3 insulated gate bipolar transistor module has significantly lower junction-to-liquid thermal resistance as compared to the other systems. At a flow rate of 12 liters per minute, the thermal resistance of the i3 systems is only 30 percent of the Accord system and 15 percent of the LEAF system.« less

  5. Real-time contingency handling in MAESTRO

    NASA Technical Reports Server (NTRS)

    Britt, Daniel L.; Geoffroy, Amy L.

    1992-01-01

    A scheduling and resource management system named MAESTRO was interfaced with a Space Station Module Power Management and Distribution (SSM/PMAD) breadboard at MSFC. The combined system serves to illustrate the integration of planning, scheduling, and control in a realistic, complex domain. This paper briefly describes the functional elements of the combined system, including normal and contingency operational scenarios, then focusses on the method used by the scheduler to handle real-time contingencies.

  6. Cryogenic Evaluation of an Advanced DC/DC Converter Module for Deep Space Applications

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Hammoud, Ahmad; Gerber, Scott S.; Patterson, Richard

    2003-01-01

    DC/DC converters are widely used in power management, conditioning, and control of space power systems. Deep space applications require electronics that withstand cryogenic temperature and meet a stringent radiation tolerance. In this work, the performance of an advanced, radiation-hardened (rad-hard) commercial DC/DC converter module was investigated at cryogenic temperatures. The converter was investigated in terms of its steady state and dynamic operations. The output voltage regulation, efficiency, terminal current ripple characteristics, and output voltage response to load changes were determined in the temperature range of 20 to -140 C. These parameters were obtained at various load levels and at different input voltages. The experimental procedures along with the results obtained on the investigated converter are presented and discussed.

  7. Multiplatform Mission Planning and Operations Simulation Environment for Adaptive Remote Sensors

    NASA Astrophysics Data System (ADS)

    Smith, G.; Ball, C.; O'Brien, A.; Johnson, J. T.

    2017-12-01

    We report on the design and development of mission simulator libraries to support the emerging field of adaptive remote sensors. We will outline the current state of the art in adaptive sensing, provide analysis of how the current approach to performing observing system simulation experiments (OSSEs) must be changed to enable adaptive sensors for remote sensing, and present an architecture to enable their inclusion in future OSSEs.The growing potential of sensors capable of real-time adaptation of their operational parameters calls for a new class of mission planning and simulation tools. Existing simulation tools used in OSSEs assume a fixed set of sensor parameters in terms of observation geometry, frequencies used, resolution, or observation time, which allows simplifications to be made in the simulation and allows sensor observation errors to be characterized a priori. Adaptive sensors may vary these parameters depending on the details of the scene observed, so that sensor performance is not simple to model without conducting OSSE simulations that include sensor adaptation in response to varying observational environment. Adaptive sensors are of significance to resource-constrained, small satellite platforms because they enable the management of power and data volumes while providing methods for multiple sensors to collaborate.The new class of OSSEs required to utilize adaptive sensors located on multiple platforms must answer the question: If the physical act of sensing has a cost, how does the system determine if the science value of a measurement is worth the cost and how should that cost be shared among the collaborating sensors?Here we propose to answer this question using an architecture structured around three modules: ADAPT, MANAGE and COLLABORATE. The ADAPT module is a set of routines to facilitate modeling of adaptive sensors, the MANAGE module will implement a set of routines to facilitate simulations of sensor resource management when power and data volume are constrained, and the COLLABORATE module will support simulations of coordination among multiple platforms with adaptive sensors. When used together these modules will for a simulation OSSEs that can enable both the design of adaptive algorithms to support remote sensing and the prediction of the sensor performance.

  8. System analysis study of space platform and station accommodations for life sciences research facilities. Volume 2: Study results. Appendix D: Life sciences research facility requirements

    NASA Technical Reports Server (NTRS)

    Wiley, Lowell F.

    1985-01-01

    The purpose of this requirements document is to develop the foundation for concept development for the Life Sciences Research Facility (LSRF) on the Space Station. These requirements are developed from the perspective of a Space Station laboratory module outfitter. Science and mission requirements including those related to specimens are set forth. System requirements, including those for support, are detailed. Functional and design requirements are covered in the areas of structures, mechanisms, electrical power, thermal systems, data management system, life support, and habitability. Finally, interface requirements for the Command Module and Logistics Module are described.

  9. Managing Instructor Training to Achieve Excellence.

    ERIC Educational Resources Information Center

    Norton, Robert E.

    A group of concerned companies in the nuclear electric power industry formed the Electric Utility Instructor Training Consortium to train instructors in a cost-effective and time-efficient manner. The companies collaborated with the Ohio State University to (1) conduct job and task analyses; (2) develop performance-based instructor modules; (3)…

  10. Wicked Waste: Helping Numeracy in the Primary Classroom

    ERIC Educational Resources Information Center

    Yoxon, Mark

    2002-01-01

    "Wicked Waste" is a powerful teaching resource and four tools in one: (1) It complements literacy and numeracy teaching for KS2/attainment levels D & E using 20 minute interactive teaching modules; (2) It manages time and, with its intelligent programming, complexity of questions; (3) It provides diagnostic information for the…

  11. Advanced insulated gate bipolar transistor gate drive

    DOEpatents

    Short, James Evans [Monongahela, PA; West, Shawn Michael [West Mifflin, PA; Fabean, Robert J [Donora, PA

    2009-08-04

    A gate drive for an insulated gate bipolar transistor (IGBT) includes a control and protection module coupled to a collector terminal of the IGBT, an optical communications module coupled to the control and protection module, a power supply module coupled to the control and protection module and an output power stage module with inputs coupled to the power supply module and the control and protection module, and outputs coupled to a gate terminal and an emitter terminal of the IGBT. The optical communications module is configured to send control signals to the control and protection module. The power supply module is configured to distribute inputted power to the control and protection module. The control and protection module outputs on/off, soft turn-off and/or soft turn-on signals to the output power stage module, which, in turn, supplies a current based on the signal(s) from the control and protection module for charging or discharging an input capacitance of the IGBT.

  12. Doping management for high-power fiber lasers: 100 W, few-picosecond pulse generation from an all-fiber-integrated amplifier.

    PubMed

    Elahi, P; Yılmaz, S; Akçaalan, O; Kalaycıoğlu, H; Oktem, B; Senel, C; Ilday, F Ö; Eken, K

    2012-08-01

    Thermal effects, which limit the average power, can be minimized by using low-doped, longer gain fibers, whereas the presence of nonlinear effects requires use of high-doped, shorter fibers to maximize the peak power. We propose the use of varying doping levels along the gain fiber to circumvent these opposing requirements. By analogy to dispersion management and nonlinearity management, we refer to this scheme as doping management. As a practical first implementation, we report on the development of a fiber laser-amplifier system, the last stage of which has a hybrid gain fiber composed of high-doped and low-doped Yb fibers. The amplifier generates 100 W at 100 MHz with pulse energy of 1 μJ. The seed source is a passively mode-locked fiber oscillator operating in the all-normal-dispersion regime. The amplifier comprises three stages, which are all-fiber-integrated, delivering 13 ps pulses at full power. By optionally placing a grating compressor after the first stage amplifier, chirp of the seed pulses can be controlled, which allows an extra degree of freedom in the interplay between dispersion and self-phase modulation. This way, the laser delivers 4.5 ps pulses with ~200 kW peak power directly from fiber, without using external pulse compression.

  13. Innovative Free-range Resonant Electrical Energy Delivery system (FREE-D System) for a ventricular assist device using wireless power.

    PubMed

    Waters, Benjamin H; Smith, Joshua R; Bonde, Pramod

    2014-01-01

    Technological innovation of a smaller, single moving part has an advantage over earlier large pulsatile ventricular assist devices (VADs) prone to mechanical failure. Drivelines limit the potential for extended patient survival durations with newer pumps and act as source for infection, increased morbidity, rehospitalizations, and reduced quality of life. The Free-range Resonant Electrical Energy Delivery (FREE-D) wireless power system uses magnetically coupled resonators to efficiently transfer power. We demonstrate the efficiency over distance of this system. The experimental setup consists of an radiofrequency amplifier and control board which drives the transmit resonator coil, and a receiver unit consisting of a resonant coil attached to a radiofrequency rectifier and power management module. The power management module supplies power to the axial pump, which was set at 9,600 rpm. To achieve a seamless wireless delivery in any room size, we introduced a third relay coil. This relay coil can be installed throughout a room, whereas a single relay coil could be built into a jacket worn by the patient, which would always be within range of the receive coil implanted in the patient's body. The power was delivered over a meter distance without interruptions or fluctuations with coil, rectifier, and regulator efficiency more than 80% and overall system efficiency of 61%. The axial pump worked well throughout the 8 hours of continuous operation. Having same setup on the opposite side can double the distance. A tether-free operation of a VAD can be achieved by FREE-D system in room-size distances. It has the potential to make the VAD therapy more acceptable from the patient perspective.

  14. Optimization analysis of thermal management system for electric vehicle battery pack

    NASA Astrophysics Data System (ADS)

    Gong, Huiqi; Zheng, Minxin; Jin, Peng; Feng, Dong

    2018-04-01

    Electric vehicle battery pack can increase the temperature to affect the power battery system cycle life, charge-ability, power, energy, security and reliability. The Computational Fluid Dynamics simulation and experiment of the charging and discharging process of the battery pack were carried out for the thermal management system of the battery pack under the continuous charging of the battery. The simulation result and the experimental data were used to verify the rationality of the Computational Fluid Dynamics calculation model. In view of the large temperature difference of the battery module in high temperature environment, three optimization methods of the existing thermal management system of the battery pack were put forward: adjusting the installation position of the fan, optimizing the arrangement of the battery pack and reducing the fan opening temperature threshold. The feasibility of the optimization method is proved by simulation and experiment of the thermal management system of the optimized battery pack.

  15. SiC Multi-Chip Power Modules as Power-System Building Blocks

    NASA Technical Reports Server (NTRS)

    Lostetter, Alexander; Franks, Steven

    2007-01-01

    The term "SiC MCPMs" (wherein "MCPM" signifies "multi-chip power module") denotes electronic power-supply modules containing multiple silicon carbide power devices and silicon-on-insulator (SOI) control integrated-circuit chips. SiC MCPMs are being developed as building blocks of advanced expandable, reconfigurable, fault-tolerant power-supply systems. Exploiting the ability of SiC semiconductor devices to operate at temperatures, breakdown voltages, and current densities significantly greater than those of conventional Si devices, the designs of SiC MCPMs and of systems comprising multiple SiC MCPMs are expected to afford a greater degree of miniaturization through stacking of modules with reduced requirements for heat sinking. Moreover, the higher-temperature capabilities of SiC MCPMs could enable operation in environments hotter than Si-based power systems can withstand. The stacked SiC MCPMs in a given system can be electrically connected in series, parallel, or a series/parallel combination to increase the overall power-handling capability of the system. In addition to power connections, the modules have communication connections. The SOI controllers in the modules communicate with each other as nodes of a decentralized control network, in which no single controller exerts overall command of the system. Control functions effected via the network include synchronization of switching of power devices and rapid reconfiguration of power connections to enable the power system to continue to supply power to a load in the event of failure of one of the modules. In addition to serving as building blocks of reliable power-supply systems, SiC MCPMs could be augmented with external control circuitry to make them perform additional power-handling functions as needed for specific applications: typical functions could include regulating voltages, storing energy, and driving motors. Because identical SiC MCPM building blocks could be utilized in a variety of ways, the cost and difficulty of designing new, highly reliable power systems would be reduced considerably. Several prototype DC-to-DC power-converter modules containing SiC power-switching devices were designed and built to demonstrate the feasibility of the SiC MCPM concept. In anticipation of a future need for operation at high temperature, the circuitry in the modules includes high-temperature inductors and capacitors. These modules were designed to be stacked to construct a system of four modules electrically connected in series and/or parallel. The packaging of the modules is designed to satisfy requirements for series and parallel interconnection among modules, high power density, high thermal efficiency, small size, and light weight. Each module includes four output power connectors two for serial and two for parallel output power connections among the modules. Each module also includes two signal connectors, electrically isolated from the power connectors, that afford four zones for signal interconnections among the SOI controllers. Finally, each module includes two input power connectors, through which it receives power from an in-line power bus. This design feature is included in anticipation of a custom-designed power bus incorporating sockets compatible with snap-on type connectors to enable rapid replacement of failed modules.

  16. The research and implementation of PDM systems based on the .NET platform

    NASA Astrophysics Data System (ADS)

    Gao, Hong-li; Jia, Ying-lian; Yang, Ji-long; Jiang, Wei

    2005-12-01

    A new kind of PDM system scheme based on the .NET platform for solving application problems of the current PDM system applied in an enterprise is described. The key technologies of this system, such as .NET, Accessing Data, information processing, Web, ect., were discussed. The 3-tier architecture of a PDM system based on the C/S and B/S mixed mode was presented. In this system, all users share the same Database Server in order to ensure the coherence and safety of client data. ADO.NET leverages the power of XML to provide disconnected access to data, which frees the connection to be used by other clients. Using this approach, the system performance was improved. Moreover, the important function modules in a PDM system such as project management, product structure management and Document Management module were developed and realized.

  17. Gamma motes for detection of radioactive materials in shipping containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harold McHugh; William Quam; Stephan Weeks

    Shipping containers can be effectively monitored for radiological materials using gamma (and neutron) motes in distributed mesh networks. The mote platform is ideal for collecting data for integration into operational management systems required for efficiently and transparently monitoring international trade. Significant reductions in size and power requirements have been achieved for room-temperature cadmium zinc telluride (CZT) gamma detectors. Miniaturization of radio modules and microcontroller units are paving the way for low-power, deeply-embedded, wireless sensor distributed mesh networks.

  18. A Demonstration of a Trusted Computer Interface Between a Multilevel Secure Command and Control System and Untrusted Tactical Data Systems.

    DTIC Science & Technology

    1987-03-01

    information and work in a completely secure environment. Information used with today’s C3I systems must be protected. To better understand the role of...and security was of minor concern. The user either worked on his own behalf or as a programmer for someone else. The computer power was limited. With...Although the modules may be of the same classification level, the manager may want to limit each team’s access to the module on which they are working

  19. Remote assessment of cultural heritage environments with wireless sensor array networks.

    PubMed

    Agbota, Henoc; Mitchell, John E; Odlyha, Marianne; Strlič, Matija

    2014-05-19

    The logistics and cost of environmental monitoring can represent challenges for heritage managers, partly because of the sheer number of environmental parameters to consider. There is a need for a system, capable of monitoring the holistic impact of the environment on cultural materials while remaining relatively easy to use and providing remote access. This paper describes a dosimetric system based on piezoelectric quartz crystal technology. The prototype sensing module consists of an array of piezoelectric quartz crystals (PQC) coated with different metals (Fe, Cu, Ni and Sn) and includes a temperature and relative humidity sensor. The communication module involves an 802.15.4 low-power radio and a GPRS gateway which allows real time visualisation of the measurements online. An energy management protocol ensures that the system consumes very low power between measurements. The paper also describes the results and experiences from two heritage field deployments, at Apsley House in London, UK, and at the Royal Palaces of Abomey in Benin. Evaluation of PQC measurements, temperature, relative humidity and the rate of successful transmission over the communication systems are also reported.

  20. Remote Assessment of Cultural Heritage Environments with Wireless Sensor Array Networks

    PubMed Central

    Agbota, Henoc; Mitchell John, E.; Odlyha, Marianne; Strlič, Matija

    2014-01-01

    The logistics and cost of environmental monitoring can represent challenges for heritage managers, partly because of the sheer number of environmental parameters to consider. There is a need for a system, capable of monitoring the holistic impact of the environment on cultural materials while remaining relatively easy to use and providing remote access. This paper describes a dosimetric system based on piezoelectric quartz crystal technology. The prototype sensing module consists of an array of piezoelectric quartz crystals (PQC) coated with different metals (Fe, Cu, Ni and Sn) and includes a temperature and relative humidity sensor. The communication module involves an 802.15.4 low-power radio and a GPRS gateway which allows real time visualisation of the measurements online. An energy management protocol ensures that the system consumes very low power between measurements. The paper also describes the results and experiences from two heritage field deployments, at Apsley House in London, UK, and at the Royal Palaces of Abomey in Benin. Evaluation of PQC measurements, temperature, relative humidity and the rate of successful transmission over the communication systems are also reported. PMID:24854056

  1. Power Management and Distribution Trades Studies for a Deep-Space Mission Scientific Spacecraft

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Soltis, James V.

    2004-01-01

    As part of NASA's Project Prometheus, the Nuclear Systems Program, NASA GRC performed trade studies on the various Power Management and Distribution (PMAD) options for a deep-space scientific spacecraft which would have a nominal electrical power requirement of 100 kWe. These options included AC (1000Hz and 1500Hz and DC primary distribution at various voltages. The distribution system efficiency, reliability, mass, thermal, corona, space radiation levels and technology readiness of devices and components were considered. The final proposed system consisted of two independent power distribution channels, sourced by two 3-phase, 110 kVA alternators nominally operating at half-rated power. Each alternator nominally supplies 50kWe to one half of the ion thrusters and science modules but is capable of supplying the total power re3quirements in the event of loss of one alternator. This paper is an introduction to the methodology for the trades done to arrive at the proposed PMAD architecture. Any opinions expressed are those of the author(s) and do not necessarily reflect the views of Project Prometheus.

  2. Power Management and Distribution Trades Studies for a Deep-space Mission Scientific Spacecraft

    NASA Astrophysics Data System (ADS)

    Kimnach, Greg L.; Soltis, James V.

    2004-02-01

    As part of NASA's Project Prometheus, the Nuclear Systems Program, NASA GRC performed trade studies on the various Power Management and Distribution (PMAD) options for a deep-space scientific spacecraft, which would have a nominal electrical power requirement of 100 kWe. These options included AC (1000Hz and 1500Hz) and DC primary distribution at various voltages. The distribution system efficiency, reliability, mass, thermal, corona, space radiation levels, and technology readiness of devices and components were considered. The final proposed system consisted of two independent power distribution channels, sourced by two 3-phase, 110 kVA alternators nominally operating at half-rated power. Each alternator nominally supplies 50 kWe to one-half of the ion thrusters and science modules, but is capable of supplying the total power requirements in the event of loss of one alternator. This paper is an introduction to the methodology for the trades done to arrive at the proposed PMAD architecture. Any opinions expressed are those of the author(s) and do not necessarily reflect the views of Project Prometheus.

  3. Temperature and Humidity Sensor Powered by an Individual Microbial Fuel Cell in a Power Management System.

    PubMed

    Zheng, Qi; Xiong, Lei; Mo, Bing; Lu, Weihong; Kim, Suki; Wang, Zhenyu

    2015-09-11

    Microbial fuel cells (MFCs) are of increasing interest as bioelectrochemical systems for decomposing organic materials and converting chemical energy into electricity. The main challenge for this technology is that the low power and voltage of the devices restricts the use of MFCs in practical applications. In this paper, a power management system (PMS) is developed to store the energy and export an increased voltage. The designed PMS successfully increases the low voltage generated by an individual MFC to a high potential of 5 V, capable of driving a wireless temperature and humidity sensor based on nRF24L01 data transmission modules. With the PMS, MFCs can intermittently power the sensor for data transmission to a remote receiver. It is concluded that even an individual MFC can supply the energy required to power the sensor and telemetry system with the designed PMS. The presented PMS can be widely used for unmanned environmental monitoring such as wild rivers, lakes, and adjacent water areas, and offers promise for further advances in MFC technology.

  4. Temperature and Humidity Sensor Powered by an Individual Microbial Fuel Cell in a Power Management System

    PubMed Central

    Zheng, Qi; Xiong, Lei; Mo, Bing; Lu, Weihong; Kim, Suki; Wang, Zhenyu

    2015-01-01

    Microbial fuel cells (MFCs) are of increasing interest as bioelectrochemical systems for decomposing organic materials and converting chemical energy into electricity. The main challenge for this technology is that the low power and voltage of the devices restricts the use of MFCs in practical applications. In this paper, a power management system (PMS) is developed to store the energy and export an increased voltage. The designed PMS successfully increases the low voltage generated by an individual MFC to a high potential of 5 V, capable of driving a wireless temperature and humidity sensor based on nRF24L01 data transmission modules. With the PMS, MFCs can intermittently power the sensor for data transmission to a remote receiver. It is concluded that even an individual MFC can supply the energy required to power the sensor and telemetry system with the designed PMS. The presented PMS can be widely used for unmanned environmental monitoring such as wild rivers, lakes, and adjacent water areas, and offers promise for further advances in MFC technology. PMID:26378546

  5. Osteonecrosis of the jaw (ONJ) in patients who receive Bone Targeting Agents (BTAs): the power of e-learning.

    PubMed

    Nicolatou-Galitis, Ourania; Migliorati, Cesar

    2018-01-01

    The definition, pathobiology and risk factors of ONJ in cancer patients who receive BTAs are discussed in the recent ecancer module for osteonecrosis of the jaw (http://ecancer.org/education/module/276-osteonecrosis-of-the-jaw.php). ONJ prevention, early diagnosis and management are presented. The critical question of the performance of dental extraction, during BTA therapy, as indicated with the recent studies, is supported. The importance of the collaboration between dental and oncology professionals and the patients is highlighted and can be achieved through appropriate education. The ecancer modules are valuable tools for successful e-learning in medical oncology education, including ONJ.

  6. The SSM/PMAD automated test bed project

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.

    1991-01-01

    The Space Station Module/Power Management and Distribution (SSM/PMAD) autonomous subsystem project was initiated in 1984. The project's goal has been to design and develop an autonomous, user-supportive PMAD test bed simulating the SSF Hab/Lab module(s). An eighteen kilowatt SSM/PMAD test bed model with a high degree of automated operation has been developed. This advanced automation test bed contains three expert/knowledge based systems that interact with one another and with other more conventional software residing in up to eight distributed 386-based microcomputers to perform the necessary tasks of real-time and near real-time load scheduling, dynamic load prioritizing, and fault detection, isolation, and recovery (FDIR).

  7. High-efficiency L-band T/R Module: Development Results

    NASA Technical Reports Server (NTRS)

    Edelstein, Wendy N.; Andricos, Constantine; Wang, Feiyu; Rutled, David B.

    2005-01-01

    Future interferometric synthetic aperture radar (InSAR) systems require electronically scanned phased-array antennas, where the transmit/receive (T/R) module is a key component. The T/R module efficiency is a critical figure of merit and has direct implications on the power dissipation and power generation requirements of the system. Significant improvements in the efficiency of the T/R module will make SAR missions more feasible and affordable. The results of two high-efficiency T/R modules are presented, each based on different power amplifier technologies. One module uses a 30W GaAs Class-AlB power amplifier and the second module uses a 70W LD-MOS Class-ElF power amplifier, where both modules use a common low power section. Each module operates over an 80MHz bandwidth at L-band (1.2GHz) with an overall module efficiency greater than 58%. We will present the results of these two T/R modules that have been designed, built and tested.

  8. Self-Powered WSN for Distributed Data Center Monitoring

    PubMed Central

    Brunelli, Davide; Passerone, Roberto; Rizzon, Luca; Rossi, Maurizio; Sartori, Davide

    2016-01-01

    Monitoring environmental parameters in data centers is gathering nowadays increasing attention from industry, due to the need of high energy efficiency of cloud services. We present the design and the characterization of an energy neutral embedded wireless system, prototyped to monitor perpetually environmental parameters in servers and racks. It is powered by an energy harvesting module based on Thermoelectric Generators, which converts the heat dissipation from the servers. Starting from the empirical characterization of the energy harvester, we present a power conditioning circuit optimized for the specific application. The whole system has been enhanced with several sensors. An ultra-low-power micro-controller stacked over the energy harvesting provides an efficient power management. Performance have been assessed and compared with the analytical model for validation. PMID:26729135

  9. Self-Powered WSN for Distributed Data Center Monitoring.

    PubMed

    Brunelli, Davide; Passerone, Roberto; Rizzon, Luca; Rossi, Maurizio; Sartori, Davide

    2016-01-02

    Monitoring environmental parameters in data centers is gathering nowadays increasing attention from industry, due to the need of high energy efficiency of cloud services. We present the design and the characterization of an energy neutral embedded wireless system, prototyped to monitor perpetually environmental parameters in servers and racks. It is powered by an energy harvesting module based on Thermoelectric Generators, which converts the heat dissipation from the servers. Starting from the empirical characterization of the energy harvester, we present a power conditioning circuit optimized for the specific application. The whole system has been enhanced with several sensors. An ultra-low-power micro-controller stacked over the energy harvesting provides an efficient power management. Performance have been assessed and compared with the analytical model for validation.

  10. Impute DC link (IDCL) cell based power converters and control thereof

    DOEpatents

    Divan, Deepakraj M.; Prasai, Anish; Hernendez, Jorge; Moghe, Rohit; Iyer, Amrit; Kandula, Rajendra Prasad

    2016-04-26

    Power flow controllers based on Imputed DC Link (IDCL) cells are provided. The IDCL cell is a self-contained power electronic building block (PEBB). The IDCL cell may be stacked in series and parallel to achieve power flow control at higher voltage and current levels. Each IDCL cell may comprise a gate drive, a voltage sharing module, and a thermal management component in order to facilitate easy integration of the cell into a variety of applications. By providing direct AC conversion, the IDCL cell based AC/AC converters reduce device count, eliminate the use of electrolytic capacitors that have life and reliability issues, and improve system efficiency compared with similarly rated back-to-back inverter system.

  11. Free-piston Stirling Engine system considerations for various space power applications

    NASA Technical Reports Server (NTRS)

    Dochat, George R.; Dhar, Manmohan

    1991-01-01

    Free-Piston Stirling Engines (FPSE) have the potential to provide high reliability, long life, and efficient operation. Therefore, they are excellent candidates for the dynamic power conversion module of a space-based, power-generating system. FPSE can be coupled with many potential heat sources (radioisotope, solar, or nuclear reactor), various heat input systems (pumped loop, heat pipe), heat rejection (pumped loop or heat pipe), and various power management and distribution systems (ac, dc, high or low voltage, and fixed or variable load). This paper reviews potential space missions that can be met using free-piston Stirling engines and discusses options of various system integration approaches. This paper briefly outlines the program and recent progress.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentine, Anthony L.; Cox, Jonathan Albert

    Methods and systems for stabilizing a resonant modulator include receiving pre-modulation and post-modulation portions of a carrier signal, determining the average power from these portions, comparing an average input power to the average output power, and operating a heater coupled to the modulator based on the comparison. One system includes a pair of input structures, one or more processing elements, a comparator, and a control element. The input structures are configured to extract pre-modulation and post-modulation portions of a carrier signal. The processing elements are configured to determine average powers from the extracted portions. The comparator is configured to comparemore » the average input power and the average output power. The control element operates a heater coupled to the modulator based on the comparison.« less

  13. Power-Stepped HF Cross Modulation Experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Greene, S.; Moore, R. C.; Langston, J. S.

    2013-12-01

    High frequency (HF) cross modulation experiments are a well established means for probing the HF-modified characteristics of the D-region ionosphere. In this paper, we apply experimental observations of HF cross-modulation to the related problem of ELF/VLF wave generation. HF cross-modulation measurements are used to evaluate the efficiency of ionospheric conductivity modulation during power-stepped modulated HF heating experiments. The results are compared to previously published dependencies of ELF/VLF wave amplitude on HF peak power. The experiments were performed during the March 2013 campaign at the High Frequency Active Auroral Research Program (HAARP) Observatory. HAARP was operated in a dual-beam transmission format: the first beam heated the ionosphere using sinusoidal amplitude modulation while the second beam broadcast a series of low-power probe pulses. The peak power of the modulating beam was incremented in 1-dB steps. We compare the minimum and maximum cross-modulation effect and the amplitude of the resulting cross-modulation waveform to the expected power-law dependence of ELF/VLF wave amplitude on HF power.

  14. Experiment module concepts study. Volume 5 book 1, appendix A: Shuttle only task

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Results of a preliminary investigation of the effect on the candidate experiment program implementation of experiment module operations in the absence of an orbiting space station and with the availability of the space shuttle orbiter vehicle only are presented. The fundamental hardware elements for shuttle-only operation of the program are: (1) integrated common experiment modules CM-1, CM-3, and CM-4, together with the propulsion slice; (2) support modules capable of supplying on-orbit crew life support, power, data management, and other services normally provided by a space station; (3) dormancy kits to enable normally attached modules to remain in orbit while shuttle returns to earth; and (4) shuttle orbiter. Preliminary cost estimates for 30 day on-orbit and 5 day on-orbit capabilities for a four year implementation period are $4.2 billion and $2.1 billion, respectively.

  15. Thermal management and light extraction in multi-chip and high-voltage LEDs by cup-shaped copper heat spreader technology

    NASA Astrophysics Data System (ADS)

    Horng, Ray-Hua; Hu, Hung-Lieh; Tang, Li-Shen; Ou, Sin-Liang

    2013-03-01

    For LEDs with original structure and copper heat spreader, the highest surface temperatures of 3×3 array LEDs modules were 52.6 and 42.67 °C (with 1050 mA injection current), while the highest surface temperatures of 4×4 array LEDs modules were 58.55 and 48.85 °C (with 1400 mA injection current), respectively. As the 5×5 array LEDs modules with original structure and copper heat spreader were fabricated, the highest surface temperatures at 1750 mA injection current were 68.51 and 56.73 °C, respectively. The thermal resistance of optimal LEDs array module with copper heat spreader on heat sink using compound solder is reduced obviously. On the other hand, the output powers of 3×3, 4×4 and 5×5 array LEDs modules with original structure were 3621.7, 6346.3 and 9760.4 mW at injection currents of 1050, 1400 and 1750 mA, respectively. Meanwhile, the output powers of these samples with copper heat spreader can be improved to 4098.5, 7150.3 and 10919.6 mW, respectively. The optical and thermal characteristics of array LEDs module have been improved significantly using the cup-shaped copper structure. Furthermore, various types of epoxy-packaged LEDs with cup-shaped structure were also fabricated. It is found that the light extraction efficiency of LED with semicircle package has 55% improvement as compared to that of LED with flat package. The cup-shaped copper structure was contacted directly with sapphire to enhance heat dissipation. In addition to efficient heat dissipation, the light extraction of the lateral emitting in high-power LEDs can be improved.

  16. Integrated unaligned resonant modulator tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zortman, William A.; Lentine, Anthony L.

    Methods and systems for tuning a resonant modulator are disclosed. One method includes receiving a carrier signal modulated by the resonant modulator with a stream of data having an approximately equal number of high and low bits, determining an average power of the modulated carrier signal, comparing the average power to a predetermined threshold, and operating a tuning device coupled to the resonant modulator based on the comparison of the average power and the predetermined threshold. One system includes an input structure, a plurality of processing elements, and a digital control element. The input structure is configured to receive, frommore » the resonant modulator, a modulated carrier signal. The plurality of processing elements are configured to determine an average power of the modulated carrier signal. The digital control element is configured to operate a tuning device coupled to the resonant modulator based on the average power of the modulated carrier signal.« less

  17. Bringing together integration technologies in GaAs, InP and Si to deliver low-cost high performance DWDM optoelectronic components and solutions

    NASA Astrophysics Data System (ADS)

    Carter, Andrew C.; Wale, Michael J.; Simmons, T.; Whitbread, Neil; Asghari, M.

    2003-06-01

    A key attribute emerging in the optoelectronic component supply industry is the ability to deliver 'solution level' products rather than discrete optical components to equipment manufacturers. This approach is primarily aimed at reducing cost for the equipment manufacturer both in engineering and assembly. Such 'solutions' must be designed to be cost effective - offering costs substantially below discrete components - and must be compatible with subcontract board manufacture without the traditional and expensive skills of fibre handling, splicing and management. Examples of 'solutions' in this context may be the core of a multifunctional OADM or a DWDM laser transmitter subsystem, with modulation, wavelength and power management all included in a simple to use module. Essential to the cost effective production of such solutions is a high degree of optical/optoelectronic integration. Co-packaging of discrete components and electronics into modules will not deliver the cost reduction demanded. At Bookham Technology we have brought together what we believe to be the three key integration technologies - InP for monolithic tunable sources, GaAs for high performance integrated modulation and ASOC for smart passives and hybrid platforms - which can deliver this cost reduction, together with performance enhancement, over a wide range of applications. In the paper we will demonstrate and compare our above integration approaches with the competing alternatives and seek to show how the power of integration is finally being harnessed in optoelectronics, delivering radical cost reduction as well as enabling system concepts virtually impossible to achieve with discrete components. In the paper we will demonstrate and compare our above integration approaches with the competing alternatives and seek to show how the power of integration is finally being harnessed in optoelectronics, delivering radical cost reduction as well as enabling system concepts virtually impossible to achieve with discrete components.

  18. Space Power Free-Piston Stirling Engine Scaling Study

    NASA Technical Reports Server (NTRS)

    Jones, D.

    1989-01-01

    The design feasibility study is documented of a single cylinder, free piston Stirling engine/linear alternator (FPSE/LA) power module generating 150 kW-electric (kW sub e), and the determination of the module's maximum feasible power level. The power module configuration was specified to be a single cylinder (single piston, single displacer) FPSE/LA, with tuning capacitors if required. The design requirements were as follows: (1) Maximum electrical power output; (2) Power module thermal efficiency equal to or greater than 20 percent at a specific mass of 5 to 8 kg/kW(sub e); (3) Heater wall temperature/cooler wall temperature = 1050 K/525 K; (4) Sodium heat-pipe heat transport system, pumped loop NaK (sodium-potassium eutectic mixture) rejection system; (5) Maximum power module vibration amplitude = 0.0038 cm; and (6) Design life = 7 years (60,000 hr). The results show that a single cylinder FPSE/LA is capable of meeting program goals and has attractive scaling attributes over the power range from 25 to 150 kW(sub e). Scaling beyond the 150 kW(sub e) power level, the power module efficiency falls and the power module specific mass reaches 10 kg/kW(sub e) at a power output of 500 kW(sub e). A discussion of scaling rules for the engine, alternator, and heat transport systems is presented, along with a detailed description of the conceptual design of a 150 kW(sub e) power module that meets the requirements. Included is a discussion of the design of a dynamic balance system. A parametric study of power module performance conducted over the power output range of 25 to 150 kW(sub e) for temperature ratios of 1.7, 2.0, 2.5, and 3.0 is presented and discussed. The results show that as the temperature ratio decreases, the efficiency falls and specific mass increases. At a temperature ratio of 1.7, the 150 kW(sub e) power module cannot satisfy both efficiency and specific mass goals. As the power level increases from 25 to 150 kW(sub e) at a fixed temperature ratio, power module efficiency is seen to increase slightly, but at the expense of increased specific mass. An empirical equation relating power module thermal efficiency as a function of power module specific mass, power output, and temperature ratio is developed. Alternative configurations to the single cylinder, direct coupled linear alternator approach are also evaluated, but are shown to have technical drawbacks that lessen their attractiveness. The dynamic balance assembly mass (moving mass and structure) represents 20 to 30 percent of the total single cylinder power module mass. Joining two modules in a balanced opposed configuration eliminates the need for the balancer, and a hot end junction can be made without significant addition of structural mass. Recommendations are made for evaluation of advanced heat pipe concepts, tests of radial flow heat exchangers, and evaluation of high temperature alternator materials.

  19. High-Efficiency Power Module

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N (Inventor); Wintucky, Edwin G (Inventor)

    2013-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  20. High-Efficiency Power Module

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)

    2015-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  1. A W-band integrated power module using MMIC MESFET power amplifiers and varactor doublers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, T.C.; Chen, Seng Woon; Pande, K.

    1993-12-01

    A high-performance integrated power module using U-band MMIC MESFET power amplifiers in conjunction with W-band MMIC high efficiency varactor doublers has been developed for millimeter-wave system applications. This paper presents the design, fabrication, and performance of this W-band integrated power module. Measured results of the complete integrated power module show an output power of 90 mW with an overall associated gain of 29.5 dB at 94 GHz. A saturated power of over 95 mW was also achieved. These results represent the highest reported power and gain at W-band using MESFET and varactor frequency doubling technologies. This integrated power module ismore » suitable for the future 94 GHz missile seeker applications.« less

  2. Interactive smart battery storage for a PV and wind hybrid energy management control based on conservative power theory

    NASA Astrophysics Data System (ADS)

    Godoy Simões, Marcelo; Davi Curi Busarello, Tiago; Saad Bubshait, Abdullah; Harirchi, Farnaz; Antenor Pomilio, José; Blaabjerg, Frede

    2016-04-01

    This paper presents interactive smart battery-based storage (BBS) for wind generator (WG) and photovoltaic (PV) systems. The BBS is composed of an asymmetric cascaded H-bridge multilevel inverter (ACMI) with staircase modulation. The structure is parallel to the WG and PV systems, allowing the ACMI to have a reduction in power losses compared to the usual solution for storage connected at the DC-link of the converter for WG or PV systems. Moreover, the BBS is embedded with a decision algorithm running real-time energy costs, plus a battery state-of-charge manager and power quality capabilities, making the described system in this paper very interactive, smart and multifunctional. The paper describes how BBS interacts with the WG and PV and how its performance is improved. Experimental results are presented showing the efficacy of this BBS for renewable energy applications.

  3. Novel Robotic Tools for Piping Inspection and Repair

    DTIC Science & Technology

    2015-01-14

    was selected due to its small size, and peripheral capability. The SoM measures 50mm x 44mm. The SoM processor is an ARM Cortex -A8 running at720MHz...designing an embedded computing system from scratch. The SoM is a single integrated module which contains the processor , RAM, power management, and

  4. Adaption of Space Station technology for lunar operations

    NASA Technical Reports Server (NTRS)

    Garvey, J. M.

    1988-01-01

    The possible use of Space Station technology in a lunar base program is discussed, focusing on the lunar lander/ascent vehicles and surface modules. The application of the Space Station data management system, software, and communications, tracking, guidance, navigation, control, and power technologies is examined. The benefits of utilizing this technology for lunar operations are considered.

  5. Power module assemblies with staggered coolant channels

    DOEpatents

    Herron, Nicholas Hayden; Mann, Brooks S; Korich, Mark D

    2013-07-16

    A manifold is provided for supporting a power module assembly with a plurality of power modules. The manifold includes a first manifold section. The first face of the first manifold section is configured to receive the first power module, and the second face of the first manifold section defines a first cavity with a first baseplate thermally coupled to the first power module. The first face of the second manifold section is configured to receive the second power module, and the second face of the second manifold section defines a second cavity with a second baseplate thermally coupled to the second power module. The second face of the first manifold section and the second face of the second manifold section are coupled together such that the first cavity and the second cavity form a coolant channel. The first cavity is at least partially staggered with respect to second cavity.

  6. A powerful graphical pulse sequence programming tool for magnetic resonance imaging.

    PubMed

    Jie, Shen; Ying, Liu; Jianqi, Li; Gengying, Li

    2005-12-01

    A powerful graphical pulse sequence programming tool has been designed for creating magnetic resonance imaging (MRI) applications. It allows rapid development of pulse sequences in graphical mode (allowing for the visualization of sequences), and consists of three modules which include a graphical sequence editor, a parameter management module and a sequence compiler. Its key features are ease to use, flexibility and hardware independence. When graphic elements are combined with a certain text expressions, the graphical pulse sequence programming is as flexible as text-based programming tool. In addition, a hardware-independent design is implemented by using the strategy of two step compilations. To demonstrate the flexibility and the capability of this graphical sequence programming tool, a multi-slice fast spin echo experiment is performed on our home-made 0.3 T permanent magnet MRI system.

  7. Automatic Layout Design for Power Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ning, Puqi; Wang, Fei; Ngo, Khai

    The layout of power modules is one of the key points in power module design, especially for high power densities, where couplings are increased. In this paper, along with the design example, an automatic design processes by using a genetic algorithm are presented. Some practical considerations and implementations are introduced in the optimization of module layout design.

  8. Application of Hybrid Optimization-Expert System for Optimal Power Management on Board Space Power Station

    NASA Technical Reports Server (NTRS)

    Momoh, James; Chattopadhyay, Deb; Basheer, Omar Ali AL

    1996-01-01

    The space power system has two sources of energy: photo-voltaic blankets and batteries. The optimal power management problem on-board has two broad operations: off-line power scheduling to determine the load allocation schedule of the next several hours based on the forecast of load and solar power availability. The nature of this study puts less emphasis on speed requirement for computation and more importance on the optimality of the solution. The second category problem, on-line power rescheduling, is needed in the event of occurrence of a contingency to optimally reschedule the loads to minimize the 'unused' or 'wasted' energy while keeping the priority on certain type of load and minimum disturbance of the original optimal schedule determined in the first-stage off-line study. The computational performance of the on-line 'rescheduler' is an important criterion and plays a critical role in the selection of the appropriate tool. The Howard University Center for Energy Systems and Control has developed a hybrid optimization-expert systems based power management program. The pre-scheduler has been developed using a non-linear multi-objective optimization technique called the Outer Approximation method and implemented using the General Algebraic Modeling System (GAMS). The optimization model has the capability of dealing with multiple conflicting objectives viz. maximizing energy utilization, minimizing the variation of load over a day, etc. and incorporates several complex interaction between the loads in a space system. The rescheduling is performed using an expert system developed in PROLOG which utilizes a rule-base for reallocation of the loads in an emergency condition viz. shortage of power due to solar array failure, increase of base load, addition of new activity, repetition of old activity etc. Both the modules handle decision making on battery charging and discharging and allocation of loads over a time-horizon of a day divided into intervals of 10 minutes. The models have been extensively tested using a case study for the Space Station Freedom and the results for the case study will be presented. Several future enhancements of the pre-scheduler and the 'rescheduler' have been outlined which include graphic analyzer for the on-line module, incorporating probabilistic considerations, including spatial location of the loads and the connectivity using a direct current (DC) load flow model.

  9. Multi-purpose CMOS sensor interface for low-power applications

    NASA Astrophysics Data System (ADS)

    Wouters, P.; de Cooman, M.; Puers, R.

    1994-08-01

    A dedicated low-power CMOS transponder microchip is presented as part of a novel telemetry implant for biomedical applications. This mixed analog-digital circuit contains an identification code and collects information on physiological parameters, i.e., body temperature and physical activity, and on the status of the battery. To minimize the amount of data to be transmitted, a dedicated signal processing algorithm is embedded within its circuitry. All telemetry functions (encoding, modulation, generation of the carrier) are implemented on the integrated circuit. Emphasis is on a high degree of flexibility towards sensor inputs and internal data management, extreme miniaturization, and low-power consumption to allow a long implantation lifetime.

  10. Power and Energy Management Strategy for Solid State Transformer Interfaced DC Microgrid

    NASA Astrophysics Data System (ADS)

    Yu, Xunwei

    As a result of more and more applications of renewable energy into our ordinary life, how to construct a microgrid (MG) based on the distributed renewable energy resources and energy storages, and then to supply a reliable and flexible power to the conventional power system are the hottest topics nowadays. Comparing to the AC microgrid (AC MG), DC microgrid (DC MG) gets more attentions, because it has its own advantages, such as high efficiency, easy to integrate the DC energy sources and energy storages, and so on. Furthermore, the interaction between DC MG system and the distribution system is also an important and practical issue. In Future Renewable Electric Energy Delivery and Management Systems Center (FREEDM), the Solid State Transformer (SST) is built, which can transform the distribution system to the low AC and DC system directly (usually home application level). Thus, the SST gives a new promising solution for low voltage level MG to interface the distribution level system instead of the traditional transformer. So a SST interfaced DC MG is proposed. However, it also brings new challenges in the design and control fields for this system because the system gets more complicated, which includes distributed energy sources and storages, load, and SST. The purpose of this dissertation is to design a reliable and flexible SST interfaced DC MG based on the renewable energy sources and energy storages, which can operate in islanding mode and SST-enabled mode. Dual Half Bridge (DHB) is selected as the topology for DC/DC converter in DC MG. The DHB operation procedure and average model are analyzed, which is the basis for the system modeling, control and operation. Furthermore, two novel power and energy management strategies are proposed. The first one is a distributed energy management strategy for the DC MG operating in the SST-enabled mode. In this method, the system is not only in distributed control to increase the system reliability, but the power sharing between DC MG and SST, State of Charge (SOC) for battery, are both considered in the system energy management strategy. Then the DC MG output power is controllable and the battery is autonomous charged and discharged based on its SOC and system information without communication. The system operation modes are defined, analyzed and the simulation results verify the strategy. The second power and energy management strategy is the hierarchical control. In this control strategy, three-layer control structure is presented and defined. The first layer is the primary control for the DC MG in islanding mode, which is to guarantee the DC MG system power balance without communication to increase the system reliability. The second control layer is to implement the seamless switch for DC MG system from islanding mode to SST-enabled mode. The third control layer is the tertiary control for the system energy management and the communication is also involved. The tertiary layer not only controls the whole DC MG output power, but also manages battery module charge and discharge statuses based on its SOC. The simulation and experimental results verify the methods. Some practical issues for the SST interfaced DC MG are also investigated. Power unbalance issue of SST is analyzed and a distributed control strategy is presented to solve this problem. Simulation and experimental results verify it. Furthermore, the control strategy for SST interfaced DC MG blackout is presented and the simulation results are shown to valid it. Also a plug and play SST interfaced DC MG is constructed and demonstrated. Several battery and PV modules construct a typical DC MG and a DC source is adopted to simulate the SST. The system is in distributed control and can operate in islanding mode and SST-enabled mode. The experimental results verify that individual module can plug into and unplug from the DC MG randomly without affecting the system stability. Furthermore, the communication ports are embedded into the system and a universal communication protocol is proposed to implement the plug and play function. Specified ID is defined for individual PV and battery for system recognition. A database is built to store the whole system date for visual display, monitor and history query.

