Sample records for modules biochemical properties

  1. Designing degradable hydrogels for orthogonal control of cell microenvironments

    PubMed Central

    Kharkar, Prathamesh M.

    2013-01-01

    Degradable and cell-compatible hydrogels can be designed to mimic the physical and biochemical characteristics of native extracellular matrices and provide tunability of degradation rates and related properties under physiological conditions. Hence, such hydrogels are finding widespread application in many bioengineering fields, including controlled bioactive molecule delivery, cell encapsulation for controlled three-dimensional culture, and tissue engineering. Cellular processes, such as adhesion, proliferation, spreading, migration, and differentiation, can be controlled within degradable, cell-compatible hydrogels with temporal tuning of biochemical or biophysical cues, such as growth factor presentation or hydrogel stiffness. However, thoughtful selection of hydrogel base materials, formation chemistries, and degradable moieties is necessary to achieve the appropriate level of property control and desired cellular response. In this review, hydrogel design considerations and materials for hydrogel preparation, ranging from natural polymers to synthetic polymers, are overviewed. Recent advances in chemical and physical methods to crosslink hydrogels are highlighted, as well as recent developments in controlling hydrogel degradation rates and modes of degradation. Special attention is given to spatial or temporal presentation of various biochemical and biophysical cues to modulate cell response in static (i.e., non-degradable) or dynamic (i.e., degradable) microenvironments. This review provides insight into the design of new cell-compatible, degradable hydrogels to understand and modulate cellular processes for various biomedical applications. PMID:23609001

  2. Chemical modulation of glycerolipid signaling and metabolic pathways

    PubMed Central

    Scott, Sarah A.; Mathews, Thomas P.; Ivanova, Pavlina T.; Lindsley, Craig W.; Brown, H. Alex

    2014-01-01

    Thirty years ago, glycerolipids captured the attention of biochemical researchers as novel cellular signaling entities. We now recognize that these biomolecules occupy signaling nodes critical to a number of physiological and pathological processes. Thus, glycerolipid-metabolizing enzymes present attractive targets for new therapies. A number of fields—ranging from neuroscience and cancer to diabetes and obesity—have elucidated the signaling properties of glycerolipids. The biochemical literature teems with newly emerging small molecule inhibitors capable of manipulating glycerolipid metabolism and signaling. This ever-expanding pool of chemical modulators appears daunting to those interested in exploiting glycerolipid-signaling pathways in their model system of choice. This review distills the current body of literature surrounding glycerolipid metabolism into a more approachable format, facilitating the application of small molecule inhibitors to novel systems. PMID:24440821

  3. Gel integration for microfluidic applications.

    PubMed

    Zhang, Xuanqi; Li, Lingjun; Luo, Chunxiong

    2016-05-21

    Molecular diffusive membranes or materials are important for biological applications in microfluidic systems. Hydrogels are typical materials that offer several advantages, such as free diffusion for small molecules, biocompatibility with most cells, temperature sensitivity, relatively low cost, and ease of production. With the development of microfluidic applications, hydrogels can be integrated into microfluidic systems by soft lithography, flow-solid processes or UV cure methods. Due to their special properties, hydrogels are widely used as fluid control modules, biochemical reaction modules or biological application modules in different applications. Although hydrogels have been used in microfluidic systems for more than ten years, many hydrogels' properties and integrated techniques have not been carefully elaborated. Here, we systematically review the physical properties of hydrogels, general methods for gel-microfluidics integration and applications of this field. Advanced topics and the outlook of hydrogel fabrication and applications are also discussed. We hope this review can help researchers choose suitable methods for their applications using hydrogels.

  4. Deciphering the BAR code of membrane modulators.

    PubMed

    Salzer, Ulrich; Kostan, Julius; Djinović-Carugo, Kristina

    2017-07-01

    The BAR domain is the eponymous domain of the "BAR-domain protein superfamily", a large and diverse set of mostly multi-domain proteins that play eminent roles at the membrane cytoskeleton interface. BAR domain homodimers are the functional units that peripherally associate with lipid membranes and are involved in membrane sculpting activities. Differences in their intrinsic curvatures and lipid-binding properties account for a large variety in membrane modulating properties. Membrane activities of BAR domains are further modified and regulated by intramolecular or inter-subunit domains, by intermolecular protein interactions, and by posttranslational modifications. Rather than providing detailed cell biological information on single members of this superfamily, this review focuses on biochemical, biophysical, and structural aspects and on recent findings that paradigmatically promote our understanding of processes driven and modulated by BAR domains.

  5. Hierarchical thinking in network biology: the unbiased modularization of biochemical networks.

    PubMed

    Papin, Jason A; Reed, Jennifer L; Palsson, Bernhard O

    2004-12-01

    As reconstructed biochemical reaction networks continue to grow in size and scope, there is a growing need to describe the functional modules within them. Such modules facilitate the study of biological processes by deconstructing complex biological networks into conceptually simple entities. The definition of network modules is often based on intuitive reasoning. As an alternative, methods are being developed for defining biochemical network modules in an unbiased fashion. These unbiased network modules are mathematically derived from the structure of the whole network under consideration.

  6. Actin dynamics, architecture, and mechanics in cell motility.

    PubMed

    Blanchoin, Laurent; Boujemaa-Paterski, Rajaa; Sykes, Cécile; Plastino, Julie

    2014-01-01

    Tight coupling between biochemical and mechanical properties of the actin cytoskeleton drives a large range of cellular processes including polarity establishment, morphogenesis, and motility. This is possible because actin filaments are semi-flexible polymers that, in conjunction with the molecular motor myosin, can act as biological active springs or "dashpots" (in laymen's terms, shock absorbers or fluidizers) able to exert or resist against force in a cellular environment. To modulate their mechanical properties, actin filaments can organize into a variety of architectures generating a diversity of cellular organizations including branched or crosslinked networks in the lamellipodium, parallel bundles in filopodia, and antiparallel structures in contractile fibers. In this review we describe the feedback loop between biochemical and mechanical properties of actin organization at the molecular level in vitro, then we integrate this knowledge into our current understanding of cellular actin organization and its physiological roles.

  7. Effects of short-term dietary restriction and glutamine supplementation in vitro on the modulation of inflammatory properties.

    PubMed

    C de Oliveira, Dalila; Santos, Ed Wilson; Nogueira-Pedro, Amanda; Xavier, José Guilherme; Borelli, Primavera; Fock, Ricardo Ambrósio

    2018-04-01

    Dietary restriction (DR) is a nutritional intervention that exerts profound effects on biochemical and immunologic parameters, modulating some inflammatory properties. Glutamine (GLN) is a conditionally essential amino acid that can modulate inflammatory properties. However, there is a lack of data evaluating the effects of DR and GLN supplementation, especially in relation to inflammatory cytokine production and the expression of transcription factors such as nuclear factor (NF)-κB. We subjected 3-mo-old male Balb/c mice to DR by reducing their food intake by 30%. DR animals lost weight and showed reduced levels of serum triacylglycerols, glucose, cholesterol, and calcium as well as a reduction in bone density. Additionally, blood, peritoneal, and spleen cellularity were reduced, lowering the number of peritoneal F4/80- and CD86-positive cells and the total number of splenic CD4- and CD8-positive cells. The production of interleukin (IL)-10 and the expression of NF-κB in splenic cells were not affected by DR or by GLN supplementation. However, peritoneal macrophages from DR animals showed reduced IL-12 and tumor necrosis factor-α production and increased IL-10 production with reduced phosphorylation of NF-κB expression. Additionally, GLN was able to modulate cytokine production by peritoneal cells from the control group, although no effects were observed in cells from the DR group. DR induces biochemical and immunologic changes, in particular by reducing IL-12 and tumor necrosis factor-α production by macrophages and clearly upregulating IL-10 production, whereas GLN supplementation did not modify these parameters in cells from DR animals. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Red Blood Cell Susceptibility to Pneumolysin

    PubMed Central

    Bokori-Brown, Monika; Petrov, Peter G.; Khafaji, Mawya A.; Mughal, Muhammad K.; Naylor, Claire E.; Shore, Angela C.; Gooding, Kim M.; Casanova, Francesco; Mitchell, Tim J.; Titball, Richard W.; Winlove, C. Peter

    2016-01-01

    This study investigated the effect of the biochemical and biophysical properties of the plasma membrane as well as membrane morphology on the susceptibility of human red blood cells to the cholesterol-dependent cytolysin pneumolysin, a key virulence factor of Streptococcus pneumoniae, using single cell studies. We show a correlation between the physical properties of the membrane (bending rigidity and surface and dipole electrostatic potentials) and the susceptibility of red blood cells to pneumolysin-induced hemolysis. We demonstrate that biochemical modifications of the membrane induced by oxidative stress, lipid scrambling, and artificial cell aging modulate the cell response to the toxin. We provide evidence that the diversity of response to pneumolysin in diabetic red blood cells correlates with levels of glycated hemoglobin and that the mechanical properties of the red blood cell plasma membrane are altered in diabetes. Finally, we show that diabetic red blood cells are more resistant to pneumolysin and the related toxin perfringolysin O relative to healthy red blood cells. Taken together, these studies indicate that the diversity of cell response to pneumolysin within a population of human red blood cells is influenced by the biophysical and biochemical status of the plasma membrane and the chemical and/or oxidative stress pre-history of the cell. PMID:26984406

  9. Modulation of DNA binding by gene-specific transcription factors.

    PubMed

    Schleif, Robert F

    2013-10-01

    The transcription of many genes, particularly in prokaryotes, is controlled by transcription factors whose activity can be modulated by controlling their DNA binding affinity. Understanding the molecular mechanisms by which DNA binding affinity is regulated is important, but because forming definitive conclusions usually requires detailed structural information in combination with data from extensive biophysical, biochemical, and sometimes genetic experiments, little is truly understood about this topic. This review describes the biological requirements placed upon DNA binding transcription factors and their consequent properties, particularly the ways that DNA binding affinity can be modulated and methods for its study. What is known and not known about the mechanisms modulating the DNA binding affinity of a number of prokaryotic transcription factors, including CAP and lac repressor, is provided.

  10. [Dynamics of biomacromolecules in coherent electromagnetic radiation field].

    PubMed

    Leshcheniuk, N S; Apanasevich, E E; Tereshenkov, V I

    2014-01-01

    It is shown that induced oscillations and periodic displacements of the equilibrium positions occur in biomacromolecules in the absence of electromagnetic radiation absorption, due to modulation of interaction potential between atoms and groups of atoms forming the non-valence bonds in macromolecules by the external electromagnetic field. Such "hyperoscillation" state causes inevitably the changes in biochemical properties of macromolecules and conformational transformation times.

  11. Requirement for serum in medium supplemented with insulin-transferrin-selenium for hydrodynamic cultivation of engineered cartilage.

    PubMed

    Yang, Yueh-Hsun; Barabino, Gilda A

    2011-08-01

    Achievement of viable engineered tissues through in vitro cultivation in bioreactor systems requires a thorough understanding of the complex interplay between hydrodynamic forces and biochemical cues such as serum. To this end, chondrocyte-seeded constructs were cultured under continuous fluid-induced shear forces with reduced serum content (0%-2%, v/v), which was partially or completely replaced by a potential substitute, insulin-transferrin-selenium, to minimize deleterious effects associated with the use of culture media containing high levels of serum (10%-20%). Low-serum cultures yielded constructs with similar biochemical properties to those cultivated with high-serum supplements, whereas the serum-free constructs exhibited poor cell proliferation, insufficient extracellular matrix production, and rapid degradation of and/or shear-induced damage to polyglycolic acid scaffolds. A fibrous outer capsule typically observed in hydrodynamic cultures and characterized by increased cell density and decreased (virtually none) glycosaminoglycan deposition was eliminated when serum concentration was equal to or <0.2% in the presence of hydrodynamic stimuli. Our findings suggest that serum is a requirement in insulin-transferrin-selenium-supplemented cultures in order for constructs to exhibit improved properties in response to hydrodynamic forces, and that mechanical and biochemical stimuli may synergistically modulate tissue properties and morphology through shear-responsive signals.

  12. Cellular level models as tools for cytokine design.

    PubMed

    Radhakrishnan, Mala L; Tidor, Bruce

    2010-01-01

    Cytokines and growth factors are critical regulators that connect intracellular and extracellular environments through binding to specific cell-surface receptors. They regulate a wide variety of immunological, growth, and inflammatory response processes. The overall signal initiated by a population of cytokine molecules over long time periods is controlled by the subtle interplay of binding, signaling, and trafficking kinetics. Building on the work of others, we abstract a simple kinetic model that captures relevant features from cytokine systems as well as related growth factor systems. We explore a large range of potential biochemical behaviors, through systematic examination of the model's parameter space. Different rates for the same reaction topology lead to a dramatic range of biochemical network properties and outcomes. Evolution might productively explore varied and different portions of parameter space to create beneficial behaviors, and effective human therapeutic intervention might be achieved through altering network kinetic properties. Quantitative analysis of the results reveals the basis for tensions among a number of different network characteristics. For example, strong binding of cytokine to receptor can increase short-term receptor activation and signal initiation but decrease long-term signaling due to internalization and degradation. Further analysis reveals the role of specific biochemical processes in modulating such tensions. For instance, the kinetics of cytokine binding and receptor activation modulate whether ligand-receptor dissociation can generally occur before signal initiation or receptor internalization. Beyond analysis, the same models and model behaviors provide an important basis for the design of more potent cytokine therapeutics by providing insight into how binding kinetics affect ligand potency. (c) 2010 American Institute of Chemical Engineers

  13. Biochemical properties and evaluation of washing performance in commercial detergent compatibility of two collagenolytic serine peptidases secreted by Aspergillus fischeri and Penicillium citrinum.

    PubMed

    Ida, Érika Lika; da Silva, Ronivaldo Rodrigues; de Oliveira, Tássio Brito; Souto, Tatiane Beltramini; Leite, Juliana Abigail; Rodrigues, André; Cabral, Hamilton

    2017-03-16

    Filamentous fungi secrete diverse peptidases with different biochemical properties, which is of considerable importance for application in various commercial sectors. In this study, we describe the isolation of two fungal species collected from the soil of decayed organic matter: Aspergillus fischeri and Penicillium citrinum. In a submerged bioprocess, we observed better peptidase production with the fungus P. citrinum, which reached a peak production at 168 h with 760 U/mL, in comparison with the fungus A. fischeri, which reached a peak production at 72 h with 460 U/mL. In both situations, the fermentative medium contained 0.5% crushed feathers as a source of nitrogen. On performing biochemical characterization, we detected two alkaline serine peptidases: The one secreted by P. citrinum had optimal activity at pH 7.0 and at 45°C, while the one secreted by A. fischeri had optimal activity in pH 6.5-8 and at 55-60°C. Metallic ions were effective in modulating these peptidases; in particular, Cu 2+ promoted negative modulation of both peptidases. The peptidases were stable and functional under conditions of nonionic surfactants, temperatures up to 45°C for 1 h, and incubation over a wide pH range. In addition, it was observed that both peptidases had the capacity to hydrolyze collagen and performed well in removing an egg protein stain when supplemented into a commercial powder detergent; this was especially true for the peptidase from P. citrinum.

  14. Digoxin and Adenosine Triphosphate Enhance the Functional Properties of Tissue-Engineered Cartilage

    PubMed Central

    Makris, Eleftherios A.; Huang, Brian J.; Hu, Jerry C.; Chen-Izu, Ye

    2015-01-01

    Toward developing engineered cartilage for the treatment of cartilage defects, achieving relevant functional properties before implantation remains a significant challenge. Various chemical and mechanical stimuli have been used to enhance the functional properties of engineered musculoskeletal tissues. Recently, Ca2+-modulating agents have been used to enhance matrix synthesis and biomechanical properties of engineered cartilage. The objective of this study was to determine whether other known Ca2+ modulators, digoxin and adenosine triphosphate (ATP), can be employed as novel stimuli to increase collagen synthesis and functional properties of engineered cartilage. Neocartilage constructs were formed by scaffold-free self-assembling of primary bovine articular chondrocytes. Digoxin, ATP, or both agents were added to the culture medium for 1 h/day on days 10–14. After 4 weeks of culture, neocartilage properties were assessed for gross morphology, biochemical composition, and biomechanical properties. Digoxin and ATP were found to increase neocartilage collagen content by 52–110% over untreated controls, while maintaining proteoglycan content near native tissue values. Furthermore, digoxin and ATP increased the tensile modulus by 280% and 180%, respectively, while the application of both agents increased the modulus by 380%. The trends in tensile properties were found to correlate with the amount of collagen cross-linking. Live Ca2+ imaging experiments revealed that both digoxin and ATP were able to increase Ca2+ oscillations in monolayer-cultured chondrocytes. This study provides a novel approach toward directing neocartilage maturation and enhancing its functional properties using novel Ca2+ modulators. PMID:25473799

  15. Lessons from (patho)physiological tissue stiffness and their implications for drug screening, drug delivery and regenerative medicine.

    PubMed

    Chen, Wen Li Kelly; Simmons, Craig A

    2011-04-30

    Diseased tissues are noted for their compromised mechanical properties, which contribute to organ failure; regeneration entails restoration of tissue structure and thereby functions. Thus, the physical signature of a tissue is closely associated with its biological function. In this review, we consider a mechanics-centric view of disease and regeneration by drawing parallels between in vivo tissue-level observations and corroborative cellular evidence in vitro to demonstrate the importance of the mechanical stiffness of the extracellular matrix in these processes. This is not intended to devalue the importance of biochemical signaling; in fact, as we discuss, many mechanical stiffness-driven processes not only require cooperation with biochemical cues, but they ultimately converge at common signaling cascades to influence cell and tissue function in an integrative manner. The study of how physical and biochemical signals collectively modulate cell function not only brings forth a more holistic understanding of cell (patho)biology, but it also creates opportunities to control material properties to improve culture platforms for research and drug screening and aid in the rationale design of biomaterials for molecular therapy and tissue engineering applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Quantitative biochemical characterization and biotechnological production of caspase modulator, XIAP: Therapeutic implications for apoptosis-associated diseases.

    PubMed

    Yun, Si-Eun; Nam, Min-Kyung; Rhim, Hyangshuk

    2018-07-01

    Regulating apoptosis is a common and essential therapeutic strategy for cancer and neurodegenerative disorders. Based on basic studies of apoptotic mechanisms, various researches have attempted to overcome the pathogenesis of such diseases by activating or inhibiting apoptosis. Generally, the biochemical characteristics of the target molecules should be evaluated along with understanding of their mechanisms of action during drug development. Among apoptotic regulators, XIAP serves as a potent negative regulator to block apoptosis through the inhibition of caspase (CASP)-9 and -3/7. Although XIAP is an attractive target with such apoptotic-modulating property, biochemical and biophysical studies of XIAP are still challenging. In this study, the CASP-9 and -3/7 inhibitors XIAP, 242Δ and Δ230 were prepared using the pGEX expression system and biochemically characterized. These inhibitors were expressed in Escherichia coli at a concentration of ≥20 mg/L culture under a native condition with 0.01 mM IPTG induction. Notably, using a simple and rapid affinity purification technique, these CASP-9 and -3/7 inhibitors have been purified, yielding ≥5 mg/L culture at approximately 90% purity. We have determined that HtrA2 specifically binds to the BIR2 and BIR3 of XIAP at a 1:1 molecular ratio. Moreover, in vitro cell-free CASP-9 and -3/7 activation-apoptosis assays have demonstrated that these purified XIAP proteins dramatically inhibit CASP-9 and -3/7 action. Our system is suitable for biochemical studies, such as quantitation of the number of molecules acting on the apoptosis regulation, and provides a basis and insights that can be applied to the development of therapeutic agents for neurodegenerative disorders and cancer. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. When galectins recognize glycans: from biochemistry to physiology and back again.

    PubMed

    Di Lella, Santiago; Sundblad, Victoria; Cerliani, Juan P; Guardia, Carlos M; Estrin, Dario A; Vasta, Gerardo R; Rabinovich, Gabriel A

    2011-09-20

    In the past decade, increasing efforts have been devoted to the study of galectins, a family of evolutionarily conserved glycan-binding proteins with multifunctional properties. Galectins function, either intracellularly or extracellularly, as key biological mediators capable of monitoring changes occurring on the cell surface during fundamental biological processes such as cellular communication, inflammation, development, and differentiation. Their highly conserved structures, exquisite carbohydrate specificity, and ability to modulate a broad spectrum of biological processes have captivated a wide range of scientists from a wide spectrum of disciplines, including biochemistry, biophysics, cell biology, and physiology. However, in spite of enormous efforts to dissect the functions and properties of these glycan-binding proteins, limited information about how structural and biochemical aspects of these proteins can influence biological functions is available. In this review, we aim to integrate structural, biochemical, and functional aspects of this bewildering and ancient family of glycan-binding proteins and discuss their implications in physiologic and pathologic settings. © 2011 American Chemical Society

  18. Molecular Dynamics Simulations Reveal the Mechanisms of Allosteric Activation of Hsp90 by Designed Ligands

    NASA Astrophysics Data System (ADS)

    Vettoretti, Gerolamo; Moroni, Elisabetta; Sattin, Sara; Tao, Jiahui; Agard, David A.; Bernardi, Anna; Colombo, Giorgio

    2016-04-01

    Controlling biochemical pathways through chemically designed modulators may provide novel opportunities to develop therapeutic drugs and chemical tools. The underlying challenge is to design new molecular entities able to act as allosteric chemical switches that selectively turn on/off functions by modulating the conformational dynamics of their target protein. We examine the origins of the stimulation of ATPase and closure kinetics in the molecular chaperone Hsp90 by allosteric modulators through atomistic molecular dynamics (MD) simulations and analysis of protein-ligand interactions. In particular, we focus on the cross-talk between allosteric ligands and protein conformations and its effect on the dynamic properties of the chaperone’s active state. We examine the impact of different allosteric modulators on the stability, structural and internal dynamics properties of Hsp90 closed state. A critical aspect of this study is the development of a quantitative model that correlates Hsp90 activation to the presence of a certain compound, making use of information on the dynamic adaptation of protein conformations to the presence of the ligand, which allows to capture conformational states relevant in the activation process. We discuss the implications of considering the conformational dialogue between allosteric ligands and protein conformations for the design of new functional modulators.

  19. Automatic decomposition of kinetic models of signaling networks minimizing the retroactivity among modules.

    PubMed

    Saez-Rodriguez, Julio; Gayer, Stefan; Ginkel, Martin; Gilles, Ernst Dieter

    2008-08-15

    The modularity of biochemical networks in general, and signaling networks in particular, has been extensively studied over the past few years. It has been proposed to be a useful property to analyze signaling networks: by decomposing the network into subsystems, more manageable units are obtained that are easier to analyze. While many powerful algorithms are available to identify modules in protein interaction networks, less attention has been paid to signaling networks de.ned as chemical systems. Such a decomposition would be very useful as most quantitative models are de.ned using the latter, more detailed formalism. Here, we introduce a novel method to decompose biochemical networks into modules so that the bidirectional (retroactive) couplings among the modules are minimized. Our approach adapts a method to detect community structures, and applies it to the so-called retroactivity matrix that characterizes the couplings of the network. Only the structure of the network, e.g. in SBML format, is required. Furthermore, the modularized models can be loaded into ProMoT, a modeling tool which supports modular modeling. This allows visualization of the models, exploiting their modularity and easy generation of models of one or several modules for further analysis. The method is applied to several relevant cases, including an entangled model of the EGF-induced MAPK cascade and a comprehensive model of EGF signaling, demonstrating its ability to uncover meaningful modules. Our approach can thus help to analyze large networks, especially when little a priori knowledge on the structure of the network is available. The decomposition algorithms implemented in MATLAB (Mathworks, Inc.) are freely available upon request. ProMoT is freely available at http://www.mpi-magdeburg.mpg.de/projects/promot. Supplementary data are available at Bioinformatics online.

  20. Biochemical Oxygen Demand and Dissolved Oxygen. Training Module 5.105.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the azide modification of the Winkler dissolved oxygen test and the electronic dissolved oxygen meter test procedures for determining the dissolved oxygen and the biochemical oxygen demand of a wastewater sample. Included are…

  1. A biochemically semi-detailed model of auxin-mediated vein formation in plant leaves.

    PubMed

    Roussel, Marc R; Slingerland, Martin J

    2012-09-01

    We present here a model intended to capture the biochemistry of vein formation in plant leaves. The model consists of three modules. Two of these modules, those describing auxin signaling and transport in plant cells, are biochemically detailed. We couple these modules to a simple model for PIN (auxin efflux carrier) protein localization based on an extracellular auxin sensor. We study the single-cell responses of this combined model in order to verify proper functioning of the modeled biochemical network. We then assemble a multicellular model from the single-cell building blocks. We find that the model can, under some conditions, generate files of polarized cells, but not true veins. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Application of spatially modulated near-infrared structured light to study changes in optical properties of mouse brain tissue during heatstress.

    PubMed

    Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A; Abookasis, David

    2017-11-10

    Heat stress (HS) is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological, and hematological changes. The goal of the present research was to detect variations in optical properties (absorption, reduced scattering, and refractive index coefficients) of mouse brain tissue during HS by using near-infrared (NIR) spatial light modulation. NIR spatial patterns with different spatial phases were used to differentiate the effects of tissue scattering from those of absorption. Decoupling optical scattering from absorption enabled the quantification of a tissue's chemical constituents (related to light absorption) and structural properties (related to light scattering). Technically, structured light patterns at low and high spatial frequencies of six wavelengths ranging between 690 and 970 nm were projected onto the mouse scalp surface while diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse scalp. Concurrently to pattern projection, brain temperature was measured with a thermal camera positioned slightly off angle from the mouse head while core body temperature was monitored by thermocouple probe. Data analysis demonstrated variations from baseline measurements in a battery of intrinsic brain properties following HS.

  3. Structure and Biophysics of CBFβ/RUNX and Its Translocation Products.

    PubMed

    Tahirov, Tahir H; Bushweller, John

    2017-01-01

    The core binding factor (CBF) transcription factor is somewhat unique in that it is composed of a DNA binding RUNX subunit (RUNX1, 2, or 3) and a non-DNA binding CBFβ subunit, which modulates RUNX protein activity by modulating the auto-inhibition of the RUNX subunits. Since the discovery of this fascinating transcription factor more than 20 years ago, there has been a robust effort to characterize the structure as well as the biochemical properties of CBF. More recently, these efforts have also extended to the fusion proteins that arise from the subunits of CBF in leukemia. This chapter highlights the work of numerous labs which has provided a detailed understanding of the structure and function of this transcription factor and its fusion proteins.

  4. CelF of Orpinomyces PC-2 has an intron and encodes a cellulase (CelF) containing a carbohydrate-binding module.

    PubMed

    Chen, Huizhong; Li, Xin-Liang; Blum, David L; Ximenes, Eduardo A; Ljungdahl, Lars G

    2003-01-01

    A cDNA, designated celF, encoding a cellulase (CelF) was isolated from the anaerobic fungus Orpinomyces PC-2. The open reading frame contains regions coding for a signal peptide, a carbohydrate-binding module (CBM), a linker, and a catalytic domain. The catalytic domain was homologous to those of CelA and CelC of the same fungus and to that of the Neocallimastix patriciarum CELA, but CelF lacks a docking domain, characteristic for enzymes of cellulosomes. It was also homologous to the cellobiohydrolase IIs and endoglucanases of aerobic organisms. The gene has a 111-bp intron, located within the CBM-coding region. Some biochemical properties of the purified recombinant enzyme are described.

  5. Biomaterials and Culture Technologies for Regenerative Therapy of Liver Tissue.

    PubMed

    Perez, Roman A; Jung, Cho-Rok; Kim, Hae-Won

    2017-01-01

    Regenerative approach has emerged to substitute the current extracorporeal technologies for the treatment of diseased and damaged liver tissue. This is based on the use of biomaterials that modulate the responses of hepatic cells through the unique matrix properties tuned to recapitulate regenerative functions. Cells in liver preserve their phenotype or differentiate through the interactions with extracellular matrix molecules. Therefore, the intrinsic properties of the engineered biomaterials, such as stiffness and surface topography, need to be tailored to induce appropriate cellular functions. The matrix physical stimuli can be combined with biochemical cues, such as immobilized functional groups or the delivered actions of signaling molecules. Furthermore, the external modulation of cells, through cocultures with nonparenchymal cells (e.g., endothelial cells) that can signal bioactive molecules, is another promising avenue to regenerate liver tissue. This review disseminates the recent approaches of regenerating liver tissue, with a focus on the development of biomaterials and the related culture technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Aged keratinocyte phenotyping: morphology, biochemical markers and effects of Dead Sea minerals.

    PubMed

    Soroka, Yoram; Ma'or, Zeev; Leshem, Yael; Verochovsky, Lilian; Neuman, Rami; Brégégère, François Menahem; Milner, Yoram

    2008-10-01

    The aging process and its characterization in keratinocytes have not been studied in depth until now. We have assessed the cellular and molecular characteristics of aged epidermal keratinocytes in monolayer cultures and in skin by measuring their morphological, fluorometric and biochemical properties. Light and electron microscopy, as well as flow cytometry, revealed increase in cell size, changes in cell shape, alterations in mitochondrial structure and cytoplasmic content with aging. We showed that the expression of 16 biochemical markers was altered in aged cultured cells and in tissues, including caspases 1 and 3 and beta-galactosidase activities, immunoreactivities of p16, Ki67, 20S proteasome and effectors of the Fas-dependent apoptotic pathway. Aged cells diversity, and individual variability of aging markers, call for a multifunctional assessment of the aging phenomenon, and of its modulation by drugs. As a test case, we have measured the effects of Dead Sea minerals on keratinocyte cultures and human skin, and found that they stimulate proliferation and mitochondrial activity, decrease the expression of some aging markers, and limit apoptotic damage after UVB irradiation.

  7. The conformational flexibility of the carboxy terminal residues 105–114 is a key modulator of the catalytic activity and stability of Macrophage Migration Inhibitory Factor (MIF)†

    PubMed Central

    El-Turk, Farah; Cascella, Michele; Ouertatani-Sakouhi, Hajer; Narayanan, Raghavendran Lakshmi; Leng, Lin; Bucala, Richard; Hweckstetter, Markus; Rothlisberger, Ursula; Lashuel, Hilal A.

    2013-01-01

    Macrophage migration inhibitory factor (MIF) is a multifunctional protein and a major mediator of innate immunity. Although X-ray crystallography revealed that MIF exists as a homotrimer, its oligomerization state in vivo as well as the factors governing its oligomerization and stability remain poorly understood. The C-terminal region of MIF is highly conserved and participates in several intramolecular interactions that suggest a role in modulating the stability and biochemical activity of MIF. To determine the importance of these interactions, point mutations (A48P, L46A), insertions (P107) at the monomer-monomer interfaces, and C-terminal deletion (Δ110-114NSTFA and Δ105–114NVGWNNSTFA) variants were designed and their structural properties, thermodynamic stability, oligomerization state, catalytic activity and receptor binding were characterized using a battery of biophysical methods. The C-terminal deletion mutants ΔC5 huMIF1-109 and ΔC10 huMIF1-104 were enzymatically inactive and thermodynamically less stable than wild type MIF. Analytical ultracentrifugation studies demonstrate that both C-terminal mutants sediment as trimers and exhibit similar binding to CD74 as the wild type protein. Disrupting the conformation of the C-terminal region 105–114 and increasing its conformational flexibility through the insertion of a proline residue at position 107 was sufficient to reproduce the structural, biochemical and thermodynamic properties of the deletion mutants. P107 MIF forms an enzymatically inactive trimer and exhibits reduced thermodynamic stability relative to the wild type protein. To provide a rationale for the changes induced by these mutations at the molecular level, we also performed molecular dynamics simulations on these mutants in comparison to the wild type MIF. Together, our studies demonstrate that inter-subunit interactions involving the C-terminal region 105–114, including a salt-bridge interaction between Arg73 of one monomer and the carboxy terminus of a neighbouring monomer, play critical roles in modulating tertiary structure stabilization, enzymatic activity, and thermodynamic stability of MIF, but not its oligomerization state and receptor binding properties. Our results suggest that targeting the C-terminal region could provide new strategies for allosteric modulation of MIF enzymatic activity and the development of novel inhibitors of MIF tautomerase activity. PMID:18795803

  8. Stimulating effects of two plant growth-promoting bacteria, Enterobacter ludwigii Ez-185-17 and Raoultella terrigena Ez-555-6, on flax culture

    NASA Astrophysics Data System (ADS)

    Sarron, Elodie; Clément, Nathalie; Pawlicki-Jullian, Nathalie; Gaillard, Isabelle; Boitel-Conti, Michèle

    2018-04-01

    Two bacteria, Enterobacter ludwigii Ez-185-17 and Raoultella terrigena Ez-555-6, isolated from root nodules of Medicago lupulina from the Chernobyl exclusion zone, were identified in a previous study and shown not to disturb plant growth. The main goal of this work is to elucidate the relationships between these bacteria and flax, in particular whether they display activities such as plant growth promoting bacteria (PGPB) properties or modulation hairy root development. In order to better understand their role in plants, some known PGPB properties were determined in comparison with several control bacteria. The influence of these bacteria on Linum usitatissimum growth under hydroponic conditions was also investigated. Our study shows that both bacteria belong to PGPB since they were able to increase considerably the root surface area of flax, especially Raoultella terrigena Ez-555-6. Significant IAA production and phosphate solubilization of Enterobacter ludwigii Ez-185-17 were highlighted, which enabled these biochemical PGPB properties to be correlated with their effects on flax growth. However, Raoultella terrigena Ez-555-6 did not express high biochemical activities, suggesting that other PGPB abilities should be studied in order to establish the link with flax growth improvement.

  9. Yield, quality and biochemical properties of various strawberry cultivars under water stress.

    PubMed

    Adak, Nafiye; Gubbuk, Hamide; Tetik, Nedim

    2018-01-01

    Although strawberry (Fragaria x ananassa Duch.) species are sensitive to abiotic stress conditions, some cultivars are known to be tolerant to different environmental conditions. We examined the response of different strawberry cultivars to water stress conditions in terms of yield, quality and biochemical features. The trial was conducted under two different irrigation regimes: in grow bags containing cocopeat (control, 30%; water stress, 15% drainage) with four different cultivars (Camarosa, Albion, Amiga and Rubygem). Fruit weight declined by 59.72% and the yield per unit area by 63.62% under water stress conditions as compared to control. Albion and Rubygem were found to be more tolerant and Amiga the most sensitive in terms of yield under stress conditions. Water stress increased all biochemical features in fruits such as total phenol, total anthocyanin, antioxidant activity and sugar contents. Among the cultivars, glucose and fructose was higher in Albion. Considering the rise in global warming, identification of resistant and tolerant cultivars to stress conditions are crucial for future breeding programmes. Our results showed that some of the fruit's physical features were affected negatively by stress conditions whereas many of the biochemical features such as total anthocyanin content, total phenolic content and antioxidant activity were positively modulated. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Evaluation of Antioxidant and Antiangiogenic Properties of Caesalpinia Echinata Extracts

    PubMed Central

    da Silva Gomes, Elisangela Christhianne Barbosa; Jimenez, George Chaves; da Silva, Luis Claudio Nascimento; de Sá, Fabrício Bezerra; de Souza, Karen Pena Cavalcanti; Paiva, Gerson S.; de Souza, Ivone Antônia

    2014-01-01

    Natural products contain important combinations of ingredients, which may to some extent help to modulate the effects produced by oxidation substrates in biological systems. It is known that substances capable of modulating the action of these oxidants on tissue may be important allies in the control of neovascularization in pathological processes. The aim of this study was to evaluate the antioxidant and antiangiogenic properties of an ethanol extract of Caesalpinia echinata. The evaluation of antioxidant properties was tested using two methods (DPPH inhibition and sequestration of nitric oxide). The antiangiogenic properties were evaluated using the inflammatory angiogenesis model in the corneas of rats. The extract of C. echinata demonstrated a high capacity to inhibit free radicals, with IC50 equal to 42.404 µg/mL for the DPPH test and 234.2 µg/mL for nitric oxide. Moreover, it showed itself capable of inhibiting the inflammatory angiogenic response by 77.49%. These data suggest that biochemical components belonging to the extract of C. echinata interfere in mechanisms that control the angiogenic process, mediated by substrates belonging to the arachidonic acid cascade, although the data described above also suggest that the NO buffer may contribute to some extent to the reduction in the angiogenic response. PMID:24563668

  11. Oxidative Stress Modulation and ROS-Mediated Toxicity in Cancer: A Review on In Vitro Models for Plant-Derived Compounds.

    PubMed

    Vallejo, María José; Salazar, Lizeth; Grijalva, Marcelo

    2017-01-01

    Medicinal and aromatic plants (MAPs) are known and have been long in use for a variety of health and cosmetics applications. Potential pharmacological usages that take advantage of bioactive plant-derived compounds' antimicrobial, antifungal, anti-inflammatory, and antioxidant properties are being developed and many new ones explored. Some phytochemicals could trigger ROS-mediated cytotoxicity and apoptosis in cancer cells. A lot of effort has been put into investigating novel active constituents for cancer therapeutics. While other plant-derived compounds might enhance antioxidant defenses by either radical scavenging or stimulation of intracellular antioxidant enzymes, the generation of reactive oxygen species (ROS) leading to oxidative stress is one of the strategies that may show effective in damaging cancer cells. The biochemical pathways involved in plant-derived bioactive compounds' properties are complex, and in vitro platforms have been useful for a comprehensive understanding of the mechanism of action of these potential anticancer drugs. The present review aims at compiling the findings of particularly interesting studies that use cancer cell line models for assessment of antioxidant and oxidative stress modulation properties of plant-derived bioactive compounds.

  12. Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of soybean (Glycine max) at elevated [CO₂] and temperatures under fully open air field conditions.

    PubMed

    Rosenthal, David M; Ruiz-Vera, Ursula M; Siebers, Matthew H; Gray, Sharon B; Bernacchi, Carl J; Ort, Donald R

    2014-09-01

    The net effect of elevated [CO2] and temperature on photosynthetic acclimation and plant productivity is poorly resolved. We assessed the effects of canopy warming and fully open air [CO2] enrichment on (1) the acclimation of two biochemical parameters that frequently limit photosynthesis (A), the maximum carboxylation capacity of Rubisco (Vc,max) and the maximum potential linear electron flux through photosystem II (Jmax), (2) the associated responses of leaf structural and chemical properties related to A, as well as (3) the stomatal limitation (l) imposed on A, for soybean over two growing seasons in a conventionally managed agricultural field in Illinois, USA. Acclimation to elevated [CO2] was consistent over two growing seasons with respect to Vc,max and Jmax. However, elevated temperature significantly decreased Jmax contributing to lower photosynthetic stimulation by elevated CO2. Large seasonal differences in precipitation altered soil moisture availability modulating the complex effects of elevated temperature and CO2 on biochemical and structural properties related to A. Elevated temperature also reduced the benefit of elevated [CO2] by eliminating decreases in stomatal limitation at elevated [CO2]. These results highlight the critical importance of considering multiple environmental factors (i.e. temperature, moisture, [CO2]) when trying to predict plant productivity in the context of climate change. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Intracellular calcium levels determine differential modulation of allosteric interactions within G protein-coupled receptor heteromers.

    PubMed

    Navarro, Gemma; Aguinaga, David; Moreno, Estefania; Hradsky, Johannes; Reddy, Pasham P; Cortés, Antoni; Mallol, Josefa; Casadó, Vicent; Mikhaylova, Marina; Kreutz, Michael R; Lluís, Carme; Canela, Enric I; McCormick, Peter J; Ferré, Sergi

    2014-11-20

    The pharmacological significance of the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer is well established and it is being considered as an important target for the treatment of Parkinson’s disease and other neuropsychiatric disorders. However, the physiological factors that control its distinctive biochemical properties are still unknown. We demonstrate that different intracellular Ca2+ levels exert a differential modulation of A2AR-D2R heteromer-mediated adenylyl-cyclase and MAPK signaling in striatal cells. This depends on the ability of low and high Ca2+ levels to promote a selective interaction of the heteromer with the neuronal Ca2+-binding proteins NCS-1 and calneuron-1, respectively. These Ca2+-binding proteins differentially modulate allosteric interactions within the A2AR-D2R heteromer, which constitutes a unique cellular device that integrates extracellular (adenosine and dopamine) and intracellular (Ca+2) signals to produce a specific functional response.

  14. Post-transcriptional modifications in development and stem cells.

    PubMed

    Frye, Michaela; Blanco, Sandra

    2016-11-01

    Cells adapt to their environment by linking external stimuli to an intricate network of transcriptional, post-transcriptional and translational processes. Among these, mechanisms that couple environmental cues to the regulation of protein translation are not well understood. Chemical modifications of RNA allow rapid cellular responses to external stimuli by modulating a wide range of fundamental biochemical properties and processes, including the stability, splicing and translation of messenger RNA. In this Review, we focus on the occurrence of N 6 -methyladenosine (m 6 A), 5-methylcytosine (m 5 C) and pseudouridine (Ψ) in RNA, and describe how these RNA modifications are implicated in regulating pluripotency, stem cell self-renewal and fate specification. Both post-transcriptional modifications and the enzymes that catalyse them modulate stem cell differentiation pathways and are essential for normal development. © 2016. Published by The Company of Biologists Ltd.

  15. Engineering Breast Cancer Microenvironments and 3D Bioprinting

    PubMed Central

    Belgodere, Jorge A.; King, Connor T.; Bursavich, Jacob B.; Burow, Matthew E.; Martin, Elizabeth C.; Jung, Jangwook P.

    2018-01-01

    The extracellular matrix (ECM) is a critical cue to direct tumorigenesis and metastasis. Although two-dimensional (2D) culture models have been widely employed to understand breast cancer microenvironments over the past several decades, the 2D models still exhibit limited success. Overwhelming evidence supports that three dimensional (3D), physiologically relevant culture models are required to better understand cancer progression and develop more effective treatment. Such platforms should include cancer-specific architectures, relevant physicochemical signals, stromal–cancer cell interactions, immune components, vascular components, and cell-ECM interactions found in patient tumors. This review briefly summarizes how cancer microenvironments (stromal component, cell-ECM interactions, and molecular modulators) are defined and what emerging technologies (perfusable scaffold, tumor stiffness, supporting cells within tumors and complex patterning) can be utilized to better mimic native-like breast cancer microenvironments. Furthermore, this review emphasizes biophysical properties that differ between primary tumor ECM and tissue sites of metastatic lesions with a focus on matrix modulation of cancer stem cells, providing a rationale for investigation of underexplored ECM proteins that could alter patient prognosis. To engineer breast cancer microenvironments, we categorized technologies into two groups: (1) biochemical factors modulating breast cancer cell-ECM interactions and (2) 3D bioprinting methods and its applications to model breast cancer microenvironments. Biochemical factors include matrix-associated proteins, soluble factors, ECMs, and synthetic biomaterials. For the application of 3D bioprinting, we discuss the transition of 2D patterning to 3D scaffolding with various bioprinting technologies to implement biophysical cues to model breast cancer microenvironments. PMID:29881724

  16. Structure-function relationships in soft tissue mechanics: Examining how the micro-scale architecture of biochemical constituents effects health

    NASA Astrophysics Data System (ADS)

    Schultz, David Sheldon

    Countless debilitating pathologies exhibit symptoms that result from altered mechanical behavior of soft tissue. Therefore, it is of clinical and economic importance to mechanically evaluate soft tissues and attribute degenerative changes to alterations in structural constituents. The studies presented here focus on the annulus fibrosus and the sclera. Failure in these tissues is common and catastrophic. The annulus fibrosus may fail, resulting in herniation and nerve impingement, or the disc may degenerate over time, resulting in reduced mobility and pain. Similarly, the sclera may degenerate over time with intraocular pressure spurring creep behavior that distends the eye beyond its ideal shape. This causes myopic vision and puts patients at risk of macular degeneration and retinal detachment. These two tissues share a common structural role as the outer wall of a pressure vessel. Also, they are made of strikingly similar constituents, primarily consisting of water, type I collagen, glycosaminoglycans and elastin. The microstructure of these tissues, however, is very different. The annulus fibrosus is representative of an anisotropic tissue. Its well-organized fibril structure was analyzed via polarization modulated second harmonic microscopy in order to characterize fibril architecture. Structurally relevant biochemical constituents were quantified with biochemical assays. Morphologically healthy annulus tended to have a more highly organized microstructure and tended to absorb more strain energy when subject to a tensile load cycle. Given the strong correlation between fibril organization and select mechanical properties, predictive models will likely benefit from a characterization of fibril continuity and orientation coherence. The sclera is representative of an isotropic tissue. Its less-organized fibril structure has evolved to sustain biaxial plane stress. In the sclera, collagen content and associated crosslinks were primary determinants of stiffness. Substantial collagen crosslink accumulation is a primary factor causing the stiffening of sclera with increased age. The influence of crosslinks dominates diffusion and permeability behavior. Exogenous crosslinking may help modulate the mechanical and fluid transport properties of the sclera and cornea. Treatment with methylglyoxal reduces the permeability and increases the stiffness of both. However, differences in the pre-treatment level of organization within the microstructure encourages asymmetric results.