  11. A water-powered Energy Harvesting system with Bluetooth Low Energy interface

    NASA Astrophysics Data System (ADS)

    Kroener, M.; Allinger, K.; Berger, M.; Grether, E.; Wieland, F.; Heller, S.; Woias, P.

    2016-11-01

    This paper reports the design, and testing of a water turbine generator system for typical flow rates in domestic applications, with an integrated power management and a Bluetooth low energy (BLE) based RF data transmission interface. It is based on a commercially available low cost hydro generator. The generator is built into a housing with optimized reduced fluidic resistance to enable operation with flow rates as low as 6 l/min. The power management combines rectification, buffering, defined start-up, and circuit protection. An MSP430FR5949 microcontroller is used for data acquisition and processing. The data are transmitted via RF, using a Bluegiga BLE112 module in advertisement mode, to a PC where the measured flow rate is stored and displayed. The transmission rate of the wireless sensor node (WSN) is set to 1 Hz if enough power is available, which is the case for flow rates above 5.5 l/min. The electronics power demand is calculated to be 340 μW in average, while the generator is capable of delivering more than 200 mW for flow rates above 15 l/min.

  12. Power-law modulation of the scalar power spectrum from a heavy field with a monomial potential

    NASA Astrophysics Data System (ADS)

    Huang, Qing-Guo; Pi, Shi

    2018-04-01

    The effects of heavy fields modulate the scalar power spectrum during inflation. We analytically calculate the modulations of the scalar power spectrum from a heavy field with a separable monomial potential, i.e. V(phi)~ phin. In general the modulation is characterized by a power-law oscillation which is reduced to the logarithmic oscillation in the case of n=2.

  13. The 25 kW power module evolution study. Part 3: Conceptual designs for power module evolutions. Volume 3: Cost estimates

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Cost data generated for the evolutionary power module concepts selected are reported. The initial acquisition costs (design, development, and protoflight unit test costs) were defined and modeled for the baseline 25 kW power module configurations. By building a parametric model of this initial building block, the cost of the 50 kW and the 100 kW power modules were derived by defining only their configuration and programmatic differences from the 25 kW baseline module. Variations in cost for the quantities needed to fulfill the mission scenarios were derived by applying appropriate learning curves.

  14. The 25 kW power module evolution study. Part 1: Payload requirements and growth scenarios

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Payload power level requirements and their general impact on the baseline and growth versions of the 25 kW power module during the 1983 to 1990 period are discussed. Extended duration Orbiter sortie flight, supported by a power module, with increased payload power requirements per flight, and free-flyer payload missions are included. Other payload disciplines considered, but not emphasized for the 1983 to 1986 period include astrophysics/astronomy, earth observations, solar power satellite, and life sciences. Of these, only the solar power satellite is a prime driver for the power module.

  15. Status and Trend of Automotive Power Packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Zhenxian

    2012-01-01

    Comprehensive requirements in aspects of cost, reliability, efficiency, form factor, weight, and volume for power electronics modules in modern electric drive vehicles have driven the development of automotive power packaging technology intensively. Innovation in materials, interconnections, and processing techniques is leading to enormous improvements in power modules. In this paper, the technical development of and trends in power module packaging are evaluated by examining technical details with examples of industrial products. The issues and development directions for future automotive power module packaging are also discussed.

  16. Final Technical Report Overcoming Critical Barriers to U.S. Wind Power: A University-Industry Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acker, Tom; Kipple, Allison

    The objective of this project was to develop a curriculum module involving the design and simulation of a wind turbine generator. Dr. Allison Kipple, Assistant Professor of Electrical Engineering, led development of the module, employing graduate and undergraduate students, and Dr. Tom Acker served as project manager and principal investigator. This objective was achieved resulting in development of curricular materials, implementation and revision of the materials in EE 364, a Northern Arizona University electrical engineering course in “Fundamentals of Electromagnetics,” and via dissemination of the curricular materials to a broad community including other universities.

  17. Space Operations Center System Analysis: Requirements for a Space Operations Center, revision A

    NASA Technical Reports Server (NTRS)

    Woodcock, G. R.

    1982-01-01

    The system and program requirements for a space operations center as defined by systems analysis studies are presented as a guide for future study and systems definition. Topics covered include general requirements for safety, maintainability, and reliability, service and habitat modules, the health maintenance facility; logistics modules; the docking tunnel; and subsystem requirements (structures, electrical power, environmental control/life support; extravehicular activity; data management; communications and tracking; docking/berthing; flight control/propulsion; and crew support). Facilities for flight support, construction, satellite and mission servicing, and fluid storage are included as well as general purpose support equipment.

  18. Development of a DC-DC conversion powering scheme for the CMS Phase-1 pixel upgrade

    NASA Astrophysics Data System (ADS)

    Feld, L.; Fimmers, C.; Karpinski, W.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M.; Rittich, D.; Sammet, J.; Wlochal, M.

    2014-01-01

    A novel powering scheme based on the DC-DC conversion technique will be exploited to power the CMS Phase-1 pixel detector. DC-DC buck converters for the CMS pixel project have been developed, based on the AMIS5 ASIC designed by CERN. The powering system of the Phase-1 pixel detector is described and the performance of the converter prototypes is detailed, including power efficiency, stability of the output voltage, shielding, and thermal management. Results from a test of the magnetic field tolerance of the DC-DC converters are reported. System tests with pixel modules using many components of the future pixel barrel system are summarized. Finally first impressions from a pre-series of 200 DC-DC converters are presented.

  19. A Smart Power Electronic Multiconverter for the Residential Sector.

    PubMed

    Guerrero-Martinez, Miguel Angel; Milanes-Montero, Maria Isabel; Barrero-Gonzalez, Fermin; Miñambres-Marcos, Victor Manuel; Romero-Cadaval, Enrique; Gonzalez-Romera, Eva

    2017-05-26

    The future of the grid includes distributed generation and smart grid technologies. Demand Side Management (DSM) systems will also be essential to achieve a high level of reliability and robustness in power systems. To do that, expanding the Advanced Metering Infrastructure (AMI) and Energy Management Systems (EMS) are necessary. The trend direction is towards the creation of energy resource hubs, such as the smart community concept. This paper presents a smart multiconverter system for residential/housing sector with a Hybrid Energy Storage System (HESS) consisting of supercapacitor and battery, and with local photovoltaic (PV) energy source integration. The device works as a distributed energy unit located in each house of the community, receiving active power set-points provided by a smart community EMS. This central EMS is responsible for managing the active energy flows between the electricity grid, renewable energy sources, storage equipment and loads existing in the community. The proposed multiconverter is responsible for complying with the reference active power set-points with proper power quality; guaranteeing that the local PV modules operate with a Maximum Power Point Tracking (MPPT) algorithm; and extending the lifetime of the battery thanks to a cooperative operation of the HESS. A simulation model has been developed in order to show the detailed operation of the system. Finally, a prototype of the multiconverter platform has been implemented and some experimental tests have been carried out to validate it.

  20. A Smart Power Electronic Multiconverter for the Residential Sector

    PubMed Central

    Guerrero-Martinez, Miguel Angel; Milanes-Montero, Maria Isabel; Barrero-Gonzalez, Fermin; Miñambres-Marcos, Victor Manuel; Romero-Cadaval, Enrique; Gonzalez-Romera, Eva

    2017-01-01

    The future of the grid includes distributed generation and smart grid technologies. Demand Side Management (DSM) systems will also be essential to achieve a high level of reliability and robustness in power systems. To do that, expanding the Advanced Metering Infrastructure (AMI) and Energy Management Systems (EMS) are necessary. The trend direction is towards the creation of energy resource hubs, such as the smart community concept. This paper presents a smart multiconverter system for residential/housing sector with a Hybrid Energy Storage System (HESS) consisting of supercapacitor and battery, and with local photovoltaic (PV) energy source integration. The device works as a distributed energy unit located in each house of the community, receiving active power set-points provided by a smart community EMS. This central EMS is responsible for managing the active energy flows between the electricity grid, renewable energy sources, storage equipment and loads existing in the community. The proposed multiconverter is responsible for complying with the reference active power set-points with proper power quality; guaranteeing that the local PV modules operate with a Maximum Power Point Tracking (MPPT) algorithm; and extending the lifetime of the battery thanks to a cooperative operation of the HESS. A simulation model has been developed in order to show the detailed operation of the system. Finally, a prototype of the multiconverter platform has been implemented and some experimental tests have been carried out to validate it. PMID:28587131

  1. Design and operating experience of a 40 MW, highly-stabilized power supply

    NASA Astrophysics Data System (ADS)

    Boenig, Heinrich J.; Ferner, James A.; Bogdan, Ferenc; Morris, Gary C.; Rumrill, Ron S.

    Four 10 MW, highly-stabilized power supply modules have been installed at the National High Magnetic Field Laboratory in Tallahassee, FL, to energize water-cooled, resistive, high-field research magnets. The power supply modules achieve a long term current stability if 10 ppM over a 12 h period with a short term ripple and noise variation of less than 10 ppM over a time period of one cycle. The power supply modules can operate independently, feeding four separate magnets, or two, three or four modules can operate in parallel. Each power supply module consists of a 12.5 kV vacuum circuit breaker, two three-winding, step-down transformers, a 24-pulse rectifier with interphase reactors, and a passive and an active filter. Two different transformer tap settings allow rated dc supply output voltages of 400 and 500 V. The rated current of a supply module is 17 kA and each supply module has a one-hour overload capability of 20 kA. The isolated output terminals of each power supply module are connected to a reversing switch. An extensive high-current bus system allows the modules to be connected to 16 magnet cells. This paper presents the detailed design of the power supply components. Various test results taken during the commissioning phase with a 10 MW resistive load and results taken with the research magnets are shown. The effects of the modules on the electrical supply system and the operational behavior of the power factor correction/harmonic filters are described. Included also are results of a power supply module feeding a superconducting magnet during quench propagation tests. Problems with the power supply design and solutions are presented. Some suggestions on how to improve the performance of these supplies are outlined.

  2. A Thermally Powered ISFET Array for On-Body pH Measurement.

    PubMed

    Douthwaite, Matthew; Koutsos, Ermis; Yates, David C; Mitcheson, Paul D; Georgiou, Pantelis

    2017-12-01

    Recent advances in electronics and electrochemical sensors have led to an emerging class of next generation wearables, detecting analytes in biofluids such as perspiration. Most of these devices utilize ion-selective electrodes (ISEs) as a detection method; however, ion-sensitive field-effect transistors (ISFETs) offer a solution with improved integration and a low power consumption. This work presents a wearable, thermoelectrically powered system composed of an application-specific integrated circuit (ASIC), two commercial power management integrated circuits and a network of commercial thermoelectric generators (TEGs). The ASIC is fabricated in 0.35 m CMOS and contains an ISFET array designed to read pH as a current, a processing module which averages the signal to reduce noise and encodes it into a frequency, and a transmitter. The output frequency has a measured sensitivity of 6 to 8 kHz/pH for a pH range of 7-5. It is shown that the sensing array and processing module has a power consumption 6 W and, therefore, can be entirely powered by body heat using a TEG. Array averaging is shown to reduce noise at these low power levels to 104 V (input referred integrated noise), reducing the minimum detectable limit of the ASIC to 0.008 pH units. The work forms the foundation and proves the feasibility of battery-less, on-body electrochemical for perspiration analysis in sports science and healthcare applications.

  3. A Thermoelectric Energy Harvesting System for Powering Wireless Sensors in Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Klein, Jackson; Wu, Yongjia; Xing, Shaoxu; Flammang, Robert; Heibel, Michael; Zuo, Lei

    2016-10-01

    Safety is the most important issue in the development of nuclear energy. This paper reports experimental studies of a thermoelectric energy harvesting system designed for integration in a nuclear power plant capable of performing in radiation rich environments and producing enough power to run wireless sensors meant to increase plant safety. Furthermore, the system, which utilizes wasted heat present in coolant system piping, has the unique ability to provide power in both normal and accidental situations, to run the sensors without the need for external power. Two energy harvesting prototypes were designed utilizing a heat pipe for heat transfer. The first can supply a maximum power of 2.25 W using two Bi2Te3 thermoelectric modules of 2.79cm (1.1") × 2.79 cm (1.1”), in a source temperature near 250 °C. A second design was put forward to extend the application in higher-temperature primary loops, in which one PbTe-Bi2Te3 hybrid TEG module of 5.6cm (2.2") × 5.6 cm (2.2") can provide a power of 3.0 W when the hot side temperature reaches 340 °C. In addition to the energy harvester, wireless communication circuits were developed along with an integrated power management circuit for wireless data transmission. A high intensity gamma radiation experiment was conducted during which each component was irradiated. A total dose of 200 kGy±10% (20M rads) was applied to the first prototype in order to approximate the expected lifetime accumulation for one implemented thermoelectric generator. Results showed that thermoelectric modules used in the prototype had no reduction in voltage output throughout irradiation. Throughout the experiment the harvester system witnessed a small voltage drop in open circuit voltage attributed to a reduction in heat pipe performance from radiation exposure. We also acquired a baseline radiation survivability level for non-hardened, non-shielded electronics of 102 Gy.

  4. Module Fifteen: Special Topics; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The final module emphasizes utilizing the information learned in modules 1-14 to analyze and evaluate the power supply constructed in Module 0. The module contains the following narrative--power supply evaluation; experiment 1--resistance analysis of the half-wave and semiconductor power supply; experiment 2--voltage analysis of the half-wave and…

  5. Hubble Space Telescope nickel-hydrogen battery testing: An update

    NASA Technical Reports Server (NTRS)

    Whitt, Thomas H.; Brewer, Jeffrey C.

    1995-01-01

    The Marshall Space Flight Center (MSFC) began testing the HST Ni-H2 Six Battery Test and the 'Flight Spare Battery' Tests approximately one year before the launch of the HST. These tests are operated and reported on by the MSFC, but are managed and funded by Goddard Space Flight Center in direct support of the HST program. The HST Ni-H2 batteries are built from Eagle Picher RNH-90-3 cells. The HST EPS (electrical power system) is a direct energy transfer power system. The HST Ni-H2 Six Battery Test is a breadboard of the HST EPS. The batteries in the test are composed of test module cells and packaged into three battery modules identical to the flight modules. This test is the HST EPS testbed. The 'Flight Spare Battery' Test is a simulation of one of the six battery channels on the HST. The cells in the test are from the flight spare lot of cells, which are the same lot of cells that three of the six HST flight batteries are made from. This test is the battery life test for the HST program.

  6. Optical modulation techniques for analog signal processing and CMOS compatible electro-optic modulation

    NASA Astrophysics Data System (ADS)

    Gill, Douglas M.; Rasras, Mahmoud; Tu, Kun-Yii; Chen, Young-Kai; White, Alice E.; Patel, Sanjay S.; Carothers, Daniel; Pomerene, Andrew; Kamocsai, Robert; Beattie, James; Kopa, Anthony; Apsel, Alyssa; Beals, Mark; Mitchel, Jurgen; Liu, Jifeng; Kimerling, Lionel C.

    2008-02-01

    Integrating electronic and photonic functions onto a single silicon-based chip using techniques compatible with mass-production CMOS electronics will enable new design paradigms for existing system architectures and open new opportunities for electro-optic applications with the potential to dramatically change the management, cost, footprint, weight, and power consumption of today's communication systems. While broadband analog system applications represent a smaller volume market than that for digital data transmission, there are significant deployments of analog electro-optic systems for commercial and military applications. Broadband linear modulation is a critical building block in optical analog signal processing and also could have significant applications in digital communication systems. Recently, broadband electro-optic modulators on a silicon platform have been demonstrated based on the plasma dispersion effect. The use of the plasma dispersion effect within a CMOS compatible waveguide creates new challenges and opportunities for analog signal processing since the index and propagation loss change within the waveguide during modulation. We will review the current status of silicon-based electrooptic modulators and also linearization techniques for optical modulation.

  7. Solid-state active switch matrix for high energy, moderate power battery systems

    DOEpatents

    Deal, Larry; Paris, Peter; Ye, Changqing

    2016-06-07

    A battery management system employs electronic switches and capacitors. No traditional cell-balancing resistors are used. The BMS electronically switches individual cells into and out of a module of cells in order to use the maximum amount of energy available in each cell and to completely charge and discharge each cell without overcharging or under-discharging.

  8. Fine-Structure Artifact of the Velocity Distribution of Cs Beam Tubes as Measured by the Pulsed Microwave Power Technique

    DTIC Science & Technology

    1990-10-15

    Officer MOIE Program manager SSD/MSSB AFSTC/WCO OL-AB UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE REPORT DOCUMENTATION PAGE la . REPORT SECURITY...34 Metrologia , 9, 1973, pp. 107-112. 2. H. Hellwig, S. Jarvis, D. J. Glaze, D. Halford, and H. E. Bell, "Time domain velocity selection modulation as a

  9. The 25 kW power module evolution study. Part 3: Conceptual designs for power module evolution. Volume 1: Power module evolution

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Candidate power module confugurations which will directly support an evolutionary scenario allowing growth from 25 kW to 100 kW are described. The growth rationale is structured to support a nominal scenario for sortie mission support to the POrbiter and to free-flying payloads during the 1983 to 1990 era.

  10. Design of power cable grounding wire anti-theft monitoring system

    NASA Astrophysics Data System (ADS)

    An, Xisheng; Lu, Peng; Wei, Niansheng; Hong, Gang

    2018-01-01

    In order to prevent the serious consequences of the power grid failure caused by the power cable grounding wire theft, this paper presents a GPRS based power cable grounding wire anti-theft monitoring device system, which includes a camera module, a sensor module, a micro processing system module, and a data monitoring center module, a mobile terminal module. Our design utilize two kinds of methods for detecting and reporting comprehensive image, it can effectively solve the problem of power and cable grounding wire box theft problem, timely follow-up grounded cable theft events, prevent the occurrence of electric field of high voltage transmission line fault, improve the reliability of the safe operation of power grid.

  11. Roadmap for Testing and Validation of Electric Vehicle Communication Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan

    Vehicle to grid communication standards are critical to the charge management and interoperability among plug-in electric vehicles (PEVs), charging stations and utility providers. The Society of Automobile Engineers (SAE), International Organization for Standardization (ISO), International Electrotechnical Commission (IEC) and the ZigBee Alliance are developing requirements for communication messages and protocols. While interoperability standards development has been in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers or utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recent work bymore » the Electric Power Research Institute (EPRI), in collaboration with SAE and automobile manufacturers, has identified performance requirements and developed a test plan based on possible communication pathways using power line communication (PLC). Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This paper presents a roadmap and results from testing power line communication modules developed to meet the requirements of SAE J2847/1 standard.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smed, T.; Andersson, G.

    In this paper, damping of slow oscillations with active and reactive power modulation of HVDC-links is analyzed with the aim of gaining a physical insight into the problem. The analysis shows that active power modulation is efficient when applied to a short mass-scaled electrical distance from one of the swinging machines, and reactive power modulation is most efficient when there exists a well-defined power flow direction and the modulation is made at a point close to the electrical midpoint between the swinging machines. It is shown that the intuitively appealing feedback signals frequency and derivative of the voltage are appropriatemore » for active and reactive power modulation, respectively. The impact of the constraints imposed by the HVDC equations are analyzed, and it is determined when the implicit reactive power modulation resulting from constant [gamma] control may be detrimental for the damping.« less

  13. Arbitrary-shaped Brillouin microwave photonic filter by manipulating a directly modulated pump.

    PubMed

    Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng

    2017-10-15

    We present a cost-effective gigahertz-wide arbitrary-shaped microwave photonic filter based on stimulated Brillouin scattering in fiber using a directly modulated laser (DML). After analyzing the relationship between the spectral power density and the modulation current of the DML, we manage to precisely adjust the optical spectrum of the DML, thereby controlling the Brillouin filter response arbitrarily for the first time, to the best of our knowledge. The filter performance is evaluated by amplifying a 500 Mb/s non-return-to-zero on-off keying signal using a 1 GHz rectangular filter. The comparison between the proposed DML approach and the previous approach adopting a complex IQ modulator shows similar filter flexibility, shape fidelity, and noise performance, proving that the DML-based Brillouin filter technique is a cost-effective and valid solution for microwave photonic applications.

  14. Temperature control of power semiconductor devices in traction applications

    NASA Astrophysics Data System (ADS)

    Pugachev, A. A.; Strekalov, N. N.

    2017-02-01

    The peculiarity of thermal management of traction frequency converters of a railway rolling stock is highlighted. The topology and the operation principle of the automatic temperature control system of power semiconductor modules of the traction frequency converter are designed and discussed. The features of semiconductors as an object of temperature control are considered; the equivalent circuit of thermal processes in the semiconductors is suggested, the power losses in the two-level voltage source inverters are evaluated and analyzed. The dynamic properties and characteristics of the cooling fan induction motor electric drive with the scalar control are presented. The results of simulation in Matlab are shown for the steady state of thermal processes.

  15. Implementation of thermoelectric module for cooling process of microscale experimental room

    NASA Astrophysics Data System (ADS)

    Gołebiowska, Justyna; Żelazna, Agnieszka; Zioło, Paweł

    2017-08-01

    Thermoelectric modules, also known as Peltier modules, are used for cooling small devices and also, according to literature, in refrigeration. They can be an alternative to conventional refrigeration systems based on the use of compressors chillers powered by AC power. Peltier modules are powered by direct current (DC), which allows to power them directly supply by photovoltaic modules. In this paper operation of thermoelectric module used for cooling experimental room of cubature 0.125 m3 is presented. The study involves investigation of temperatures achieved on the cold and hot sides of module and inside the experimental room depending on the values of module supplying current. These studies provide an introduction to the assessment of the influence of different methods of heat removal on the hot side of thermoelectric module on cooling efficiency of whole system.

  16. High Performance Power Module for Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Peterson, Peter Y.; Bowers, Glen E.

    2002-01-01

    Previous efforts to develop power electronics for Hall thruster systems have targeted the 1 to 5 kW power range and an output voltage of approximately 300 V. New Hall thrusters are being developed for higher power, higher specific impulse, and multi-mode operation. These thrusters require up to 50 kW of power and a discharge voltage in excess of 600 V. Modular power supplies can process more power with higher efficiency at the expense of complexity. A 1 kW discharge power module was designed, built and integrated with a Hall thruster. The breadboard module has a power conversion efficiency in excess of 96 percent and weighs only 0.765 kg. This module will be used to develop a kW, multi-kW, and high voltage power processors.

  17. High-efficiency integrated piezoelectric energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Hande, Abhiman; Shah, Pradeep

    2010-04-01

    This paper describes hierarchically architectured development of an energy harvesting (EH) system that consists of micro and/or macro-scale harvesters matched to multiple components of remote wireless sensor and communication nodes. The micro-scale harvesters consist of thin-film MEMS piezoelectric cantilever arrays and power generation modules in IC-like form to allow efficient EH from vibrations. The design uses new high conversion efficiency thin-film processes combined with novel cantilever structures tuned to multiple resonant frequencies as broadband arrays. The macro-scale harvesters are used to power the collector nodes that have higher power specifications. These bulk harvesters can be integrated with efficient adaptive power management circuits that match transducer impedance and maximize power harvested from multiple scavenging sources with very low intrinsic power consumption. Texas MicroPower, Inc. is developing process based on a composition that has the highest reported energy density as compared to other commercially available bulk PZT-based sensor/actuator ceramic materials and extending it to thin-film materials and miniature conversion transducer structures. The multiform factor harvesters can be deployed for several military and commercial applications such as underground unattended sensors, sensors in oil rigs, structural health monitoring, supply chain management, and battlefield applications such as sensors on soldier apparel, equipment, and wearable electronics.

  18. Sub-paresthesia spinal cord stimulation reverses thermal hyperalgesia and modulates low frequency EEG in a rat model of neuropathic pain.

    PubMed

    Koyama, Suguru; Xia, Jimmy; Leblanc, Brian W; Gu, Jianwen Wendy; Saab, Carl Y

    2018-05-08

    Paresthesia, a common feature of epidural spinal cord stimulation (SCS) for pain management, presents a challenge to the double-blind study design. Although sub-paresthesia SCS has been shown to be effective in alleviating pain, empirical criteria for sub-paresthesia SCS have not been established and its basic mechanisms of action at supraspinal levels are unknown. We tested our hypothesis that sub-paresthesia SCS attenuates behavioral signs of neuropathic pain in a rat model, and modulates pain-related theta (4-8 Hz) power of the electroencephalogram (EEG), a previously validated correlate of spontaneous pain in rodent models. Results show that sub-paresthesia SCS attenuates thermal hyperalgesia and power amplitude in the 3-4 Hz range, consistent with clinical data showing significant yet modest analgesic effects of sub-paresthesia SCS in humans. Therefore, we present evidence for anti-nociceptive effects of sub-paresthesia SCS in a rat model of neuropathic pain and further validate EEG theta power as a reliable 'biosignature' of spontaneous pain.

  19. Design of a compact low-power human-computer interaction equipment for hand motion

    NASA Astrophysics Data System (ADS)

    Wu, Xianwei; Jin, Wenguang

    2017-01-01

    Human-Computer Interaction (HCI) raises demand of convenience, endurance, responsiveness and naturalness. This paper describes a design of a compact wearable low-power HCI equipment applied to gesture recognition. System combines multi-mode sense signals: the vision sense signal and the motion sense signal, and the equipment is equipped with the depth camera and the motion sensor. The dimension (40 mm × 30 mm) and structure is compact and portable after tight integration. System is built on a module layered framework, which contributes to real-time collection (60 fps), process and transmission via synchronous confusion with asynchronous concurrent collection and wireless Blue 4.0 transmission. To minimize equipment's energy consumption, system makes use of low-power components, managing peripheral state dynamically, switching into idle mode intelligently, pulse-width modulation (PWM) of the NIR LEDs of the depth camera and algorithm optimization by the motion sensor. To test this equipment's function and performance, a gesture recognition algorithm is applied to system. As the result presents, general energy consumption could be as low as 0.5 W.

  20. CarbAl Heat Transfer Material

    NASA Technical Reports Server (NTRS)

    Fink, Richard

    2015-01-01

    The increasing use of power electronics, such as high-current semiconductor devices and modules, within space vehicles is driving the need to develop specialty thermal management materials in both the packaging of these discrete devices and the packaging of modules consisting of these device arrays. Developed by Applied Nanotech, Inc. (ANI), CarbAl heat transfer material is uniquely characterized by its low density, high thermal diffusivity, and high thermal conductivity. Its coefficient of thermal expansion (CTE) is similar to most power electronic materials, making it an effective base plate substrate for state-of-the-art silicon carbide (SiC) super junction transistors. The material currently is being used to optimize hybrid vehicle inverter packaging. Adapting CarbAl-based substrates to space applications was a major focus of the SBIR project work. In Phase I, ANI completed modeling and experimentation to validate its deployment in a space environment. Key parameters related to cryogenic temperature scaling of CTE, thermal conductivity, and mechanical strength. In Phase II, the company concentrated on improving heat sinks and thermally conductive circuit boards for power electronic applications.

  1. High-Power, High-Speed Electro-Optic Pockels Cell Modulator

    NASA Technical Reports Server (NTRS)

    Hawthorne, Justin; Battle, Philip

    2013-01-01

    Electro-optic modulators rely on a change in the index of refraction for the optical wave as a function of an applied voltage. The corresponding change in index acts to delay the wavefront in the waveguide. The goal of this work was to develop a high-speed, high-power waveguide- based modulator (phase and amplitude) and investigate its use as a pulse slicer. The key innovation in this effort is the use of potassium titanyl phosphate (KTP) waveguides, making the highpower, polarization-based waveguide amplitude modulator possible. Furthermore, because it is fabricated in KTP, the waveguide component will withstand high optical power and have a significantly higher RF modulation figure of merit (FOM) relative to lithium niobate. KTP waveguides support high-power TE and TM modes - a necessary requirement for polarization-based modulation as with a Pockels cell. High-power fiber laser development has greatly outpaced fiber-based modulators in terms of its maturity and specifications. The demand for high-performance nonlinear optical (NLO) devices in terms of power handling, efficiency, bandwidth, and useful wavelength range has driven the development of bulk NLO options, which are limited in their bandwidth, as well as waveguide based LN modulators, which are limited by their low optical damage threshold. Today, commercially available lithium niobate (LN) modulators are used for laser formatting; however, because of photorefractive damage that can reduce transmission and increase requirements on bias control, LN modulators cannot be used with powers over several mW, dependent on wavelength. The high-power, high-speed modulators proposed for development under this effort will enable advancements in several exciting fields including lidarbased remote sensing, atomic interferometry, free-space laser communications, and others.

  2. Power-Amplifier Module for 145 to 165 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Peralta, Alejandro

    2007-01-01

    A power-amplifier module that operates in the frequency range of 145 to 165 GHz has been designed and constructed as a combination of (1) a previously developed monolithic microwave integrated circuit (MMIC) power amplifier and (2) a waveguide module. The amplifier chip was needed for driving a high-electron-mobility-transistor (HEMT) frequency doubler. While it was feasible to connect the amplifier and frequency-doubler chips by use of wire bonds, it was found to be much more convenient to test the amplifier and doubler chips separately. To facilitate separate testing, it was decided to package the amplifier and doubler chips in separate waveguide modules. Figure 1 shows the resulting amplifier module. The amplifier chip was described in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11, (November 2003), page 49. To recapitulate: This is a three-stage MMIC power amplifier that utilizes HEMTs as gain elements. The amplifier was originally designed to operate in the frequency range of 140 to 170 GHz. The waveguide module is based on a previously developed lower frequency module, redesigned to support operation in the frequency range of 140 to 220 GHz. Figure 2 presents results of one of several tests of the amplifier module - measurements of output power and gain as functions of input power at an output frequency of 150 GHz. Such an amplifier module has many applications to test equipment for power sources above 100 GHz.

  3. Design of an Input-Parallel Output-Parallel LLC Resonant DC-DC Converter System for DC Microgrids

    NASA Astrophysics Data System (ADS)

    Juan, Y. L.; Chen, T. R.; Chang, H. M.; Wei, S. E.

    2017-11-01

    Compared with the centralized power system, the distributed modularized power system is composed of several power modules with lower power capacity to provide a totally enough power capacity for the load demand. Therefore, the current stress of the power components in each module can then be reduced, and the flexibility of system setup is also enhanced. However, the parallel-connected power modules in the conventional system are usually controlled to equally share the power flow which would result in lower efficiency in low loading condition. In this study, a modular power conversion system for DC micro grid is developed with 48 V dc low voltage input and 380 V dc high voltage output. However, in the developed system control strategy, the numbers of power modules enabled to share the power flow is decided according to the output power at lower load demand. Finally, three 350 W power modules are constructed and parallel-connected to setup a modular power conversion system. From the experimental results, compared with the conventional system, the efficiency of the developed power system in the light loading condition is greatly improved. The modularized design of the power system can also decrease the power loss ratio to the system capacity.

  4. Development status of the small community solar power system

    NASA Technical Reports Server (NTRS)

    Pons, R. L.

    1982-01-01

    The development status and test results for the Small Community Solar Thermal Power Experiment are presented. Activities on the phase 2 power module development effort are presented with emphasis on the receiver, the plant control subsystem, and the energy transport subsystem. The components include a single prototype power module consisting of a parabolic dish concentrator, a power conversion assembly (PCA), and a multiple-module plant control subsystem. The PCA consists of a cavity receiver coupled to an organic Rankine cycle engine-alternator unit defined as the power conversion subsystem; the PCA is mounted at the focus of a parabolic dish concentrator. At a solar insolation of 100 W/sq m and ambient temperature of 28 C (82 F), the power module produces approximately 20 kW of 3-phase, 3 kHz ac power, depending on the concentrator employed. A ground-mounted rectifier to the central collection site where it is supplied directly to the common dc bus which collects the power from all modules in the plant.

  5. Development of an Organic Rankine-Cycle power module for a small community solar thermal power experiment

    NASA Technical Reports Server (NTRS)

    Kiceniuk, T.

    1985-01-01

    An organic Rankine-cycle (ORC) power module was developed for use in a multimodule solar power plant to be built and operated in a small community. Many successful components and subsystems, including the reciever, power conversion subsystem, energy transport subsystem, and control subsystem, were tested. Tests were performed on a complete power module using a test bed concentrator in place of the proposed concentrator. All major single-module program functional objectives were met and the multimodule operation presented no apparent problems. The hermetically sealed, self-contained, ORC power conversion unit subsequently successfully completed a 300-hour endurance run with no evidence of wear or operating problems.

  6. Golay sequences coded coherent optical OFDM for long-haul transmission

    NASA Astrophysics Data System (ADS)

    Qin, Cui; Ma, Xiangrong; Hua, Tao; Zhao, Jing; Yu, Huilong; Zhang, Jian

    2017-09-01

    We propose to use binary Golay sequences in coherent optical orthogonal frequency division multiplexing (CO-OFDM) to improve the long-haul transmission performance. The Golay sequences are generated by binary Reed-Muller codes, which have low peak-to-average power ratio and certain error correction capability. A low-complexity decoding algorithm for the Golay sequences is then proposed to recover the signal. Under same spectral efficiency, the QPSK modulated OFDM with binary Golay sequences coding with and without discrete Fourier transform (DFT) spreading (DFTS-QPSK-GOFDM and QPSK-GOFDM) are compared with the normal BPSK modulated OFDM with and without DFT spreading (DFTS-BPSK-OFDM and BPSK-OFDM) after long-haul transmission. At a 7% forward error correction code threshold (Q2 factor of 8.5 dB), it is shown that DFTS-QPSK-GOFDM outperforms DFTS-BPSK-OFDM by extending the transmission distance by 29% and 18%, in non-dispersion managed and dispersion managed links, respectively.

  7. Coordinated control strategy for improving the two drops of the wind storage combined system

    NASA Astrophysics Data System (ADS)

    Qian, Zhou; Chenggen, Wang; Jing, Bu

    2018-05-01

    In the power system with high permeability wind power, due to wind power fluctuation, the operation of large-scale wind power grid connected to the system brings challenges to the frequency stability of the system. When the doubly fed wind power generation unit does not reserve spare capacity to participate in the system frequency regulation, the system frequency will produce two drops in different degrees when the wind power exits frequency modulation and enters the speed recovery stage. To solve this problem, based on the complementary advantages of wind turbines and energy storage systems in power transmission and frequency modulation, a wind storage combined frequency modulation strategy based on sectional control is proposed in this paper. Based on the TOP wind power frequency modulation strategy, the wind power output reference value is determined according to the linear relationship between the output and the speed of the wind turbine, and the auxiliary wind power load reduction is controlled when the wind power exits frequency modulation into the speed recovery stage, so that the wind turbine is recovered to run at the optimal speed. Then, according to the system frequency and the wind turbine operation state, set the energy storage system frequency modulation output. Energy storage output active support is triggered during wind speed recovery. And then when the system frequency to return to the normal operating frequency range, reduce energy storage output or to exit frequency modulation. The simulation results verify the effectiveness of the proposed method.

  8. Low profile, highly configurable, current sharing paralleled wide band gap power device power module

    DOEpatents

    McPherson, Brice; Killeen, Peter D.; Lostetter, Alex; Shaw, Robert; Passmore, Brandon; Hornberger, Jared; Berry, Tony M

    2016-08-23

    A power module with multiple equalized parallel power paths supporting multiple parallel bare die power devices constructed with low inductance equalized current paths for even current sharing and clean switching events. Wide low profile power contacts provide low inductance, short current paths, and large conductor cross section area provides for massive current carrying. An internal gate & source kelvin interconnection substrate is provided with individual ballast resistors and simple bolted construction. Gate drive connectors are provided on either left or right size of the module. The module is configurable as half bridge, full bridge, common source, and common drain topologies.

  9. Non-Flow Through Fuel Cell Power Module Demonstration on the SCARAB Rover

    NASA Technical Reports Server (NTRS)

    Jakupca, Ian; Guzik, Monica; Bennett, William R.; Edwards, Lawrence

    2017-01-01

    NASA demonstrated the Advanced Product Water Removal (APWR) Non-Flow-Through (NFT) PEM fuel cell technology by powering the Scarab rover over three-(3) days of field operations. The latest generation APWR NFT fuel cell stackwas packaged by the Advanced Exploration Systems (AES) Modular Power Systems (AMPS) team into a nominallyrated 1-kW fuel cell power module. This power module was functionally verified in a laboratory prior to field operations on the Scarab rover, which concluded on 2 September 2015. During this demonstration, the power module satisfied all required success criteria by supporting all electrical loads as the Scarab navigated the NASA Glenn Research Center.

  10. Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source.

    PubMed

    Aliev, Ali E; Mayo, Nathanael K; Baughman, Ray H; Avirovik, Dragan; Priya, Shashank; Zarnetske, Michael R; Blottman, John B

    2014-10-10

    Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1-10(5) Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and attractive performance at needed low frequencies. Energy conversion efficiencies in air of 2% and 10% underwater, which can be enhanced by further increasing the modulation temperature. Using a developed method for accurate temperature measurements for the thin aerogel CNT sheets, heat dissipation processes, failure mechanisms, and associated power densities are investigated for encapsulated multilayered CNT TA heaters and related to the thermal diffusivity distance when sheet layers are separated. Resulting thermal management methods for high applied power are discussed and deployed to construct efficient and tunable underwater sound projector for operation at relatively low frequencies, 10 Hz-10 kHz. The optimal design of these TA projectors for high-power SONAR arrays is discussed.

  11. Design Considerations for Gun Propellant Climatic Storage Chambers.

    DTIC Science & Technology

    1982-11-01

    Schematic diagram of thermal element 5 4. Prototype Lhermal element 6 5. Power control circuit diagram 7 6. Power control module 7 7. Temperature...plates. Each plate is powered through a triac and temperature control circuit as shown in figure 5. Figure 6 is a photograph of an assembled power control...SHEATER PLATES Figure 5. Power control circuit diagram 4 f Figure 6. Power control module WSR.L-0295-TR -8- Figure 7. Temperature control module 9 -WSRL

  12. Wireless sensor network

    NASA Astrophysics Data System (ADS)

    Perotti, Jose M.; Lucena, Angel R.; Mullenix, Pamela A.; Mata, Carlos T.

    2006-05-01

    Current and future requirements of aerospace sensors and transducers demand the design and development of a new family of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors and transducers will possess a certain degree of intelligence in order to provide the end user with critical data in a more efficient manner. Communication between networks of traditional or next-generation sensors can be accomplished by a Wireless Sensor Network (WSN) developed by NASA's Instrumentation Branch and ASRC Aerospace Corporation at Kennedy Space Center (KSC), consisting of at least one central station and several remote stations and their associated software. The central station is application-dependent and can be implemented on different computer hardware, including industrial, handheld, or PC-104 single-board computers, on a variety of operating systems: embedded Windows, Linux, VxWorks, etc. The central stations and remote stations share a similar radio frequency (RF) core module hardware that is modular in design. The main components of the remote stations are an RF core module, a sensor interface module, batteries, and a power management module. These modules are stackable, and a common bus provides the flexibility to stack other modules for additional memory, increased processing, etc. WSN can automatically reconfigure to an alternate frequency if interference is encountered during operation. In addition, the base station will autonomously search for a remote station that was perceived to be lost, using relay stations and alternate frequencies. Several wireless remote-station types were developed and tested in the laboratory to support different sensing technologies, such as resistive temperature devices, silicon diodes, strain gauges, pressure transducers, and hydrogen leak detectors.

  13. Development of the updated system of city underground pipelines based on Visual Studio

    NASA Astrophysics Data System (ADS)

    Zhang, Jianxiong; Zhu, Yun; Li, Xiangdong

    2009-10-01

    Our city has owned the integrated pipeline network management system with ArcGIS Engine 9.1 as the bottom development platform and with Oracle9i as basic database for storaging data. In this system, ArcGIS SDE9.1 is applied as the spatial data engine, and the system was a synthetic management software developed with Visual Studio visualization procedures development tools. As the pipeline update function of the system has the phenomenon of slower update and even sometimes the data lost, to ensure the underground pipeline data can real-time be updated conveniently and frequently, and the actuality and integrity of the underground pipeline data, we have increased a new update module in the system developed and researched by ourselves. The module has the powerful data update function, and can realize the function of inputting and outputting and rapid update volume of data. The new developed module adopts Visual Studio visualization procedures development tools, and uses access as the basic database to storage data. We can edit the graphics in AutoCAD software, and realize the database update using link between the graphics and the system. Practice shows that the update module has good compatibility with the original system, reliable and high update efficient of the database.

  14. Waveguide Power-Amplifier Module for 80 to 150 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Weinreb, Sander; Peralta, Alejandro

    2006-01-01

    A waveguide power-amplifier module capable of operating over the frequency range from 80 to 150 GHz has been constructed. The module comprises a previously reported power amplifier packaged in a waveguide housing that is compatible with WR-8 waveguides. (WR- 8 is a standard waveguide size for the nominal frequency range from 90 to 140 GHz.) The waveguide power-amplifier module is robust and can be bolted to test equipment and to other electronic circuits with which the amplifier must be connected for normal operation.

  15. Intelligent (Autonomous) Power Controller Development for Human Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Soeder, James; Raitano, Paul; McNelis, Anne

    2016-01-01

    As NASAs Evolvable Mars Campaign and other exploration initiatives continue to mature they have identified the need for more autonomous operations of the power system. For current human space operations such as the International Space Station, the paradigm is to perform the planning, operation and fault diagnosis from the ground. However, the dual problems of communication lag as well as limited communication bandwidth beyond GEO synchronous orbit, underscore the need to change the operation methodology for human operation in deep space. To address this need, for the past several years the Glenn Research Center has had an effort to develop an autonomous power controller for human deep space vehicles. This presentation discusses the present roadmap for deep space exploration along with a description of conceptual power system architecture for exploration modules. It then contrasts the present ground centric control and management architecture with limited autonomy on-board the spacecraft with an advanced autonomous power control system that features ground based monitoring with a spacecraft mission manager with autonomous control of all core systems, including power. It then presents a functional breakdown of the autonomous power control system and examines its operation in both normal and fault modes. Finally, it discusses progress made in the development of a real-time power system model and how it is being used to evaluate the performance of the controller and well as using it for verification of the overall operation.

  16. Advanced photovoltaic power systems using tandem GaAs/GaSb concentrator modules

    NASA Technical Reports Server (NTRS)

    Fraas, L. M.; Kuryla, M. S.; Pietila, D. A.; Sundaram, V. S.; Gruenbaum, P. E.; Avery, J. E.; Dihn, V.; Ballantyne, R.; Samuel, C.

    1992-01-01

    In 1989, Boeing announced the fabrication of a tandem gallium concentrator solar cell with an energy conversion efficiency of 30 percent. This research breakthrough has now led to panels which are significantly smaller, lighter, more radiation resistant, and potentially less expensive than the traditional silicon flat plate electric power supply. The new Boeing tandem concentrator (BTC) module uses an array of lightweight silicone Fresnel lenses mounted on the front side of a light weight aluminum honeycomb structure to focus sunlight onto small area solar cells mounted on a thin back plane. This module design is shown schematically. The tandem solar cell in this new module consists of a gallium arsenide light sensitive cell with a 24 percent energy conversion efficiency stacked on top of a gallium antimonide infrared sensitive cell with a conversion efficiency of 6 percent. This gives a total efficiency 30 percent for the cell-stack. The lens optical efficiency is typically 85 percent. Discounting for efficiency losses associated with lens packing, cell wiring, and cell operating temperature still allows for a module efficiency of 22 percent which leads to a module power density of 300 Watts/sq. m. This performance provides more than twice the power density available from a single crystal silicon flat plate module and at least four times the power density available from amorphous silicon modules. The fact that the lenses are only 0.010 ft. thick and the aluminum foil back plane is only 0.003 ft. thick leads to a very lightweight module. Although the cells are an easy to handle thickness of 0.020 ft., the fact that they are small, occupying one-twenty-fifth of the module area, means that they add little to the module weight. After summing all the module weights and given the high module power, we find that we are able to fabricate BTC modules with specific power of 100 watts/kg.

  17. A High Temperature Silicon Carbide mosfet Power Module With Integrated Silicon-On-Insulator-Based Gate Drive

    DOE PAGES

    Wang, Zhiqiang; Shi, Xiaojie; Tolbert, Leon M.; ...

    2014-04-30

    Here we present a board-level integrated silicon carbide (SiC) MOSFET power module for high temperature and high power density application. Specifically, a silicon-on-insulator (SOI)-based gate driver capable of operating at 200°C ambient temperature is designed and fabricated. The sourcing and sinking current capability of the gate driver are tested under various ambient temperatures. Also, a 1200 V/100 A SiC MOSFET phase-leg power module is developed utilizing high temperature packaging technologies. The static characteristics, switching performance, and short-circuit behavior of the fabricated power module are fully evaluated at different temperatures. Moreover, a buck converter prototype composed of the SOI gate drivermore » and SiC power module is built for high temperature continuous operation. The converter is operated at different switching frequencies up to 100 kHz, with its junction temperature monitored by a thermosensitive electrical parameter and compared with thermal simulation results. The experimental results from the continuous operation demonstrate the high temperature capability of the power module at a junction temperature greater than 225°C.« less

  18. Lunar Module Electrical Power System Design Considerations and Failure Modes

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This slide presentation reviews the design and redesign considerations of the Apollo lunar module electrical power system. Included in the work are graphics showing the lunar module power system. It describes the in-flight failures, and the lessons learned from these failures.

  19. Resonator-Based Silicon Electro-Optic Modulator with Low Power Consumption

    NASA Astrophysics Data System (ADS)

    Xin, Maoqing; Danner, Aaron J.; Eng Png, Ching; Thor Lim, Soon

    2009-04-01

    This paper demonstrates, via simulation, an electro-optic modulator based on a subwavelength Fabry-Perot resonator cavity with low power consumption of 86 µW/µm. This is, to the best of our knowledge, the lowest power reported for silicon photonic bandgap modulators. The device is modulated at a doped p-i-n junction overlapping the cavity in a silicon waveguide perforated with etched holes, with the doping area optimized for minimum power consumption. The surface area of the entire device is only 2.1 µm2, which compares favorably to other silicon-based modulators. A modulation speed of at least 300 MHz is detected from the electrical simulator after sidewall doping is introduced which is suitable for sensing or fiber to the home (FTTH) technologies, where speed can be traded for low cost and power consumption. The device does not rely on ultra-high Q, and could serve as a sensor, modulator, or passive filter with built-in calibration.

  20. Performance Analysis of the Automotive TEG with Respect to the Geometry of the Modules

    NASA Astrophysics Data System (ADS)

    Yu, C. G.; Zheng, S. J.; Deng, Y. D.; Su, C. Q.; Wang, Y. P.

    2017-05-01

    Recently there has been increasing interest in applying thermoelectric technology to recover waste heat in automotive exhaust gas. Due to the limited space in the vehicle, it's meaningful to improve the TEG (thermoelectric generator) performance by optimizing the module geometry. This paper analyzes the performance of bismuth telluride modules for two criteria (power density and power output per area), and researches the relationship between the performance and the geometry of the modules. A geometry factor is defined for the thermoelectric element to describe the module geometry, and a mathematical model is set up to study the effects of the module geometry on its performance. It has been found out that the optimal geometry factors for maximum output power, power density and power output per unit area are different, and the value of the optimal geometry factors will be affected by the volume of the thermoelectric material and the thermal input. The results can be referred to as the basis for optimizing the performance of the thermoelectric modules.

  1. Electric Field Distribution in High Voltage Power Modules Using Finite Element Simulations

    NASA Astrophysics Data System (ADS)

    Wang, Zhao; Liu, Yaoning

    2018-03-01

    With the development of the high voltage insulated gate bipolar transistor (IGBT) power module, it leads to serious problems concerning the electric field insulation. The electric field capabilities of the silicone gels used in the power module encapsulation directly affect the module insulation. Some solutions have been developed to optimize the electric field and reliability. In this letter, the finite element simulation was used to analyze and localize the maximum electric field position; solutions were proposed to improve the module insulation. It’s demonstrated that BaTiO3 silicone composite is a promising insulation material for high voltage power device.

  2. Low-power sensor module for long-term activity monitoring.

    PubMed

    Leuenberger, Kaspar; Gassert, Roger

    2011-01-01

    Wearable sensor modules are a promising approach to collecting data on functional motor activities, both for repeated and long-term assessments, as well as to investigate the transfer of therapy to activities of daily living at home, but have so far either had limited sensing capabilities, or were not laid out for long-term monitoring. This paper presents ReSense, a miniature sensor unit optimized for long-term monitoring of functional activity. Inertial MEMS sensors capture accelerations along six degrees of freedom and a barometric pressure sensor serves as a precise altimeter. Data is written to an integrated memory card. The realized module measures Ø25 × 10 mm, weighs 10 g and can record continuously for 27 h at 25 Hz and over 22 h at 100 Hz. The integrated power-management system detects inactivity and extends the operating time by about a factor of two, as shown by initial 24 h recordings on five energetic healthy adults. The integrated barometric pressure sensor allowed to identify activities incorporating a change in altitude, such as going up/down stairs or riding an elevator. By taking into account data from the inertial sensors during the altitude changes, it becomes possible to distinguish between these two activities.

  3. Optimal fault-tolerant control strategy of a solid oxide fuel cell system

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojuan; Gao, Danhui

    2017-10-01

    For solid oxide fuel cell (SOFC) development, load tracking, heat management, air excess ratio constraint, high efficiency, low cost and fault diagnosis are six key issues. However, no literature studies the control techniques combining optimization and fault diagnosis for the SOFC system. An optimal fault-tolerant control strategy is presented in this paper, which involves four parts: a fault diagnosis module, a switching module, two backup optimizers and a controller loop. The fault diagnosis part is presented to identify the SOFC current fault type, and the switching module is used to select the appropriate backup optimizer based on the diagnosis result. NSGA-II and TOPSIS are employed to design the two backup optimizers under normal and air compressor fault states. PID algorithm is proposed to design the control loop, which includes a power tracking controller, an anode inlet temperature controller, a cathode inlet temperature controller and an air excess ratio controller. The simulation results show the proposed optimal fault-tolerant control method can track the power, temperature and air excess ratio at the desired values, simultaneously achieving the maximum efficiency and the minimum unit cost in the case of SOFC normal and even in the air compressor fault.

  4. High-power Yb-fiber comb based on pre-chirped-management self-similar amplification

    NASA Astrophysics Data System (ADS)

    Luo, Daping; Liu, Yang; Gu, Chenglin; Wang, Chao; Zhu, Zhiwei; Zhang, Wenchao; Deng, Zejiang; Zhou, Lian; Li, Wenxue; Zeng, Heping

    2018-02-01

    We report a fiber self-similar-amplification (SSA) comb system that delivers a 250-MHz, 109-W, 42-fs pulse train with a 10-dB spectral width of 85 nm at 1056 nm. A pair of grisms is employed to compensate the group velocity dispersion and third-order dispersion of pre-amplified pulses for facilitating a self-similar evolution and a self-phase modulation (SPM). Moreover, we analyze the stabilities and noise characteristics of both the locked carrier envelope phase and the repetition rate, verifying the stability of the generated high-power comb. The demonstration of the SSA comb at such high power proves the feasibility of the SPM-based low-noise ultrashort comb.

  5. In-Situ Measurement of Power Loss for Crystalline Silicon Modules Undergoing Thermal Cycling and Mechanical Loading Stress Testing: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spataru, Sergiu; Hacke, Pater; Sera, Dezso

    2015-09-15

    We analyze the degradation of multi-crystalline silicon photovoltaic modules undergoing simultaneous thermal, mechanical, and humidity stress testing to develop a dark environmental chamber in-situ measurement procedure for determining module power loss. From the analysis we determine three main categories of failure modes associated with the module degradation consisting of: shunting, recombination losses, increased series resistance losses, and current mismatch losses associated with a decrease in photo-current generation by removal of some cell areas due to cell fractures. Based on the analysis, we propose an in-situ module power loss monitoring procedure that relies on dark current-voltage measurements taken during the stressmore » test, and initial and final module flash testing, to determine the power degradation characteristic of the module.« less

  6. Space processing applications payload equipment study. Volume 2C: Data acquisition and process control

    NASA Technical Reports Server (NTRS)

    Kayton, M.; Smith, A. G.

    1974-01-01

    The services provided by the Spacelab Information Management System are discussed. The majority of the services are provided by the common-support subsystems in the Support Module furnished by the Spacelab manufacturer. The information processing requirements for the space processing applications (SPA) are identified. The requirements and capabilities for electric power, display and control panels, recording and telemetry, intercom, and closed circuit television are analyzed.

  7. Design of nodes for embedded and ultra low-power wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Xu, Jun; You, Bo; Cui, Juan; Ma, Jing; Li, Xin

    2008-10-01

    Sensor network integrates sensor technology, MEMS (Micro-Electro-Mechanical system) technology, embedded computing, wireless communication technology and distributed information management technology. It is of great value to use it where human is quite difficult to reach. Power consumption and size are the most important consideration when nodes are designed for distributed WSN (wireless sensor networks). Consequently, it is of great importance to decrease the size of a node, reduce its power consumption and extend its life in network. WSN nodes have been designed using JN5121-Z01-M01 module produced by jennic company and IEEE 802.15.4/ZigBee technology. Its new features include support for CPU sleep modes and a long-term ultra low power sleep mode for the entire node. In low power configuration the node resembles existing small low power nodes. An embedded temperature sensor node has been developed to verify and explore our architecture. The experiment results indicate that the WSN has the characteristic of high reliability, good stability and ultra low power consumption.

  8. A Wireless Capsule Endoscope System With Low-Power Controlling and Processing ASIC.

    PubMed

    Xinkai Chen; Xiaoyu Zhang; Linwei Zhang; Xiaowen Li; Nan Qi; Hanjun Jiang; Zhihua Wang

    2009-02-01

    This paper presents the design of a wireless capsule endoscope system. The proposed system is mainly composed of a CMOS image sensor, a RF transceiver and a low-power controlling and processing application specific integrated circuit (ASIC). Several design challenges involving system power reduction, system miniaturization and wireless wake-up method are resolved by employing optimized system architecture, integration of an area and power efficient image compression module, a power management unit (PMU) and a novel wireless wake-up subsystem with zero standby current in the ASIC design. The ASIC has been fabricated in 0.18-mum CMOS technology with a die area of 3.4 mm * 3.3 mm. The digital baseband can work under a power supply down to 0.95 V with a power dissipation of 1.3 mW. The prototype capsule based on the ASIC and a data recorder has been developed. Test result shows that proposed system architecture with local image compression lead to an average of 45% energy reduction for transmitting an image frame.

  9. Electric Vehicle Communication Standards Testing and Validation Phase I: SAE J2847/1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan

    Executive Summary Vehicle to grid communication standards are critical to the charge management and interoperability among vehicles, charging stations and utility providers. Several standards initiatives by the Society of Automobile Engineers (SAE), International Standards Organization and International Electrotechnical Commission (ISO/IEC), and ZigBee / HomePlug Alliance are developing requirements for communication messages and protocols. While the standard development is in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers and utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recentmore » work by the Electric Power Research Institute (EPRI) in collaboration with SAE and automobile manufacturers has identified performance requirements and test plan based on possible communication pathways using power line communication over the control pilot and mains. Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This report presents a test plan and results from initial testing of two power line communication modules developed to meet the requirements of SAE J2847/1 standard.« less

  10. Study on an agricultural environment monitoring server system using Wireless Sensor Networks.

    PubMed

    Hwang, Jeonghwan; Shin, Changsun; Yoe, Hyun

    2010-01-01

    This paper proposes an agricultural environment monitoring server system for monitoring information concerning an outdoors agricultural production environment utilizing Wireless Sensor Network (WSN) technology. The proposed agricultural environment monitoring server system collects environmental and soil information on the outdoors through WSN-based environmental and soil sensors, collects image information through CCTVs, and collects location information using GPS modules. This collected information is converted into a database through the agricultural environment monitoring server consisting of a sensor manager, which manages information collected from the WSN sensors, an image information manager, which manages image information collected from CCTVs, and a GPS manager, which processes location information of the agricultural environment monitoring server system, and provides it to producers. In addition, a solar cell-based power supply is implemented for the server system so that it could be used in agricultural environments with insufficient power infrastructure. This agricultural environment monitoring server system could even monitor the environmental information on the outdoors remotely, and it could be expected that the use of such a system could contribute to increasing crop yields and improving quality in the agricultural field by supporting the decision making of crop producers through analysis of the collected information.

  11. A review on battery thermal management in electric vehicle application

    NASA Astrophysics Data System (ADS)

    Xia, Guodong; Cao, Lei; Bi, Guanglong

    2017-11-01

    The global issues of energy crisis and air pollution have offered a great opportunity to develop electric vehicles. However, so far, cycle life of power battery, environment adaptability, driving range and charging time seems far to compare with the level of traditional vehicles with internal combustion engine. Effective battery thermal management (BTM) is absolutely essential to relieve this situation. This paper reviews the existing literature from two levels that are cell level and battery module level. For single battery, specific attention is paid to three important processes which are heat generation, heat transport, and heat dissipation. For large format cell, multi-scale multi-dimensional coupled models have been developed. This will facilitate the investigation on factors, such as local irreversible heat generation, thermal resistance, current distribution, etc., that account for intrinsic temperature gradients existing in cell. For battery module based on air and liquid cooling, series, series-parallel and parallel cooling configurations are discussed. Liquid cooling strategies, especially direct liquid cooling strategies, are reviewed and they may advance the battery thermal management system to a new generation.

  12. E-beam high voltage switching power supply

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  13. E-beam high voltage switching power supply

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1997-03-11

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360{degree}/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs.

  14. Automatic Layout Design for Power Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ning, Puqi; Wang, Fei; Ngo, Khai

    The layout of power modules is one of the most important elements in power module design, especially for high power densities, where couplings are increased. In this paper, an automatic design process using a genetic algorithm is presented. Some practical considerations are introduced in the optimization of the layout design of the module. This paper presents a process for automatic layout design for high power density modules. Detailed GA implementations are introduced both for outer loop and inner loop. As verified by a design example, the results of the automatic design process presented here are better than those from manualmore » design and also better than the results from a popular design software. This automatic design procedure could be a major step toward improving the overall performance of future layout design.« less

  15. Power Generation Evaluated on a Bismuth Telluride Unicouple Module

    NASA Astrophysics Data System (ADS)

    Hu, Xiaokai; Nagase, Kazuo; Jood, Priyanka; Ohta, Michihiro; Yamamoto, Atsushi

    2015-06-01

    The power generated by a thermoelectric unicouple module made of Bi2Te3 alloy was evaluated by use of a newly developed instrument. An electrical load was connected to the module, and the terminal voltage and output power of the module were obtained by altering electric current. Water flow was used to cool the cold side of the module and for heat flow measurement, by monitoring inlet and outlet temperatures. When the electric current was increased, heat flow was enhanced as a result of the Peltier effect and Joule heating. Voltage, power, heat flow, and efficiency as functions of current were determined for hot-side temperatures from 50 to 220°C. Maximum power output and peak conversion efficiency could thus be easily derived for each temperature.

  16. NASA Ames Research Center 60 MW Power Supply Modernization

    NASA Technical Reports Server (NTRS)

    Choy, Yuen Ching; Ilinets, Boris V.; Miller, Ted; Nagel, Kirsten (Technical Monitor)

    2001-01-01

    The NASA Ames Research Center 60 MW DC Power Supply was built in 1974 to provide controlled DC power for the Thermophysics Facility Arc Jet Laboratory. The Power Supply has gradually losing reliability due to outdated technology and component life limitation. NASA has decided to upgrade the existing rectifier modules with contemporary high-power electronics and control equipment. NASA plans to complete this project in 2001. This project includes a complete replacement of obsolete thyristor stacks in all six rectifier modules and rectifier bridge control system. High power water-cooled thyristors and freewheeling diodes will be used. The rating of each of the six modules will be 4000 A at 5500 V. The control firing angle signal will be sent from the Facility Control System to six modules via fiberoptic cable. The Power Supply control and monitoring system will include a Master PLC in the Facility building and a Slave PLC in each rectifier module. This system will also monitor each thyristor level in each stack and the auxiliary equipment.

  17. A comparison of radioisotope Brayton and Stirling system for lunar surface mobile power

    NASA Astrophysics Data System (ADS)

    Harty, Richard B.

    1991-01-01

    A study was performed by the Rocketdyne Division of Rockwell 2.5-kWe modular dynamic isotope power system (DIPS) using a Stirling power conversion system. The results of this study were compared with similar results performed under the DIPS program using a Brayton power conversion system. The study indicated that the Stirling power module has 20% lower mass and 40% lower radiator area than the Brayton module. However, the study also revealed that because the Stirling power module requires a complex heat pipe arrangment to transport heat from the isotope to the Stirling heater head and a pumped NaK heat rejection loop, the Stirling module is much more difficult to integrate with the isotope heat source and heat rejection system.

  18. The AC photovoltaic module is here!

    NASA Astrophysics Data System (ADS)

    Strong, Steven J.; Wohlgemuth, John H.; Wills, Robert H.

    1997-02-01

    This paper describes the design, development, and performance results of a large-area photovoltaic module whose electrical output is ac power suitable for direct connection to the utility grid. The large-area ac PV module features a dedicated, integrally mounted, high-efficiency dc-to-ac power inverter with a nominal output of 250 watts (STC) at 120 Vac, 60 H, that is fully compatible with utility power. The module's output is connected directly to the building's conventional ac distribution system without need for any dc wiring, string combiners, dc ground-fault protection or additional power-conditioning equipment. With its advantages, the ac photovoltaic module promises to become a universal building block for use in all utility-interactive PV systems. This paper discusses AC Module design aspects and utility interface issues (including islanding).

  19. Proposals for the construction of space systems based on small spacecraft and a transport and power module with a nuclear power plant

    NASA Astrophysics Data System (ADS)

    Barabanov, A. A.; Papchenko, B. P.; Pichkhadze, K. M.; Rebrov, S. G.; Semenkin, A. V.; Sysoev, V. K.; Yanchur, S. V.

    2016-12-01

    The concept of interconnected satellite systems for various scientific and engineering applications based on small spacecraft and a transport and power module with a nuclear power plant is discussed. The system is connected by laser radiation from the transport and power module that supplies power to small satellites, establishes high-speed data transmission, and is used to perform high-precision measurements of intersatellite distances. Several practical use cases for such a connected system are considered.

  20. Capsule Design for Blue Light Therapy against Helicobacter pylori.

    PubMed

    Li, Zhangyong; Ren, Binbin; Tan, Haiyan; Liu, Shengrong; Wang, Wei; Pang, Yu; Lin, Jinzhao; Zeng, Chen

    2016-01-01

    A photo-medical capsule that emits blue light for Helicobacter pylori treatment was described in this paper. The system consists of modules for pH sensing and measuring, light-emitting diode driver circuit, radio communication and microcontroller, and power management. The system can differentiate locations by monitoring the pH values of the gastrointestinal tract, and turn on and off the blue light according to the preset range of pH values. Our experimental tests show that the capsule can operate in the effective light therapy mode for more than 32 minutes and the wireless communication module can reliably transmit the measured pH value to a receiver located outside the body.

  1. Liquid cooled approaches for high density avionics

    NASA Astrophysics Data System (ADS)

    Levasseur, Robert

    Next-generation aircraft will require avionics that provide greater system performance in a smaller volume, a process that requires highly developed thermal management techniques. To meet this need, a liquid-cooled approach has been developed to replace the conventional air-cooled approach for high-power applications. Liquid-cooled chassis and flow-through modules have been developed to limit junction temperatures to acceptable levels. Liquid cooling also permits emergency operation after loss of coolant for longer time intervals, which is desirable for flight-critical airborne applications. Activity to date has emphasized the development of chassis and modules that support the US Department of Defense's (DoD) two-level maintenance initiative as governed by the Joint Integrated Avionics Working Group (JIAWG).

  2. Inverter power module with distributed support for direct substrate cooling

    DOEpatents

    Miller, David Harold [San Pedro, CA; Korich, Mark D [Chino Hills, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA

    2012-08-21

    Systems and/or methods are provided for an inverter power module with distributed support for direct substrate cooling. An inverter module comprises a power electronic substrate. A first support frame is adapted to house the power electronic substrate and has a first region adapted to allow direct cooling of the power electronic substrate. A gasket is interposed between the power electronic substrate and the first support frame. The gasket is configured to provide a seal between the first region and the power electronic substrate. A second support frame is adapted to house the power electronic substrate and joined to the first support frame to form the seal.

  3. Dimmable electronic ballasts by variable power density modulation technique

    NASA Astrophysics Data System (ADS)

    Borekci, Selim; Kesler, Selami

    2014-11-01

    Dimming can be accomplished commonly by switching frequency and pulse density modulation techniques and a variable inductor. In this study, a variable power density modulation (VPDM) control technique is proposed for dimming applications. A fluorescent lamp is operated in several states to meet the desired lamp power in a modulation period. The proposed technique has the same advantages of magnetic dimming topologies have. In addition, a unique and flexible control technique can be achieved. A prototype dimmable electronic ballast is built and experiments related to it have been conducted. As a result, a 36WT8 fluorescent lamp can be driven for a desired lamp power from several alternatives without modulating the switching frequency.

  4. Control system development for a 1 MW/e/ solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Daubert, E. R.; Bergthold, F. M., Jr.; Fulton, D. G.

    1981-01-01

    The point-focusing distributed receiver power plant considered consists of a number of power modules delivering power to a central collection point. Each power module contains a parabolic dish concentrator with a closed-cycle receiver/turbine/alternator assembly. Currently, a single-module prototype plant is under construction. The major control system tasks required are related to concentrator pointing control, receiver temperature control, and turbine speed control. Attention is given to operational control details, control hardware and software, and aspects of CRT output display.

  5. A comparison of radioisotope Brayton and Stirling systems for lunar surface mobile power

    NASA Astrophysics Data System (ADS)

    Harty, Richard B.

    A study was performed by the Rocketdyne Division of Rockwell International on a 2.5-kWe modular dynamic isotope power system (DIPS) using a Stirling power conversion system. The results of this study were compared with similar results performed under the DIPS program using a Brayton power conversion system. The application considered was for lunar mobile power sources in the power range of 2.5 kWe to 15 kWe. The study indicated that the Stirling power module has 20 percent lower mass and 40 percent lower radiator area than the Brayton module. However, the study also revealed that because the Stirling power module requires a complex heat pipe arrangement to transport heat from the isotope to the Stirling heater head and a pumped NaK heat rejection loop, the Stirling module is much more difficult to integrate with the isotope heat source and heat rejection system.

  6. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 20: Solid State Power Supplies; 20T: Electron Tube Power Supplies. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This set of individualized learning modules on power supplies is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Two modules are included in the…

  7. A preliminary assessment of small steam Rankine and Brayton point-focusing solar modules

    NASA Technical Reports Server (NTRS)

    Roschke, E. J.; Wen, L.; Steele, H.; Elgabalawi, N.; Wang, J.

    1979-01-01

    A preliminary assessment of three conceptual point-focusing distributed solar modules is presented. The basic power conversion units consist of small Brayton or Rankine engines individually coupled to two-axis, tracking, point-focusing solar collectors. An array of such modules can be linked together, via electric transport, to form a small power station. Each module also can be utilized on a stand-alone basis, as an individual power source.

  8. The 25 kW power module evolution study. Part 3: Conceptual designs for power module evolution. Volume 4: Design analyses

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Topics covered include growth options evaluation, mass properties, attitude control and structural dynamics, contamination evaluation, berthing concepts, orbit reboost options and growth kit concepts. Systems support elements and space support equipment are reviewed with emphasis on power module operations and technology planning.

  9. Modular compact solid-state modulators for particle accelerators

    NASA Astrophysics Data System (ADS)

    Zavadtsev, A. A.; Zavadtsev, D. A.; Churanov, D. V.

    2017-12-01

    The building of the radio frequency (RF) particle accelerator needs high-voltage pulsed modulator as a power supply for klystron or magnetron to feed the RF accelerating system. The development of a number of solid-state modulators for use in linear accelerators has allowed to develop a series of modular IGBT based compact solid-state modulators with different parameters. This series covers a wide range of needs in accelerator technology to feed a wide range of loads from the low power magnetrons to powerful klystrons. Each modulator of the series is built on base of a number of unified solid-state modules connected to the pulse transformer, and covers a wide range of modulators: voltage up to 250 kV, a peak current up to 250 A, average power up to 100 kW and the pulse duration up to 20 μsec. The parameters of the block with an overall dimensions 880×540×250 mm are: voltage 12 kV, peak current 1600 A, pulse duration 20 μsec, average power 10 kW with air-cooling and 40 kW with liquidcooling. These parameters do not represent a physical limit, and modulators to parameters outside these ranges can be created on request.

  10. Reliable data storage system design and implementation for acoustic logging while drilling

    NASA Astrophysics Data System (ADS)

    Hao, Xiaolong; Ju, Xiaodong; Wu, Xiling; Lu, Junqiang; Men, Baiyong; Yao, Yongchao; Liu, Dong

    2016-12-01

    Owing to the limitations of real-time transmission, reliable downhole data storage and fast ground reading have become key technologies in developing tools for acoustic logging while drilling (LWD). In order to improve the reliability of the downhole storage system in conditions of high temperature, intensive shake and periodic power supply, improvements were made in terms of hardware and software. In hardware, we integrated the storage system and data acquisition control module into one circuit board, to reduce the complexity of the storage process, by adopting the controller combination of digital signal processor and field programmable gate array. In software, we developed a systematic management strategy for reliable storage. Multiple-backup independent storage was employed to increase the data redundancy. A traditional error checking and correction (ECC) algorithm was improved and we embedded the calculated ECC code into all management data and waveform data. A real-time storage algorithm for arbitrary length data was designed to actively preserve the storage scene and ensure the independence of the stored data. The recovery procedure of management data was optimized to realize reliable self-recovery. A new bad block management idea of static block replacement and dynamic page mark was proposed to make the period of data acquisition and storage more balanced. In addition, we developed a portable ground data reading module based on a new reliable high speed bus to Ethernet interface to achieve fast reading of the logging data. Experiments have shown that this system can work stably below 155 °C with a periodic power supply. The effective ground data reading rate reaches 1.375 Mbps with 99.7% one-time success rate at room temperature. This work has high practical application significance in improving the reliability and field efficiency of acoustic LWD tools.

  11. Constant peak-power single-frequency linearly-polarized all-fiber laser for coherent detection based on closed-loop feedback technology

    NASA Astrophysics Data System (ADS)

    Ding, Yaqian; Zhang, Xiang; Li, Dong; Wang, Dapeng; Zhang, Renzhong; Song, Chengying; Che, Haozhao; Wang, Rui; Guo, Baoling; Chen, Guanghui

    2015-10-01

    In this paper, a practical single-frequency high-repetition linearly-polarized eye-safe all-fiber laser with constant peak power is demonstrated. It is based on master-oscillator power amplifier (MOPA) system. A distributed feedback laser diode simulating at 1550nm with narrow linewidth of 2.3 kHz is employed as the seed source. It is modulated to a pulse laser with high repetition of 20 kHz and peak power of 10mW by an acousto-optic modulator (AOM). The pulse width is tunable between 100ns to 400ns. Two-stage cascade amplifier is established, which consists of a pre-amplifier and a power-amplifier. Amplified spontaneous emission (ASE) and stimulated billion scattering are well suppressed by special management. The output peak power of 30W is obtained, which has nearly diffraction-limited beam quality. It operates in linewidth of 1.2MHz, polarization-extinction ratio (PER) of 25dB and signal-to-noise ratio (SNR) of more than 40dB. Gain of the whole amplifier achieves nearly 35dB. Furthermore, an embedded control system (ECS) based on the WinCE operating system (OS) and the chip of S3C2440 is proposed. This control system based on closed-loop feedback technology makes the peak power keeping constant even the pulse width tunable, which is convenient for the end user of the radar. This robust portable laser is remarkable and fulfills the desire of coherent detection excellently.

  12. Extending the wavelength range in the Oclaro high-brightness broad area modules

    NASA Astrophysics Data System (ADS)

    Pawlik, Susanne; Guarino, Andrea; Sverdlov, Boris; Müller, Jürgen; Button, Christopher; Arlt, Sebastian; Jaeggi, Dominik; Lichtenstein, Norbert

    2010-02-01

    The demand for high power laser diode modules in the wavelength range between 793 nm and 1060 nm has been growing continuously over the last several years. Progress in eye-safe fiber lasers requires reliable pump power at 793 nm, modules at 808 nm are used for small size DPSSL applications and fiber-coupled laser sources at 830 nm are used in printing industry. However, power levels achieved in this wavelength range have remained lower than for the 9xx nm range. Here we report on approaches to increasing the reliable power in our latest generations of high power pump modules in the wavelength range between 793 nm and 1060 nm.

  13. Design of a multimedia gateway for mobile devices

    NASA Astrophysics Data System (ADS)

    Hens, Raf; Goeminne, Nico; Van Hoecke, Sofie; Verdickt, Tom; Bouve, Thomas; Gielen, Frank; Demeester, Piet

    2005-03-01

    Although mobile users are currently offered a lot more capabilities on their mobile devices, they still experience some limitations. They can surf the Internet, read their e-mail and receive MMS messages, but they have limited processing power, storage capacity and bandwidth and are limited in their access to peripherals (e.g. printers). We have designed and implemented a multimedia gateway for mobile devices that reduces these limitations. It gives the mobile devices transparent access to high capacity devices connected to the gateway, which is built around a central, modularly extensible server that can run on any PC or home gateway. It manages two sets of modules: one set offering the actual services and another set handling the IP-based wireless interaction with the client applications on the mobile devices. These modules can be added and removed dynamically, offering new services on the fly. Currently services for storage, printing, domotics and playing music are provided. Others can easily be added later on. This paper discusses the architecture and development, the management of modules, the actual services and their benefits. Besides a proprietary implementation, it also looks into OSGi and how both platforms compare to each other, concerning design, architecture, ease of development, functionality, ...

  14. An alternative cooling system to enhance the safety of Li-ion battery packs

    NASA Astrophysics Data System (ADS)

    Kizilel, Riza; Sabbah, Rami; Selman, J. Robert; Al-Hallaj, Said

    A passive thermal management system is evaluated for high-power Li-ion packs under stressful or abusive conditions, and compared with a purely air-cooling mode under normal and abuse conditions. A compact and properly designed passive thermal management system utilizing phase change material (PCM) provides faster heat dissipation than active cooling during high pulse power discharges while preserving sufficiently uniform cell temperature to ensure the desirable cycle life for the pack. This study investigates how passive cooling with PCM contributes to preventing the propagation of thermal runaway in a single cell or adjacent cells due to a cell catastrophic failure. Its effectiveness is compared with that of active cooling by forced air flow or natural convection using the same compact module and pack configuration corresponding to the PCM matrix technology. The effects of nickel tabs and spacing between the cells were also studied.

  15. Energy harvesting using TEG and PV cell for low power application

    NASA Astrophysics Data System (ADS)

    Tawil, Siti Nooraya Mohd; Zainal, Mohd Zulkarnain

    2018-02-01

    A thermoelectric generator (TEG) module and photovoltaic cell (PV) were utilized to harvest energy from temperature gradients of heat sources from ambient heat and light of sun. The output of TEG and PV were connected to a power management circuit consist of step-up dc-dc converter in order to increase the output voltage to supply a low power application such as wireless communication module and the photovoltaic cell for charging an energy storage element in order to switch on a fan for cooling system of the thermoelectric generator. A switch is used as a selector to choose the input of source either from photovoltaic cell or thermoelectric generator to switch on DC-DC step-up converter. In order to turn on the DC-DC step-up converter, the input must be greater than 3V. The energy harvesting was designed so that it can be used continuously and portable anywhere. Multiple sources used in this energy harvesting system is to ensure the system can work in whatever condition either in good weather or not good condition of weather. This energy harvesting system has the potential to be used in military operation and environment that require sustainability of energy resources.

  16. Integrated packaging of multiple double sided cooling planar bond power modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Zhenxian

    An integrated double sided cooled power module has one or multiple phase legs configuration including one or more planar power packages, each planar power package having an upper power switch unit and a lower power switch unit directly bonded and interconnected between two insulated power substrates, and further sandwiched between two heat exchangers via direct bonds. A segmented coolant manifold is interposed with the one or more planar power packages and creates a sealed enclosure that defines a coolant inlet, a coolant outlet and a coolant flow path between the inlet and the outlet. A coolant circulates along the flowmore » path to remove heat and increase the power density of the power module.« less

  17. 47 CFR 95.607 - CB transmitter modification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... transmitting frequencies, increased modulation level, a different form of modulation, or increased TP (RF... modulating frequency, typically 0.1 seconds at maximum power) or peak envelope power (TP averaged during 1 RF cycle at the highest crest of the modulation envelope), as measured at the transmitter output antenna...

  18. Update on Development of SiC Multi-Chip Power Modules

    NASA Technical Reports Server (NTRS)

    Lostetter, Alexander; Cilio, Edgar; Mitchell, Gavin; Schupbach, Roberto

    2008-01-01

    Progress has been made in a continuing effort to develop multi-chip power modules (SiC MCPMs). This effort at an earlier stage was reported in 'SiC Multi-Chip Power Modules as Power-System Building Blocks' (LEW-18008-1), NASA Tech Briefs, Vol. 31, No. 2 (February 2007), page 28. The following recapitulation of information from the cited prior article is prerequisite to a meaningful summary of the progress made since then: 1) SiC MCPMs are, more specifically, electronic power-supply modules containing multiple silicon carbide power integrated-circuit chips and silicon-on-insulator (SOI) control integrated-circuit chips. SiC MCPMs are being developed as building blocks of advanced expandable, reconfigurable, fault-tolerant power-supply systems. Exploiting the ability of SiC semiconductor devices to operate at temperatures, breakdown voltages, and current densities significantly greater than those of conventional Si devices, the designs of SiC MCPMs and of systems comprising multiple SiC MCPMs are expected to afford a greater degree of miniaturization through stacking of modules with reduced requirements for heat sinking; 2) The stacked SiC MCPMs in a given system can be electrically connected in series, parallel, or a series/parallel combination to increase the overall power-handling capability of the system. In addition to power connections, the modules have communication connections. The SOI controllers in the modules communicate with each other as nodes of a decentralized control network, in which no single controller exerts overall command of the system. Control functions effected via the network include synchronization of switching of power devices and rapid reconfiguration of power connections to enable the power system to continue to supply power to a load in the event of failure of one of the modules; and, 3) In addition to serving as building blocks of reliable power-supply systems, SiC MCPMs could be augmented with external control circuitry to make them perform additional power-handling functions as needed for specific applications. Because identical SiC MCPM building blocks could be utilized in such a variety of ways, the cost and difficulty of designing new, highly reliable power systems would be reduced considerably. This concludes the information from the cited prior article. The main activity since the previously reported stage of development was the design, fabrication, and testing a 120- VDC-to-28-VDC modular power-converter system composed of eight SiC MCPMs in a 4 (parallel)-by-2 (series) matrix configuration, with normally-off controllable power switches. The SiC MCPM power modules include closed-loop control subsystems and are capable of operating at high power density or high temperature. The system was tested under various configurations, load conditions, load-transient conditions, and failure-recovery conditions. Planned future work includes refinement of the demonstrated modular system concept and development of a new converter hardware topology that would enable sharing of currents without the need for communication among modules. Toward these ends, it is also planned to develop a new converter control algorithm that would provide for improved sharing of current and power under all conditions, and to implement advanced packaging concepts that would enable operation at higher power density.

  19. Aternating current photovoltaic building block

    DOEpatents

    Bower, Ward Issac; Thomas, Michael G.; Ruby, Douglas S.

    2004-06-15

    A modular apparatus for and method of alternating current photovoltaic power generation comprising via a photovoltaic module, generating power in the form of direct current; and converting direct current to alternating current and exporting power via one or more power conversion and transfer units attached to the module, each unit comprising a unitary housing extending a length or width of the module, which housing comprises: contact means for receiving direct current from the module; one or more direct current-to-alternating current inverters; an alternating current bus; and contact means for receiving alternating current from the one or more inverters.

  20. Architectural innovation foresight of thermoelectric generator charger integrated portable power supply for portable consumer electronic device in metropolitan market: The case study of Thailand

    NASA Astrophysics Data System (ADS)

    Maolikul, S.; Kiatgamolchai, S.; Chavarnakul, T.

    2012-06-01

    In the context of information and communication technology (ICT) trend for worldwide individuals, social life becomes digital and portable consumer electronic devices (PCED) powered by conventional power supply from batteries have been evolving through miniaturization and various function integration. Thermoelectric generators (TEG) were hypothesized for its potential role of battery charger to serve the shining PCED market. Hence, this paper, mainly focusing at the metropolitan market in Thailand, aimed to conduct architectural innovation foresight and to develop scenarios on potential exploitation approach of PCED battery power supply with TEG charger converting power from ambient heat source adjacent to individual's daily life. After technical review and assessment for TEG potential and battery aspect, the business research was conducted to analyze PCED consumer behavior for their PCED utilization pattern, power supply lack problems, and encountering heat sources/sinks in 3 modes: daily life, work, and leisure hobbies. Based on the secondary data analysis from literature and National Statistical Office of Thailand, quantitative analysis was applied using the cluster probability sampling methodology, statistically, with the sample size of 400 at 0.05 level of significance. In addition, the qualitative analysis was conducted to emphasize the rationale of consumer's behavior using in-depth qualitative interview. Scenario planning technique was also used to generate technological and market trend foresight. Innovation field and potential scenario for matching technology with market was proposed in this paper. The ingredient for successful commercialization of battery power supply with TEG charger for PCED market consists of 5 factors as follows: (1) PCED characteristic, (2) potential ambient heat sources/sinks, (3) battery module, (4) power management module, and the final jigsaw (5) characteristic and adequate arrangement of TEG modules. The foresight outcome for the potential innovations represents a case study in the pilot commercialization of TEG technology for some interesting niche markets in metropolitan area of Thailand, and, thus, can be the clue for product development related to TEG for market-driven application in other similar requirement conditions and contexts as well.

  1. Conversion efficiency of skutterudite-based thermoelectric modules.

    PubMed

    Salvador, James R; Cho, Jung Y; Ye, Zuxin; Moczygemba, Joshua E; Thompson, Alan J; Sharp, Jeffrey W; Koenig, Jan D; Maloney, Ryan; Thompson, Travis; Sakamoto, Jeffrey; Wang, Hsin; Wereszczak, Andrew A

    2014-06-28

    Presently, the only commercially available power generating thermoelectric (TE) modules are based on bismuth telluride (Bi2Te3) alloys and are limited to a hot side temperature of 250 °C due to the melting point of the solder interconnects and/or generally poor power generation performance above this point. For the purposes of demonstrating a TE generator or TEG with higher temperature capability, we selected skutterudite based materials to carry forward with module fabrication because these materials have adequate TE performance and are mechanically robust. We have previously reported the electrical power output for a 32 couple skutterudite TE module, a module that is type identical to ones used in a high temperature capable TEG prototype. The purpose of this previous work was to establish the expected power output of the modules as a function of varying hot and cold side temperatures. Recent upgrades to the TE module measurement system built at the Fraunhofer Institute for Physical Measurement Techniques allow for the assessment of not only the power output, as previously described, but also the thermal to electrical energy conversion efficiency. Here we report the power output and conversion efficiency of a 32 couple, high temperature skutterudite module at varying applied loading pressures and with different interface materials between the module and the heat source and sink of the test system. We demonstrate a 7% conversion efficiency at the module level when a temperature difference of 460 °C is established. Extrapolated values indicate that 7.5% is achievable when proper thermal interfaces and loading pressures are used.

  2. Power module assembly

    DOEpatents

    Campbell, Jeremy B [Torrance, CA; Newson, Steve [Redondo Beach, CA

    2011-11-15

    A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.

  3. Modulation characteristics of a high-power semiconductor Master Oscillator Power Amplifier (MOPA)

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald Mitchell, Jr.

    1992-01-01

    A semiconductor master oscillator-power amplifier was demonstrated using an anti-reflection (AR) coated broad area laser as the amplifier. Under CW operation, diffraction-limited single-longitudinal-mode powers up to 340 mW were demonstrated. The characteristics of the far-field pattern were measured and compared to a two-dimensional reflective Fabry-Perot amplifier model of the device. The MOPA configuration was modulated by the master oscillator. Prior to injection into the amplifier, the amplitude and frequency modulation properties of the master oscillator were characterized. The frequency response of the MOPA configuration was characterized for an AM/FM modulated injection beam, and was found to be a function of the frequency detuning between the master oscillator and the resonant amplifier. A shift in the phase was also observed as a function of frequency detuning; this phase shift is attributed to the optical phase shift imparted to a wave reflected from a Fabry-Perot cavity. Square-wave optical pulses were generated at 10 MHz and 250 MHz with diffraction-limited peak powers of 200 mW and 250 mW. The peak power for a given modulation frequency is found to be limited by the injected power and the FM modulation at that frequency. The modulation results make the MOPA attractive for use as a transmitter source in applications such as free-space communications and ranging/altimetry.

  4. Spectral splitting for thermal management in photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Apostoleris, Harry; Chiou, Yu-Cheng; Chiesa, Matteo; Almansouri, Ibraheem

    2017-09-01

    Spectral splitting is widely employed as a way to divide light between different solar cells or processes to optimize energy conversion. Well-understood but less explored is the use of spectrum splitting or filtering to combat solar cell heating. This has impacts both on cell performance and on the surrounding environment. In this manuscript we explore the design of spectral filtering systems that can improve the thermal and power-conversion performance of commercial PV modules.

  5. Medium power amplifiers covering 90 - 130 GHz for telescope local oscillators

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Bryerton, Eric; Pukala, David; Peralta, Alejandro; Hu, Ming; Schmitz, Adele

    2005-01-01

    This paper describes a set of power amplifier (PA) modules containing InP High Electron Mobility Transistor (HEMT) Monolithic Millimeter-wave Integrated Circuit (MMIC) chips. The chips were designed and optimized for local oscillator sources in the 90-130 GHz band for the Atacama Large Millimeter Array telescope. The modules feature 20-45 mW of output power, to date the highest power from solid state HEMT MMIC modules above 110 GHz.

  6. Renewal of K-NET (National Strong-motion Observation Network of Japan)

    NASA Astrophysics Data System (ADS)

    Kunugi, T.; Fujiwara, H.; Aoi, S.; Adachi, S.

    2004-12-01

    The National Research Institute for Earth Science and Disaster Prevention (NIED) operates K-NET (Kyoshin Network), the national strong-motion observation network, which evenly covers the whole of Japan at intervals of 25 km on average. K-NET was constructed after the Hyogoken-Nambu (Kobe) earthquake in January 1995, and began operation in June 1996. Thus, eight years have passed since K-NET started, and large amounts of strong-motion records have been obtained. As technology has progressed and new technologies have become available, NIED has developed a new K-NET with improved functionality. New seismographs have been installed at 443 observatories mainly in southwestern Japan where there is a risk of strong-motion due to the Nankai and Tonankai earthquakes. The new system went into operation in June 2004, although seismographs have still to be replaced in other areas. The new seismograph (K-NET02) consists of a sensor module, a measurement module and a communication module. A UPS, a GPS antenna and a dial-up router are also installed together with a K-NET02. A triaxial accelerometer, FBA-ES-DECK (Kinemetrics Inc.) is built into the sensor module. The measurement module functions as a conventional strong-motion seismograph for high-precision observation. The communication module can perform sophisticated processes, such as calculation of the Japan Meteorological Agency (JMA) seismic intensity, continuous recording of data and near real-time data transmission. It connects to the Data Management Center (DMC) using an ISDN line. In case of a power failure, the measurement module can control the power supply to the router and the communication module to conserve battery power. One of the main features of K-NET02 is a function for processing JMA seismic intensity. K-NET02 functions as a proper seismic intensity meter that complies with the official requirements of JMA, although the old strong-motion seismograph (K-NET95) does not calculate seismic intensity. Another feature is near real-time data transmission. When a K-NET02 detects a strong-motion, it can automatically connect to the DMC in 2 to 5 seconds and then transmits seismic data. Furthermore, the full-scale is improved from 2000 gals to 4000 gals and the dynamic range of AD conversion is more than 132 dB. Strong-motion records of the new K-NET are available at: http://www.kyoshin.bosai.go.jp/

  7. Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor.

    PubMed

    Salit, K; Salit, M; Krishnamurthy, Subramanian; Wang, Y; Kumar, P; Shahriar, M S

    2011-11-07

    We demonstrate an ultra-low light level optical modulator using a tapered nano fiber embedded in a hot rubidium vapor. The control and signal beams are co-propagating but orthogonally polarized, leading to a degenerate V-system involving coherent superpositions of Zeeman sublevels. The modulation is due primarily to the quantum Zeno effect for the signal beam induced by the control beam. For a control power of 40 nW and a signal power of 100 pW, we observe near 100% modulation. The ultra-low power level needed for the modulation is due to a combination of the Zeno effect and the extreme field localization in the evanescent field around the taper.

  8. A high-efficiency self-powered wireless sensor node for monitoring concerning vibratory events

    NASA Astrophysics Data System (ADS)

    Xu, Dacheng; Li, Suiqiong; Li, Mengyang; Xie, Danpeng; Dong, Chuan; Li, Xinxin

    2017-09-01

    This paper presents a self-powered wireless alarming sensor node (SWASN), which was designed to monitor the occurrence of concerning vibratory events. The major components of the sensor node include a vibration-threshold-triggered energy harvester (VTTEH) that powers the sensor node, a dual threshold voltage control circuit (DTVCC) for power management and a radio frequency (RF) signal transmitting module. The VTTEH generates significant electric energy only when the input vibration reaches certain amplitude. Thus, the VTTEH serves as both the power source and the vibration-event-sensing element for the sensor node. The DTVCC was specifically designed to utilize the limited power supply from the VTTEH to operate the sensor node. Constructed with only voltage detectors and MOSFETs, the DTVCC achieved low power consumption, which was 65% lower compared with the power management circuit designed in our previous work. Meanwhile, a RF transmit circuit was constructed based on the commercially available CC1110-F32 wireless transceiver chip and a compact planar antenna was designed to improve the signal transmission distance. The sensor node was fabricated and was characterized both in the laboratory and in the field. Experimental results showed that the SWASN could automatically send out alarming signals when the simulated concerning event occurred. The waiting time between two consecutive transmission periods is less than 125 s and the transmission distance can reach 1.31 km. The SWASN will have broad applications in field surveillances.