  17. Relationship between Ni(II) and Zn(II) Coordination and Nucleotide Binding by the Helicobacter pylori [NiFe]-Hydrogenase and Urease Maturation Factor HypB*

    PubMed Central

    Sydor, Andrew M.; Lebrette, Hugo; Ariyakumaran, Rishikesh; Cavazza, Christine; Zamble, Deborah B.

    2014-01-01

    The pathogen Helicobacter pylori requires two nickel-containing enzymes, urease and [NiFe]-hydrogenase, for efficient colonization of the human gastric mucosa. These enzymes possess complex metallocenters that are assembled by teams of proteins in multistep pathways. One essential accessory protein is the GTPase HypB, which is required for Ni(II) delivery to [NiFe]-hydrogenase and participates in urease maturation. Ni(II) or Zn(II) binding to a site embedded in the GTPase domain of HypB modulates the enzymatic activity, suggesting a mechanism of regulation. In this study, biochemical and structural analyses of H. pylori HypB (HpHypB) revealed an intricate link between nucleotide and metal binding. HpHypB nickel coordination, stoichiometry, and affinity were modulated by GTP and GDP, an effect not observed for zinc, and biochemical evidence suggests that His-107 coordination to nickel toggles on and off in a nucleotide-dependent manner. These results are consistent with the crystal structure of HpHypB loaded with Ni(II), GDP, and Pi, which reveals a nickel site distinct from that of zinc-loaded Methanocaldococcus jannaschii HypB as well as subtle changes to the protein structure. Furthermore, Cys-142, a metal ligand from the Switch II GTPase motif, was identified as a key component of the signal transduction between metal binding and the enzymatic activity. Finally, potassium accelerated the enzymatic activity of HpHypB but had no effect on the other biochemical properties of the protein. Altogether, this molecular level information about HpHypB provides insight into its cellular function and illuminates a possible mechanism of metal ion discrimination. PMID:24338018

  18. Relationship between Ni(II) and Zn(II) coordination and nucleotide binding by the Helicobacter pylori [NiFe]-hydrogenase and urease maturation factor HypB.

    PubMed

    Sydor, Andrew M; Lebrette, Hugo; Ariyakumaran, Rishikesh; Cavazza, Christine; Zamble, Deborah B

    2014-02-14

    The pathogen Helicobacter pylori requires two nickel-containing enzymes, urease and [NiFe]-hydrogenase, for efficient colonization of the human gastric mucosa. These enzymes possess complex metallocenters that are assembled by teams of proteins in multistep pathways. One essential accessory protein is the GTPase HypB, which is required for Ni(II) delivery to [NiFe]-hydrogenase and participates in urease maturation. Ni(II) or Zn(II) binding to a site embedded in the GTPase domain of HypB modulates the enzymatic activity, suggesting a mechanism of regulation. In this study, biochemical and structural analyses of H. pylori HypB (HpHypB) revealed an intricate link between nucleotide and metal binding. HpHypB nickel coordination, stoichiometry, and affinity were modulated by GTP and GDP, an effect not observed for zinc, and biochemical evidence suggests that His-107 coordination to nickel toggles on and off in a nucleotide-dependent manner. These results are consistent with the crystal structure of HpHypB loaded with Ni(II), GDP, and Pi, which reveals a nickel site distinct from that of zinc-loaded Methanocaldococcus jannaschii HypB as well as subtle changes to the protein structure. Furthermore, Cys-142, a metal ligand from the Switch II GTPase motif, was identified as a key component of the signal transduction between metal binding and the enzymatic activity. Finally, potassium accelerated the enzymatic activity of HpHypB but had no effect on the other biochemical properties of the protein. Altogether, this molecular level information about HpHypB provides insight into its cellular function and illuminates a possible mechanism of metal ion discrimination.

  19. Modulation of gene expression using electrospun scaffolds with templated architecture.

    PubMed

    Karchin, A; Wang, Y-N; Sanders, J E

    2012-06-01

    The fabrication of biomimetic scaffolds is a critical component to fulfill the promise of functional tissue-engineered materials. We describe herein a simple technique, based on printed circuit board manufacturing, to produce novel templates for electrospinning scaffolds for tissue-engineering applications. This technique facilitates fabrication of electrospun scaffolds with templated architecture, which we defined as a scaffold's bulk mechanical properties being driven by its fiber architecture. Electrospun scaffolds with templated architectures were characterized with regard to fiber alignment and mechanical properties. Fast Fourier transform analysis revealed a high degree of fiber alignment along the conducting traces of the templates. Mechanical testing showed that scaffolds demonstrated tunable mechanical properties as a function of templated architecture. Fibroblast-seeded scaffolds were subjected to a peak strain of 3 or 10% at 0.5 Hz for 1 h. Exposing seeded scaffolds to the low strain magnitude (3%) significantly increased collagen I gene expression compared to the high strain magnitude (10%) in a scaffold architecture-dependent manner. These experiments indicate that scaffolds with templated architectures can be produced, and modulation of gene expression is possible with templated architectures. This technology holds promise for the long-term goal of creating tissue-engineered replacements with the biomechanical and biochemical make-up of native tissues. Copyright © 2012 Wiley Periodicals, Inc.

  20. Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition.

    PubMed

    Lee, Junmin; Abdeen, Amr A; Zhang, Douglas; Kilian, Kristopher A

    2013-11-01

    There is a dynamic relationship between physical and biochemical signals presented in the stem cell microenvironment to guide cell fate determination. Model systems that modulate cell geometry, substrate stiffness or matrix composition have proved useful in exploring how these signals influence stem cell fate. However, the interplay between these physical and biochemical cues during differentiation remains unclear. Here, we demonstrate a microengineering strategy to vary single cell geometry and the composition of adhesion ligands - on substrates that approximate the mechanical properties of soft tissues - to study adipogenesis and neurogenesis in adherent mesenchymal stem cells. Cells cultured in small circular islands show elevated expression of adipogenesis markers while cells that spread in anisotropic geometries tend to express elevated neurogenic markers. Arraying different combinations of matrix protein in a myriad of 2D and pseudo-3D geometries reveals optimal microenvironments for controlling the differentiation of stem cells to these "soft" lineages without the use of media supplements. © 2013 Elsevier Ltd. All rights reserved.

  1. The Dynamic Interplay Between DNA Topoisomerases and DNA Topology.

    PubMed

    Seol, Yeonee; Neuman, Keir C

    2016-09-01

    Topological properties of DNA influence its structure and biochemical interactions. Within the cell DNA topology is constantly in flux. Transcription and other essential processes including DNA replication and repair, alter the topology of the genome, while introducing additional complications associated with DNA knotting and catenation. These topological perturbations are counteracted by the action of topoisomerases, a specialized class of highly conserved and essential enzymes that actively regulate the topological state of the genome. This dynamic interplay among DNA topology, DNA processing enzymes, and DNA topoisomerases, is a pervasive factor that influences DNA metabolism in vivo . Building on the extensive structural and biochemical characterization over the past four decades that established the fundamental mechanistic basis of topoisomerase activity, the unique roles played by DNA topology in modulating and influencing the activity of topoisomerases have begun to be explored. In this review we survey established and emerging DNA topology dependent protein-DNA interactions with a focus on in vitro measurements of the dynamic interplay between DNA topology and topoisomerase activity.

  2. The dynamic interplay between DNA topoisomerases and DNA topology.

    PubMed

    Seol, Yeonee; Neuman, Keir C

    2016-11-01

    Topological properties of DNA influence its structure and biochemical interactions. Within the cell, DNA topology is constantly in flux. Transcription and other essential processes, including DNA replication and repair, not only alter the topology of the genome but also introduce additional complications associated with DNA knotting and catenation. These topological perturbations are counteracted by the action of topoisomerases, a specialized class of highly conserved and essential enzymes that actively regulate the topological state of the genome. This dynamic interplay among DNA topology, DNA processing enzymes, and DNA topoisomerases is a pervasive factor that influences DNA metabolism in vivo. Building on the extensive structural and biochemical characterization over the past four decades that has established the fundamental mechanistic basis of topoisomerase activity, scientists have begun to explore the unique roles played by DNA topology in modulating and influencing the activity of topoisomerases. In this review we survey established and emerging DNA topology-dependent protein-DNA interactions with a focus on in vitro measurements of the dynamic interplay between DNA topology and topoisomerase activity.

  3. Ionic messengers in development and cancer.

    PubMed

    Moreau, Marc; Leclerc, Catherine

    2015-01-01

    The idea that electrical fields can influence the development of an organism is not new. Electrical fields in cells are mainly due to the presence of channels which are permeable and selective for different ions and transporters. Modulation of their activities can affect cell cycle properties, proliferation and differentiation.Electrical fields are important for embryonic patterning, regeneration and tumour development. Membrane potential is a permanent signal which allows communication between cells, tissues and organs and has to be considered to have the same importance as biochemical signals. The activity of ion channels and pumps which maintain the electrical fields can now be dissected and visualized with new tools involving fluorescent reporters.Despite the fact that our understanding, at the molecular level, of the role of bioelectric signaling pathways, ion currents, voltage and pH gradients in developmental biology and tumor progression is increasing, therapeutic applications of this knowledge still appears to be far away. For the moment, research priorities seem to be on establishing the links between biochemical events, genetic regulation, and network interactions.

  4. GREET Pretreatment Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adom, Felix K.; Dunn, Jennifer B.; Han, Jeongwoo

    2014-09-01

    A wide range of biofuels and biochemicals can be produced from cellulosic biomass via different pretreatment technologies that yield sugars. Process simulations of dilute acid and ammonia fiber expansion pretreatment processes and subsequent hydrolysis were developed in Aspen Plus for four lignocellulosic feedstocks (corn stover, miscanthus, switchgrass, and poplar). This processing yields sugars that can be subsequently converted to biofuels or biochemical. Material and energy consumption data from Aspen Plus were then compiled in a new Greenhouses Gases, Regulated Emissions, and Energy Use in Transportation (GREET TM) pretreatment module. The module estimates the cradle-to-gate fossil energy consumption (FEC) and greenhousemore » gas (GHG) emissions associated with producing fermentable sugars. This report documents the data and methodology used to develop this module and the cradle-to-gate FEC and GHG emissions that result from producing fermentable sugars.« less

  5. Matrix stiffness modulates formation and activity of neuronal networks of controlled architectures.

    PubMed

    Lantoine, Joséphine; Grevesse, Thomas; Villers, Agnès; Delhaye, Geoffrey; Mestdagh, Camille; Versaevel, Marie; Mohammed, Danahe; Bruyère, Céline; Alaimo, Laura; Lacour, Stéphanie P; Ris, Laurence; Gabriele, Sylvain

    2016-05-01

    The ability to construct easily in vitro networks of primary neurons organized with imposed topologies is required for neural tissue engineering as well as for the development of neuronal interfaces with desirable characteristics. However, accumulating evidence suggests that the mechanical properties of the culture matrix can modulate important neuronal functions such as growth, extension, branching and activity. Here we designed robust and reproducible laminin-polylysine grid micropatterns on cell culture substrates that have similar biochemical properties but a 100-fold difference in Young's modulus to investigate the role of the matrix rigidity on the formation and activity of cortical neuronal networks. We found that cell bodies of primary cortical neurons gradually accumulate in circular islands, whereas axonal extensions spread on linear tracks to connect circular islands. Our findings indicate that migration of cortical neurons is enhanced on soft substrates, leading to a faster formation of neuronal networks. Furthermore, the pre-synaptic density was two times higher on stiff substrates and consistently the number of action potentials and miniature synaptic currents was enhanced on stiff substrates. Taken together, our results provide compelling evidence to indicate that matrix stiffness is a key parameter to modulate the growth dynamics, synaptic density and electrophysiological activity of cortical neuronal networks, thus providing useful information on scaffold design for neural tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Modulation of the Isoprenoid/Cholesterol Biosynthetic Pathway During Neuronal Differentiation In Vitro.

    PubMed

    Cartocci, Veronica; Segatto, Marco; Di Tunno, Ilenia; Leone, Stefano; Pfrieger, Frank W; Pallottini, Valentina

    2016-09-01

    During differentiation, neurons acquire their typical shape and functional properties. At present, it is unclear, whether this important developmental step involves metabolic changes. Here, we studied the contribution of the mevalonate (MVA) pathway to neuronal differentiation using the mouse neuroblastoma cell line N1E-115 as experimental model. Our results show that during differentiation, the activity of 3-hydroxy 3-methylglutaryl Coenzyme A reductase (HMGR), a key enzyme of MVA pathway, and the level of Low Density Lipoprotein receptor (LDLr) decrease, whereas the level of LDLr-related protein-1 (LRP1) and the dimerization of Scavanger Receptor B1 (SRB-1) rise. Pharmacologic inhibition of HMGR by simvastatin accelerated neuronal differentiation by modulating geranylated proteins. Collectively, our data suggest that during neuronal differentiation, the activity of the MVA pathway decreases and we postulate that any interference with this process impacts neuronal morphology and function. Therefore, the MVA pathway appears as an attractive pharmacological target to modulate neurological and metabolic symptoms of developmental neuropathologies. J. Cell. Biochem. 117: 2036-2044, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. The biochemical properties of antibodies and their fragments

    USDA-ARS?s Scientific Manuscript database

    Immunoglobulins (Ig) or antibodies are a powerful molecular recognition tools that can be used to identify minute quantities of a given target analyte. Their antigen binding properties define both the sensitivity and selectivity of an immunoassay. Understanding the biochemical properties of this c...

  8. Modulation of prion polymerization and toxicity by rationally designed peptidomimetics.

    PubMed

    Srivastava, Ankit; Sharma, Sakshi; Sadanandan, Sandhya; Gupta, Sakshi; Singh, Jasdeep; Gupta, Sarika; Haridas, V; Kundu, Bishwajit

    2017-01-01

    Misfolding and aggregation of cellular prion protein is associated with a large array of neurological disorders commonly called the transmissible spongiform encephalopathies. Designing inhibitors against prions has remained a daunting task owing to limited information about mechanism(s) of their pathogenic self-assembly. Here, we explore the anti-prion properties of a combinatorial library of bispidine-based peptidomimetics (BPMs) that conjugate amino acids with hydrophobic and aromatic side chains. Keeping the bispidine unit unaltered, a series of structurally diverse BPMs were synthesized and tested for their prion-modulating properties. Administration of Leu- and Trp-BPMs delayed and completely inhibited the amyloidogenic conversion of human prion protein (HuPrP), respectively. We found that each BPM induced the HuPrP to form unique oligomeric nanostructures differing in their biophysical properties, cellular toxicities and response to conformation-specific antibodies. While Leu-BPMs were found to stabilize the oligomers, Trp-BPMs effected transient oligomerization, resulting in the formation of non-toxic, non-fibrillar aggregates. Yet another aromatic residue, Phe, however, accelerated the aggregation process in HuPrP. Molecular insights obtained through MD (molecular dynamics) simulations suggested that each BPM differently engages a conserved Tyr 169 residue at the α2-β2 loop of HuPrP and affects the stability of α2 and α3 helices. Our results demonstrate that this new class of molecules having chemical scaffolds conjugating hydrophobic/aromatic residues could effectively modulate prion aggregation and toxicity. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  9. Bio-recognition and functional lipidomics by glycosphingolipid transfer technology

    PubMed Central

    TAKI, Takao

    2013-01-01

    Through glycosphingolipid biochemical research, we developed two types of transcription technologies. One is a biochemical transfer of glycosphingolipids to peptides. The other is a physicochemical transfer of glycosphingolipids in silica gel to the surface of a plastic membrane. Using the first technology, we could prepare peptides which mimic the shapes of glycosphingolipid molecules by biopanning with a phage-displayed peptide library and anti-glycosphingolipid antibodies as templates. The peptides thus obtained showed biological properties and functions similar to those of the original glycosphingolipids, such as lectin binding, glycosidase modulation, inhibition of tumor metastasis and immune response against the original antigen glycosphingolipid, and we named them glyco-replica peptides. The results showed that the newly prepared peptides could be used effectively as a bio-recognition system and suggest that the glyco-replica peptides can be widely applied to therapeutic fields. Using the second technology, we could establish a functional lipidomics with a thin-layer chromatography-blot/matrix-assisted laser desorption ionization-time of flight mass spectrometry (TLC-Blot/MALDI-TOF MS) system. By transferring glycosphingolipids on a plastic membrane surface from a TLC plate, innovative biochemical approaches such as simple purification of individual glycosphingolipids, binding studies, and enzyme reactions could be developed. The combinations of these biochemical approaches and MALDI-TOF MS on the plastic membrane could provide new strategies for glycosphingolipid science and the field of lipidomics. In this review, typical applications of these two transfer technologies are introduced. PMID:23883610

  10. Modular microfluidics for point-of-care protein purifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millet, L. J.; Lucheon, J. D.; Standaert, R. F.

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured tomore » suit a variety of fluidic operations or biochemical processes. In conclusion, we demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.« less

  11. Modular microfluidics for point-of-care protein purifications.

    PubMed

    Millet, L J; Lucheon, J D; Standaert, R F; Retterer, S T; Doktycz, M J

    2015-04-21

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured to suit a variety of fluidic operations or biochemical processes. We demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.

  12. Modular microfluidics for point-of-care protein purifications

    DOE PAGES

    Millet, L. J.; Lucheon, J. D.; Standaert, R. F.; ...

    2015-01-01

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured tomore » suit a variety of fluidic operations or biochemical processes. In conclusion, we demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.« less

  13. Modeling oscillations and spiral waves in Dictyostelium populations

    NASA Astrophysics Data System (ADS)

    Noorbakhsh, Javad; Schwab, David J.; Sgro, Allyson E.; Gregor, Thomas; Mehta, Pankaj

    2015-06-01

    Unicellular organisms exhibit elaborate collective behaviors in response to environmental cues. These behaviors are controlled by complex biochemical networks within individual cells and coordinated through cell-to-cell communication. Describing these behaviors requires new mathematical models that can bridge scales—from biochemical networks within individual cells to spatially structured cellular populations. Here we present a family of "multiscale" models for the emergence of spiral waves in the social amoeba Dictyostelium discoideum. Our models exploit new experimental advances that allow for the direct measurement and manipulation of the small signaling molecule cyclic adenosine monophosphate (cAMP) used by Dictyostelium cells to coordinate behavior in cellular populations. Inspired by recent experiments, we model the Dictyostelium signaling network as an excitable system coupled to various preprocessing modules. We use this family of models to study spatially unstructured populations of "fixed" cells by constructing phase diagrams that relate the properties of population-level oscillations to parameters in the underlying biochemical network. We then briefly discuss an extension of our model that includes spatial structure and show how this naturally gives rise to spiral waves. Our models exhibit a wide range of novel phenomena. including a density-dependent frequency change, bistability, and dynamic death due to slow cAMP dynamics. Our modeling approach provides a powerful tool for bridging scales in modeling of Dictyostelium populations.

  14. MATLAB-Based Teaching Modules in Biochemical Engineering

    ERIC Educational Resources Information Center

    Lee, Kilho; Comolli, Noelle K.; Kelly, William J.; Huang, Zuyi

    2015-01-01

    Mathematical models play an important role in biochemical engineering. For example, the models developed in the field of systems biology have been used to identify drug targets to treat pathogens such as Pseudomonas aeruginosa in biofilms. In addition, competitive binding models for chromatography processes have been developed to predict expanded…

  15. Dietary Sulforaphane in Cancer Chemoprevention: The Role of Epigenetic Regulation and HDAC Inhibition.

    PubMed

    Tortorella, Stephanie M; Royce, Simon G; Licciardi, Paul V; Karagiannis, Tom C

    2015-06-01

    Sulforaphane, produced by the hydrolytic conversion of glucoraphanin after ingestion of cruciferous vegetables, particularly broccoli and broccoli sprouts, has been extensively studied due to its apparent health-promoting properties in disease and limited toxicity in normal tissue. Recent Studies: Recent identification of a sub-population of tumor cells with stem cell-like self-renewal capacity that may be responsible for relapse, metastasis, and resistance, as a potential target of the dietary compound, may be an important aspect of sulforaphane chemoprevention. Evidence also suggests that sulforaphane may target the epigenetic alterations observed in specific cancers, reversing aberrant changes in gene transcription through mechanisms of histone deacetylase inhibition, global demethylation, and microRNA modulation. In this review, we discuss the biochemical and biological properties of sulforaphane with a particular emphasis on the anticancer properties of the dietary compound. Sulforaphane possesses the capacity to intervene in multistage carcinogenesis through the modulation and/or regulation of important cellular mechanisms. The inhibition of phase I enzymes that are responsible for the activation of pro-carcinogens, and the induction of phase II enzymes that are critical in mutagen elimination are well-characterized chemopreventive properties. Furthermore, sulforaphane mediates a number of anticancer pathways, including the activation of apoptosis, induction of cell cycle arrest, and inhibition of NFκB. Further characterization of the chemopreventive properties of sulforaphane and its capacity to be selectively toxic to malignant cells are warranted to potentially establish the clinical utility of the dietary compound as an anti-cancer compound alone, and in combination with clinically relevant therapeutic and management strategies.

  16. Bridging the gap between modules in isolation and as part of networks: A systems framework for elucidating interaction and regulation of signalling modules

    NASA Astrophysics Data System (ADS)

    Menon, Govind; Krishnan, J.

    2016-07-01

    While signalling and biochemical modules have been the focus of numerous studies, they are typically studied in isolation, with no examination of the effects of the ambient network. In this paper we formulate and develop a systems framework, rooted in dynamical systems, to understand such effects, by studying the interaction of signalling modules. The modules we consider are (i) basic covalent modification, (ii) monostable switches, (iii) bistable switches, (iv) adaptive modules, and (v) oscillatory modules. We systematically examine the interaction of these modules by analyzing (a) sequential interaction without shared components, (b) sequential interaction with shared components, and (c) oblique interactions. Our studies reveal that the behaviour of a module in isolation may be substantially different from that in a network, and explicitly demonstrate how the behaviour of a given module, the characteristics of the ambient network, and the possibility of shared components can result in new effects. Our global approach illuminates different aspects of the structure and functioning of modules, revealing the importance of dynamical characteristics as well as biochemical features; this provides a methodological platform for investigating the complexity of natural modules shaped by evolution, elucidating the effects of ambient networks on a module in multiple cellular contexts, and highlighting the capabilities and constraints for engineering robust synthetic modules. Overall, such a systems framework provides a platform for bridging the gap between non-linear information processing modules, in isolation and as parts of networks, and a basis for understanding new aspects of natural and engineered cellular networks.

  17. Bridging the gap between modules in isolation and as part of networks: A systems framework for elucidating interaction and regulation of signalling modules.

    PubMed

    Menon, Govind; Krishnan, J

    2016-07-21

    While signalling and biochemical modules have been the focus of numerous studies, they are typically studied in isolation, with no examination of the effects of the ambient network. In this paper we formulate and develop a systems framework, rooted in dynamical systems, to understand such effects, by studying the interaction of signalling modules. The modules we consider are (i) basic covalent modification, (ii) monostable switches, (iii) bistable switches, (iv) adaptive modules, and (v) oscillatory modules. We systematically examine the interaction of these modules by analyzing (a) sequential interaction without shared components, (b) sequential interaction with shared components, and (c) oblique interactions. Our studies reveal that the behaviour of a module in isolation may be substantially different from that in a network, and explicitly demonstrate how the behaviour of a given module, the characteristics of the ambient network, and the possibility of shared components can result in new effects. Our global approach illuminates different aspects of the structure and functioning of modules, revealing the importance of dynamical characteristics as well as biochemical features; this provides a methodological platform for investigating the complexity of natural modules shaped by evolution, elucidating the effects of ambient networks on a module in multiple cellular contexts, and highlighting the capabilities and constraints for engineering robust synthetic modules. Overall, such a systems framework provides a platform for bridging the gap between non-linear information processing modules, in isolation and as parts of networks, and a basis for understanding new aspects of natural and engineered cellular networks.

  18. Modularization of biochemical networks based on classification of Petri net t-invariants.

    PubMed

    Grafahrend-Belau, Eva; Schreiber, Falk; Heiner, Monika; Sackmann, Andrea; Junker, Björn H; Grunwald, Stefanie; Speer, Astrid; Winder, Katja; Koch, Ina

    2008-02-08

    Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior.With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system. Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied. We considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability. We propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis.

  19. Modularization of biochemical networks based on classification of Petri net t-invariants

    PubMed Central

    Grafahrend-Belau, Eva; Schreiber, Falk; Heiner, Monika; Sackmann, Andrea; Junker, Björn H; Grunwald, Stefanie; Speer, Astrid; Winder, Katja; Koch, Ina

    2008-01-01

    Background Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior. With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system. Methods Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied. Results We considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability. Conclusion We propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis. PMID:18257938

  20. Balanced Biochemical Reactions: A New Approach to Unify Chemical and Biochemical Thermodynamics

    PubMed Central

    Sabatini, Antonio; Vacca, Alberto; Iotti, Stefano

    2012-01-01

    A novel procedure is presented which, by balancing elements and electric charge of biochemical reactions which occur at constant pH and pMg, allows assessing the thermodynamics properties of reaction ΔrG ′0, ΔrH ′0, ΔrS ′0 and the change in binding of hydrogen and magnesium ions of these reactions. This procedure of general applicability avoids the complex calculations required by the use of the Legendre transformed thermodynamic properties of formation ΔfG ′0, ΔfH ′0 and ΔfS ′0 hitherto considered an obligatory prerequisite to deal with the thermodynamics of biochemical reactions. As a consequence, the term “conditional” is proposed in substitution of “Legendre transformed” to indicate these thermodynamics properties. It is also shown that the thermodynamic potential G is fully adequate to give a criterion of spontaneous chemical change for all biochemical reactions and then that the use of the Legendre transformed G′ is unnecessary. The procedure proposed can be applied to any biochemical reaction, making possible to re-unify the two worlds of chemical and biochemical thermodynamics, which so far have been treated separately. PMID:22247780

  1. The effect of high hydrostatic pressure on the physiological and biochemical properties of pepper (Capsicum annuum L.) seedlings

    NASA Astrophysics Data System (ADS)

    İşlek, Cemil; Murat Altuner, Ergin; Alpas, Hami

    2015-10-01

    High hydrostatic pressure is a non-thermal food processing technology, which also has several successful applications in different areas besides food processing. In this study, Capsicum annuum L. (pepper) seeds are subjected to 50, 100, 200 and 300 MPa pressure for 5 min at 25°C and the seedlings of HHP processed seeds are used to compare percentage of seed germination and biochemical properties such as chlorophyll a, b and a/b, proline content, total protein, carotenoid, malondialdehyde, glucose, fructose and phenolic compounds concentrations. As a result of the study, it was observed that there are remarkable changes in terms of biochemical properties especially for seedlings, whose seeds were pressurized at 200 and 300 MPa. More detailed studies are needed to put forward the mechanism behind the changes in biochemical properties.

  2. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways.

    PubMed

    Azad, Gajendra Kumar; Tomar, Raghuvir S

    2014-08-01

    Ebselen, an organoselenium compound, mimics glutathione peroxidase activity. It is a multifunctional compound, which catalyzes several essential reactions for the protection of cellular components from oxidative and free radical damage. Based on a number of in vitro and in vivo studies, various mechanisms are proposed to understand the biomedical actions of ebselen in health and diseases. It modulates metallo-proteins, enzymatic cofactors, gene expression, epigenetics, antioxidant defenses and immune systems. Owing to these properties, ebselen is currently under clinical trials for the prevention and treatment of various disorders such as cardiovascular diseases, arthritis, stroke, atherosclerosis, and cancer. A few ebselen-based pharmaceutical agents are under extensive investigation. As ebselen has been shown to have significant cellular toxicity, appropriate studies are needed to redesign the ebselen-based therapy for clinical trials. This review summarizes current understanding of the biochemical and molecular properties, and pharmacological applications of ebselen and future directions in this area of research.

  3. How Muscle Structure and Composition Influence Meat and Flesh Quality

    PubMed Central

    Listrat, Anne; Lebret, Bénédicte; Louveau, Isabelle; Astruc, Thierry; Bonnet, Muriel; Lefaucheur, Louis; Picard, Brigitte; Bugeon, Jérôme

    2016-01-01

    Skeletal muscle consists of several tissues, such as muscle fibers and connective and adipose tissues. This review aims to describe the features of these various muscle components and their relationships with the technological, nutritional, and sensory properties of meat/flesh from different livestock and fish species. Thus, the contractile and metabolic types, size and number of muscle fibers, the content, composition and distribution of the connective tissue, and the content and lipid composition of intramuscular fat play a role in the determination of meat/flesh appearance, color, tenderness, juiciness, flavor, and technological value. Interestingly, the biochemical and structural characteristics of muscle fibers, intramuscular connective tissue, and intramuscular fat appear to play independent role, which suggests that the properties of these various muscle components can be independently modulated by genetics or environmental factors to achieve production efficiency and improve meat/flesh quality. PMID:27022618

  4. Correlation Between Structural, Spectroscopic, and Reactivity Properties Within a Series of Structurally Analogous Metastable Manganese(III)-Alkylperoxo Complexes

    PubMed Central

    Coggins, Michael K.; Martin-Diaconescu, Vlad; DeBeer, Serena; Kovacs, Julie A.

    2013-01-01

    Manganese–peroxos are proposed as key intermediates in a number of important biochemical and synthetic transformations. Our understanding of the structural, spectroscopic, and reactivity properties of these metastable species is limited, however, and correlations between these properties have yet to be established experimentally. Herein we report the crystallographic structures of a series of structurally related metastable Mn(III)–OOR compounds, and examine their spectroscopic and reactivity properties. The four reported Mn(III)–OOR compounds extend the number of known end-on Mn(III)–(η1-peroxos) to six. The ligand backbone is shown to alter the metal–ligand distances and modulate the electronic properties key to bonding and activation of the peroxo. The mechanism of thermal decay of these metastable species is examined via variable-temperature kinetics. Strong correlations between structural (O–O and Mn⋯Npy,quin distances), spectroscopic (E(πv*(O–O) → Mn CT band), νO–O), and kinetic (ΔH‡ and ΔS‡) parameters for these complexes provide compelling evidence for rate-limiting O–O bond cleavage. Products identified in the final reaction mixtures of Mn(III)–OOR decay are consistent with homolytic O–O bond scission. The N-heterocyclic amines and ligand backbone (Et vs Pr) are found to modulate structural and reactivity properties, and O–O bond activation is shown, both experimentally and theoretically, to track with metal ion Lewis acidity. The peroxo O–O bond is shown to gradually become more activated as the N-heterocyclic amines move closer to the metal ion causing a decrease in π-donation from the peroxo πv*(O–O) orbital. The reported work represents one of very few examples of experimentally verified relationships between structure and function. PMID:23432090

  5. Correlation between structural, spectroscopic, and reactivity properties within a series of structurally analogous metastable manganese(III)-alkylperoxo complexes.

    PubMed

    Coggins, Michael K; Martin-Diaconescu, Vlad; DeBeer, Serena; Kovacs, Julie A

    2013-03-20

    Manganese-peroxos are proposed as key intermediates in a number of important biochemical and synthetic transformations. Our understanding of the structural, spectroscopic, and reactivity properties of these metastable species is limited, however, and correlations between these properties have yet to be established experimentally. Herein we report the crystallographic structures of a series of structurally related metastable Mn(III)-OOR compounds, and examine their spectroscopic and reactivity properties. The four reported Mn(III)-OOR compounds extend the number of known end-on Mn(III)-(η(1)-peroxos) to six. The ligand backbone is shown to alter the metal-ligand distances and modulate the electronic properties key to bonding and activation of the peroxo. The mechanism of thermal decay of these metastable species is examined via variable-temperature kinetics. Strong correlations between structural (O-O and Mn···N(py,quin) distances), spectroscopic (E(πv*(O-O) → Mn CT band), ν(O-O)), and kinetic (ΔH(‡) and ΔS(‡)) parameters for these complexes provide compelling evidence for rate-limiting O-O bond cleavage. Products identified in the final reaction mixtures of Mn(III)-OOR decay are consistent with homolytic O-O bond scission. The N-heterocyclic amines and ligand backbone (Et vs Pr) are found to modulate structural and reactivity properties, and O-O bond activation is shown, both experimentally and theoretically, to track with metal ion Lewis acidity. The peroxo O-O bond is shown to gradually become more activated as the N-heterocyclic amines move closer to the metal ion causing a decrease in π-donation from the peroxo πv*(O-O) orbital. The reported work represents one of very few examples of experimentally verified relationships between structure and function.

  6. Differential Modulation of Ethanol-Induced Sedation and Hypnosis by Metabotropic Glutamate Receptor Antagonists in C57BL/6J Mice

    PubMed Central

    Sharko, Amanda C.; Hodge, Clyde W.

    2008-01-01

    Background Emerging evidence implicates metabotropic glutamate receptor (mGluR) function in the neurobiological effects of ethanol. The recent development of subtype specific mGluR antagonists has made it possible to examine the roles of specific mGluRs in biochemical and behavioral responses to ethanol. The purpose of the present study was to determine if mGluRs modulate the acute sedative-hypnotic properties of ethanol in mice. Methods C57BL / 6J mice were tested for locomotor activity (sedation) and duration of loss of the righting reflex (hypnosis) following acute systemic administration of ethanol alone or in combination with the mGluR5-selective antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP), the mGluR1-selective antagonist, 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt), or the mGluR2 / 3-selective antagonist (2S)-2-Amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495)). Results MPEP (10 and 30 mg / kg) significantly enhanced both the sedative and hypnotic effects of ethanol, while LY341495 (10 and 30 mg / kg) significantly reduced the sedative-hypnotic effects of ethanol. CPCCOEt had no effect at any concentration tested. Further loss of righting reflex experiments revealed that LY341495 (30 mg / kg) significantly reduced hypnosis induced by the gamma-aminobutyric acid type A (GABAA) positive modulators, pentobarbital (50 mg / kg) and midazolam (60 mg / kg), and the N-methyl-D-aspartate (NMDA) receptor antagonist, ketamine (150 mg / kg), while MPEP (30 mg / kg) only significantly enhanced the hypnotic properties of ketamine (150 mg / kg). Conclusions These findings suggest that specific subtypes of the metabotropic glutamate receptor differentially modulate the sedative-hypnotic properties of ethanol through separate mechanisms of action, potentially involving GABAA and NMDA receptors. PMID:18070246

  7. Advances in lanthanide-based luminescent peptide probes for monitoring the activity of kinase and phosphatase.

    PubMed

    Pazos, Elena; Vázquez, M Eugenio

    2014-02-01

    Signaling pathways based on protein phosphorylation and dephosphorylation play critical roles in the orchestration of complex biochemical events and form the core of most signaling pathways in cells (i.e. cell cycle regulation, cell motility, apoptosis, etc.). The understanding of these complex signaling networks is based largely on the biochemical study of their components, i.e. kinases and phosphatases. The development of luminescent sensors for monitoring kinase and phosphatase activity is therefore an active field of research. Examples in the literature usually rely on the modulation of the fluorescence emission of organic fluorophores. However, given the exceptional photophysical properties of lanthanide ions, there is an increased interest in their application as emissive species for monitoring kinase and phosphatase activity. This review summarizes the advances in the development of lanthanide-based luminescent peptide sensors as tools for the study of kinases and phosphatases and provides a critical description of current examples and synthetic approaches to understand these lanthanide-based luminescent peptide sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis and Pharmacokinetic Evaluation of Siderophore Biosynthesis Inhibitors for Mycobacterium tuberculosis

    PubMed Central

    Nelson, Kathryn M.; Viswanathan, Kishore; Dawadi, Surendra; Duckworth, Benjamin P.; Boshoff, Helena I.; Barry, Clifton E.; Aldrich, Courtney C.

    2015-01-01

    MbtA catalyzes the first committed biosynthetic step of the mycobactins, which are important virulence factors associated with iron acquisition in Mycobacterium tuberculosis. MbtA is a validated therapeutic target for antitubercular drug development. 5′-O-[N-(salicyl)sulfamoyl]adenosine (1) is a bisubstrate inhibitor of MbtA and exhibits exceptionally potent biochemical and antitubercular activity. However, 1 suffers from sub-optimal drug disposition properties resulting in a short half-life (t1/2), low exposure (AUC), and low bioavailability (F). Four strategies were pursued to address these liabilities including the synthesis of prodrugs, increasing the pKa of the acyl-sulfonyl moiety, modulation of the lipophilicity, and strategic introduction of fluorine into 1. Complete pharmacokinetic (PK) analysis of all compounds was performed. The most successful modifications involved fluorination of the nucleoside that provided substantial improvements in t1/2 and AUC. Increasing the pKa of the acyl-sulfonyl linker yielded incremental enhancements while modulation of the lipophilicity and prodrug approaches led to substantially poorer PK parameters. PMID:26110337

  9. Study of the n-methyl-d-aspartate antagonistic properties of anticholinergic drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonough, J.H.; Shih, T.M.

    1995-12-31

    A study of the N-methyl-D-aspartate antagonistic properties of anticholinergic drugs. PHARMACOL BIOCHEM BEHAV. 51(2/3) 249-253, 1995. Drugs that act at the N-methyl-D-aspartate (NMDA) receptor complex have the ability to terminate nerve agent-induced seizures and modulate the neuropathologic consequences of agent exposure. Drugs with mixed anticholinergic and anti-NMDA properties potentially provide an ideal class of compounds for development as anticonvulsant treatments for nerve agent casualties. The present experiment evaluated the potential NMDA antagonist activity of 11 anticholinergic drugs by determining whether pretreatment with the compound was capable of protecting mice from the lethal effects of NMDA. The following anticholinergic drugs antagonizedmore » NMDA lethality and are ranked according to their potency: mecamylamine > procyclidine = benactyzine > biperiden > tribexyphenidyl. The anticholinergics atropine, aprophen, azaprophen, benztropine, 3-quinudidinyl benzilate (QNB), and scopolamine failed to show NMDA antagonist properties. In addition, and unexpectedly, diazepam, ethanol, and pentobarbital were also shown to be capable of antagonizing NMDA lethality over a certain range of doses. The advantages and limitations of using antagonism of NMDA lethality in mice as a bioassay for determining the NMDA antagonist properties of drugs are also discussed.« less

  10. [Recent advance in chemotherapy for advanced colorectal cancer].

    PubMed

    Aiba, K

    1996-04-01

    Chemotherapy for advanced colorectal cancer is reviewed stressing the historical development of combination chemotherapy and the application of a new idea called biochemical modulation based upon a preclinical biochemical and molecular pharmacological rationale. While 5-fluorouracil (5-FU) is a key drug for more than three decades, many a combination chemotherapy with 5-FU and other drugs such as methyl-CCNU, vincristine, streptozocin, mitomycin C and so on has been studied extensively only to show no significant improvement compared with monotherapy with 5-FU. Recently, the mechanisms of 5-FU action have been recognized more in detail biochemically, and it enabled us to try the drug in a more optimal way. For example, bolus i.v. infusion of 5-FU can produce a response rate of around 10% to 15% at most for advanced colorectal cancer. On the other hand, a more continuous mode of i.v. infusion, typically known as protracted i.v. infusion lasting up to 6 weeks or more, can produce the response rate of up to 40%. The difference underlying the mechanisms of action in these typical two administrative methods is that the main target can be RNA-directed cytotoxicity in the bolus type infusion and it can be shifted toward DNA-directed cytotoxicity in the continuous type infusion through the inhibition of thymidylate synthase (TS) enzyme activity which is relevant to DNA de novo synthesis. More importantly, investigations using clinical materials imply that DNA-directed cytotoxicity may be more relevant in a clinical setting, showing consistent findings between bench-top experiments and the clinical outcome. Given a precise knowledge about the mechanisms of 5-FU action, we could have developed a new type combination chemotherapy called biochemical modulation which manipulates non-cytotoxic agents or cytotoxic agents in non-cytotoxic level as modulators enhancing cytotoxicity of 5-FU biochemically. Among modulators, leucovorin (LV) has been shown to have a pivotal role in this field. Although no optimal combination dose schedule of LV is well known, randomized studies have shown improved activity of 5-FU modulation by LV over 5-FU alone for advanced colorectal cancer doubled the response rate by monotherapy (20-25%) vs 10-15%). New drugs are also promising with the response rate of 25% approximately obtained with a new camptothecin derivative CPT-11, and a pure TS inhibitor, Tomudex in phase II trials. It is also necessary to explore the clinical activity of the combination of low-dose cisplatin and 5-FU, chronotherapy, new dihydropyrimidine dehydrogenase inhibitors and new TS inhibitors. We are facing a new era with a new treatment concept of biochemical modulation or an understanding of optimal administrative methods with the key drug, 5-FU. Obviously, we still seek new agents or new laboratory rationales which enable us to extend the survival of patients with advanced colorectal cancer.

  11. Molecular and elemental effects underlying the biochemical action of transcranial direct current stimulation (tDCS) in appetite control

    NASA Astrophysics Data System (ADS)

    Surowka, Artur D.; Ziomber, Agata; Czyzycki, Mateusz; Migliori, Alessandro; Kasper, Kaja; Szczerbowska-Boruchowska, Magdalena

    2018-04-01

    Recent studies highlight that obesity may alter the electric activity in brain areas triggering appetite and craving. Transcranial direct current brain stimulation (tDCS) has recently emerged as a safe alternative for treating food addiction via modulating cortical excitability without any high-risk surgical procedure to be utilized. As for anodal-type tDCS (atDCS), we observe increased excitability and spontaneous firing of the cortical neurons, whilst for the cathodal-type tDCS (ctDCS) a significant decrease is induced. Unfortunately, for the method to be fully used in a clinical setting, its biochemical action mechanism must be precisely defined, although it is proposed that molecular remodelling processes play in concert with brain activity changes involving the ions of: Na, Cl, K and Ca. Herein, we proposed for the first time Fourier transform infrared (FTIR) and synchrotron X-ray fluorescence (SRXRF) microprobes for a combined molecular and elemental analysis in the brain areas implicated appetite control, upon experimental treatment by either atDCS or ctDCS. The study, although preliminary, shows that by stimulating the prefrontal cortex in the rats fed high-caloric nutrients, the feeding behavior can be significantly changed, resulting in significantly inhibited appetite. Both, atDCS and ctDCS produced significant molecular changes involving qualitative and structural properties of lipids, whereas atDCS was found with a somewhat more significant effect on protein secondary structure in all the brain areas investigated. Also, tDCS was reported to reduce surface masses of Na, Cl, K, and Ca in almost all brain areas investigated, although the atDCS deemed to have a stronger neuro-modulating effect. Taken together, one can report that tDCS is an effective treatment technique, and its action mechanism in the appetite control seems to involve a variety of lipid-, protein- and metal/non-metal-ion-driven biochemical changes, regardless the current polarization.

  12. The influence of modulated sinusoidal current on the state of chromatin from neurons of the cerebral cortex of rats in hypokinesia

    NASA Technical Reports Server (NTRS)

    Sokolova, Z. A.

    1980-01-01

    The biochemical changes under the influence of modulated sinusoidal current in the central nervous system were investigated. The methodology used is discussed, the results are reported in a table, and conclusions are presented.

  13. Biomedical and Biochemical Engineering for K-12 Students

    ERIC Educational Resources Information Center

    Madihally, Sundararajan V.; Maase, Eric L.

    2006-01-01

    REACH (Reaching Engineering and Architectural Career Heights) is a weeklong summer academy outreach program for high school students interested in engineering, architecture, or technology. Through module-­based instruction, students are introduced to various engineering fields. This report describes one of the modules focused on introducing…

  14. Using RNA nanoparticles with thermostable motifs and fluorogenic modules for real-time detection of RNA folding and turnover in prokaryotic and eukaryotic cells.