  9. Thermal management of quantum cascade lasers in an individually addressable monolithic array architecture

    NASA Astrophysics Data System (ADS)

    Missaggia, Leo; Wang, Christine; Connors, Michael; Saar, Brian; Sanchez-Rubio, Antonio; Creedon, Kevin; Turner, George; Herzog, William

    2016-03-01

    There are a number of military and commercial applications for high-power laser systems in the mid-to-long-infrared wavelength range. By virtue of their demonstrated watt-level performance and wavelength diversity, quantum cascade laser (QCL) and amplifier devices are an excellent choice of emitter for those applications. To realize the power levels of interest, beam combining of arrays of these emitters is required and as a result, array technology must be developed. With this in mind, packaging and thermal management strategies were developed to facilitate the demonstration of a monolithic QCL array operating under CW conditions. Thermal models were constructed and simulations performed to determine the effect of parameters such as array-element ridge width and pitch on gain region temperature rise. The results of the simulations were considered in determining an appropriate QCL array configuration. State-of-the-art micro-impingement cooling along with an electrical distribution scheme comprised of AlN multi-layer technology were integrated into the design. The design of the module allows for individual electrical addressability of the array elements, a method of phase control demonstrated previously for coherent beam combining of diode arrays, along with access to both front and rear facets. Hence, both laser and single-pass amplifier arrays can be accommodated. A module was realized containing a 5 mm cavity length monolithic QCL array comprised of 7 elements on 450 m pitch. An output power of 3.16 W was demonstrated under CW conditions at an emission wavelength of 9μm.

  10. A study of universal modulation techniques applied to satellite data collection

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A universal modulation and frequency control system for use with data collection platform (DCP) transmitters is examined. The final design discussed can, under software/firmwave control, generate all of the specific digital data modulation formats currently used in the NASA satellite data collection service and can simultaneously synthesize the proper RF carrier frequencies employed. A novel technique for DCP time and frequency control is presented. The emissions of NBS radio station WWV/WWVH are received, detected, and finally decoded in microcomputer software to generate a highly accurate time base for the platform; with the assistance of external hardware, the microcomputer also directs the recalibration of all DCP oscillators to achieve very high frequency accuracies and low drift rates versus temperature, supply voltage, and time. The final programmable DCP design also employs direct microcomputer control of data reduction, formatting, transmitter switching, and system power management.

  11. A novel network module for medical devices.

    PubMed

    Chen, Ping-Yu

    2008-01-01

    In order to allow medical devices to upload the vital signs to a server on a network without manually configuring for end-users, a new network module is proposed. The proposed network module, called Medical Hub (MH), functions as a bridge to fetch the data from all connecting medical devices, and then upload these data to the server. When powering on, the MH can immediately establish network configuration automatically. Network Address Translation (NAT) traversal is also supported by the MH with the UPnP Internet Gateway Device (IGD) methodology. Besides the network configuration, other configuration in the MH is automatically established by using the remote management protocol TR-069. On the other hand, a mechanism for updating software automatically according to the variant connected medical device is proposed. With this mechanism, newcome medical devices can be detected and supported by the MH without manual operation.

  12. A modular Space Station/Base electrical power system - Requirements and design study.

    NASA Technical Reports Server (NTRS)

    Eliason, J. T.; Adkisson, W. B.

    1972-01-01

    The requirements and procedures necessary for definition and specification of an electrical power system (EPS) for the future space station are discussed herein. The considered space station EPS consists of a replaceable main power module with self-contained auxiliary power, guidance, control, and communication subsystems. This independent power source may 'plug into' a space station module which has its own electrical distribution, control, power conditioning, and auxiliary power subsystems. Integration problems are discussed, and a transmission system selected with local floor-by-floor power conditioning and distribution in the station module. This technique eliminates the need for an immediate long range decision on the ultimate space base power sources by providing capability for almost any currently considered option.

  13. GRC-2013-C-02448

    NASA Image and Video Library

    2009-06-23

    Environmental Portrait, Electrical Power Systems Employee, hardware for the High Power 300-Volt Power Processing Unit (PPU). The Printed Circuit Boards (PCBs) are the Discharge Module Inverter and the Pulse Width Modulation (PWM) Controller

  14. Effect of different methods of pulse width modulation on power losses in an induction motor

    NASA Astrophysics Data System (ADS)

    Gulyaev, Alexander; Fokin, Dmitrii; Shuharev, Sergey; Ten, Evgenii

    2017-10-01

    We consider the calculation of modulation power losses in a system “induction motor-inverter” for various pulse width modulation (PWM) methods of the supply voltage. Presented values of modulation power losses are the result of modeling a system “DC link - two-level three-phase voltage inverter - induction motor - load”. In this study the power losses in a system “induction motor - inverter” are computed, as well as losses caused by higher harmonics of PWM supply voltage, followed by definition of active power consumed by the DC link for a specified value mechanical power on the induction motor shaft. Mechanical power was determined by the rotation speed and the torque on the motor shaft in various quasi-sinusoidal supply voltage PWM modes. These calculations reveal the best coefficient of performance (COP) in a system of a variable frequency drive (VFD) with independent voltage inverter controlled by induction motor PWM.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Module-level power electronics, such as DC power optimizers, microinverters, and those found in AC modules, are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software. This paper extends the work completed at NREL that provided recommendations to model the performance of distributed power electronics in NREL’s popular PVWatts calculator [1], to provide similar guidelines for modeling these technologies in NREL's more complex System Advisor Model (SAM). Module-level power electronics - such asmore » DC power optimizers, microinverters, and those found in AC modules-- are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software.« less

  16. Fully Electrical Modeling of Thermoelectric Generators with Contact Thermal Resistance Under Different Operating Conditions

    NASA Astrophysics Data System (ADS)

    Siouane, Saima; Jovanović, Slaviša; Poure, Philippe

    2017-01-01

    The Seebeck effect is used in thermoelectric generators (TEGs) to supply electronic circuits by converting the waste thermal into electrical energy. This generated electrical power is directly proportional to the temperature difference between the TEG module's hot and cold sides. Depending on the applications, TEGs can be used either under constant temperature gradient between heat reservoirs or constant heat flow conditions. Moreover, the generated electrical power of a TEG depends not only on these operating conditions, but also on the contact thermal resistance. The influence of the contact thermal resistance on the generated electrical power have already been extensively reported in the literature. However, as reported in Park et al. (Energy Convers Manag 86:233, 2014) and Montecucco and Knox (IEEE Trans Power Electron 30:828, 2015), while designing TEG-powered circuit and systems, a TEG module is mostly modeled with a Thévenin equivalent circuit whose resistance is constant and voltage proportional to the temperature gradient applied to the TEG's terminals. This widely used simplified electrical TEG model is inaccurate and not suitable under constant heat flow conditions or when the contact thermal resistance is considered. Moreover, it does not provide realistic behaviour corresponding to the physical phenomena taking place in a TEG. Therefore, from the circuit designer's point of view, faithful and fully electrical TEG models under different operating conditions are needed. Such models are mainly necessary to design and evaluate the power conditioning electronic stages and the maximum power point tracking algorithms of a TEG power supply. In this study, these fully electrical models with the contact thermal resistance taken into account are presented and the analytical expressions of the Thévenin equivalent circuit parameters are provided.

  17. Microwatt power consumption maximum power point tracking circuit using an analogue differentiator for piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Chew, Z. J.; Zhu, M.

    2015-12-01

    A maximum power point tracking (MPPT) scheme by tracking the open-circuit voltage from a piezoelectric energy harvester using a differentiator is presented in this paper. The MPPT controller is implemented by using a low-power analogue differentiator and comparators without the need of a sensing circuitry and a power hungry controller. This proposed MPPT circuit is used to control a buck converter which serves as a power management module in conjunction with a full-wave bridge diode rectifier. Performance of this MPPT control scheme is verified by using the prototyped circuit to track the maximum power point of a macro-fiber composite (MFC) as the piezoelectric energy harvester. The MFC was bonded on a composite material and the whole specimen was subjected to various strain levels at frequency from 10 to 100 Hz. Experimental results showed that the implemented full analogue MPPT controller has a tracking efficiency between 81% and 98.66% independent of the load, and consumes an average power of 3.187 μW at 3 V during operation.

  18. LED deep UV source for charge management of gravitational reference sensors

    NASA Astrophysics Data System (ADS)

    Sun, Ke-Xun; Allard, Brett; Buchman, Saps; Williams, Scott; Byer, Robert L.

    2006-04-01

    Proof mass electrical charge management is an important functionality for the ST-7-LTP technology demonstration flight and for LISA. Photoemission for charge control is accomplished by using deep ultraviolet (UV) light to excite photoelectron emission from an Au alloy. The conventional UV source is a mercury vapour lamp. We propose and demonstrate charge management using a deep UV light emitting diode (LED) source. We have acquired selected AlGaN UV LEDs, characterized their performance and successfully used them to realize charge management. The UV LEDs emit at a 257 nm central wavelength with a bandwidth of ~12 nm. The UV power for a free-space LED is ~120 µW, and after fibre coupling is ~16 µW, more than sufficient for LISA applications. We have directly observed the LED UV light-induced photocurrent response from an Au photocathode and an Au-coated GRS/ST-7 proof mass. We demonstrated fast switching of UV LEDs and associated fast changes in photocurrent. This allows modulation and continuous discharge to meet stringent LISA disturbance reduction requirements. We propose and demonstrate AC charge management outside the gravitational wave signal band. Further, the megahertz bandwidth for UV LED switching allows for up to six orders of magnitude dynamic power range and a number of novel modes of operations. The UV LED based charge management system offers the advantages of small-size, lightweight, fibre-coupled operation with very low power consumption. Presented at 'Amaldi6', Poster 73, Space Detector, 6th Edoardo Almadi Conference on Gravitational Waves, 20-24 June 2005.

  19. Demonstration of low power penalty of silicon Mach-Zehnder modulator in long-haul transmission.

    PubMed

    Yi, Huaxiang; Long, Qifeng; Tan, Wei; Li, Li; Wang, Xingjun; Zhou, Zhiping

    2012-12-03

    We demonstrate error-free 80km transmission by a silicon carrier-depletion Mach-Zehnder modulator at 10Gbps and the power penalty is as low as 1.15dB. The devices were evaluated through the bit-error-rate characterizations under the system-level analysis. The silicon Mach-Zehnder modulator was also analyzed comparatively with a lithium niobate Mach-Zehnder modulator in back-to-back transmission and long-haul transmission, respectively, and verified the negative chirp parameter of the silicon modulator through the experiment. The result of low power penalty indicates a practical application for the silicon modulator in the middle- or long-distance transmission systems.

  20. Application of voltage oriented control technique in a fully renewable, wind powered, autonomous system with storage capabilities

    NASA Astrophysics Data System (ADS)

    Kondylis, Georgios P.; Vokas, Georgios A.; Anastasiadis, Anestis G.; Konstantinopoulos, Stavros A.

    2017-02-01

    The main purpose of this paper is to examine the technological feasibility of a small autonomous network, with electricity storage capability, which is completely electrified by wind energy. The excess energy produced, with respect to the load requirements, is sent to the batteries for storage. When the energy produced by the wind generator is not sufficient, load's energy requirement is covered by the battery system, ensuring, however, that voltage, frequency and other system characteristics are within the proper boundaries. For the purpose of this study, a Voltage Oriented Control system has been developed in order to monitor the autonomous operation and perform the energy management of the network. This system manages the power flows between the load and the storage system by properly controlling the Pulse Width Modulation pulses in the converter, thus ensuring power flows are adequate and frequency remains under control. The experimental results clearly indicate that a stand-alone wind energy system based on battery energy storage system is feasible and reliable. This paves the way for fully renewable and zero emission energy schemes.

  1. High temperature semiconductor diode laser pumps for high energy laser applications

    NASA Astrophysics Data System (ADS)

    Campbell, Jenna; Semenic, Tadej; Guinn, Keith; Leisher, Paul O.; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel

    2018-02-01

    Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. To mitigate this thermal management burden, it is desirable for diode pumps to operate efficiently at high heat sink temperatures. In this work, we have developed a scalable cooling architecture, based on jet-impingement technology with industrial coolant, for efficient cooling of diode laser bars. We have demonstrated 60% electrical-to-optical efficiency from a 9xx nm two-bar laser stack operating with propylene-glycolwater coolant, at 50 °C coolant temperature. To our knowledge, this is the highest efficiency achieved from a diode stack using 50 °C industrial fluid coolant. The output power is greater than 100 W per bar. Stacks with additional laser bars are currently in development, as this cooler architecture is scalable to a 1 kW system. This work will enable compact and robust fiber-coupled diode pump modules for high energy laser applications.

  2. Application of the thermoelectric MEMS microwave power sensor in a power radiation monitoring system

    NASA Astrophysics Data System (ADS)

    Bo, Gao; Jing, Yang; Si, Jiang; Debo, Wang

    2016-08-01

    A power radiation monitoring system based on thermoelectric MEMS microwave power sensors is studied. This monitoring system consists of three modules: a data acquisition module, a data processing and display module, and a data sharing module. It can detect the power radiation in the environment and the date information can be processed and shared. The measured results show that the thermoelectric MEMS microwave power sensor and the power radiation monitoring system both have a relatively good linearity. The sensitivity of the thermoelectric MEMS microwave power sensor is about 0.101 mV/mW, and the sensitivity of the monitoring system is about 0.038 V/mW. The voltage gain of the monitoring system is about 380 times, which is relatively consistent with the theoretical value. In addition, the low-frequency and low-power module in the monitoring system is adopted in order to reduce the electromagnetic pollution and the power consumption, and this work will extend the application of the thermoelectric MEMS microwave power sensor in more areas. Project supported by the National Natural Science Foundation of China (No. 11304158), the Province Natural Science Foundation of Jiangsu (No. BK20140890), the Open Research Fund of the Key Laboratory of MEMS of Ministry of Education, Southeast University (No. 3206005302), and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (Nos. NY213024, NY215139).

  3. Energy scavenging for long-term deployable wireless sensor networks.

    PubMed

    Mathúna, Cian O; O'Donnell, Terence; Martinez-Catala, Rafael V; Rohan, James; O'Flynn, Brendan

    2008-05-15

    The coming decade will see the rapid emergence of low cost, intelligent, wireless sensors and their widespread deployment throughout our environment. While wearable systems will operate over communications ranges of less than a meter, building management systems will operate with inter-node communications ranges of the order of meters to tens of meters and remote environmental monitoring systems will require communications systems and associated energy systems that will allow reliable operation over kilometers. Autonomous power should allow wireless sensor nodes to operate in a "deploy and forget" mode. The use of rechargeable battery technology is problematic due to battery lifetime issues related to node power budget, battery self-discharge, number of recharge cycles and long-term environmental impact. Duty cycling of wireless sensor nodes with long "SLEEP" times minimises energy usage. A case study of a multi-sensor, wireless, building management system operating using the Zigbee protocol demonstrates that, even with a 1 min cycle time for an 864 ms "ACTIVE" mode, the sensor module is already in SLEEP mode for almost 99% of the time. For a 20-min cycle time, the energy utilisation in SLEEP mode exceeds the ACTIVE mode energy by almost a factor of three and thus dominates the module energy utilisation thereby providing the ultimate limit to the power system lifetime. Energy harvesting techniques can deliver energy densities of 7.5 mW/cm(2) from outdoor solar, 100 microW/cm(2) from indoor lighting, 100 microW/cm(3) from vibrational energy and 60 microW/cm(2) from thermal energy typically found in a building environment. A truly autonomous, "deploy and forget" battery-less system can be achieved by scaling the energy harvesting system to provide all the system energy needs. In the building management case study discussed, for duty cycles of less than 0.07% (i.e. in ACTIVE mode for 0.864 s every 20 min), energy harvester device dimensions of approximately 2 cm on a side would be sufficient to supply the complete wireless sensor node energy. Key research challenges to be addressed to deliver future, remote, wireless, chemo-biosensing systems include the development of low cost, low-power sensors, miniaturised fluidic transport systems, anti-bio-fouling sensor surfaces, sensor calibration, reliable and robust system packaging, as well as associated energy delivery systems and energy budget management.

  4. User interface design principles for the SSM/PMAD automated power system

    NASA Technical Reports Server (NTRS)

    Jakstas, Laura M.; Myers, Chris J.

    1991-01-01

    Martin Marietta has developed a user interface for the space station module power management and distribution (SSM/PMAD) automated power system testbed which provides human access to the functionality of the power system, as well as exemplifying current techniques in user interface design. The testbed user interface was designed to enable an engineer to operate the system easily without having significant knowledge of computer systems, as well as provide an environment in which the engineer can monitor and interact with the SSM/PMAD system hardware. The design of the interface supports a global view of the most important data from the various hardware and software components, as well as enabling the user to obtain additional or more detailed data when needed. The components and representations of the SSM/PMAD testbed user interface are examined. An engineer's interactions with the system are also described.

  5. Application of Distributed DC/DC Electronics in Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Kabala, Michael

    In a typical residential, commercial or utility grade photovoltaic (PV) system, PV modules are connected in series and in parallel to form an array that is connected to a standard DC/AC inverter, which is then connected directly to the grid. This type of standard installation; however, does very little to maximize the energy output of the solar array if certain conditions exist. These conditions could include age, temperature, irradiance and other factors that can cause mismatch between PV modules in an array that severely cripple the output power of the system. Since PV modules are typically connected in series to form a string, the output of the entire string is limited by the efficiency of the weakest module. With PV module efficiencies already relatively low, it is critical to extract the maximum power out of each module in order to make solar energy an economically viable competitor to oil and gas. Module level DC/DC electronics with maximum power point (MPP) tracking solves this issue by decoupling each module from the string in order for the module to operate independently of the geometry and complexity of the surrounding system. This allows each PV module to work at its maximum power point by transferring the maximum power the module is able to deliver directly to the load by either boosting (stepping up) the voltage or bucking (stepping down) the voltage. The goal of this thesis is to discuss the development of a per-module DC/DC converter in order to maximize the energy output of a PV module and reduce the overall cost of the system by increasing the energy harvest.

  6. Modelling the EDLC-based Power Supply Module for a Maneuvering System of a Nanosatellite

    NASA Astrophysics Data System (ADS)

    Kumarin, A. A.; Kudryavtsev, I. A.

    2018-01-01

    The development of the model of the power supply module of a maneuvering system of a nanosatellite is described. The module is based on an EDLC battery as an energy buffer. The EDLC choice is described. Experiments are conducted to provide data for model. Simulation of the power supply module is made for charging and discharging of the battery processes. The difference between simulation and experiment does not exceed 0.5% for charging and 10% for discharging. The developed model can be used in early design and to adjust charger and load parameters. The model can be expanded to represent the entire power system.

  7. Unified Technical Concepts. Module 6: Power.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on power is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system. In this…

  8. Integration of dye-sensitized solar cells, thermoelectric modules and electrical storage loop system to constitute a novel photothermoelectric generator.

    PubMed

    Chang, Ho; Yu, Zhi-Rong

    2012-08-01

    This study self-develops a novel type of photothermoelectric power generation modules. Dye-sensitized solar cells (DSSCs) serve as the photoelectric conversion system and a copper (Cu) heat-transfer nanofilm coating on both sides of the thermoelectric generator (TEG) acts as a thermoelectric conversion system. Thus module assembly absorbs light and generates electricity by DSSCs, and also recycles waste heat and generates power by the TEG. In addition, a set of pulsating heat pipes (PHP) filled with Cu nanofluid is placed on the cooling side to increase cooling effects and enhance the power generation efficiency. Results show that when the heat source of thermoelectric modules reaches 90 degrees C, TEG power output is increased by 85.7%. Besides, after thermoelectric modules are heated by additional heat source at 80 degrees C, the electrical energy generated by them can let a NiMH cell (1.25 V) be sufficiently charged in about 30 minutes. When photothermoelectric modules is illumined by simulated light, the temperature difference of two sides of TEG can reach 7 degrees C and the thermoelectric conversion efficiency is 2.17%. Furthermore, the power output of the thermoelectric modules is 11.48 mW/cm2, enhancing 1.4 % compared to merely using DSSCs module.

  9. Polyimide based amorphous silicon solar modules

    NASA Technical Reports Server (NTRS)

    Jeffrey, Frank R.; Grimmer, Derrick P.; Martens, Steven A.; Abudagga, Khaled; Thomas, Michael L.; Noak, Max

    1993-01-01

    Requirements for space power are increasingly emphasizing lower costs and higher specific powers. This results from new fiscal constraints, higher power requirements for larger applications, and the evolution toward longer distance missions such as a Lunar or Mars base. The polyimide based a-Si modules described are being developed to meet these needs. The modules consist of tandem a-Si solar cell material deposited directly on a roll of polyimide. A laser scribing/printing process subdivides the deposition into discrete cell strips which are series connected to produce the required voltage without cutting the polymer backing. The result is a large, monolithic, blanket type module approximately 30 cm wide and variable in length depending on demand. Current production modules have a specific power slightly over 500 W/Kg with room for significant improvement. Costs for the full blanket modules range from $30/Watt to $150/Watt depending on quantity and engineering requirements. Work to date focused on the modules themselves and adjusting them for the AMO spectrum. Work is needed yet to insure that the modules are suitable for the space environment.

  10. Saturated evanescent-wave absorption of few-layer graphene-covered side-polished single-mode fiber for all-optical switching

    NASA Astrophysics Data System (ADS)

    Peng, Kaung-Jay; Wu, Chun-Lung; Lin, Yung-Hsiang; Wang, Hwai-Yung; Cheng, Chih-Hsien; Chi, Yu-Chieh; Lin, Gong-Ru

    2018-01-01

    Using the evanescent-wave saturation effect of hydrogen-free low-temperature synthesized few-layer graphene covered on the cladding region of a side-polished single-mode fiber, a blue pump/infrared probe-based all-optical switch is demonstrated with specific wavelength-dependent probe modulation efficiency. Under the illumination of a blue laser diode at 405 nm, the few-layer graphene exhibits cross-gain modulation at different wavelengths covering the C- and L-bands. At a probe power of 0.5 mW, the L-band switching throughput power variant of 16 μW results in a probe modulation depth of 3.2%. Blue shifting the probe wavelength from 1580 to 1520 nm further enlarges the switching throughput power variant to 24 mW and enhances the probe modulation depth to 5%. Enlarging the probe power from 0.5 to 1 mW further enlarges the switching throughput power variant from 25 to 58 μW to promote its probe modulation depth of up to 5.8% at 1520 nm. In contrast, the probe modulation depth degrades from 5.1% to 1.2% as the pumping power reduces from 85 to 24 mW, which is attributed to the saturable absorption of the few-layer graphene-based evanescent-wave absorber. The modulation depth at wavelength of 1550 nm under a probe power of 1 mW increases from 1.2% to 5.1%, as more carriers can be excited when increasing the blue laser power from 24 to 85 mW, whereas it decreases from 5.1% to 3.3% by increasing the input probe power from 1 to 2 mW to show an easier saturated condition at longer wavelength.

  11. Numerical investigations of self- and cross-phase modulation effects in high-power fiber amplifiers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zunoubi, Mohammad R.; Anderson, Brian; Naderi, Shadi A.; Madden, Timothy J.; Dajani, Iyad

    2017-03-01

    The development of high-power fiber lasers is of great interest due to the advantages they offer relative to other laser technologies. Currently, the maximum power from a reportedly single-mode fiber amplifier stands at 10 kW. Though impressive, this power level was achieved at the cost of a large spectral linewidth, making the laser unsuitable for coherent or spectral beam combination techniques required to reach power levels necessary for airborne tactical applications. An effective approach in limiting the SBS effect is to insert an electro-optic phase modulator at the low-power end of a master oscillator power amplifier (MOPA) system. As a result, the optical power is spread among spectral sidebands; thus raising the overall SBS threshold of the amplifier. It is the purpose of this work to present a comprehensive numerical scheme that is based on the extended nonlinear Schrodinger equations that allows for accurate analysis of phase modulated fiber amplifier systems in relation to the group velocity dispersion and Kerr nonlinearities and their effect on the coherent beam combining efficiency. As such, we have simulated a high-power MOPA system modulated via filtered pseudo-random bit sequence format for different clock rates and power levels. We show that at clock rates of ≥30 GHz, the combination of GVD and self-phase modulation may lead to a drastic drop in beam combining efficiency at the multi-kW level. Furthermore, we extend our work to study the effect of cross-phase modulation where an amplifier is seeded with two laser sources.

  12. Electric vehicle recycling 2020: Key component power electronics.

    PubMed

    Bulach, Winfried; Schüler, Doris; Sellin, Guido; Elwert, Tobias; Schmid, Dieter; Goldmann, Daniel; Buchert, Matthias; Kammer, Ulrich

    2018-04-01

    Electromobility will play a key role in order to reach the specified ambitious greenhouse gas reduction targets in the German transport sector of 42% between 1990 and 2030. Subsequently, a significant rise in the sale of electric vehicles (EVs) is to be anticipated in future. The amount of EVs to be recycled will rise correspondingly after a delay. This includes the recyclable power electronics modules which are incorporated in every EV as an important component for energy management. Current recycling methods using car shredders and subsequent post shredder technologies show high recycling rates for the bulk metals but are still associated with high losses of precious and strategic metals such as gold, silver, platinum, palladium and tantalum. For this reason, the project 'Electric vehicle recycling 2020 - key component power electronics' developed an optimised recycling route for recycling power electronics modules from EVs which is also practicable in series production and can be implemented using standardised technology. This 'WEEE recycling route' involves the disassembly of the power electronics from the vehicle and a subsequent recycling in an electronic end-of-life equipment recycling plant. The developed recycling process is economical under the current conditions and raw material prices, even though it involves considerably higher costs than recycling using the car shredder. The life cycle assessment shows basically good results, both for the traditional car shredder route and the developed WEEE recycling route: the latter provides additional benefits from some higher recovery rates and corresponding credits.

  13. Multi-Kilowatt Power Module for High-Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bowers, Glen E.

    2005-01-01

    Future NASA missions will require high-performance electric propulsion systems. Hall thrusters are being developed at NASA Glenn for high-power, high-specific impulse operation. These thrusters operate at power levels up to 50 kW of power and discharge voltages in excess of 600 V. A parallel effort is being conducted to develop power electronics for these thrusters that push the technology beyond the 5kW state-of-the-art power level. A 10 kW power module was designed to produce an output of 500 V and 20 A from a nominal 100 V input. Resistive load tests revealed efficiencies in excess of 96 percent. Load current share and phase synchronization circuits were designed and tested that will allow connecting multiple modules in parallel to process higher power.

  14. Nonlinear Optics Technology. Volume 1. Solid State Laser Technology. Phase 3

    DTIC Science & Technology

    1991-01-12

    84 Figure 5.6 Modulator diffraction efficiency as a function of peak power for several 86 RF frequencies Figure 5.7 Thermal effects in the modulator. a...far-field profile of a beam making a 87 double pass through the modulator operating with a peak power of 80 W and average power of 1.6 W. b) same...AU three shown incorporate phase conjugation to provide good beam quality. Figure 1.1a is a standard phase conjugated master oscillator power

  15. Automated Power-Distribution System

    NASA Technical Reports Server (NTRS)

    Thomason, Cindy; Anderson, Paul M.; Martin, James A.

    1990-01-01

    Automated power-distribution system monitors and controls electrical power to modules in network. Handles both 208-V, 20-kHz single-phase alternating current and 120- to 150-V direct current. Power distributed to load modules from power-distribution control units (PDCU's) via subsystem distributors. Ring busses carry power to PDCU's from power source. Needs minimal attention. Detects faults and also protects against them. Potential applications include autonomous land vehicles and automated industrial process systems.

  16. Energy monitoring and managing for electromobility purposes

    NASA Astrophysics Data System (ADS)

    Slanina, Zdenek; Docekal, Tomas

    2016-09-01

    This paper describes smart energy meter design and implementation focused on using in charging stations (stands) for electric vehicle (follows as EV) charging support and possible embedding into current smart building technology. In this article there are included results of research of commercial devices available in Czech republic for energy measuring for buildings as well as analysis of energy meter for given purposes. For example in described module there was required measurement of voltage, electric current and frequency of power network. Finally there was designed a communication module with common interface to energy meter for standard communication support between charging station and electric car. After integration into smart buildings (home automation, parking houses) there are pros and cons of such solution mentioned1,2.

  17. Performance evaluation of advanced battery technologies for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Tummillo, A. F.; Kulaga, J. E.; Webster, C. E.; Gillie, K. R.; Hogrefe, R. L.

    1990-01-01

    At the Argonne Analysis and Diagnostic Laboratory, advanced battery technology evaluations are performed under simulated electric vehicle operating conditions. During 1989 and the first quarter of 1990, single cell and multicell modules from seven developers were examined for the Department of Energy and Electric Power Research Institute. The results provide battery users, developers, and program managers with an interim measure of the progress being made in battery R&D programs, a comparison of battery technologies, and a source of basic data for modeling and continuing R&D. This paper summarizes the performance and life characterizations of two single cells and seven 3- to 960-cell modules that encompass six technologies (Na/S, Ni/Fe, Ni/Cd, Ni-metal hydride, lead-acid, and Zn/Br).

  18. Space station common module network topology and hardware development

    NASA Technical Reports Server (NTRS)

    Anderson, P.; Braunagel, L.; Chwirka, S.; Fishman, M.; Freeman, K.; Eason, D.; Landis, D.; Lech, L.; Martin, J.; Mccorkle, J.

    1990-01-01

    Conceptual space station common module power management and distribution (SSM/PMAD) network layouts and detailed network evaluations were developed. Individual pieces of hardware to be developed for the SSM/PMAD test bed were identified. A technology assessment was developed to identify pieces of equipment requiring development effort. Equipment lists were developed from the previously selected network schematics. Additionally, functional requirements for the network equipment as well as other requirements which affected the suitability of specific items for use on the Space Station Program were identified. Assembly requirements were derived based on the SSM/PMAD developed requirements and on the selected SSM/PMAD network concepts. Basic requirements and simplified design block diagrams are included. DC remote power controllers were successfully integrated into the DC Marshall Space Flight Center breadboard. Two DC remote power controller (RPC) boards experienced mechanical failure of UES 706 stud-mounted diodes during mechanical installation of the boards into the system. These broken diodes caused input to output shorting of the RPC's. The UES 706 diodes were replaced on these RPC's which eliminated the problem. The DC RPC's as existing in the present breadboard configuration do not provide ground fault protection because the RPC was designed to only switch the hot side current. If ground fault protection were to be implemented, it would be necessary to design the system so the RPC switched both the hot and the return sides of power.

  19. Base drive for paralleled inverter systems

    NASA Technical Reports Server (NTRS)

    Nagano, S. (Inventor)

    1980-01-01

    In a paralleled inverter system, a positive feedback current derived from the total current from all of the modules of the inverter system is applied to the base drive of each of the power transistors of all modules, thereby to provide all modules protection against open or short circuit faults occurring in any of the modules, and force equal current sharing among the modules during turn on of the power transistors.

  20. Solar Cell Modules with Parallel Oriented Interconnections

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Twenty-four solar modules, half of which were 48 cells in an all-series electrical configuration and half of a six parallel cells by eight series cells were provided. Upon delivery of environmentally tested modules, low power outputs were discovered. These low power modules were determined to have cracked cells which were thought to cause the low output power. The cracks tended to be linear or circular which were caused by different stressing mechanisms. These stressing mechanisms were fully explored. Efforts were undertaken to determine the causes of cell fracture. This resulted in module design and process modifications. The design and process changes were subsequently implemented in production.

  1. Coherent communication link using diode-pumped lasers

    NASA Technical Reports Server (NTRS)

    Kane, Thomas J.; Wallace, Richard W.

    1989-01-01

    Work toward developing a diffraction limited, single frequency, modulated transmitter suitable for coherent optical communication or direct detection communication is discussed. Diode pumped, monolithic Nd:YAG nonplanar ring oscillators were used as the carrier beam. An external modulation technique which can handle high optical powers, has moderate modulation voltage, and which can reach modulation rates of 1 GHz was invented. Semiconductor laser pumped solid-state lasers which have high output power (0.5 Watt) and which oscillate at a single frequency, in a diffraction limited beam, at the wavelength of 1.06 microns were built. A technique for phase modulating the laser output by 180 degrees with a 40-volt peak to peak driving voltage is demonstrated. This technique can be adapted for amplitude modulation of 100 percent with the same voltage. This technique makes use of a resonant bulk modulator, so it does not have the power handling limitations of guided wave modulators.

  2. The effects of control field detuning on the modulation instability in a three-level quantum well system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borgohain, Nitu, E-mail: nituborgohain.ism@gmail.com; Konar, S.

    The paper presents a theoretical study of the modulation instability of a continuous or quasi-continuous optical probe in a three level quantum well system under electromagnetically induced transparency. The modulation instability is affected by the control field detuning, as well as even-order dispersion and by the strength of Kerr (third-order) and quintic (fifth-order) nonlinearities. The fourth-order dispersion reduces the bandwidth over which modulation instability occurs, whereas the quintic nonlinearity saturates the growth of the modulation instability. Detuning the control field from resonance can significantly reduce the growth of the modulation instability at both low and high power levels. At lowmore » powers, the system becomes stable against modulation instability for small detuning of the control field and at high powers modulation instability disappears for larger detuning.« less

  3. Design of resolution/power controllable Asynchronous Sigma-Delta Modulator

    NASA Astrophysics Data System (ADS)

    Deshmukh, Anita Arvind; Deshmukh, Raghvendra B.

    2016-12-01

    This paper presents the design of a Programmable Asynchronous Modulator (PAM) with field control of resolution and power. A novel variable hysteresis Schmitt Trigger (ST) is used for external programmability. Asynchronous Sigma-Delta Modulator (ASDM) implementation with external control voltages is proposed to supervise the resolution and power. This architecture with reduced circuit complexity considerably improves the earlier realizations by eliminating multiple current sources as well switched capacitor circuits and results in power saving up to 87 %. Proposed PAM design demonstrates an improved SNDR of 115 dB, DR of 96 dB, and power consumption below 280 μW. It illustrates Effective Number of Bits (ENOB) to 18.81 and Figure of Merit (FoM) to 0.15 fJ/conversion step. Modulator is implemented in Cadence UMC Hspice 0.18 μm CMOS analog technology. Off-chip PAM control for resolution/power performance has potential applications in battery operated ultra low power applications like IoT; where ADC is one of the major power consuming components. It offers the promise for an efficient performance with power saving.

  4. Design of a low parasitic inductance SiC power module with double-sided cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fei; Liang, Zhenxian; Wang, Fei

    In this paper, a low-parasitic inductance SiC power module with double-sided cooling is designed and compared with a baseline double-sided cooled module. With the unique 3D layout utilizing vertical interconnection, the power loop inductance is effectively reduced without sacrificing the thermal performance. Both simulations and experiments are carried out to validate the design. Q3D simulation results show a power loop inductance of 1.63 nH, verified by the experiment, indicating more than 60% reduction of power loop inductance compared with the baseline module. With 0Ω external gate resistance turn-off at 600V, the voltage overshoot is less than 9% of the busmore » voltage at a load of 44.6A.« less

  5. Powers and Roots. Fundamentals of Occupational Mathematics. Module 11.

    ERIC Educational Resources Information Center

    Engelbrecht, Nancy; And Others

    This module is the 11th in a series of 12 learning modules designed to teach occupational mathematics. Blocks of informative material and rules are followed by examples and practice problems. The solutions to the practice problems are found at the end of the module. Specific topics covered include multiplication, powers, calculator use, and roots.…

  6. Diode amplifier of modulated optical beam power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'yachkov, N V; Bogatov, A P; Gushchik, T I

    2014-11-30

    Analytical relations are obtained between characteristics of modulated light at the output and input of an optical diode power amplifier operating in the highly saturated gain regime. It is shown that a diode amplifier may act as an amplitude-to-phase modulation converter with a rather large bandwidth (∼10 GHz). The low sensitivity of the output power of the amplifier to the input beam power and its high energy efficiency allow it to be used as a building block of a high-power multielement laser system with coherent summation of a large number of optical beams. (lasers)

  7. Current limiting remote power control module

    NASA Technical Reports Server (NTRS)

    Hopkins, Douglas C.

    1990-01-01

    The power source for the Space Station Freedom will be fully utilized nearly all of the time. As such, any loads on the system will need to operate within expected limits. Should any load draw an inordinate amount of power, the bus voltage for the system may sag and disrupt the operation of other loads. To protect the bus and loads some type of power interface between the bus and each load must be provided. This interface is most crucial when load faults occur. A possible system configuration is presented. The proposed interface is the Current Limiting Remote Power Controller (CL-RPC). Such an interface should provide the following power functions: limit overloading and resulting undervoltage; prevent catastrophic failure and still provide for redundancy management within the load; minimize cable heating; and provide accurate current measurement. A functional block diagram of the power processing stage of a CL-RPC is included. There are four functions that drive the circuit design: rate control of current; current sensing; the variable conductance switch (VCS) technology; and the algorithm used for current limiting. Each function is discussed separately.

  8. Control and protection system for an installation for the combined production of electrical and thermal energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agazzone, U.; Ausiello, F.P.

    1981-06-23

    A power-generating installation comprises a plurality of modular power plants each comprised of an internal combustion engine connected to an electric machine. The electric machine is used to start the engine and thereafter operates as a generator supplying power to an electrical network common to all the modular plants. The installation has a control and protection system comprising a plurality of control modules each associated with a respective plant, and a central unit passing control signals to the modules to control starting and stopping of the individual power plants. Upon the detection of abnormal operation or failure of its associatedmore » power plant, each control module transmits an alarm signal back to the central unit which thereupon stops, or prevents the starting, of the corresponding power plant. Parameters monitored by each control module include generated current and inter-winding leakage current of the electric machine.« less

  9. Guntersville Workshop on Solar-Terrestrial Studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The separation of purely solar physics from magnetospheric physics, and the effects of solar activity on geomagnetic activity are investigations which can be accomplished using the shuttle orbiter in an extended sortie mode, or an unmanned solar terrestrial observatory powered by the power module in an extended duration mode. When the power module is used with the shuttle in a sortie support mode, both the instrument capacity and the time in orbit of the orbiter can be increased several fold. In the free-flyer mode, the power module would be capable of providing power, basic attitude control, basic thermal control and housekeeping communications for unmanned, large, independent mission payloads in low earth orbit for periods of 6 months or longer. Instrument requirements for interdisciplinary joint observational programs are discussed for studies of the magnetosphere, the atmosphere, sun-weather relationships. Description summary charts of the power module are included.

  10. Design of a nuclear isotope heat source assembly for a spaceborne mini-Brayton power module.

    NASA Technical Reports Server (NTRS)

    Wein, D.; Gorland, S. H.

    1973-01-01

    Results of a study to develop a feasible design definition of a heat source assembly (HSA) for use in nominal 500-, 1200-, or 2000-W(e) mini-Brayton spacecraft power systems. The HSA is a modular design which is used either as a single unit to provide thermal energy to the 500-W(e) mini-Brayton power module or in parallel with one or two additional HSAs for the 1200- or 2000-W(e) power module systems. Principal components consist of a multihundred watt RTG isotope heat source, a heat source heat exchanger which transfers the thermal energy from the heat source to the mini-Brayton power conversion system, an auxiliary cooling system which provides requisite cooling during nonoperation of the power conversion module and an emergency cooling system which precludes accidental release of isotope fuel in the event of system failure.

  11. Research and development of the laser tracker measurement system

    NASA Astrophysics Data System (ADS)

    Zhang, Z. L.; Zhou, W. H.; Lao, D. B.; Yuan, J.; Dong, D. F. F.; Ji, R. Y. Y.

    2013-01-01

    The working principle and system design of the laser tracker measurement system are introduced, as well as the key technologies and solutions in the implementation of the system. The design and implementation of the hardware and configuration of the software are mainly researched. The components of the hardware include distance measuring unit, angle measuring unit, tracking and servo control unit and electronic control unit. The distance measuring devices include the relative distance measuring device (IFM) and the absolute distance measuring device (ADM). The main component of the angle measuring device, the precision rotating stage, is mainly comprised of the precision axis and the encoders which are both set in the tracking head. The data processing unit, tracking and control unit and power supply unit are all set in the control box. The software module is comprised of the communication module, calibration and error compensation module, data analysis module, database management module, 3D display module and the man-machine interface module. The prototype of the laser tracker system has been accomplished and experiments have been carried out to verify the proposed strategies of the hardware and software modules. The experiments showed that the IFM distance measuring error is within 0.15mm, the ADM distance measuring error is within 3.5mm and the angle measuring error is within 3" which demonstrates that the preliminary prototype can realize fundamental measurement tasks.

  12. System and method for design and optimization of grid connected photovoltaic power plant with multiple photovoltaic module technologies

    DOEpatents

    Thomas, Bex George; Elasser, Ahmed; Bollapragada, Srinivas; Galbraith, Anthony William; Agamy, Mohammed; Garifullin, Maxim Valeryevich

    2016-03-29

    A system and method of using one or more DC-DC/DC-AC converters and/or alternative devices allows strings of multiple module technologies to coexist within the same PV power plant. A computing (optimization) framework estimates the percentage allocation of PV power plant capacity to selected PV module technologies. The framework and its supporting components considers irradiation, temperature, spectral profiles, cost and other practical constraints to achieve the lowest levelized cost of electricity, maximum output and minimum system cost. The system and method can function using any device enabling distributed maximum power point tracking at the module, string or combiner level.

  13. Linear transformer driver for pulse generation with fifth harmonic

    DOEpatents

    Mazarakis, Michael G.; Kim, Alexander A.; Sinebryukhov, Vadim A.; Volkov, Sergey N.; Kondratiev, Sergey S.; Alexeenko, Vitaly M.; Bayol, Frederic; Demol, Gauthier; Stygar, William A.; Leckbee, Joshua; Oliver, Bryan V.; Kiefer, Mark L.

    2017-03-21

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first, second, and third power delivery module. The first power delivery module sends a first energy in the form of a first pulse to the load. The second power delivery module sends a second energy in the form of a second pulse to the load. The third power delivery module sends a third energy in the form of a third pulse to the load. The linear transformer driver is configured to form a flat-top pulse by the superposition of the first, second, and third pulses. The first, second, and third pulses have different frequencies.

  14. Advanced Liquid Cooling for a Traction Drive Inverter Using Jet Impingement and Microfinned Enhanced Surfaces: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waye, S. K.; Narumanchi, S.; Mihalic, M.

    2014-08-01

    Jet impingement on plain and micro-finned enhanced surfaces was compared to a traditional channel flow configuration. The jets provide localized cooling to areas heated by the insulated-gate bipolar transistor and diode devices. Enhanced microfinned surfaces increase surface area and thermal performance. Using lighter materials and designing the fluid path to manage pressure losses increases overall performance while reducing weight, volume, and cost. Powering four diodes in the center power module of the inverter and computational fluid dynamics (CFD) modeling was used to characterize the baseline as well as jet-impingement-based heat exchangers. CFD modeling showed the thermal performance improvements should holdmore » for a fully powered inverter. Increased thermal performance was observed for the jet-impingement configurations when tested at full inverter power (40 to 100 kW output power) on a dynamometer. The reliability of the jets and enhanced surfaces over time was also investigated. Experimentally, the junction-to- coolant thermal resistance was reduced by up to 12.5% for jet impingement on enhanced surfaces s compared to the baseline channel flow configuration. Base plate-to-coolant (convective) resistance was reduced by up to 37.0% for the jet-based configuration compared to the baseline, suggesting that while improvements to the cooling side reduce overall resistance, reducing the passive stack resistance may contribute to lowering overall junction-to-coolant resistance. Full inverter power testing showed reduced thermal resistance from the middle of the module baseplate to coolant of up to 16.5%. Between the improvement in thermal performance and pumping power, the coefficient of performance improved by up to 13% for the jet-based configuration.« less

  15. Correction for Metastability in the Quantification of PID in Thin-film Module Testing: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hacke, Peter L; Johnston, Steven; Spataru, Sergiu

    A fundamental change in the analysis for the accelerated stress testing of thin-film modules is proposed, whereby power changes due to metastability and other effects that may occur due to the thermal history are removed from the power measurement that we obtain as a function of the applied stress factor. The power of reference modules normalized to an initial state - undergoing the same thermal and light- exposure history but without the applied stress factor such as humidity or voltage bias - is subtracted from that of the stressed modules. For better understanding and appropriate application in standardized tests, themore » method is demonstrated and discussed for potential-induced degradation testing in view of the parallel-occurring but unrelated physical mechanisms that can lead to confounding power changes in the module.« less

  16. High-speed Si/GeSi hetero-structure Electro Absorption Modulator.

    PubMed

    Mastronardi, L; Banakar, M; Khokhar, A Z; Hattasan, N; Rutirawut, T; Bucio, T Domínguez; Grabska, K M; Littlejohns, C; Bazin, A; Mashanovich, G; Gardes, F Y

    2018-03-19

    The ever-increasing demand for integrated, low power interconnect systems is pushing the bandwidth density of CMOS photonic devices. Taking advantage of the strong Franz-Keldysh effect in the C and L communication bands, electro-absorption modulators in Ge and GeSi are setting a new standard in terms of device footprint and power consumption for next generation photonics interconnect arrays. In this paper, we present a compact, low power electro-absorption modulator (EAM) Si/GeSi hetero-structure based on an 800 nm SOI overlayer with a modulation bandwidth of 56 GHz. The device design and fabrication tolerant process are presented, followed by the measurement analysis. Eye diagram measurements show a dynamic ER of 5.2 dB at a data rate of 56 Gb/s at 1566 nm, and calculated modulator power is 44 fJ/bit.

  17. Progress & Frontiers in PV Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deline, Chris; DiOrio, Nick; Jordan, Dirk

    2016-09-12

    PowerPoint slides for a presentation given at Solar Power International 2016. Presentation includes System Advisor Model (SAM) introduction and battery modeling, bifacial PV modules and modeling, shade modeling and module level power electronics (MLPE), degradation rates, and PVWatts updates and validation.

  18. Solid state modulator for klystron power supply XFEL TDS INJ

    NASA Astrophysics Data System (ADS)

    Zavadtsev, A. A.; Zavadtsev, D. A.; Zybin, D. A.; Churanov, D. V.; Shemarykin, P. V.

    2016-09-01

    The transverse deflecting system XFEL TDS INJ for European X-ray Free Electron Laser includes power supply for the CPI VKS-8262HS klystron. It has been designed for pulse high-voltage, cathode heating, solenoid and klystron ion pump. The klystron power supply includes solid state modulator, pulse transformer, controlled power supply for cathode heating and commercial power supplies for solenoid and ion pump. Main parameters of the modulator are 110 kV of peak voltage, 72 A peak current, and pulse length up to 6 μs. The klystron power supply has been developed, designed, manufactured, tuned, tested and installed in the XFEL building. All designed parameters are satisfied.

  19. Subcarrier intensity modulation for MIMO visible light communications

    NASA Astrophysics Data System (ADS)

    Celik, Yasin; Akan, Aydin

    2018-04-01

    In this paper, subcarrier intensity modulation (SIM) is investigated for multiple-input multiple-output (MIMO) visible light communication (VLC) systems. A new modulation scheme called DC-aid SIM (DCA-SIM) is proposed for the spatial modulation (SM) transmission plan. Then, DCA-SIM is extended for multiple subcarrier case which is called DC-aid Multiple Subcarrier Modulation (DCA-MSM). Bit error rate (BER) performances of the considered system are analyzed for different MIMO schemes. The power efficiencies of DCA-SIM and DCA-MSM are shown in correlated MIMO VLC channels. The upper bound BER performances of the proposed models are obtained analytically for PSK and QAM modulation types in order to validate the simulation results. Additionally, the effect of power imbalance method on the performance of SIM is studied and remarkable power gains are obtained compared to the non-power imbalanced cases. In this work, Pulse amplitude modulation (PAM) and MSM-Index are used as benchmarks for single carrier and multiple carrier cases, respectively. And the results show that the proposed schemes outperform PAM and MSM-Index for considered single carrier and multiple carrier communication scenarios.

  20. Safety with Hand and Portable Power Tools. Module SH-14. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on safety with hand and portable power tools is one of 50 modules concerned with job safety and health. This module discusses the proper use and maintenance of tools, including the need for protective equipment for the worker. Following the introduction, 16 objectives (each keyed to a page in the text) the student is expected…

  1. Systems analysis of a low-acceleration research facility

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.; Ferebee, Melvin J., Jr.; Wright, Robert L.

    1988-01-01

    The Low-Acceleration Research Facility (LARF), an unmanned free-flier that is boosted from low-earth orbit to a desired altitude using an orbital transfer vehicle is discussed. Design techniques used to minimize acceleration-causing disturbances and to create an ultra-quiet workshop are discussed, focusing on residual acceleration induced by the environment, the spacecraft and experiments. The selection and integration of critical subsystems, such as electrical power and thermal control, that enable the LARf to accomodate sub-microgravity levels for extended periods of time are presented, including a discussion of the Low-Acceleration Module, which will supply the payload with 25.0 kW of power, and up to 11.8 kW in the low-power mode. Also, the data management, communications, guidance, navigation and control, and structural features of supporting subsystems are examined.

  2. Resonant AC power system proof-of-concept test program

    NASA Technical Reports Server (NTRS)

    Wappes, Loran J.

    1986-01-01

    Proof-of-concept testing was performed on a 20-kHz, resonant power system breadboard from 1981 through 1985. The testing began with the evaluation of a single, 1.0-kW resonant inverter and progressed to the testing of breadboard systems with higher power levels and more capability. The final breadboard configuration tested was a 25.0-kW breadboard with six inverters providing power to three user-interface modules over a 50-meter, 20-kHz bus. The breadboard demonstrated the ability to synchronize multiple resonant inverters to power a common bus. Single-phase and three-phase 20-kHz power distribution was demonstrated. Simple conversion of 20-kHz to dc and variable-frequency ac was demonstrated as was bidirectional power flow between 20-kHz and dc. Steady state measurements of efficiency, power-factor tolerance, and conducted emissions and conducted susceptibility were made. In addition, transient responses were recorded for such conditions as start up, shut down, load changes. The results showed the 20-kHz resonant system to be a desirable technology for a spacecraft power management and distribution system with multiple users and a utility-type bus.

  3. Combinatorial pulse position modulation for power-efficient free-space laser communications

    NASA Technical Reports Server (NTRS)

    Budinger, James M.; Vanderaar, M.; Wagner, P.; Bibyk, Steven

    1993-01-01

    A new modulation technique called combinatorial pulse position modulation (CPPM) is presented as a power-efficient alternative to quaternary pulse position modulation (QPPM) for direct-detection, free-space laser communications. The special case of 16C4PPM is compared to QPPM in terms of data throughput and bit error rate (BER) performance for similar laser power and pulse duty cycle requirements. The increased throughput from CPPM enables the use of forward error corrective (FEC) encoding for a net decrease in the amount of laser power required for a given data throughput compared to uncoded QPPM. A specific, practical case of coded CPPM is shown to reduce the amount of power required to transmit and receive a given data sequence by at least 4.7 dB. Hardware techniques for maximum likelihood detection and symbol timing recovery are presented.

  4. Low Temperature Performance of High Power Density DC/DC Converter Modules

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Hammond, Ahmad; Gerber, Scott; Patterson, Richard L.; Overton, Eric

    2001-01-01

    In this paper, two second-generation high power density DC/DC converter modules have been evaluated at low operating temperatures. The power rating of one converter (Module 1) was specified at 150 W with an input voltage range of 36 to 75 V and output voltage of 12 V. The other converter (Module 2) was specified at 100 W with the same input voltage range and an output voltage of 3.3 V. The converter modules were evaluated in terms of their performance as a function of operating temperature in the range of 25 to -140 C. The experimental procedures along with the experimental data obtained are presented and discussed in this paper.

  5. A 1V low power second-order delta-sigma modulator for biomedical signal application.

    PubMed

    Hsu, Chih-Han; Tang, Kea-Tiong

    2013-01-01

    This paper presents the design and implementation of a low-power delta-sigma modulator for biomedical application with a standard 90 nm CMOS technology. The delta-sigma architecture is implemented as 2nd order feedforward architecture. A low quiescent current operational transconductance amplifier (OTA) is utilized to reduce power consumption. This delta-sigma modulator operated in 1V power supply, and achieved 64.87 dB signal to noise distortion ratio (SNDR) at 10 KHz bandwidth with an oversampling ratio (OSR) of 64. The power consumption is 17.14 µW, and the figure-of-merit (FOM) is 0.60 pJ/conv.

  6. Ethernet-Enabled Power and Communication Module for Embedded Processors

    NASA Technical Reports Server (NTRS)

    Perotti, Jose; Oostdyk, Rebecca

    2010-01-01

    The power and communications module is a printed circuit board (PCB) that has the capability of providing power to an embedded processor and converting Ethernet packets into serial data to transfer to the processor. The purpose of the new design is to address the shortcomings of previous designs, including limited bandwidth and program memory, lack of control over packet processing, and lack of support for timing synchronization. The new design of the module creates a robust serial-to-Ethernet conversion that is powered using the existing Ethernet cable. This innovation has a small form factor that allows it to power processors and transducers with minimal space requirements.

  7. Ion propulsion cost effectivity

    NASA Technical Reports Server (NTRS)

    Zafran, S.; Biess, J. J.

    1978-01-01

    Ion propulsion modules employing 8-cm thrusters and 30-cm thrusters were studied for Multimission Modular Spacecraft (MMS) applications. Recurring and nonrecurring cost elements were generated for these modules. As a result, ion propulsion cost drivers were identified to be Shuttle charges, solar array, power processing, and thruster costs. Cost effective design approaches included short length module configurations, array power sharing, operation at reduced thruster input power, simplified power processing units, and power processor output switching. The MMS mission model employed indicated that nonrecurring costs have to be shared with other programs unless the mission model grows. Extended performance missions exhibited the greatest benefits when compared with monopropellant hydrazine propulsion.

  8. Addressing On-Chip Power Converstion and Dissipation Issues in Many-Core System-on-a-Chip Based on Conventional Silicon and Emerging Nanotechnologies

    NASA Astrophysics Data System (ADS)

    Ashenafi, Emeshaw

    Integrated circuits (ICs) are moving towards system-on-a-chip (SOC) designs. SOC allows various small and large electronic systems to be implemented in a single chip. This approach enables the miniaturization of design blocks that leads to high density transistor integration, faster response time, and lower fabrication costs. To reap the benefits of SOC and uphold the miniaturization of transistors, innovative power delivery and power dissipation management schemes are paramount. This dissertation focuses on on-chip integration of power delivery systems and managing power dissipation to increase the lifetime of energy storage elements. We explore this problem from two different angels: On-chip voltage regulators and power gating techniques. On-chip voltage regulators reduce parasitic effects, and allow faster and efficient power delivery for microprocessors. Power gating techniques, on the other hand, reduce the power loss incurred by circuit blocks during standby mode. Power dissipation (Ptotal = Pstatic and Pdynamic) in a complementary metal-oxide semiconductor (CMOS) circuit comes from two sources: static and dynamic. A quadratic dependency on the dynamic switching power and a more than linear dependency on static power as a form of gate leakage (subthreshold current) exist. To reduce dynamic power loss, the supply power should be reduced. A significant reduction in power dissipation occurs when portions of a microprocessor operate at a lower voltage level. This reduction in supply voltage is achieved via voltage regulators or converters. Voltage regulators are used to provide a stable power supply to the microprocessor. The conventional off-chip switching voltage regulator contains a passive floating inductor, which is difficult to be implemented inside the chip due to excessive power dissipation and parasitic effects. Additionally, the inductor takes a very large chip area while hampering the scaling process. These limitations make passive inductor based on-chip regulator design very unattractive for SOC integration and multi-/many-core environments. To circumvent the challenges, three alternative techniques based on active circuit elements to replace the passive LC filter of the buck convertor are developed. The first inductorless on-chip switching voltage regulator architecture is based on a cascaded 2nd order multiple feedback (MFB) low-pass filter (LPF). This design has the ability to modulate to multiple voltage settings via pulse-with modulation (PWM). The second approach is a supplementary design utilizing a hybrid low drop-out scheme to lower the output ripple of the switching regulator over a wider frequency range. The third design approach allows the integration of an entire power management system within a single chipset by combining a highly efficient switching regulator with an intermittently efficient linear regulator (area efficient), for robust and highly efficient on-chip regulation. The static power (Pstatic) or subthreshold leakage power (Pleak) increases with technology scaling. To mitigate static power dissipation, power gating techniques are implemented. Power gating is one of the popular methods to manage leakage power during standby periods in low-power high-speed IC design. It works by using transistor based switches to shut down part of the circuit block and put them in the idle mode. The efficiency of a power gating scheme involves minimum Ioff and high Ion for the sleep transistor. A conventional sleep transistor circuit design requires an additional header, footer, or both switches to turn off the logic block. This additional transistor causes signal delay and increases the chip area. We propose two innovative designs for next generation sleep transistor designs. For an above threshold operation, we present a sleep transistor design based on fully depleted silicon-on-insulator (FDSOI) device. For a subthreshold circuit operation, we implement a sleep transistor utilizing the newly developed silicon-on-ferroelectric-insulator field effect transistor (SOFFET). In both of the designs, the ability to control the threshold voltage via bias voltage at the back gate makes both devices more flexible for sleep transistors design than a bulk MOSFET. The proposed approaches simplify the design complexity, reduce the chip area, eliminate the voltage drop by sleep transistor, and improve power dissipation. In addition, the design provides a dynamically controlled Vt for times when the circuit needs to be in a sleep or switching mode.

  9. Wireless and Powerless Sensing Node System Developed for Monitoring Motors.

    PubMed

    Lee, Dasheng

    2008-08-27

    Reliability and maintainability of tooling systems can be improved through condition monitoring of motors. However, it is difficult to deploy sensor nodes due to the harsh environment of industrial plants. Sensor cables are easily damaged, which renders the monitoring system deployed to assure the machine's reliability itself unreliable. A wireless and powerless sensing node integrated with a MEMS (Micro Electro-Mechanical System) sensor, a signal processor, a communication module, and a self-powered generator was developed in this study for implementation of an easily mounted network sensor for monitoring motors. A specially designed communication module transmits a sequence of electromagnetic (EM) pulses in response to the sensor signals. The EM pulses can penetrate through the machine's metal case and delivers signals from the sensor inside the motor to the external data acquisition center. By using induction power, which is generated by the motor's shaft rotation, the sensor node is self-sustaining; therefore, no power line is required. A monitoring system, equipped with novel sensing nodes, was constructed to test its performance. The test results illustrate that, the novel sensing node developed in this study can effectively enhance the reliability of the motor monitoring system and it is expected to be a valuable technology, which will be available to the plant for implementation in a reliable motor management program.

  10. Wireless and Powerless Sensing Node System Developed for Monitoring Motors

    PubMed Central

    Lee, Dasheng

    2008-01-01

    Reliability and maintainability of tooling systems can be improved through condition monitoring of motors. However, it is difficult to deploy sensor nodes due to the harsh environment of industrial plants. Sensor cables are easily damaged, which renders the monitoring system deployed to assure the machine's reliability itself unreliable. A wireless and powerless sensing node integrated with a MEMS (Micro Electro-Mechanical System) sensor, a signal processor, a communication module, and a self-powered generator was developed in this study for implementation of an easily mounted network sensor for monitoring motors. A specially designed communication module transmits a sequence of electromagnetic (EM) pulses in response to the sensor signals. The EM pulses can penetrate through the machine's metal case and delivers signals from the sensor inside the motor to the external data acquisition center. By using induction power, which is generated by the motor's shaft rotation, the sensor node is self-sustaining; therefore, no power line is required. A monitoring system, equipped with novel sensing nodes, was constructed to test its performance. The test results illustrate that, the novel sensing node developed in this study can effectively enhance the reliability of the motor monitoring system and it is expected to be a valuable technology, which will be available to the plant for implementation in a reliable motor management program. PMID:27873798

  11. Interface Control Document for the EMPACT Module that Estimates Electric Power Transmission System Response to EMP-Caused Damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werley, Kenneth Alan; Mccown, Andrew William

    The EPREP code is designed to evaluate the effects of an Electro-Magnetic Pulse (EMP) on the electric power transmission system. The EPREP code embodies an umbrella framework that allows a user to set up analysis conditions and to examine analysis results. The code links to three major physics/engineering modules. The first module describes the EM wave in space and time. The second module evaluates the damage caused by the wave on specific electric power (EP) transmission system components. The third module evaluates the consequence of the damaged network on its (reduced) ability to provide electric power to meet demand. Thismore » third module is the focus of the present paper. The EMPACT code serves as the third module. The EMPACT name denotes EMP effects on Alternating Current Transmission systems. The EMPACT algorithms compute electric power transmission network flow solutions under severely damaged network conditions. Initial solutions are often characterized by unacceptible network conditions including line overloads and bad voltages. The EMPACT code contains algorithms to adjust optimally network parameters to eliminate network problems while minimizing outages. System adjustments include automatically adjusting control equipment (generator V control, variable transformers, and variable shunts), as well as non-automatic control of generator power settings and minimal load shedding. The goal is to evaluate the minimal loss of customer load under equilibrium (steady-state) conditions during peak demand.« less

  12. Mathematical analysis and coordinated current allocation control in battery power module systems

    NASA Astrophysics Data System (ADS)

    Han, Weiji; Zhang, Liang

    2017-12-01

    As the major energy storage device and power supply source in numerous energy applications, such as solar panels, wind plants, and electric vehicles, battery systems often face the issue of charge imbalance among battery cells/modules, which can accelerate battery degradation, cause more energy loss, and even incur fire hazard. To tackle this issue, various circuit designs have been developed to enable charge equalization among battery cells/modules. Recently, the battery power module (BPM) design has emerged to be one of the promising solutions for its capability of independent control of individual battery cells/modules. In this paper, we propose a new current allocation method based on charging/discharging space (CDS) for performance control in BPM systems. Based on the proposed method, the properties of CDS-based current allocation with constant parameters are analyzed. Then, real-time external total power requirement is taken into account and an algorithm is developed for coordinated system performance control. By choosing appropriate control parameters, the desired system performance can be achieved by coordinating the module charge balance and total power efficiency. Besides, the proposed algorithm has complete analytical solutions, and thus is very computationally efficient. Finally, the efficacy of the proposed algorithm is demonstrated using simulations.

  13. Modelling of the Installed Capacity of Landfill Power Stations

    NASA Astrophysics Data System (ADS)

    Blumberga, D.; Kuplais, Ģ.; Veidenbergs, I.; Dāce, E.; Gušča, J.

    2009-01-01

    More and more landfills are being developed, in which biogas is produced and accumulated, which can be used for electricity production. Currently, due to technological reasons, electricity generation from biogas has a very low level of efficiency. In order to develop this type of energy production, it is important to find answers to various engineering, economic and ecological issues. The paper outlines the results obtained by creating a model for the calculations of electricity production in landfill power stations and by testing it in the municipal solid waste landfill "Daibe". The algorithm of the mathematical model for the operation of a biogas power station consists of four main modules: • initial data module, • engineering calculation module, • tariff calculation module, and • climate calculation module. As a result, the optimum capacity of the power station in the landfill "Daibe" is determined, as well as the analysis of the landfill's economic data and cost-effectiveness is conducted.

  14. Energy to the Edge (E2E) Equipment Assessment U.S. Army Rapid Equipping Force

    DTIC Science & Technology

    2015-05-01

    120 • Packaging - (3) each (AC module, DC module, and battery module). • System - • Lithium - ion Ferrous Phosphate (LFP), Capability...Mortar Fire Control Systems (MFCS). Lithium batteries were used which reduce Findings: Small Power Systems batteries . The result reduced the...information on lithium batteries . d. • Lower the temperature setting for the cooling fan when inverting power. • output in order to prevent power tripping

  15. The 25 kW power module evolution study. Part 3: Conceptual designs for power module evolution. Volume 2: Program plans

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A plan is presented for the evolutionary development and deployment of the power module system with performance capabilities required to support the 1983 to 1990 user requirements. Aspects summarized include program functional, operational, and hardware elements; program work breakdown and specification items; development plans and schedules for developmental and technology milestones; test concepts and timeliness; and ground and orbit operations concepts.

  16. Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator.

    PubMed

    Ding, Jianfeng; Chen, Hongtao; Yang, Lin; Zhang, Lei; Ji, Ruiqiang; Tian, Yonghui; Zhu, Weiwei; Lu, Yangyang; Zhou, Ping; Min, Rui; Yu, Mingbin

    2012-03-26

    We demonstrate a 26 Gbit/s Mach-Zehnder silicon optical modulator. The doping concentration and profile are optimized, and a modulation efficiency with the figure of merit (VπL) of 1.28 V·cm is achieved. We design an 80-nm-wide intrinsic silicon gap between the p-type and n-type doped regions to reduce the capacitance of the diode and prevent the diode from working in a slow diffusion mode. Therefore, the modulator can be driven with a small differential voltage of 0.5 V with no bias. Without the elimination of the dissipated power of the series resistors and the reflected power of the electrical signal, the maximum power consumption is 3.8 mW.

  17. Power Terminal Communication Access Network Monitoring System Scheme Based on Design Patterns

    NASA Astrophysics Data System (ADS)

    Yan, Shengchao; Wu, Desheng; Zhu, Jiang

    2018-01-01

    In order to realize patterns design for terminal communication monitoring system, this paper introduces manager-workers, tasks-workers design patterns, based on common design patterns such as factory method, chain of responsibility, facade. Using these patterns, the communication monitoring system which combines module-groups like networking communication, business data processing and the peripheral support has been designed successfully. Using these patterns makes this system have great flexibility and scalability and improves the degree of systematic pattern design structure.

  18. Power system security enhancement through direct non-disruptive load control

    NASA Astrophysics Data System (ADS)

    Ramanathan, Badri Narayanan

    The transition to a competitive market structure raises significant concerns regarding reliability of the power grid. A need to build tools for security assessment that produce operating limit boundaries for both static and dynamic contingencies is recognized. Besides, an increase in overall uncertainty in operating conditions makes corrective actions at times ineffective leaving the system vulnerable to instability. The tools that are in place for stability enhancement are mostly corrective and suffer from lack of robustness to operating condition changes. They often pose serious coordination challenges. With deregulation, there have also been ownership and responsibility issues associated with stability controls. However, the changing utility business model and the developments in enabling technologies such as two-way communication, metering, and control open up several new possibilities for power system security enhancement. This research proposes preventive modulation of selected loads through direct control for power system security enhancement. Two main contributions of this research are the following: development of an analysis framework and two conceptually different analysis approaches for load modulation to enhance oscillatory stability, and the development and study of algorithms for real-time modulation of thermostatic loads. The underlying analysis framework is based on the Structured Singular Value (SSV or mu) theory. Based on the above framework, two fundamentally different approaches towards analysis of the amount of load modulation for desired stability performance have been developed. Both the approaches have been tested on two different test systems: CIGRE Nordic test system and an equivalent of the Western Electric Coordinating Council test system. This research also develops algorithms for real-time modulation of thermostatic loads that use the results of the analysis. In line with some recent load management programs executed by utilities, two different algorithms based on dynamic programming are proposed for air-conditioner loads, while a decision-tree based algorithm is proposed for water-heater loads. An optimization framework has been developed employing the above algorithms. Monte Carlo simulations have been performed using this framework with the objective of studying the impact of different parameters and constraints on the effectiveness as well as the effect of control. The conclusions drawn from this research strongly advocate direct load control for stability enhancement from the perspectives of robustness and coordination, as well as economic viability and the developments towards availability of the institutional framework for load participation in providing system reliability services.

  19. L-Band High Power Amplifiers for CEBAF Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fugitt, Jock; Killion, Richard; Nelson, Richard

    1990-09-01

    The high power portion of the CEBAF RF system utilizes 340 5kW klystrons providing 339 separately controlled outputs. Modulating anodes have been included in the klystron design to provide for economically efficient operation. The design includes shunt regulator-type modulating anode power supplies running from the cathode power supply, and switching filament power supplies. Remotely programmable filament voltage allows maximum cathode life to be realized. Klystron operating setpoint and fast klystron protection logic are provided by individual external CEBAF RF control modules. A single cathode power supply powers a block of eight klystrons. The design includes circulators and custom extrusion andmore » hybrid waveguide components which have allowed reduced physical size and lower cost in the design of the WR-650 waveguide transmission system.« less

  20. Star Power: Providing for the Gifted & Talented. Module 5. Enrichment Activities for the Gifted/Talented.

    ERIC Educational Resources Information Center

    Mallis, Jackie; Gilman, Sharlene

    The document presents Module 5, enrichment activities for the gifted/talented, of the Star Power modules developed for school personnel who have an interest in or a need to explore the area of gifted and talented education. It is explained in an introductory section that the modules can be used for independent study, for small group interaction,…

  1. Star Power: Providing for the Gifted & Talented. Module 9. Programs for the Gifted/Talented.

    ERIC Educational Resources Information Center

    Mallis, Jackie; Heinemann, Alison

    The document presents Module 9, programs for the gifted/talented, of the Star Power modules developed for school personnel who have an interest in or a need to explore the area of gifted and talented education. It is explained in an introductory section that the modules can be used for independent study, for small group interaction, or for a large…

  2. Star Power: Providing for the Gifted & Talented. Module 6. Underachievers Among the Gifted/Talented.

    ERIC Educational Resources Information Center

    Heinemann, Alison

    The document presents Module 6, underachievers among the gifted/talented, of the Star Power modules developed for school personnel who have an interest in or a need to explore the area of gifted and talented education. It is explained in an introductory section that the modules can be used for independent study, for small group interaction, or for…

  3. Star Power: Providing for the Gifted & Talented. Module 1. Characteristics of the Gifted/Talented.

    ERIC Educational Resources Information Center

    Heinemann, Alison

    The document presents Module 1, characteristics of the gifted/talented student, of the Star Power modules, developed for school personnel who have an interest in or a need to explore the area of gifted and talented education. It is explained in an introductory section that the modules can be used for independent study, for small group interaction,…

  4. Star Power: Providing for the Gifted & Talented. Module 10. Guidance and Counseling for the Gifted/Talented.

    ERIC Educational Resources Information Center

    Heinemann, Alison; Mallis, Jackie

    The document presents Module 10, guidance and counseling for the gifted/talented, of the Star Power modules developed for school personnel who have an interest in or a need to explore the area of gifted and talented education. It is explained in an introductory section that the module can be used for independent study, for small group interaction,…

  5. High Frequency Alternator, Power Frequency Conversion (HFA-PFC) Technology for Lightweight Tactical Power Generation

    DTIC Science & Technology

    1995-09-22

    Modules 345-800 Amperes/400-3000 Votts - Current and Thermal Ratings of Module * Circuit Currents Element Data Model* Current Thermal Units...IGBTs modules (Powerex) 56 Main components for rectifiers, Diode Bridge modules (Powerex) 65 Heat Sinks (Aavid Engineering) 85 Westinghouse...exciter circuit , are not reliable enough for military applications, and they were replaced by brushless alternators. The brushless AC alternator

  6. Smart sensing to drive real-time loads scheduling algorithm in a domotic architecture

    NASA Astrophysics Data System (ADS)

    Santamaria, Amilcare Francesco; Raimondo, Pierfrancesco; De Rango, Floriano; Vaccaro, Andrea

    2014-05-01

    Nowadays the focus on power consumption represent a very important factor regarding the reduction of power consumption with correlated costs and the environmental sustainability problems. Automatic control load based on power consumption and use cycle represents the optimal solution to costs restraint. The purpose of these systems is to modulate the power request of electricity avoiding an unorganized work of the loads, using intelligent techniques to manage them based on real time scheduling algorithms. The goal is to coordinate a set of electrical loads to optimize energy costs and consumptions based on the stipulated contract terms. The proposed algorithm use two new main notions: priority driven loads and smart scheduling loads. The priority driven loads can be turned off (stand by) according to a priority policy established by the user if the consumption exceed a defined threshold, on the contrary smart scheduling loads are scheduled in a particular way to don't stop their Life Cycle (LC) safeguarding the devices functions or allowing the user to freely use the devices without the risk of exceeding the power threshold. The algorithm, using these two kind of notions and taking into account user requirements, manages loads activation and deactivation allowing the completion their operation cycle without exceeding the consumption threshold in an off-peak time range according to the electricity fare. This kind of logic is inspired by industrial lean manufacturing which focus is to minimize any kind of power waste optimizing the available resources.

  7. [MATCHE: Management Approach to Teaching Consumer and Homemaking Education.] Consumer Approach Strand: Management. Module I-F-3: Environmental Issues and the Consumer.

    ERIC Educational Resources Information Center

    Movey, Jan

    This competency-based preservice home economics teacher education module on environmental issues and the consumer is the third in a set of seven modules on consumer education related to management. (This set is part of a larger series of sixty-seven modules on the Management Approach to Teaching Consumer and Homemaking Education [MATCHE]--see CE…

  8. Measuring modules for the research of compensators of reactive power with voltage stabilization in MATLAB

    NASA Astrophysics Data System (ADS)

    Vlasayevsky, Stanislav; Klimash, Stepan; Klimash, Vladimir

    2017-10-01

    A set of mathematical modules was developed for evaluation the energy performance in the research of electrical systems and complexes in the MatLab. In the electrotechnical library SimPowerSystems of the MatLab software, there are no measuring modules of energy coefficients characterizing the quality of electricity and the energy efficiency of electrical apparatus. Modules are designed to calculate energy coefficients characterizing the quality of electricity (current distortion and voltage distortion) and energy efficiency indicators (power factor and efficiency) are presented. There are described the methods and principles of building the modules. The detailed schemes of modules built on the elements of the Simulink Library are presented, in this connection, these modules are compatible with mathematical models of electrical systems and complexes in the MatLab. Also there are presented the results of the testing of the developed modules and the results of their verification on the schemes that have analytical expressions of energy indicators.

  9. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XXI, MICHIGAN/CLARK TRANSMISSION--COMPLETE POWER TRAIN.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MOSULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF A SPECIFIC POWER TRAIN SYSTEM USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE EXAMINING THE POWER FLOW, UNIT OIL FLOW, AND OIL PRESSURE IN THE CONVERTER AND TRANSMISSION SYSTEM. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL PROGRAM TRAINING FILM "UNDERSTANDING THE…

  10. The Power Transistor: A Module on Heat Transfer. Tech Physics Series.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Cambridge, MA.

    This module is intended to provide an understanding of the principles related to heat transfer. The objectives are designed to enable the learner to select and install a device for measuring the temperature of a power transistor, determine power ratings, measure the transient response for a power level and its final equilibrium temperature. Other…

  11. Ignition in tokamaks with modulated source of auxiliary heating

    NASA Astrophysics Data System (ADS)

    Morozov, D. Kh

    2017-12-01

    It is shown that the ignition may be achieved in tokamaks with the modulated power source. The time-averaged source power may be smaller than the steady-state source power, which is sufficient for the ignition. Nevertheless, the maximal power must be large enough, because the ignition must be achieved within a finite time interval.

  12. Method for reworkable packaging of high speed, low electrical parasitic power electronics modules through gate drive integration

    DOEpatents

    Passmore, Brandon; Cole, Zach; Whitaker, Bret; Barkley, Adam; McNutt, Ty; Lostetter, Alexander

    2016-08-02

    A multichip power module directly connecting the busboard to a printed-circuit board that is attached to the power substrate enabling extremely low loop inductance for extreme environments such as high temperature operation. Wire bond interconnections are taught from the power die directly to the busboard further enabling enable low parasitic interconnections. Integration of on-board high frequency bus capacitors provide extremely low loop inductance. An extreme environment gate driver board allows close physical proximity of gate driver and power stage to reduce overall volume and reduce impedance in the control circuit. Parallel spring-loaded pin gate driver PCB connections allows a reliable and reworkable power module to gate driver interconnections.

  13. A modular neural network scheme applied to fault diagnosis in electric power systems.

    PubMed

    Flores, Agustín; Quiles, Eduardo; García, Emilio; Morant, Francisco; Correcher, Antonio

    2014-01-01

    This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system.

  14. A Modular Neural Network Scheme Applied to Fault Diagnosis in Electric Power Systems

    PubMed Central

    Flores, Agustín; Morant, Francisco

    2014-01-01

    This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system. PMID:25610897

  15. Fuel Cell/Electrochemical Cell Voltage Monitor

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo

    2012-01-01

    A concept has been developed for a new fuel cell individual-cell-voltage monitor that can be directly connected to a multi-cell fuel cell stack for direct substack power provisioning. It can also provide voltage isolation for applications in high-voltage fuel cell stacks. The technology consists of basic modules, each with an 8- to 16-cell input electrical measurement connection port. For each basic module, a power input connection would be provided for direct connection to a sub-stack of fuel cells in series within the larger stack. This power connection would allow for module power to be available in the range of 9-15 volts DC. The relatively low voltage differences that the module would encounter from the input electrical measurement connection port, coupled with the fact that the module's operating power is supplied by the same substack voltage input (and so will be at similar voltage), provides for elimination of high-commonmode voltage issues within each module. Within each module, there would be options for analog-to-digital conversion and data transfer schemes. Each module would also include a data-output/communication port. Each of these ports would be required to be either non-electrical (e.g., optically isolated) or electrically isolated. This is necessary to account for the fact that the plurality of modules attached to the stack will normally be at a range of voltages approaching the full range of the fuel cell stack operating voltages. A communications/ data bus could interface with the several basic modules. Options have been identified for command inputs from the spacecraft vehicle controller, and for output-status/data feeds to the vehicle.

  16. High-Temperature High-Power Packaging Techniques for HEV Traction Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barlow, F.D.; Elshabini, A.

    A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products [1]. To date, many consumers find the adoption of these technologies problematic based on a financial analysis of the initial cost versus the savings available from reduced fuel consumption. Therefore, one of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Part of this cost reduction must come through optimization of the power electronics requiredmore » by these vehicles. In addition, the efficiency of the systems must be optimized in order to provide the greatest range possible. For some drivers, any reduction in the range associated with a potential HEV or PHEV solution in comparison to a gasoline powered vehicle represents a significant barrier to adoption and the efficiency of the power electronics plays an important role in this range. Likewise, high efficiencies are also important since lost power further complicates the thermal management of these systems. Reliability is also an important concern since most drivers have a high level of comfort with gasoline powered vehicles and are somewhat reluctant to switch to a less proven technology. Reliability problems in the power electronics or associated components could not only cause a high warranty cost to the manufacturer, but may also taint these technologies in the consumer's eyes. A larger vehicle offering in HEVs is another important consideration from a power electronics point of view. A larger vehicle will need more horsepower, or a larger rated drive. In some ways this will be more difficult to implement from a cost and size point of view. Both the packaging of these modules and the thermal management of these systems at competitive price points create significant challenges. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE) [2]. This change would reduce the complexity of the cooling system which currently relies on two loops to a single loop [3]. However, the current nominal coolant temperature entering these inverters is 65 C [3], whereas a normal ICE coolant temperature would be much higher at approximately 100 C. This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. With this change in mind, significant progress has been made on the use of SiC devices for inverters that can withstand much higher junction temperatures than traditional Si based inverters [4,5,6]. However, a key problem which the single coolant loop and high temperature devices is the effective packaging of these devices and related components into a high temperature inverter. The elevated junction temperatures that exist in these modules are not compatible with reliable inverters based on existing packaging technology. This report seeks to provide a literature survey of high temperature packaging and to highlight the issues related to the implementation of high temperature power electronic modules for HEV and PHEV applications. For purposes of discussion, it will be assumed in this report that 200 C is the targeted maximum junction temperature.« less

  17. Driver Circuit For High-Power MOSFET's

    NASA Technical Reports Server (NTRS)

    Letzer, Kevin A.

    1991-01-01

    Driver circuit generates rapid-voltage-transition pulses needed to switch high-power metal oxide/semiconductor field-effect transistor (MOSFET) modules rapidly between full "on" and full "off". Rapid switching reduces time of overlap between appreciable current through and appreciable voltage across such modules, thereby increasing power efficiency.

  18. Next-generation fiber lasers enabled by high-performance components

    NASA Astrophysics Data System (ADS)

    Kliner, D. A. V.; Victor, B.; Rivera, C.; Fanning, G.; Balsley, D.; Farrow, R. L.; Kennedy, K.; Hampton, S.; Hawke, R.; Soukup, E.; Reynolds, M.; Hodges, A.; Emery, J.; Brown, A.; Almonte, K.; Nelson, M.; Foley, B.; Dawson, D.; Hemenway, D. M.; Urbanek, W.; DeVito, M.; Bao, L.; Koponen, J.; Gross, K.

    2018-02-01

    Next-generation industrial fiber lasers enable challenging applications that cannot be addressed with legacy fiber lasers. Key features of next-generation fiber lasers include robust back-reflection protection, high power stability, wide power tunability, high-speed modulation and waveform generation, and facile field serviceability. These capabilities are enabled by high-performance components, particularly pump diodes and optical fibers, and by advanced fiber laser designs. We summarize the performance and reliability of nLIGHT diodes, fibers, and next-generation industrial fiber lasers at power levels of 500 W - 8 kW. We show back-reflection studies with up to 1 kW of back-reflected power, power-stability measurements in cw and modulated operation exhibiting sub-1% stability over a 5 - 100% power range, and high-speed modulation (100 kHz) and waveform generation with a bandwidth 20x higher than standard fiber lasers. We show results from representative applications, including cutting and welding of highly reflective metals (Cu and Al) for production of Li-ion battery modules and processing of carbon fiber reinforced polymers.

  19. Motor modules during adaptation to walking in a powered ankle exoskeleton.

    PubMed

    Jacobs, Daniel A; Koller, Jeffrey R; Steele, Katherine M; Ferris, Daniel P

    2018-01-03

    Modules of muscle recruitment can be extracted from electromyography (EMG) during motions, such as walking, running, and swimming, to identify key features of muscle coordination. These features may provide insight into gait adaptation as a result of powered assistance. The aim of this study was to investigate the changes (module size, module timing and weighting patterns) of surface EMG data during assisted and unassisted walking in an powered, myoelectric, ankle-foot orthosis (ankle exoskeleton). Eight healthy subjects wore bilateral ankle exoskeletons and walked at 1.2 m/s on a treadmill. In three training sessions, subjects walked for 40 min in two conditions: unpowered (10 min) and powered (30 min). During each session, we extracted modules of muscle recruitment via nonnegative matrix factorization (NNMF) from the surface EMG signals of ten muscles in the lower limb. We evaluated reconstruction quality for each muscle individually using R 2 and normalized root mean squared error (NRMSE). We hypothesized that the number of modules needed to reconstruct muscle data would be the same between conditions and that there would be greater similarity in module timings than weightings. Across subjects, we found that six modules were sufficient to reconstruct the muscle data for both conditions, suggesting that the number of modules was preserved. The similarity of module timings and weightings between conditions was greater then random chance, indicating that muscle coordination was also preserved. Motor adaptation during walking in the exoskeleton was dominated by changes in the module timings rather than module weightings. The segment number and the session number were significant fixed effects in a linear mixed-effect model for the increase in R 2 with time. Our results show that subjects walking in a exoskeleton preserved the number of modules and the coordination of muscles within the modules across conditions. Training (motor adaptation within the session and motor skill consolidation across sessions) led to improved consistency of the muscle patterns. Subjects adapted primarily by changing the timing of their muscle patterns rather than the weightings of muscles in the modules. The results of this study give new insight into strategies for muscle recruitment during adaptation to a powered ankle exoskeleton.

  20. Evaluation of cleaners for photovoltaic modules exposed in an outdoor environment

    NASA Technical Reports Server (NTRS)

    Knapp, W. D.

    1979-01-01

    Power recovery of silicone encapsulated and glass covered photovoltaic modules, exposed for two years to a suburban environment, was measured after washing with a variety of cleaners including detergents, abrasive soap, and hydrocarbon solvents. Silicone encapsulated modules in operating environments may experience significant power losses or require extensive periodic cleaning. Glass front-faced modules in similar situations are much less affected. Organic hydrocarbon solvents or abrasives were found to be about five times more effective than mild detergents in cleaning encapsulated modules.

  1. Combinatorial FSK modulation for power-efficient high-rate communications

    NASA Technical Reports Server (NTRS)

    Wagner, Paul K.; Budinger, James M.; Vanderaar, Mark J.

    1991-01-01

    Deep-space and satellite communications systems must be capable of conveying high-rate data accurately with low transmitter power, often through dispersive channels. A class of noncoherent Combinatorial Frequency Shift Keying (CFSK) modulation schemes is investigated which address these needs. The bit error rate performance of this class of modulation formats is analyzed and compared to the more traditional modulation types. Candidate modulator, demodulator, and digital signal processing (DSP) hardware structures are examined in detail. System-level issues are also discussed.

  2. Very-low-power and footprint integrated photonic modulators and switches for ICT

    NASA Astrophysics Data System (ADS)

    Thylén, Lars; Holmström, Petter; Wosinski, Lech

    2013-03-01

    The current development in photonics for communications and interconnects pose increasing requirements on reduction of footprint, power dissipation and cost, as well as increased bandwidth. Integrated nanophotonics has been viewed as one solution to this, capitalizing on development in nanotechnology as such as well as on increased insights into light matter interaction on the nanoscale. The latter can be exemplified by plasmonics and low-dimensional semiconductors such as quantum dots (QDs). In this scenario the development of better electrooptic materials is also of great importance, the electrooptic polymers being an example, since they potentially offer improved properties for optical phase modulators in terms of power and probably cost and general flexibility. Phase modulators are essential for e.g. the rapidly developing advanced modulation formats for telecom, since phase modulation basically can generate any type of modulation. The electrooptic polymers, e.g. in combination with plasmonics nanoparticle array waveguides or nanostructured hybrid plasmonic media can theoretically give extremely compact and low power dissipation modulators, still to be demonstrated. The low-dimensional semiconductors, e.g. in the shape of QDs, can be employed for modulation or switching functions, offering possibilities in the future for scaling to 2 or 3 dimensions for advanced switching functions. In both the plasmonics and QD cases, nanosizing and low power dissipation are generally due to near-field interactions, albeit being of different physical origin in the two cases. A comparison of all-optical and electronically controlled switching is given.

  3. Design of 5 V DC to 20 V DC switching regulator for power supply module

    NASA Astrophysics Data System (ADS)

    Azmi, N. A.; Murad, S. A. Z.; Harun, A.; Ismail, R. C.; Isa, M. N. M.; Zulkifeli, M. A.

    2017-09-01

    This paper presents the design of 5 V to 20 V DC switching regulator for power supply module. A voltage multiplier which consists of cascaded diode-capacitor combination is used in order to obtain a high voltage power supply. Due to power loss that has occurred in a stray of component arrangement, the proposed design employs a pulse width modulation (PWM) controller circuit with an inclusion of a capacitor, diode, and inductor components. The input supply of 5 V DC to LT1618 controller circuit has produced 20.35 V based from simulation results. Meanwhile, the measurement results of 19.36 V are obtained and the feedback signal is required for the purpose of stabilizing the output. The proposed design can reduce the components as well as the PCB size, thus minimizing the overall cost of making a switching regulator for power supply module.

  4. Solar dynamic power for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Labus, Thomas L.; Secunde, Richard R.; Lovely, Ronald G.

    1989-01-01

    The Space Station Freedom Program is presently planned to consist of two phases. At the completion of Phase 1, Freedom's manned base will consist of a transverse boom with attached manned modules and 75 kW of available electric power supplied by photovoltaic (PV) power sources. In Phase 2, electric power available to the manned base will be increased to 125 kW by the addition of two solar dynamic (SD) power modules, one at each end of the transverse boom. Power for manned base growth beyond Phase 2 will be supplied by additional SD modules. Studies show that SD power for the growth eras will result in life cycle cost savings of $3 to $4 billion when compared to PV-supplied power. In the SD power modules for Space Station Freedom, an offset parabolic concentrator collects and focuses solar energy into a heat receiver. To allow full power operation over the entire orbit, the receiver includes integral thermal energy storage by means of the heat of fusion of a salt mixture. Thermal energy is removed from the receiver and converted to electrical energy by a power conversion unit (PCU) which includes a closed brayton cycle (CBC) heat engine and an alternator. The receiver/PCU/radiator combination will be completely assembled and charged with gas and cooling fluid on earth before launch to orbit. The concentrator subassemblies will be pre-aligned and stowed in the orbiter bay before launch. On orbit, the receiver/PCU/radiator assembly will be installed as a unit. The pre-aligned concentrator panels will then be latched together and the total concentrator attached to the receiver/PCU/radiator by the astronauts. After final electric connections are made and checkout is complete, the SD power module will be ready for operation.

  5. Solar dynamic power for space station freedom

    NASA Technical Reports Server (NTRS)

    Labus, Thomas L.; Secunde, Richard R.; Lovely, Ronald G.

    1989-01-01

    The Space Station Freedom Program is presently planned to consist of two phases. At the completion of Phase 1, Freedom's manned base will consist of a transverse boom with attached manned modules and 75 kW of available electric power supplied by photovoltaic (PV) power sources. In Phase 2, electric power available to the manned base will be increased to 125 kW by the addition of two solar dynamic (SD) power modules, one at each end of the transverse boom. Power for manned base growth beyond Phase 2 will be supplied by additional SD modules. Studies show that SD power for the growth eras will result in life cycle cost savings of $3 to $4 billion when compared to PV-supplied power. In the SD power modules for Space Station Freedom, an offset parabolic concentrator collects and focuses solar energy into a heat receiver. To allow full power operation over the entire orbit, the receiver includes integral thermal energy storage by means of the heat of fusion of a salt mixture. Thermal energy is removed from the receiver and converted to electrical energy by a power conversion unit (PCU) which includes a closed brayton cycle (CBC) heat engine and an alternator. The receiver/PCU/radiator combination will be completely assembled and charged with gas and cooling fluid on Earth before launch to orbit. The concentrator subassemblies will be pre-aligned and stowed in the orbiter bay before launch. On orbit, the receiver/PCU/radiator assembly will be installed as a unit. The pre-aligned concentrator panels will then be latched together and the total concentrator attached to the receiver/PCU/radiator by the astronauts. After final electric connections are made and checkout is complete, the SD power module will be ready for operation.