    PubMed

    Zhang, Hui; Pi, Fengmei; Shu, Dan; Vieweger, Mario; Guo, Peixuan

    2015-01-01

    RNA nanotechnology is an emerging field at the interface of biochemistry and nanomaterials that shows immense promise for applications in nanomedicines, therapeutics and nanotechnology. Noncoding RNAs, such as siRNA, miRNA, ribozymes, and riboswitches, play important roles in the regulation of cellular processes. They carry out highly specific functions on a compact and efficient footprint. The properties of specificity and small size make them excellent modules in the construction of multifaceted RNA nanoparticles for targeted delivery and therapy. Biological activity of RNA molecules, however, relies on their proper folding. Therefore their thermodynamic and biochemical stability in the cellular environment is critical. Consequently, it is essential to assess global fold and intracellular lifetime of multifaceted RNA nanoparticles to optimize their therapeutic effectiveness. Here, we describe a method to express and assemble stable RNA nanoparticles in cells, and to assess the folding and turnover rate of RNA nanoparticles in vitro as well as in vivo in real time using a thermostable core motif derived from pRNA of bacteriophage Phi29 DNA packaging motor and fluorogenic RNA modules.

  15. Kombucha tea fermentation: Microbial and biochemical dynamics.

    PubMed

    Chakravorty, Somnath; Bhattacharya, Semantee; Chatzinotas, Antonis; Chakraborty, Writachit; Bhattacharya, Debanjana; Gachhui, Ratan

    2016-03-02

    Kombucha tea, a non-alcoholic beverage, is acquiring significant interest due to its claimed beneficial properties. The microbial community of Kombucha tea consists of bacteria and yeast which thrive in two mutually non-exclusive compartments: the soup or the beverage and the biofilm floating on it. The microbial community and the biochemical properties of the beverage have so far mostly been described in separate studies. This, however, may prevent understanding the causal links between the microbial communities and the beneficial properties of Kombucha tea. Moreover, an extensive study into the microbial and biochemical dynamics has also been missing. In this study, we thus explored the structure and dynamics of the microbial community along with the biochemical properties of Kombucha tea at different time points up to 21 days of fermentation. We hypothesized that several biochemical properties will change during the course of fermentation along with the shifts in the yeast and bacterial communities. The yeast community of the biofilm did not show much variation over time and was dominated by Candida sp. (73.5-83%). The soup however, showed a significant shift in dominance from Candida sp. to Lachancea sp. on the 7th day of fermentation. This is the first report showing Candida as the most dominating yeast genus during Kombucha fermentation. Komagateibacter was identified as the single largest bacterial genus present in both the biofilm and the soup (~50%). The bacterial diversity was higher in the soup than in the biofilm with a peak on the seventh day of fermentation. The biochemical properties changed with the progression of the fermentation, i.e., beneficial properties of the beverage such as the radical scavenging ability increased significantly with a maximum increase at day 7. We further observed a significantly higher D-saccharic acid-1,4-lactone content and caffeine degradation property compared to previously described Kombucha tea fermentations. Our data thus indicate that the microbial community structure and dynamics play an important role in the biochemistry of the fermentation of the beverage. We envisage that combined molecular and biochemical analyses like in our study will provide valuable insights for better understanding the role of the microbial community for the beneficial properties of the beverage. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Dietary Sulforaphane in Cancer Chemoprevention: The Role of Epigenetic Regulation and HDAC Inhibition

    PubMed Central

    Tortorella, Stephanie M.; Royce, Simon G.; Licciardi, Paul V.

    2015-01-01

    Abstract Significance: Sulforaphane, produced by the hydrolytic conversion of glucoraphanin after ingestion of cruciferous vegetables, particularly broccoli and broccoli sprouts, has been extensively studied due to its apparent health-promoting properties in disease and limited toxicity in normal tissue. Recent Studies: Recent identification of a sub-population of tumor cells with stem cell-like self-renewal capacity that may be responsible for relapse, metastasis, and resistance, as a potential target of the dietary compound, may be an important aspect of sulforaphane chemoprevention. Evidence also suggests that sulforaphane may target the epigenetic alterations observed in specific cancers, reversing aberrant changes in gene transcription through mechanisms of histone deacetylase inhibition, global demethylation, and microRNA modulation. Critical Issues: In this review, we discuss the biochemical and biological properties of sulforaphane with a particular emphasis on the anticancer properties of the dietary compound. Sulforaphane possesses the capacity to intervene in multistage carcinogenesis through the modulation and/or regulation of important cellular mechanisms. The inhibition of phase I enzymes that are responsible for the activation of pro-carcinogens, and the induction of phase II enzymes that are critical in mutagen elimination are well-characterized chemopreventive properties. Furthermore, sulforaphane mediates a number of anticancer pathways, including the activation of apoptosis, induction of cell cycle arrest, and inhibition of NFκB. Future Directions: Further characterization of the chemopreventive properties of sulforaphane and its capacity to be selectively toxic to malignant cells are warranted to potentially establish the clinical utility of the dietary compound as an anti-cancer compound alone, and in combination with clinically relevant therapeutic and management strategies. Antioxid. Redox Signal. 22, 1382–1424. PMID:25364882

  17. Modular decomposition of metabolic reaction networks based on flux analysis and pathway projection.

    PubMed

    Yoon, Jeongah; Si, Yaguang; Nolan, Ryan; Lee, Kyongbum

    2007-09-15

    The rational decomposition of biochemical networks into sub-structures has emerged as a useful approach to study the design of these complex systems. A biochemical network is characterized by an inhomogeneous connectivity distribution, which gives rise to several organizational features, including modularity. To what extent the connectivity-based modules reflect the functional organization of the network remains to be further explored. In this work, we examine the influence of physiological perturbations on the modular organization of cellular metabolism. Modules were characterized for two model systems, liver and adipocyte primary metabolism, by applying an algorithm for top-down partition of directed graphs with non-uniform edge weights. The weights were set by the engagement of the corresponding reactions as expressed by the flux distribution. For the base case of the fasted rat liver, three modules were found, carrying out the following biochemical transformations: ketone body production, glucose synthesis and transamination. This basic organization was further modified when different flux distributions were applied that describe the liver's metabolic response to whole body inflammation. For the fully mature adipocyte, only a single module was observed, integrating all of the major pathways needed for lipid storage. Weaker levels of integration between the pathways were found for the early stages of adipocyte differentiation. Our results underscore the inhomogeneous distribution of both connectivity and connection strengths, and suggest that global activity data such as the flux distribution can be used to study the organizational flexibility of cellular metabolism. Supplementary data are available at Bioinformatics online.

  18. Tissue-like Neural Probes for Understanding and Modulating the Brain.

    PubMed

    Hong, Guosong; Viveros, Robert D; Zwang, Theodore J; Yang, Xiao; Lieber, Charles M

    2018-03-19

    Electrophysiology tools have contributed substantially to understanding brain function, yet the capabilities of conventional electrophysiology probes have remained limited in key ways because of large structural and mechanical mismatches with respect to neural tissue. In this Perspective, we discuss how the general goal of probe design in biochemistry, that the probe or label have a minimal impact on the properties and function of the system being studied, can be realized by minimizing structural, mechanical, and topological differences between neural probes and brain tissue, thus leading to a new paradigm of tissue-like mesh electronics. The unique properties and capabilities of the tissue-like mesh electronics as well as future opportunities are summarized. First, we discuss the design of an ultraflexible and open mesh structure of electronics that is tissue-like and can be delivered in the brain via minimally invasive syringe injection like molecular and macromolecular pharmaceuticals. Second, we describe the unprecedented tissue healing without chronic immune response that leads to seamless three-dimensional integration with a natural distribution of neurons and other key cells through these tissue-like probes. These unique characteristics lead to unmatched stable long-term, multiplexed mapping and modulation of neural circuits at the single-neuron level on a year time scale. Last, we offer insights on several exciting future directions for the tissue-like electronics paradigm that capitalize on their unique properties to explore biochemical interactions and signaling in a "natural" brain environment.

  19. Methods for Discovery of Novel Cellulosomal Cellulases Using Genomics and Biochemical Tools.

    PubMed

    Ben-David, Yonit; Dassa, Bareket; Bensoussan, Lizi; Bayer, Edward A; Moraïs, Sarah

    2018-01-01

    Cell wall degradation by cellulases is extensively explored owing to its potential contribution to biofuel production. The cellulosome is an extracellular multienzyme complex that can degrade the plant cell wall very efficiently, and cellulosomal enzymes are therefore of great interest. The cellulosomal cellulases are defined as enzymes that contain a dockerin module, which can interact with a cohesin module contained in multiple copies in a noncatalytic protein, termed scaffoldin. The assembly of the cellulosomal cellulases into the cellulosomal complex occurs via specific protein-protein interactions. Cellulosome systems have been described initially only in several anaerobic cellulolytic bacteria. However, owing to ongoing genome sequencing and metagenomic projects, the discovery of novel cellulosome-producing bacteria and the description of their cellulosomal genes have dramatically increased in the recent years. In this chapter, methods for discovery of novel cellulosomal cellulases from a DNA sequence by bioinformatics and biochemical tools are described. Their biochemical characterization is also described, including both the enzymatic activity of the putative cellulases and their assembly into mature designer cellulosomes.

  20. Role of Curcumin in Disease Prevention and Treatment.

    PubMed

    Rahmani, Arshad Husain; Alsahli, Mohammed A; Aly, Salah M; Khan, Masood A; Aldebasi, Yousef H

    2018-01-01

    Treatment based on traditional medicine is very popular in developing world due to inexpensive properties. Nowadays, several types of preparations based on medicinal plants at different dose have been extensively recognized in the diseases prevention and treatment. In this vista, latest findings support the effect of Curcuma longa and its chief constituents curcumin in a broad range of diseases cure via modulation of physiological and biochemical process. In addition, various studies based on animal mode and clinical trials showed that curcumin does not cause any adverse complications on liver and kidney function and it is safe at high dose. This review article aims at gathering information predominantly on pharmacological activities such as anti-diabetic, anti-microbial, hepato-protective activity, anti-inflammatory, and neurodegenerative diseases.

  1. Role of Curcumin in Disease Prevention and Treatment

    PubMed Central

    Rahmani, Arshad Husain; Alsahli, Mohammed A.; Aly, Salah M.; Khan, Masood A.; Aldebasi, Yousef H.

    2018-01-01

    Treatment based on traditional medicine is very popular in developing world due to inexpensive properties. Nowadays, several types of preparations based on medicinal plants at different dose have been extensively recognized in the diseases prevention and treatment. In this vista, latest findings support the effect of Curcuma longa and its chief constituents curcumin in a broad range of diseases cure via modulation of physiological and biochemical process. In addition, various studies based on animal mode and clinical trials showed that curcumin does not cause any adverse complications on liver and kidney function and it is safe at high dose. This review article aims at gathering information predominantly on pharmacological activities such as anti-diabetic, anti-microbial, hepato-protective activity, anti-inflammatory, and neurodegenerative diseases. PMID:29629341

  2. Potato tuber cytokinin oxidase/dehydrogenase genes: Biochemical properties, activity, and expression during tuber dormancy progression

    USDA-ARS?s Scientific Manuscript database

    The enzymatic and biochemical properties of the proteins encoded by five potato cytokinin oxidase/dehydrogenase (CKX)-like genes functionally expressed in yeast and the effects of tuber dormancy progression on StCKX expression and cytokinin metabolism were examined in meristems isolated from field-g...

  3. Membrane guanylate cyclase is a beautiful signal transduction machine: overview.

    PubMed

    Sharma, Rameshwar K

    2010-01-01

    This article is a sequel to the four earlier comprehensive reviews which covered the field of membrane guanylate cyclase from its origin to the year 2002 (Sharma in Mol Cell Biochem 230:3-30, 2002) and then to the year 2004 (Duda et al. in Peptides 26:969-984, 2005); and of the Ca(2+)-modulated membrane guanylate cyclase to the year 1997 (Pugh et al. in Biosci Rep 17:429-473, 1997) and then to 2004 (Sharma et al. in Curr Top Biochem Res 6:111-144, 2004). This article contains three parts. The first part is "Historical"; it is brief, general, and freely borrowed from the earlier reviews, covering the field from its origin to the year 2004 (Sharma in Mol Cell Biochem, 230:3-30, 2002; Duda et al. in Peptides 26:969-984, 2005). The second part focuses on the "Ca(2+)-modulated ROS-GC membrane guanylate cyclase subfamily". It is divided into two sections. Section "Historical" and covers the area from its inception to the year 2004. It is also freely borrowed from an earlier review (Sharma et al. in Curr Top Biochem Res 6:111-144, 2004). Section "Ca(2+)-modulated ROS-GC membrane guanylate cyclase subfamily" covers the area from the year 2004 to May 2009. The objective is to focus on the chronological development, recognize major contributions of the original investigators, correct misplaced facts, and project on the future trend of the field of mammalian membrane guanylate cyclase. The third portion covers the present status and concludes with future directions in the field.

  4. p53 and PCNA expression in advanced colorectal cancer: response to chemotherapy and long-term prognosis.

    PubMed

    Paradiso, A; Rabinovich, M; Vallejo, C; Machiavelli, M; Romero, A; Perez, J; Lacava, J; Cuevas, M A; Rodriquez, R; Leone, B; Sapia, M G; Simone, G; De Lena, M

    1996-12-20

    In a series of 71 patients with advanced colorectal cancer treated with biochemically modulated 5-fluorouracil (5-FU) and methotrexate (MTX), we investigated the relationship between the proliferating-cell nuclear antigen (PCNA) (PC10) and p53 (Pab1801) primary-tumor immunohistochemical expression with respect to clinical response and long-term prognosis. Nuclear p53 expression was demonstrated in 44% of samples (any number of positive tumor cells) while all tumors showed a certain degree of PCNA immunostaining. PCNA immunostaining was correlated with histopathologic grade and p53 expression, while p53 was not correlated with any of the parameters considered. The probability of clinical response to biochemically modulated 5-FU was independent of p53 and PCNA expression. p53 expression (all cut-off values) was not associated with short- or long-term clinical prognosis, whereas patients with higher PCNA primary-tumor expression showed longer survival from treatment and survival from diagnosis, according to univariate and multivariate analysis, particularly in the sub-set of colon-cancer patients. We conclude that the clinical response of advanced-colorectal-cancer patients to biochemically modulated 5-FU and MTX cannot be predicted by PCNA and p53 primary-tumor expression, but high PCNA expression appears to be independently related to long-term prognosis.

  5. Therapeutic Mechanisms of Bile Acids and Nor-Ursodeoxycholic Acid in Non-Alcoholic Fatty Liver Disease.

    PubMed

    Steinacher, Daniel; Claudel, Thierry; Trauner, Michael

    2017-01-01

    Non-alcoholic fatty liver disease is one of the most rapidly rising clinical problems in the 21st century. So far no effective drug treatment has been established to cure this disease. Bile acids (BAs) have a variety of signaling properties, which can be used therapeutically for modulating hepatic metabolism and inflammation. A side-chain shorted derivative of ursodeoxycholic acid (UDCA) is 24 nor-ursodeoxycholic acid (NorUDCA) and it represents a new class of drugs for treatment of liver diseases. NorUDCA has unique biochemical and therapeutic properties, since it is relatively resistant to conjugation with glycine or taurine compared to UDCA. NorUDCA undergoes cholehepatic shunting, resulting in ductular targeting, bicarbonate-rich hypercholeresis, and cholangiocyte protection. Furthermore, it showed anti-fibrotic, anti-inflammatory, and anti-lipotoxic properties in several animal models. As such, NorUDCA is a promising new approach in the treatment of cholestatic and metabolic liver diseases. This review is a summary of current BA-based therapeutic approaches in the treatment of the fatty liver disease. © 2017 S. Karger AG, Basel.

  6. Propagation of kinetic uncertainties through a canonical topology of the TLR4 signaling network in different regions of biochemical reaction space

    PubMed Central

    2010-01-01

    Background Signal transduction networks represent the information processing systems that dictate which dynamical regimes of biochemical activity can be accessible to a cell under certain circumstances. One of the major concerns in molecular systems biology is centered on the elucidation of the robustness properties and information processing capabilities of signal transduction networks. Achieving this goal requires the establishment of causal relations between the design principle of biochemical reaction systems and their emergent dynamical behaviors. Methods In this study, efforts were focused in the construction of a relatively well informed, deterministic, non-linear dynamic model, accounting for reaction mechanisms grounded on standard mass action and Hill saturation kinetics, of the canonical reaction topology underlying Toll-like receptor 4 (TLR4)-mediated signaling events. This signaling mechanism has been shown to be deployed in macrophages during a relatively short time window in response to lypopolysaccharyde (LPS) stimulation, which leads to a rapidly mounted innate immune response. An extensive computational exploration of the biochemical reaction space inhabited by this signal transduction network was performed via local and global perturbation strategies. Importantly, a broad spectrum of biologically plausible dynamical regimes accessible to the network in widely scattered regions of parameter space was reconstructed computationally. Additionally, experimentally reported transcriptional readouts of target pro-inflammatory genes, which are actively modulated by the network in response to LPS stimulation, were also simulated. This was done with the main goal of carrying out an unbiased statistical assessment of the intrinsic robustness properties of this canonical reaction topology. Results Our simulation results provide convincing numerical evidence supporting the idea that a canonical reaction mechanism of the TLR4 signaling network is capable of performing information processing in a robust manner, a functional property that is independent of the signaling task required to be executed. Nevertheless, it was found that the robust performance of the network is not solely determined by its design principle (topology), but this may be heavily dependent on the network's current position in biochemical reaction space. Ultimately, our results enabled us the identification of key rate limiting steps which most effectively control the performance of the system under diverse dynamical regimes. Conclusions Overall, our in silico study suggests that biologically relevant and non-intuitive aspects on the general behavior of a complex biomolecular network can be elucidated only when taking into account a wide spectrum of dynamical regimes attainable by the system. Most importantly, this strategy provides the means for a suitable assessment of the inherent variational constraints imposed by the structure of the system when systematically probing its parameter space. PMID:20230643

  7. A Systematic Protocol for the Characterization of Hsp90 Modulators

    PubMed Central

    Matts, Robert L.; Brandt, Gary E. L.; Lu, Yuanming; Dixit, Anshuman; Mollapour, Mehdi; Wang, Suiquan; Donnelly, Alison C.; Neckers, Leonard; Verkhivker, Gennady; Blagg, Brian S. J.

    2015-01-01

    Several Hsp90 modulators have been identified including the N-terminal ligand geldanamycin (GDA), the C-terminal ligand novobiocin (NB), and the co-chaperone disruptor celastrol. Other Hsp90 modulators elicit a mechanism of action that remains unknown. For example, the natural product gedunin and the synthetic anti-spermatogenic agent H2-gamendazole, recently identified Hsp90 modulators, manifest biological activity through undefined mechanisms. Herein, we report a series of biochemical techniques used to classify such modulators into identifiable categories. Such studies provided evidence that gedunin and H2-gamendazole both modulate Hsp90 via a mechanism similar to celastrol, and unlike NB or GDA. PMID:21129982

  8. A Review on the Role of Vibrational Spectroscopy as An Analytical Method to Measure Starch Biochemical and Biophysical Properties in Cereals and Starchy Foods

    PubMed Central

    Cozzolino, D.; Degner, S.; Eglinton, J.

    2014-01-01

    Starch is the major component of cereal grains and starchy foods, and changes in its biophysical and biochemical properties (e.g., amylose, amylopectin, pasting, gelatinization, viscosity) will have a direct effect on its end use properties (e.g., bread, malt, polymers). The use of rapid and non-destructive methods to study and monitor starch properties, such as gelatinization, retrogradation, water absorption in cereals and starchy foods, is of great interest in order to improve and assess their quality. In recent years, near infrared reflectance (NIR) and mid infrared (MIR) spectroscopy have been explored to predict several quality parameters, such as those generated by instrumental methods commonly used in routine analysis like the rapid visco analyser (RVA) or viscometers. In this review, applications of both NIR and MIR spectroscopy to measure and monitor starch biochemical (amylose, amylopectin, starch) and biophysical properties (e.g., pasting properties) will be presented and discussed. PMID:28234340

  9. Determination of the floral origin of some Romanian honeys on the basis of physical and biochemical properties

    NASA Astrophysics Data System (ADS)

    Cimpoiu, Claudia; Hosu, Anamaria; Miclaus, Vasile; Puscas, Anitta

    The aim of this study was to determine the physical and biochemical properties of some Romanian honeys in order to discriminate between their floral origins. The evaluated properties were total phenolic content, total protein content, total free amino acids content, color intensity (ABS450), pH, ash content, antioxidant activity. Twenty-six commercial honeys from six types of flowers (acacia, sunflower, forest, polyfloral, lime and Sea Buckthorn) were investigated. All samples showed considerable variations with reference to their properties. The properties values were in the range of approved limits (according to EU legislation). The total phenolic, total protein and total free amino acids contents and color intensity varied considerably. Similarly, forest honey had the highest antioxidant activity while the lowest was found in acacia honey. Correlation between the floral origin of honeys and the physical and biochemical properties, respectively, was observed. Moreover, this study demonstrates remarkable variation in DPPH scavenging activity and content of total phenols in honey, depending on its botanic source.

  10. Mediator kinase module and human tumorigenesis.

    PubMed

    Clark, Alison D; Oldenbroek, Marieke; Boyer, Thomas G

    2015-01-01

    Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.

  11. Mediator kinase module and human tumorigenesis

    PubMed Central

    Clark, Alison D.; Oldenbroek, Marieke; Boyer, Thomas G.

    2016-01-01

    Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit “kinase” module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways. PMID:26182352

  12. Dendrobium officinale Orchid Extract Prevents Ovariectomy-Induced Osteoporosis in Vivo and Inhibits RANKL-Induced Osteoclast Differentiation in Vitro

    PubMed Central

    Wang, Qi; Zi, Cheng-Ting; Wang, Jing; Wang, Yu-Na; Huang, Ye-Wei; Fu, Xue-Qi; Wang, Xuan-Jun; Sheng, Jun

    2018-01-01

    Background: Dendrobium officinale, a traditional Chinese medical herb with high value that is widely used in Asia, possesses many positive effects on human health, including anti-chronic inflammation, anti-obesity, and immune modulation properties; however, whether D. officinale has inhibitory effects on postmenopausal osteoporosis remains unknown. Objective: We investigated the effects of D. officinale extract (DOE) on ovariectomy-induced bone loss in vivo and on osteoclastogenesis in vitro. Methods: In vivo, female rats were divided into a sham-operated (sham) group and five ovariectomized (OVX) subgroups: OVX with vehicle (OVX), OVX with Xian-Ling-Gu-Bao capsule (240 mg/kg body weight/day), and OVX with low-, medium-, and high-dose DOE (150, 300, and 600 mg/kg body weight/day, respectively). Animals in each group were administered their corresponding treatments for 13 weeks. Body weight, serum biochemical parameters, uterine and femoral physical parameters, bone mineral density (BMD), bone biomechanical properties, and bone microarchitecture were obtained. In vitro, the effects of DOE on osteoclastogenesis were examined using RAW264.7 cells. The effects of DOE on osteoclastogenesis and the expression of osteoclast-specific marker genes and proteins were determined. Results: DOE effectively ameliorated serum biochemical parameters, especially alleviated estradiol (E2) deficiency and maintained calcium and phosphorus homeostasis. DOE improved uterine and femoral physical parameters. In addition, DOE improved femoral BMD and biomechanical properties. DOE significantly ameliorated bone microarchitecture. Moreover, DOE inhibited osteoclastogenesis independent of its cytoxicity and suppressed the expression of osteoclast-specific marker genes and proteins. Conclusion: DOE can effectively prevent ovariectomy-induced bone loss in vivo and inhibit osteoclastogenesis in vitro. PMID:29379436

  13. Dendrobium officinale Orchid Extract Prevents Ovariectomy-Induced Osteoporosis in Vivo and Inhibits RANKL-Induced Osteoclast Differentiation in Vitro.

    PubMed

    Wang, Qi; Zi, Cheng-Ting; Wang, Jing; Wang, Yu-Na; Huang, Ye-Wei; Fu, Xue-Qi; Wang, Xuan-Jun; Sheng, Jun

    2017-01-01

    Background: Dendrobium officinale , a traditional Chinese medical herb with high value that is widely used in Asia, possesses many positive effects on human health, including anti-chronic inflammation, anti-obesity, and immune modulation properties; however, whether D. officinale has inhibitory effects on postmenopausal osteoporosis remains unknown. Objective: We investigated the effects of D. officinale extract (DOE) on ovariectomy-induced bone loss in vivo and on osteoclastogenesis in vitro . Methods: In vivo , female rats were divided into a sham-operated (sham) group and five ovariectomized (OVX) subgroups: OVX with vehicle (OVX), OVX with Xian-Ling-Gu-Bao capsule (240 mg/kg body weight/day), and OVX with low-, medium-, and high-dose DOE (150, 300, and 600 mg/kg body weight/day, respectively). Animals in each group were administered their corresponding treatments for 13 weeks. Body weight, serum biochemical parameters, uterine and femoral physical parameters, bone mineral density (BMD), bone biomechanical properties, and bone microarchitecture were obtained. In vitro , the effects of DOE on osteoclastogenesis were examined using RAW264.7 cells. The effects of DOE on osteoclastogenesis and the expression of osteoclast-specific marker genes and proteins were determined. Results: DOE effectively ameliorated serum biochemical parameters, especially alleviated estradiol (E2) deficiency and maintained calcium and phosphorus homeostasis. DOE improved uterine and femoral physical parameters. In addition, DOE improved femoral BMD and biomechanical properties. DOE significantly ameliorated bone microarchitecture. Moreover, DOE inhibited osteoclastogenesis independent of its cytoxicity and suppressed the expression of osteoclast-specific marker genes and proteins. Conclusion: DOE can effectively prevent ovariectomy-induced bone loss in vivo and inhibit osteoclastogenesis in vitro .

  14. Proton mediated control of biochemical reactions with bioelectronic pH modulation

    NASA Astrophysics Data System (ADS)

    Deng, Yingxin; Miyake, Takeo; Keene, Scott; Josberger, Erik E.; Rolandi, Marco

    2016-04-01

    In Nature, protons (H+) can mediate metabolic process through enzymatic reactions. Examples include glucose oxidation with glucose dehydrogenase to regulate blood glucose level, alcohol dissolution into carboxylic acid through alcohol dehydrogenase, and voltage-regulated H+ channels activating bioluminescence in firefly and jellyfish. Artificial devices that control H+ currents and H+ concentration (pH) are able to actively influence biochemical processes. Here, we demonstrate a biotransducer that monitors and actively regulates pH-responsive enzymatic reactions by monitoring and controlling the flow of H+ between PdHx contacts and solution. The present transducer records bistable pH modulation from an “enzymatic flip-flop” circuit that comprises glucose dehydrogenase and alcohol dehydrogenase. The transducer also controls bioluminescence from firefly luciferase by affecting solution pH.

  15. Low incidence of new biochemical hypogonadism after intensity modulated radiation therapy for prostate cancer.

    PubMed

    Markovina, Stephanie; Weschenfelder, Débora Cristina; Gay, Hiram; McCandless, Audrey; Carey, Bethany; DeWees, Todd; Knutson, Nels; Michalski, Jeff

    2014-01-01

    To evaluate serum testosterone and the incidence of biochemical hypogonadism in men treated with intensity modulated radiation therapy (IMRT) for prostate cancer. Serum testosterone was evaluated prospectively in 51 men at pretreatment and at 6-month time points for 2 years posttreatment with IMRT for prostate cancer. Forty-one patients (80%) were treated with definitive intent and 10 patients with postprostatectomy radiation to median total doses of 7380 cGy and 6480 cGy, respectively. No patients received hormone therapy within 12 months of any serum testosterone value. Biochemical hypogonadism was defined as a total serum testosterone level ≤ 300 ng/dL. Incidental testicular dose was calculated using planning software when computed tomography information was available (n = 21) and using a published method of estimation when not available (n = 24), and was available for 45 patients. A statistically significant decrease in testosterone, though small in magnitude, was seen at 6 months after completion of therapy, with no significant difference by 1 year after completion of therapy. There was no increase in biochemical hypogonadism after IMRT. Below-normal pretreatment testosterone was not associated with a transient decrease. Estimated cumulative testicular dose, including dose from daily imaging, was not associated with a change in testosterone, nor was radiation therapy prescription dose or treatment intent (postoperative vs definitive). The mild transient decrease in serum testosterone following IMRT monotherapy for prostate cancer is not associated with new biochemical hypogonadism.

  16. The effect of anthocyanin supplementation in modulating platelet function in sedentary population: a randomised, double-blind, placebo-controlled, cross-over trial.

    PubMed

    Thompson, Kiara; Hosking, Holly; Pederick, Wayne; Singh, Indu; Santhakumar, Abishek B

    2017-09-01

    The anti-thrombotic properties of anthocyanin (ACN) supplementation was evaluated in this randomised, double-blind, placebo (PBO) controlled, cross-over design, dietary intervention trial in sedentary population. In all, sixteen participants (three males and thirteen females) consumed ACN (320 mg/d) or PBO capsules for 28 d followed by a 2-week wash-out period. Biomarkers of thrombogenesis and platelet activation induced by ADP; platelet aggregation induced by ADP, collagen and arachidonic acid; biochemical, lipid, inflammatory and coagulation profile were evaluated before and after supplementation. ACN supplementation reduced monocyte-platelet aggregate formation by 39 %; inhibited platelet endothelial cell adhesion molecule-1 expression by 14 %; reduced platelet activation-dependant conformational change and degranulation by reducing procaspase activating compound-1 (PAC-1) (↓10 %) and P-selectin expression (↓14 %), respectively; and reduced ADP-induced whole blood platelet aggregation by 29 %. Arachidonic acid and collagen-induced platelet aggregation; biochemical, lipid, inflammatory and coagulation parameters did not change post-ACN supplementation. PBO treatment did not have an effect on the parameters tested. The findings suggest that dietary ACN supplementation has the potential to alleviate biomarkers of thrombogenesis, platelet hyperactivation and hyper-aggregation in sedentary population.

  17. Analysis of the synaptotagmin family during reconstituted membrane fusion. Uncovering a class of inhibitory isoforms.

    PubMed

    Bhalla, Akhil; Chicka, Michael C; Chapman, Edwin R

    2008-08-01

    Ca(2+)-triggered exocytosis in neurons and neuroendocrine cells is regulated by the Ca(2+)-binding protein synaptotagmin (syt) I. Sixteen additional isoforms of syt have been identified, but little is known concerning their biochemical or functional properties. Here, we assessed the abilities of fourteen syt isoforms to directly regulate SNARE (soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor)-catalyzed membrane fusion. One group of isoforms stimulated neuronal SNARE-mediated fusion in response to Ca(2+), while another set inhibited SNARE catalyzed fusion in both the absence and presence of Ca(2+). Biochemical analysis revealed a strong correlation between the ability of syt isoforms to bind 1,2-dioleoyl phosphatidylserine (PS) and t-SNAREs in a Ca(2+)-promoted manner with their abilities to enhance fusion, further establishing PS and SNAREs as critical effectors for syt action. The ability of syt I to efficiently stimulate fusion was specific for certain SNARE pairs, suggesting that syts might contribute to the specificity of intracellular membrane fusion reactions. Finally, a subset of inhibitory syts down-regulated the ability of syt I to activate fusion, demonstrating that syt isoforms can modulate the function of each other.

  18. A class of parametrically excited calcium oscillation detectors.

    PubMed Central

    Izu, L T; Spangler, R A

    1995-01-01

    Intracellular Ca2+ oscillations are often a response to external signals such as hormones. Changes in the external signal can alter the frequency, amplitude, or form of the oscillations suggesting that information is encoded in the pattern of Ca2+ oscillations. How might a cell decode this signal? We show that an excitable system whose kinetic parameters are modulated by the Ca2+ concentration can function as a Ca2+ oscillation detector. Such systems have the following properties: (1) They are more sensitive to an oscillatory than to a steady Ca2+ signal. (2) Their response is largely independent of the signal amplitude. (3) They can extract information from a noisy signal. (4) Unlike other frequency sensitive detectors, they have a flat frequency response. These properties make a Ca(2+)-sensitive excitable system nearly ideal for detecting and decoding Ca2+ oscillations. We suggest that Ca2+ oscillations, in concert with these detectors, can act as cellular timekeepers to coordinate related biochemical reactions and enhance their overall efficiency. PMID:7787048

  19. Norepinephrine versus Dopamine and their Interaction in Modulating Synaptic Function in the Prefrontal Cortex

    PubMed Central

    Xing, Bo; Li, Yan-Chun; Gao, Wen-Jun

    2016-01-01

    Among the neuromodulators that regulate prefrontal cortical circuit function, the catecholamine transmitters norepinephrine (NE) and dopamine (DA) stand out as powerful players in working memory and attention. Perturbation of either NE or DA signaling is implicated in the pathogenesis of several neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), schizophrenia, and drug addiction. Although the precise mechanisms employed by NE and DA to cooperatively control prefrontal functions are not fully understood, emerging research indicates that both transmitters regulate electrical and biochemical aspects of neuronal function by modulating convergent ionic and synaptic signaling in the prefrontal cortex (PFC). This review summarizes previous studies that investigated the effects of both NE and DA on excitatory and inhibitory transmissions in the prefrontal cortical circuitry. Specifically, we focus on the functional interaction between NE and DA in prefrontal cortical local circuitry, synaptic integration, signaling pathways, and receptor properties. Although it is clear that both NE and DA innervate the PFC extensively and modulate synaptic function by activating distinctly different receptor subtypes and signaling pathways, it remains unclear how these two systems coordinate their actions to optimize PFC function for appropriate behavior. Throughout this review, we provide perspectives and highlight several critical topics for future studies. PMID:26790349

  20. Immunomodulation and T Helper TH1/TH2 Response Polarization by CeO2 and TiO2 Nanoparticles

    PubMed Central

    Schanen, Brian C.; Das, Soumen; Reilly, Christopher M.; Warren, William L.; Self, William T.; Seal, Sudipta; Drake, Donald R.

    2013-01-01

    Immunomodulation by nanoparticles, especially as related to the biochemical properties of these unique materials, has scarcely been explored. In an in vitro model of human immunity, we demonstrate two catalytic nanoparticles, TiO2 (oxidant) and CeO2 (antioxidant), have nearly opposite effects on human dendritic cells and T helper (TH) cells. For example, whereas TiO2 nanoparticles potentiated DC maturation that led towards TH1-biased responses, treatment with antioxidant CeO2 nanoparticles induced APCs to secrete the anti-inflammatory cytokine, IL-10, and induce a TH2-dominated T cell profile. In subsequent studies, we demonstrate these results are likely explained by the disparate capacities of the nanoparticles to modulate ROS, since TiO2, but not CeO2 NPs, induced inflammatory responses through an ROS/inflammasome/IL-1β pathway. This novel capacity of metallic NPs to regulate innate and adaptive immunity in profoundly different directions via their ability to modulate dendritic cell function has strong implications for human health since unintentional exposure to these materials is common in modern societies. PMID:23667525

  1. Impact of nutrition on social decision making.

    PubMed

    Strang, Sabrina; Hoeber, Christina; Uhl, Olaf; Koletzko, Berthold; Münte, Thomas F; Lehnert, Hendrik; Dolan, Raymond J; Schmid, Sebastian M; Park, Soyoung Q

    2017-06-20

    Food intake is essential for maintaining homeostasis, which is necessary for survival in all species. However, food intake also impacts multiple biochemical processes that influence our behavior. Here, we investigate the causal relationship between macronutrient composition, its bodily biochemical impact, and a modulation of human social decision making. Across two studies, we show that breakfasts with different macronutrient compositions modulated human social behavior. Breakfasts with a high-carbohydrate/protein ratio increased social punishment behavior in response to norm violations compared with that in response to a low carbohydrate/protein meal. We show that these macronutrient-induced behavioral changes in social decision making are causally related to a lowering of plasma tyrosine levels. The findings indicate that, in a limited sense, "we are what we eat" and provide a perspective on a nutrition-driven modulation of cognition. The findings have implications for education, economics, and public policy, and emphasize that the importance of a balanced diet may extend beyond the mere physical benefits of adequate nutrition.

  2. Impact of nutrition on social decision making

    PubMed Central

    Strang, Sabrina; Hoeber, Christina; Uhl, Olaf; Koletzko, Berthold; Münte, Thomas F.; Lehnert, Hendrik; Dolan, Raymond J.; Schmid, Sebastian M.; Park, Soyoung Q.

    2017-01-01

    Food intake is essential for maintaining homeostasis, which is necessary for survival in all species. However, food intake also impacts multiple biochemical processes that influence our behavior. Here, we investigate the causal relationship between macronutrient composition, its bodily biochemical impact, and a modulation of human social decision making. Across two studies, we show that breakfasts with different macronutrient compositions modulated human social behavior. Breakfasts with a high-carbohydrate/protein ratio increased social punishment behavior in response to norm violations compared with that in response to a low carbohydrate/protein meal. We show that these macronutrient-induced behavioral changes in social decision making are causally related to a lowering of plasma tyrosine levels. The findings indicate that, in a limited sense, “we are what we eat” and provide a perspective on a nutrition-driven modulation of cognition. The findings have implications for education, economics, and public policy, and emphasize that the importance of a balanced diet may extend beyond the mere physical benefits of adequate nutrition. PMID:28607064

  3. Modulation of Cholesterol-Related Gene Expression by Dietary Fiber Fractions from Edible Mushrooms.

    PubMed

    Caz, Víctor; Gil-Ramírez, Alicia; Largo, Carlota; Tabernero, María; Santamaría, Mónica; Martín-Hernández, Roberto; Marín, Francisco R; Reglero, Guillermo; Soler-Rivas, Cristina

    2015-08-26

    Mushrooms are a source of dietary fiber (DF) with a cholesterol-lowering effect. However, their underlying mechanisms are poorly understood. The effect of DF-enriched fractions from three mushrooms species on cholesterol-related expression was studied in vitro. The Pleurotus ostreatus DF fraction (PDF) was used in mice models to assess its potential palliative or preventive effect against hypercholesterolemia. PDF induced a transcriptional response in Caco-2 cells, suggesting a possible cholesterol-lowering effect. In the palliative setting, PDF reduced hepatic triglyceride likely because Dgat1 was downregulated. However, cholesterol-related biochemical data showed no changes and no relation with the observed transcriptional modulation. In the preventive setting, PDF modulated cholesterol-related genes expression in a manner similar to that of simvastatin and ezetimibe in the liver, although no changes in plasma and liver biochemical data were induced. Therefore, PDF may be useful reducing hepatic triglyceride accumulation. Because it induced a molecular response similar to hypocholesterolemic drugs in liver, further dose-dependent studies should be carried out.

  4. Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components.

    PubMed

    Timasheff, Serge N

    2002-07-23

    Solvent additives (cosolvents, osmolytes) modulate biochemical reactions if, during the course of the reaction, there is a change in preferential interactions of solvent components with the reacting system. Preferential interactions can be expressed in terms of preferential binding of the cosolvent or its preferential exclusion (preferential hydration). The driving force is the perturbation by the protein of the chemical potential of the cosolvent. It is shown that the measured change of the amount of water in contact with protein during the course of the reaction modulated by an osmolyte is a change in preferential hydration that is strictly a measure of the cosolvent chemical potential perturbation by the protein in the ternary water-protein-cosolvent system. It is not equal to the change in water of hydration, because water of hydration is a reflection strictly of protein-water forces in a binary system. There is no direct relation between water of preferential hydration and water of hydration.

  5. Combinatorial screening of 3D biomaterial properties that promote myofibrogenesis for mesenchymal stromal cell-based heart valve tissue engineering.

    PubMed

    Usprech, Jenna; Romero, David A; Amon, Cristina H; Simmons, Craig A

    2017-08-01

    The physical and chemical properties of a biomaterial integrate with soluble cues in the cell microenvironment to direct cell fate and function. Predictable biomaterial-based control of integrated cell responses has been investigated with two-dimensional (2D) screening platforms, but integrated responses in 3D have largely not been explored systematically. To address this need, we developed a screening platform using polyethylene glycol norbornene (PEG-NB) as a model biomaterial with which the polymer wt% (to control elastic modulus) and adhesion peptide types (RGD, DGEA, YIGSR) and densities could be controlled independently and combinatorially in arrays of 3D hydrogels. We applied this platform and regression modeling to identify combinations of biomaterial and soluble biochemical (TGF-β1) factors that best promoted myofibrogenesis of human mesenchymal stromal cells (hMSCs) in order to inform our understanding of regenerative processes for heart valve tissue engineering. In contrast to 2D culture, our screens revealed that soft hydrogels (low PEG-NB wt%) best promoted spread myofibroblastic cells that expressed high levels of α-smooth muscle actin (α-SMA) and collagen type I. High concentrations of RGD enhanced α-SMA expression in the presence of TGF-β1 and cell spreading regardless of whether TGF-β1 was in the culture medium. Strikingly, combinations of peptides that maximized collagen expression depended on the presence or absence of TGF-β1, indicating that biomaterial properties can modulate MSC response to soluble signals. This combination of a 3D biomaterial array screening platform with statistical modeling is broadly applicable to systematically identify combinations of biomaterial and microenvironmental conditions that optimally guide cell responses. We present a novel screening platform and methodology to model and identify how combinations of biomaterial and microenvironmental conditions guide cell phenotypes in 3D. Our approach to systematically identify complex relationships between microenvironmental cues and cell responses enables greater predictive power over cell fate in conditions with interacting material design factors. We demonstrate that this approach not only predicts that mesenchymal stromal cell (MSC) myofibrogenesis is promoted by soft, porous 3D biomaterials, but also generated new insights which demonstrate how biomaterial properties can differentially modulate MSC response to soluble signals. An additional benefit of the process includes utilizing both parametric and non parametric analyses which can demonstrate dominant significant trends as well as subtle interactions between biochemical and biomaterial cues. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Loads Bias Genetic and Signaling Switches in Synthetic and Natural Systems

    PubMed Central

    Medford, June; Prasad, Ashok

    2014-01-01

    Biological protein interactions networks such as signal transduction or gene transcription networks are often treated as modular, allowing motifs to be analyzed in isolation from the rest of the network. Modularity is also a key assumption in synthetic biology, where it is similarly expected that when network motifs are combined together, they do not lose their essential characteristics. However, the interactions that a network module has with downstream elements change the dynamical equations describing the upstream module and thus may change the dynamic and static properties of the upstream circuit even without explicit feedback. In this work we analyze the behavior of a ubiquitous motif in gene transcription and signal transduction circuits: the switch. We show that adding an additional downstream component to the simple genetic toggle switch changes its dynamical properties by changing the underlying potential energy landscape, and skewing it in favor of the unloaded side, and in some situations adding loads to the genetic switch can also abrogate bistable behavior. We find that an additional positive feedback motif found in naturally occurring toggle switches could tune the potential energy landscape in a desirable manner. We also analyze autocatalytic signal transduction switches and show that a ubiquitous positive feedback switch can lose its switch-like properties when connected to a downstream load. Our analysis underscores the necessity of incorporating the effects of downstream components when understanding the physics of biochemical network motifs, and raises the question as to how these effects are managed in real biological systems. This analysis is particularly important when scaling synthetic networks to more complex organisms. PMID:24676102

  7. "Lactoferrin and Peptide-derivatives: Antimicrobial Agents with Potential Use in Nonspecific Immunity Modulation".

    PubMed

    Drago-Serrano, Maria Elisa; Campos-Rodriguez, Rafael; Carrero, Julio Cesar; de la Garza, Mireya

    2018-03-27

    Lactoferrin (Lf) is a conserved cationic non-heme glycoprotein that is part of the innate immune defense system of mammals. Lf is present in colostrum, milk and mucosal sites, and it is also produced by polymorphonuclear neutrophils and secreted at infection sites. Lf and Lf N-terminus peptide-derivatives named lactoferricins (Lfcins) are molecules with microbiostatic and microbicidal action in a wide array of pathogens. In addition, they display regulatory properties on components of nonspecific immunity, including toll-like receptors, pro- and anti-inflammatory cytokines, and reactive oxygen species. Mechanisms explaining the ability of Lf and Lfcins to display both up- and down-modulatory properties on cells are not fully understood but result, in part, from their interactions with membrane receptors that elicit biochemical signal pathways, whereas other receptors enable the nuclear translocation of these molecules for the modulation of target genes. The dual role of Lf and Lfcins as antimicrobials and immunomodulators is of biotechnological and pharmaceutical interest. Native Lf and its peptide-derivatives from human and bovine sources, the recombinant versions of the human protein, and their synthetic peptides have potential application as adjunctive agents in therapies to combat infections caused by multi-resistant bacteria and those caused by fungi, protozoa and viruses, as well as in the prevention and reduction of several types of cancer and response to LPS-shock, among other effects. In this review, we summarize the immunomodulatory properties of the unique multifunctional protein Lf and its N-terminus peptides. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Combining phytoextraction and biochar addition improves soil biochemical properties in a soil contaminated with Cd.