  6. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    DTIC Science & Technology

    2010-09-01

    Figure 6.10 TE Module with Microtherm Added Around & Between Legs ............................................................... 57  Figure 6.11 Short... Microtherm ® insulation, 2.6 (W) of heater power was required to maintain a temperature of 400 ºC. This is an indication of the losses in the system...side of the module to the cold plate.  Pour in Microtherm to insulate the module.  Make sure to clean all insulation from the hot side electrodes

  7. The Tucson Electric Power Solar Test Yard

    NASA Astrophysics Data System (ADS)

    Lonij, Vincent; Orsburn, Sean; Salhab, Anas; Kopp, Emily; Brooks, Adria; Jayadevan, Vijai; Greenberg, James; St. Germaine, Michael; Allen, Nate; Jones, Sarah; Hardesty, Garrett; Cronin, Alex

    2011-10-01

    In collaboration with Tucson Electric Power we studied the performance of twenty different grid-tied photovoltaic systems, consisting of over 600 PV modules in all. We added data acquisition hardware to monitor DC power from the modules, AC power from the inverters, PV module temperatures, and meteorological data such as the irradiance incident on the PV systems. We report measurements of PV system yields and efficiencies over periods of minutes, days, and years. We also report temperature and irradiance coefficients of efficiency and measurements of long-term degradation. We also use our data to validate models that predict the output from PV systems.

  8. Power supply circuit for an ion engine sequentially operated power inverters

    NASA Technical Reports Server (NTRS)

    Cardwell, Jr., Gilbert I. (Inventor)

    2000-01-01

    A power supply circuit for an ion engine suitable for a spacecraft has a voltage bus having input line and a return line. The power supply circuit includes a pulse width modulation circuit. A plurality of bridge inverter circuits is coupled to the bus and the pulse width modulation circuit. The pulse width modulation circuit generates operating signals having a variable duty cycle. Each bridge inverter has a primary winding and a secondary winding. Each secondary winding is coupled to a rectifier bridge. Each secondary winding is coupled in series with another of the plurality of rectifier bridges.

  9. Performance degradation of photovoltaic modules at different sites

    NASA Astrophysics Data System (ADS)

    Arab, A. Hadj; Mahammed, I. Hadj; Ould Amrouche, S.; Taghezouit, B.; Yassaa, N.

    2018-05-01

    In this work are presented results of electrical performance measurements of 120 crystalline silicon PV modules following long-term outdoor measurements. A set of 90 PV modules represent the first grid-connected photovoltaic (PV) system in Algeria, installed at the level of the “Centre de Développement des Energies Renouvelables” (CDER) site (Mediterranean coast), Bouzareah. The other 30 PV modules were undertaken in an arid area of the desert region of Ghardaïa site, about 600 km south of Algiers, with measurements collected from different applications. Following different characterization tests, we noticed that the all tested PV modules kept their power-generating rate except a slight reduction. Therefore, a mathematical model has been used to carry out PV module testing at different irradiance and temperature levels. Hence, different PV module parameters have been calculated from the recorded values of the open-circuit voltage, the short-circuit current, the voltage and current at maximum power point. The electrical measurements have indicated different degradations of current-voltage parameters. All the PV modules stated a decrease in the nominal power, which is variable from one module to another.

  10. Analysis of High Power IGBT Short Circuit Failures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pappas, G.

    2005-02-11

    The Next Linear Collider (NLC) accelerator proposal at SLAC requires a highly efficient and reliable, low cost, pulsed-power modulator to drive the klystrons. A solid-state induction modulator has been developed at SLAC to power the klystrons; this modulator uses commercial high voltage and high current Insulated Gate Bipolar Transistor (IGBT) modules. Testing of these IGBT modules under pulsed conditions was very successful; however, the IGBTs failed when tests were performed into a low inductance short circuit. The internal electrical connections of a commercial IGBT module have been analyzed to extract self and mutual partial inductances for the main current pathsmore » as well as for the gate structure. The IGBT module, together with the partial inductances, has been modeled using PSpice. Predictions for electrical paths that carry the highest current correlate with the sites of failed die under short circuit tests. A similar analysis has been carried out for a SLAC proposal for an IGBT module layout. This paper discusses the mathematical model of the IGBT module geometry and presents simulation results.« less

  11. [MATCHE: Management Approach to Teaching Consumer and Homemaking Education.] Economically Depressed Areas Strand: Management. Module III-F-3: Marketing Practices in Relation to Low Income Clientele.

    ERIC Educational Resources Information Center

    California State Univ., Fresno. Dept. of Home Economics.

    This competency-based preservice home economics teacher education module on marketing practices in relation to low income clientele is the third in a set of three modules on management in economically depressed areas (EDAs). (This set is part of a larger set of sixty-seven modules on the Management Approach to Teaching Consumer and Homemaking…

  12. Star Power: Providing for the Gifted & Talented. Module 3. Applications of Theories of Intelligence to the Gifted/Talented.

    ERIC Educational Resources Information Center

    Heinemann, Alison; Mallis, Jackie

    The document presents Module 3, applications of theories of intelligence to the gifted/talented, of the Star Power modules developed for school personnel who have an interest in or a need to explore the area of gifted and talented education. It is explained in an introductory section that the modules can be used for independent study, for small…

  13. Star Power: Providing for the Gifted & Talented. Module 4. Applications of Theories of Creativity to the Gifted/Talented.

    ERIC Educational Resources Information Center

    Heinemann, Alison; Mallis, Jackie

    The document presents Module 4, applications of theories of creativity to the gifted/talented, of the Star Power modules developed for school personnel who have an interest in or a need to explore the area of gifted and talented education. It is explained in an introductory section that the modules can be used for independent study, for small…

  14. Modular high-voltage bias generator powered by dual-looped self-adaptive wireless power transmission.

    PubMed

    Xie, Kai; Huang, An-Feng; Li, Xiao-Ping; Guo, Shi-Zhong; Zhang, Han-Lu

    2015-04-01

    We proposed a modular high-voltage (HV) bias generator powered by a novel transmitter-sharing inductive coupled wireless power transmission technology, aimed to extend the generator's flexibility and configurability. To solve the problems caused through an uncertain number of modules, a dual-looped self-adaptive control method is proposed that is capable of tracking resonance frequency while maintaining a relatively stable induction voltage for each HV module. The method combines a phase-locked loop and a current feedback loop, which ensures an accurate resonance state and a relatively constant boost ratio for each module, simplifying the architecture of the boost stage and improving the total efficiency. The prototype was built and tested. The input voltage drop of each module is less than 14% if the module number varies from 3 to 10; resonance tracking is completed within 60 ms. The efficiency of the coupling structure reaches up to 95%, whereas the total efficiency approaches 73% for a rated output. Furthermore, this technology can be used in various multi-load wireless power supply applications.

  15. Low power generation of equalized broadband CW supercontinua using a novel technique incorporating modulation instability of line broadened pump

    NASA Astrophysics Data System (ADS)

    Prakash, Roopa; Choudhury, Vishal; Arun, S.; Supradeepa, V. R.

    2018-02-01

    Continuous-wave(CW) supercontinuum sources find applications in various domains such as imaging, spectroscopy, test and measurement. They are generated by pumping an optical fiber with a CW laser in the anomalous-dispersion region close to its zero-dispersion wavelength. Modulation instability(MI) sidebands are created, and further broadened and equalized by additional nonlinear processes generating the supercontinuum. This necessitates high optical powers and at lower powers, only MI sidebands can be seen without the formation of the supercontinuum. Obtaining a supercontinuum at low, easily manageable optical powers is attractive for many applications, but current techniques cannot achieve this. In this work, we propose a new mechanism for low power supercontinuum generation utilizing the modified MI gain spectrum for a line-broadened, decorrelated pump. A novel two-stage generation mechanism is demonstrated, where the first stage constituting standard telecom fiber slightly broadens the input pump linewidth. However, this process in the presence of dispersion, acts to de-correlate the different spectral components of the pump signal. When this is sent through highly nonlinear fiber near its zero-dispersion wavelength, the shape of the MI gain spectrum is modified, and this process naturally results in the generation of a broadband, equalized supercontinuum source at much lower powers than possible using conventional single stage spectral broadening. Here, we demonstrate a 0.5W supercontinuum source pumped using a 4W Erbium-Ytterbium co-doped fiber laser with a bandwidth spanning from 1300nm to 2000nm. We also demonstrate an interesting behaviour of this technique of relative insensitivity to the pump wavelength vis-a-vis zero-dispersion wavelength of the fiber.

  16. Advances in 7xx-nm fiber-coupled modules with application to Tm fiber laser pumping and DPAL (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Patterson, Steven G.; Guiney, Tina; Stapleton, Dean; Braker, Joseph; Alegria, Kim; Irwin, David A.; Ebert, Christopher

    2017-02-01

    DILAS has leveraged its industry-leading work in manufacturing low SWaP fiber-coupled modules extending the wavelength range to 793nm for Tm fiber laser pumping. Ideal for medical, industrial and military applications, modules spanning from single emitter-based 9W to TBar-based 200W of 793nm pump power will be discussed. The highlight is a lightweight module capable of <200W of 793nm pump power out of a package weighing < 400 grams. In addition, other modules spanning from single emitter-based 9W to TBar-based 200W of 793nm pump power will be presented. In addition, advances in DPAL modules, emitting at the technologically important wavelengths near 766nm and 780nm, will be detailed. Highlights include a fully microprocessor controlled fiber-coupled module that produces greater than 400W from a 600 micron core fiber and a line width of only 56.3pm. The micro-processor permits the automated center wavelength and line width tuning of the output over a range of output powers while retaining excellent line center and line width stability over time.

  17. New hybrid reverse differential pulse position width modulation scheme for wireless optical communication

    NASA Astrophysics Data System (ADS)

    Liao, Renbo; Liu, Hongzhan; Qiao, Yaojun

    2014-05-01

    In order to improve the power efficiency and reduce the packet error rate of reverse differential pulse position modulation (RDPPM) for wireless optical communication (WOC), a hybrid reverse differential pulse position width modulation (RDPPWM) scheme is proposed, based on RDPPM and reverse pulse width modulation. Subsequently, the symbol structure of RDPPWM is briefly analyzed, and its performance is compared with that of other modulation schemes in terms of average transmitted power, bandwidth requirement, and packet error rate over ideal additive white Gaussian noise (AWGN) channels. Based on the given model, the simulation results show that the proposed modulation scheme has the advantages of improving the power efficiency and reducing the bandwidth requirement. Moreover, in terms of error probability performance, RDPPWM can achieve a much lower packet error rate than that of RDPPM. For example, at the same received signal power of -28 dBm, the packet error rate of RDPPWM can decrease to 2.6×10-12, while that of RDPPM is 2.2×10. Furthermore, RDPPWM does not need symbol synchronization at the receiving end. These considerations make RDPPWM a favorable candidate to select as the modulation scheme in the WOC systems.

  18. Purely wavelength- and amplitude-modulated quartz-enhanced photoacoustic spectroscopy.

    PubMed

    Patimisco, Pietro; Sampaolo, Angelo; Bidaux, Yves; Bismuto, Alfredo; Scott, Marshall; Jiang, James; Muller, Antoine; Faist, Jerome; Tittel, Frank K; Spagnolo, Vincenzo

    2016-11-14

    We report here on a quartz-enhanced photoacoustic (QEPAS) sensor employing a quantum cascade laser (QCL) structure capable of operating in a pure amplitude or wavelength modulation configuration. The QCL structure is composed of three electrically independent sections: Gain, Phase (PS) and Master Oscillator (MO). Selective current pumping of these three sections allows obtaining laser wavelength tuning without changes in the optical power, and power modulation without emission wavelength shifts. A pure QEPAS amplitude modulation condition is obtained by modulating the PS current, while pure wavelength modulation is achieved by modulating simultaneously the MO and PS QCL sections and slowly scanning the DC current level injected in the PS section.

  19. Development and performance of pulse-width-modulated static inverter and converter modules

    NASA Technical Reports Server (NTRS)

    Pittman, P. F.; Gourash, F.; Birchenough, A. G.; Pittman, P. F.; Ravas, R. J.; Hall, W. G.

    1971-01-01

    Pulse-width-modulated inverter and converter modules are being developed for modular aerospace electrical power systems. The modules, rate 2.5 kilowatts per module and 10-minute - 150-percent overload, operate from 56 volts dc. The converter module provides two output voltages: a nominal link voltage of 200 volts dc when used with the inverter, and 150 volts dc to a load bus when used separately. The inverter module output is 400-hertz, sinusoidal, three-phase, 120/208 volts. Tests of breadboard models with standard parts and integrated circuits show rated power efficiencies of 71.4 and 85.1 percent and voltage regulation of 5 and 3.1 percent for inverter and converter modules, respectively. Sine-wave output distortion is 0.74 percent.

  20. Solar power roof shingle

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G.

    1975-01-01

    Silicon solar cell module provides both all-weather protection and electrical power. Module consists of array of circular silicon solar cells bonded to fiberglass substrate roof shingle with fluorinated ethylene propylene encapsulant.

  1. An experimental investigation of the power spectrum of phase modulation induced on a satellite radio signal by the ionosphere

    NASA Technical Reports Server (NTRS)

    Moser, D. T.

    1972-01-01

    The power spectrum of phase modulation imposed upon satellite radio signals by the inhomogeneous F-region of the ionosphere (100 - 500 km) was studied. Tapes of the S-66 Beacon B Satellite recorded during the period 1964 - 1966 were processed to yield or record the frequency of modulation induced on the signals by ionospheric dispersion. This modulation is produced from the sweeping across the receiving station as the satellite transits of the two dimensional spatial phase pattern are produced on the ground. From this a power spectrum of structure sizes comprising the diffracting mechanism was determined using digital techniques. Fresnel oscillations were observed and analyzed along with some comments on the statistical stationarity of the shape of the power spectrum observed.

  2. System for transmitting low frequency analog signals over AC power lines

    DOEpatents

    Baker, Steven P.; Durall, Robert L.; Haynes, Howard D.

    1989-01-01

    A system for transmitting low frequency analog signals over AC power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an AC power line. The modulation signal frequency range in selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the AC power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal.

  3. System for transmitting low frequency analog signals over AC power lines

    DOEpatents

    Baker, Steven P.; Durall, Robert L.; Haynes, Howard D.

    1989-09-05

    A system for transmitting low frequency analog signals over AC power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an AC power line. The modulation signal frequency range in selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the AC power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal.

  4. A system for tranmitting low frequency analog signals over ac power lines

    DOEpatents

    Baker, S.P.; Durall, R.L.; Haynes, H.D.

    1987-07-30

    A system for transmitting low frequency analog signals over ac power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an ac power line. The modulation signal frequency range is selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the ac power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal. 4 figs.

  5. 175 fs-long pulses from a high-power single-mode Er-doped fiber laser at 1550 nm

    NASA Astrophysics Data System (ADS)

    Elahi, Parviz; Kalaycıoğlu, Hamit; Li, Huihui; Akçaalan, Önder; Ilday, F. Ömer

    2017-11-01

    Development of Er-doped ultrafast lasers have lagged behind the corresponding developments in Yb- and Tm-doped lasers, in particular, fiber lasers. Various applications benefit from operation at a central wavelength of 1.5 μm and its second harmonic, including emerging applications such as 3D processing of silicon and 3D printing based on two-photon polymerization. We report a simple, robust fiber master oscillator power amplifier operating at 1.55 μm, implementing chirp pulse amplification using single-mode fibers for diffraction-limited beam quality. The laser generates 80 nJ pulses at a repetition rate of 43 MHz, corresponding to an average power of 3.5 W, which can be compressed down to 175 fs. The generation of short pulses was achieved using a design which is guided by numerical simulations of pulse propagation and amplification and manages to overturn gain narrowing with self-phase modulation, without invoking excessive Raman scattering processes. The seed source for the two-stage amplifier is a dispersion-managed passively mode-locked oscillator, which generates a ∼40 nm-wide spectrum and 1.7-ps linearly chirped pulses.

  6. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    ERIC Educational Resources Information Center

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  7. Cascaded Converters for Integration and Management of Grid Level Energy Storage Systems

    NASA Astrophysics Data System (ADS)

    Alaas, Zuhair

    This research work proposes two cascaded multilevel inverter structures for BESS. The gating and switching control of switching devices in both inverter typologies are done by using a phase-shifted PWM scheme. The first proposed isolated multilevel inverter is made up of three-phase six-switch inverter blocks with a reduced number of power components compared with traditional isolated CHB. The suggested isolated converter has only one battery string for three-phase system that can be used for high voltage and high power applications such as grid connected BESS and alternative energy systems. The isolated inverter enables dq frame based simple control and eliminates the issues of single-phase pulsating power, which can cause detrimental impacts on certain dc sources. Simulation studies have been carried out to compare the proposed isolated multi-level inverter with an H-bridge cascaded transformer inverter. The simulation results verified the performance of the isolated inverter. The second proposed topology is a Hierarchal Cascaded Multilevel Converter (HCMC) with phase to phase SOC balancing capability which also for high voltage and high power battery energy storage systems. The HCMC has a hybrid structure of half-bridge converters and H-bridge inverters and the voltage can be hierarchically cascaded to reach the desired value at the half-bridge and the H-bridge levels. The uniform SOC battery management is achieved by controlling the half-bridge converters that are connected to individual battery modules/cells. Simulation studies and experimental results have been carried on a large scale battery system under different operating conditions to verify the effectiveness of the proposed inverters. Moreover, this dissertation presents a new three-phase SOC equalizing circuit, called six-switch energy-level balancing circuit (SSBC), which can be used to realize uniform SOC operation for full utilization of the battery capacity in proposed HCMC or any CMI inverter while keeping balanced three-phase operation. A sinusoidal PWM modulation technique is used to control power transferring between phases. Simulation results have been carried out to verify the performance of the proposed SSBC circuit of uniform three-phase SOC balancing.

  8. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XXII, MICHIGAN/CLARK TRANSMISSION--CONVERTER/TRANSMISSION.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP A DETAILED UNDERSTANDING OF A SPECIFIC POWER CONVERTER AND TRANSMISSION USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE A CLOSER LOOK AT THE CONVERTER, CONVERTER ASSEMBLY AND INSTALLATION, TRANSMISSION FUNCTION, AND TRANSMISSION SHIFTING. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL PROGRAMED…

  9. Integrated Thermal Modules for Cooling Silicon and Silicon Carbide Power Modules

    DTIC Science & Technology

    2007-06-11

    analyses, bench tests, and motor tests comprise the program. The ITMs, in place of standard heatsinks, use a highly conductive pyrolytic graphite to...passively cool power modules. Initial results show that even simple ITMs can lower chip temperatures by 20 deg. C and 10 deg. C with engine oil and

  10. Steering and Suspension Systems. Auto Mechanics Curriculum Guide. Module 5. Instructor's Guide.

    ERIC Educational Resources Information Center

    Rains, Larry

    This module is the fifth of nine modules in the competency-based Missouri Auto Mechanics Curriculum Guide. Seventeen units cover: steering system design; diagnosing steering systems problems; inspecting and replacing steering linkage components; manual and power steering gear service; manual and power rack and pinion steering gear service; power…

  11. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    NASA Astrophysics Data System (ADS)

    Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman

    2016-02-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.

  12. Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module

    DOEpatents

    Pitel, Ira J.

    1987-02-03

    The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage.

  13. Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module

    DOEpatents

    Pitel, I.J.

    1987-02-03

    The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage. 19 figs.

  14. Damage in Monolithic Thin-Film Photovoltaic Modules Due to Partial Shade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, Timothy J.; Mansfield, Lorelle; Repins, Ingrid

    2016-09-01

    The typical configuration of monolithic thin-film photovoltaic modules makes it possible for partial shade to place one or more cells in such a module in reverse bias. Reverse bias operation leads to high voltage, current density, and power density conditions, which can act as driving forces for failure. We showed that a brief outdoor shadow event can cause a 7% permanent loss in power. We applied an indoor partial shade durability test that moves beyond the standard hot spot endurance test by using more realistic mask and bias conditions and by carefully quantifying the permanent change in performance due tomore » the stress. With the addition of a pass criterion based on change in maximum power, this procedure will soon be proposed as a part of the module-type qualification test. All six commercial copper indium gallium diselenide and cadmium telluride modules we tested experienced permanent damage due to the indoor partial shade test, ranging from 4% to 14% loss in maximum power. We conclude by summarizing ways to mitigate partial shade stress at the cell, module, and system levels.« less

  15. Investigation of the thermal and optical performance of a spatial light modulator with high average power picosecond laser exposure for materials processing applications

    NASA Astrophysics Data System (ADS)

    Zhu, G.; Whitehead, D.; Perrie, W.; Allegre, O. J.; Olle, V.; Li, Q.; Tang, Y.; Dawson, K.; Jin, Y.; Edwardson, S. P.; Li, L.; Dearden, G.

    2018-03-01

    Spatial light modulators (SLMs) addressed with computer generated holograms (CGHs) can create structured light fields on demand when an incident laser beam is diffracted by a phase CGH. The power handling limitations of these devices based on a liquid crystal layer has always been of some concern. With careful engineering of chip thermal management, we report the detailed optical phase and temperature response of a liquid cooled SLM exposed to picosecond laser powers up to 〈P〉  =  220 W at 1064 nm. This information is critical for determining device performance at high laser powers. SLM chip temperature rose linearly with incident laser exposure, increasing by only 5 °C at 〈P〉  =  220 W incident power, measured with a thermal imaging camera. Thermal response time with continuous exposure was 1-2 s. The optical phase response with incident power approaches 2π radians with average power up to 〈P〉  =  130 W, hence the operational limit, while above this power, liquid crystal thickness variations limit phase response to just over π radians. Modelling of the thermal and phase response with exposure is also presented, supporting experimental observations well. These remarkable performance characteristics show that liquid crystal based SLM technology is highly robust when efficiently cooled. High speed, multi-beam plasmonic surface micro-structuring at a rate R  =  8 cm2 s-1 is achieved on polished metal surfaces at 〈P〉  =  25 W exposure while diffractive, multi-beam surface ablation with average power 〈P〉  =100 W on stainless steel is demonstrated with ablation rate of ~4 mm3 min-1. However, above 130 W, first order diffraction efficiency drops significantly in accord with the observed operational limit. Continuous exposure for a period of 45 min at a laser power of 〈P〉  =  160 W did not result in any detectable drop in diffraction efficiency, confirmed afterwards by the efficient parallel beam processing at 〈P〉  =  100 W. Hence, no permanent changes in SLM phase response characteristics have been detected. This research work will help to accelerate the use of liquid crystal spatial light modulators for both scientific and ultra high throughput laser-materials micro-structuring applications.

  16. NASA Tech Briefs, February 2007

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Topics covered include: Calibration Test Set for a Phase-Comparison Digital Tracker; Wireless Acoustic Measurement System; Spiral Orbit Tribometer; Arrays of Miniature Microphones for Aeroacoustic Testing; Predicting Rocket or Jet Noise in Real Time; Computational Workbench for Multibody Dynamics; High-Power, High-Efficiency Ka-Band Space Traveling-Wave Tube; Gratings and Random Reflectors for Near-Infrared PIN Diodes; Optically Transparent Split-Ring Antennas for 1 to 10 GHz; Ice-Penetrating Robot for Scientific Exploration; Power-Amplifier Module for 145 to 165 GHz; Aerial Videography From Locally Launched Rockets; SiC Multi-Chip Power Modules as Power-System Building Blocks; Automated Design of Restraint Layer of an Inflatable Vessel; TMS for Instantiating a Knowledge Base With Incomplete Data; Simulating Flights of Future Launch Vehicles and Spacecraft; Control Code for Bearingless Switched- Reluctance Motor; Machine Aided Indexing and the NASA Thesaurus; Arbitrating Control of Control and Display Units; Web-Based Software for Managing Research; Driver Code for Adaptive Optics; Ceramic Paste for Patching High-Temperature Insulation; Fabrication of Polyimide-Matrix/Carbon and Boron-Fiber Tape; Protective Skins for Aerogel Monoliths; Code Assesses Risks Posed by Meteoroids and Orbital Debris; Asymmetric Bulkheads for Cylindrical Pressure Vessels; Self-Regulating Water-Separator System for Fuel Cells; Self-Advancing Step-Tap Drills; Array of Bolometers for Submillimeter- Wavelength Operation; Delta-Doped CCDs as Detector Arrays in Mass Spectrometers; Arrays of Bundles of Carbon Nanotubes as Field Emitters; Staggering Inflation To Stabilize Attitude of a Solar Sail; and Bare Conductive Tether for Decelerating a Spacecraft.

  17. DSP-Based Hands-On Laboratory Experiments for Photovoltaic Power Systems

    ERIC Educational Resources Information Center

    Muoka, Polycarp I.; Haque, Md. Enamul; Gargoom, Ameen; Negnetvitsky, Michael

    2015-01-01

    This paper presents a new photovoltaic (PV) power systems laboratory module that was developed to experimentally reinforce students' understanding of design principles, operation, and control of photovoltaic power conversion systems. The laboratory module is project-based and is designed to support a renewable energy course. By using MATLAB…

  18. Remotely Powered Reconfigurable Receiver for Extreme Sensing Platforms

    NASA Technical Reports Server (NTRS)

    Sheldon, Douglas J. (Inventor)

    2017-01-01

    Unmanned space programs are currently used to enable scientists to explore and research the furthest reaches of outer space. Systems and methods for low power communication devices in accordance with embodiments of the invention are disclosed, describing a wide variety of low power communication devices capable of remotely collecting, processing, and transmitting data from outer space in order to further mankind's goal of exploring the cosmos. Many embodiments of the invention include a Flash-based FPGA, an energy-harvesting power supply module, a sensor module, and a radio module. By utilizing technologies that withstand the harsh environment of outer space, more reliable low power communication devices can be deployed, enhancing the quality and longevity of the low power communication devices, enabling more data to be gathered and aiding in the exploration of outer space.

  19. Grumman evaluates Space Station thermal control and power systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandebo, S.W.

    1985-09-01

    Attention is given to the definition of requirements for the NASA Space Station's electrical power and thermal control systems, which must be highly dependable to minimize the need for external support and will embody a highly flexible modular design concept. Module maintenance will be performed by in-orbit replacement of failed modules, and energy storage system growth will be accomplished by the incorporation of additional modules. Both photovoltaic and solar heat-driven electrical generator concepts are under consideration as the basis of the power system.

  20. The 25 kW power module evolution study. Part 3: Conceptual design for power module evolution. Volume 6: WBS and dictionary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Program elements of the power module (PM) system, are identified, structured, and defined according to the planned work breakdown structure. Efforts required to design, develop, manufacture, test, checkout, launch and operate a protoflight assembled 25 kW, 50 kW and 100 kW PM include the preparation and delivery of related software, government furnished equipment, space support equipment, ground support equipment, launch site verification software, orbital verification software, and all related data items.

  1. AIM: a comprehensive Arabidopsis interactome module database and related interologs in plants.

    PubMed

    Wang, Yi; Thilmony, Roger; Zhao, Yunjun; Chen, Guoping; Gu, Yong Q

    2014-01-01

    Systems biology analysis of protein modules is important for understanding the functional relationships between proteins in the interactome. Here, we present a comprehensive database named AIM for Arabidopsis (Arabidopsis thaliana) interactome modules. The database contains almost 250,000 modules that were generated using multiple analysis methods and integration of microarray expression data. All the modules in AIM are well annotated using multiple gene function knowledge databases. AIM provides a user-friendly interface for different types of searches and offers a powerful graphical viewer for displaying module networks linked to the enrichment annotation terms. Both interactive Venn diagram and power graph viewer are integrated into the database for easy comparison of modules. In addition, predicted interologs from other plant species (homologous proteins from different species that share a conserved interaction module) are available for each Arabidopsis module. AIM is a powerful systems biology platform for obtaining valuable insights into the function of proteins in Arabidopsis and other plants using the modules of the Arabidopsis interactome. Database URL:http://probes.pw.usda.gov/AIM Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.

  2. A Hierarchical Visualization Analysis Model of Power Big Data

    NASA Astrophysics Data System (ADS)

    Li, Yongjie; Wang, Zheng; Hao, Yang

    2018-01-01

    Based on the conception of integrating VR scene and power big data analysis, a hierarchical visualization analysis model of power big data is proposed, in which levels are designed, targeting at different abstract modules like transaction, engine, computation, control and store. The regularly departed modules of power data storing, data mining and analysis, data visualization are integrated into one platform by this model. It provides a visual analysis solution for the power big data.

  3. Design and development of line type modulators for high impedance electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Kavita P.; Tillu, Abhijit; Chavan, Ramchandra

    Conventional line type modulators are routinely used for powering pulsed power microwave devices such as magnetrons and klystrons used for radar, medical and scientific applications. The load impedance (operating point) is fairly well defined in these cases, and makes the design of the discharging circuit of the modulator straight forward. This paper describes the Line type modulators that have been developed and being routinely used for powering the Triode Electron Gun of industrial electron linacs. The beam parameters of such guns are user defined and the pulse current varies from few mA to 800mA (typ). The beam energies requirement variesmore » from 40 keV to 80 keV. Hence the impedance offered by the electron gun to the power source (modulator) is not well defined. The load capacitance which is inclusive of the various stray capacitances along with the intrinsic gun capacitance is ∼ 200-400 pF. This capacitance, which depends on the configuration, shunts the load and makes the effective load highly capacitive with the resistive part varying over a wide range. The paper describes the design and development of conventional line type modulators for powering Electron gun load of the type described above. (author)« less

  4. Carrier envelope offset frequency detection and stabilization of a diode-pumped mode-locked Ti:sapphire laser.

    PubMed

    Gürel, Kutan; Wittwer, Valentin J; Hakobyan, Sargis; Schilt, Stéphane; Südmeyer, Thomas

    2017-03-15

    We demonstrate the first diode-pumped Ti:sapphire laser frequency comb. It is pumped by two green laser diodes with a total pump power of 3 W. The Ti:sapphire laser generates 250 mW of average output power in 61-fs pulses at a repetition rate of 216 MHz. We generated an octave-spanning supercontinuum spectrum in a photonic-crystal fiber and detected the carrier envelope offset (CEO) frequency in a standard f-to-2f interferometer setup. We stabilized the CEO-frequency through direct current modulation of one of the green pump diodes with a feedback bandwidth of 55 kHz limited by the pump diode driver used in this experiment. We achieved a reduction of the CEO phase noise power spectral density by 140 dB at 1 Hz offset frequency. An advantage of diode pumping is the ability for high-bandwidth modulation of the pump power via direct current modulation. After this experiment, we studied the modulation capabilities and noise properties of green pump laser diodes with improved driver electronics. The current-to-output-power modulation transfer function shows a bandwidth larger than 1 MHz, which should be sufficient to fully exploit the modulation bandwidth of the Ti:sapphire gain for CEO stabilization in future experiments.

  5. Teaching Sustainability and Resource Management Using NOAA's Voices Of The Bay Community Fisheries Education Curriculum

    NASA Astrophysics Data System (ADS)

    Hams, J. E.; Uttal, L.; Hunter-Thomson, K.; Nachbar, S.

    2010-12-01

    This presentation highlights the implementation of the NOAA VOICES OF THE BAY education curriculum at a two-year college. The VOICES OF THE BAY curriculum provides students with an understanding of the marine ecology, economy, and culture of fisheries through three interdisciplinary modules that use hands-on activities while meeting a wide range of science, math, social science, and communications standards. In the BALANCE IN THE BAY module, students use critical-thinking skills and apply principles of ecosystem-based management to analyze data, debate and discuss their findings, and make decisions that recognize the complex dynamics associated with maintaining a balance in fisheries. Through role-playing, teamwork, and a little fate, the FROM OCEAN TO TABLE module provides students with an opportunity to get an insider’s view of what it takes to be an active stakeholder in a commercial fishery. In the CAPTURING THE VOICES OF THE BAY module, students research, plan, and conduct personal interviews with citizens of the local fishing community and explore the multiple dimensions of fisheries and how they inter-connect through the lives of those who live and work in the region. The VOICES OF THE BAY modules were introduced into the curriculum at Los Angeles Valley College during the Fall 2009 semester and are currently being used in the introductory Oceanography lecture, introductory Oceanography laboratory, and Environmental Science laboratory courses. Examples of curriculum materials being used (power point presentations, module worksheets and simulated fishing activities) will be presented. In addition, samples of completed student worksheets for the three interdisciplinary modules are provided. Students commented that their overall awareness and knowledge of the issues involved in sustainable fishing and managing fishery resources increased following completion of the VOICES OF THE BAY education curriculum. Students enrolled in the laboratory sections commented that the lab was more enjoyable than the typical lab exercises and the hands-on nature of the activity made the concept of sustainable fishing more real to them. The Office of National Marine Sanctuaries and the Monterey Bay National Marine Sanctuary sponsor professional development workshops to selected faculty to introduce the VOICES OF THE BAY fisheries education curriculum and assist with implementation in the classroom. Classroom materials are also available on the website http://sanctuaries.noaa.gov/education/voicesofthebay.html or by contacting voicesofthebay@noaa.gov.

  6. Thermo-Magneto-Electric Generator Arrays for Active Heat Recovery System

    PubMed Central

    Chun, Jinsung; Song, Hyun-Cheol; Kang, Min-Gyu; Kang, Han Byul; Kishore, Ravi Anant; Priya, Shashank

    2017-01-01

    Continued emphasis on development of thermal cooling systems is being placed that can cycle low grade heat. Examples include solar powered unmanned aerial vehicles (UAVs) and data storage servers. The power efficiency of solar module degrades at elevated temperature, thereby, necessitating the need for heat extraction system. Similarly, data centres in wireless computing system are facing increasing efficiency challenges due to high power consumption associated with managing the waste heat. We provide breakthrough in addressing these problems by developing thermo-magneto-electric generator (TMEG) arrays, composed of soft magnet and piezoelectric polyvinylidene difluoride (PVDF) cantilever. TMEG can serve dual role of extracting the waste heat and converting it into useable electricity. Near room temperature second-order magnetic phase transition in soft magnetic material, gadolinium, was employed to obtain mechanical vibrations on the PVDF cantilever under small thermal gradient. TMEGs were shown to achieve high vibration frequency at small temperature gradients, thereby, demonstrating effective heat transfer. PMID:28145516

  7. Testing and development of electric vehicle batteries for EPRI Electric Transportation Program

    NASA Astrophysics Data System (ADS)

    1985-11-01

    Argonne National Laboratory conducted an electric-vehicle battery testing and development program for the Electric Power Research Institute. As part of this program, eighteen battery modules previously developed by Johnson Controls, Inc. were tested. This type of battery (EV-2300 - an improved state-of-the-art lead-acid battery) was designed specifically for improved performance, range, and life in electric vehicles. In order to obtain necessary performance data, the batteries were tested under various duty cycles typical of normal service. This program, supported by the Electric Power Research Institute, consisted of three tasks: determination of the effect of cycle life vs peak power and rest period, determination of the impact of charge method on cycle life, and evaluation of the EV-2300 battery system. Two supporting studies were also carried out: one on thermal management of electric-vehicle batteries and one on enhanced utilization of active material in lead-acid batteries.

  8. Electronics for Deep Space Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. L.; Hammond, A.; Dickman, J. E.; Gerber, S. S.; Elbuluk, M. E.; Overton, E.

    2002-01-01

    Deep space probes and planetary exploration missions require electrical power management and control systems that are capable of efficient and reliable operation in very cold temperature environments. Typically, in deep space probes, heating elements are used to keep the spacecraft electronics near room temperature. The utilization of power electronics designed for and operated at low temperature will contribute to increasing efficiency and improving reliability of space power systems. At NASA Glenn Research Center, commercial-off-the-shelf devices as well as developed components are being investigated for potential use at low temperatures. These devices include semiconductor switching devices, magnetics, and capacitors. Integrated circuits such as digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being evaluated. In this paper, results will be presented for selected analog-to-digital converters, oscillators, DC/DC converters, and pulse width modulation (PWM) controllers.

  9. Thermo-Magneto-Electric Generator Arrays for Active Heat Recovery System.

    PubMed

    Chun, Jinsung; Song, Hyun-Cheol; Kang, Min-Gyu; Kang, Han Byul; Kishore, Ravi Anant; Priya, Shashank

    2017-02-01

    Continued emphasis on development of thermal cooling systems is being placed that can cycle low grade heat. Examples include solar powered unmanned aerial vehicles (UAVs) and data storage servers. The power efficiency of solar module degrades at elevated temperature, thereby, necessitating the need for heat extraction system. Similarly, data centres in wireless computing system are facing increasing efficiency challenges due to high power consumption associated with managing the waste heat. We provide breakthrough in addressing these problems by developing thermo-magneto-electric generator (TMEG) arrays, composed of soft magnet and piezoelectric polyvinylidene difluoride (PVDF) cantilever. TMEG can serve dual role of extracting the waste heat and converting it into useable electricity. Near room temperature second-order magnetic phase transition in soft magnetic material, gadolinium, was employed to obtain mechanical vibrations on the PVDF cantilever under small thermal gradient. TMEGs were shown to achieve high vibration frequency at small temperature gradients, thereby, demonstrating effective heat transfer.

  10. Hierarchical MFMO Circuit Modules for an Energy-Efficient SDR DBF

    NASA Astrophysics Data System (ADS)

    Mar, Jeich; Kuo, Chi-Cheng; Wu, Shin-Ru; Lin, You-Rong

    The hierarchical multi-function matrix operation (MFMO) circuit modules are designed using coordinate rotations digital computer (CORDIC) algorithm for realizing the intensive computation of matrix operations. The paper emphasizes that the designed hierarchical MFMO circuit modules can be used to develop a power-efficient software-defined radio (SDR) digital beamformer (DBF). The formulas of the processing time for the scalable MFMO circuit modules implemented in field programmable gate array (FPGA) are derived to allocate the proper logic resources for the hardware reconfiguration. The hierarchical MFMO circuit modules are scalable to the changing number of array branches employed for the SDR DBF to achieve the purpose of power saving. The efficient reuse of the common MFMO circuit modules in the SDR DBF can also lead to energy reduction. Finally, the power dissipation and reconfiguration function in the different modes of the SDR DBF are observed from the experiment results.

  11. Thermal fatigue life evaluation of SnAgCu solder joints in a multi-chip power module

    NASA Astrophysics Data System (ADS)

    Barbagallo, C.; Malgioglio, G. L.; Petrone, G.; Cammarata, G.

    2017-05-01

    For power devices, the reliability of thermal fatigue induced by thermal cycling has been prioritized as an important concern. The main target of this work is to apply a numerical procedure to assess the fatigue life for lead-free solder joints, that represent, in general, the weakest part of the electronic modules. Starting from a real multi-chip power module, FE-based models were built-up by considering different conditions in model implementation in order to simulate, from one hand, the worst working condition for the module and, from another one, the module standing into a climatic test room performing thermal cycles. Simulations were carried-out both in steady and transient conditions in order to estimate the module thermal maps, the stress-strain distributions, the effective plastic strain distributions and finally to assess the number of cycles to failure of the constitutive solder layers.

  12. Fecal microbiota transplantation: past, present and future perspectives.

    PubMed

    Bibbò, Stefano; Ianiro, Gianluca; Gasbarrini, Antonio; Cammarota, Giovanni

    2017-12-01

    Gut microbiota is known to play a main role in regulating both health and disease in humans. Strategies for the therapeutic modulation of gut microbiota are therefore expected to give a relevant contribution in the management of disorders associated with its impairment. Among these options, one of the most renowned is fecal microbiota transplantation (FMT). A growing body of evidence showed clearly that FMT is an effective treatment against recurrent Clostridium difficile infection. Moreover, it was shown to be a promising therapy for the management of several noncommunicable disorders, including inflammatory bowel diseases and metabolic disorders. Standardization of procedural protocols for different disorders will surely increase the therapeutic power of FMT. The aim of this narrative review was to make an overview of methodology, indications, and future perspectives of FMT for the management of disorders associated with gut microbiota impairment.

  13. Zinc-chlorine battery plant system and method

    DOEpatents

    Whittlesey, Curtis C.; Mashikian, Matthew S.

    1981-01-01

    A zinc-chlorine battery plant system and method of redirecting the electrical current around a failed battery module. The battery plant includes a power conditioning unit, a plurality of battery modules connected electrically in series to form battery strings, a plurality of battery strings electrically connected in parallel to the power conditioning unit, and a bypass switch for each battery module in the battery plant. The bypass switch includes a normally open main contact across the power terminals of the battery module, and a set of normally closed auxiliary contacts for controlling the supply of reactants electrochemically transformed in the cells of the battery module. Upon the determination of a failure condition, the bypass switch for the failed battery module is energized to close the main contact and open the auxiliary contacts. Within a short time, the electrical current through the battery module will substantially decrease due to the cutoff of the supply of reactants, and the electrical current flow through the battery string will be redirected through the main contact of the bypass switch.

  14. Gain and power optimization of the wireless optical system with multilevel modulation.

    PubMed

    Liu, Xian

    2008-06-01

    When used in an outdoor environment to expedite networking access, the performance of wireless optical communication systems is affected by transmitter sway. In the design of such systems, much attention has been paid to developing power-efficient schemes. However, the bandwidth efficiency is also an important issue. One of the most natural approaches to promote bandwidth efficiency is to use multilevel modulation. This leads to multilevel pulse amplitude modulation in the context of intensity modulation and direct detection. We develop a model based on the four-level pulse amplitude modulation. We show that the model can be formulated as an optimization problem in terms of the transmitter power, bit error probability, transmitter gain, and receiver gain. The technical challenges raised by modeling and solving the problem include the analytical and numerical treatments for the improper integrals of the Gaussian functions coupled with the erfc function. The results demonstrate that, at the optimal points, the power penalty paid to the doubled bandwidth efficiency is around 3 dB.

  15. Integrated application of combined cooling, heating and power poly-generation PV radiant panel system of zero energy buildings

    NASA Astrophysics Data System (ADS)

    Yin, Baoquan

    2018-02-01

    A new type of combined cooling, heating and power of photovoltaic radiant panel (PV/R) module was proposed, and applied in the zero energy buildings in this paper. The energy system of this building is composed of PV/R module, low temperature difference terminal, energy storage, multi-source heat pump, energy balance control system. Radiant panel is attached on the backside of the PV module for cooling the PV, which is called PV/R module. During the daytime, the PV module was cooled down with the radiant panel, as the temperature coefficient influence, the power efficiency was increased by 8% to 14%, the radiant panel solar heat collecting efficiency was about 45%. Through the nocturnal radiant cooling, the PV/R cooling capacity could be 50 W/m2. For the multifunction energy device, the system shows the versatility during the heating, cooling and power used of building utilization all year round.

  16. 1995 second modulator-klystron workshop: A modulator-klystron workshop for future linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    This second workshop examined the present state of modulator design and attempted an extrapolation for future electron-positron linear colliders. These colliders are currently viewed as multikilometer-long accelerators consisting of a thousand or more RF sources with 500 to 1,000, or more, pulsed power systems. The workshop opened with two introductory talks that presented the current approaches to designing these linear colliders, the anticipated RF sources, and the design constraints for pulse power. The cost of main AC power is a major economic consideration for a future collider, consequently the workshop investigated efficient modulator designs. Techniques that effectively apply the artmore » of power conversion, from the AC mains to the RF output, and specifically, designs that generate output pulses with very fast rise times as compared to the flattop. There were six sessions that involved one or more presentations based on problems specific to the design and production of thousands of modulator-klystron stations, followed by discussion and debate on the material.« less

  17. Compact 2100 nm laser diode module for next-generation DIRCM

    NASA Astrophysics Data System (ADS)

    Dvinelis, Edgaras; Greibus, Mindaugas; TrinkÅ«nas, Augustinas; NaujokaitÄ--, Greta; Vizbaras, Augustinas; Vizbaras, Dominykas; Vizbaras, Kristijonas

    2017-10-01

    Compact high-power 2100 nm laser diode module for next-generation directional infrared countermeasure (DIRCM) systems is presented. Next-generation DIRCM systems require compact, light-weight and robust laser modules which could provide intense IR light emission capable of disrupting the tracking sensor of heat-seeking missile. Currently used solid-state and fiber laser solutions for mid-IR band are bulky and heavy making them difficult to implement in smaller form-factor DIRCM systems. Recent development of GaSb laser diode technology greatly improved optical output powers and efficiencies of laser diodes working in 1900 - 2450 nm band [1] while also maintaining very attractive size, weight, power consumption and cost characteristics. 2100 nm laser diode module presented in this work performance is based on high-efficiency broad emitting area GaSb laser diode technology. Each laser diode emitter is able to provide 1 W of CW output optical power with working point efficiency up to 20% at temperature of 20 °C. For output beam collimation custom designed fast-axis collimator and slow-axis collimator lenses were used. These lenses were actively aligned and attached using UV epoxy curing. Total 2 emitters stacked vertically were used in 2100 nm laser diode module. Final optical output power of the module goes up to 2 W at temperature of 20 °C. Total dimensions of the laser diode module are 35 x 25 x 16 mm (L x W x H) with a weight of 28 grams. Finally output beam is bore-sighted to mechanical axes of the module housing allowing for easy integration into next-generation DIRCM systems.

  18. Naver: a PC-cluster-based VR system

    NASA Astrophysics Data System (ADS)

    Park, ChangHoon; Ko, HeeDong; Kim, TaiYun

    2003-04-01

    In this paper, we present a new framework NAVER for virtual reality application. The NAVER is based on a cluster of low-cost personal computers. The goal of NAVER is to provide flexible, extensible, scalable and re-configurable framework for the virtual environments defined as the integration of 3D virtual space and external modules. External modules are various input or output devices and applications on the remote hosts. From the view of system, personal computers are divided into three servers according to its specific functions: Render Server, Device Server and Control Server. While Device Server contains external modules requiring event-based communication for the integration, Control Server contains external modules requiring synchronous communication every frame. And, the Render Server consists of 5 managers: Scenario Manager, Event Manager, Command Manager, Interaction Manager and Sync Manager. These managers support the declaration and operation of virtual environment and the integration with external modules on remote servers.

  19. Lunar Surface Stirling Power Systems Using Isotope Heat Sources

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2010-01-01

    For many years, NASA has used the decay of plutonium-238 (Pu-238) (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTGs), which have provided electrical power for many NASA missions. While RTGs have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency and the scarcity of plutonium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14.75 Earth days), isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 W with two GPHS modules at the beginning of life (BOL) (32% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a four-fold reduction in the number of GPHS modules. This study considers the use of americium-241 (Am-241) as a substitute for the Pu-238 in Stirling- convertor-based Radioisotope Power Systems (RPS) for power levels from tens of watts to 5 kWe. The Am-241 is used as a substitute for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about one-fifth while maintaining approximately the same system mass. In order to obtain the nominal 160 W of electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot end and water pumped loop/heat pipe radiator is considered for the heat rejection side for power levels above 1 kWe.

  20. Lunar Surface Stirling Power Systems Using Am-241

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2009-01-01

    For many years NASA has used the decay of Pu-238 (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTG), which have provided electrical power for many NASA missions. While RTG's have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency (-5% efficiency) and the scarcity of Plutoinium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14 earth days) isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 watts with 2 GPHS modules at the beginning of life (BOL) (-30% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a 4-fold reduction in the number of GPHS modules. This study considers the use of Americium 241 (Am-241) as a substitute for the Pu-238 in Stirling convertor based Radioisotope Power Systems (RPS) for power levels from 1 O's of watts to 5 kWe. The Am-241 is used as a replacement for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about 1/5 while maintaining approximately the same system mass. In order to obtain the nominal 160 watts electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot end and water pumped loop/heat pipe radiator is considered for the heat rejection side for power levels above 1 kWe.

  1. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geis, J.; Arnold, J.H.

    1994-09-01

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States` Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV`s whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Sincemore » the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, the authors have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible they modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.« less

  2. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    NASA Technical Reports Server (NTRS)

    Geis, Jack; Arnold, Jack H.

    1994-01-01

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States' Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV's whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, we have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible we modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.

  3. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    NASA Astrophysics Data System (ADS)

    Geis, Jack; Arnold, Jack H.

    1994-09-01

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States' Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV's whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, we have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible we modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.

  4. Design and analysis of solar thermoelectric power generation system

    NASA Astrophysics Data System (ADS)

    Vatcharasathien, Narong; Hirunlabh, Jongjit; Khedari, Joseph; Daguenet, Michel

    2005-09-01

    This article reports on the design and performance analysis of a solar thermoelectric power generation plant (STEPG). The system considers both truncated compound parabolic collectors (CPCs) with a flat receiver and conventional flat-plate collectors, thermoelectric (TE) cooling and power generator modules and appropriate connecting pipes and control devices. The design tool uses TRNSYS IIsibat-15 program with a new component we developed for the TE modules. The main input data of the system are the specifications of TE module, the maximum hot side temperature of TE modules, and the desired power output. Examples of the design using truncated CPC and flat-plate collectors are reported and discussed for various slope angle and half-acceptance angle of CPC. To minimize system cost, seasonal adjustment of the slope angle between 0° and 30° was considered, which could give relatively high power output under Bangkok ambient condition. Two small-scale STEPGs were built. One of them uses electrical heater, whereas the other used a CPC with locally made aluminum foil reflector. Measured data showed reasonable agreement with the model outputs. TE cooling modules were found to be more appropriate. Therefore, the TRNSYS software and the developed TE component offer an extremely powerful tool for the design and performance analysis of STEPG plant.

  5. Modular space station

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The modular space station comprising small, shuttle-launched modules, and characterized by low initial cost and incremental manning, is described. The initial space station is designed to be delivered into orbit by three space shuttles and assembled in space. The three sections are the power/subsystems module, the crew/operations module, and the general purpose laboratory module. It provides for a crew of six. Subsequently duplicate/crew/operations and power/subsystems modules will be mated to the original modules, and provide for an additional six crewmen. A total of 17 research and applications modules is planned, three of which will be free-flying modules. Details are given on the program plan, modular characteristics, logistics, experiment support capability and requirements, operations analysis, design support analyses, and shuttle interfaces.

  6. An Efficient Modulation Strategy for Cascaded Photovoltaic Systems Suffering From Module Mismatch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Cheng; Zhang, Kai; Xiong, Jian

    Modular multilevel cascaded converter (MMCC) is a promising technique for medium/high-voltage high-power photovoltaic systems due to its modularity, scalability, and capability of distributed maximum power point tracking (MPPT) etc. However, distributed MPPT under module-mismatch might polarize the distribution of ac output voltages as well as the dc-link voltages among the modules, distort grid currents, and even cause system instability. For the better acceptance in practical applications, such issues need to be well addressed. Based on mismatch degree that is defined to consider both active power distribution and maximum modulation index, this paper presents an efficient modulation strategy for a cascaded-H-bridge-basedmore » MMCC under module mismatch. It can operate in loss-reducing mode or range-extending mode. By properly switching between the two modes, performance indices such as system efficiency, grid current quality, and balance of dc voltages, can be well coordinated. In this way, the MMCC system can maintain high-performance over a wide range of operating conditions. As a result, effectiveness of the proposed modulation strategy is proved with experiments.« less

  7. An Efficient Modulation Strategy for Cascaded Photovoltaic Systems Suffering From Module Mismatch

    DOE PAGES

    Wang, Cheng; Zhang, Kai; Xiong, Jian; ...

    2017-09-26

    Modular multilevel cascaded converter (MMCC) is a promising technique for medium/high-voltage high-power photovoltaic systems due to its modularity, scalability, and capability of distributed maximum power point tracking (MPPT) etc. However, distributed MPPT under module-mismatch might polarize the distribution of ac output voltages as well as the dc-link voltages among the modules, distort grid currents, and even cause system instability. For the better acceptance in practical applications, such issues need to be well addressed. Based on mismatch degree that is defined to consider both active power distribution and maximum modulation index, this paper presents an efficient modulation strategy for a cascaded-H-bridge-basedmore » MMCC under module mismatch. It can operate in loss-reducing mode or range-extending mode. By properly switching between the two modes, performance indices such as system efficiency, grid current quality, and balance of dc voltages, can be well coordinated. In this way, the MMCC system can maintain high-performance over a wide range of operating conditions. As a result, effectiveness of the proposed modulation strategy is proved with experiments.« less

  8. Power Line Technician. Second Edition. Module B. Instructor's Manual [and] Student Workbook.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This module is the second in a series that is designed to help students achieve greater professional and personal success as power line technicians. Each module represents one or more complete units of instruction with components organized into one instructor and one student "package": the instructor's manual and the student workbook.…

  9. Power Line Technician. Second Edition. Module A. Instructor's Manual [and] Student Workbook.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This module is the first in a series that is designed to help students achieve greater professional and personal success as power line technicians. Each module represents one or more complete units of instruction with components organized into one instructor and one student "package": the instructor's manual and the student workbook. The…

  10. Module Six: Parallel Circuits; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    In this module the student will learn the rules that govern the characteristics of parallel circuits; the relationships between voltage, current, resistance and power; and the results of common troubles in parallel circuits. The module is divided into four lessons: rules of voltage and current, rules for resistance and power, variational analysis,…

  11. Automated identification of RNA 3D modules with discriminative power in RNA structural alignments.

    PubMed

    Theis, Corinna; Höner Zu Siederdissen, Christian; Hofacker, Ivo L; Gorodkin, Jan

    2013-12-01

    Recent progress in predicting RNA structure is moving towards filling the 'gap' in 2D RNA structure prediction where, for example, predicted internal loops often form non-canonical base pairs. This is increasingly recognized with the steady increase of known RNA 3D modules. There is a general interest in matching structural modules known from one molecule to other molecules for which the 3D structure is not known yet. We have created a pipeline, metaRNAmodules, which completely automates extracting putative modules from the FR3D database and mapping of such modules to Rfam alignments to obtain comparative evidence. Subsequently, the modules, initially represented by a graph, are turned into models for the RMDetect program, which allows to test their discriminative power using real and randomized Rfam alignments. An initial extraction of 22 495 3D modules in all PDB files results in 977 internal loop and 17 hairpin modules with clear discriminatory power. Many of these modules describe only minor variants of each other. Indeed, mapping of the modules onto Rfam families results in 35 unique locations in 11 different families. The metaRNAmodules pipeline source for the internal loop modules is available at http://rth.dk/resources/mrm.

  12. 180 MW/180 KW pulse modulator for S-band klystron of LUE-200 linac of IREN installation of JINR

    NASA Astrophysics Data System (ADS)

    Su, Kim Dong; Sumbaev, A. P.; Shvetsov, V. N.

    2014-09-01

    The offer on working out of the pulse modulator with 180 MW pulse power and 180 kW average power for pulse S-band klystrons of LUE-200 linac of IREN installation at the Laboratory of neutron physics (FLNP) at JINR is formulated. Main requirements, key parameters and element base of the modulator are presented. The variant of the basic scheme on the basis of 14 (or 11) stage 2 parallel PFN with the thyratron switchboard (TGI2-10K/50) and six parallel high voltage power supplies (CCPS Power Supply) is considered.

  13. The effect of material matching on the stress-induced power degradation for light-redirecting-ribbon-based silicon photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Gou, X. F.; Zhuang, H.; Zhu, J.; Li, X. Y.

    2018-01-01

    Light redirecting ribbons (LRR) have recently been adopted in crystalline silicon modules in PV industry. The introduction of this LRR may bring additional stress at the boundary of the busbar/wafer contact, which may probably lead to higher power loss after aging. The thermal cycle and electroluminescence (EL) test are employed in this work to investigate this stress-induced power degradation for LRR-based crystalline silicon modules. The obtained results demonstrate that with increase in the thickness of the EVA encapsulant or the decrease in the thickness of the LRR, the power degradation induced by stress can be effectively diminished.

  14. The effect of concentrator field layout on the EE-1 small community solar power system

    NASA Technical Reports Server (NTRS)

    Pons, R. L.; Irwin, R. E.

    1981-01-01

    The point-focusing distributed receiver (PFDR) concept is employed by a number of solar thermal power systems currently under development. One type of PFDR system which shows particular promise incorporates distributed energy generation. According to this concept each parabolic dish collector is a self-contained power generation module, and a conventional electrical system is used to interconnect the modules. The concept is thus modular, and any number of power modules can be combined to achieve the required plant size. Given the benefits of mass production, it appears that this type of system can produce electricity at lower cost than is projected for conventional (fossil) power systems over the next decade. An employment of organic Rankine cycle heat engines is considered.

  15. Module failure isolation circuit for paralleled inverters. [preventing system failure during power conditioning for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Nagano, S. (Inventor)

    1979-01-01

    A module failure isolation circuit is described which senses and averages the collector current of each paralled inverter power transistor and compares the collector current of each power transistor the average collector current of all power transistors to determine when the sensed collector current of a power transistor in any one inverter falls below a predetermined ratio of the average collector current. The module associated with any transistor that fails to maintain a current level above the predetermined radio of the average collector current is then shut off. A separate circuit detects when there is no load, or a light load, to inhibit operation of the isolation circuit during no load or light load conditions.

  16. Electrical power systems for Mars

    NASA Technical Reports Server (NTRS)

    Giudici, Robert J.

    1986-01-01

    Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.

  17. Electrical power systems for Mars

    NASA Astrophysics Data System (ADS)

    Giudici, Robert J.

    1986-05-01

    Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.

  18. Pulse Shaped 8-PSK Bandwidth Efficiency and Spectral Spike Elimination

    NASA Technical Reports Server (NTRS)

    Tao, Jian-Ping

    1998-01-01

    The most bandwidth-efficient communication methods are imperative to cope with the congested frequency bands. Pulse shaping methods have excellent effects on narrowing bandwidth and increasing band utilization. The position of the baseband filters for the pulse shaping is crucial. Post-modulation pulse shaping (a low pass filter is located after the modulator) can change signals from constant envelope to non-constant envelope, and non-constant envelope signals through non-linear device (a SSPA or TWT) can further spread the power spectra. Pre-modulation pulse shaping (a filter is located before the modulator) will have constant envelope. These two pulse shaping methods have different effects on narrowing the bandwidth and producing bit errors. This report studied the effect of various pre-modulation pulse shaping filters with respect to bandwidth, spectral spikes and bit error rate. A pre-modulation pulse shaped 8-ary Phase Shift Keying (8PSK) modulation was used throughout the simulations. In addition to traditional pulse shaping filters, such as Bessel, Butterworth and Square Root Raised Cosine (SRRC), other kinds of filters or pulse waveforms were also studied in the pre-modulation pulse shaping method. Simulations were conducted by using the Signal Processing Worksystem (SPW) software package on HP workstations which simulated the power spectral density of pulse shaped 8-PSK signals, end to end system performance and bit error rates (BERS) as a function of Eb/No using pulse shaping in an AWGN channel. These results are compared with the post-modulation pulse shaped 8-PSK results. The simulations indicate traditional pulse shaping filters used in pre-modulation pulse shaping may produce narrower bandwidth, but with worse BER than those in post-modulation pulse shaping. Theory and simulations show pre- modulation pulse shaping could also produce discrete line power spectra (spikes) at regular frequency intervals. These spikes may cause interference with adjacent channel and reduce power efficiency. Some particular pulses (filters), such as trapezoid and pulses with different transits (such as weighted raised cosine transit) were found to reduce bandwidth and not generate spectral spikes. Although a solid state power amplifier (SSPA) was simulated in the non-linear (saturation) region, output power spectra did not spread due to the constant envelope 8-PSK signals.

  19. Thermo-Mechanical Analysis for John Deere Electronics Solutions | Advanced

    Science.gov Websites

    impacts of alternative manufacturing processes Die, package, and interface material analysis for power module reliability Manufacturing process impacts versus thermal cycling impacts on power module

  20. Harmonic generation with a dual frequency pulse.

    PubMed

    Keravnou, Christina P; Averkiou, Michalakis A

    2014-05-01

    Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.

  1. Design and practice of a comprehensively functional integrated management information system for major construction

    NASA Astrophysics Data System (ADS)

    Liu, Yuling; Wang, Xiaoping; Zhu, Yuhui; Fei, Lanlan

    2017-08-01

    This paper introduces a Comprehensively Functional Integrated Management Information System designed for the Optical Engineering Major by the College of Optical Science and Engineering, Zhejiang University, which combines the functions of teaching, students learning, educational assessment and management. The system consists of 5 modules, major overview, online curriculum, experiment teaching management, graduation project management and teaching quality feedback. The major overview module introduces the development history, training program, curriculums and experiment syllabus and teaching achievements of optical engineering major in Zhejiang University. The Management Information System is convenient for students to learn in a mobile and personalized way. The online curriculum module makes it very easy for teachers to setup a website for new curriculums. On the website, teachers can help students on their problems about the curriculums in time and collect their homework online. The experiment teaching management module and the graduation project management module enables the students to fulfill their experiment process and graduation thesis under the help of their supervisors. Before students take an experiment in the lab, they must pass the pre-experiment quiz on the corresponding module. After the experiment, students need to submit the experiment report to the web server. Moreover, the module contains experiment process video recordings, which are very helpful to improve the effect of the experiment education. The management of the entire process of a student's graduation program, including the project selection, mid-term inspection, progress report of every two weeks, final thesis, et al, is completed by the graduation project management module. The teaching quality feedback module is not only helpful for teachers to know whether the education effect of curriculum is good or not, but also helpful for the administrators of the college to know whether the design of syllabus is reasonable or not. The Management Information System changes the management object from the education results to the entire education processes. And it improves the efficiency of the management. It provides an effective method to promote curriculum construction management by supervision and evaluation, which improves students' learning outcomes and the quality of curriculums. As a result, it promotes the quality system of education obviously.

  2. An Assessment of Integrated Health Management (IHM) Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. Lybeck; M. Tawfik; L. Bond

    In order to meet the ever increasing demand for energy, the United States nuclear industry is turning to life extension of existing nuclear power plants (NPPs). Economically ensuring the safe, secure, and reliable operation of aging nuclear power plants presents many challenges. The 2009 Light Water Reactor Sustainability Workshop identified online monitoring of active and structural components as essential to the better understanding and management of the challenges posed by aging nuclear power plants. Additionally, there is increasing adoption of condition-based maintenance (CBM) for active components in NPPs. These techniques provide a foundation upon which a variety of advanced onlinemore » surveillance, diagnostic, and prognostic techniques can be deployed to continuously monitor and assess the health of NPP systems and components. The next step in the development of advanced online monitoring is to move beyond CBM to estimating the remaining useful life of active components using prognostic tools. Deployment of prognostic health management (PHM) on the scale of a NPP requires the use of an integrated health management (IHM) framework - a software product (or suite of products) used to manage the necessary elements needed for a complete implementation of online monitoring and prognostics. This paper provides a thoughtful look at the desirable functions and features of IHM architectures. A full PHM system involves several modules, including data acquisition, system modeling, fault detection, fault diagnostics, system prognostics, and advisory generation (operations and maintenance planning). The standards applicable to PHM applications are indentified and summarized. A list of evaluation criteria for PHM software products, developed to ensure scalability of the toolset to an environment with the complexity of a NPP, is presented. Fourteen commercially available PHM software products are identified and classified into four groups: research tools, PHM system development tools, deployable architectures, and peripheral tools.« less

  3. Analysis of dynamic channel power equalization by using nonlinear amplifying Sagnac interferometer for ASK-WDM optical transmission

    NASA Astrophysics Data System (ADS)

    Qu, Feng; Liu, Xiaoming; Zhao, Jianhui

    2004-05-01

    A power equalization using an asymmetric nonlinear amplifying Sagnac interferometer (NASI) for ASK modulation is studied numerically. A nonreciprocal phase bias was proposed to be introduced into the structure. The nonreciprocal phase bias reduces not only the demanding for amplifier power or fiber non-linearity, but also increase the dynamic input power range. The power equalization is demonstrated for RZ modulation by nonlinear phase analysis and eye diagram simulation.

  4. Failure and Degradation Modes of PV modules in a Hot Dry Climate: Results after 4 and 12 years of field exposure

    NASA Astrophysics Data System (ADS)

    Mallineni, Jaya krishna

    This study evaluates two photovoltaic (PV) power plants based on electrical performance measurements, diode checks, visual inspections and infrared scanning. The purpose of this study is to measure degradation rates of performance parameters (Pmax, Isc, Voc, Vmax, Imax and FF) and to identify the failure modes in a "hot-dry desert" climatic condition along with quantitative determination of safety failure rates and reliability failure rates. The data obtained from this study can be used by module manufacturers in determining the warranty limits of their modules and also by banks, investors, project developers and users in determining appropriate financing or decommissioning models. In addition, the data obtained in this study will be helpful in selecting appropriate accelerated stress tests which would replicate the field failures for the new modules and would predict the lifetime for new PV modules. The study was conducted at two, single axis tracking monocrystalline silicon (c-Si) power plants, Site 3 and Site 4c of Salt River Project (SRP). The Site 3 power plant is located in Glendale, Arizona and the Site 4c power plant is located in Mesa, Arizona both considered a "hot-dry" field condition. The Site 3 power plant has 2,352 modules (named as Model-G) which was rated at 250 kW DC output. The mean and median degradation of these 12 years old modules are 0.95%/year and 0.96%/year, respectively. The major cause of degradation found in Site 3 is due to high series resistance (potentially due to solder-bond thermo-mechanical fatigue) and the failure mode is ribbon-ribbon solder bond failure/breakage. The Site 4c power plant has 1,280 modules (named as Model-H) which provide 243 kW DC output. The mean and median degradation of these 4 years old modules are 0.96%/year and 1%/year, respectively. At Site 4c, practically, none of the module failures are observed. The average soiling loss is 6.9% in Site 3 and 5.5% in Site 4c. The difference in soiling level is attributed to the rural and urban surroundings of these two power plants.

  5. Scalable Hierarchical Network Management System for Displaying Network Information in Three Dimensions

    NASA Technical Reports Server (NTRS)

    George, Jude (Inventor); Schlecht, Leslie (Inventor); McCabe, James D. (Inventor); LeKashman, John Jr. (Inventor)

    1998-01-01

    A network management system has SNMP agents distributed at one or more sites, an input output module at each site, and a server module located at a selected site for communicating with input output modules, each of which is configured for both SNMP and HNMP communications. The server module is configured exclusively for HNMP communications, and it communicates with each input output module according to the HNMP. Non-iconified, informationally complete views are provided of network elements to aid in network management.

  6. Application of SNMP on CATV

    NASA Astrophysics Data System (ADS)

    Huang, Hong-bin; Liu, Wei-ping; Chen, Shun-er; Zheng, Liming

    2005-02-01

    A new type of CATV network management system developed by universal MCU, which supports SNMP, is proposed in this paper. From the point of view in both hardware and software, the function and method of every modules inside the system, which include communications in the physical layer, protocol process, data process, and etc, are analyzed. In our design, the management system takes IP MAN as data transmission channel and every controlled object in the management structure has a SNMP agent. In the SNMP agent developed, there are four function modules, including physical layer communication module, protocol process module, internal data process module and MIB management module. In the paper, the structure and function of every module are designed and demonstrated while the related hardware circuit, software flow as well as the experimental results are tested. Furthermore, by introducing RTOS into the software programming, the universal MCU procedure can conducts such multi-thread management as fast Ethernet controller driving, TCP/IP process, serial port signal monitoring and so on, which greatly improves efficiency of CPU.

  7. 47 CFR 95.639 - Maximum transmitter power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) No GMRS transmitter, under any condition of modulation, shall exceed: (1) 50 W Carrier power (average... transmitter, under any condition of modulation, shall exceed a carrier power or peak envelope TP (single-sideband only) of: (1) 4 W in the 26-27 MHz frequency band, except on channel frequency 27.255 MHz; (2) 25...

  8. A SiC MOSFET Based Inverter for Wireless Power Transfer Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onar, Omer C; Chinthavali, Madhu Sudhan; Campbell, Steven L

    2014-01-01

    In a wireless power transfer (WPT) system, efficiency of the power conversion stages is crucial so that the WPT technology can compete with the conventional conductive charging systems. Since there are 5 or 6 power conversion stages, each stage needs to be as efficient as possible. SiC inverters are crucial in this case; they can handle high frequency operation and they can operate at relatively higher temperatures resulting in reduces cost and size for the cooling components. This study presents the detailed power module design, development, and fabrication of a SiC inverter. The proposed inverter has been tested at threemore » center frequencies that are considered for the WPT standardization. Performance of the inverter at the same target power transfer level is analyzed along with the other system components. In addition, another SiC inverter has been built in authors laboratory by using the ORNL designed and developed SiC modules. It is shown that the inverter with ORNL packaged SiC modules performs simular to that of the inverter having commercially available SiC modules.« less

  9. Computer-Aided Modeling and Analysis of Power Processing Systems (CAMAPPS), phase 1

    NASA Technical Reports Server (NTRS)

    Kim, S.; Lee, J.; Cho, B. H.; Lee, F. C.

    1986-01-01

    The large-signal behaviors of a regulator depend largely on the type of power circuit topology and control. Thus, for maximum flexibility, it is best to develop models for each functional block a independent modules. A regulator can then be configured by collecting appropriate pre-defined modules for each functional block. In order to complete the component model generation for a comprehensive spacecraft power system, the following modules were developed: solar array switching unit and control; shunt regulators; and battery discharger. The capability of each module is demonstrated using a simplified Direct Energy Transfer (DET) system. Large-signal behaviors of solar array power systems were analyzed. Stability of the solar array system operating points with a nonlinear load is analyzed. The state-plane analysis illustrates trajectories of the system operating point under various conditions. Stability and transient responses of the system operating near the solar array's maximum power point are also analyzed. The solar array system mode of operation is described using the DET spacecraft power system. The DET system is simulated for various operating conditions. Transfer of the software program CAMAPPS (Computer Aided Modeling and Analysis of Power Processing Systems) to NASA/GSFC (Goddard Space Flight Center) was accomplished.

  10. Reflight of the First Microgravity Science Laboratory: Quick Turnaround of a Space Shuttle Mission

    NASA Technical Reports Server (NTRS)

    Simms, Yvonne

    1998-01-01

    Due to the short flight of Space Shuttle Columbia, STS-83, in April 1997, NASA chose to refly the same crew, shuttle, and payload on STS-94 in July 1997. This was the first reflight of an entire mission complement. The reflight of the First Microgravity Science Laboratory (MSL-1) on STS-94 required an innovative approach to Space Shuttle payload ground processing. Ground processing time for the Spacelab Module, which served as the laboratory for MSL-1 experiments, was reduced by seventy-five percent. The Spacelab Module is a pressurized facility with avionics and thermal cooling and heating accommodations. Boeing-Huntsville, formerly McDonnell Douglas Aerospace, has been the Spacelab Integration Contractor since 1977. The first Spacelab Module flight was in 1983. An experienced team determined what was required to refurbish the Spacelab Module for reflight. Team members had diverse knowledge, skills, and background. An engineering assessment of subsystems, including mechanical, electrical power distribution, command and data management, and environmental control and life support, was performed. Recommendations for resolution of STS-83 Spacelab in-flight anomalies were provided. Inspections and tests that must be done on critical Spacelab components were identified. This assessment contributed to the successful reflight of MSL-1, the fifteenth Spacelab Module mission.

  11. Soft switching circuit to improve efficiency of all solid-state Marx modulator for DBDs

    NASA Astrophysics Data System (ADS)

    Liqing, TONG; Kefu, LIU; Yonggang, WANG

    2018-02-01

    For an all solid-state Marx modulator applied in dielectric barrier discharges (DBDs), hard switching results in a very low efficiency. In this paper, a series resonant soft switching circuit, which series an inductance with DBD capacitor, is proposed to reduce the power loss. The power loss of the all circuit status with hard switching was analyzed, and the maximum power loss occurred during discharging at the rising and falling edges. The power loss of the series resonant soft switching circuit was also presented. A comparative analysis of the two circuits determined that the soft switching circuit greatly reduced power loss. The experimental results also demonstrated that the soft switching circuit improved the power transmission efficiency of an all solid-state Marx modulator for DBDs by up to 3 times.

  12. Power-Stepped HF Cross-Modulation Experiments: Simulations and Experimental Observations

    NASA Astrophysics Data System (ADS)

    Greene, S.; Moore, R. C.

    2014-12-01

    High frequency (HF) cross modulation experiments are a well established means for probing the HF-modified characteristics of the D-region ionosphere. The interaction between the heating wave and the probing pulse depends on the ambient and modified conditions of the D-region ionosphere. Cross-modulation observations are employed as a measure of the HF-modified refractive index. We employ an optimized version of Fejer's method that we developed during previous experiments. Experiments were performed in March 2013 at the High Frequency Active Auroral Research Program (HAARP) observatory in Gakona, Alaska. During these experiments, the power of the HF heating signal incrementally increased in order to determine the dependence of cross-modulation on HF power. We found that a simple power law relationship does not hold at high power levels, similar to previous ELF/VLF wave generation experiments. In this paper, we critically compare these experimental observations with the predictions of a numerical ionospheric HF heating model and demonstrate close agreement.

  13. Space Station Freedom electric power system availability study

    NASA Technical Reports Server (NTRS)

    Turnquist, Scott R.

    1990-01-01

    The results are detailed of follow-on availability analyses performed on the Space Station Freedom electric power system (EPS). The scope includes analyses of several EPS design variations, these are: the 4-photovoltaic (PV) module baseline EPS design, a 6-PV module EPS design, and a 3-solar dynamic module EPS design which included a 10 kW PV module. The analyses performed included: determining the discrete power levels that the EPS will operate at upon various component failures and the availability of each of these operating states; ranking EPS components by the relative contribution each component type gives to the power availability of the EPS; determining the availability impacts of including structural and long-life EPS components in the availability models used in the analyses; determining optimum sparing strategies, for storing space EPS components on-orbit, to maintain high average-power-capability with low lift-mass requirements; and analyses to determine the sensitivity of EPS-availability to uncertainties in the component reliability and maintainability data used.

  14. Design and characterization of a novel power over fiber system integrating a high power diode laser

    NASA Astrophysics Data System (ADS)

    Perales, Mico; Yang, Mei-huan; Wu, Cheng-liang; Hsu, Chin-wei; Chao, Wei-sheng; Chen, Kun-hsein; Zahuranec, Terry

    2017-02-01

    High power 9xx nm diode lasers along with MH GoPower's (MHGP's) flexible line of Photovoltaic Power Converters (PPCs) are spurring high power applications for power over fiber (PoF), including applications for powering remote sensors and sensors monitoring high voltage equipment, powering high voltage IGBT gate drivers, converters used in RF over Fiber (RFoF) systems, and system power applications, including powering UAVs. In PoF, laser power is transmitted over fiber, and is converted to electricity by photovoltaic cells (packaged into Photovoltaic Power Converters, or PPCs) which efficiently convert the laser light. In this research, we design a high power multi-channel PoF system, incorporating a high power 976 nm diode laser, a cabling system with fiber break detection, and a multichannel PPC-module. We then characterizes system features such as its response time to system commands, the PPC module's electrical output stability, the PPC-module's thermal response, the fiber break detection system response, and the diode laser optical output stability. The high power PoF system and this research will serve as a scalable model for those interested in researching, developing, or deploying a high power, voltage isolated, and optically driven power source for high reliability utility, communications, defense, and scientific applications.

  15. Photonic measurement of microwave frequency based on phase modulation.

    PubMed

    Zhou, Junqiang; Fu, Songnian; Shum, Perry Ping; Aditya, Sheel; Xia, Li; Li, Jianqiang; Sun, Xiaoqiang; Xu, Kun

    2009-04-27

    A photonic approach for microwave frequency measurement is proposed. In this approach, an optical carrier is modulated by an unknown microwave signal through a phase modulator. The modulated optical signal is then split into two parts; one part passes through a spool of polarization maintaining fiber (PMF) and the other one, through a dispersion compensation fiber (DCF), to introduce different microwave power penalties. After the microwave powers of the two parts are measured by two photodetectors, a fixed frequency-to-power mapping is established by obtaining an amplitude comparison function (ACF). A proof-of-concept experiment demonstrates frequency measurement over a range of 10.5 GHz, with measurement error less than +/-0.07 GHz.

  16. 128×128 three-dimensional MEMS optical switch module with simultaneous optical path connection for optical cross-connect systems.

    PubMed

    Mizukami, Masato; Yamaguchi, Joji; Nemoto, Naru; Kawajiri, Yuko; Hirata, Hirooki; Uchiyama, Shingo; Makihara, Mitsuhiro; Sakata, Tomomi; Shimoyama, Nobuhiro; Oda, Kazuhiro

    2011-07-20

    A 128×128 three-dimensional MEMS optical switch module and a switching-control algorithm for high-speed connection and optical power stabilization are described. A prototype switch module enables the simultaneous switching of all optical paths. The insertion loss is less than 4.6 dB and is 2.3 dB on average. The switching time is less than 38 ms and is 8 ms on average. We confirmed that the maximum optical power can be obtained and optical power stabilization control is possible. The results confirm that the module is suitable for practical use in optical cross-connect systems. © 2011 Optical Society of America

  17. Solid-state pulse modulator using Marx generator for a medical linac electron-gun

    NASA Astrophysics Data System (ADS)

    Lim, Heuijin; Hyeok Jeong, Dong; Lee, Manwoo; Lee, Mujin; Yi, Jungyu; Yang, Kwangmo; Ro, Sung Chae

    2016-04-01

    A medical linac is used for the cancer treatment and consists of an accelerating column, waveguide components, a magnetron, an electron-gun, a pulse modulator, and an irradiation system. The pulse modulator based on hydrogen thyratron-switched pulse-forming network is commonly used in linac. As the improvement of the high power semiconductors in switching speed, voltage rating, and current rating, an insulated gate bipolar transistor has become the more popular device used for pulsed power systems. We propose a solid-state pulse modulator to generator high voltage by multi-stacked storage-switch stages based on the Marx generator. The advantage of our modulator comes from the use of two semiconductors to control charging and discharging of the storage capacitor at each stage and it allows to generate the pulse with various amplitudes, widths, and shapes. In addition, a gate driver for two semiconductors is designed to reduce the control channels and to protect the circuits. It is developed for providing the pulsed power to a medical linac electron-gun that requires 25 kV and 1 A as the first application. In order to improve the power efficiency and achieve the compactness modulator, a capacitor charging power supply, a Marx pulse generator, and an electron-gun heater isolated transformer are constructed and integrated. This technology is also being developed to extend the high power pulsed system with > 1 MW and also other applications such as a plasma immersed ion implantation and a micro pulse electrostatic precipitator which especially require variable pulse shape and high repetition rate > 1 kHz. The paper describes the design features and the construction of this solid-state pulse modulator. Also shown are the performance results into the linac electron-gun.

  18. SU-E-T-671: Range-Modulation Effects of Carbon Ion Beams in Lung Tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witt, M; Weber, U; Simeonov, Y

    Purpose: When particles traversing inhomogeneous materials like lung they show a characteristic range modulation which cannot be observed in homogeneous materials. It is possible to describe the range modulation by a convolution of an unperturbed Bragg-Curve and a normal distribution. The sigma of the normal distribution is a parameter for the strength of the modulation effect. A new material parameter (modulation power, P-mod) is introduced which is independent of the material thickness. It is defined as the square of sigma divided by the mean water equivalent thickness of the target (µ). Methods: The modulation power of lung tissue was determinedmore » by actual Bragg-peak measurements after traversing an ex-vivo porcine lung and by Monte-Carlo simulations with micro-CT data of human lung tissue. The determined modulation powers were used to show the effect of range modulation effects in a simplified treatment situation. A four centimeter spread-out Bragg-peak after traversing eight centimeter of lung tissue was simulated in FLUKA. The SOBP with and without consideration of range modulation effects were compared. Results: As well in the measurements as in the MC simulations range modulation effects of lung tissue were observed. The determined modulation powers showed a great range from 0.05 mm, in the micro-CT data, to 0.7 mm in the lung measurements. The SOBP comparison showed that range modulation effects Result in over- and underdosages at the distal and proximal edge of the SOBP. In the investigated case, the last 0.5 cm of the SOBP showed an underdosage of up to 50% at the distal edge, while 0.5 cm distal to the SOBP an overdosage of up to 50% was observed. Conclusion: Range modulation effects occur in inhomogeneous materials like lung. These modulation effects may Result in clinically relevant over- and underdosages but are currently not considered in commercially available treatment planning systems.« less

  19. Citizen Participation for Urban Management. Modules 1-3.

    ERIC Educational Resources Information Center

    Benson, Jonathon L.; And Others

    These workshop curricular materials concerning the design and implementation of alternate forms of citizen participation mechanisms were prepared for use with management-level and pre-service personnel involved in urban management within a political environment. Three curricular modules are presented. Module I, "An Overview of Citizen…

  20. A Long-Distance RF-Powered Sensor Node with Adaptive Power Management for IoT Applications.

    PubMed

    Pizzotti, Matteo; Perilli, Luca; Del Prete, Massimo; Fabbri, Davide; Canegallo, Roberto; Dini, Michele; Masotti, Diego; Costanzo, Alessandra; Franchi Scarselli, Eleonora; Romani, Aldo

    2017-07-28

    We present a self-sustained battery-less multi-sensor platform with RF harvesting capability down to -17 dBm and implementing a standard DASH7 wireless communication interface. The node operates at distances up to 17 m from a 2 W UHF carrier. RF power transfer allows operation when common energy scavenging sources (e.g., sun, heat, etc.) are not available, while the DASH7 communication protocol makes it fully compatible with a standard IoT infrastructure. An optimized energy-harvesting module has been designed, including a rectifying antenna (rectenna) and an integrated nano-power DC/DC converter performing maximum-power-point-tracking (MPPT). A nonlinear/electromagnetic co-design procedure is adopted to design the rectenna, which is optimized to operate at ultra-low power levels. An ultra-low power microcontroller controls on-board sensors and wireless protocol, to adapt the power consumption to the available detected power by changing wake-up policies. As a result, adaptive behavior can be observed in the designed platform, to the extent that the transmission data rate is dynamically determined by RF power. Among the novel features of the system, we highlight the use of nano-power energy harvesting, the implementation of specific hardware/software wake-up policies, optimized algorithms for best sampling rate implementation, and adaptive behavior by the node based on the power received.

  1. A Long-Distance RF-Powered Sensor Node with Adaptive Power Management for IoT Applications

    PubMed Central

    del Prete, Massimo; Fabbri, Davide; Canegallo, Roberto; Dini, Michele; Costanzo, Alessandra

    2017-01-01

    We present a self-sustained battery-less multi-sensor platform with RF harvesting capability down to −17 dBm and implementing a standard DASH7 wireless communication interface. The node operates at distances up to 17 m from a 2 W UHF carrier. RF power transfer allows operation when common energy scavenging sources (e.g., sun, heat, etc.) are not available, while the DASH7 communication protocol makes it fully compatible with a standard IoT infrastructure. An optimized energy-harvesting module has been designed, including a rectifying antenna (rectenna) and an integrated nano-power DC/DC converter performing maximum-power-point-tracking (MPPT). A nonlinear/electromagnetic co-design procedure is adopted to design the rectenna, which is optimized to operate at ultra-low power levels. An ultra-low power microcontroller controls on-board sensors and wireless protocol, to adapt the power consumption to the available detected power by changing wake-up policies. As a result, adaptive behavior can be observed in the designed platform, to the extent that the transmission data rate is dynamically determined by RF power. Among the novel features of the system, we highlight the use of nano-power energy harvesting, the implementation of specific hardware/software wake-up policies, optimized algorithms for best sampling rate implementation, and adaptive behavior by the node based on the power received. PMID:28788084

  2. Active optimal control strategies for increasing the efficiency of photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Aljoaba, Sharif Zidan Ahmad

    Energy consumption has increased drastically during the last century. Currently, the worldwide energy consumption is about 17.4 TW and is predicted to reach 25 TW by 2035. Solar energy has emerged as one of the potential renewable energy sources. Since its first physical recognition in 1887 by Adams and Day till nowadays, research in solar energy is continuously developing. This has lead to many achievements and milestones that introduced it as one of the most reliable and sustainable energy sources. Recently, the International Energy Agency declared that solar energy is predicted to be one of the major electricity production energy sources by 2035. Enhancing the efficiency and lifecycle of photovoltaic (PV) modules leads to significant cost reduction. Reducing the temperature of the PV module improves its efficiency and enhances its lifecycle. To better understand the PV module performance, it is important to study the interaction between the output power and the temperature. A model that is capable of predicting the PV module temperature and its effects on the output power considering the individual contribution of the solar spectrum wavelengths significantly advances the PV module edsigns toward higher efficiency. In this work, a thermoelectrical model is developed to predict the effects of the solar spectrum wavelengths on the PV module performance. The model is characterized and validated under real meteorological conditions where experimental temperature and output power of the PV module measurements are shown to agree with the predicted results. The model is used to validate the concept of active optical filtering. Since this model is wavelength-based, it is used to design an active optical filter for PV applications. Applying this filter to the PV module is expected to increase the output power of the module by filtering the spectrum wavelengths. The active filter performance is optimized, where different cutoff wavelengths are used to maximize the module output power. It is predicted that if the optimized active optical filter is applied to the PV module, the module efficiency is predicted to increase by about 1%. Different technologies are considered for physical implementation of the active optical filter.

  3. Evolutionary growth for Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Marshall, Matthew Fisk; Mclallin, Kerry; Zernic, Mike

    1989-01-01

    Over an operational lifetime of at least 30 yr, Space Station Freedom will encounter increased Space Station user requirements and advancing technologies. The Space Station electrical power system is designed with the flexibility to accommodate these emerging technologies and expert systems and is being designed with the necessary software hooks and hardware scars to accommodate increased growth demand. The electrical power system is planned to grow from the initial 75 kW up to 300 kW. The Phase 1 station will utilize photovoltaic arrays to produce the electrical power; however, for growth to 300 kW, solar dynamic power modules will be utilized. Pairs of 25 kW solar dynamic power modules will be added to the station to reach the power growth level. The addition of solar dynamic power in the growth phase places constraints in the initial Space Station systems such as guidance, navigation, and control, external thermal, truss structural stiffness, computational capabilities and storage, which must be planned-in, in order to facilitate the addition of the solar dynamic modules.

  4. Climate Considerations Of The Electricity Supply Systems In Industries

    NASA Astrophysics Data System (ADS)

    Asset, Khabdullin; Zauresh, Khabdullina

    2014-12-01

    The study is focused on analysis of climate considerations of electricity supply systems in a pellet industry. The developed analysis model consists of two modules: statistical data of active power losses evaluation module and climate aspects evaluation module. The statistical data module is presented as a universal mathematical model of electrical systems and components of industrial load. It forms a basis for detailed accounting of power loss from the voltage levels. On the basis of the universal model, a set of programs is designed to perform the calculation and experimental research. It helps to obtain the statistical characteristics of the power losses and loads of the electricity supply systems and to define the nature of changes in these characteristics. Within the module, several methods and algorithms for calculating parameters of equivalent circuits of low- and high-voltage ADC and SD with a massive smooth rotor with laminated poles are developed. The climate aspects module includes an analysis of the experimental data of power supply system in pellet production. It allows identification of GHG emission reduction parameters: operation hours, type of electrical motors, values of load factor and deviation of standard value of voltage.

  5. Test results of an organic Rankine-cycle power module for a small community solar thermal power experiment

    NASA Technical Reports Server (NTRS)

    Clark, T. B.

    1985-01-01

    The organic Rankine-cycle (ORC) power conversion assembly was tested. Qualification testing of the electrical transport subsystem was also completed. Test objectives were to verify compatibility of all system elements with emphasis on control of the power conversion assembly, to evaluate the performance and efficiency of the components, and to validate operating procedures. After 34 hours of power generation under a wide range of conditions, the net module efficiency exceeded 18% after accounting for all parasitic losses.

  6. On enhancing energy harvesting performance of the photovoltaic modules using an automatic cooling system and assessing its economic benefits of mitigating greenhouse effects on the environment

    NASA Astrophysics Data System (ADS)

    Wang, Jen-Cheng; Liao, Min-Sheng; Lee, Yeun-Chung; Liu, Cheng-Yue; Kuo, Kun-Chang; Chou, Cheng-Ying; Huang, Chen-Kang; Jiang, Joe-Air

    2018-02-01

    The performance of photovoltaic (PV) modules under outdoor operation is greatly affected by their location and environmental conditions. The temperature of a PV module gradually increases as it is exposed to solar irradiation, resulting in degradation of its electrical characteristics and power generation efficiency. This study adopts wireless sensor network (WSN) technology to develop an automatic water-cooling system for PV modules in order to improve their PV power generation efficiency. A temperature estimation method is developed to quickly and accurately estimate the PV module temperatures based on weather data provided from the WSN monitoring system. Further, an estimation method is also proposed for evaluation of the electrical characteristics and output power of the PV modules, which is performed remotely via a control platform. The automatic WSN-based water-cooling mechanism is designed to avoid the PV module temperature from reaching saturation. Equipping each PV module with the WSN-based cooling system, the ambient conditions are monitored automatically so that the temperature of the PV module is controlled by sprinkling water on the panel surface. The field-test experiment results show an increase in the energy harvested by the PV modules of approximately 17.75% when using the proposed WSN-based cooling system.