    PubMed

    Lu, Huanping; Li, Zhian; Fu, Shenglei; Méndez, Ana; Gascó, Gabriel; Paz-Ferreiro, Jorge

    2015-01-01

    The main goal of phytoremediation is to improve ecosystem functioning. Soil biochemical properties are considered as effective indicators of soil quality and are sensitive to various environmental stresses, including heavy metal contamination. The biochemical response in a soil contaminated with cadmium was tested after several treatments aimed to reduce heavy metal availability including liming, biochar addition and phytoextraction using Amaranthus tricolor L. Two biochars were added to the soil: eucalyptus pyrolysed at 600 °C (EB) and poultry litter at 400 °C (PLB). Two liming treatments were chosen with the aim of bringing soil pH to the same values as in the treatments EB and PLB. The properties studied included soil microbial biomass C, soil respiration and the activities of invertase, β-glucosidase, β-glucosaminidase, urease and phosphomonoesterase. Both phytoremediation and biochar addition improved soil biochemical properties, although results were enzyme specific. For biochar addition these changes were partly, but not exclusively, mediated by alterations in soil pH. A careful choice of biochar must be undertaken to optimize the remediation process from the point of view of metal phytoextraction and soil biological activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Proton mediated control of biochemical reactions with bioelectronic pH modulation

    DOE PAGES

    Deng, Yingxin; Miyake, Takeo; Keene, Scott; ...

    2016-04-07

    In Nature, protons (H +) can mediate metabolic process through enzymatic reactions. Examples include glucose oxidation with glucose dehydrogenase to regulate blood glucose level, alcohol dissolution into carboxylic acid through alcohol dehydrogenase, and voltage-regulated H + channels activating bioluminescence in firefly and jellyfish. Artificial devices that control H + currents and H + concentration (pH) are able to actively influence biochemical processes. Here, we demonstrate a biotransducer that monitors and actively regulates pH-responsive enzymatic reactions by monitoring and controlling the flow of H + between PdH x contacts and solution. The present transducer records bistable pH modulation from an “enzymaticmore » flip-flop” circuit that comprises glucose dehydrogenase and alcohol dehydrogenase. Furthermore, the transducer also controls bioluminescence from firefly luciferase by affecting solution pH.« less

  10. Proton mediated control of biochemical reactions with bioelectronic pH modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Yingxin; Miyake, Takeo; Keene, Scott

    In Nature, protons (H +) can mediate metabolic process through enzymatic reactions. Examples include glucose oxidation with glucose dehydrogenase to regulate blood glucose level, alcohol dissolution into carboxylic acid through alcohol dehydrogenase, and voltage-regulated H + channels activating bioluminescence in firefly and jellyfish. Artificial devices that control H + currents and H + concentration (pH) are able to actively influence biochemical processes. Here, we demonstrate a biotransducer that monitors and actively regulates pH-responsive enzymatic reactions by monitoring and controlling the flow of H + between PdH x contacts and solution. The present transducer records bistable pH modulation from an “enzymaticmore » flip-flop” circuit that comprises glucose dehydrogenase and alcohol dehydrogenase. Furthermore, the transducer also controls bioluminescence from firefly luciferase by affecting solution pH.« less

  11. Doing That Thing That Scientists Do: A Discovery-Driven Module on Protein Purification and Characterization for the Undergraduate Biochemistry Laboratory Classroom

    ERIC Educational Resources Information Center

    Garrett, Teresa A.; Osmundson, Joseph; Isaacson, Marisa; Herrera, Jennifer

    2015-01-01

    In traditional introductory biochemistry laboratory classes students learn techniques for protein purification and analysis by following provided, established, step-by-step procedures. Students are exposed to a variety of biochemical techniques but are often not developing procedures or collecting new, original data. In this laboratory module,…

  12. Drosophila genetics in the classroom.

    PubMed

    Sofer, W; Tompkins, L

    1994-01-01

    Drosophila has long been useful for demonstrating the principles of classical Mendelian genetics in the classroom. In recent years, the organism has also helped students understand biochemical and behavioral genetics. In this connection, this article describes the development of a set of integrated laboratory exercises and descriptive materials--a laboratory module--in biochemical genetics for use by high-school students. The module focuses on the Adh gene and its product, the alcohol dehydrogenase enzyme. Among other activities, students using the module get to measure alcohol tolerance and to assay alcohol dehydrogenase activity in Adh-negative and -positive flies. To effectively present the module in the classroom, teachers attend a month-long Dissemination Institute in the summer. During this period, they learn about other research activities that can be adapted for classroom use. One such activity that has proved popular with teachers and students utilizes Drosophila to introduce some of the concepts of behavioral genetics to the high-school student. By establishing closer interactions between high-school educators and research scientists, the gulf between the two communities can begin to be bridged. It is anticipated that the result of a closer relationship will be that the excitement and creativity of science will be more effectively conveyed to students.

  13. Determination of the floral origin of some Romanian honeys on the basis of physical and biochemical properties.

    PubMed

    Cimpoiu, Claudia; Hosu, Anamaria; Miclaus, Vasile; Puscas, Anitta

    2013-01-01

    The aim of this study was to determine the physical and biochemical properties of some Romanian honeys in order to discriminate between their floral origins. The evaluated properties were total phenolic content, total protein content, total free amino acids content, color intensity (ABS(450)), pH, ash content, antioxidant activity. Twenty-six commercial honeys from six types of flowers (acacia, sunflower, forest, polyfloral, lime and Sea Buckthorn) were investigated. All samples showed considerable variations with reference to their properties. The properties values were in the range of approved limits (according to EU legislation). The total phenolic, total protein and total free amino acids contents and color intensity varied considerably. Similarly, forest honey had the highest antioxidant activity while the lowest was found in acacia honey. Correlation between the floral origin of honeys and the physical and biochemical properties, respectively, was observed. Moreover, this study demonstrates remarkable variation in DPPH scavenging activity and content of total phenols in honey, depending on its botanic source. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Design and long-term monitoring of DSC/CIGS tandem solar module

    NASA Astrophysics Data System (ADS)

    Vildanova, M. F.; Nikolskaia, A. B.; Kozlov, S. S.; Shevaleevskiy, O. I.

    2015-11-01

    This paper describes the design and development of tandem dye-sensitized/Cu(In, Ga)Se (DSC/CIGS) PV modules. The tandem PV module comprised of the top DSC module and a bottom commercial 0,8 m2 CIGS module. The top DSC module was made of 10 DSC mini-modules with the field size of 20 × 20 cm2 each. Tandem DSC/CIGS PV modules were used for providing the long-term monitoring of energy yield and electrical parameters in comparison with standalone CIGS modules under outdoor conditions. The outdoor test facility, containing solar modules of both types and a measurement unit, was located on the roof of the Institute of Biochemical Physics in Moscow. The data obtained during monitoring within the 2014 year period has shown the advantages of the designed tandem DSC/CIGS PV-modules over the conventional CIGS modules, especially for cloudy weather and low-intensity irradiation conditions.

  15. Biochemical and biomechanical characterisation of equine cervical facet joint cartilage.

    PubMed

    O'Leary, S A; White, J L; Hu, J C; Athanasiou, K A

    2018-04-15

    The equine cervical facet joint is a site of significant pathology. Located bilaterally on the dorsal spine, these diarthrodial joints work in conjunction with the intervertebral disc to facilitate appropriate spinal motion. Despite the high prevalence of pathology in this joint, the facet joint is understudied and thus lacking in viable treatment options. The goal of this study was to characterise equine facet joint cartilage and provide a comprehensive database describing the morphological, histological, biochemical and biomechanical properties of this tissue. Descriptive cadaver studies. A total of 132 facet joint surfaces were harvested from the cervical spines of six skeletally mature horses (11 surfaces per animal) for compiling biomechanical and biochemical properties of hyaline cartilage of the equine cervical facet joints. Gross morphometric measurements and histological staining were performed on facet joint cartilage. Creep indentation and uniaxial strain-to-failure testing were used to determine the biomechanical compressive and tensile properties. Biochemical assays included quantification of total collagen, sulfated glycosaminoglycan and DNA content. The facet joint surfaces were ovoid in shape with a flat articular surface. Histological analyses highlighted structures akin to articular cartilage of other synovial joints. In general, biomechanical and biochemical properties did not differ significantly between the inferior and superior joint surfaces as well as among spinal levels. Interestingly, compressive and tensile properties of cervical facet articular cartilage were lower than those of articular cartilage from other previously characterised equine joints. Removal of the superficial zone reduced the tissue's tensile strength, suggesting that this zone is important for the tensile integrity of the tissue. Facet surfaces were sampled at a single, central location and do not capture the potential topographic variation in cartilage properties. This is the first study to report the properties of equine cervical facet joint cartilage and may serve as the foundation for the development of future tissue-engineered replacements as well as other treatment strategies. © 2018 EVJ Ltd.

  16. The Future of Diabetes Management by Healthy Probiotic Microorganisms.

    PubMed

    Rad, Aziz H; Abbasalizadeh, Shamsi; Vazifekhah, Shabnam; Abbasalizadeh, Fatemeh; Hassanalilou, Tohid; Bastani, Parvin; Ejtahed, Hanieh-Sadat; Soroush, Ahmad-Reza; Javadi, Mina; Mortazavian, Amir M; Khalili, Leila

    2017-01-01

    Diabetes mellitus, a condition of multifactorial origin, is related to the intestinal microbiota by numerous molecular mechanisms. Controlling the vast increase in the prevalence of diabetes needs a natural and safe solution. Probiotics, known as live microorganisms that exert health benefits to the host, have anti-diabetic property. This review will highlight the current evidences in probiotic effectiveness and future prospects for exploring probiotic therapy in the prevention and control of diabetes. We searched Pub Med and Science Direct by using "Probiotics" and "Diabetes" for searching the studies aiming the application of probiotics and the beneficial effects of probiotics in diabetes prevention and control. It has been shown that probiotics can increase insulin sensitivity and reduce autoimmune responses by modulating intestinal microbiota and decreasing the inflammatory reactions and oxidative stress. Recent evidences show that probiotics influences the host through modulating intestinal permeability and mucosal immune response, manipulating eating behaviors by appetite-regulating hormones and controlling gut endocannabinoid (eCB) system that is believed to be associated with inflammation and diabetes. Moreover, modulating the intestinal microbiota by probiotics controls host metabolism by affecting energy extraction from food and by biochemically converting molecules derived from the host or from gut microbes themselves. Experimental and clinical evidences support the hypothesis that the modulation of the gut microbiota by probiotics could be effective in prevention and management of diabetes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Modeling the emergence of circadian rhythms in a clock neuron network.

    PubMed

    Diambra, Luis; Malta, Coraci P

    2012-01-01

    Circadian rhythms in pacemaker cells persist for weeks in constant darkness, while in other types of cells the molecular oscillations that underlie circadian rhythms damp rapidly under the same conditions. Although much progress has been made in understanding the biochemical and cellular basis of circadian rhythms, the mechanisms leading to damped or self-sustained oscillations remain largely unknown. There exist many mathematical models that reproduce the circadian rhythms in the case of a single cell of the Drosophila fly. However, not much is known about the mechanisms leading to coherent circadian oscillation in clock neuron networks. In this work we have implemented a model for a network of interacting clock neurons to describe the emergence (or damping) of circadian rhythms in Drosophila fly, in the absence of zeitgebers. Our model consists of an array of pacemakers that interact through the modulation of some parameters by a network feedback. The individual pacemakers are described by a well-known biochemical model for circadian oscillation, to which we have added degradation of PER protein by light and multiplicative noise. The network feedback is the PER protein level averaged over the whole network. In particular, we have investigated the effect of modulation of the parameters associated with (i) the control of net entrance of PER into the nucleus and (ii) the non-photic degradation of PER. Our results indicate that the modulation of PER entrance into the nucleus allows the synchronization of clock neurons, leading to coherent circadian oscillations under constant dark condition. On the other hand, the modulation of non-photic degradation cannot reset the phases of individual clocks subjected to intrinsic biochemical noise.

  18. Development of novel cardiovascular therapeutics from small regulatory RNA molecules--an outline of key requirements.

    PubMed

    Poller, W; Fechner, H

    2010-01-01

    Understanding of the roles of RNAs within the cell has changed and expanded dramatically during the past few years. Based on fundamentally new insights it is now increasingly possible to employ RNAs as highly valuable tools in molecular biology and medicine. At present, the most important therapeutic strategies are based on non-coding regulatory RNAs inducing RNA interference (RNAi) to silence single genes, and on modulation of cellular microRNAs (miRNAs) to alter complex gene expression patterns in diseased organs. Only recently it became possible to target therapeutic RNAi to specific organs via organotropic viral vector systems and we discuss the most recent strategies in this field, e.g. heart failure treatment by cardiac-targeted RNAi. Due to the peculiar biochemical properties of small RNA molecules, true therapeutic translation of results in vitro is more demanding than with small molecule drugs or proteins. Specifically, there is a critical requirement for extensive studies in animal models of human disease after pre-testing of the RNAi tools in vitro. This requirement likewise applies for miRNA modulations which have complex consequences in the recipient dependent on biochemical stability and distribution of the therapeutic RNA. Problems not yet fully solved are the prediction of targets and specificity of the RNA tools. However, major progress has been made to achieve their tissue-specific and regulatable expression, and breakthroughs in vector technologies from the gene therapy field have fundamentally improved safety and efficacy of RNA-based therapeutic approaches, too. In summary, insight into the molecular mechanisms of action of regulatory RNAs in combination with new delivery tools for RNA therapeutics will significantly expand our cardiovascular therapeutic repertoire beyond classical pharmacology.

  19. A Model Incorporating Some of the Mechanical and Biochemical Factors Underlying Clot Formation and Dissolution in Flowing Blood

    DOE PAGES

    Anand, M.; Rajagopal, K.; Rajagopal, K. R.

    2003-01-01

    Multiple interacting mechanisms control the formation and dissolution of clots to maintain blood in a state of delicate balance. In addition to a myriad of biochemical reactions, rheological factors also play a crucial role in modulating the response of blood to external stimuli. To date, a comprehensive model for clot formation and dissolution, that takes into account the biochemical, medical and rheological factors, has not been put into place, the existing models emphasizing either one or the other of the factors. In this paper, after discussing the various biochemical, physiologic and rheological factors at some length, we develop a modelmore » for clot formation and dissolution that incorporates many of the relevant crucial factors that have a bearing on the problem. The model, though just a first step towards understanding a complex phenomenon, goes further than previous models in integrating the biochemical, physiologic and rheological factors that come into play.« less

  20. Cooperative ethylene receptor signaling

    PubMed Central

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The gaseous plant hormone ethylene is perceived by a family of five ethylene receptor members in the dicotyledonous model plant Arabidopsis. Genetic and biochemical studies suggest that the ethylene response is suppressed by ethylene receptor complexes, but the biochemical nature of the receptor signal is unknown. Without appropriate biochemical measures to trace the ethylene receptor signal and quantify the signal strength, the biological significance of the modulation of ethylene responses by multiple ethylene receptors has yet to be fully addressed. Nevertheless, the ethylene receptor signal strength can be reflected by degrees in alteration of various ethylene response phenotypes and in expression levels of ethylene-inducible genes. This mini-review highlights studies that have advanced our understanding of cooperative ethylene receptor signaling. PMID:22827938

  1. Modulation of taste sensitivity by GLP-1 signaling in taste buds.

    PubMed

    Martin, Bronwen; Dotson, Cedrick D; Shin, Yu-Kyong; Ji, Sunggoan; Drucker, Daniel J; Maudsley, Stuart; Munger, Steven D

    2009-07-01

    Modulation of sensory function can help animals adjust to a changing external and internal environment. Even so, mechanisms for modulating taste sensitivity are poorly understood. Using immunohistochemical, biochemical, and behavioral approaches, we found that the peptide hormone glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) are expressed in mammalian taste buds. Furthermore, we found that GLP-1 signaling plays an important role in the modulation of taste sensitivity: GLP-1R knockout mice exhibit a dramatic reduction in sweet taste sensitivity as well as an enhanced sensitivity to umami-tasting stimuli. Together, these findings suggest a novel paracrine mechanism for the hormonal modulation of taste function in mammals.

  2. Determination of Urease Biochemical Properties of Asparagus Bean (Vigna unguiculata ssp sesquipedalis L.)

    NASA Astrophysics Data System (ADS)

    Zusfahair; Ningsih, D. R.; Fatoni, A.; Pertiwi, D. S.

    2018-04-01

    Urease is enzyme that plays a role in nitrogen metabolism during plant germination. Plants that produce a lot of urease are grains. This study used asparagus bean as source of urease. The purpose of this research is to learn the effect of germination time on the activity of urease enzyme from asparagus bean and its biochemical properties. The research was started by germination of asparagus bean on day 2, 4, 6, 8, 10 and 12. Asparagus bean sprouts were extracted using acetone and separated by centrifugation to obtain the crude extract of urease. The biochemical properties of the crude extract of urease was further determined including: the effect of temperature, pH, substrate concentration, and metal addition to urease activity. The urease activity is determined by the Nessler method. The germination time of asparagus bean in yielding urease enzyme reached the optimum activity on the 8th day with activity value of 593.7 U/mL. The biochemical properties of urease from asparagus bean have optimum activity at 35 °C, pH 7.0 and substrate concentration 0.125% with activity value of 600 U/mL. Addition of CaCl2, SnCl2 and ZnCl2 metals decrease the activity of urease.

  3. Biochemical Regulatory Features of Activation-Induced Cytidine Deaminase Remain Conserved from Lampreys to Humans

    PubMed Central

    King, Justin J.; Amemiya, Chris T.; Hsu, Ellen

    2017-01-01

    ABSTRACT Activation-induced cytidine deaminase (AID) is a genome-mutating enzyme that initiates class switch recombination and somatic hypermutation of antibodies in jawed vertebrates. We previously described the biochemical properties of human AID and found that it is an unusual enzyme in that it exhibits binding affinities for its substrate DNA and catalytic rates several orders of magnitude higher and lower, respectively, than a typical enzyme. Recently, we solved the functional structure of AID and demonstrated that these properties are due to nonspecific DNA binding on its surface, along with a catalytic pocket that predominantly assumes a closed conformation. Here we investigated the biochemical properties of AID from a sea lamprey, nurse shark, tetraodon, and coelacanth: representative species chosen because their lineages diverged at the earliest critical junctures in evolution of adaptive immunity. We found that these earliest-diverged AID orthologs are active cytidine deaminases that exhibit unique substrate specificities and thermosensitivities. Significant amino acid sequence divergence among these AID orthologs is predicted to manifest as notable structural differences. However, despite major differences in sequence specificities, thermosensitivities, and structural features, all orthologs share the unusually high DNA binding affinities and low catalytic rates. This absolute conservation is evidence for biological significance of these unique biochemical properties. PMID:28716949

  4. A Randomized Phase 2 Trial of 177Lu Radiolabeled Anti-PSMA Biochemically Monoclonal Antibody J591 in Patients with High-Risk Castrate, Biochemically Relapsed Prostate Cancer

    DTIC Science & Technology

    2010-09-01

    relapsed prostate cancer (PC) after local therapy. J Clin Oncol 28: 15s, 2010 (suppl; Abstr TPS248) Presentation: Poster presentation, 2010 ASCO...Annual Meeting V. Conclusions Biochemical relapse is common after local therapy for prostate cancer. Based on the physical properties of 177Lu...ketoconazole in patients (pts) with high-risk castrate biochemically relapsed prostate cancer (PC) after local therapy. S. T. Tagawa, J. Osborne, P. J

  5. Molecular Mechanisms of Neuroplasticity: An Expanding Universe.

    PubMed

    Gulyaeva, N V

    2017-03-01

    Biochemical processes in synapses and other neuronal compartments underlie neuroplasticity (functional and structural alterations in the brain enabling adaptation to the environment, learning, memory, as well as rehabilitation after brain injury). This basic molecular level of brain plasticity covers numerous specific proteins (enzymes, receptors, structural proteins, etc.) participating in many coordinated and interacting signal and metabolic processes, their modulation forming a molecular basis for brain plasticity. The articles in this issue are focused on different "hot points" in the research area of biochemical mechanisms supporting neuroplasticity.

  6. NMR-driven identification of anti-amyloidogenic compounds in green and roasted coffee extracts.

    PubMed

    Ciaramelli, Carlotta; Palmioli, Alessandro; De Luigi, Ada; Colombo, Laura; Sala, Gessica; Riva, Chiara; Zoia, Chiara Paola; Salmona, Mario; Airoldi, Cristina

    2018-06-30

    To identify food and beverages that provide the regular intake of natural compounds capable of interfering with toxic amyloidogenic aggregates, we developed an experimental protocol that combines NMR spectroscopy and atomic force microscopy, in vitro biochemical and cell assays to detect anti-Aβ molecules in natural edible matrices. We applied this approach to investigate the potential anti-amyloidogenic properties of coffee and its molecular constituents. Our data showed that green and roasted coffee extracts and their main components, 5-O-caffeoylquinic acid and melanoidins, can hinder Aβ on-pathway aggregation and toxicity in a human neuroblastoma SH-SY5Y cell line. Coffee extracts and melanoidins also counteract hydrogen peroxide- and rotenone-induced cytotoxicity and modulate some autophagic pathways in the same cell line. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Biochemical properties and atomic resolution structure of a proteolytically processed β-mannanase from cellulolytic Streptomyces sp. SirexAA-E.

    PubMed

    Takasuka, Taichi E; Acheson, Justin F; Bianchetti, Christopher M; Prom, Ben M; Bergeman, Lai F; Book, Adam J; Currie, Cameron R; Fox, Brian G

    2014-01-01

    β-Mannanase SACTE_2347 from cellulolytic Streptomyces sp. SirexAA-E is abundantly secreted into the culture medium during growth on cellulosic materials. The enzyme is composed of domains from the glycoside hydrolase family 5 (GH5), fibronectin type-III (Fn3), and carbohydrate binding module family 2 (CBM2). After secretion, the enzyme is proteolyzed into three different, catalytically active variants with masses of 53, 42 and 34 kDa corresponding to the intact protein, loss of the CBM2 domain, or loss of both the Fn3 and CBM2 domains. The three variants had identical N-termini starting with Ala51, and the positions of specific proteolytic reactions in the linker sequences separating the three domains were identified. To conduct biochemical and structural characterizations, the natural proteolytic variants were reproduced by cloning and heterologously expressed in Escherichia coli. Each SACTE_2347 variant hydrolyzed only β-1,4 mannosidic linkages, and also reacted with pure mannans containing partial galactosyl- and/or glucosyl substitutions. Examination of the X-ray crystal structure of the GH5 domain of SACTE_2347 suggests that two loops adjacent to the active site channel, which have differences in position and length relative to other closely related mannanases, play a role in producing the observed substrate selectivity.

  8. CPSF30 at the Interface of Alternative Polyadenylation and Cellular Signaling in Plants

    PubMed Central

    Chakrabarti, Manohar; Hunt, Arthur G.

    2015-01-01

    Post-transcriptional processing, involving cleavage of precursor messenger RNA (pre mRNA), and further incorporation of poly(A) tail to the 3' end is a key step in the expression of genetic information. Alternative polyadenylation (APA) serves as an important check point for the regulation of gene expression. Recent studies have shown widespread prevalence of APA in diverse systems. A considerable amount of research has been done in characterizing different subunits of so-called Cleavage and Polyadenylation Specificity Factor (CPSF). In plants, CPSF30, an ortholog of the 30 kD subunit of mammalian CPSF is a key polyadenylation factor. CPSF30 in the model plant Arabidopsis thaliana was reported to possess unique biochemical properties. It was also demonstrated that poly(A) site choice in a vast majority of genes in Arabidopsis are CPSF30 dependent, suggesting a pivotal role of this gene in APA and subsequent regulation of gene expression. There are also indications of this gene being involved in oxidative stress and defense responses and in cellular signaling, suggesting a role of CPSF30 in connecting physiological processes and APA. This review will summarize the biochemical features of CPSF30, its role in regulating APA, and possible links with cellular signaling and stress response modules. PMID:26061761

  9. Norepinephrine versus dopamine and their interaction in modulating synaptic function in the prefrontal cortex.

    PubMed

    Xing, Bo; Li, Yan-Chun; Gao, Wen-Jun

    2016-06-15

    Among the neuromodulators that regulate prefrontal cortical circuit function, the catecholamine transmitters norepinephrine (NE) and dopamine (DA) stand out as powerful players in working memory and attention. Perturbation of either NE or DA signaling is implicated in the pathogenesis of several neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), schizophrenia, and drug addiction. Although the precise mechanisms employed by NE and DA to cooperatively control prefrontal functions are not fully understood, emerging research indicates that both transmitters regulate electrical and biochemical aspects of neuronal function by modulating convergent ionic and synaptic signaling in the prefrontal cortex (PFC). This review summarizes previous studies that investigated the effects of both NE and DA on excitatory and inhibitory transmissions in the prefrontal cortical circuitry. Specifically, we focus on the functional interaction between NE and DA in prefrontal cortical local circuitry, synaptic integration, signaling pathways, and receptor properties. Although it is clear that both NE and DA innervate the PFC extensively and modulate synaptic function by activating distinctly different receptor subtypes and signaling pathways, it remains unclear how these two systems coordinate their actions to optimize PFC function for appropriate behavior. Throughout this review, we provide perspectives and highlight several critical topics for future studies. This article is part of a Special Issue entitled SI: Noradrenergic System. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The role of heparins and nano-heparins as therapeutic tool in breast cancer.

    PubMed

    Afratis, Nikos A; Karamanou, Konstantina; Piperigkou, Zoi; Vynios, Demitrios H; Theocharis, Achilleas D

    2017-06-01

    Glycosaminoglycans are integral part of the dynamic extracellular matrix (ECM) network that control crucial biochemical and biomechanical signals required for tissue morphogenesis, differentiation, homeostasis and cancer development. Breast cancer cells communicate with stromal ones to modulate ECM mainly through release of soluble effectors during cancer progression. The intracellular cross-talk between cell surface receptors and estrogen receptors is important for the regulation of breast cancer cell properties and production of ECM molecules. In turn, reorganized ECM-cell surface interface modulates signaling cascades, which regulate almost all aspects of breast cell behavior. Heparan sulfate chains present on cell surface and matrix proteoglycans are involved in regulation of breast cancer functions since they are capable of binding numerous matrix molecules, growth factors and inflammatory mediators thus modulating their signaling. In addition to its anticoagulant activity, there is accumulating evidence highlighting various anticancer activities of heparin and nano-heparin derivatives in numerous types of cancer. Importantly, heparin derivatives significantly reduce breast cancer cell proliferation and metastasis in vitro and in vivo models as well as regulates the expression profile of major ECM macromolecules, providing strong evidence for therapeutic targeting. Nano-formulations of the glycosaminoglycan heparin are possibly novel tools for targeting tumor microenvironment. In this review, the role of heparan sulfate/heparin and its nano-formulations in breast cancer biology are presented and discussed in terms of future pharmacological targeting.

  11. Vitreous humour - routine or alternative material for analysis in forensic medicine.

    PubMed

    Markowska, Joanna; Szopa, Monika; Zawadzki, Marcin; Piekoszewski, Wojciech

    2017-01-01

    Biological materials used in toxicological analyses in forensic medicine traditionally include blood, urine and vitreous humour. Forensic use of the vitreous body is mostly due to the need to assess the endogenous concentration of ethyl alcohol in the process of human body decomposition. The vitreous body is an underestimated biological material, even though its biochemical properties and anatomical location make it suitable for specific forensic toxicology tests as a reliable material for the preparation of forensic expert opinions. Based on the available literature the paper gathers information on the biochemical structure of the vitreous body, ways to secure the material after collection and its use in postmortem diagnostics. Specific applications of the vitreous humour for biochemical and toxicological tests are discussed, with a focus on its advantages and limitations in forensic medical assessment which are attributable to its biochemical properties, anatomical location and limited scientific studies on the distribution of xenobiotics in the vitreous body.

  12. Biochemical mechanisms of cisplatin cytotoxicity.

    PubMed

    Cepeda, Victoria; Fuertes, Miguel A; Castilla, Josefina; Alonso, Carlos; Quevedo, Celia; Pérez, Jose M

    2007-01-01

    Since the discovery by Rosenberg and collaborators of the antitumor activity of cisplatin 35 years ago, three platinum antitumor drugs (cisplatin, carboplatin and oxaliplatin) have enjoyed a huge clinical and commercial hit. Ever since the initial discovery of the anticancer activity of cisplatin, major efforts have been devoted to elucidate the biochemical mechanisms of antitumor activity of cisplatin in order to be able to rationally design novel platinum based drugs with superior pharmacological profiles. In this report we attempt to provide a current picture of the known facts pertaining to the mechanism of action of the drug, including those involved in drug uptake, DNA damage signals transduction, and cell death through apoptosis or necrosis. A deep knowledge of the biochemical mechanisms, which are triggered in the tumor cell in response to cisplatin injury not only may lead to the design of more efficient platinum antitumor drugs but also may provide new therapeutic strategies based on the biochemical modulation of cisplatin activity.

  13. The Roles of Primary Cilia in Cardiovascular System

    DTIC Science & Technology

    2016-10-01

    mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen . Biochem J 134:707–716. Boveris A, Oshino N, Chance B. 1972...The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen . Biochem J 134:707–716. Boveris A, Oshino N...Aim 1.2 (months 13-30): We will examine signaling mechanisms of cilia & their effects on blood pressure. Aim 2 (months 7-36). We will study

  14. Randomizing Genome-Scale Metabolic Networks

    PubMed Central

    Samal, Areejit; Martin, Olivier C.

    2011-01-01

    Networks coming from protein-protein interactions, transcriptional regulation, signaling, or metabolism may appear to have “unusual” properties. To quantify this, it is appropriate to randomize the network and test the hypothesis that the network is not statistically different from expected in a motivated ensemble. However, when dealing with metabolic networks, the randomization of the network using edge exchange generates fictitious reactions that are biochemically meaningless. Here we provide several natural ensembles of randomized metabolic networks. A first constraint is to use valid biochemical reactions. Further constraints correspond to imposing appropriate functional constraints. We explain how to perform these randomizations with the help of Markov Chain Monte Carlo (MCMC) and show that they allow one to approach the properties of biological metabolic networks. The implication of the present work is that the observed global structural properties of real metabolic networks are likely to be the consequence of simple biochemical and functional constraints. PMID:21779409

  15. Extending double modulation: combinatorial rules for identifying the modulations necessary for determining elasticities in metabolic pathways.

    PubMed

    Giersch, C; Cornish-Bowden, A

    1996-10-07

    The double modulation method for determining the elasticities of pathway enzymes, originally devised by Kacser & Burns (Biochem. Soc. Trans. 7, 1149-1160, 1979), is extended to pathways of complex topological structure, including branching and feedback loops. An explicit system of linear equations for the unknown elasticities is derived. The constraints imposed on this linear system imply that modulations of more than one enzyme are not necessarily independent. Simple combinatorial rules are described for identifying without using any algebra the set of independent modulations that allow the determination of the elasticities of any enzyme. By repeated application, the minimum numbers of modulations required to determine the elasticities of all enzymes of a given pathway can be determined. The procedure is illustrated with numerous examples.

  16. Red Orange: Experimental Models and Epidemiological Evidence of Its Benefits on Human Health

    PubMed Central

    Galvano, Fabio; Mistretta, Antonio; Marventano, Stefano; Nolfo, Francesca; Calabrese, Giorgio; Buscemi, Silvio; Drago, Filippo; Veronesi, Umberto; Scuderi, Alessandro

    2013-01-01

    In recent years, there has been increasing public interest in plant antioxidants, thanks to the potential anticarcinogenic and cardioprotective actions mediated by their biochemical properties. The red (or blood) orange (Citrus sinensis (L.) Osbeck) is a pigmented sweet orange variety typical of eastern Sicily (southern Italy), California, and Spain. In this paper, we discuss the main health-related properties of the red orange that include anticancer, anti-inflammatory, and cardiovascular protection activities. Moreover, the effects on health of its main constituents (namely, flavonoids, carotenoids, ascorbic acid, hydroxycinnamic acids, and anthocyanins) are described. The red orange juice demonstrates an important antioxidant activity by modulating many antioxidant enzyme systems that efficiently counteract the oxidative damage which may play an important role in the etiology of numerous diseases, such as atherosclerosis, diabetes, and cancer. The beneficial effects of this fruit may be mediated by the synergic effects of its compounds. Thus, the supply of natural antioxidant compounds through a balanced diet rich in red oranges might provide protection against oxidative damage under differing conditions and could be more effective than, the supplementation of an individual antioxidant. PMID:23738032

  17. Beneficial Effects of Cerium Oxide Nanoparticles in Development of Chondrocyte-Seeded Hydrogel Constructs and Cellular Response to Interleukin Insults

    PubMed Central

    Ponnurangam, Sathish; O'Connell, Grace D.; Chernyshova, Irina V.; Wood, Katherine; Hung, Clark Tung-Hui

    2014-01-01

    The harsh inflammatory environment associated with injured and arthritic joints represents a major challenge to articular cartilage repair. In this study, we report the effect of cerium oxide nanoparticles, or nanoceria, in modulating development of engineered cartilage and in combating the deleterious effects of interleukin-1α. Nanoceria was found to be biocompatible with bovine chondrocytes up to a concentration of 1000 μg/mL (60,000 cells/μg of nanoceria), and its presence significantly improved compressive mechanical properties and biochemical composition (i.e., glycosaminoglycans) of engineered cartilage. Raman microspectroscopy revealed that individual chondrocytes with internalized nanoceria have increased concentrations of proline, procollagen, and glycogen as compared with cells without the nanoparticles in their vicinity. The inflammatory response due to physiologically relevant quantities of interluekin-1α (0.5 ng/mL) is partially inhibited by nanoceria. To the best of the authors' knowledge, these results are the first to demonstrate a high potential for nanoceria to improve articular cartilage tissue properties and for their long-term treatment against an inflammatory reaction. PMID:24762195

  18. Beneficial effects of cerium oxide nanoparticles in development of chondrocyte-seeded hydrogel constructs and cellular response to interleukin insults.

    PubMed

    Ponnurangam, Sathish; O'Connell, Grace D; Chernyshova, Irina V; Wood, Katherine; Hung, Clark Tung-Hui; Somasundaran, Ponisseril

    2014-11-01

    The harsh inflammatory environment associated with injured and arthritic joints represents a major challenge to articular cartilage repair. In this study, we report the effect of cerium oxide nanoparticles, or nanoceria, in modulating development of engineered cartilage and in combating the deleterious effects of interleukin-1α. Nanoceria was found to be biocompatible with bovine chondrocytes up to a concentration of 1000 μg/mL (60,000 cells/μg of nanoceria), and its presence significantly improved compressive mechanical properties and biochemical composition (i.e., glycosaminoglycans) of engineered cartilage. Raman microspectroscopy revealed that individual chondrocytes with internalized nanoceria have increased concentrations of proline, procollagen, and glycogen as compared with cells without the nanoparticles in their vicinity. The inflammatory response due to physiologically relevant quantities of interluekin-1α (0.5 ng/mL) is partially inhibited by nanoceria. To the best of the authors' knowledge, these results are the first to demonstrate a high potential for nanoceria to improve articular cartilage tissue properties and for their long-term treatment against an inflammatory reaction.

  19. Optical imaging characterizing brain response to thermal insult in injured rodent

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Shaul, Oren; Meitav, Omri; Pinhasi, Gadi A.

    2018-02-01

    We used spatially modulated optical imaging system to assess the effect of temperature elevation on intact brain tissue in a mouse heatstress model. Heatstress or heatstroke is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological and hematological changes. During experiments, brain temperature was measured concurrently with a thermal camera while core body temperature was monitored with rectal thermocouple probe. Changes in a battery of macroscopic brain physiological parameters, such as hemoglobin oxygen saturation level, cerebral water content, as well as intrinsic tissue optical properties were monitored during temperature elevation. These concurrent changes reflect the pathophysiology of the brain during heatstress and demonstrate successful monitoring of thermoregulation mechanisms. In addition, the variation of tissue refractive index was calculated showing a monotonous decrease with increasing wavelength. We found increased temperature to greatly affect both the scattering properties and refractive index which represent cellular and subcellular swelling indicative of neuronal damage. The overall trends detected in brain tissue parameters were consistent with previous observations using conventional medical devices and optical modalities.

  20. Biochemical characterization and phylogenetic analysis based on 16S rRNA sequences for V-factor dependent members of Pasteurellaceae derived from laboratory rats.

    PubMed

    Hayashimoto, Nobuhito; Ueno, Masami; Tkakura, Akira; Itoh, Toshio

    2007-06-01

    Phylogenetic analysis based on 16S rRNA sequences with sequence data of some bacterial species of Pasteurellaceae related to rodents deposited in GenBank was performed along with biochemical characterization for the 20 strains of V-factor dependent members of Pasteurellaceae derived from laboratory rats to obtain basic information and to investigate the taxonomic positions. The results of biochemical tests for all strains were identical except for three tests, the ornithine decarboxylase test, and fermentation tests of D(+) mannose and D(+) xylose. The biochemical properties of 8 of 20 strains that showed negative results for the fermentation test of D(+) xylose agreed with those of Haemophilus parainfluenzae complex. By phylogenetic analysis, the strains were divided into two clusters that agreed with the results of the fermentation test of xylose (group I: negative reaction for xylose, group II: positive reaction for xylose). The clusters were independent of other bacterial species of Pasteurellaceae tested. The sequences of the strains in group I showed 99.7-99.8% similarity and the strains in group II showed 99.3-99.7% similarity. None of the strains in group I had a close relation with Haemophilus parainfluenzae by phylogenetic analysis, although they showed the same biochemical properties. In conclusion, the strains had characteristic biochemical properties and formed two independent groups within the "rodent cluster" of Pasteurellaceae that differed in the results of the fermentation test of xylose. Therefore, they seemed to be hitherto undescribed taxa in Pasteurellaceae.

  1. Interaction of Engineered Nanoparticles with the Agri-environment.

    PubMed

    Pradhan, Saheli; Mailapalli, Damodhara Rao

    2017-09-27

    Nanoparticles with their unique surface properties can modulate the physiological, biochemical, and physicochemical pathways, such as photosynthesis, respiration, nitrogen metabolism, and solute transport. In this context, researchers have developed a wide range of engineered nanomaterials (ENMs) for the improvement of growth and productivity by modulating the metabolic pathways in plants. This class of tailor-made materials can potentially lead to the development of a new group of agrochemical nanofertilizers. However, there are reports that engineered nanomaterials could impart phytotoxicity to edible and medicinal plants. On the contrary, there is a series of ENMs that might be detrimental when applied directly and/or indirectly to the plants. These particles can sometimes readily aggregate and dissolute in the immediate vicinity; the free ions released from the nanomatrix can cause serious tissue injury and membrane dysfunction to the plant cell through oxidative stress. On that note, thorough studies on uptake, translocation, internalization, and nutritional quality assessment must be carried out to understand ENM-plant interactions. This review critically discusses the possible beneficial or adverse aftereffect of nanofertilizers in the immediate environment to interrelate the impacts of ENMs on the crop health and food security management.

  2. Selenium- and tellurium-containing multifunctional redox agents as biochemical redox modulators with selective cytotoxicity.

    PubMed

    Jamier, Vincent; Ba, Lalla A; Jacob, Claus

    2010-09-24

    Various human diseases, including different types of cancer, are associated with a disturbed intracellular redox balance and oxidative stress (OS). The past decade has witnessed the emergence of redox-modulating compounds able to utilize such pre-existing disturbances in the redox state of sick cells for therapeutic advantage. Selenium- and tellurium-based agents turn the oxidizing redox environment present in certain cancer cells into a lethal cocktail of reactive species that push these cells over a critical redox threshold and ultimately kill them through apoptosis. This kind of toxicity is highly selective: normal, healthy cells remain largely unaffected, since changes to their naturally low levels of oxidizing species produce little effect. To further improve selectivity, multifunctional sensor/effector agents are now required that recognize the biochemical signature of OS in target cells. The synthesis of such compounds provides interesting challenges for chemistry in the future.

  3. Thin membrane sensor with biochemical switch

    NASA Technical Reports Server (NTRS)

    Worley, III, Jennings F. (Inventor); Case, George D. (Inventor)

    1994-01-01

    A modular biosensor system for chemical or biological agent detection utilizes electrochemical measurement of an ion current across a gate membrane triggered by the reaction of the target agent with a recognition protein conjugated to a channel blocker. The sensor system includes a bioresponse simulator or biochemical switch module which contains the recognition protein-channel blocker conjugate, and in which the detection reactions occur, and a transducer module which contains a gate membrane and a measuring electrode, and in which the presence of agent is sensed electrically. In the poised state, ion channels in the gate membrane are blocked by the recognition protein-channel blocker conjugate. Detection reactions remove the recognition protein-channel blocker conjugate from the ion channels, thus eliciting an ion current surge in the gate membrane which subsequently triggers an output alarm. Sufficiently large currents are generated that simple direct current electronics are adequate for the measurements. The biosensor has applications for environmental, medical, and industrial use.

  4. [Morphological and biochemical adaptations to feeding in some herbivorous gastropods].

    PubMed

    Aliakrinskaia, O I

    2005-01-01

    Diet and feeding modes as well as morphological and biochemical adaptations to feeding are analyzed in herbivorous mollusks. The content of hemoglobin in radular tissues and weight properties of the radula are evaluated for different modes of feeding.

  5. Enhancing the pH sensitivity by laterally synergic modulation in dual-gate electric-double-layer transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201; Hui Liu, Yang

    2015-02-16

    The sensitivity of a standard ion-sensitive field-effect transistor is limited to be 59.2 mV/pH (Nernst limit) at room temperature. Here, a concept based on laterally synergic electric-double-layer (EDL) modulation is proposed in order to overcome the Nernst limit. Indium-zinc-oxide EDL transistors with two laterally coupled gates are fabricated, and the synergic modulation behaviors of the two asymmetric gates are investigated. A high sensitivity of ∼168 mV/pH is realized in the dual-gate operation mode. Laterally synergic modulation in oxide-based EDL transistors is interesting for high-performance bio-chemical sensors.

  6. Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest.

    PubMed

    Kenzo, Tanaka; Ichie, Tomoaki; Watanabe, Yoko; Yoneda, Reiji; Ninomiya, Ikuo; Koike, Takayoshi

    2006-07-01

    Variations in leaf photosynthetic, morphological and biochemical properties with increasing plant height from seedlings to emergent trees were investigated in five dipterocarp species in a Malaysian tropical rain forest. Canopy openness increased significantly with tree height. Photosynthetic properties, such as photosynthetic capacity at light saturation, light compensation point, maximum rate of carboxylation and maximum rate of photosynthetic electron transport, all increased significantly with tree height. Leaf morphological and biochemical traits, such as leaf mass per area, palisade layer thickness, nitrogen concentration per unit area, chlorophyll concentration per unit dry mass and chlorophyll to nitrogen ratio, also changed significantly with tree height. Leaf properties had simple and significant relationships with tree height, with few intra- and interspecies differences. Our results therefore suggest that the photosynthetic capacity of dipterocarp trees depends on tree height, and that the trees adapt to the light environment by adjusting their leaf morphological and biochemical properties. These results should aid in developing models that can accurately estimate carbon dioxide flux and biomass production in tropical rain forests.

  7. An Integrated Biochemical, Proteomics, and Metabolomics Approach for Supporting Medicinal Value of Panax ginseng Fruits

    PubMed Central

    Kim, So W.; Gupta, Ravi; Lee, Seo H.; Min, Cheol W.; Agrawal, Ganesh K.; Rakwal, Randeep; Kim, Jong B.; Jo, Ick H.; Park, Soo-Yun; Kim, Jae K.; Kim, Young-Chang; Bang, Kyong H.; Kim, Sun T.