  7. TOPDAQ Acquisition Utility Beta version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MOreno, Mario; & Barret, Keith

    2010-01-07

    This TOPDAQ Acquisition Utility uses 5 digital cameras mounted on a vertical pole, maintained in a vertical position using sensors and actuators, to take photographs of an RP-2 or RP-3 module, one camera for each row (4) and one in the center for driving, when the module is at 0 degrees, or facing the eastern horizon. These photographs and other data collected at the same time the pictures are taken are analyzed by the TOPAAP Analysis Utility. The TOPCAT implemented by the TOPDAQ Acquisition Utility and TOPAAP Analysis Utility programs optimizes the alignment of each RP in a module onmore » a parabolic trough solar collector array (SCA) to maximize the amount of solar energy intercepted by the solar receiver. The camera fixture and related hardware are mounted on a pickup truck and driven between rows in a parabolic trough solar power plant. An ultrasonic distance meter is used to maintain the correct distance between the cameras and the RP module. Along with the two leveling actuators, a third actuator is used to maintain a proper relative vertical position between the cameras and the RP module. The TOPDAQ Acquisition Utility facilitates file management by keeping track of which RP module data is being taken and also controls the exposure levels for each camera to maintain a high contract ratio in the photograph even as the available daylight changes throughout the day. The theoretical TOPCAT hardware and software support the current industry standard RP-2 and RP-3 module geometries.« less

  8. Closed Environment Module - modularization and extension of the V-HAB

    NASA Astrophysics Data System (ADS)

    Plötner, Peter; Czupalla, M. Markus; Zhukov, Anton

    2012-07-01

    The `Virtual Habitat' (V-HAB), is a Life Support System (LSS) simulation, created to provide the possibility for dynamic simulation of LSS for future human spaceflight missions. V-HAB creates the option to optimize LSS during early design phases. Furthermore, it allows simulating e.g. worst case scenarios which cannot be tested in reality. In a nutshell the tool allows the testing of LSS robustness by means of computer simulations. V-HAB is a modular simulation consisting of a: Closed Environment Module (CEM) Crew Module Biological Module Physio-Chemical Module The focus of the paper will be the Closed Environment Module (CEM) which is the core of V-HAB. The main function of the CEM is the embedding of all modules in the entire simulation and the control of the LSS. The CEM includes the possibility to simulate an arbitrary number of compartments and tanks with the interaction between connected compartments. Furthermore, a control program to actuate the LSS Technologies was implemented in the CEM, and is also introduced. In this paper the capabilities of the CEM are introduced based on selected test cases. In particular the following capabilities are demonstrated: Supply Leakage ON/OFF controller Power management Un-/docking Controller for tanks with maximum filling degree The CEM of the V-HAB simulation was verified by simulating the Atmosphere Revitalization part of the ISS and comparing it to actual measurement data. The results of this analysis are also presented in the paper.

  9. The GMOD Drupal bioinformatic server framework.

    PubMed

    Papanicolaou, Alexie; Heckel, David G

    2010-12-15

    Next-generation sequencing technologies have led to the widespread use of -omic applications. As a result, there is now a pronounced bioinformatic bottleneck. The general model organism database (GMOD) tool kit (http://gmod.org) has produced a number of resources aimed at addressing this issue. It lacks, however, a robust online solution that can deploy heterogeneous data and software within a Web content management system (CMS). We present a bioinformatic framework for the Drupal CMS. It consists of three modules. First, GMOD-DBSF is an application programming interface module for the Drupal CMS that simplifies the programming of bioinformatic Drupal modules. Second, the Drupal Bioinformatic Software Bench (biosoftware_bench) allows for a rapid and secure deployment of bioinformatic software. An innovative graphical user interface (GUI) guides both use and administration of the software, including the secure provision of pre-publication datasets. Third, we present genes4all_experiment, which exemplifies how our work supports the wider research community. Given the infrastructure presented here, the Drupal CMS may become a powerful new tool set for bioinformaticians. The GMOD-DBSF base module is an expandable community resource that decreases development time of Drupal modules for bioinformatics. The biosoftware_bench module can already enhance biologists' ability to mine their own data. The genes4all_experiment module has already been responsible for archiving of more than 150 studies of RNAi from Lepidoptera, which were previously unpublished. Implemented in PHP and Perl. Freely available under the GNU Public License 2 or later from http://gmod-dbsf.googlecode.com.

  10. Low cost high efficiency GaAs monolithic RF module for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Petersen, W. C.; Siu, D. P.; Cook, H. F.

    1991-01-01

    Low cost high performance (5 Watts output) 406 MHz beacons are urgently needed to realize the maximum utilization of the Search and Rescue Satellite-Aided Tracking (SARSAT) system spearheaded in the U.S. by NASA. Although current technology can produce beacons meeting the output power requirement, power consumption is high due to the low efficiency of available transmitters. Field performance is currently unsatisfactory due to the lack of safe and reliable high density batteries capable of operation at -40 C. Low cost production is also a crucial but elusive requirement for the ultimate wide scale utilization of this system. Microwave Monolithics Incorporated (MMInc.) has proposed to make both the technical and cost goals for the SARSAT beacon attainable by developing a monolithic GaAs chip set for the RF module. This chip set consists of a high efficiency power amplifier and a bi-phase modulator. In addition to implementing the RF module in Monolithic Microwave Integrated Circuit (MMIC) form to minimize ultimate production costs, the power amplifier has a power-added efficiency nearly twice that attained with current commercial technology. A distress beacon built using this RF module chip set will be significantly smaller in size and lighter in weight due to a smaller battery requirement, since the 406 MHz signal source and the digital controller have far lower power consumption compared to the 5 watt power amplifier. All the program tasks have been successfully completed. The GaAs MMIC RF module chip set has been designed to be compatible with the present 406 MHz signal source and digital controller. A complete high performance low cost SARSAT beacon can be realized with only additional minor iteration and systems integration.

  11. Photovoltaic power systems workshop

    NASA Technical Reports Server (NTRS)

    Killian, H. J.; Given, R. W.

    1978-01-01

    Discussions are presented on apparent deficiencies in NASA planning and technology development relating to a standard power module (25-35 kW) and to future photovoltaic power systems in general. Topics of discussion consider the following: (1) adequate studies on power systems; (2) whether a standard power system module should be developed from a standard spacecraft; (3) identification of proper approaches to cost reduction; (4) energy storage avoidance; (5) attitude control; (6) thermal effects of heat rejection on solar array configuration stability; (7) assembly of large power systems in space; and (8) factoring terrestrial photovoltaic work into space power systems for possible payoff.

  12. SIRE: A Simple Interactive Rule Editor for NICBES

    NASA Technical Reports Server (NTRS)

    Bykat, Alex

    1988-01-01

    To support evolution of domain expertise, and its representation in an expert system knowledge base, a user-friendly rule base editor is mandatory. The Nickel Cadmium Battery Expert System (NICBES), a prototype of an expert system for the Hubble Space Telescope power storage management system, does not provide such an editor. In the following, a description of a Simple Interactive Rule Base Editor (SIRE) for NICBES is described. The SIRE provides a consistent internal representation of the NICBES knowledge base. It supports knowledge presentation and provides a user-friendly and code language independent medium for rule addition and modification. The SIRE is integrated with NICBES via an interface module. This module provides translation of the internal representation to Prolog-type rules (Horn clauses), latter rule assertion, and a simple mechanism for rule selection for its Prolog inference engine.

  13. New Educational Modules Using a Cyber-Distribution System Testbed

    DOE PAGES

    Xie, Jing; Bedoya, Juan Carlos; Liu, Chen-Ching; ...

    2018-03-30

    At Washington State University (WSU), a modern cyber-physical system testbed has been implemented based on an industry grade distribution management system (DMS) that is integrated with remote terminal units (RTUs), smart meters, and a solar photovoltaic (PV). In addition, the real model from the Avista Utilities distribution system in Pullman, WA, is modeled in DMS. The proposed testbed environment allows students and instructors to utilize these facilities for innovations in learning and teaching. For power engineering education, this testbed helps students understand the interaction between a cyber system and a physical distribution system through industrial level visualization. The testbed providesmore » a distribution system monitoring and control environment for students. Compared with a simulation based approach, the testbed brings the students' learning environment a step closer to the real world. The educational modules allow students to learn the concepts of a cyber-physical system and an electricity market through an integrated testbed. Furthermore, the testbed provides a platform in the study mode for students to practice working on a real distribution system model. Here, this paper describes the new educational modules based on the testbed environment. Three modules are described together with the underlying educational principles and associated projects.« less

  14. New Educational Modules Using a Cyber-Distribution System Testbed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jing; Bedoya, Juan Carlos; Liu, Chen-Ching

    At Washington State University (WSU), a modern cyber-physical system testbed has been implemented based on an industry grade distribution management system (DMS) that is integrated with remote terminal units (RTUs), smart meters, and a solar photovoltaic (PV). In addition, the real model from the Avista Utilities distribution system in Pullman, WA, is modeled in DMS. The proposed testbed environment allows students and instructors to utilize these facilities for innovations in learning and teaching. For power engineering education, this testbed helps students understand the interaction between a cyber system and a physical distribution system through industrial level visualization. The testbed providesmore » a distribution system monitoring and control environment for students. Compared with a simulation based approach, the testbed brings the students' learning environment a step closer to the real world. The educational modules allow students to learn the concepts of a cyber-physical system and an electricity market through an integrated testbed. Furthermore, the testbed provides a platform in the study mode for students to practice working on a real distribution system model. Here, this paper describes the new educational modules based on the testbed environment. Three modules are described together with the underlying educational principles and associated projects.« less

  15. Space Station Furnace Facility. Volume 2: Summary of technical reports

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics, and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. In order to accommodate the furnace modules with the resources required to operate, SSFF developed a design that meets the needs of the wide range of furnaces that are planned for the SSFF. The system design is divided into subsystems which provide the functions of interfacing to the SSF services, conditioning and control for furnace module use, providing the controlled services to the furnace modules, and interfacing to and acquiring data from the furnace modules. The subsystems, described in detail, are as follows: Power Conditioning and Distribution Subsystem; Data Management Subsystem; Software; Gas Distribution Subsystem; Thermal Control Subsystem; and Mechanical Structures Subsystem.

  16. SoftLab: A Soft-Computing Software for Experimental Research with Commercialization Aspects

    NASA Technical Reports Server (NTRS)

    Akbarzadeh-T, M.-R.; Shaikh, T. S.; Ren, J.; Hubbell, Rob; Kumbla, K. K.; Jamshidi, M

    1998-01-01

    SoftLab is a software environment for research and development in intelligent modeling/control using soft-computing paradigms such as fuzzy logic, neural networks, genetic algorithms, and genetic programs. SoftLab addresses the inadequacies of the existing soft-computing software by supporting comprehensive multidisciplinary functionalities from management tools to engineering systems. Furthermore, the built-in features help the user process/analyze information more efficiently by a friendly yet powerful interface, and will allow the user to specify user-specific processing modules, hence adding to the standard configuration of the software environment.

  17. Expert System Enhancement to the Resource Allocation Modules of the NCS Emergency Preparedness Management Information System (EPMIS)

    DTIC Science & Technology

    1987-01-01

    after the MYCIN expert system. Host Computer PC+ is available on both symbolic and numeric computers. It operates on: the IBM PC AT, TI Bus- Pro (IBM PC...suppose that the data baseTool picks up pace contains 100 motors, and in only one case does a lightweight motor pro . duce more power than heavier units...every sor, ART 2.0. In the bargain it con - the figure). decision point takes time. More sub- sumes 10 times less storage. ART 3.0 reduces the comparison

  18. Mitigating Upsets in SRAM-Based FPGAs from the Xilinx Virtex 2 Family

    NASA Technical Reports Server (NTRS)

    Swift, G. M.; Yui, C. C.; Carmichael, C.; Koga, R.; George, J. S.

    2003-01-01

    Static random access memory (SRAM) upset rates in field programmable gate arrays (FPGAs) from the Xilinx Virtex 2 family have been tested for radiation effects on configuration memory, block RAM and the power-on-reset (POR) and SelectMAP single event functional interrupts (SEFIs). Dynamic testing has shown the effectiveness and value of Triple Module Redundancy (TMR) and partial reconfiguration when used in conjunction. Continuing dynamic testing for more complex designs and other Virtex 2 capabilities (i.e., I/O standards, digital clock managers (DCM), etc.) is scheduled.

  19. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 3: General purpose spacecraft segment and module specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The specifications for the Earth Observatory Satellite (EOS) general purpose aircraft segment are presented. The satellite is designed to provide attitude stabilization, electrical power, and a communications data handling subsystem which can support various mission peculiar subsystems. The various specifications considered include the following: (1) structures subsystem, (2) thermal control subsystem, (3) communications and data handling subsystem module, (4) attitude control subsystem module, (5) power subsystem module, and (6) electrical integration subsystem.

  20. Modulation and coding for throughput-efficient optical free-space links

    NASA Technical Reports Server (NTRS)

    Georghiades, Costas N.

    1993-01-01

    Optical direct-detection systems are currently being considered for some high-speed inter-satellite links, where data-rates of a few hundred megabits per second are evisioned under power and pulsewidth constraints. In this paper we investigate the capacity, cutoff-rate and error-probability performance of uncoded and trellis-coded systems for various modulation schemes and under various throughput and power constraints. Modulation schemes considered are on-off keying (OOK), pulse-position modulation (PPM), overlapping PPM (OPPM) and multi-pulse (combinatorial) PPM (MPPM).

  1. Performance of a Low-Cost, Low-Concentration Photovoltaic Module

    NASA Astrophysics Data System (ADS)

    Shell, Kara A.; Brown, Scott A.; Schuetz, Mark A.; Davis, Bob J.; French, Roger H.

    2011-12-01

    In order to significantly reduce the cost of solar power, Replex Plastics has developed a low-cost, low-concentration PV module incorporating acrylic mirror reflectors. The reflectors are compound parabolic concentrators designed for use with low-accuracy single axis trackers. The prototypes use crystalline silicon photovoltaic cells and achieved 7.1x concentration over a receiver without reflectors. The 1×1.6 m module used 1/10th the silicon of a standard module and produced a max power of 140 W.

  2. A 3D TCAD simulation of a thermoelectric module configured for thermoelectric power generation, cooling and heating

    NASA Astrophysics Data System (ADS)

    Gould, C. A.; Shammas, N. Y. A.; Grainger, S.; Taylor, I.; Simpson, K.

    2012-06-01

    This paper documents the 3D modeling and simulation of a three couple thermoelectric module using the Synopsys Technology Computer Aided Design (TCAD) semiconductor simulation software. Simulation results are presented for thermoelectric power generation, cooling and heating, and successfully demonstrate the basic thermoelectric principles. The 3D TCAD simulation model of a three couple thermoelectric module can be used in the future to evaluate different thermoelectric materials, device structures, and improve the efficiency and performance of thermoelectric modules.

  3. Navy Occupational Health Information Management System (NOHIMS). Hazardous Materials Control Module. Users’ Manual

    DTIC Science & Technology

    1987-01-16

    Occupational Health Information Management System (NOHIMS) 6 Hazardous Materials Control Module (HMC) User’s Manual 7. Author(s) 8. Performing Organization...Materials Control (HMC) module of the Naval Medical Command’s (NAVMED) Navy Occupational Health Information Management System (NOHIMS). After presenting

  4. Thermal and optical performance of encapsulation systems for flat-plate photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Minning, C. P.; Coakley, J. F.; Perrygo, C. M.; Garcia, A., III; Cuddihy, E. F.

    1981-01-01

    The electrical power output from a photovoltaic module is strongly influenced by the thermal and optical characteristics of the module encapsulation system. Described are the methodology and computer model for performing fast and accurate thermal and optical evaluations of different encapsulation systems. The computer model is used to evaluate cell temperature, solar energy transmittance through the encapsulation system, and electric power output for operation in a terrestrial environment. Extensive results are presented for both superstrate-module and substrate-module design schemes which include different types of silicon cell materials, pottants, and antireflection coatings.

  5. The Design of a Power System for the PETSAT Modular Small Spacecraft Bus

    NASA Astrophysics Data System (ADS)

    Clark, C. S.; Lopez Mazarias, A.; Kobayashi, C.; Nakasuka, S.

    2008-08-01

    There is considerable interest in the benefits of having a modular spacecraft where it is possible to construct a satellite using a number of modules with identical mechanical and electrical interfaces, but with each performing a specific function to achieve the required platform specification. In recent years, steps have been made towards modular spacecraft becoming a reality and the concept is due to be demonstrated in-orbit later this year with the first flight of the PETSAT spacecraft concept on the mission, SOHLA-2. This paper describes the approach to the design of the SOHLA-2 power system. The approach is significant; PETSAT is an excellent example of a modular approach to spacecraft design. The PETSAT concept consists of a number of 'Panel Modules', roughly the same size as a pizza box. The panels stack together in stowed configuration for launch, and unfold once in orbit. Apart from being a very novel approach to spacecraft design and construction, this concept offers advantages in power generation as, once unfolded, there is significant surface area on which to mount solar cells for power generation. The power system for PETSAT has been designed such that each Panel Module contains a power system that can either operate in isolation for the purpose of unit testing, or as part of a larger spacecraft power system once connected to other Panel Modules. When connected together, the power systems on each module share the energy from the solar arrays and the batteries. The approach to the design of the system has provided a simple solution to difficult problem.

  6. Manned space flight nuclear system safety. Volume 3: Reactor system preliminary nuclear safety analysis. Part 1: Reference Design Document (RDD)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Reference Design Document, of the Preliminary Safety Analysis Report (PSAR) - Reactor System provides the basic design and operations data used in the nuclear safety analysis of the Rector Power Module as applied to a Space Base program. A description of the power module systems, facilities, launch vehicle and mission operations, as defined in NASA Phase A Space Base studies is included. Each of two Zirconium Hydride Reactor Brayton power modules provides 50 kWe for the nominal 50 man Space Base. The INT-21 is the prime launch vehicle. Resupply to the 500 km orbit over the ten year mission is provided by the Space Shuttle. At the end of the power module lifetime (nominally five years), a reactor disposal system is deployed for boost into a 990 km high altitude (long decay time) earth orbit.

  7. Gas mixing enhanced by power modulations in atmospheric pressure microwave plasma jet

    NASA Astrophysics Data System (ADS)

    Voráč, J.; Potočňáková, L.; Synek, P.; Hnilica, J.; Kudrle, V.

    2016-04-01

    Microwave plasma jet operating in atmospheric pressure argon was power modulated by audio frequency sine envelope in the 102 W power range. Its effluent was imaged using interference filters and ICCD camera for several different phases of the modulating signal. The combination of this fast imaging with spatially resolved optical emission spectroscopy provides useful insights into the plasmachemical processes involved. Phase-resolved schlieren photography was performed to visualize the gas dynamics. The results show that for higher modulation frequencies the plasma chemistry is strongly influenced by formation of transient flow perturbation resembling a vortex during each period. The perturbation formation and speed are strongly influenced by the frequency and power variations while they depend only weakly on the working gas flow rate. From application point of view, the perturbation presence significantly broadened lateral distribution of active species, effectively increasing cross-sectional area suitable for applications.

  8. Solid state rapid thermocycling

    DOEpatents

    Beer, Neil Reginald; Spadaccini, Christopher

    2014-05-13

    The rapid thermal cycling of a material is targeted. A solid state heat exchanger with a first well and second well is coupled to a power module. A thermoelectric element is coupled to the first well, the second well, and the power module, is configured to transfer thermal energy from the first well to the second well when current from the power module flows through the thermoelectric element in a first direction, and is configured to transfer thermal energy from the second well to the first well when current from the power module flows through the thermoelectric element in a second direction. A controller may be coupled to the thermoelectric elements, and may switch the direction of current flowing through the thermoelectric element in response to a determination by sensors coupled to the wells that the amount of thermal energy in the wells falls below or exceeds a pre-determined threshold.

  9. Linear transformer driver for pulse generation

    DOEpatents

    Kim, Alexander A; Mazarakis, Michael G; Sinebryukhov, Vadim A; Volkov, Sergey N; Kondratiev, Sergey S; Alexeenko, Vitaly M; Bayol, Frederic; Demol, Gauthier; Stygar, William A

    2015-04-07

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first power delivery module that includes a first charge storage devices and a first switch. The first power delivery module sends a first energy in the form of a first pulse to the load. The linear transformer driver also includes a second power delivery module including a second charge storage device and a second switch. The second power delivery module sends a second energy in the form of a second pulse to the load. The second pulse has a frequency that is approximately three times the frequency of the first pulse. The at least one ferrite ring is positioned to force the first pulse and the second pulse to the load by temporarily isolating the first pulse and the second pulse from an electrical ground.

  10. Low thermal resistance power module assembly

    DOEpatents

    Hassani, Vahab; Vlahinos, Andreas; Bharathan, Desikan

    2007-03-13

    A power module assembly with low thermal resistance and enhanced heat dissipation to a cooling medium. The assembly includes a heat sink or spreader plate with passageways or openings for coolant that extend through the plate from a lower surface to an upper surface. A circuit substrate is provided and positioned on the spreader plate to cover the coolant passageways. The circuit substrate includes a bonding layer configured to extend about the periphery of each of the coolant passageways and is made up of a substantially nonporous material. The bonding layer may be solder material which bonds to the upper surface of the plate to provide a continuous seal around the upper edge of each opening in the plate. The assembly includes power modules mounted on the circuit substrate on a surface opposite the bonding layer. The power modules are positioned over or proximal to the coolant passageways.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyeokjin; Chen, Hua; Maksimovic, Dragan

    An experimental 30 kW boost composite converter is described in this paper. The composite converter architecture, which consists of a buck module, a boost module, and a dual active bridge module that operates as a DC transformer (DCX), leads to substantial reductions in losses at partial power points, and to significant improvements in weighted efficiency in applications that require wide variations in power and conversion ratio. A comprehensive loss model is developed, accounting for semiconductor conduction and switching losses, capacitor losses, as well as dc and ac losses in magnetic components. Based on the developed loss model, the module andmore » system designs are optimized to maximize efficiency at a 50% power point. Experimental results for the 30 kW prototype demonstrate 98.5%peak efficiency, very high efficiency over wide ranges of power and voltage conversion ratios, as well as excellent agreements between model predictions and measured efficiency curves.« less

  12. A novel anti-theft security system for photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Khan, Wasif Ali; Lim, Boon-Han; Lai, An-Chow; Chong, Kok-Keong

    2017-04-01

    Solar farms are considered as easy target for thieves because of insufficient protection measures. Existing anti-theft approaches are based on system level and are not very preventive and efficient because these can be bypassed with some technical knowledge. Additionally, it is difficult for security guards to tackle them as robbers come in a form of a gang equipped with heavy weapons. In this paper, a low power auto shut-off and non-destructive system is proposed for photovoltaic (PV) modules to achieve better level of security at module level. In proposed method, the power generation function of the PV module will be shut-off internally and cannot be re-activated by unauthorized personnel, in the case of theft. Hence, the PV module will not be functional even sold to new customers. The system comprises of a microcontroller, a low power position sensor, a controllable semiconductor switch and a wireless reactive-able system. The anti-theft system is developed to be laminated inside PV module and will be interconnected with solar cells so it becomes difficult for thieves to temper. The position of PV module is retrieved by position sensor and stored in a microcontroller as an initial reference value. Microcontroller uses this stored reference value to control power supply of PV module via power switch. The stored reference value can be altered using wireless circuitry by following authentication protocol. It makes the system non-destructive as anti-theft function can be reset again by authorized personnel, if it is recovered after theft or moved for maintenance purposes. The research component includes the design of a position sensing circuit, an auto shut-off circuit, a reactive-able wireless security protection algorithm and finally the integration of the multiple circuits.

  13. Increased Force Variability in Chronic Stroke: Contributions of Force Modulation below 1 Hz

    PubMed Central

    Lodha, Neha; Misra, Gaurav; Coombes, Stephen A.; Christou, Evangelos A.; Cauraugh, James H.

    2013-01-01

    Increased force variability constitutes a hallmark of arm disabilities following stroke. Force variability is related to the modulation of force below 1 Hz in healthy young and older adults. However, whether the increased force variability observed post stroke is related to the modulation of force below 1 Hz remains unknown. Thus, the purpose of this study was to compare force modulation below 1 Hz in chronic stroke and age-matched healthy individuals. Both stroke and control individuals (N = 26) performed an isometric grip task to submaximal force levels. Coefficient of variation quantified force variability, and power spectrum density of force quantified force modulation below 1 Hz with a high resolution (0.07 Hz). Analyses indicated that force variability was greater for the stroke group compared with to healthy controls and for the paretic hand compared with the non-paretic hand. Force modulation below 1 Hz differentiated the stroke individuals and healthy controls, as well as the paretic and non-paretic hands. Specifically, stroke individuals (paretic hand) exhibited greater power ∼0.2 Hz (0.07–0.35 Hz) and lesser power ∼0.6 Hz (0.49–0.77 Hz) compared to healthy controls (non-dominant hand). Similarly, the paretic hand exhibited greater power ∼0.2 Hz, and lesser power ∼0.6 Hz than the non-paretic hand. Moreover, variability of force was strongly predicted from the modulation of specific frequencies below 1 Hz (R 2 = 0.80). Together, these findings indicate that the modulation of force below 1 Hz provides significant insight into changes in motor control after stroke. PMID:24386208

  14. Prototype Solid State Induction Modulator for SLAC NLC

    NASA Astrophysics Data System (ADS)

    Cassel, R. L.; DeLamare, J. E.; Nguyen, M. N.; Pappas, G. C.; Cook, E.

    2002-08-01

    The Next Linear Collider accelerator proposal at SLAC requires a high efficiency, highly reliable, and low cost pulsed power modulator to drive the X band klystrons. The present NLC envisions a solid-state induction modulator design to drive up to 8 klystrons to 500kV for 3muS at 120 PPS with one modulator (>1,000 megawatt pulse, 500kW average). A prototype modulator is presently under construction, which well power 4 each 5045 SLAC klystron to greater than 380 kV for 3muS (>600 megawatt pulse, >300 kW Ave.). The modulator will be capable of driving the 8 each X band klystrons when they become available. The paper covers the design, construction, fabrication and preliminary testing of the prototype modulator.

  15. 26+ Year Old Photovoltaic Power Plant: Degradation and Reliability Evaluation of Crystalline Silicon Modules -- South Array

    NASA Astrophysics Data System (ADS)

    Olakonu, Kolapo

    As the use of photovoltaic (PV) modules in large power plants continues to increase globally, more studies on degradation, reliability, failure modes, and mechanisms of field aged modules are needed to predict module life expectancy based on accelerated lifetime testing of PV modules. In this work, a 26+ year old PV power plant in Phoenix, Arizona has been evaluated for performance, reliability, and durability. The PV power plant, called Solar One, is owned and operated by John F. Long's homeowners association. It is a 200 kW dc, standard test conditions (STC) rated power plant comprised of 4000 PV modules or frameless laminates, in 100 panel groups (rated at 175 kW ac). The power plant is made of two center-tapped bipolar arrays, the north array and the south array. Due to a limited time frame to execute this large project, this work was performed by two masters students (Jonathan Belmont and Kolapo Olakonu) and the test results are presented in two masters theses. This thesis presents the results obtained on the south array and the other thesis presents the results obtained on the north array. Each of these two arrays is made of four sub arrays, the east sub arrays (positive and negative polarities) and the west sub arrays (positive and negative polarities), making up eight sub arrays. The evaluation and analyses of the power plant included in this thesis consists of: visual inspection, electrical performance measurements, and infrared thermography. A possible presence of potential induced degradation (PID) due to potential difference between ground and strings was also investigated. Some installation practices were also studied and found to contribute to the power loss observed in this investigation. The power output measured in 2011 for all eight sub arrays at STC is approximately 76 kWdc and represents a power loss of 62% (from 200 kW to 76 kW) over 26+ years. The 2011 measured power output for the four south sub arrays at STC is 39 kWdc and represents a power loss of 61% (from 100 kW to 39 kW) over 26+ years. Encapsulation browning and non-cell interconnect ribbon breakages were determined to be the primary causes for the power loss.

  16. Heatpipe power system and heatpipe bimodal system design and development options

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Poston, D. I.; Emrich, W. J., Jr.

    1997-01-01

    The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components operate within the existing databases. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module is being fabricated, and testing is scheduled to begin in November 1996. A successful test will provide high confidence that the HPS can achieve its predicted performance.

  17. Mass study for modular approaches to a solar electric propulsion module

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.; Cake, J. E.; Oglebay, J. C.; Shaker, F. J.

    1977-01-01

    The propulsion module comprises six to eight 30-cm thruster and power processing units, a mercury propellant storage and distribution system, a solar array ranging in power from 18 to 25 kW, and the thermal and structure systems required to support the thrust and power subsystems. Launch and on-orbit configurations are presented for both modular approaches. The propulsion module satisfies the thermal design requirements of a multimission set including: Mercury, Saturn, and Jupiter orbiters, a 1-AU solar observatory, and comet and asteroid rendezvous. A detailed mass breakdown and a mass equation relating the total mass to the number of thrusters and solar array power requirement is given for both approaches.

  18. On the power spectral density of quadrature modulated signals. [satellite communication

    NASA Technical Reports Server (NTRS)

    Yan, T. Y.

    1981-01-01

    The conventional (no-offset) quadriphase modulation technique suffers from the fact that hardlimiting will restore the frequency sidelobes removed by proper filtering. Thus, offset keyed quadriphase modulation techniques are often proposed for satellite communication with bandpass hardlimiting. A unified theory is developed which is capable of describing the power spectral density before and after the hardlimiting process. Using the in-phase and the quadrature phase channel with arbitrary pulse shaping, analytical results are established for generalized quadriphase modulation. In particular MSK, OPSK or the recently introduced overlapped raised cosine keying all fall into this general category. It is shown that for a linear communication channel, the power spectral density of the modulated signal remains unchanged regardless of the offset delay. Furthermore, if the in phase and the quadrature phase channel have identical pulse shapes without offset, the spectrum after bandpass hardlimiting will be identical to that of the conventional QPSK modulation. Numerical examples are given for various modulation techniques. A case of different pulse shapes in the in phase and the quadrature phase channel is also considered.

  19. Novel Modulation Method for Multidirectional Matrix Converter

    PubMed Central

    Misron, Norhisam; Aris, Ishak Bin; Yamada, Hiroaki

    2014-01-01

    This study presents a new modulation method for multidirectional matrix converter (MDMC), based on the direct duty ratio pulse width modulation (DDPWM). In this study, a new structure of MDMC has been proposed to control the power flow direction through the stand-alone battery based system and hybrid vehicle. The modulation method acts based on the average voltage over one switching period concept. Therefore, in order to determine the duty ratio for each switch, the instantaneous input voltages are captured and compared with triangular waveform continuously. By selecting the proper switching pattern and changing the slope of the carriers, the sinusoidal input current can be synthesized with high power factor and desired output voltage. The proposed system increases the discharging time of the battery by injecting the power to the system from the generator and battery at the same time. Thus, it makes the battery life longer and saves more energy. This paper also derived necessary equation for proposed modulation method as well as detail of analysis and modulation algorithm. The theoretical and modulation concepts presented have been verified in MATLAB simulation. PMID:25298969

  20. Electrical system for pulse-width modulated control of a power inverter using phase-shifted carrier signals and related operating methods

    DOEpatents

    Welchko, Brian A [Torrance, CA

    2012-02-14

    Systems and methods are provided for pulse-width modulated control of power inverter using phase-shifted carrier signals. An electrical system comprises an energy source and a motor. The motor has a first set of windings and a second set of windings, which are electrically isolated from each other. An inverter module is coupled between the energy source and the motor and comprises a first set of phase legs coupled to the first set of windings and a second set of phase legs coupled to the second set of windings. A controller is coupled to the inverter module and is configured to achieve a desired power flow between the energy source and the motor by modulating the first set of phase legs using a first carrier signal and modulating the second set of phase legs using a second carrier signal. The second carrier signal is phase-shifted relative to the first carrier signal.

  1. 1986 Year End Report for Road Following at Carnegie-Mellon

    DTIC Science & Technology

    1987-05-01

    how to make them work efficiently. We designed a hierarchical structure and a monitor module which manages all parts of the hierarchy (see figure 1...database, called the Local Map, is managed by a program known as the Local Map Builder (LMB). Each module stores and retrieves information in the...knowledge-intensive modules, and a database manager that synchronizes the modules-is characteristic of a traditional blackboard system. Such a system is

  2. The Software Design for the Wide-Field Infrared Explorer Attitude Control System

    NASA Technical Reports Server (NTRS)

    Anderson, Mark O.; Barnes, Kenneth C.; Melhorn, Charles M.; Phillips, Tom

    1998-01-01

    The Wide-Field Infrared Explorer (WIRE), currently scheduled for launch in September 1998, is the fifth of five spacecraft in the NASA/Goddard Small Explorer (SMEX) series. This paper presents the design of WIRE's Attitude Control System flight software (ACS FSW). WIRE is a momentum-biased, three-axis stabilized stellar pointer which provides high-accuracy pointing and autonomous acquisition for eight to ten stellar targets per orbit. WIRE's short mission life and limited cryogen supply motivate requirements for Sun and Earth avoidance constraints which are designed to prevent catastrophic instrument damage and to minimize the heat load on the cryostat. The FSW implements autonomous fault detection and handling (FDH) to enforce these instrument constraints and to perform several other checks which insure the safety of the spacecraft. The ACS FSW implements modules for sensor data processing, attitude determination, attitude control, guide star acquisition, actuator command generation, command/telemetry processing, and FDH. These software components are integrated with a hierarchical control mode managing module that dictates which software components are currently active. The lowest mode in the hierarchy is the 'safest' one, in the sense that it utilizes a minimal complement of sensors and actuators to keep the spacecraft in a stable configuration (power and pointing constraints are maintained). As higher modes in the hierarchy are achieved, the various software functions are activated by the mode manager, and an increasing level of attitude control accuracy is provided. If FDH detects a constraint violation or other anomaly, it triggers a safing transition to a lower control mode. The WIRE ACS FSW satisfies all target acquisition and pointing accuracy requirements, enforces all pointing constraints, provides the ground with a simple means for reconfiguring the system via table load, and meets all the demands of its real-time embedded environment (16 MHz Intel 80386 processor with 80387 coprocessor running under the VRTX operating system). The mode manager organizes and controls all the software modules used to accomplish these goals, and in particular, the FDH module is tightly coupled with the mode manager.

  3. Generation of 70 fs broadband pulses in a hybrid nonlinear amplification system with mode-locked Yb:YAG ceramic oscillator

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Wang, Chao; Luo, Daping; Yang, Chao; Li, Jiang; Ge, Lin; Pan, Yubai; Li, Wenxue

    2017-12-01

    We demonstrate the passively mode-locked laser performances of bulk Yb:YAG ceramic prepared by non-aqueous tape casting, which generates initial pulses in temporal width of 3 ps and spectrum width of 3 nm without intra-cavity dispersion management. The ceramic laser is further used as seeding oscillator in a fiber nonlinear amplification system, where ultrashort pulses in maximum output power of ˜100 W and pulse duration of 70 fs are achieved. Moreover, the laser spectrum is broadened to be ˜41 nm due to self-phase modulation effects in the gain fiber, overcoming the narrow spectrum limitations of ceramic materials. Our approach opens a new avenue for power-scaling and spectrum-expanding of femtosecond ceramic lasers.

  4. Design of a handheld infrared imaging device based on uncooled infrared detector

    NASA Astrophysics Data System (ADS)

    Sun, Xianzhong; Li, Junwei; Zhang, Yazhou

    2017-02-01

    This paper, we introduced the system structure and operation principle of the device, and discussed our solutions for image data acquisition and storage, operating states and modes control and power management in detail. Besides, we proposed a algorithm of pseudo color for thermal image and applied it to the image processing module of the device. The thermal images can be real time displayed in a 1.8 inches TFT-LCD. The device has a compacted structure and can be held easily by one hand. It also has a good imaging performance with low power consumption, thermal sensitivity is less than 150mK. At last, we introduced one of its applications for fault diagnosis in electronic circuits, the test shows that: it's a good solution for fast fault detection.

  5. Mir Cooperative Solar Array

    NASA Technical Reports Server (NTRS)

    Skor, Mike; Hoffman, Dave J.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA), produced jointly by the United States and Russia, was deployed on the Mir Russian space station on May 25, 1996. The MCSA is a photovoltaic electrical power system that can generate up to 6 kW. The power from the MCSA is needed to extend Mir's lifetime and to support experiments conducted there by visiting U.S. astronauts. The MCSA was brought to Mir via the Space Shuttle Atlantis on the STS-74 mission, launched November 12, 1995. This cooperative venture combined the best technology of both countries: the United States provided high-efficiency, lightweight photovoltaic panel modules, whereas Russia provided the array structure and deployment mechanism. Technology developed in the Space Station Freedom Program, and now being used in the International Space Station, was used to develop MCSA's photovoltaic panel. Performance data obtained from MCSA operation on Mir will help engineers better understand the performance of the photovoltaic panel modules in orbit. This information will be used to more accurately predict the performance of the International Space Station solar arrays. Managed by the NASA Lewis Research Center for NASA's International Space Station Program Office in Houston, Texas, the MCSA Project was completed on time and under budget despite a very aggressive schedule.

  6. New Technologies for Managing Cotton Modules

    USDA-ARS?s Scientific Manuscript database

    The use of RFID transponders in the module tags on round modules formed by John Deere harvesters has opened up new possibilities for managing modules and harvest data. Tools are needed to help integrate this new technology and provide additional value to growers and ginners. A mobile application w...

  7. New technologies for managing cotton modules

    USDA-ARS?s Scientific Manuscript database

    The use of RFID transponders in the module tags on round modules formed by John Deere harvesters has opened up new possibilities for managing modules and harvest data. Tools are needed to help integrate this new technology and provide additional value to growers and ginners. A mobile application w...

  8. Development of thermally controlled HALNA DPSSL for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Matsumoto, Osamu; Yasuhara, Ryo; Kurita, Takashi; Ikegawa, Tadashi; Sekine, Takashi; Kawashima, Toshiyuki; Kawanaka, Junji; Norimatsu, Takayoshi; Miyanaga, Noriaki; Izawa, Yasukazu; Nakatsuka, Masahiro; Miyamoto, Masahiro; Kan, Hirofumi; Furukawa, Hiroyuki; Motokoshi, Shinji

    2006-02-01

    We have been developing a high average-power laser system for science and industry applications that can generate an output of 20 J per pulse at 10-Hz operation. Water-cooled Nd:glass zig-zag slab is pumped with 803-nm AlGaAs laser-diode modules. To efficiently extract energy from the laser medium, the laser beam alternately passes through dual zig-zag slab amplifier modules. Twin LD modules equipped on each slab amplifier module pump the laser medium with a peak power density of 2.5 kW/cm2. In high power laser system, thermal load in the laser medium causes serious thermal effects. We arranged cladding glasses on the top and bottom of the laser slab to reduce thermal effects.

  9. Advanced infrared laser modulator development

    NASA Technical Reports Server (NTRS)

    Cheo, P. K.; Wagner, R.; Gilden, M.

    1984-01-01

    A parametric study was conducted to develop an electrooptic waveguide modulator for generating continuous tunable sideband power from an infrared CO2 laser. Parameters included were the waveguide configurations, microstrip dimensions device impedance, and effective dielectric constants. An optimum infrared laser modulator was established and was fabricated. This modulator represents the state-of-the-art integrated optical device, which has a three-dimensional topology to accommodate three lambda/4 step transformers for microwave impedance matching at both the input and output terminals. A flat frequency response of the device over 20 HGz or = 3 dB) was achieved. Maximum single sideband to carrier power greater than 1.2% for 20 W microwave input power at optical carrier wavelength of 10.6 microns was obtained.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, Jason; Dobrzynski, Daniel S.

    A smart charging system for charging a plug-in electric vehicle (PEV) includes an electric vehicle supply equipment (EVSE) configured to supply electrical power to the PEV through a smart charging module coupled to the EVSE. The smart charging module comprises an electronic circuitry which includes a processor. The electronic circuitry includes electronic components structured to receive electrical power from the EVSE, and supply the electrical power to the PEV. The electronic circuitry is configured to measure a charging parameter of the PEV. The electronic circuitry is further structured to emulate a pulse width modulated signal generated by the EVSE. Themore » smart charging module can also include a first coupler structured to be removably couple to the EVSE and a second coupler structured to be removably coupled to the PEV.« less

  11. Phillips removes Failed RPCM (Remote Power Controller Module)

    NASA Image and Video Library

    2005-09-20

    ISS011-E-13361 (20 September 2005) --- Astronaut John L. Phillips, Expedition 11 NASA science officer and flight engineer, performs a Remote Power Control Module (RPCM) remove and replacement in the Unity node of the international space station.

  12. Preliminary design for a standard 10 sup 7 bit Solid State Memory (SSM)

    NASA Technical Reports Server (NTRS)

    Hayes, P. J.; Howle, W. M., Jr.; Stermer, R. L., Jr.

    1978-01-01

    A modular concept with three separate modules roughly separating bubble domain technology, control logic technology, and power supply technology was employed. These modules were respectively the standard memory module (SMM), the data control unit (DCU), and power supply module (PSM). The storage medium was provided by bubble domain chips organized into memory cells. These cells and the circuitry for parallel data access to the cells make up the SMM. The DCU provides a flexible serial data interface to the SMM. The PSM provides adequate power to enable one DCU and one SMM to operate simultaneously at the maximum data rate. The SSM was designed to handle asynchronous data rates from dc to 1.024 Mbs with a bit error rate less than 1 error in 10 to the eight power bits. Two versions of the SSM, a serial data memory and a dual parallel data memory were specified using the standard modules. The SSM specification includes requirements for radiation hardness, temperature and mechanical environments, dc magnetic field emission and susceptibility, electromagnetic compatibility, and reliability.

  13. The light ion pulsed power induction accelerator for ETF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, M.G.; Olson, R.E.; Olson, C.L.

    1994-12-31

    Our Engineering Test Facility (ETF) driver concept is based on HERMES III and RHEPP technologies. Actually, it is a scaled-down version of the LMF design incorporating repetition rate capabilities of up to 10 Hz CW. The preconceptual design presented here provides 200-TW peak power to the ETF target during 10 ns, equal to 2-MJ total ion beam energy. Linear inductive voltage addition driving a self-magnetically insulated transmission line (MITL) is utilized to generate the 36-MV peak voltage needed for lithium ion beams. The {approximately} 3-MA ion current is achieved by utilizing many accelerating modules in parallel. Since the current permore » module is relatively modest ({approximately}300 kA), two-stage or one-stage extraction diodes can be utilized for the generation of singly charged lithium ions. The accelerating modules are arranged symmetrically around the fusion chamber in order to provide uniform irradiation onto the ETF target. In addition, the modules are fired in a programmed sequence in order to generate the optimum power pulse shape onto the target. This design utilizes RHEPP accelerator modules as the principal power source.« less

  14. Power Generator with Thermo-Differential Modules

    NASA Technical Reports Server (NTRS)

    Saiz, John R.; Nguyen, James

    2010-01-01

    A thermoelectric power generator consists of an oven box and a solar cooker/solar reflector unit. The solar reflector concentrates sunlight into heat and transfers the heat into the oven box via a heat pipe. The oven box unit is surrounded by five thermoelectric modules and is located at the bottom end of the solar reflector. When the heat is pumped into one side of the thermoelectric module and ejected from the opposite side at ambient temperatures, an electrical current is produced. Typical temperature accumulation in the solar reflector is approximately 200 C (392 F). The heat pipe then transfers heat into the oven box with a loss of about 40 percent. At the ambient temperature of about 20 C (68 F), the temperature differential is about 100 C (180 F) apart. Each thermoelectric module, generates about 6 watts of power. One oven box with five thermoelectric modules produces about 30 watts. The system provides power for unattended instruments in remote areas, such as space colonies and space vehicles, and in polar and other remote regions on Earth.

  15. High average power magnetic modulator for metal vapor lasers

    DOEpatents

    Ball, Don G.; Birx, Daniel L.; Cook, Edward G.; Miller, John L.

    1994-01-01

    A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.

  16. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 30: Intermediate Power Supplies. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on intermediate power supplies is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Four lessons are included…

  17. Solid state pulsed power generator

    DOEpatents

    Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

    2014-02-11

    A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

  18. Implementation of the Air Program Information Management System (APIMS) Inspection Module

    DTIC Science & Technology

    2009-05-01

    7 5 T H A I R B A S E W I N G Implementation of the Air Program Information Management System (APIMS) Inspection Module 2009 Environment...Implementation of the Air Program Information Management System (APIMS) Inspection Module 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  19. Solar powered hybrid sensor module program

    NASA Technical Reports Server (NTRS)

    Johnson, J. M.; Holmes, H. K.

    1985-01-01

    Geo-orbital systems of the near future will require more sophisticated electronic and electromechanical monitoring and control systems than current satellite systems with an emphasis in the design on the electronic density and autonomy of the subsystem components. Results of a project to develop, design, and implement a proof-of-concept sensor system for space applications, with hybrids forming the active subsystem components are described. The design of the solar power hybrid sensor modules is discussed. Module construction and function are described. These modules combined low power CMOS electronics, GaAs solar cells, a crystal oscillatory standard UART data formatting, and a bidirectional optical data link into a single 1.25 x 1.25 x 0.25 inch hybrid package which has no need for electrical input or output. Several modules were built and tested. Applications of such a system for future space missions are also discussed.

  20. Outdoor Performance of a Thin-Film Gallium-Arsenide Photovoltaic Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, T. J.; Deceglie, M. G.; Marion, B.

    2013-06-01

    We deployed a 855 cm2 thin-film, single-junction gallium arsenide (GaAs) photovoltaic (PV) module outdoors. Due to its fundamentally different cell technology compared to silicon (Si), the module responds differently to outdoor conditions. On average during the test, the GaAs module produced more power when its temperature was higher. We show that its maximum-power temperature coefficient, while actually negative, is several times smaller in magnitude than that of a Si module used for comparison. The positive correlation of power with temperature in GaAs is due to temperature-correlated changes in the incident spectrum. We show that a simple correction based on precipitablemore » water vapor (PWV) brings the photocurrent temperature coefficient into agreement with that measured by other methods and predicted by theory. The low operating temperature and small temperature coefficient of GaAs give it an energy production advantage in warm weather.« less

Top