    2016-01-01

    Panax ginseng roots are well known for their medicinal properties and have been used in Korean and Chinese traditional medicines for 1000s of years. However, the medicinal value of P. ginseng fruits remain poorly characterized. In this study, we used an integrated biochemical, proteomics, and metabolomics approach to look into the medicinal properties of ginseng fruits. DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS [2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid)] assays showed higher antioxidant activities in ginseng fruits than leaves or roots. Two-dimensional gel electrophoresis (2-DE) profiling of ginseng fruit proteins (cv. Cheongsun) showed more than 400 spots wherein a total of 81 protein spots were identified by mass spectrometry using NCBInr, UniRef, and an in-house developed RNAseq (59,251 protein sequences)-based databases. Gene ontology analysis showed that most of the identified proteins were related to the hydrolase (18%), oxidoreductase (16%), and ATP binding (15%) activities. Further, a comparative proteome analysis of four cultivars of ginseng fruits (cvs. Yunpoong, Gumpoong, Chunpoong, and Cheongsun) led to the identification of 22 differentially modulated protein spots. Using gas chromatography-time of flight mass spectrometry (GC-TOF MS), 66 metabolites including amino acids, sugars, organic acids, phenolic acids, phytosterols, tocopherols, and policosanols were identified and quantified. Some of these are well known medicinal compounds and were not previously identified in ginseng. Interestingly, the concentration of almost all metabolites was higher in the Chunpoong and Gumpoong cultivars. Parallel comparison of the four cultivars also revealed higher amounts of the medicinal metabolites in Chunpoong and Gumpoong cultivars. Taken together, our results demonstrate that ginseng fruits are a rich source of medicinal compounds with potential beneficial health effects. PMID:27458475

  8. Kallikreins - The melting pot of activity and function.

    PubMed

    Kalinska, Magdalena; Meyer-Hoffert, Ulf; Kantyka, Tomasz; Potempa, Jan

    2016-03-01

    The human tissue kallikrein and kallikrein-related peptidases (KLKs), encoded by the largest contiguous cluster of protease genes in the human genome, are secreted serine proteases with diverse expression patterns and physiological roles. Because of the broad spectrum of processes that are modulated by kallikreins, these proteases are the subject of extensive investigations. This review brings together basic information about the biochemical properties affecting enzymatic activity, with highlights on post-translational modifications, especially glycosylation. Additionally, we present the current state of knowledge regarding the physiological functions of KLKs in major human organs and outline recent discoveries pertinent to the involvement of kallikreins in cell signaling and in viral infections. Despite the current depth of knowledge of these enzymes, many questions regarding the roles of kallikreins in health and disease remain unanswered. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  9. Biological Applications of FM-AFM in Liquid Environment

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi; Jarvis, Suzanne P.

    Atomic force microscopy (AFM) was noted for its potential to study biological materials shortly after its first development in 1986 due to its ability to image insulators in liquid environments. The subsequent application of AFM to biology has included lateral characterization via imaging, unraveling of molecules under a tensile load and application of a force either to measure mechanical properties under the tip or to instigate a biochemical response in living cells. To date, the application of frequency modulation AFM (FM-AFM) specifically to biological materials has been limited to relatively few research groups when compared to the extensive application of AFM to biological materials. This is probably due to the perceived complexity of the technique both by researchers in the life sciences and those manufacturing liquid AFMs for biological research. In this chapter, we aim to highlight the advantages of applying the technique to biological materials.

  10. Tellurium: an element with great biological potency and potential.

    PubMed

    Ba, Lalla Aicha; Döring, Mandy; Jamier, Vincent; Jacob, Claus

    2010-10-07

    Tellurium has long appeared as a nearly 'forgotten' element in Biology, with most studies focusing on tellurite, tellurate and a handful of organic tellurides. During the last decade, several discoveries have fuelled a renewed interest in this element. Bioincorporation of telluromethionine provides a new approach to add heavy atoms to selected sites in proteins. Cadmium telluride (CdTe) nanoparticles are fluorescent and may be used as quantum dots in imaging and diagnosis. The antibiotic properties of tellurite, long known yet almost forgotten, have attracted renewed interest, especially since the biochemical mechanisms of tellurium cytotoxicity are beginning to emerge. The close chemical relationship between tellurium and sulfur also transcends into in vitro and in vivo situations and provides new impetus for the development of enzyme inhibitors and redox modulators, some of which may be of interest in the field of antibiotics and anticancer drug design.

  11. Shaping the spatial and spectral emissivity at the diffraction limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhsiyan, Mathilde; MiNaO, Laboratoire de Photonique et de Nanostructures; Bouchon, Patrick, E-mail: patrick.bouchon@onera.fr

    Metasurfaces have attracted a growing interest for their ability to artificially tailor an electromagnetic response on various spectral ranges. In particular, thermal sources with unprecedented abilities, such as directionality or monochromaticity, have been achieved. However, these metasurfaces exhibit homogeneous optical properties whereas the spatial modulation of the emissivity up to the wavelength scale is at the crux of the design of original emitters. In this letter, we study an inhomogeneous metasurface made of a nonperiodic set of optical nano-antennas that spatially and spectrally control the emitted light up to the diffraction limit. Each antenna acts as an independent deep subwavelengthmore » emitter for given polarization and wavelength. Their juxtaposition at the subwavelength scale encodes far field multispectral and polarized images. This opens up promising breakthroughs for applications such as optical storage, anti-counterfeit devices, and multispectral emitters for biochemical sensing.« less

  12. DNA stress and strain, in silico, in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Levens, David; Benham, Craig J.

    2011-06-01

    A vast literature has explored the genetic interactions among the cellular components regulating gene expression in many organisms. Early on, in the absence of any biochemical definition, regulatory modules were conceived using the strict formalism of genetics to designate the modifiers of phenotype as either cis- or trans-acting depending on whether the relevant genes were embedded in the same or separate DNA molecules. This formalism distilled gene regulation down to its essence in much the same way that consideration of an ideal gas reveals essential thermodynamic and kinetic principles. Yet just as the anomalous behavior of materials may thwart an engineer who ignores their non-ideal properties, schemes to control and manipulate the genetic and epigenetic programs of cells may falter without a fuller and more quantitative elucidation of the physical and chemical characteristics of DNA and chromatin in vivo.

  13. The Effect of 3D Hydrogel Scaffold Modulus on Osteoblast Differentiation and Mineralization Revealed by Combinatorial Screening

    PubMed Central

    Chatterjee, Kaushik; Lin-Gibson, Sheng; Wallace, William E.; Parekh, Sapun H.; Lee, Young J.; Cicerone, Marcus T.; Young, Marian F.; Simon, Carl G.

    2011-01-01

    Cells are known to sense and respond to the physical properties of their environment and those of tissue scaffolds. Optimizing these cell-material interactions is critical in tissue engineering. In this work, a simple and inexpensive combinatorial platform was developed to rapidly screen three-dimensional (3D) tissue scaffolds and was applied to screen the effect of scaffold properties for tissue engineering of bone. Differentiation of osteoblasts was examined in poly(ethylene glycol) hydrogel gradients spanning a 30-fold range in compressive modulus (≈ 10 kPa to ≈ 300 kPa). Results demonstrate that material properties (gel stiffness) of scaffolds can be leveraged to induce cell differentiation in 3D culture as an alternative to biochemical cues such as soluble supplements, immobilized biomolecules and vectors, which are often expensive, labile and potentially carcinogenic. Gel moduli of ≈ 225 kPa and higher enhanced osteogenesis. Furthermore, it is proposed that material-induced cell differentiation can be modulated to engineer seamless tissue interfaces between mineralized bone tissue and softer tissues such as ligaments and tendons. This work presents a combinatorial method to screen biological response to 3D hydrogel scaffolds that more closely mimics the 3D environment experienced by cells in vivo. PMID:20378163

  14. Biochemical Thermodynamics under near Physiological Conditions

    ERIC Educational Resources Information Center

    Mendez, Eduardo

    2008-01-01

    The recommendations for nomenclature and tables in Biochemical Thermodynamics approved by IUBMB and IUPAC in 1994 can be easily introduced after the chemical thermodynamic formalism. Substitution of the usual standard thermodynamic properties by the transformed ones in the thermodynamic equations, and the use of appropriate thermodynamic tables…

  15. Maximizing the Biochemical Resolving Power of Fluorescence Microscopy

    PubMed Central

    Esposito, Alessandro; Popleteeva, Marina; Venkitaraman, Ashok R.

    2013-01-01

    Most recent advances in fluorescence microscopy have focused on achieving spatial resolutions below the diffraction limit. However, the inherent capability of fluorescence microscopy to non-invasively resolve different biochemical or physical environments in biological samples has not yet been formally described, because an adequate and general theoretical framework is lacking. Here, we develop a mathematical characterization of the biochemical resolution in fluorescence detection with Fisher information analysis. To improve the precision and the resolution of quantitative imaging methods, we demonstrate strategies for the optimization of fluorescence lifetime, fluorescence anisotropy and hyperspectral detection, as well as different multi-dimensional techniques. We describe optimized imaging protocols, provide optimization algorithms and describe precision and resolving power in biochemical imaging thanks to the analysis of the general properties of Fisher information in fluorescence detection. These strategies enable the optimal use of the information content available within the limited photon-budget typically available in fluorescence microscopy. This theoretical foundation leads to a generalized strategy for the optimization of multi-dimensional optical detection, and demonstrates how the parallel detection of all properties of fluorescence can maximize the biochemical resolving power of fluorescence microscopy, an approach we term Hyper Dimensional Imaging Microscopy (HDIM). Our work provides a theoretical framework for the description of the biochemical resolution in fluorescence microscopy, irrespective of spatial resolution, and for the development of a new class of microscopes that exploit multi-parametric detection systems. PMID:24204821

  16. Soya bean Gα proteins with distinct biochemical properties exhibit differential ability to complement Saccharomyces cerevisiae gpa1 mutant.

    PubMed

    Roy Choudhury, Swarup; Wang, Yuqi; Pandey, Sona

    2014-07-01

    Signalling pathways mediated by heterotrimeric G-proteins are common to all eukaryotes. Plants have a limited number of each of the G-protein subunits, with the most elaborate G-protein network discovered so far in soya bean (Glycine max, also known as soybean) which has four Gα, four Gβ and ten Gγ proteins. Biochemical characterization of Gα proteins from plants suggests significant variation in their properties compared with the well-characterized non-plant proteins. Furthermore, the four soya bean Gα (GmGα) proteins exhibit distinct biochemical activities among themselves, but the extent to which such biochemical differences contribute to their in vivo function is also not known. We used the yeast gpa1 mutant which displays constitutive signalling and growth arrest in the pheromone-response pathway as an in vivo model to evaluate the effect of distinct biochemical activities of GmGα proteins. We showed that specific GmGα proteins can be activated during pheromone-dependent receptor-mediated signalling in yeast and they display different strengths towards complementation of yeast gpa1 phenotypes. We also identified amino acids that are responsible for differential complementation abilities of specific Gα proteins. These data establish that specific plant Gα proteins are functional in the receptor-mediated pheromone-response pathway in yeast and that the subtle biochemical differences in their activity are physiologically relevant.

  17. BioCluster: tool for identification and clustering of Enterobacteriaceae based on biochemical data.

    PubMed

    Abdullah, Ahmed; Sabbir Alam, S M; Sultana, Munawar; Hossain, M Anwar

    2015-06-01

    Presumptive identification of different Enterobacteriaceae species is routinely achieved based on biochemical properties. Traditional practice includes manual comparison of each biochemical property of the unknown sample with known reference samples and inference of its identity based on the maximum similarity pattern with the known samples. This process is labor-intensive, time-consuming, error-prone, and subjective. Therefore, automation of sorting and similarity in calculation would be advantageous. Here we present a MATLAB-based graphical user interface (GUI) tool named BioCluster. This tool was designed for automated clustering and identification of Enterobacteriaceae based on biochemical test results. In this tool, we used two types of algorithms, i.e., traditional hierarchical clustering (HC) and the Improved Hierarchical Clustering (IHC), a modified algorithm that was developed specifically for the clustering and identification of Enterobacteriaceae species. IHC takes into account the variability in result of 1-47 biochemical tests within this Enterobacteriaceae family. This tool also provides different options to optimize the clustering in a user-friendly way. Using computer-generated synthetic data and some real data, we have demonstrated that BioCluster has high accuracy in clustering and identifying enterobacterial species based on biochemical test data. This tool can be freely downloaded at http://microbialgen.du.ac.bd/biocluster/. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  18. Regional modulation of the response to glutathione in Hydra vulgaris.

    PubMed

    Pierobon, Paola

    2015-07-01

    In the presence of prey, or upon exposure to reduced glutathione (GSH), Hydra polyps open a mouth to ingest the captured prey and close it after feeding; at rest the mouth is not evident. In previous papers we have shown that GABA, glycine and NMDA modulate the mechanisms of mouth closure through ligand-gated-ion-channel receptors that are similar to their mammalian analogues in terms of biochemical and pharmacological properties. In order to study the regional distribution of these receptors, we have applied the GSH assay to polyps amputated at different levels of the body column. The response to 1-10 µmol l(-1) GSH of polyps lacking either peduncle and foot or the entire body columns (heads) was not different from control, whole animals. In the presence of GABA or muscimol, duration of the response was significantly decreased in heads; the decrease was suppressed by the GABA antagonists gabazine and bicuculline. By contrast, in animals lacking peduncle and foot, duration of the response did not vary upon GABA administration. Conversely, in the presence of glycine, duration of the response in heads preparations was similar to control, whereas in footless polyps, it was significantly reduced. The decrease was mimicked by the glycine agonists taurine and β-alanine, and counteracted by strychnine. These results suggest a regional distribution of receptors to GABA and glycine in the neuromuscular circuitry modulating the feeding behaviour. © 2015. Published by The Company of Biologists Ltd.

  19. Cartilage elasticity resides in shape module decoran and aggrecan sumps of damping fluid: implications in osteoarthrosis

    PubMed Central

    Scott, John E; Stockwell, Robin A

    2006-01-01

    Cartilage ultrastructure is based on collagen fibrils tied together by proteoglycans (PGs). Interfibrillar orthogonal PG bridges (‘shape modules’) were located by electron histochemistry using Cupromeronic blue methodology. Their frequency and size, similar to those in tendon, cornea, etc., were compatible with biochemical estimates of tissue decoran (formerly decorin), the PG component of shape module bridges. Digestion by hyaluronanase and chondroitinase AC helped to identify aggrecan and decoran and exemplified the destruction of shape modular organization by glycan-splitting agents. The anionic glycosaminoglycan (AGAG) of decoran, dermochondan sulphate (DS, formerly dermatan sulphate), contains l-iduronate, an elastic sugar unit. Chondroitan, keratan (present in aggrecan) and hyaluronan are not similarly elastic but can participate in sliding-filament reversible deformability. Mechanical properties predicted for the interfibrillar bridges accord with anisotropic stress/strain responses of articular cartilage to compressive or tensile stresses. We propose that fluid from pericellular aggrecan-rich domains moves under pressure into the interterritorial fibrillar arrays against the elastic resistance of the shape modules, which return the fluid, post-compression, to its original position. Cartilage is tendon-like, with the addition of expansile aggrecan-rich reservoirs of aqueous shock absorber fluid. Rupture or loss of interfibrillar ties would allow expansile PG to force the collagenous matrix apart, imbibing water, increasing swelling and fissuring – characteristic manifestations of osteoarthrosis (OA), a joint disease of major economic importance. Decoran may be a primary target of the OA disease process. PMID:16581860

  20. CALCIUM RELEASE FROM NERVOUS TISSUE - EXPERIMENTAL RESULTS AND POSSIBLE MECHANISMS

    EPA Science Inventory

    The research discussed in this paper was first conceived following a report by Bawin et al (1975) which demonstrated that amplitude-modulated radiofrequency (RF) fields could preferentially cause a biochemical change in isolated brain tissue depending on the specific frequency of...

  1. 11C choline PET guided salvage radiotherapy with volumetric modulation arc therapy and hypofractionation for recurrent prostate cancer after HIFU failure: preliminary results of tolerability and acute toxicity.

    PubMed

    Alongi, Filippo; Liardo, Rocco L E; Iftode, Cristina; Lopci, Egesta; Villa, Elisa; Comito, Tiziana; Tozzi, Angelo; Navarria, Pierina; Ascolese, Anna M; Mancosu, Pietro; Tomatis, Stefano; Bellorofonte, Carlo; Arturo, Chiti; Scorsetti, Marta

    2014-10-01

    The purpose of this work was to evaluate tolerance, feasibility and acute toxicity in patients undergoing salvage radiotherapy after high-intensity focused ultrasound (HIFU) failure. From 2005 to 2011 a total of 15 patients were treated with HIFU as primary radical treatment. Between July 2011 and February 2013, all 15 patients presented biochemical relapse after HIFU and 11C choline PET documenting intrapostatic-only failure. Salvage EBRT was performed with moderate hypofractionation schedule in 28 fractions with volumetric modulation arc therapy (VMAT). Genito-urinary (GU) and rectal and bowel toxicity were scored by common terminology criteria for adverse events version 4 (CTCAE V.4) scale. Biochemical response was assessed by ASTRO Phoenix criteria. Median age of patients was 67 years (range: 53-85). The median Gleason score was 7 (range: 6-9). The median prostate specific antigen (PSA) at the time of biochemical relapse after HIFU was 5.2 ng/mL (range: 2-64.2). Seven of the 15 patients received androgen deprivation therapy (ADT) started after HIFU failure, interrupted before 11C choline PET and radiotherapy. Median prescribed dose was 71.4 Gy (range: 71.4-74.2 Gy) in 28 fractions. No radiation related major upper gastrointestinal (GI), rectal and GU toxicity were experienced. GU, acute grade 1 and grade 2 toxicities were recorded in 7/15 and 4/15 respectively; bowel acute grade 1 and grade 2 toxicities in 4/15 and 1/15; rectal acute grade 1 and grade 2 toxicities in 3/15 and 2/15 respectively. No grade 3 or greater acute or late toxicities occurred. Biochemical control was assessed in 12/15 (80%) patients. With a median follow up of 12 months, three out of 15 patients, with biochemical relapse, showed lymph-nodal recurrence. Our early clinical results and biochemical data confirm the feasibility and show a good tolerance of the 11C choline PET guided salvage radiation therapy after HIFU failure. The findings of low acute toxicity is encouraging, but longer follow-up is needed to assess late toxicity and definitive outcomes.

  2. Biochemical Properties and Atomic Resolution Structure of a Proteolytically Processed β-Mannanase from Cellulolytic Streptomyces sp. SirexAA-E

    PubMed Central

    Takasuka, Taichi E.; Acheson, Justin F.; Bianchetti, Christopher M.; Prom, Ben M.; Bergeman, Lai F.; Book, Adam J.; Currie, Cameron R.; Fox, Brian G.

    2014-01-01

    β-mannanase SACTE_2347 from cellulolytic Streptomyces sp. SirexAA-E is abundantly secreted into the culture medium during growth on cellulosic materials. The enzyme is composed of domains from the glycoside hydrolase family 5 (GH5), fibronectin type-III (Fn3), and carbohydrate binding module family 2 (CBM2). After secretion, the enzyme is proteolyzed into three different, catalytically active variants with masses of 53, 42 and 34 kDa corresponding to the intact protein, loss of the CBM2 domain, or loss of both the Fn3 and CBM2 domains. The three variants had identical N-termini starting with Ala51, and the positions of specific proteolytic reactions in the linker sequences separating the three domains were identified. To conduct biochemical and structural characterizations, the natural proteolytic variants were reproduced by cloning and heterologously expressed in Escherichia coli. Each SACTE_2347 variant hydrolyzed only β-1,4 mannosidic linkages, and also reacted with pure mannans containing partial galactosyl- and/or glucosyl substitutions. Examination of the X-ray crystal structure of the GH5 domain of SACTE_2347 suggests that two loops adjacent to the active site channel, which have differences in position and length relative to other closely related mannanases, play a role in producing the observed substrate selectivity. PMID:24710170

  3. Acetylcholinesterase of the sand fly, Phlebotomus papatasi (Scopoli): construction, expression and biochemical properties of the G119S orthologous mutant

    USDA-ARS?s Scientific Manuscript database

    Phlebotomus papatasi vectors zoonotic cutaneous leishmaniasis, widespread in intertropical and temperate regions of the world. Previous cloning, expression, and biochemical characterization of recombinant P. papatasi acetylcholinesterase 1 (PpAChE1) revealed 85% amino acid sequence identity to mosq...

  4. Acetylcholinesterases of Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi: Gene identification, expression and biochemical properties of recombinant proteins

    USDA-ARS?s Scientific Manuscript database

    Rhipicephalus (Boophilus) microplus (Bm) is a vector of bovine babesiosis and anaplasmosis. Tick resistance to organophosphate (OP) acaricide involves acetylcholinesterase (AChE) insensitivity to OP and metabolic detoxification. In vitro expression of Bm genes encoding AChE allowed biochemical chara...

  5. Regulation and Modulation of Human DNA Polymerase δ Activity and Function

    PubMed Central

    Wang, Xiaoxiao; Zhang, Sufang; Zhang, Zhongtao; Lee, Ernest Y. C.

    2017-01-01

    This review focuses on the regulation and modulation of human DNA polymerase δ (Pol δ). The emphasis is on the mechanisms that regulate the activity and properties of Pol δ in DNA repair and replication. The areas covered are the degradation of the p12 subunit of Pol δ, which converts it from a heterotetramer (Pol δ4) to a heterotrimer (Pol δ3), in response to DNA damage and also during the cell cycle. The biochemical mechanisms that lead to degradation of p12 are reviewed, as well as the properties of Pol δ4 and Pol δ3 that provide insights into their functions in DNA replication and repair. The second focus of the review involves the functions of two Pol δ binding proteins, polymerase delta interaction protein 46 (PDIP46) and polymerase delta interaction protein 38 (PDIP38), both of which are multi-functional proteins. PDIP46 is a novel activator of Pol δ4, and the impact of this function is discussed in relation to its potential roles in DNA replication. Several new models for the roles of Pol δ3 and Pol δ4 in leading and lagging strand DNA synthesis that integrate a role for PDIP46 are presented. PDIP38 has multiple cellular localizations including the mitochondria, the spliceosomes and the nucleus. It has been implicated in a number of cellular functions, including the regulation of specialized DNA polymerases, mitosis, the DNA damage response, mouse double minute 2 homolog (Mdm2) alternative splicing and the regulation of the NADPH oxidase 4 (Nox4). PMID:28737709

  6. Integrating qPLM and biomechanical test data with an anisotropic fiber distribution model and predictions of TGF-β1 and IGF-1 regulation of articular cartilage fiber modulus

    PubMed Central

    Stender, Michael E.; Raub, Christopher B.; Yamauchi, Kevin A.; Shirazi, Reza; Vena, Pasquale; Sah, Robert L.; Hazelwood, Scott J.; Klisch, Stephen M.

    2013-01-01

    A continuum mixture model with distinct collagen (COL) and glycosaminoglycan (GAG) elastic constituents was developed for the solid matrix of immature bovine articular cartilage. A continuous COL fiber volume fraction distribution function and a true COL fiber elastic modulus (Ef) were used. Quantitative polarized light microscopy (qPLM) methods were developed to account for the relatively high cell density of immature articular cartilage and used with a novel algorithm that constructs a 3D distribution function from 2D qPLM data. For specimens untreated and cultured in vitro, most model parameters were specified from qPLM analysis and biochemical assay results; consequently, Ef was predicted using an optimization to measured mechanical properties in uniaxial tension and unconfined compression. Analysis of qPLM data revealed a highly anisotropic fiber distribution, with principal fiber orientation parallel to the surface layer. For untreated samples, predicted Ef values were 175 and 422 MPa for superficial (S) and middle (M) zone layers, respectively. TGF-β1 treatment was predicted to increase and decrease Ef values for the S and M layers to 281 and 309 MPa, respectively. IGF-1 treatment was predicted to decrease Ef values for the S and M layers to 22 and 26 MPa, respectively. A novel finding was that distinct native depth-dependent fiber modulus properties were modulated to nearly homogeneous values by TGF-β1 and IGF-1 treatments, with modulated values strongly dependent on treatment. PMID:23266906

  7. Effects of Hydrogel Stiffness and Extracellular Compositions on Modulating Cartilage Regeneration by Mixed Populations of Stem Cells and Chondrocytes In Vivo.

    PubMed

    Wang, Tianyi; Lai, Janice H; Yang, Fan

    2016-12-01

    Cell-based therapies offer great promise for repairing cartilage. Previous strategies often involved using a single cell population such as stem cells or chondrocytes. A mixed cell population may offer an alternative strategy for cartilage regeneration while overcoming donor scarcity. We have recently reported that adipose-derived stem cells (ADSCs) can catalyze neocartilage formation by neonatal chondrocytes (NChons) when mixed co-cultured in 3D hydrogels in vitro. However, it remains unknown how the biochemical and mechanical cues of hydrogels modulate cartilage formation by mixed cell populations in vivo. The present study seeks to answer this question by co-encapsulating ADSCs and NChons in 3D hydrogels with tunable stiffness (∼1-33 kPa) and biochemical cues, and evaluating cartilage formation in vivo using a mouse subcutaneous model. Three extracellular matrix molecules were examined, including chondroitin sulfate (CS), hyaluronic acid (HA), and heparan sulfate (HS). Our results showed that the type of biochemical cue played a dominant role in modulating neocartilage deposition. CS and HA enhanced type II collagen deposition, a desirable phenotype for articular cartilage. In contrast, HS promoted fibrocartilage phenotype with the upregulation of type I collagen and failed to retain newly deposited matrix. Hydrogels with stiffnesses of ∼7-33 kPa led to a comparable degree of neocartilage formation, and a minimal initial stiffness was required to retain hydrogel integrity over time. Results from this study highlight the important role of matrix cues in directing neocartilage formation, and they offer valuable insights in guiding optimal scaffold design for cartilage regeneration by using mixed cell populations.

  8. Biofunctionalized Zinc Oxide Field Effect Transistors for Selective Sensing of Riboflavin With Current Modulation

    DTIC Science & Technology

    2011-06-27

    ZnO-FET was tuned by attaching a redox tag ( ferrocene ) to the 3’ terminus of the aptamer, resulting in positive current modulation upon exposure to...flexibility in aptamer detection systems can be added by attaching redox molecules, such as ferrocene or methylene blue, to the 3’ end of the DNA...AGA TCG TTC C-3’. Ferrocene terminated riboflavin aptamers were purchased from Friz BioChem (Germany) and HPLC purification with the following sequence

  9. Dosimetric Predictors of Hypothyroidism After Radical Intensity-modulated Radiation Therapy for Non-metastatic Nasopharyngeal Carcinoma.

    PubMed

    Lee, V; Chan, Sum-Yin; Choi, Cheuk-Wai; Kwong, D; Lam, Ka-On; Tong, Chi-Chung; Sze, Chun-Kin; Ng, S; Leung, To-Wai; Lee, A

    2016-08-01

    To investigate dosimetric predictors of hypothyroidism after radical intensity-modulated radiation therapy (IMRT) for non-metastatic nasopharyngeal carcinoma (NPC). Patients with non-metastatic NPC treated with radical IMRT from 2008 to 2013 were reviewed. Serum thyroid function tests before and after IMRT were regularly monitored. Univariable and multivariable analyses were carried out for predictors of biochemical and clinical hypothyroidism. In total, 149 patients were recruited. After a median follow-up duration of 3.1 years, 33 (22.1%) and 21 (14.1%) patients developed biochemical and clinical hypothyroidism, respectively. Eight (24.2%) patients who had biochemical hypothyroidism developed clinical hypothyroidism later. Univariable and multivariable analyses revealed that the volume of the thyroid (P=0.002, multivariable), VS60 (the absolute thyroid volume spared from 60 Gy or less) (P<0.001, multivariable) and VS45 (P<0.001, multivariable) of the thyroid were significant predictors of biochemical hypothyroidism. The freedom from biochemical hypothyroidism was longer for those whose VS60 ≥ 10 cm(3) (mean 90.9 versus 62.6 months; P<0.001) and VS45 ≥ 5 cm(3) (mean 91.9 versus 65.2 months; P=0.001). Similarly multivariable analyses revealed that VS60 (P=0.001) and VS45 (P=0.003) were significant predictors of clinical hypothyroidism. The freedom from clinical hypothyroidism was longer for those whose VS60 ≥ 10 cm(3) (91.5 versus 73.3 months; P=0.002) and VS45 ≥ 5 cm(3) (91.5 versus 75.9 months; P=0.007). VS60 and VS45 of the thyroid should be considered important dose constraints against hypothyroidism without compromising target coverage during IMRT optimisation for NPC. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  10. Biosensors and bioelectronics on smartphone for portable biochemical detection.

    PubMed

    Zhang, Diming; Liu, Qingjun

    2016-01-15

    Smartphone has been widely integrated with sensors, such as test strips, sensor chips, and hand-held detectors, for biochemical detections due to its portability and ubiquitous availability. Utilizing built-in function modules, smartphone is often employed as controller, analyzer, and displayer for rapid, real-time, and point-of-care monitoring, which can significantly simplify design and reduce cost of the detecting systems. This paper presents a review of biosensors and bioelectronics on smartphone for portable biochemical detections. The biosensors and bioelectronics based on smartphone can mainly be classified into biosensors using optics, surface plasmon resonance, electrochemistry, and near-field communication. The developments of these biosensors and bioelectronics on smartphone are reviewed along with typical biochemical detecting cases. Sensor strategies, detector attachments, and coupling methods are highlighted to show designs of the compact, lightweight, and low-cost sensor systems. The performances and advantages of these designs are introduced with their applications in healthcare diagnosis, environment monitoring, and food evaluation. With advances in micro-manufacture, sensor technology, and miniaturized electronics, biosensor and bioelectronic devices on smartphone can be used to perform biochemical detections as common and convenient as electronic tag readout in foreseeable future. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Deletion of a non-catalytic region increases the enzymatic activity of a β-agarase from Flammeovirga sp. MY04

    NASA Astrophysics Data System (ADS)

    Han, Wenjun; Gu, Jingyan; Liu, Huihui; Li, Fuchuan; Wu, Zhihong; Li, Yuezhong

    2015-10-01

    A Glycoside hydrolase (GH) typically contains one catalytic module and varied non-catalytic regions (NCRs). However, effects of the NCRs to the catalytic modules remain mostly unclear except the carbohydrate-binding modules (CBMs). AgaG4 is a GH16 endo- β-agarase of the agarolytic marine bacterium Flammeovirga sp. MY04. The enzyme consists of an extra sugar-binding peptide within the catalytic module, with no predictable CBMs but function-unknown sequences in the NCR, which is a new characteristic of agarase sequences. In this study, we deleted the NCR sequence, a 140-amino acid peptide at the C-terminus and expressed the truncated gene, agaG4-T140, in Escherichia coli. After purification and refolding, the truncated agarase rAgaG4-T140 retained the same catalytic temperature and pH value as rAgaG4. Using combined fluorescent labeling, HPLC and MS/MS techniques, we identified the end-products of agarose degradation by rAgaG4-T140 as neoagarotetraose and neoagarohexaose, with a final molar ratio of 1.53:1 and a conversion ratio of approximately 70%, which were similar to those of rAgaG4. However, the truncated agarase rAgaG4-T140 markedly decreased in protein solubility by 15 times and increased in enzymatic activities by 35 times. The oligosaccharide production of rAgaG4-T140 was approximately 25 times the weight of that produced by equimolar rAgaG4. This study provides some insights into the influences of NCR on the biochemical characteristics of agarase AgaG4 and implies some new strategies to improve the properties of a GH enzyme.

  12. Modulation of Acid-sensing Ion Channel 1a by Intracellular pH and Its Role in Ischemic Stroke.

    PubMed

    Li, Ming-Hua; Leng, Tian-Dong; Feng, Xue-Chao; Yang, Tao; Simon, Roger P; Xiong, Zhi-Gang

    2016-08-26

    An important contributor to brain ischemia is known to be extracellular acidosis, which activates acid-sensing ion channels (ASICs), a family of proton-gated sodium channels. Lines of evidence suggest that targeting ASICs may lead to novel therapeutic strategies for stroke. Investigations of the role of ASICs in ischemic brain injury have naturally focused on the role of extracellular pH in ASIC activation. By contrast, intracellular pH (pHi) has received little attention. This is a significant gap in our understanding because the ASIC response to extracellular pH is modulated by pHi, and activation of ASICs by extracellular protons is paradoxically enhanced by intracellular alkalosis. Our previous studies show that acidosis-induced cell injury in in vitro models is attenuated by intracellular acidification. However, whether pHi affects ischemic brain injury in vivo is completely unknown. Furthermore, whereas ASICs in native neurons are composed of different subunits characterized by distinct electrophysiological/pharmacological properties, the subunit-dependent modulation of ASIC activity by pHi has not been investigated. Using a combination of in vitro and in vivo ischemic brain injury models, electrophysiological, biochemical, and molecular biological approaches, we show that the intracellular alkalizing agent quinine potentiates, whereas the intracellular acidifying agent propionate inhibits, oxygen-glucose deprivation-induced cell injury in vitro and brain ischemia-induced infarct volume in vivo Moreover, we find that the potentiation of ASICs by quinine depends on the presence of the ASIC1a, ASIC2a subunits, but not ASIC1b, ASIC3 subunits. Furthermore, we have determined the amino acids in ASIC1a that are involved in the modulation of ASICs by pHi. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The Arabidopsis thaliana TCP transcription factors: A broadening horizon beyond development

    PubMed Central

    Li, Shutian

    2015-01-01

    The TCP family of transcription factors is named after the first 4 characterized members, namely TEOSINTE BRANCHED1 (TB1) from maize (Zea mays), CYCLOIDEA (CYC) from snapdragon (Antirrhinum majus), as well as PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR1 (PCF1) and PCF2 from rice (Oryza sativa). Phylogenic analysis of this plant-specific protein family unveils a conserved bHLH-containing DNA-binding motif known as the TCP domain. In accordance with the structure of this shared domain, TCP proteins are grouped into class I (TCP-P) and class II (TCP-C), which are suggested to antagonistically modulate plant growth and development via competitively binding similar cis-regulatory modules called site II elements. Over the last decades, TCPs across the plant kingdom have been demonstrated to control a plethora of plant processes. Notably, TCPs also regulate plant development and defense responses via stimulating the biosynthetic pathways of bioactive metabolites, such as brassinosteroid (BR), jasmonic acid (JA) and flavonoids. Besides, mutagenesis analysis coupled with biochemical experiments identifies several crucial amino acids located within the TCP domain, which confer the redox sensitivity of class I TCPs and determine the distinct DNA-binding properties of TCPs. In this review, developmental functions of TCPs in various biological pathways are briefly described with an emphasis on their involvement in the synthesis of bioactive substances. Furthermore, novel biochemical aspects of TCPs with respect to redox regulation and DNA-binding preferences are elaborated. In addition, the unexpected participation of TCPs in effector-triggered immunity (ETI) and defense against insects indicates that the widely recognized developmental regulators are capable of fine-tuning defense signaling and thereby enable plants to evade deleterious developmental phenotypes. Altogether, these recent impressive breakthroughs remarkably advance our understanding as to how TCPs integrate internal developmental cues with external environmental stimuli to orchestrate plant development. PMID:26039357

  14. The Arabidopsis thaliana TCP transcription factors: A broadening horizon beyond development.

    PubMed

    Li, Shutian

    2015-01-01

    The TCP family of transcription factors is named after the first 4 characterized members, namely TEOSINTE BRANCHED1 (TB1) from maize (Zea mays), CYCLOIDEA (CYC) from snapdragon (Antirrhinum majus), as well as PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR1 (PCF1) and PCF2 from rice (Oryza sativa). Phylogenic analysis of this plant-specific protein family unveils a conserved bHLH-containing DNA-binding motif known as the TCP domain. In accordance with the structure of this shared domain, TCP proteins are grouped into class I (TCP-P) and class II (TCP-C), which are suggested to antagonistically modulate plant growth and development via competitively binding similar cis-regulatory modules called site II elements. Over the last decades, TCPs across the plant kingdom have been demonstrated to control a plethora of plant processes. Notably, TCPs also regulate plant development and defense responses via stimulating the biosynthetic pathways of bioactive metabolites, such as brassinosteroid (BR), jasmonic acid (JA) and flavonoids. Besides, mutagenesis analysis coupled with biochemical experiments identifies several crucial amino acids located within the TCP domain, which confer the redox sensitivity of class I TCPs and determine the distinct DNA-binding properties of TCPs. In this review, developmental functions of TCPs in various biological pathways are briefly described with an emphasis on their involvement in the synthesis of bioactive substances. Furthermore, novel biochemical aspects of TCPs with respect to redox regulation and DNA-binding preferences are elaborated. In addition, the unexpected participation of TCPs in effector-triggered immunity (ETI) and defense against insects indicates that the widely recognized developmental regulators are capable of fine-tuning defense signaling and thereby enable plants to evade deleterious developmental phenotypes. Altogether, these recent impressive breakthroughs remarkably advance our understanding as to how TCPs integrate internal developmental cues with external environmental stimuli to orchestrate plant development.

  15. Mechanisms of low level light therapy

    NASA Astrophysics Data System (ADS)

    Hamblin, Michael R.; Demidova, Tatiana N.

    2006-02-01

    The use of low levels of visible or near infrared light for reducing pain, inflammation and edema, promoting healing of wounds, deeper tissues and nerves, and preventing tissue damage has been known for almost forty years since the invention of lasers. Originally thought to be a peculiar property of laser light (soft or cold lasers), the subject has now broadened to include photobiomodulation and photobiostimulation using non-coherent light. Despite many reports of positive findings from experiments conducted in vitro, in animal models and in randomized controlled clinical trials, LLLT remains controversial. This likely is due to two main reasons; firstly the biochemical mechanisms underlying the positive effects are incompletely understood, and secondly the complexity of rationally choosing amongst a large number of illumination parameters such as wavelength, fluence, power density, pulse structure and treatment timing has led to the publication of a number of negative studies as well as many positive ones. In particular a biphasic dose response has been frequently observed where low levels of light have a much better effect than higher levels. This introductory review will cover some of the proposed cellular chromophores responsible for the effect of visible light on mammalian cells, including cytochrome c oxidase (with absorption peaks in the near infrared) and photoactive porphyrins. Mitochondria are thought to be a likely site for the initial effects of light, leading to increased ATP production, modulation of reactive oxygen species and induction of transcription factors. These effects in turn lead to increased cell proliferation and migration (particularly by fibroblasts), modulation in levels of cytokines, growth factors and inflammatory mediators, and increased tissue oxygenation. The results of these biochemical and cellular changes in animals and patients include such benefits as increased healing in chronic wounds, improvements in sports injuries and carpal tunnel syndrome, pain reduction in arthritis and neuropathies, and amelioration of damage after heart attacks, stroke, nerve injury and retinal toxicity.

  16. Multiple Ion Binding Equilibria, Reaction Kinetics, and Thermodynamics in Dynamic Models of Biochemical Pathways

    PubMed Central

    Vinnakota, Kalyan C.; Wu, Fan; Kushmerick, Martin J.; Beard, Daniel A.

    2009-01-01

    The operation of biochemical systems in vivo and in vitro is strongly influenced by complex interactions between biochemical reactants and ions such as H+, Mg2+, K+, and Ca2+. These are important second messengers in metabolic and signaling pathways that directly influence the kinetics and thermodynamics of biochemical systems. Herein we describe the biophysical theory and computational methods to account for multiple ion binding to biochemical reactants and demonstrate the crucial effects of ion binding on biochemical reaction kinetics and thermodynamics. In simulations of realistic systems, the concentrations of these ions change with time due to dynamic buffering and competitive binding. In turn, the effective thermodynamic properties vary as functions of cation concentrations and important environmental variables such as temperature and overall ionic strength. Physically realistic simulations of biochemical systems require incorporating all of these phenomena into a coherent mathematical description. Several applications to physiological systems are demonstrated based on this coherent simulation framework. PMID:19216922

  17. Nanotechnology drives a paradigm shift on protein misfolding diseases and amyloidosis

    NASA Astrophysics Data System (ADS)

    Bellotti, Vittorio; Stoppini, Monica

    2012-06-01

    In almost a century of scientific work on the mechanism of amyloid diseases much of the attention has been focused on the amyloid fibrils, which still represent the diagnostic hallmark of the disease and are easily identified in affected organs for their peculiar tinctorial properties and the fibrillar shape. However, it has been lately discovered that the seeds of the pathogenesis are deeply hidden in the structure and folding dynamics of proteins at the monomeric state which almost indistinguishable from the normal counterpart through classical biochemical approaches. In the recent years soluble oligomeric/prefibrillar species, putatively cytotoxic, were discovered and even more recently polymorphisms of shape and structure of fibrils was emerging as a property that could dictate the bioactivity of amyloid as well as the specificity of its tissue localization. Nanotechnology through the biophysical analysis of the single molecules (monomers or oligomers or fibrils) is the propulsive disciplines in the transformation of our knowledge on the molecular mechanism of this disease. It will provide, in the forthcoming years, precious analytical devices mimicking the biological microenvironment where the molecular events causing the amyloid formation will be monitored and possibly modulated in a real time frame.

  18. An overview of cartilage tissue engineering.

    PubMed

    Kim, H W; Han, C D

    2000-12-01

    Articular cartilage regeneration refers to the formation of new tissue that is indistinguishable from the native articular cartilage with respect to zonal organization, biochemical composition, and mechanical properties. Due to a limited capacity to repair cartilage, scar tissue frequently has a poorly organized structure and lacks the functional characteristics of normal cartilage. The degree of success to date achieved using a purely cell- or biological-based approach has been modest. Potentially the development of a hybrid strategy, whereby, chondrocytes or chondrogenic stem cells are combined with a matrix, making cartilage in vitro, which is then subsequently transplanted, offers a route towards a new successful treatment modality. The success of this approach depends upon the material being biocompatible, processable into a suitable three-dimensional structure and eventually biodegradable without harmful effects. In addition, the material should have a sufficient porosity to facilitate high cell loading and tissue ingrowth, and it should be able to support cell proliferation, differentiation, and function. The cell-polymer-bioreactor system provides a basis for studying the structural and functional properties of the cartilaginous matrix during its development, because tissue concentrations of glycosaminoglycan and collagen can be modulated by altering the conditions of tissue cultivation.

  19. Bacterial Cell Enlargement Requires Control of Cell Wall Stiffness Mediated by Peptidoglycan Hydrolases

    PubMed Central

    Wheeler, Richard; Turner, Robert D.; Bailey, Richard G.; Salamaga, Bartłomiej; Mesnage, Stéphane; Mohamad, Sharifah A. S.; Hayhurst, Emma J.; Horsburgh, Malcolm; Hobbs, Jamie K.

    2015-01-01

    ABSTRACT Most bacterial cells are enclosed in a single macromolecule of the cell wall polymer, peptidoglycan, which is required for shape determination and maintenance of viability, while peptidoglycan biosynthesis is an important antibiotic target. It is hypothesized that cellular enlargement requires regional expansion of the cell wall through coordinated insertion and hydrolysis of peptidoglycan. Here, a group of (apparent glucosaminidase) peptidoglycan hydrolases are identified that are together required for cell enlargement and correct cellular morphology of Staphylococcus aureus, demonstrating the overall importance of this enzyme activity. These are Atl, SagA, ScaH, and SagB. The major advance here is the explanation of the observed morphological defects in terms of the mechanical and biochemical properties of peptidoglycan. It was shown that cells lacking groups of these hydrolases have increased surface stiffness and, in the absence of SagB, substantially increased glycan chain length. This indicates that, beyond their established roles (for example in cell separation), some hydrolases enable cellular enlargement by making peptidoglycan easier to stretch, providing the first direct evidence demonstrating that cellular enlargement occurs via modulation of the mechanical properties of peptidoglycan. PMID:26220963

  20. Functional Effects of Prebiotic Fructans in Colon Cancer and Calcium Metabolism in Animal Models.

    PubMed

    Rivera-Huerta, Marisol; Lizárraga-Grimes, Vania Lorena; Castro-Torres, Ibrahim Guillermo; Tinoco-Méndez, Mabel; Macías-Rosales, Lucía; Sánchez-Bartéz, Francisco; Tapia-Pérez, Graciela Guadalupe; Romero-Romero, Laura; Gracia-Mora, María Isabel

    2017-01-01

    Inulin-type fructans are polymers of fructose molecules and are known for their capacity to enhance absorption of calcium and magnesium, to modulate gut microbiota and energy metabolism, and to improve glycemia. We evaluated and compared the effects of Chicory inulin "Synergy 1®" and inulin from Mexican agave "Metlin®" in two experimental models of colon cancer and bone calcium metabolism in mice and rats. Inulins inhibited the development of dextran sulfate sodium-induced colitis and colon cancer in mice; these fructans reduced the concentration of tumor necrosis factor alpha and prevented the formation of intestinal polyps, villous atrophy, and lymphoid hyperplasia. On the other hand, inulin treatments significantly increased bone densitometry (femur and vertebra) in ovariectomized rats without altering the concentration of many serum biochemical parameters and urinary parameters. Histopathology results were compared between different experimental groups. There were no apparent histological changes in rats treated with inulins and a mixture of inulins-isoflavones. Our results showed that inulin-type fructans have health-promoting properties related to enhanced calcium absorption, potential anticancer properties, and anti-inflammatory effects. The use of inulin as a prebiotic can improve health and prevent development of chronic diseases such as cancer and osteoporosis.

  1. Surface phosphatase in Rhinocladiella aquaspersa: biochemical properties and its involvement with adhesion.

    PubMed

    Kneipp, Lucimar F; Magalhães, Andressa S; Abi-Chacra, Erika A; Souza, Lucieri O P; Alviano, Celuta S; Santos, André L S; Meyer-Fernandes, José R

    2012-08-01

    Rhinocladiella aquaspersa is an etiologic agent of chromoblastomycosis, a subcutaneous chronic infectious disease. In the present work, we found that the three morphological forms of this fungus (conidia, mycelia and sclerotic bodies) expressed different levels of ecto-phosphatase activity. Our results demonstrated that surface conidial enzyme is an acid phosphatase, inhibited by sodium salts of molybdate, orthovanadate and fluoride and that the inhibition caused by orthovanadate and molybdate was irreversible. The conidial ecto-phosphatase efficiently released phosphate groups from different phosphorylated substrates, causing a higher rate of phosphate removal when p-nitrophenylphosphate was used as substrate. This ecto-enzyme of R. aquaspersa is modulated by Co(2 +) ions and inorganic phosphate (Pi). Accordingly, removal of Pi from the culture medium resulted in a marked (121-fold) increase of ecto-phosphatase activity. Surface phosphatase activity is apparently involved in fungal adhesive properties, since the attachment of R. aquaspersa to epithelial cells was reversed by the pre-treatment of the conidia with orthovanadate, molybdate and anti-phosphatase antibody. Corroborating this finding, conidia with greater ecto-phosphatase activity (grown in Pi-depleted medium) showed higher adherence to epithelial cells than fungi cultivated in the presence of Pi.

  2. Enhancing molecular logic through modulation of temporal and spatial constraints with quantum dot-based systems that use fluorescent (Förster) resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Claussen, Jonathan C.; Algar, W. Russ; Hildebrandt, Niko; Susumu, Kimihiro; Ancona, Mario G.; Medintz, Igor L.

    2013-10-01

    Luminescent semiconductor nanocrystals or quantum dots (QDs) contain favorable photonic properties (e.g., resistance to photobleaching, size-tunable PL, and large effective Stokes shifts) that make them well-suited for fluorescence (Förster) resonance energy transfer (FRET) based applications including monitoring proteolytic activity, elucidating the effects of nanoparticles-mediated drug delivery, and analyzing the spatial and temporal dynamics of cellular biochemical processes. Herein, we demonstrate how unique considerations of temporal and spatial constraints can be used in conjunction with QD-FRET systems to open up new avenues of scientific discovery in information processing and molecular logic circuitry. For example, by conjugating both long lifetime luminescent terbium(III) complexes (Tb) and fluorescent dyes (A647) to a single QD, we can create multiple FRET lanes that change temporally as the QD acts as both an acceptor and donor at distinct time intervals. Such temporal FRET modulation creates multi-step FRET cascades that produce a wealth of unique photoluminescence (PL) spectra that are well-suited for the construction of a photonic alphabet and photonic logic circuits. These research advances in bio-based molecular logic open the door to future applications including multiplexed biosensing and drug delivery for disease diagnostics and treatment.

  3. Human rhinovirus-induced inflammatory responses are inhibited by phosphatidylserine containing liposomes.

    PubMed

    Stokes, C A; Kaur, R; Edwards, M R; Mondhe, M; Robinson, D; Prestwich, E C; Hume, R D; Marshall, C A; Perrie, Y; O'Donnell, V B; Harwood, J L; Sabroe, I; Parker, L C

    2016-09-01

    Human rhinovirus (HRV) infections are major contributors to the healthcare burden associated with acute exacerbations of chronic airway disease, such as chronic obstructive pulmonary disease and asthma. Cellular responses to HRV are mediated through pattern recognition receptors that may in part signal from membrane microdomains. We previously found Toll-like receptor signaling is reduced, by targeting membrane microdomains with a specific liposomal phosphatidylserine species, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine (SAPS). Here we explored the ability of this approach to target a clinically important pathogen. We determined the biochemical and biophysical properties and stability of SAPS liposomes and studied their ability to modulate rhinovirus-induced inflammation, measured by cytokine production, and rhinovirus replication in both immortalized and normal primary bronchial epithelial cells. SAPS liposomes rapidly partitioned throughout the plasma membrane and internal cellular membranes of epithelial cells. Uptake of liposomes did not cause cell death, but was associated with markedly reduced inflammatory responses to rhinovirus, at the expense of only modest non-significant increases in viral replication, and without impairment of interferon receptor signaling. Thus using liposomes of phosphatidylserine to target membrane microdomains is a feasible mechanism for modulating rhinovirus-induced signaling, and potentially a prototypic new therapy for viral-mediated inflammation.

  4. Inhibition of Nod2 Signaling and Target Gene Expression by Curcumin

    PubMed Central

    Huang, Shurong; Zhao, Ling; Kim, Kihoon; Lee, Dong Seok; Hwang, Daniel H.

    2008-01-01

    Nod2 is an intracellular pattern recognition receptor that detects a conserved moiety of bacterial peptidoglycan and subsequently activates proinflammatory signaling pathways. Mutations in Nod2 have been implicated to be linked to inflammatory granulomatous disorders, such as Crohn's disease and Blau syndrome. Many phytochemicals possess anti-inflammatory properties. However, it is not known whether any of these phytochemicals might modulate Nod2-mediated immune responses and thus might be of therapeutic value for the intervention of these inflammatory diseases. In this report, we demonstrate that curcumin, a polyphenol found in the plant Curcuma longa, and parthenolide, a sesquiterpene lactone, suppress both ligand-induced and lauric acid-induced Nod2 signaling, leading to the suppression of nuclear factor-κB activation and target gene interleukin-8 expression. We provide molecular and biochemical evidence that the suppression is mediated through the inhibition of Nod2 oligomerization and subsequent inhibition of downstream signaling. These results demonstrate for the first time that curcumin and parthenolide can directly inhibit Nod2-mediated signaling pathways at the receptor level and suggest that Nod2-mediated inflammatory responses can be modulated by these phytochemicals. It remains to be determined whether these phytochemicals possess protective or therapeutic efficacy against Nod2-mediated inflammatory disorders. PMID:18413660

  5. The effects of Zebra Chip disease development and bacterial titer on biochemical properties in relation to the time of infection

    USDA-ARS?s Scientific Manuscript database

    Potato tuber biochemical responses to ‘Candidatus’ Liberibacter solanacearum (Lso), the causal agent of Zebra chip disease, were evaluated both within infected tubers and across different infection dates. Tuber biochemistry also was related to symptom severity and bacterial titer. Symptom severity w...

  6. Reduced linear noise approximation for biochemical reaction networks with time-scale separation: The stochastic tQSSA+

    NASA Astrophysics Data System (ADS)

    Herath, Narmada; Del Vecchio, Domitilla

    2018-03-01

    Biochemical reaction networks often involve reactions that take place on different time scales, giving rise to "slow" and "fast" system variables. This property is widely used in the analysis of systems to obtain dynamical models with reduced dimensions. In this paper, we consider stochastic dynamics of biochemical reaction networks modeled using the Linear Noise Approximation (LNA). Under time-scale separation conditions, we obtain a reduced-order LNA that approximates both the slow and fast variables in the system. We mathematically prove that the first and second moments of this reduced-order model converge to those of the full system as the time-scale separation becomes large. These mathematical results, in particular, provide a rigorous justification to the accuracy of LNA models derived using the stochastic total quasi-steady state approximation (tQSSA). Since, in contrast to the stochastic tQSSA, our reduced-order model also provides approximations for the fast variable stochastic properties, we term our method the "stochastic tQSSA+". Finally, we demonstrate the application of our approach on two biochemical network motifs found in gene-regulatory and signal transduction networks.

  7. Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils.

    PubMed

    Zornoza, R; Guerrero, C; Mataix-Solera, J; Scow, K M; Arcenegui, V; Mataix-Beneyto, J

    2008-07-01

    The potential of near infrared (NIR) reflectance spectroscopy to predict various physical, chemical and biochemical properties in Mediterranean soils from SE Spain was evaluated. Soil samples (n=393) were obtained by sampling thirteen locations during three years (2003-2005 period). These samples had a wide range of soil characteristics due to variations in land use, vegetation cover and specific climatic conditions. Biochemical properties also included microbial biomarkers based on phospholipid fatty acids (PLFA). Partial least squares (PLS) regression with cross validation was used to establish relationships between the NIR spectra and the reference data from physical, chemical and biochemical analyses. Based on the values of coefficient of determination (r(2)) and the ratio of standard deviation of validation set to root mean square error of cross validation (RPD), predicted results were evaluated as excellent (r(2)>0.90 and RPD>3) for soil organic carbon, Kjeldahl nitrogen, soil moisture, cation exchange capacity, microbial biomass carbon, basal soil respiration, acid phosphatase activity, β-glucosidase activity and PLFA biomarkers for total bacteria, Gram positive bacteria, actinomycetes, vesicular-arbuscular mycorrhizal fungi and total PLFA biomass. Good predictions (0.81

  8. Biochemical factors modulating female genital sexual arousal physiology.

    PubMed

    Traish, Abdulmaged M; Botchevar, Ella; Kim, Noel N

    2010-09-01

    Female genital sexual arousal responses are complex neurophysiological processes consisting of central and peripheral components that occur following sexual stimulation. The peripheral responses in sexual arousal include genital vasocongestion, engorgement and lubrication resulting from a surge of vaginal and clitoral blood flow. These hemodynamic events are mediated by a host of neurotransmitters and vasoactive agents. To discuss the role of various biochemical factors modulating female genital sexual arousal responses. A comprehensive literature review was conducted using the PubMed database and citations were selected, based on topical relevance, and examined for study methodology and major findings. Data from peer-reviewed publications. Adrenergic as well as non-adrenergic non-cholinergic neurotransmitters play an important role in regulating genital physiological responses by mediating vascular and non-vascular smooth muscle contractility. Vasoactive peptides and neuropeptides also modulate genital sexual responses by regulating vascular and non-vascular smooth muscle cells and epithelial function. The endocrine milieu, particularly sex steroid hormones, is critical in the maintenance of tissue structure and function. Reduced levels of estrogens and androgen are associated with dramatic alterations in genital tissue structure, including the nerve network, as well as the response to physiological modulators. Furthermore, estrogen and androgen deficiency is associated with reduced expression of sex steroid receptors and most importantly with attenuated genital blood flow and lubrication in response to pelvic nerve stimulation. This article provides an integrated framework describing the physiological and molecular basis of various pathophysiological conditions associated with female genital sexual arousal dysfunction. © 2010 International Society for Sexual Medicine.

  9. Services provided in support of the planetary quarantine requirements

    NASA Technical Reports Server (NTRS)

    Favero, M. S.

    1973-01-01

    The microbiological studies of the Apollo 17 command module pre- and postflight samples are reported. A total of 20 types of microorganisms were identified on preflight and 14 on postflight samples. Changes in biochemical character due to subculture and storage of Bacillus isolates are also reported.

  10. Biochemical characteristics and modulation by external and internal factors of aminopeptidase-N activity in the hepatopancreas of a euryhaline burrowing crab.

    PubMed

    Michiels, M S; del Valle, J C; López Mañanes, A A

    2015-07-01

    Strikingly, in spite of its physiological importance, information about occurrence, biochemical characteristics and mechanisms of regulation of aminopeptidase-N (APN) in the hepatopancreas of intertidal euryhaline crabs is still lacking. In this work, we determined the occurrence, biochemical characteristics, response to environmental salinity and dopamine of APN in the hepatopancreas of the euryhaline crab Neohelice granulata (Dana 1851) from the open mudflat of Mar Chiquita coastal lagoon (Buenos Aires province, Argentina). APN activity was maximal at pH and temperature range of 7.6-9.0 and 37-45 °C, respectively. APN activity exhibited Michaelis-Menten kinetics (apparent Km = 0.19 ± 0.10 mM) (pH 7.6, 37 °C) and appeared to be sensitive to bestatin (I 50 = 15 mM) and EDTA (I 50 = 9 mM). In crabs acclimated to 10 psu (hyper-regulation conditions) and 37 psu (hypo-regulation conditions), APN activity was about 45 and 160% higher, respectively, than in 35 psu (osmoconformation). APN activity in the hepatopancreas was stimulated in vitro (about 137%) by 10(-4) M dopamine. Higher dopamine concentrations produced a similar extent of increase. The responses of APN activity to salinity and dopamine in vitro suggest the role of APN in digestive adjustments upon hyper and hypo-regulatory conditions and its modulation via direct mechanisms on hepatopancreas by dopamine.

  11. Simulating carbon dioxide exchange rates of deciduous tree species: evidence for a general pattern in biochemical changes and water stress response.

    PubMed

    Reynolds, Robert F; Bauerle, William L; Wang, Ying

    2009-09-01

    Deciduous trees have a seasonal carbon dioxide exchange pattern that is attributed to changes in leaf biochemical properties. However, it is not known if the pattern in leaf biochemical properties - maximum Rubisco carboxylation (V(cmax)) and electron transport (J(max)) - differ between species. This study explored whether a general pattern of changes in V(cmax), J(max), and a standardized soil moisture response accounted for carbon dioxide exchange of deciduous trees throughout the growing season. The model MAESTRA was used to examine V(cmax) and J(max) of leaves of five deciduous trees, Acer rubrum 'Summer Red', Betula nigra, Quercus nuttallii, Quercus phellos and Paulownia elongata, and their response to soil moisture. MAESTRA was parameterized using data from in situ measurements on organs. Linking the changes in biochemical properties of leaves to the whole tree, MAESTRA integrated the general pattern in V(cmax) and J(max) from gas exchange parameters of leaves with a standardized soil moisture response to describe carbon dioxide exchange throughout the growing season. The model estimates were tested against measurements made on the five species under both irrigated and water-stressed conditions. Measurements and modelling demonstrate that the seasonal pattern of biochemical activity in leaves and soil moisture response can be parameterized with straightforward general relationships. Over the course of the season, differences in carbon exchange between measured and modelled values were within 6-12 % under well-watered conditions and 2-25 % under water stress conditions. Hence, a generalized seasonal pattern in the leaf-level physiological change of V(cmax) and J(max), and a standardized response to soil moisture was sufficient to parameterize carbon dioxide exchange for large-scale evaluations. Simplification in parameterization of the seasonal pattern of leaf biochemical activity and soil moisture response of deciduous forest species is demonstrated. This allows reliable modelling of carbon exchange for deciduous trees, thus circumventing the need for extensive gas exchange experiments on different species.

  12. Tendon and ligament as novel cell sources for engineering the knee meniscus.

    PubMed

    Hadidi, P; Paschos, N K; Huang, B J; Aryaei, A; Hu, J C; Athanasiou, K A

    2016-12-01

    The application of cell-based therapies in regenerative medicine is hindered by the difficulty of acquiring adequate numbers of competent cells. For the knee meniscus in particular, this may be solved by harvesting tissue from neighboring tendons and ligaments. In this study, we have investigated the potential of cells from tendon and ligament, as compared to meniscus cells, to engineer scaffold-free self-assembling fibrocartilage. Self-assembling meniscus-shaped constructs engineered from a co-culture of articular chondrocytes and either meniscus, tendon, or ligament cells were cultured for 4 weeks with TGF-β1 in serum-free media. After culture, constructs were assessed for their mechanical properties, histological staining, gross appearance, and biochemical composition including cross-link content. Correlations were performed to evaluate relationships between biochemical content and mechanical properties. In terms of mechanical properties as well as biochemical content, constructs engineered using tenocytes and ligament fibrocytes were found to be equivalent or superior to constructs engineered using meniscus cells. Furthermore, cross-link content was found to be correlated with engineered tissue tensile properties. Tenocytes and ligament fibrocytes represent viable cell sources for engineering meniscus fibrocartilage using the self-assembling process. Due to greater cross-link content, fibrocartilage engineered with tenocytes and ligament fibrocytes may maintain greater tensile properties than fibrocartilage engineered with meniscus cells. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  13. Tendon and ligament as novel cell sources for engineering the knee meniscus

    PubMed Central

    Hadidi, Pasha; Paschos, Nikolaos K.; Huang, Brian J.; Aryaei, Ashkan; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2016-01-01

    Objective The application of cell-based therapies in regenerative medicine is hindered by the difficulty of acquiring adequate numbers of competent cells. For the knee meniscus in particular, this may be solved by harvesting tissue from neighboring tendons and ligaments. In this study, we have investigated the potential of cells from tendon and ligament, as compared to meniscus cells, to engineer scaffold-free self-assembling fibrocartilage. Method Self-assembling meniscus-shaped constructs engineered from a co-culture of articular chondrocytes and either meniscus, tendon, or ligament cells were cultured for 4 weeks with TGF-β1 in serum-free media. After culture, constructs were assessed for their mechanical properties, histological staining, gross appearance, and biochemical composition including cross-link content. Correlations were performed to evaluate relationships between biochemical content and mechanical properties. Results In terms of mechanical properties as well as biochemical content, constructs engineered using tenocytes and ligament fibrocytes were found to be equivalent or superior to constructs engineered using meniscus cells. Furthermore, cross-link content was found to be correlated with engineered tissue tensile properties. Conclusion Tenocytes and ligament fibrocytes represent viable cell sources for engineering meniscus fibrocartilage using the self-assembling process. Due to greater cross-link content, fibrocartilage engineered with tenocytes and ligament fibrocytes may maintain greater tensile properties than fibrocartilage engineered with meniscus cells. PMID:27473559

  14. Multidimensional heuristic process for high-yield production of astaxanthin and fragrance molecules in Escherichia coli.

    PubMed

    Zhang, Congqiang; Seow, Vui Yin; Chen, Xixian; Too, Heng-Phon

    2018-05-11

    Optimization of metabolic pathways consisting of large number of genes is challenging. Multivariate modular methods (MMMs) are currently available solutions, in which reduced regulatory complexities are achieved by grouping multiple genes into modules. However, these methods work well for balancing the inter-modules but not intra-modules. In addition, application of MMMs to the 15-step heterologous route of astaxanthin biosynthesis has met with limited success. Here, we expand the solution space of MMMs and develop a multidimensional heuristic process (MHP). MHP can simultaneously balance different modules by varying promoter strength and coordinating intra-module activities by using ribosome binding sites (RBSs) and enzyme variants. Consequently, MHP increases enantiopure 3S,3'S-astaxanthin production to 184 mg l -1 day -1 or 320 mg l -1 . Similarly, MHP improves the yields of nerolidol and linalool. MHP may be useful for optimizing other complex biochemical pathways.

  15. Historical contingency and the gradual evolution of metabolic properties in central carbon and genome-scale metabolisms

    PubMed Central

    2014-01-01

    Background A metabolism can evolve through changes in its biochemical reactions that are caused by processes such as horizontal gene transfer and gene deletion. While such changes need to preserve an organism’s viability in its environment, they can modify other important properties, such as a metabolism’s maximal biomass synthesis rate and its robustness to genetic and environmental change. Whether such properties can be modulated in evolution depends on whether all or most viable metabolisms – those that can synthesize all essential biomass precursors – are connected in a space of all possible metabolisms. Connectedness means that any two viable metabolisms can be converted into one another through a sequence of single reaction changes that leave viability intact. If the set of viable metabolisms is disconnected and highly fragmented, then historical contingency becomes important and restricts the alteration of metabolic properties, as well as the number of novel metabolic phenotypes accessible in evolution. Results We here computationally explore two vast spaces of possible metabolisms to ask whether viable metabolisms are connected. We find that for all but the simplest metabolisms, most viable metabolisms can be transformed into one another by single viability-preserving reaction changes. Where this is not the case, alternative essential metabolic pathways consisting of multiple reactions are responsible, but such pathways are not common. Conclusions Metabolism is thus highly evolvable, in the sense that its properties could be fine-tuned by successively altering individual reactions. Historical contingency does not strongly restrict the origin of novel metabolic phenotypes. PMID:24758311

  16. Microengineering as a tool to study substratum modulation and cell behaviour.

    PubMed

    Keatch, R P; Armoogum, K; Schor, S L; Pridham, M S; Banks, K; Khor, T Y; Matthew, C

    2002-01-01

    This research is an investigation of the means by which geometrical parameters (e.g. area and shape) and various surface attributes (materials and surface finish) of microengineered structures can modulate cellular response. This is based on biological observations indicating that: (i) the response of tissue cells to injury is determined by the net signal transduction response elicited by soluble regulatory molecules (e.g. cytokines), (ii) common matrix constituents (e.g. collagen) directly affect cell behaviour by the same signal transduction mechanisms mediating cytokine bioactivity, (iii) cellular response to cytokines is modulated by the precise nature of the extracellular matrix to which the target cells are adherent, including its biochemical composition and physical structure.

  17. Nutrient-induced modulation of gene expression and cellular functions: modeling epigenetic regulation in bovine cells

    USDA-ARS?s Scientific Manuscript database

    Volatile fatty acids (VFA), especially butyrate, participate in metabolism both as nutrients and as regulators of histone deacetylation. The major biochemical change that occurs in cells treated with butyrate is the global hyperacetylation of histones. One paradigmatic example of the nutrient-epige...

  18. Cellular and molecular mechanisms for the bone response to mechanical loading

    NASA Technical Reports Server (NTRS)

    Bloomfield, S. A.

    2001-01-01

    To define the cellular and molecular mechanisms for the osteogenic response of bone to increased loading, several key steps must be defined: sensing of the mechanical signal by cells in bone, transduction of the mechanical signal to a biochemical one, and transmission of that biochemical signal to effector cells. Osteocytes are likely to serve as sensors of loading, probably via interstitial fluid flow produced during loading. Evidence is presented for the role of integrins, the cell's actin cytoskeleton, G proteins, and various intracellular signaling pathways in transducing that mechanical signal to a biochemical one. Nitric oxide, prostaglandins, and insulin-like growth factors all play important roles in these pathways. There is growing evidence for modulation of these mechanotransduction steps by endocrine factors, particularly parathyroid hormone and estrogen. The efficiency of this process is also impaired in the aged animal, yet what remains undefined is at what step mechanotransduction is affected.

  19. Truncated somatostatin receptor 5 may modulate therapy response to somatostatin analogues--Observations in two patients with acromegaly and severe headache.

    PubMed

    Marina, Djordje; Burman, Pia; Klose, Marianne; Casar-Borota, Olivera; Luque, Raúl M; Castaño, Justo P; Feldt-Rasmussen, Ulla

    2015-10-01

    Somatotropinomas have unique "fingerprints" of somatostatin receptor (sst) expression, which are targets in treatment of acromegaly with somatostatin analogues (SSAs). However, a significant expression of sst is not always related to the biochemical response to SSAs. Headache is a common complaint in acromegaly and considered a clinical marker of disease activity. SSAs are reported to have an own analgesic effect, but the sst involved are unknown. We investigated sst expression in two acromegalic patients with severe headache and no biochemical effects of octreotide, but a good response to pasireotide. We searched the literature for determinants of biochemical and analgesic effects of SSAs in somatotropinomas. Case 1 had no biochemical or analgesic effects of octreotide, a semi-selective SSA, but a rapid and significant effect of pasireotide, a pan-SSA. Case 2 demonstrated discordance between analgesic and biochemical effects of octreotide, in that headache disappeared, but without biochemical improvement. In contrast, pasireotide normalized insulin-like growth factor 1. Both adenomas were sparsely granulated and had strong membranous expressions of sst2a in 50-75% and sst5 in 75-100% of tumor cells. The truncated sst5 variant TMD4 (sst5TMD4) showed expression in 20-57% of tumor cells. A poor biochemical response to octreotide may be associated with tumor expression of a truncated sst5 variant, despite abundant sst2a expression, suggesting an influence from variant sst5 on common sst signaling pathways. Furthermore, unrelated analgesic and biochemical effects of SSAs supported a complex pathogenesis of acromegaly-associated headache. Finally, assessment of truncated sst5 in addition to full length sst could be important for a choice of postoperative SSA treatment in somatotropinomas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Topographic variations in biomechanical and biochemical properties in the ankle joint: an in vitro bovine study evaluating native and engineered cartilage.

    PubMed

    Paschos, Nikolaos K; Makris, Eleftherios A; Hu, Jerry C; Athanasiou, Kyriacos A

    2014-10-01

    The purposes of this study were to identify differences in the biomechanical and biochemical properties among the articulating surfaces of the ankle joint and to evaluate the functional and biological properties of engineered neocartilage generated using chondrocytes from different locations in the ankle joint. The properties of the different topographies within the ankle joint (tibial plafond, talar dome, and distal fibula) were evaluated in 28 specimens using 7 bovine ankles; the femoral condyle was used as a control. Chondrocytes from the same locations were used to form 28 neocartilage constructs by tissue engineering using an additional 7 bovine ankles. The functional properties of neocartilage were compared with native tissue values. Articular cartilage from the tibial plafond, distal fibula, talar dome, and femoral condyle exhibited Young modulus values of 4.8 ± 0.5 MPa, 3.9 ± 0.1 MPa, 1.7 ± 0.2 MPa, and 4.0 ± 0.5 MPa, respectively. The compressive properties of the corresponding tissues were 370 ± 22 kPa, 242 ± 18 kPa, 255 ± 26 kPa, and 274 ± 18 kPa, respectively. The tibial plafond exhibited 3-fold higher tensile properties and 2-fold higher compressive and shear moduli compared with its articulating talar dome; the same disparity was observed in neocartilage. Similar trends were detected in biochemical data for both native and engineered tissues. The cartilage properties of the various topographic locations within the ankle are significantly different. In particular, the opposing articulating surfaces of the ankle have significantly different biomechanical and biochemical properties. The disparity between tibial plafond and talar dome cartilage and chondrocytes warrants further evaluation in clinical studies to evaluate their exact role in the pathogenesis of ankle lesions. Therapeutic modalities for cartilage lesions need to consider the exact topographic source of the cells or cartilage grafts used. Furthermore, the capacity of generating neocartilage implants from location-specific chondrocytes of the ankle joint may be used in the future as a tool for the treatment of chondral lesions. Copyright © 2014 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  1. The many faces of amnesia.

    PubMed

    Gold, Paul E

    2006-01-01

    Results from studies of retrograde amnesia provide much of the evidence for theories of memory consolidation. Retrograde amnesia gradients are often interpreted as revealing the time needed for the formation of long-term memories. The rapid forgetting observed after many amnestic treatments, including protein synthesis inhibitors, and the parallel decay seen in long-term potentiation experiments are presumed to reveal the duration of short-term memory processing. However, there is clear and consistent evidence that the time courses obtained in these amnesia experiments are highly variable within and across experiments and treatments. The evidence is inconsistent with identification of basic temporal properties of memory consolidation. Alternative views include modulation of memory and emphasize the roles that hormones and neurotransmitters have in regulating memory formation. Of related interest, converging lines of evidence suggest that inhibitors of protein synthesis and of other biochemical processes act on modulators of memory formation rather than on mechanisms of memory formation. Based on these findings, memory consolidation and reconsolidation studies might better be identified as memory modulation and "remodulation" studies. Beyond a missing and perhaps unattainable time constant of memory consolidation, some current views of memory consolidation assume that memories, once formed, are generally unmodifiable. It is this perspective that appears to have led to the recent interest in memory reconsolidation. But the view adopted here is that memories are continually malleable, being updated by new experiences and, at the same time, altering the memories of later experiences. Studies of memory remodulation offer promise of understanding the neurobiological bases by which new memories are altered by prior experiences and by which old memories are altered by new experiences.

  2. Biochemical properties of thyroid peroxidase (TPO) expressed in human breast and mammary-derived cell lines

    PubMed Central

    Godlewska, Marlena; Krasuska, Wanda

    2018-01-01

    Thyroid peroxidase (TPO) is an enzyme and autoantigen expressed in thyroid and breast tissues. Thyroid TPO undergoes a complex maturation process however, nothing is known about post-translational modifications of breast-expressed TPO. In this study, we have investigated the biochemical properties of TPO expressed in normal and cancerous human breast tissues, and the maturation process and antigenicity of TPO present in a panel of human breast tissue-derived cell lines. We found that the molecular weight of breast TPO was slightly lower than that of thyroid TPO due to decreased glycosylation and as suggest results of Western blot also shorter amino acid chain. Breast TPO exhibit enzymatic activity and isoelectric point comparable to that of thyroid TPO. The biochemical properties of TPO expressed in mammary cell lines and normal thyrocytes are similar regarding glycan content, molecular weight and isoelectric point. However, no peroxidase activity and dimer formation was detected in any of these cell lines since the majority of TPO protein was localized in the cytoplasmic compartment, and the TPO expression at the cell surface was too low to detect its enzymatic activity. Lactoperoxidase, a protein highly homologous to TPO expressed also in breast tissues, does not influence the obtained data. TPO expressed in the cell lines was recognized by a broad panel of TPO-specific antibodies. Although some differences in biochemical properties between thyroid and breast TPO were observed, they do not seem to be critical for the overall three-dimensional structure. This conclusion is supported by the fact that TPO expressed in breast tissues and cell lines reacts well with conformation-sensitive antibodies. Taking into account a close resemblance between both proteins, especially high antigenicity, future studies should investigate the potential immunotherapies directed against breast-expressed TPO and its specific epitopes. PMID:29513734

  3. Biochemical properties of thyroid peroxidase (TPO) expressed in human breast and mammary-derived cell lines.

    PubMed

    Godlewska, Marlena; Krasuska, Wanda; Czarnocka, Barbara

    2018-01-01

    Thyroid peroxidase (TPO) is an enzyme and autoantigen expressed in thyroid and breast tissues. Thyroid TPO undergoes a complex maturation process however, nothing is known about post-translational modifications of breast-expressed TPO. In this study, we have investigated the biochemical properties of TPO expressed in normal and cancerous human breast tissues, and the maturation process and antigenicity of TPO present in a panel of human breast tissue-derived cell lines. We found that the molecular weight of breast TPO was slightly lower than that of thyroid TPO due to decreased glycosylation and as suggest results of Western blot also shorter amino acid chain. Breast TPO exhibit enzymatic activity and isoelectric point comparable to that of thyroid TPO. The biochemical properties of TPO expressed in mammary cell lines and normal thyrocytes are similar regarding glycan content, molecular weight and isoelectric point. However, no peroxidase activity and dimer formation was detected in any of these cell lines since the majority of TPO protein was localized in the cytoplasmic compartment, and the TPO expression at the cell surface was too low to detect its enzymatic activity. Lactoperoxidase, a protein highly homologous to TPO expressed also in breast tissues, does not influence the obtained data. TPO expressed in the cell lines was recognized by a broad panel of TPO-specific antibodies. Although some differences in biochemical properties between thyroid and breast TPO were observed, they do not seem to be critical for the overall three-dimensional structure. This conclusion is supported by the fact that TPO expressed in breast tissues and cell lines reacts well with conformation-sensitive antibodies. Taking into account a close resemblance between both proteins, especially high antigenicity, future studies should investigate the potential immunotherapies directed against breast-expressed TPO and its specific epitopes.

  4. Identification of a highly active tannase enzyme from the oral pathogen Fusobacterium nucleatum subsp. polymorphum.

    PubMed

    Tomás-Cortázar, Julen; Plaza-Vinuesa, Laura; de Las Rivas, Blanca; Lavín, José Luis; Barriales, Diego; Abecia, Leticia; Mancheño, José Miguel; Aransay, Ana M; Muñoz, Rosario; Anguita, Juan; Rodríguez, Héctor

    2018-02-26

    Tannases are tannin-degrading enzymes that have been described in fungi and bacteria as an adaptative mechanism to overcome the stress conditions associated with the presence of these phenolic compounds. We have identified and expressed in E. coli a tannase from the oral microbiota member Fusobacterium nucleatum subs. polymorphum (TanB Fnp ). TanB Fnp is the first tannase identified in an oral pathogen. Sequence analyses revealed that it is closely related to other bacterial tannases. The enzyme exhibits biochemical properties that make it an interesting target for industrial use. TanB Fnp has one of the highest specific activities of all bacterial tannases described to date and shows optimal biochemical properties such as a high thermal stability: the enzyme keeps 100% of its activity after prolonged incubations at different temperatures up to 45 °C. TanB Fnp also shows a wide temperature range of activity, maintaining above 80% of its maximum activity between 22 and 55 °C. The use of a panel of 27 esters of phenolic acids demonstrated activity of TanB Fnp only against esters of gallic and protocatechuic acid, including tannic acid, gallocatechin gallate and epigallocatechin gallate. Overall, TanB Fnp possesses biochemical properties that make the enzyme potentially useful in biotechnological applications. We have identified and characterized a metabolic enzyme from the oral pathogen Fusobacterium nucleatum subsp. polymorphum. The biochemical properties of TanB Fnp suggest that it has a major role in the breakdown of complex food tannins during oral processing. Our results also provide some clues regarding its possible participation on bacterial survival in the oral cavity. Furthermore, the characteristics of this enzyme make it of potential interest for industrial use.

  5. Cartilage matrix formation by bovine mesenchymal stem cells in three-dimensional culture is age-dependent.

    PubMed

    Erickson, Isaac E; van Veen, Steven C; Sengupta, Swarnali; Kestle, Sydney R; Mauck, Robert L

    2011-10-01

    Cartilage degeneration is common in the aged, and aged chondrocytes are inferior to juvenile chondrocytes in producing cartilage-specific extracellular matrix. Mesenchymal stem cells (MSCs) are an alternative cell type that can differentiate toward the chondrocyte phenotype. Aging may influence MSC chondrogenesis but remains less well studied, particularly in the bovine system. The objectives of this study were (1) to confirm age-related changes in bovine articular cartilage, establish how age affects chondrogenesis in cultured pellets for (2) chondrocytes and (3) MSCs, and (4) determine age-related changes in the biochemical and biomechanical development of clinically relevant MSC-seeded hydrogels. Native bovine articular cartilage from fetal (n = 3 donors), juvenile (n = 3 donors), and adult (n = 3 donors) animals was analyzed for mechanical and biochemical properties (n = 3-5 per donor). Chondrocyte and MSC pellets (n = 3 donors per age) were cultured for 6 weeks before analysis of biochemical content (n = 3 per donor). Bone marrow-derived MSCs of each age were also cultured within hyaluronic acid hydrogels for 3 weeks and analyzed for matrix deposition and mechanical properties (n = 4 per age). Articular cartilage mechanical properties and collagen content increased with age. We observed robust matrix accumulation in three-dimensional pellet culture by fetal chondrocytes with diminished collagen-forming capacity in adult chondrocytes. Chondrogenic induction of MSCs was greater in fetal and juvenile cell pellets. Likewise, fetal and juvenile MSCs in hydrogels imparted greater matrix and mechanical properties. Donor age and biochemical microenvironment were major determinants of both bovine chondrocyte and MSC functional capacity. In vitro model systems should be evaluated in the context of age-related changes and should be benchmarked against human MSC data.

  6. Recommendations for terminology and databases for biochemical thermodynamics.

    PubMed

    Alberty, Robert A; Cornish-Bowden, Athel; Goldberg, Robert N; Hammes, Gordon G; Tipton, Keith; Westerhoff, Hans V

    2011-05-01

    Chemical equations are normally written in terms of specific ionic and elemental species and balance atoms of elements and electric charge. However, in a biochemical context it is usually better to write them with ionic reactants expressed as totals of species in equilibrium with each other. This implies that atoms of elements assumed to be at fixed concentrations, such as hydrogen at a specified pH, should not be balanced in a biochemical equation used for thermodynamic analysis. However, both kinds of equations are needed in biochemistry. The apparent equilibrium constant K' for a biochemical reaction is written in terms of such sums of species and can be used to calculate standard transformed Gibbs energies of reaction Δ(r)G'°. This property for a biochemical reaction can be calculated from the standard transformed Gibbs energies of formation Δ(f)G(i)'° of reactants, which can be calculated from the standard Gibbs energies of formation of species Δ(f)G(j)° and measured apparent equilibrium constants of enzyme-catalyzed reactions. Tables of Δ(r)G'° of reactions and Δ(f)G(i)'° of reactants as functions of pH and temperature are available on the web, as are functions for calculating these properties. Biochemical thermodynamics is also important in enzyme kinetics because apparent equilibrium constant K' can be calculated from experimentally determined kinetic parameters when initial velocities have been determined for both forward and reverse reactions. Specific recommendations are made for reporting experimental results in the literature. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Sertraline and venlafaxine improves motor performance and neurobehavioral deficit in quinolinic acid induced Huntington's like symptoms in rats: Possible neurotransmitters modulation.

    PubMed

    Gill, Jaskamal Singh; Jamwal, Sumit; Kumar, Puneet; Deshmukh, Rahul

    2017-04-01

    Huntington Disease is autosomal, fatal and progressive neurodegenerative disorder for which clinically available drugs offer only symptomatic relief. Emerging strides have indicated that antidepressants improve motor performance, restore neurotransmitters level, ameliorates striatal atrophy, increases BDNF level and may enhance neurogenesis. Therefore, we investigated sertraline and venlafaxine, clinically available drugs for depression with numerous neuroprotective properties, for their beneficial effects, if any, in quinolinic acid induced Huntington's like symptoms in rats. Rats were administered quinolinic acid (QA) (200 nmol/2μl saline) intrastriatal bilaterally on 0day. Sertraline and venlafaxine (10 and 20mg/kg, po) each were administered for 21days once a day. Motor performance was assessed using rotarod test, grip strength test, narrow beam walk test on weekly basis. On day 22, animals were sacrificed and rat striatum was isolated for biochemical (LPO, GSH and Nitrite), neuroinflammation (TNF-α, IL-1β and IL-6) and neurochemical analysis (GABA, glutamate, norepinephrine, dopamine, serotonin, DOPAC, HVA and 5-HIAA). QA treatment significantly altered body weight, motor performance, oxidative defense (increased LPO, nitrite and decreased GSH), pro-inflammatory cytokines levels (TNF-α, IL-6 and IL-1β), neurochemical level (GABA, glutamate, nor-epinephrine, dopamine, serotonin, HVA, DOPAC, 5-HIAA). Sertraline and venlafaxine at selected doses significantly attenuated QA induced alterations in striatum. The present study suggests that modulation of monoamines level, normalization of GABA and glutamatergic signaling, anti-oxidant and anti-inflammatory properties could underlie the neuroprotective effect of sertraline and venlafaxine in QA induced Huntington's like symptoms. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  8. Saponins, especially platycodin D, from Platycodon grandiflorum modulate hepatic lipogenesis in high-fat diet-fed rats and high glucose-exposed HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Yong Pil; Department of Pharmaceutical Engineering, International University of Korea, Jinju; Choi, Jae Ho

    AMP-activated protein kinase (AMPK) plays a central role in controlling hepatic lipid metabolism through modulating the downstream acetyl CoA carboxylase (ACC) and sterol regulatory element-binding protein-1c (SREBP-1c) pathway. Saponins, particularly platycodin D, from the roots of Platycodon grandiflorum (Changkil saponins, CKS) have a variety of pharmacological properties, including antioxidant and hepatoprotective properties. The aim of this study was to investigate the effects of CKS on hepatic lipogenesis and on the expression of genes involved in lipogenesis, and the mechanisms involved. CKS attenuated fat accumulation and the induction of the lipogenic genes encoding SREBP-1c and fatty acid synthase in the liversmore » of HFD-fed rats and in steatotic HepG2 cells. Blood biochemical analyses and histopathological examinations showed that CKS prevented liver injury. CKS and platycodin D each increased the phosphorylation of AMPK and acetyl-CoA carboxylase in HFD-fed rats and HepG2 cells. The use of specific inhibitors showed that platycodin D activated AMPK via SIRT1/CaMKKβ in HepG2 cells. This study demonstrates that CKS or platycodin D alone can regulate hepatic lipogenesis via an AMPK-dependent signalling pathway. - Highlights: ► CKS attenuated fat accumulation in HFD-fed rats and in steatotic HepG2 cells. ► CKS and its major component, platycodin D, inhibited the levels of SREBP-1 and FAS. ► CKS and platycodin D increased the phosphorylation of AMPK and ACC. ► Platycodin D activated AMPK via SIRT1/CaMKKβ in HepG2 cells.« less

  9. Serine/threonine protein kinase PrkA of the human pathogen Listeria monocytogenes: biochemical characterization and identification of interacting partners through proteomic approaches.

    PubMed

    Lima, Analía; Durán, Rosario; Schujman, Gustavo Enrique; Marchissio, María Julia; Portela, María Magdalena; Obal, Gonzalo; Pritsch, Otto; de Mendoza, Diego; Cerveñansky, Carlos

    2011-08-24

    Listeria monocytogenes is the causative agent of listeriosis, a very serious food-borne human disease. The analysis of the proteins coded by the L. monocytogenes genome reveals the presence of two eukaryotic-type Ser/Thr-kinases (lmo1820 and lmo0618) and a Ser/Thr-phosphatase (lmo1821). Protein phosphorylation regulates enzyme activities and protein interactions participating in physiological and pathophysiological processes in bacterial diseases. However in the case of L. monocytogenes there is scarce information about biochemical properties of these enzymes, as well as the physiological processes that they modulate. In the present work the catalytic domain of the protein coded by lmo1820 was produced as a functional His(6)-tagged Ser/Thr-kinase, and was denominated PrkA. PrkA was able to autophosphorylate specific Thr residues within its activation loop sequence. A similar autophosphorylation pattern was previously reported for Ser/Thr-kinases from related prokaryotes, whose role in kinase activity and substrate recruitment was demonstrated. We studied the kinase interactome using affinity chromatography and proteomic approaches. We identified 62 proteins that interact, either directly or indirectly, with the catalytic domain of PrkA, including proteins that participate in carbohydrates metabolism, cell wall metabolism and protein synthesis. Our results suggest that PrkA could be involved in the regulation of a variety of fundamental biological processes. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Anuran skin and basking behavior: The case of the treefrog Bokermannohyla alvarengai (Bokermann, 1956).

    PubMed

    Centeno, Fernanda C; Antoniazzi, Marta M; Andrade, Denis V; Kodama, Roberto T; Sciani, Juliana M; Pimenta, Daniel C; Jared, Carlos

    2015-10-01

    We investigated the morphology of the skin and the biochemistry of the lipids in the skin secretion of Bokermannohyla alvarengai, a montane treefrog that is known to bask regularly, motionless in full sunlight for extended periods of time. Our primary goal was to identify structural and biochemical modifications that might assist this frog species to accommodate the conflicting demands for heat exchange and water balance while basking. The modulation of heat exchange in basking B. alvarengai involves changes in skin coloration. We found that this response was supported by a prominent monolayer of large iridophores, whose light reflectance property is adjusted by the response of intervening melanophores. Mucosubstances and lipid compounds, mainly consisted of saturated fatty acids and presumably secreted from granular glands, were detected on the skin of B. alvarengai. These compounds formed an extra-epidermal layer over the animal's dorsal surface that might assist in the prevention of excessive water loss through evaporation. Additionally, we found well-developed skin folds at the ventral region of the frogs that lead to an increment of surface area. This feature combined with the extensive hypervascularization, also noticed for the skin of B. alvarengai, may play an important role in water reabsorption. The suite of structural and biochemical modifications identified for the integument of B. alvarengai seems to conjugate aspects relevant to both, heat exchange and water balance, allowing for this species to explore basking as an efficient thermoregulatory strategy. © 2015 Wiley Periodicals, Inc.

  11. Intranasal instillation of iron oxide nanoparticles induces inflammation and perturbation of trace elements and neurotransmitters, but not behavioral impairment in rats.

    PubMed

    Askri, Dalel; Ouni, Souhir; Galai, Said; Arnaud, Josiane; Chovelon, Benoit; Lehmann, Sylvia G; Sturm, Nathalie; Sakly, Mohsen; Sève, Michel; Amara, Salem

    2018-06-01

    Over the last decades, engineered nanomaterials have been widely used in various applications due to their interesting properties. Among them, iron oxide nanoparticles (IONPs) are used as theranostic agents for cancer, and also as contrast agents in magnetic resonance imaging. With the increasing production and use of these IONPs, there is an evident raise of IONP exposure and subsequently a higher risk of adverse outcome for humans and the environment. In this work, we aimed to investigate the effects of sub-acute IONP exposure on Wistar rat, particularly (i) on the emotional and learning/memory behavior, (ii) on the hematological and biochemical parameters, (iii) on the neurotransmitter content, and (vi) on the trace element homeostasis. Rats were treated during seven consecutive days by intranasal instillations at a dose of 10 mg/kg body weight. The mean body weight increased significantly in IONP-exposed rats. Moreover, several hematological parameters were normal in treated rats except the platelet count which was increased. The biochemical study revealed that phosphatase alkaline level decreased in IONP-exposed rats, but no changes were observed for the other hepatic enzymes (ALT and AST) levels. The trace element homeostasis was slightly modulated by IONP exposure. Sub-acute intranasal exposure to IONPs increased dopamine and norepinephrine levels in rat brain; however, it did not affect the emotional behavior, the anxiety index, and the learning/memory capacities of rats.

  12. Changes in Biochemical Properties of the Blood in Winter Swimmers.

    PubMed

    Teleglow, Aneta; Marchewka, Jakub; Marchewka, Anna; Kulpa, Jan

    The aim of the study was to investigate the effects of winter swimming on biochemical indicators of the blood. The subjects - winter swimmers - belonged to the Krakow Walrus Club "Kaloryfer" - "The Heater". The study group consisted of 11 men, aged 30-50 years, 'walrusing' throughout the whole season from November to March. Statistically significant changes throughout the 'walrusing' season were observed for the following biochemical parameters: a decrease in sodium (mmol/1), chloride (mmol/1), alpha-2 globulin(g/1), gamma globulin (g/1), IgG (g/1), and an increase in albumin (g/1), indicator A/G, IgA (g/l ), Herpes simplex virus IgM. Seasonal effort of winter swimmers has a positive influence on biochemical blood parameters.

  13. Physiologic and biochemical aspects of skeletal muscle denervation and reinnervation

    NASA Technical Reports Server (NTRS)

    Max, S. R.; Mayer, R. F.

    1984-01-01

    Some of the physiologic and biochemical changes that occur in mammalian skeletal muscle following denervation and reinnervation are considered and some comparisons are made with changes observed following altered motor function. The nature of the trophic influence by which nerves control muscle properties are discussed, including the effects of choline acetyltransferase and acetylcholinesterase and the role of the acetylcholine receptor.

  14. New Imaging Methods for Non-invasive Assessment of Mechanical, Structural, and Biochemical Properties of Human Achilles Tendon: A Mini Review

    PubMed Central

    Fouré, Alexandre

    2016-01-01

    The mechanical properties of tendon play a fundamental role to passively transmit forces from muscle to bone, withstand sudden stretches, and act as a mechanical buffer allowing the muscle to work more efficiently. The use of non-invasive imaging methods for the assessment of human tendon's mechanical, structural, and biochemical properties in vivo is relatively young in sports medicine, clinical practice, and basic science. Non-invasive assessment of the tendon properties may enhance the diagnosis of tendon injury and the characterization of recovery treatments. While ultrasonographic imaging is the most popular tool to assess the tendon's structural and indirectly, mechanical properties, ultrasonographic elastography, and ultra-high field magnetic resonance imaging (UHF MRI) have recently emerged as potentially powerful techniques to explore tendon tissues. This paper highlights some methodological cautions associated with conventional ultrasonography and perspectives for in vivo human Achilles tendon assessment using ultrasonographic elastography and UHF MRI. PMID:27512376

  15. Resveratrol: An Antiaging Drug with Potential Therapeutic Applications in Treating Diseases.

    PubMed

    Camins, Antoni; Junyent, Felix; Verdaguer, Ester; Beas-Zarate, Carlos; Rojas-Mayorquín, Argelia E; Ortuño-Sahagún, Daniel; Pallàs, Mercè

    2009-12-15

    The prevention of aging is one of the most fascinating areas in biomedicine. The first step in the development of effective drugs for aging prevention is a knowledge of the biochemical pathways responsible for the cellular aging process. In this context it seems clear that free radicals play a key role in the aging process. However, in recent years it has been demonstrated that the families of enzymes called sirtuins, specifically situin 1 (SIRT1), have an anti-aging action. Thus, the natural compound resveratrol is a natural compound that shows a very strong activation of SIRT1 and also shows antioxidant effects. By activating sirtuin 1, resveratrol modulates the activity of numerous proteins, including peroxisome proliferator-activated receptor coactivator-1α (PGC-1 alpha), the FOXO family, Akt (protein kinase B) and NFκβ. In the present review, we suggest that resveratrol may constitute a potential drug for prevention of ageing and for the treatment of several diseases due to its antioxidant properties and sirtuin activation.

  16. Heterogeneous Family of Cyclomodulins: Smart Weapons That Allow Bacteria to Hijack the Eukaryotic Cell Cycle and Promote Infections

    PubMed Central

    El-Aouar Filho, Rachid A.; Nicolas, Aurélie; De Paula Castro, Thiago L.; Deplanche, Martine; De Carvalho Azevedo, Vasco A.; Goossens, Pierre L.; Taieb, Frédéric; Lina, Gerard; Le Loir, Yves; Berkova, Nadia

    2017-01-01

    Some bacterial pathogens modulate signaling pathways of eukaryotic cells in order to subvert the host response for their own benefit, leading to successful colonization and invasion. Pathogenic bacteria produce multiple compounds that generate favorable conditions to their survival and growth during infection in eukaryotic hosts. Many bacterial toxins can alter the cell cycle progression of host cells, impairing essential cellular functions and impeding host cell division. This review summarizes current knowledge regarding cyclomodulins, a heterogeneous family of bacterial effectors that induce eukaryotic cell cycle alterations. We discuss the mechanisms of actions of cyclomodulins according to their biochemical properties, providing examples of various cyclomodulins such as cycle inhibiting factor, γ-glutamyltranspeptidase, cytolethal distending toxins, shiga toxin, subtilase toxin, anthrax toxin, cholera toxin, adenylate cyclase toxins, vacuolating cytotoxin, cytotoxic necrotizing factor, Panton-Valentine leukocidin, phenol soluble modulins, and mycolactone. Special attention is paid to the benefit provided by cyclomodulins to bacteria during colonization of the host. PMID:28589102

  17. Resveratrol derivatives as a pharmacological tool.

    PubMed

    Biasutto, Lucia; Mattarei, Andrea; Azzolini, Michele; La Spina, Martina; Sassi, Nicola; Romio, Matteo; Paradisi, Cristina; Zoratti, Mario

    2017-09-01

    Prodrugs of resveratrol are under development. Among the long-term goals, still largely elusive, are (1) modulating physical properties (e.g., water-soluble derivatives bearing polyethylene glycol chains), (2) changing distribution in the body (e.g., galactosyl derivatives restricted to the intestinal lumen), (3) increasing absorption from the gastrointestinal tract (e.g., derivatives imitating the natural substrates of endogenous transporters), and (4) hindering phase II metabolism (e.g., temporarily blocking the hydroxyls), all contributing to (5) increasing bioavailability. The chemical bonds that have been tested for functionalization include carboxyester, acetal, and carbamate groups. A second approach, which can be combined with the first, seeks to reinforce or modify the biochemical activities of resveratrol by concentrating the compound at specific subcellular sites. An example is provided by mitochondria-targeted derivatives. These proved to be pro-oxidant and cytotoxic in vitro, selectively killing fast-growing and tumor cells when supplied in the low micromolar range. This suggests the possibility of anticancer applications. © 2017 New York Academy of Sciences.

  18. Insertion of scFv into the hinge domain of full-length IgG1 monoclonal antibody results in tetravalent bispecific molecule with robust properties.

    PubMed

    Bezabeh, Binyam; Fleming, Ryan; Fazenbaker, Christine; Zhong, Haihong; Coffman, Karen; Yu, Xiang-Qing; Leow, Ching Ching; Gibson, Nerea; Wilson, Susan; Stover, C Kendall; Wu, Herren; Gao, Changshou; Dimasi, Nazzareno

    By simultaneous binding two disease mediators, bispecific antibodies offer the opportunity to broaden the utility of antibody-based therapies. Herein, we describe the design and characterization of Bs4Ab, an innovative and generic bispecific tetravalent antibody platform. The Bs4Ab format comprises a full-length IgG1 monoclonal antibody with a scFv inserted into the hinge domain. The Bs4Ab design demonstrates robust manufacturability as evidenced by MEDI3902, which is currently in clinical development. To further demonstrate the applicability of the Bs4Ab technology, we describe the molecular engineering, biochemical, biophysical, and in vivo characterization of a bispecific tetravalent Bs4Ab that, by simultaneously binding vascular endothelial growth factor and angiopoietin-2, inhibits their function. We also demonstrate that the Bs4Ab platform allows Fc-engineering similar to that achieved with IgG1 antibodies, such as mutations to extend half-life or modulate effector functions.

  19. The rhodopsin-arrestin-1 interaction in bicelles.

    PubMed

    Chen, Qiuyan; Vishnivetskiy, Sergey A; Zhuang, Tiandi; Cho, Min-Kyu; Thaker, Tarjani M; Sanders, Charles R; Gurevich, Vsevolod V; Iverson, T M

    2015-01-01

    G-protein-coupled receptors (GPCRs) are essential mediators of information transfer in eukaryotic cells. Interactions between GPCRs and their binding partners modulate the signaling process. For example, the interaction between GPCR and cognate G protein initiates the signal, while the interaction with cognate arrestin terminates G-protein-mediated signaling. In visual signal transduction, arrestin-1 selectively binds to the phosphorylated light-activated GPCR rhodopsin to terminate rhodopsin signaling. Under physiological conditions, the rhodopsin-arrestin-1 interaction occurs in highly specialized disk membrane in which rhodopsin resides. This membrane is replaced with mimetics when working with purified proteins. While detergents are commonly used as membrane mimetics, most detergents denature arrestin-1, preventing biochemical studies of this interaction. In contrast, bicelles provide a suitable alternative medium. An advantage of bicelles is that they contain lipids, which have been shown to be necessary for normal rhodopsin-arrestin-1 interaction. Here we describe how to reconstitute rhodopsin into bicelles, and how bicelle properties affect the rhodopsin-arrestin-1 interaction.

  20. The Rhodopsin-Arrestin-1 Interaction in Bicelles

    PubMed Central

    Chen, Qiuyan; Vishnivetskiy, Sergey A.; Zhuang, Tiandi; Cho, Min-Kyu; Thaker, Tarjani M.; Sanders, Charles R.; Gurevich, Vsevolod V.; Iverson, T. M.

    2015-01-01

    G-protein-coupled receptors (GPCRs) are essential mediators of information transfer in eukaryotic cells. Interactions between GPCRs and their binding partners modulate the signaling process. For example, the interaction between GPCR and cognate G protein initiates the signal, while the interaction with cognate arrestin terminates G-protein-mediated signaling. In visual signal transduction, arrestin-1 selectively binds to the phosphorylated light-activated GPCR rhodopsin to terminate rhodopsin signaling. Under physiological conditions, the rhodopsin-arrestin-1 interaction occurs in highly specialized disk membrane in which rhodopsin resides. This membrane is replaced with mimetics when working with purified proteins. While detergents are commonly used as membrane mimetics, most detergents denature arrestin-1, preventing biochemical studies of this interaction. In contrast, bicelles provide a suitable alternative medium. An advantage of bicelles is that they contain lipids, which have been shown to be necessary for normal rhodopsin-arrestin-1 interaction. Here we describe how to reconstitute rhodopsin into bicelles, and how bicelle properties affect the rhodopsin-arrestin-1 interaction. PMID:25697518

  1. Clues for discovering a new biological function of Vitreoscilla hemoglobin in organisms: potential sulfide receptor and storage.

    PubMed

    Wang, Dandan; Liu, Li; Wang, Hui; Xu, Haoran; Chen, Lei; Ma, Li; Li, Zhengqiang

    2016-04-01

    The interaction between H2 S and Vitreoscilla hemoglobin (VHb) has been studied by UV-Vis and Resonance Raman spectroscopes to confirm the binding between the ligand and the protein. Kinetic constants, kon = 1.2 × 10(5) m(-1) ·s(-1) and koff = 2.5 × 10(-4) ·s(-1) , have been determined and compared with those for mammalian hemoglobins. Density Functional Theory study supports the binding of H2 S by modeling the configurations of HOMO dispersions. We hypothesized that VHb is involved in H2 S reception and storage. Different from Lucina pectinata HbI, a typical H2 S-binding hemoglobin, VHb, exhibits unusual properties on H2 S reactivity such as steric constraints playing an important role in modulating H2 S entry. A distinct mechanism of VHb interaction with H2 S is supported by studies of variant forms of VHb. © 2016 Federation of European Biochemical Societies.

  2. Biochemical properties of a novel 28KDA protein tyrosine kinase partially purified from the particulate fraction of rat spleen.

    PubMed

    Borowski, P; Medem, S; Laufs, R

    1993-12-15

    In this report we present some of the biochemical properties of the enzyme, here called pp28(PTK), isolated from particulate fraction of rat spleen (1). The kinase is very susceptible for polyions as regulators of the enzymatic activity. The polyanions like dextran sulfate or heparin inhibited, and polycations such as spermidin, protamin, poly-L-lysine and some random polypeptides containing tyrosine besides a basic amino acid, stimulated the enzyme markedly. The kinase showed high sensitivity towards class IA salts. In the casein phosphorylation reaction the apparent Km value for ATP was 4 microM. An unusual property is associated with autophosphorylation which leads to a reduced activity towards external substrates. Some kinase inhibitors described in the literature were tested for their potency.

  3. The Modular Organization of Protein Interactions in Escherichia coli

    PubMed Central

    Peregrín-Alvarez, José M.; Xiong, Xuejian; Su, Chong; Parkinson, John

    2009-01-01

    Escherichia coli serves as an excellent model for the study of fundamental cellular processes such as metabolism, signalling and gene expression. Understanding the function and organization of proteins within these processes is an important step towards a ‘systems’ view of E. coli. Integrating experimental and computational interaction data, we present a reliable network of 3,989 functional interactions between 1,941 E. coli proteins (∼45% of its proteome). These were combined with a recently generated set of 3,888 high-quality physical interactions between 918 proteins and clustered to reveal 316 discrete modules. In addition to known protein complexes (e.g., RNA and DNA polymerases), we identified modules that represent biochemical pathways (e.g., nitrate regulation and cell wall biosynthesis) as well as batteries of functionally and evolutionarily related processes. To aid the interpretation of modular relationships, several case examples are presented, including both well characterized and novel biochemical systems. Together these data provide a global view of the modular organization of the E. coli proteome and yield unique insights into structural and evolutionary relationships in bacterial networks. PMID:19798435

  4. Prostate-specific antigen bounce after intensity-modulated radiotherapy for prostate cancer.

    PubMed

    Sheinbein, Courtney; Teh, Bin S; Mai, Wei Y; Grant, Walter; Paulino, Arnold; Butler, E Brian

    2010-09-01

    To report prostate-specific antigen (PSA) bounce in patients treated with intensity-modulated radiotherapy (IMRT) alone. Previous studies have reported PSA bounce in prostate cancer patients treated with conventional radiotherapy, 3D conformal radiotherapy, and permanent seed brachytherapy. From January 1997 to July 2002, 102 patients with clinically localized prostate cancer were treated with IMRT alone. No patients received androgen ablation. PSA bounce was defined as a PSA increase of at least 0.4 ng/mL, followed by any PSA decrease. Biochemical failure was defined by both the American Society for Therapeutic Radiology and Oncology 1996 and 2006 consensus definitions. The median follow-up was 76 months. The median length of time until the first PSA bounce was 13.6 months. Thirty-three patients (32.4%) had at least 1 PSA bounce, with 25 (24.5%) having 1 bounce; 6 (5.9%), 2 bounces; and 2 (2.0%), 4 bounces. PSA bounce was not significantly associated with biochemical no evidence of disease survival, clinical stage, pretreatment PSA, Gleason combined score, prostate planning target volume, PSA nadir, or mean dose to the prostate. The rate of PSA bounce in patients aged ≤ 70 and > 70 years was 44.4% and 22.8%, respectively (P = .032). Our patient series is the first report on PSA bounce in patients treated with IMRT. Our study confirms that the majority of patients with a bouncing PSA remain biochemically and clinically free of disease with extended follow-up. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Multi-membership gene regulation in pathway based microarray analysis

    PubMed Central

    2011-01-01

    Background Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. Results We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. Conclusions We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes. PMID:21939531

  6. Multi-membership gene regulation in pathway based microarray analysis.

    PubMed

    Pavlidis, Stelios P; Payne, Annette M; Swift, Stephen M

    2011-09-22

    Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes.

  7. Comparisons of Auricular Cartilage Tissues from Different Species.

    PubMed

    Chiu, Loraine L Y; Giardini-Rosa, Renata; Weber, Joanna F; Cushing, Sharon L; Waldman, Stephen D

    2017-12-01

    Tissue engineering of auricular cartilage has great potential in providing readily available materials for reconstructive surgeries. As the field of tissue engineering moves forward to developing human tissues, there needs to be an interspecies comparison of the native auricular cartilage in order to determine a suitable animal model to assess the performance of engineered auricular cartilage in vivo. Here, we performed interspecies comparisons of auricular cartilage by comparing tissue microstructure, protein localization, biochemical composition, and mechanical properties of auricular cartilage tissues from rat, rabbit, pig, cow, and human. Human, pig, and cow auricular cartilage have smaller lacunae compared to rat and rabbit cartilage ( P < .05). Despite differences in tissue microstructure, human auricular cartilage has similar biochemical composition to both rat and rabbit. Auricular cartilage from pig and cow, alternatively, display significantly higher glycosaminoglycan and collagen contents compared to human, rat, and rabbit ( P < .05). The mechanical properties of human auricular cartilage were comparable to that of all 4 animal species. This is the first study that compares the microstructural, biochemical, and mechanical properties of auricular cartilage from different species. This study showed that different experimental animal models of human auricular cartilage may be suitable in different cases.

  8. Multivariate analysis of fatty acid and biochemical constitutes of seaweeds to characterize their potential as bioresource for biofuel and fine chemicals.

    PubMed

    Verma, Priyanka; Kumar, Manoj; Mishra, Girish; Sahoo, Dinabandhu

    2017-02-01

    In the present study bio prospecting of thirty seaweeds from Indian coasts was analyzed for their biochemical components including pigments, fatty acid and ash content. Multivariate analysis of biochemical components and fatty acids was done using Principal Component Analysis (PCA) and Agglomerative hierarchical clustering (AHC) to manifest chemotaxonomic relationship among various seaweeds. The overall analysis suggests that these seaweeds have multi-functional properties and can be utilized as promising bioresource for proteins, lipids, pigments and carbohydrates for the food/feed and biofuel industry. Copyright © 2016. Published by Elsevier Ltd.

  9. Aloe vera: Potential candidate in health management via modulation of biological activities

    PubMed Central

    Rahmani, Arshad H.; Aldebasi, Yousef H.; Srikar, Sauda; Khan, Amjad A.; Aly, Salah M.

    2015-01-01

    Treatment based on natural products is rapidly increasing worldwide due to the affordability and fewer side effects of such treatment. Various plants and the products derived from them are commonly used in primary health treatment, and they play a pivotal role in the treatment of diseases via modulation of biochemical and molecular pathways. Aloe vera, a succulent species, produces gel and latex, plays a therapeutic role in health management through antioxidant, antitumor, and anti-inflammatory activities, and also offers a suitable alternative approach for the treatment of various types of diseases. In this review, we summarize the possible mechanism of action and the therapeutic implications of Aloe vera in health maintenance based on its modulation of various biological activities. PMID:26392709

  10. The complex allosteric and redox regulation of the fumarate hydratase and malate dehydratase reactions of Arabidopsis thaliana Fumarase 1 and 2 gives clues for understanding the massive accumulation of fumarate.

    PubMed

    Zubimendi, Juan P; Martinatto, Andrea; Valacco, Maria P; Moreno, Silvia; Andreo, Carlos S; Drincovich, María F; Tronconi, Marcos A

    2018-06-01

    Arabidopsis thaliana possesses two fumarase genes (FUM), AtFUM1 (At2g47510) encoding for the mitochondrial Krebs cycle-associated enzyme and AtFUM2 (At5g50950) for the cytosolic isoform required for fumarate massive accumulation. Here, the comprehensive biochemical studies of AtFUM1 and AtFUM2 shows that they are active enzymes with similar kinetic parameters but differential regulation. For both enzymes, fumarate hydratase (FH) activity is favored over the malate dehydratase (MD) activity; however, MD is the most regulated activity with several allosteric activators. Oxalacetate, glutamine, and/or asparagine are modulators causing the MD reaction to become preferred over the FH reaction. Activity profiles as a function of pH suggest a suboptimal FUM activity in Arabidopsis cells; moreover, the direction of the FUM reaction is sensitive to pH changes. Under mild oxidation conditions, AtFUMs form high mass molecular aggregates, which present both FUM activities decreased to a different extent. The biochemical properties of oxidized AtFUMs (oxAtFUMs) were completely reversed by NADPH-supplied Arabidopsis leaf extracts, suggesting that the AtFUMs redox regulation can be accomplished in vivo. Mass spectrometry analyses indicate the presence of an active site-associated intermolecular disulfide bridge in oxAtFUMs. Finally, a phylogenetic approach points out that other plant species may also possess cytosolic FUM2 enzymes mainly encoded by paralogous genes, indicating that the evolutionary history of this trait has been drawn through a process of parallel evolution. Overall, according to our results, a multilevel regulatory pattern of FUM activities emerges, supporting the role of this enzyme as a carbon flow monitoring point through the organic acid metabolism in plants. © 2018 Federation of European Biochemical Societies.

  11. Modular space station mass properties

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An update of the space station mass properties is presented. Included are the final status update of the Initial Space Station (ISS) modules and logistic module plus incorporation of the Growth Space Station (GSS) module additions.

  12. European spruce bark beetle (Ips typographus, L.) green attack affects foliar reflectance and biochemical properties

    NASA Astrophysics Data System (ADS)

    Abdullah, Haidi; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Groen, Thomas A.; Heurich, Marco

    2018-02-01

    The European spruce bark beetle Ips typographus, L. (hereafter bark beetle), causes major economic loss to the forest industry in Europe, especially in Norway Spruce (Picea abies). To minimise economic loss and preclude a mass outbreak, early detection of bark beetle infestation (so-called ;green attack; stage - a period at which trees are yet to show visual signs of infestation stress) is, therefore, a crucial step in the management of Norway spruce stands. It is expected that a bark beetle infestation at the green attack stage affects a tree's physiological and chemical status. However, the concurrent effect on key foliar biochemical such as foliar nitrogen and chlorophyll as well as spectral responses are not well documented in the literature. Therefore, in this study, the early detection of bark beetle green attacks is investigated by examining foliar biochemical and spectral properties (400-2000 nm). We also assessed whether bark beetle infestation affects the estimation accuracy of foliar biochemicals. An extensive field survey was conducted in the Bavarian Forest National Park (BFNP), Germany, in the early summer of 2015 to collect leaf samples from 120 healthy and green attacked trees. The spectra of the leaf samples were measured using an ASD FieldSpec3 equipped with an integrating sphere. Significant differences (p < 0.05) between healthy and infested needle samples were found in the mean reflectance spectra, with the most pronounced differences being observed in the NIR and SWIR regions between 730 and 1370 nm. Furthermore, significant differences (p < 0.05) were found in the biochemical compositions (chlorophyll and nitrogen concentration) of healthy versus green attacked samples. Our results further demonstrate that the estimation accuracy of foliar chlorophyll and nitrogen concentrations, utilising partial least square regression model, was lower for the infested compared to the healthy trees. We show that early stage of infestation reduces not only foliar biochemical content but also their retrieval accuracy. Our results further indicate that remote sensing measurements can be successfully used for the early detection of the bark beetle infestation. We demonstrated that bark beetle infestation at the green attack stage effects leaf spectral response as well as leaf biochemical properties and their retrievals from hyperspectral measurements.

  13. Guiding Neuronal Growth in Tissues with Light

    DTIC Science & Technology

    2010-02-27

    and structural properties of their surroundings in addition to the biochemical properties. Furthermore, three-dimensional biopolymer matrices provide...Properties of Biopolymer Networks Biopolymer networks exhibit unique nonlinear rheological behavior that differs dramatically from most synthetic...and presumably other biopolymers , is not well defined in variable gap geometries. These findings have broad implications for the interpretation of

  14. The effect of short term treatment with probiotic VSL#3 on various clinical and biochemical parameters in patients with liver cirrhosis.

    PubMed

    Marlicz, W; Wunsch, E; Mydlowska, M; Milkiewicz, M; Serwin, K; Mularczyk, M; Milkiewicz, P; Raszeja-Wyszomirska, J

    2016-12-01

    The evidence is mounting that alterations of innate immunity and gut microbiota contribute to chronic liver disease and its complications. Modulation of intestinal microbiota is an emerging therapeutic strategy in hepatology. Probiotics through modulation of intestinal milieu have the potential to affect the course of liver disease. The data concerning the influence of probiotics on various plasma molecules and compounds involved in the pathogenesis of hyperdynamic circulatory state in liver cirrhosis is still not confluent and require further evaluation. In our study twenty patients with compensated and decompensated liver cirrhosis and ten healthy controls received probiotic VSL#3 daily for 28 days. Plasma levels of interleukin 6 (IL-6), vascular endothelial growth factor (VEGF), plasminogen activator inhibitor (PAI), macrophage inflammatory protein 3/α (MIP-3 α/CCL20), monocyte chemotactic protein-1α (MCP-1/CCL2), human myeloperoxidase (MPO), nitric oxide (NO), prostaglandins, thromboxane (TXB 2 ) and big-endothelin were measured at baseline, day 14 and 28 of probiotic administration. The incidence of hepatic encephalopathy was assessed with critical flicker frequency. Changes in clinical, biochemical and microbiological parameters were evaluated. The stage of liver cirrhosis correlated with an increase in plasma levels of pro-inflammatory cytokines (IL-6) and chemotactic chemokines involved in immune cell trafficking (MIP-3α/CCL20). Probiotic administration in patients with liver cirrhosis led to modulation of plasma levels of several molecules and compounds measured (MIP-3α/CCL20, NO, big-endothelin, TXB 2 and MPO). The grade of encephalopathy during the course of probiotic supplementation remained unaffected in both groups of patients. VSL#3 treatment was well tolerated and safe in patients with liver disease. In patients with compensated and decompensated liver cirrhosis, VSL#3 manipulates selected plasma molecules and compounds involved in hyperdynamic circulatory dysfunction. Short term VSL#3 administration affects several clinical and biochemical parameters commonly altered in liver cirrhosis.

  15. Micro/nanofabricated environments for synthetic biology.

    PubMed

    Collier, C Patrick; Simpson, Michael L

    2011-08-01

    A better understanding of how confinement, crowding and reduced dimensionality modulate reactivity and reaction dynamics will aid in the rational and systematic discovery of functionality in complex biological systems. Artificial microfabricated and nanofabricated structures have helped elucidate the effects of nanoscale spatial confinement and segregation on biological behavior, particularly when integrated with microfluidics, through precise control in both space and time of diffusible signals and binding interactions. Examples of nanostructured interfaces for synthetic biology include the development of cell-like compartments for encapsulating biochemical reactions, nanostructured environments for fundamental studies of diffusion, molecular transport and biochemical reaction kinetics, and regulation of biomolecular interactions as functions of microfabricated and nanofabricated topological constraints. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Molecular design, synthesis and physical properties of novel Cytisine-derivatives - Experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka; Spiteller, Michael

    2013-02-01

    The paper presented a comprehensive theoretical and experimental study on the molecular drugs-design, synthesis, isolation, physical spectroscopic and mass spectrometric elucidation of novel functionalization derivatives of Cytisine (Cyt), using nucleosidic residues. Since these alkaloids have established biochemical profile, related the binding affinity of the nicotinic acetylcholine receptors (nAChRs), particularly α7 sub-type, the presented correlation between the molecular structure and properties allowed to evaluated the highlights of the biochemical hypothesises related the Schizophrenia. The anticancer activity of α7 subtype agonists and the crucial role of the nucleoside-based medications in the cancer therapy provided opportunity for further study on the biochemical relationship between Schizophrenia and few kinds of cancers, which has been hypothesized recently. The physical electronic absorptions (EAs), circular dichroic (CD) and Raman spectroscopic (RS) properties as well as mass spectrometric (MS) data, obtained using electrospray ionization (ESI) and atmospheric-pressure chemical ionization (APCI) methods under the positive single (MS) and tandem (MS/MS) modes of operation are discussed. Taking into account reports on a fatal intoxication of Cyt, the presented data would be of interest in the field of forensic chemistry, through development of highly selective and sensitive analytical protocols. Quantum chemical method is used to predict the physical properties of the isolated alkaloids, their affinity to the receptor loop and gas-phase stabilized species, observed mass spectrometrically.

  17. Regulation of yeast DNA polymerase δ-mediated strand displacement synthesis by 5′-flaps

    PubMed Central

    Koc, Katrina N.; Stodola, Joseph L.; Burgers, Peter M.; Galletto, Roberto

    2015-01-01

    The strand displacement activity of DNA polymerase δ is strongly stimulated by its interaction with proliferating cell nuclear antigen (PCNA). However, inactivation of the 3′–5′ exonuclease activity is sufficient to allow the polymerase to carry out strand displacement even in the absence of PCNA. We have examined in vitro the basic biochemical properties that allow Pol δ-exo− to carry out strand displacement synthesis and discovered that it is regulated by the 5′-flaps in the DNA strand to be displaced. Under conditions where Pol δ carries out strand displacement synthesis, the presence of long 5′-flaps or addition in trans of ssDNA suppress this activity. This suggests the presence of a secondary DNA binding site on the enzyme that is responsible for modulation of strand displacement activity. The inhibitory effect of a long 5′-flap can be suppressed by its interaction with single-stranded DNA binding proteins. However, this relief of flap-inhibition does not simply originate from binding of Replication Protein A to the flap and sequestering it. Interaction of Pol δ with PCNA eliminates flap-mediated inhibition of strand displacement synthesis by masking the secondary DNA site on the polymerase. These data suggest that in addition to enhancing the processivity of the polymerase PCNA is an allosteric modulator of other Pol δ activities. PMID:25813050

  18. Incorporation of Biomaterials in Multicellular Aggregates Modulates Pluripotent Stem Cell Differentiation

    PubMed Central

    Bratt-Leal, Andrés M.; Carpenedo, Richard L.; Ungrin, Mark; Zandstra, Peter W.; McDevitt, Todd C.

    2010-01-01

    Biomaterials are increasingly being used to engineer the biochemical and biophysical properties of the extracellular stem cell microenvironment in order to tailor niche characteristics and direct cell phenotype. To date, stem cell-biomaterial interactions have largely been studied by introducing stem cells into artificial environments, such as 2D cell culture on biomaterial surfaces, encapsulation of cell suspensions within hydrogel materials, or cell seeding on 3D polymeric scaffolds. In this study, microparticles fabricated from different materials, such as agarose, PLGA and gelatin, were stably integrated, in a dose-dependent manner, within aggregates of pluripotent stem cells (PSCs) prior to differentiation as a means to directly examine stem cell-biomaterial interactions in 3D. Interestingly, the presence of the materials within the stem cell aggregates differentially modulated the gene and protein expression patterns of several differentiation markers without adversely affecting cell viability. Microparticle incorporation within 3D stem cell aggregates can control the spatial presentation of extracellular environmental cues (i.e. soluble factors, extracellular matrix and intercellular adhesion molecules) as a means to direct the differentiation of stem cells for tissue engineering and regenerative medicine applications. In addition, these results suggest that the physical presence of microparticles within stem cell aggregates does not compromise PSC differentiation, but in fact the choice of biomaterials can impact the propensity of stem cells to adopt particular differentiated cell phenotypes. PMID:20864164

  19. Structure-Function Analysis of Rny1 in tRNA Cleavage and Growth Inhibition

    PubMed Central

    Luhtala, Natalie; Parker, Roy

    2012-01-01

    T2 ribonucleases are conserved nucleases that affect a variety of processes in eukaryotic cells including the regulation of self-incompatibility by S-RNases in plants, modulation of host immune cell responses by viral and schistosome T2 enzymes, and neurological development and tumor progression in humans. These roles for RNaseT2’s can be due to catalytic or catalytic-independent functions of the molecule. Despite this broad importance, the features of RNaseT2 proteins that modulate catalytic and catalytic-independent functions are poorly understood. Herein, we analyze the features of Rny1 in Saccharomyces cerevisiae to determine the requirements for cleaving tRNA in vivo and for inhibiting cellular growth in a catalytic-independent manner. We demonstrate that catalytic-independent inhibition of growth is a combinatorial property of the protein and is affected by a fungal-specific C-terminal extension, the conserved catalytic core, and the presence of a signal peptide. Catalytic functions of Rny1 are independent of the C-terminal extension, are affected by many mutations in the catalytic core, and also require a signal peptide. Biochemical flotation assays reveal that in rny1Δ cells, some tRNA molecules associate with membranes suggesting that cleavage of tRNAs by Rny1 can involve either tRNA association with, or uptake into, membrane compartments. PMID:22829915

  20. Adipose progenitor cells increase fibronectin matrix strain and unfolding in breast tumors

    NASA Astrophysics Data System (ADS)

    Chandler, E. M.; Saunders, M. P.; Yoon, C. J.; Gourdon, D.; Fischbach, C.

    2011-02-01

    Increased stiffness represents a hallmark of breast cancer that has been attributed to the altered physicochemical properties of the extracellular matrix (ECM). However, the role of fibronectin (Fn) in modulating the composition and mechanical properties of the tumor-associated ECM remains unclear. We have utilized a combination of biochemical and physical science tools to evaluate whether paracrine signaling between breast cancer cells and adipose progenitor cells regulates Fn matrix assembly and stiffness enhancement in the tumor stroma. In particular, we utilized fluorescence resonance energy transfer imaging to map the molecular conformation and stiffness of Fn that has been assembled by 3T3-L1 preadipocytes in response to conditioned media from MDA-MB231 breast cancer cells. Our results reveal that soluble factors secreted by tumor cells promote Fn expression, unfolding, and stiffening by adipose progenitor cells and that transforming growth factor-β serves as a soluble cue underlying these changes. In vivo experiments using orthotopic co-transplantation of primary human adipose-derived stem cells and MDA-MB231 into SCID mice support the pathological relevance of our results. Insights gained by these studies advance our understanding of the role of Fn in mammary tumorigenesis and may ultimately lead to improved anti-cancer therapies.

  1. Open Innovation Drug Discovery (OIDD): a potential path to novel therapeutic chemical space.

    PubMed

    Alvim-Gaston, Maria; Grese, Timothy; Mahoui, Abdelaziz; Palkowitz, Alan D; Pineiro-Nunez, Marta; Watson, Ian

    2014-01-01

    The continued development of computational and synthetic methods has enabled the enumeration or preparation of a nearly endless universe of chemical structures. Nevertheless, the ability of this chemical universe to deliver small molecules that can both modulate biological targets and have drug-like physicochemical properties continues to be a topic of interest to the pharmaceutical industry and academic researchers alike. The chemical space described by public, commercial, in-house and virtual compound collections has been interrogated by multiple approaches including biochemical, cellular and virtual screening, diversity analysis, and in-silico profiling. However, current drugs and known chemical probes derived from these efforts are contained within a remarkably small volume of the predicted chemical space. Access to more diverse classes of chemical scaffolds that maintain the properties relevant for drug discovery is certainly needed to meet the increasing demands for pharmaceutical innovation. The Lilly Open Innovation Drug Discovery platform (OIDD) was designed to tackle barriers to innovation through the identification of novel molecules active in relevant disease biology models. In this article we will discuss several computational approaches towards describing novel, biologically active, drug-like chemical space and illustrate how the OIDD program may facilitate access to previously untapped molecules that may aid in the search for innovative pharmaceuticals.

  2. Redefining the modular organization of the core Mediator complex.

    PubMed

    Wang, Xuejuan; Sun, Qianqian; Ding, Zhenrui; Ji, Jinhua; Wang, Jianye; Kong, Xiao; Yang, Jianghong; Cai, Gang

    2014-07-01

    The Mediator complex plays an essential role in the regulation of eukaryotic transcription. The Saccharomyces cerevisiae core Mediator comprises 21 subunits, which are organized into Head, Middle and Tail modules. Previously, the Head module was assigned to a distinct dense domain at the base, and the Middle and Tail modules were identified to form a tight structure above the Head module, which apparently contradicted findings from many biochemical and functional studies. Here, we compared the structures of the core Mediator and its subcomplexes, especially the first 3D structure of the Head + Middle modules, which permitted an unambiguous assignment of the three modules. Furthermore, nanogold labeling pinpointing four Mediator subunits from different modules conclusively validated the modular assignment, in which the Head and Middle modules fold back on one another and form the upper portion of the core Mediator, while the Tail module forms a distinct dense domain at the base. The new modular model of the core Mediator has reconciled the previous inconsistencies between the structurally and functionally defined Mediator modules. Collectively, these analyses completely redefine the modular organization of the core Mediator, which allow us to integrate the structural and functional information into a coherent mechanism for the Mediator's modularity and regulation in transcription initiation.

  3. Redefining the modular organization of the core Mediator complex

    PubMed Central

    Wang, Xuejuan; Sun, Qianqian; Ding, Zhenrui; Ji, Jinhua; Wang, Jianye; Kong, Xiao; Yang, Jianghong; Cai, Gang

    2014-01-01

    The Mediator complex plays an essential role in the regulation of eukaryotic transcription. The Saccharomyces cerevisiae core Mediator comprises 21 subunits, which are organized into Head, Middle and Tail modules. Previously, the Head module was assigned to a distinct dense domain at the base, and the Middle and Tail modules were identified to form a tight structure above the Head module, which apparently contradicted findings from many biochemical and functional studies. Here, we compared the structures of the core Mediator and its subcomplexes, especially the first 3D structure of the Head + Middle modules, which permitted an unambiguous assignment of the three modules. Furthermore, nanogold labeling pinpointing four Mediator subunits from different modules conclusively validated the modular assignment, in which the Head and Middle modules fold back on one another and form the upper portion of the core Mediator, while the Tail module forms a distinct dense domain at the base. The new modular model of the core Mediator has reconciled the previous inconsistencies between the structurally and functionally defined Mediator modules. Collectively, these analyses completely redefine the modular organization of the core Mediator, which allow us to integrate the structural and functional information into a coherent mechanism for the Mediator's modularity and regulation in transcription initiation. PMID:24810298

  4. Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface.

    PubMed

    Liu, Gui-Dong; Zhai, Xiang; Xia, Sheng-Xuan; Lin, Qi; Zhao, Chu-Jun; Wang, Ling-Ling

    2017-10-16

    In this paper, we demonstrate the combination of a dielectric metasurface with a graphene layer to realize a high performance toroidal resonance based optical modulator. The dielectric metasurface consists of two mirrored asymmetric silicon split-ring resonators (ASSRRs) that can support strong toroidal dipolar resonance with narrow line width (~0.77 nm) and high quality (Q)-factor (~1702) and contrast ratio (~100%). Numerical simulation results show that the transmission amplitude of the toroidal dipolar resonance can be efficiently modulated by varying the Fermi energy EF when the graphene layer is integrated with the dielectric metasurface, and a max transmission coefficient difference up to 78% is achieved indicating that the proposed hybrid graphene/dielectric metasurface shows good performance as an optical modulator. The effects of the asymmetry degree of the ASSRRs on the toroidal dipolar resonance are studied and the efficiency of the transmission amplitude modulation of graphene is also investigated. Our results may also provide potential applications in optical filter and bio-chemical sensing.

  5. Essentially semismall Quasi-Dedekind module relative to a module

    NASA Astrophysics Data System (ADS)

    Hussain, Mukdad Q.

    2018-05-01

    Let R be associative ring with identity and M be a unitary R-module. In this paper study the direct summand of essentially semismall quasi-Dedekind module and prove that the direct sum of essentially semismall quasi-Dedekind modules need not be essentially semismall quasi-Dedekind and give the definition of essentially semismall quasi-Dedekind relative to a module with some examples, also give some of their basic properties and some examples that illustrate these properties.

  6. Biochemical and Cellular Assessment of Acetabular Chondral Flaps Identified During Hip Arthroscopy.

    PubMed

    Hariri, Sanaz; Truntzer, Jeremy; Smith, Robert Lane; Safran, Marc R

    2015-06-01

    To analyze chondral flaps debrided during hip arthroscopy to determine their biochemical and cellular composition. Thirty-one full-thickness acetabular chondral flaps were collected during hip arthroscopy. Biochemical analysis was undertaken in 21 flaps from 20 patients, and cellular viability was determined in 10 flaps from 10 patients. Biochemical analysis included concentrations of (1) DNA (an indicator of chondrocyte content), (2) hydroxyproline (an indicator of collagen content), and (3) glycosaminoglycan (an indicator of chondrocyte biosynthesis). Higher values for these parameters indicated more healthy tissue. The flaps were examined to determine the percentage of viable chondrocytes. The percentage of acetabular chondral flap specimens that had concentrations within 1 SD of the mean values reported in previous normal cartilage studies was 38% for DNA, 0% for glycosaminoglycan, and 43% for hydroxyproline. The average cellular viability of our acetabular chondral flap specimens was 39% (SD, 14%). Only 2 of the 10 specimens had more than half the cells still viable. There was no correlation between (1) the gross examination of the joint or knowledge of the patient's demographic characteristics and symptoms and (2) biochemical properties and cell viability of the flap, with one exception: a degenerative appearance of the surrounding cartilage correlated with a higher hydroxyproline concentration. Although full-thickness acetabular chondral flaps can appear normal grossly, the biochemical properties and percentage of live chondrocytes in full-thickness chondral flaps encountered in hip arthroscopy show that this tissue is not normal. There has been recent interest in repairing chondral flaps encountered during hip arthroscopy. These data suggest that acetabular chondral flaps are not biochemically and cellularly normal. Although these flaps may still be valuable mechanically and/or as a scaffold in some conductive or inductive capacity, further study is required to assess the clinical benefit of repair. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  7. Biochemical correlates in an animal model of depression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.O.

    1986-01-01

    A valid animal model of depression was used to explore specific adrenergic receptor differences between rats exhibiting aberrant behavior and control groups. Preliminary experiments revealed a distinct upregulation of hippocampal beta-receptors (as compared to other brain regions) in those animals acquiring a response deficit as a result of exposure to inescapable footshock. Concurrent studies using standard receptor binding techniques showed no large changes in the density of alpha-adrenergic, serotonergic, or dopaminergic receptor densities. This led to the hypothesis that the hippocampal beta-receptor in responses deficient animals could be correlated with the behavioral changes seen after exposure to the aversive stimulus.more » Normalization of the behavior through the administration of antidepressants could be expected to reverse the biochemical changes if these are related to the mechanism of action of antidepressant drugs. This study makes three important points: (1) there is a relevant biochemical change in the hippocampus of response deficient rats which occurs in parallel to a well-defined behavior, (2) the biochemical and behavioral changes are normalized by antidepressant treatments exhibiting both serotonergic and adrenergic mechanisms of action, and (3) the mode of action of antidepressants in this model is probably a combination of serotonergic and adrenergic influences modulating the hippocampal beta-receptor. These results are discussed in relation to anatomical and biochemical aspects of antidepressant action.« less

  8. Conditions for duality between fluxes and concentrations in biochemical networks

    PubMed Central

    Fleming, Ronan M.T.; Vlassis, Nikos; Thiele, Ines; Saunders, Michael A.

    2016-01-01

    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We also provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality. The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes. PMID:27345817

  9. Conditions for duality between fluxes and concentrations in biochemical networks

    DOE PAGES

    Fleming, Ronan M. T.; Vlassis, Nikos; Thiele, Ines; ...

    2016-06-23

    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We alsomore » provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality.The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes« less

  10. Conditions for duality between fluxes and concentrations in biochemical networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Ronan M. T.; Vlassis, Nikos; Thiele, Ines

    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We alsomore » provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality.The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes« less

  11. Prospect redux

    NASA Technical Reports Server (NTRS)

    Jacquemoud, S.; Ustin, S. L.; Verdebout, J.; Schmuck, G.; Andreoli, G.; Hosgood, B.

    1995-01-01

    The remote estimation of leaf biochemical content from spaceborne platforms has been the subject of many studies aimed at better understanding of terrestrial ecosystem functioning. The major ecological processes involved in exchange of matter and energy, like photosynthesis, primary production, evaportranspiration, respiration, and decomposition can be related to plant properties e.g., chlorophyll, water, protein, cellulose and lignin contents. As leaves represent the most important plant surfaces interacting with solar energy, a top priority has been to relate optical properties to biochemical constituents. Two different approaches have been considered: first, statistical correlations between the leaf reflectance (or transmittance) and biochemical content, and second, physically based models of leaf scattering and absorption developed using the laws of optics. Recently reviewed by Verdebout et al., the development of models of leaf optical properties has resulted in better understanding of the interaction of light with plant leaves. Present radiative transfer models mainly use chlorophyll and/or water contents as input parameters to calculate leaf reflectance. Inversion of these models allows to retrieve these constituents from spectrophotometric measurements. Conel et al. recently proposed a two-stream Kubelka-Munk model to analyze the influence of protein, cellulose, lignin, and starch on leaf reflectance, but in fact, the estimation of leaf biochemistry from remote sensing is still an open question. In order to clarify it, a laboratory experiment associating visible/infrared spectra of plan leaves both with physical measurements and biochemical analyses was conducted at the Joint Research Center during the summer of 1993. This unique data set has been used to upgrade the PROSPECT model, by including leaf biochemistry.

  12. Proteome-wide association studies identify biochemical modules associated with a wing-size phenotype in Drosophila melanogaster.

    PubMed

    Okada, Hirokazu; Ebhardt, H Alexander; Vonesch, Sibylle Chantal; Aebersold, Ruedi; Hafen, Ernst

    2016-09-01

    The manner by which genetic diversity within a population generates individual phenotypes is a fundamental question of biology. To advance the understanding of the genotype-phenotype relationships towards the level of biochemical processes, we perform a proteome-wide association study (PWAS) of a complex quantitative phenotype. We quantify the variation of wing imaginal disc proteomes in Drosophila genetic reference panel (DGRP) lines using SWATH mass spectrometry. In spite of the very large genetic variation (1/36 bp) between the lines, proteome variability is surprisingly small, indicating strong molecular resilience of protein expression patterns. Proteins associated with adult wing size form tight co-variation clusters that are enriched in fundamental biochemical processes. Wing size correlates with some basic metabolic functions, positively with glucose metabolism but negatively with mitochondrial respiration and not with ribosome biogenesis. Our study highlights the power of PWAS to filter functional variants from the large genetic variability in natural populations.

  13. Biochemical Characterization of Prions.

    PubMed

    Fiorini, Michele; Bongianni, Matilde; Monaco, Salvatore; Zanusso, Gianluigi

    2017-01-01

    Prion disease or transmissible spongiform encephalopathies are characterized by the presence of the abnormal form of the prion protein (PrP Sc ). The pathological and transmissible properties of PrP Sc are enciphered in its secondary and tertiary structures. Since it's well established that different strains of prions are linked to different conformations of PrP Sc , biochemical characterization of prions seems a preliminary but reliable approach to detect, analyze, and compare prion strains. Experimental biochemical procedures might be helpful in distinguishing PrP Sc physicochemical properties and include resistance to proteinase K (PK) digestion, insolubility in nonionic detergents, PK-resistance under denaturing conditions and sedimentation properties in sucrose gradients. This biochemical approach has been extensively applied in human prion disorders and subsequently expanded for PrP Sc characterization in animals. In particular, in sporadic Creutzfedlt-Jakob disease (sCJD) PrP Sc is characterized by two main glycotypes conventionally named Type 1 and Type 2, based on the apparent gel migration at 21 and 19kDa of the PrP Sc PK-resistant fragment. An additional PrP Sc type was identified in sCJD characterized by an unglycosylated dominant glycoform pattern and in 2010 a variably protease-sensitive prionopathy (VPSPr) was reported showing a PrP Sc with an electrophoretic ladder like pattern. Additionally, the presence of PrP Sc truncated fragments completes the electrophoretic characterization of different prion strains. By two-dimensional (2D) electrophoretic analysis additional PrP Sc pattern was identified, since this procedure provides information about the isoelectric point and the different peptides length related to PK cleavage, as well as to glycosylation extent or GPI anchor presence. We here provide and extensive review on PrP Sc biochemical analysis in human and animal prion disorders. Further, we show that PrP Sc glycotypes observed in CJD share similarities with PrP Sc in bovine spongiform encephalopathy forms (BSE). © 2017 Elsevier Inc. All rights reserved.

  14. Atypical protein disulfide isomerases (PDI): Comparison of the molecular and catalytic properties of poplar PDI-A and PDI-M with PDI-L1A

    PubMed Central

    Selles, Benjamin; Zannini, Flavien; Couturier, Jérémy; Jacquot, Jean-Pierre

    2017-01-01

    Protein disulfide isomerases are overwhelmingly multi-modular redox catalysts able to perform the formation, reduction or isomerisation of disulfide bonds. We present here the biochemical characterization of three different poplar PDI isoforms. PDI-A is characterized by a single catalytic Trx module, the so-called a domain, whereas PDI-L1a and PDI-M display an a-b-b’-a’ and a°-a-b organisation respectively. Their activities have been tested in vitro using purified recombinant proteins and a series of model substrates as insulin, NADPH thioredoxin reductase, NADP malate dehydrogenase (NADP-MDH), peroxiredoxins or RNase A. We demonstrated that PDI-A exhibited none of the usually reported activities, although the cysteines of the WCKHC active site signature are able to form a disulfide with a redox midpoint potential of -170 mV at pH 7.0. The fact that it is able to bind a [Fe2S2] cluster upon Escherichia coli expression and anaerobic purification might indicate that it does not have a function in dithiol-disulfide exchange reactions. The two other proteins were able to catalyze oxidation or reduction reactions, PDI-L1a being more efficient in most cases, except that it was unable to activate the non-physiological substrate NADP-MDH, in contrast to PDI-M. To further evaluate the contribution of the catalytic domains of PDI-M, the dicysteinic motifs have been independently mutated in each a domain. The results indicated that the two a domains seem interconnected and that the a° module preferentially catalyzed oxidation reactions whereas the a module catalyzed reduction reactions, in line with the respective redox potentials of -170 mV and -190 mV at pH 7.0. Overall, these in vitro results illustrate that the number and position of a and b domains influence the redox properties and substrate recognition (both electron donors and acceptors) of PDI which contributes to understand why this protein family expanded along evolution. PMID:28362814

  15. Epistasis in protein evolution

    PubMed Central

    Starr, Tyler N.

    2016-01-01

    Abstract The structure, function, and evolution of proteins depend on physical and genetic interactions among amino acids. Recent studies have used new strategies to explore the prevalence, biochemical mechanisms, and evolutionary implications of these interactions—called epistasis—within proteins. Here we describe an emerging picture of pervasive epistasis in which the physical and biological effects of mutations change over the course of evolution in a lineage‐specific fashion. Epistasis can restrict the trajectories available to an evolving protein or open new paths to sequences and functions that would otherwise have been inaccessible. We describe two broad classes of epistatic interactions, which arise from different physical mechanisms and have different effects on evolutionary processes. Specific epistasis—in which one mutation influences the phenotypic effect of few other mutations—is caused by direct and indirect physical interactions between mutations, which nonadditively change the protein's physical properties, such as conformation, stability, or affinity for ligands. In contrast, nonspecific epistasis describes mutations that modify the effect of many others; these typically behave additively with respect to the physical properties of a protein but exhibit epistasis because of a nonlinear relationship between the physical properties and their biological effects, such as function or fitness. Both types of interaction are rampant, but specific epistasis has stronger effects on the rate and outcomes of evolution, because it imposes stricter constraints and modulates evolutionary potential more dramatically; it therefore makes evolution more contingent on low‐probability historical events and leaves stronger marks on the sequences, structures, and functions of protein families. PMID:26833806

  16. Expanding pH screening space using multiple droplets with secondary buffers for protein crystallization

    NASA Astrophysics Data System (ADS)

    Zhang, Chen-Yan; Dong, Chen; Lu, Xiao-Li; Wang, Bei; He, Tian-Yuan; Yang, Rui-Zeng; Lin, Hua-Long; Yang, Xue-Zhou; Yin, Da-Chuan

    2017-04-01

    We have proposed a rational strategy for selecting a suitable pH of protein solution based on protein biochemical properties. However, it is difficult to use this strategy for biochemical properties unknown proteins. In this paper, a simpler and faster pH buffer strategy was proposed. An additional pH-controlling buffer was added to crystallization droplet mixed with protein solution and commercial crystallization reagents to adjust its pH. The results revealed that protein crystallization success rates were enhanced by this strategy due to expansion of the pH screening space, which was closely related with protein solubility. Thus, the possibility of reaching supersaturation was increased by using this strategy.

  17. The structure and function of the pericellular matrix of articular cartilage.

    PubMed

    Wilusz, Rebecca E; Sanchez-Adams, Johannah; Guilak, Farshid

    2014-10-01

    Chondrocytes in articular cartilage are surrounded by a narrow pericellular matrix (PCM) that is both biochemically and biomechanically distinct from the extracellular matrix (ECM) of the tissue. While the PCM was first observed nearly a century ago, its role is still under investigation. In support of early hypotheses regarding its function, increasing evidence indicates that the PCM serves as a transducer of biochemical and biomechanical signals to the chondrocyte. Work over the past two decades has established that the PCM in adult tissue is defined biochemically by several molecular components, including type VI collagen and perlecan. On the other hand, the biomechanical properties of this structure have only recently been measured. Techniques such as micropipette aspiration, in situ imaging, computational modeling, and atomic force microscopy have determined that the PCM exhibits distinct mechanical properties as compared to the ECM, and that these properties are influenced by specific PCM components as well as disease state. Importantly, the unique relationships among the mechanical properties of the chondrocyte, PCM, and ECM in different zones of cartilage suggest that this region significantly influences the stress-strain environment of the chondrocyte. In this review, we discuss recent advances in the measurement of PCM mechanical properties and structure that further increase our understanding of PCM function. Taken together, these studies suggest that the PCM plays a critical role in controlling the mechanical environment and mechanobiology of cells in cartilage and other cartilaginous tissues, such as the meniscus or intervertebral disc. Copyright © 2014 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  18. Predicting and analyzing DNA-binding domains using a systematic approach to identifying a set of informative physicochemical and biochemical properties

    PubMed Central

    2011-01-01

    Background Existing methods of predicting DNA-binding proteins used valuable features of physicochemical properties to design support vector machine (SVM) based classifiers. Generally, selection of physicochemical properties and determination of their corresponding feature vectors rely mainly on known properties of binding mechanism and experience of designers. However, there exists a troublesome problem for designers that some different physicochemical properties have similar vectors of representing 20 amino acids and some closely related physicochemical properties have dissimilar vectors. Results This study proposes a systematic approach (named Auto-IDPCPs) to automatically identify a set of physicochemical and biochemical properties in the AAindex database to design SVM-based classifiers for predicting and analyzing DNA-binding domains/proteins. Auto-IDPCPs consists of 1) clustering 531 amino acid indices in AAindex into 20 clusters using a fuzzy c-means algorithm, 2) utilizing an efficient genetic algorithm based optimization method IBCGA to select an informative feature set of size m to represent sequences, and 3) analyzing the selected features to identify related physicochemical properties which may affect the binding mechanism of DNA-binding domains/proteins. The proposed Auto-IDPCPs identified m=22 features of properties belonging to five clusters for predicting DNA-binding domains with a five-fold cross-validation accuracy of 87.12%, which is promising compared with the accuracy of 86.62% of the existing method PSSM-400. For predicting DNA-binding sequences, the accuracy of 75.50% was obtained using m=28 features, where PSSM-400 has an accuracy of 74.22%. Auto-IDPCPs and PSSM-400 have accuracies of 80.73% and 82.81%, respectively, applied to an independent test data set of DNA-binding domains. Some typical physicochemical properties discovered are hydrophobicity, secondary structure, charge, solvent accessibility, polarity, flexibility, normalized Van Der Waals volume, pK (pK-C, pK-N, pK-COOH and pK-a(RCOOH)), etc. Conclusions The proposed approach Auto-IDPCPs would help designers to investigate informative physicochemical and biochemical properties by considering both prediction accuracy and analysis of binding mechanism simultaneously. The approach Auto-IDPCPs can be also applicable to predict and analyze other protein functions from sequences. PMID:21342579

  19. Biochemical and functional characterization of an albumin protein belonging to the hemopexin superfamily from Lens culinaris seeds.

    PubMed

    Scarafoni, Alessio; Gualtieri, Elisa; Barbiroli, Alberto; Carpen, Aristodemo; Negri, Armando; Duranti, Marcello

    2011-09-14

    The present paper reports the purification and biochemical characterization of an albumin identified in mature lentil seeds with high sequence similarity to pea PA2. These proteins are found in many edible seeds and are considered potentially detrimental for human health due to the potential allergenicity and lectin-like activity. Thus, the description of their possible presence in food and the assessment of the molecular properties are relevant. The M(r), pI, and N-terminal sequence of this protein have been determined. The work included the study of (i) the binding properties to hemine to assess the presence of hemopexin structural domains and (ii) the binding properties of the protein to thiamin. In addition, the structural changes induced by heating have been evaluated by means of spectroscopic techniques. Denaturation temperature has also been determined. The present work provides new insights about the structural molecular features and the ligand-binding properties and dynamics of this kind of seed albumin.

  20. Time-resolved metabolomics reveals metabolic modulation in rice foliage

    PubMed Central

    Sato, Shigeru; Arita, Masanori; Soga, Tomoyoshi; Nishioka, Takaaki; Tomita, Masaru

    2008-01-01

    Background To elucidate the interaction of dynamics among modules that constitute biological systems, comprehensive datasets obtained from "omics" technologies have been used. In recent plant metabolomics approaches, the reconstruction of metabolic correlation networks has been attempted using statistical techniques. However, the results were unsatisfactory and effective data-mining techniques that apply appropriate comprehensive datasets are needed. Results Using capillary electrophoresis mass spectrometry (CE-MS) and capillary electrophoresis diode-array detection (CE-DAD), we analyzed the dynamic changes in the level of 56 basic metabolites in plant foliage (Oryza sativa L. ssp. japonica) at hourly intervals over a 24-hr period. Unsupervised clustering of comprehensive metabolic profiles using Kohonen's self-organizing map (SOM) allowed classification of the biochemical pathways activated by the light and dark cycle. The carbon and nitrogen (C/N) metabolism in both periods was also visualized as a phenotypic linkage map that connects network modules on the basis of traditional metabolic pathways rather than pairwise correlations among metabolites. The regulatory networks of C/N assimilation/dissimilation at each time point were consistent with previous works on plant metabolism. In response to environmental stress, glutathione and spermidine fluctuated synchronously with their regulatory targets. Adenine nucleosides and nicotinamide coenzymes were regulated by phosphorylation and dephosphorylation. We also demonstrated that SOM analysis was applicable to the estimation of unidentifiable metabolites in metabolome analysis. Hierarchical clustering of a correlation coefficient matrix could help identify the bottleneck enzymes that regulate metabolic networks. Conclusion Our results showed that our SOM analysis with appropriate metabolic time-courses effectively revealed the synchronous dynamics among metabolic modules and elucidated the underlying biochemical functions. The application of discrimination of unidentified metabolites and the identification of bottleneck enzymatic steps even to non-targeted comprehensive analysis promise to facilitate an understanding of large-scale interactions among components in biological systems. PMID:18564421

  1. Exogenous sucrose supply changes sugar metabolism and reduces photosynthesis of sugarcane through the down-regulation of Rubisco abundance and activity.

    PubMed

    Lobo, Ana Karla Moreira; de Oliveira Martins, Marcio; Lima Neto, Milton Costa; Machado, Eduardo Caruso; Ribeiro, Rafael Vasconcelos; Silveira, Joaquim Albenisio Gomes

    2015-05-01

    Photosynthetic modulation by sugars has been known for many years, but the biochemical and molecular comprehension of this process is lacking. We studied how the exogenous sucrose supplied to leaves could affect sugar metabolism in leaf, sheath and stalk and inhibit photosynthesis in four-month old sugarcane plants. Exogenous sucrose 50mM sprayed on attached leaves strongly impaired the net CO2 assimilation (PN) and decreased the instantaneous carboxylation efficiency (PN/Ci), suggesting that the impairment in photosynthesis was caused by biochemical restrictions. The photosystem II activity was also affected by excess sucrose as indicated by the reduction in the apparent electron transport rate, effective quantum yield and increase in non-photochemical quenching. In leaf segments, sucrose accumulation was related to increases in the activities of soluble acid and neutral invertases, sucrose synthase and sucrose phosphate synthase, whereas the contents of fructose increased and glucose slightly decreased. Changes in the activities of sucrose hydrolyzing and synthesizing enzymes in leaf, sheath and stalk and sugar profile in intact plants were not enough to identify which sugar(s) or enzyme(s) were directly involved in photosynthesis modulation. However, exogenous sucrose was able to trigger down-regulation in the Rubisco abundance, activation state and enzymatic activity. Despite the fact that PN/Ci had been notably decreased by sucrose, in vitro activity and abundance of PEPCase did not change, suggesting an in vivo modulation of this enzyme. The data reveal that sucrose and/or other derivative sugars in leaves inhibited sugarcane photosynthesis by down-regulation of Rubisco synthesis and activity. Our data also suggest that sugar modulation was not exerted by a feedback mechanism induced by the accumulation of sugars in immature sugarcane stalk. Copyright © 2015. Published by Elsevier GmbH.

  2. Application of mass spectrometry technologies for the discovery of low-molecular weight modulators of enzymes and protein-protein interactions.

    PubMed

    Zehender, Hartmut; Mayr, Lorenz M

    2007-10-01

    In recent years, mass spectrometry has gained widespread use as an assay and screening technology in drug discovery because it enables sensitive, label-free detection of low-molecular weight modulators of biomolecules as well as sensitive and accurate detection of high-molecular weight modifications of biomolecules. Electrospray and matrix-assisted laser desorption ionization are the most widely used ionization techniques to identify chemical compounds interfering with enzymatic function, receptor-ligand binding or molecules modulating a protein-protein interaction of interest. Mass spectrometry based techniques are no longer restricted to screening in biochemical assay systems but have now become also applicable to imaging of biomolecules and chemical compounds in cell-based assay systems and even in highly complex tissue sections.

  3. Molecular Basis for Modulation of Metabotropic Glutamate Receptors and Their Drug Actions by Extracellular Ca2+

    PubMed Central

    Zou, Juan; Jiang, Jason Y.; Yang, Jenny J.

    2017-01-01

    Metabotropic glutamate receptors (mGluRs) associated with the slow phase of the glutamatergic signaling pathway in neurons of the central nervous system have gained importance as drug targets for chronic neurodegenerative diseases. While extracellular Ca2+ was reported to exhibit direct activation and modulation via an allosteric site, the identification of those binding sites was challenged by weak binding. Herein, we review the discovery of extracellular Ca2+ in regulation of mGluRs, summarize the recent developments in probing Ca2+ binding and its co-regulation of the receptor based on structural and biochemical analysis, and discuss the molecular basis for Ca2+ to regulate various classes of drug action as well as its importance as an allosteric modulator in mGluRs. PMID:28335551

  4. MONALISA for stochastic simulations of Petri net models of biochemical systems.

    PubMed

    Balazki, Pavel; Lindauer, Klaus; Einloft, Jens; Ackermann, Jörg; Koch, Ina

    2015-07-10

    The concept of Petri nets (PN) is widely used in systems biology and allows modeling of complex biochemical systems like metabolic systems, signal transduction pathways, and gene expression networks. In particular, PN allows the topological analysis based on structural properties, which is important and useful when quantitative (kinetic) data are incomplete or unknown. Knowing the kinetic parameters, the simulation of time evolution of such models can help to study the dynamic behavior of the underlying system. If the number of involved entities (molecules) is low, a stochastic simulation should be preferred against the classical deterministic approach of solving ordinary differential equations. The Stochastic Simulation Algorithm (SSA) is a common method for such simulations. The combination of the qualitative and semi-quantitative PN modeling and stochastic analysis techniques provides a valuable approach in the field of systems biology. Here, we describe the implementation of stochastic analysis in a PN environment. We extended MONALISA - an open-source software for creation, visualization and analysis of PN - by several stochastic simulation methods. The simulation module offers four simulation modes, among them the stochastic mode with constant firing rates and Gillespie's algorithm as exact and approximate versions. The simulator is operated by a user-friendly graphical interface and accepts input data such as concentrations and reaction rate constants that are common parameters in the biological context. The key features of the simulation module are visualization of simulation, interactive plotting, export of results into a text file, mathematical expressions for describing simulation parameters, and up to 500 parallel simulations of the same parameter sets. To illustrate the method we discuss a model for insulin receptor recycling as case study. We present a software that combines the modeling power of Petri nets with stochastic simulation of dynamic processes in a user-friendly environment supported by an intuitive graphical interface. The program offers a valuable alternative to modeling, using ordinary differential equations, especially when simulating single-cell experiments with low molecule counts. The ability to use mathematical expressions provides an additional flexibility in describing the simulation parameters. The open-source distribution allows further extensions by third-party developers. The software is cross-platform and is licensed under the Artistic License 2.0.

  5. Dynamic Compression of Chondrocyte-Agarose Constructs Reveals New Candidate Mechanosensitive Genes

    PubMed Central

    Bougault, Carole; Aubert-Foucher, Elisabeth; Paumier, Anne; Perrier-Groult, Emeline; Huot, Ludovic; Hot, David; Duterque-Coquillaud, Martine; Mallein-Gerin, Frédéric

    2012-01-01

    Articular cartilage is physiologically exposed to repeated loads. The mechanical properties of cartilage are due to its extracellular matrix, and homeostasis is maintained by the sole cell type found in cartilage, the chondrocyte. Although mechanical forces clearly control the functions of articular chondrocytes, the biochemical pathways that mediate cellular responses to mechanical stress have not been fully characterised. The aim of our study was to examine early molecular events triggered by dynamic compression in chondrocytes. We used an experimental system consisting of primary mouse chondrocytes embedded within an agarose hydrogel; embedded cells were pre-cultured for one week and subjected to short-term compression experiments. Using Western blots, we demonstrated that chondrocytes maintain a differentiated phenotype in this model system and reproduce typical chondrocyte-cartilage matrix interactions. We investigated the impact of dynamic compression on the phosphorylation state of signalling molecules and genome-wide gene expression. After 15 min of dynamic compression, we observed transient activation of ERK1/2 and p38 (members of the mitogen-activated protein kinase (MAPK) pathways) and Smad2/3 (members of the canonical transforming growth factor (TGF)-β pathways). A microarray analysis performed on chondrocytes compressed for 30 min revealed that only 20 transcripts were modulated more than 2-fold. A less conservative list of 325 modulated genes included genes related to the MAPK and TGF-β pathways and/or known to be mechanosensitive in other biological contexts. Of these candidate mechanosensitive genes, 85% were down-regulated. Down-regulation may therefore represent a general control mechanism for a rapid response to dynamic compression. Furthermore, modulation of transcripts corresponding to different aspects of cellular physiology was observed, such as non-coding RNAs or primary cilium. This study provides new insight into how chondrocytes respond to mechanical forces. PMID:22615857

  6. Estimation of nutrients and organic matter in Korean swine slurry using multiple regression analysis of physical and chemical properties.

    PubMed

    Suresh, Arumuganainar; Choi, Hong Lim

    2011-10-01

    Swine waste land application has increased due to organic fertilization, but excess application in an arable system can cause environmental risk. Therefore, in situ characterizations of such resources are important prior to application. To explore this, 41 swine slurry samples were collected from Korea, and wide differences were observed in the physico-biochemical properties. However, significant (P<0.001) multiple property correlations (R²) were obtained between nutrients with specific gravity (SG), electrical conductivity (EC), total solids (TS) and pH. The different combinations of hydrometer, EC meter, drying oven and pH meter were found useful to estimate Mn, Fe, Ca, K, Al, Na, N and 5-day biochemical oxygen demands (BOD₅) at improved R² values of 0.83, 0.82, 0.77, 0.75, 0.67, 0.47, 0.88 and 0.70, respectively. The results from this study suggest that multiple property regressions can facilitate the prediction of micronutrients and organic matter much better than a single property regression for livestock waste. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. The redox-sensitive module of cyclophilin 20-3, 2-cysteine peroxiredoxin and cysteine synthase integrates sulfur metabolism and oxylipin signaling in the high light acclimation response.

    PubMed

    Müller, Sara M; Wang, Shanshan; Telman, Wilena; Liebthal, Michael; Schnitzer, Helena; Viehhauser, Andrea; Sticht, Carsten; Delatorre, Carolina; Wirtz, Markus; Hell, Rüdiger; Dietz, Karl-Josef

    2017-09-01

    The integration of redox- and reactive oxygen species-dependent signaling and metabolic activities is fundamental to plant acclimation to biotic and abiotic stresses. Previous data suggest the existence of a dynamically interacting module in the chloroplast stroma consisting of cyclophilin 20-3 (Cyp20-3), O-acetylserine(thiol)lyase B (OASTL-B), 2-cysteine peroxiredoxins A/B (2-CysPrx) and serine acetyltransferase 2;1 (SERAT2;1). The functionality of this COPS module is influenced by redox stimuli and oxophytodienoic acid (OPDA), which is the precursor for jasmonic acid. The concept of an integrating function of these proteins in stress signaling was challenged by combining transcriptome and biochemical analyses in Arabidopsis mutants devoid of oastlB, serat2;1, cyp20-3 and 2-cysprxA/B, and wild-type (WT). Leaf transcriptomes were analyzed 6 h after transfer to light intensity 10-fold in excess of growth light or under growth light. The survey of KEGG-based gene ontology groups showed common upregulation of translation- and protein homeostasis-associated transcripts under control conditions in all mutants compared with WT. The results revealed that the interference of the module was accompanied with disturbance of carbohydrate, sulfur and nitrogen metabolism, and also citric acid cycle intermediates. Apart from common regulation, specific responses at the transcriptome and metabolite level linked Cyp20-3 to cell wall-bound carbohydrates and oxylipin signaling, and 2-CysPrx to photosynthesis, sugar and amino acid metabolism. Deletion of either OASTL-B or SERAT2;1 frequently induced antagonistic changes in biochemical or molecular features. Enhanced sensitivity of mutant seedlings to OPDA and leaf discs to NaHS-administration confirmed the presumed functional interference of the COPS module in redox and oxylipin signaling. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  8. Characterization of Degenerative Changes in the Temporomandibular Joint of the Bengal Tiger (Panthera tigris tigris) and Siberian Tiger (Panthera tigris altaica)

    PubMed Central

    Murphy, M. K.; Arzi, B.; Vapniarsky-Arzi, N.; Athanasiou, K. A.

    2013-01-01

    Summary The articulation of the temporomandibular joint (TMJ) is composed of the temporal bone dorsally, the mandibular condyle ventrally and a fibrous articular disc. The TMJ disc plays an essential role in distributing load between the two articular surfaces. Degeneration of the disc in the presence of joint pathology has been shown in man; however, TMJ pathology has not been documented previously in tigers (Panthera tigris). The mandibular condyle and TMJ disc of a Bengal tiger (P. tigris tigris) and a Siberian tiger (P. tigris altaica) were evaluated grossly and the TMJ disc was characterized biochemically and mechanically. Characterization of the TMJ disc verified region- and direction-dependent biochemical and mechanical properties, reflective of the functional demands on the joint. Degenerative joint disease was observed in both cases and this was more severe in the Siberian tiger. Simultaneous evaluation of joint pathology, biochemical composition and mechanical properties of the TMJ disc revealed a loss in functional properties (tensile anisotropy) of the disc as joint pathology advanced from moderate to severe. TMJ degeneration may compromise the ability of the animal to eat and thrive and may be a factor contributing to the endangered status of these species. PMID:23809909

  9. Towards Understanding Plant Calcium Signaling through Calmodulin-Like Proteins: A Biochemical and Structural Perspective.

    PubMed

    La Verde, Valentina; Dominici, Paola; Astegno, Alessandra

    2018-04-30

    Ca 2+ ions play a key role in a wide variety of environmental responses and developmental processes in plants, and several protein families with Ca 2+ -binding domains have evolved to meet these needs, including calmodulin (CaM) and calmodulin-like proteins (CMLs). These proteins have no catalytic activity, but rather act as sensor relays that regulate downstream targets. While CaM is well-studied, CMLs remain poorly characterized at both the structural and functional levels, even if they are the largest class of Ca 2+ sensors in plants. The major structural theme in CMLs consists of EF-hands, and variations in these domains are predicted to significantly contribute to the functional versatility of CMLs. Herein, we focus on recent advances in understanding the features of CMLs from biochemical and structural points of view. The analysis of the metal binding and structural properties of CMLs can provide valuable insight into how such a vast array of CML proteins can coexist, with no apparent functional redundancy, and how these proteins contribute to cellular signaling while maintaining properties that are distinct from CaM and other Ca 2+ sensors. An overview of the principal techniques used to study the biochemical properties of these interesting Ca 2+ sensors is also presented.

  10. Characterization of degenerative changes in the temporomandibular joint of the bengal tiger (Panthera tigris tigris) and siberian tiger (Panthera tigris altaica).

    PubMed

    Murphy, M K; Arzi, B; Vapniarsky-Arzi, N; Athanasiou, K A

    2013-11-01

    The articulation of the temporomandibular joint (TMJ) is composed of the temporal bone dorsally, the mandibular condyle ventrally and a fibrous articular disc. The TMJ disc plays an essential role in distributing load between the two articular surfaces. Degeneration of the disc in the presence of joint pathology has been shown in man; however, TMJ pathology has not been documented previously in tigers (Panthera tigris). The mandibular condyle and TMJ disc of a Bengal tiger (P. tigris tigris) and a Siberian tiger (P. tigris altaica) were evaluated grossly and the TMJ disc was characterized biochemically and mechanically. Characterization of the TMJ disc verified region- and direction-dependent biochemical and mechanical properties, reflective of the functional demands on the joint. Degenerative joint disease was observed in both cases and this was more severe in the Siberian tiger. Simultaneous evaluation of joint pathology, biochemical composition and mechanical properties of the TMJ disc revealed a loss in functional properties (tensile anisotropy) of the disc as joint pathology advanced from moderate to severe. TMJ degeneration may compromise the ability of the animal to eat and thrive and may be a factor contributing to the endangered status of these species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Archetypal tryptophan-rich antimicrobial peptides: properties and applications.

    PubMed

    Shagaghi, Nadin; Palombo, Enzo A; Clayton, Andrew H A; Bhave, Mrinal

    2016-02-01

    Drug-resistant microorganisms ('superbugs') present a serious challenge to the success of antimicrobial treatments. Subsequently, there is a crucial need for novel bio-control agents. Many antimicrobial peptides (AMPs) show a broad-spectrum activity against bacteria, fungi or viruses and are strong candidates to complement or substitute current antimicrobial agents. Some AMPs are also effective against protozoa or cancer cells. The tryptophan (Trp)-rich peptides (TRPs) are a subset of AMPs that display potent antimicrobial activity, credited to the unique biochemical properties of tryptophan that allow it to insert into biological membranes. Further, many Trp-rich AMPs cross bacterial membranes without compromising their integrity and act intracellularly, suggesting interactions with nucleic acids and enzymes. In this work, we overview some archetypal TRPs derived from natural sources, i.e., indolicidin, tritrpticin and lactoferricin, summarising their biochemical properties, structures, antimicrobial activities, mechanistic studies and potential applications.

  12. Estimating the distribution of colored dissolved organic matter during the Southern Ocean Gas Exchange Experiment using four-dimensional variational data assimilation

    NASA Astrophysics Data System (ADS)

    Del Castillo, C. E.; Dwivedi, S.; Haine, T. W. N.; Ho, D. T.

    2017-03-01

    We diagnosed the effect of various physical processes on the distribution of mixed-layer colored dissolved organic matter (CDOM) and a sulfur hexafluoride (SF6) tracer during the Southern Ocean Gas Exchange Experiment (SO GasEx). The biochemical upper ocean state estimate uses in situ and satellite biochemical and physical data in the study region, including CDOM (absorption coefficient and spectral slope), SF6, hydrography, and sea level anomaly. Modules for photobleaching of CDOM and surface transport of SF6 were coupled with an ocean circulation model for this purpose. The observed spatial and temporal variations in CDOM were captured by the state estimate without including any new biological source term for CDOM, assuming it to be negligible over the 26 days of the state estimate. Thermocline entrainment and photobleaching acted to diminish the mixed-layer CDOM with time scales of 18 and 16 days, respectively. Lateral advection of CDOM played a dominant role and increased the mixed-layer CDOM with a time scale of 12 days, whereas lateral diffusion of CDOM was negligible. A Lagrangian view on the CDOM variability was demonstrated by using the SF6 as a weighting function to integrate the CDOM fields. This and similar data assimilation methods can be used to provide reasonable estimates of optical properties, and other physical parameters over the short-term duration of a research cruise, and help in the tracking of tracer releases in large-scale oceanographic experiments, and in oceanographic process studies.

  13. Estimating the Distribution of Colored Dissolved Organic Matter During the Southern Ocean Gas Exchange Experiment Using Four-Dimensional Variational Data Assimilation

    NASA Technical Reports Server (NTRS)

    Del Castillo, C. E.; Dwivedi, S.; Haine, T. W. N.; Ho, D. T.

    2017-01-01

    We diagnosed the effect of various physical processes on the distribution of mixed-layer colored dissolved organic matter (CDOM) and a sulfur hexauoride (SF6) tracer during the Southern Ocean Gas Exchange Experiment (SO GasEx). The biochemical upper ocean state estimate uses in situ and satellite biochemical and physical data in the study region, including CDOM (absorption coefcient and spectral slope), SF6, hydrography, and sea level anomaly. Modules for photobleaching of CDOM and surface transport of SF6 were coupled with an ocean circulation model for this purpose. The observed spatial and temporal variations in CDOM were captured by the state estimate without including any new biological source term for CDOM, assuming it to be negligible over the 26 days of the state estimate. Thermocline entrainment and photobleaching acted to diminish the mixed-layer CDOM with time scales of 18 and 16 days, respectively. Lateral advection of CDOM played a dominant role and increased the mixed-layer CDOM with a time scale of 12 days, whereas lateral diffusion of CDOM was negligible. A Lagrangian view on the CDOM variability was demonstrated by using the SF6 as a weighting function to integrate the CDOM elds. This and similar data assimilation methods can be used to provide reasonable estimates of optical properties, and other physical parameters over the short-term duration of a research cruise, and help in the tracking of tracer releases in large-scale oceanographic experiments, and in oceanographic process studies.

  14. Piracetam and other structurally related nootropics.

    PubMed

    Gouliaev, A H; Senning, A

    1994-05-01

    Nearly three decades have now passed since the discovery of the piracetam-like nootropics, compounds which exhibit cognition-enhancing properties, but for which no commonly accepted mechanism of action has been established. This review covers clinical, pharmacokinetic, biochemical and behavioural results presented in the literature from 1965 through 1992 (407 references) of piracetam, oxiracetam, pramiracetam, etiracetam, nefiracetam, aniracetam and rolziracetam and their structural analogues. The piracetam-like nootropics are capable of achieving reversal of amnesia induced by, e.g., scopolamine, electroconvulsive shock and hypoxia. Protection against barbiturate intoxication is observed and some benefit in clinical studies with patients suffering from mild to moderate degrees of dementia has been demonstrated. No affinity for the alpha 1-, alpha 2-, beta-, muscarinic, 5-hydroxytryptamine-, dopamine, adenosine-A1-, mu-opiate, gamma-aminobutyric acid (GABA) (except for nefiracetam (GABAA)), benzodiazepine and glutamate receptors has been found. The racetams possess a very low toxicity and lack serious side effects. Increased turnover of different neurotransmitters has been observed as well as other biochemical findings, e.g., inhibition of enzymes such as prolylendopeptidase. So far, no generally accepted mechanism of action has, however, emerged. We believe that the effect of the racetams is due to a potentiation of already present neurotransmission and that much evidence points in the direction of a modulated ion flux by, e.g., potentiated calcium influx through non-L-type voltage-dependent calcium channels, potentiated sodium influx through alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor gated channels or voltage-dependent channels or decreases in potassium efflux. Effects on carrier mediated ion transport are also possible.

  15. Soil biochemical properties and microbial resilience in agroforestry systems: effects on wheat growth under controlled drought and flooding conditions.

    PubMed

    Rivest, David; Lorente, Miren; Olivier, Alain; Messier, Christian

    2013-10-01

    Agroforestry is increasingly viewed as an effective means of maintaining or even increasing crop and tree productivity under climate change while promoting other ecosystem functions and services. This study focused on soil biochemical properties and resilience following disturbance within agroforestry and conventional agricultural systems and aimed to determine whether soil differences in terms of these biochemical properties and resilience would subsequently affect crop productivity under extreme soil water conditions. Two research sites that had been established on agricultural land were selected for this study. The first site included an 18-year-old windbreak, while the second site consisted in an 8-year-old tree-based intercropping system. In each site, soil samples were used for the determination of soil nutrient availability, microbial dynamics and microbial resilience to different wetting-drying perturbations and for a greenhouse pot experiment with wheat. Drying and flooding were selected as water stress treatments and compared to a control. These treatments were initiated at the beginning of the wheat anthesis period and maintained over 10 days. Trees contributed to increase soil nutrient pools, as evidenced by the higher extractable-P (both sites), and the higher total N and mineralizable N (tree-based intercropping site) found in the agroforestry compared to the conventional agricultural system. Metabolic quotient (qCO2) was lower in the agroforestry than in the conventional agricultural system, suggesting higher microbial substrate use efficiency in agroforestry systems. Microbial resilience was higher in the agroforestry soils compared to soils from the conventional agricultural system (windbreak site only). At the windbreak site, wheat growing in soils from agroforestry system exhibited higher aboveground biomass and number of grains per spike than in conventional agricultural system soils in the three water stress treatments. At the tree-based intercropping site, higher wheat biomass, grain yield and number of grains per spike were observed in agroforestry than in conventional agricultural system soils, but in the drought treatment only. Drought (windbreak site) and flooding (both sites) treatments significantly reduced wheat yield and 1000-grain weight in both types of system. Relationships between soil biochemical properties and soil microbial resilience or wheat productivity were strongly dependent on site. This study suggests that agroforestry systems may have a positive effect on soil biochemical properties and microbial resilience, which could operate positively on crop productivity and tolerance to severe water stress. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Imidazopyridine-Based Fatty Acid Synthase Inhibitors That Show Anti-HCV Activity and in Vivo Target Modulation.

    PubMed

    Oslob, Johan D; Johnson, Russell J; Cai, Haiying; Feng, Shirley Q; Hu, Lily; Kosaka, Yuko; Lai, Julie; Sivaraja, Mohanram; Tep, Samnang; Yang, Hanbiao; Zaharia, Cristiana A; Evanchik, Marc J; McDowell, Robert S

    2013-01-10

    Potent imidazopyridine-based inhibitors of fatty acid synthase (FASN) are described. The compounds are shown to have antiviral (HCV replicon) activities that track with their biochemical activities. The most potent analogue (compound 19) also inhibits rat FASN and inhibits de novo palmitate synthesis in vitro (cell-based) as well as in vivo.

  17. Imidazopyridine-Based Fatty Acid Synthase Inhibitors That Show Anti-HCV Activity and in Vivo Target Modulation

    PubMed Central

    2012-01-01

    Potent imidazopyridine-based inhibitors of fatty acid synthase (FASN) are described. The compounds are shown to have antiviral (HCV replicon) activities that track with their biochemical activities. The most potent analogue (compound 19) also inhibits rat FASN and inhibits de novo palmitate synthesis in vitro (cell-based) as well as in vivo. PMID:24900571

  18. TAF1, From a General Transcription Factor to Modulator of Androgen Receptor in Prostate Cancer

    DTIC Science & Technology

    2010-02-01

    kinase CK2. Mol Cell Biochem 316:99-106 21. Lively TN, Ferguson HA, Galasinski SK, Seto AG, Goodrich JA 2001 c-Jun binds the N terminus of human TAF(II...Nguyen TN, Galasinski SK, Goodrich JA 2004 The basic leucine zipper domain of c-Jun functions in transcriptional activation through interaction with

  19. Differential expression of salt-responsive genes to salinity stress in salt-tolerant and salt-sensitive rice (Oryza sativa L.) at seedling stage.

    PubMed

    Singh, Vijayata; Singh, Ajit Pal; Bhadoria, Jyoti; Giri, Jitender; Singh, Jogendra; T V, Vineeth; Sharma, P C

    2018-05-08

    The understanding of physio-biochemical and molecular attributes along with morphological traits contributing to the salinity tolerance is important for developing salt-tolerant rice (Oryza sativa L.) varieties. To explore these facts, rice genotypes CSR10 and MI48 with contrasting salt tolerance were characterized under salt stress (control, 75 and 150 mM NaCl) conditions. CSR10 expressed higher rate of physio-biochemical parameters, maintained lower Na/K ratio in shoots, and restricted Na translocation from roots to shoots than MI48. The higher expression of genes related to the osmotic module (DREB2A and LEA3) and ionic module (HKT2;1 and SOS1) in roots of CSR10 suppresses the stress, enhances electrolyte leakage, promotes the higher compatible solute accumulation, and maintains cellular ionic homeostasis leading to better salt stress tolerance than MI48. This study further adds on the importance of these genes in salt tolerance by comparing their behaviour in contrasting rice genotypes and utilizing specific marker to identify salinity-tolerant accessions/donors among germplasm; overexpression of these genes which accelerate the selection procedure precisely has been shown.

  20. Enzyme localization, crowding, and buffers collectively modulate diffusion-influenced signal transduction: Insights from continuum diffusion modeling

    PubMed Central

    Kekenes-Huskey, Peter M.; Eun, Changsun; McCammon, J. A.

    2015-01-01

    Biochemical reaction networks consisting of coupled enzymes connect substrate signaling events with biological function. Substrates involved in these reactions can be strongly influenced by diffusion “barriers” arising from impenetrable cellular structures and macromolecules, as well as interactions with biomolecules, especially within crowded environments. For diffusion-influenced reactions, the spatial organization of diffusion barriers arising from intracellular structures, non-specific crowders, and specific-binders (buffers) strongly controls the temporal and spatial reaction kinetics. In this study, we use two prototypical biochemical reactions, a Goodwin oscillator, and a reaction with a periodic source/sink term to examine how a diffusion barrier that partitions substrates controls reaction behavior. Namely, we examine how conditions representative of a densely packed cytosol, including reduced accessible volume fraction, non-specific interactions, and buffers, impede diffusion over nanometer length-scales. We find that diffusion barriers can modulate the frequencies and amplitudes of coupled diffusion-influenced reaction networks, as well as give rise to “compartments” of decoupled reactant populations. These effects appear to be intensified in the presence of buffers localized to the diffusion barrier. These findings have strong implications for the role of the cellular environment in tuning the dynamics of signaling pathways. PMID:26342355

  1. On brain lesions, the milkman and Sigmunda.

    PubMed

    Izquierdo, I; Medina, J H

    1998-10-01

    Lesion studies have been of historical importance in establishing the brain systems involved in memory processes. Many of those studies, however, have been overinterpreted in terms of the actual role of each system and of connections between systems. The more recent molecular pharmacological approach has produced major advances in these two areas. The main biochemical steps of memory formation in the CAI region of the hippocampus have been established by localized microinfusions of drugs acting on specific enzymes of receptors, by subcellular measurements of the activity or function of those enzymes and receptors at definite times, and by transgenic deletions or changes of those proteins. The biochemical steps of long-term memory formation in CAI have been found to be quite similar to those of long-term potentiation in the same region, and of other forms of plasticity. Connections between the hippocampus and the entorhinal and parietal cortices in the formation and modulation of short- and long-term memory have also been elucidated using these techniques. Lesion studies, coupled with imaging studies, still have a role to play; with regard to human memory, this role is in many ways unique. But these methods by themselves are not informative as to the mechanisms of memory processing, storage or modulation.

  2. In Situ Observation of Chymotrypsin Catalytic Activity Change Actuated by Nonheating Low-Frequency Magnetic Field.

    PubMed

    Efremova, Maria V; Veselov, Maxim M; Barulin, Alexander V; Gribanovsky, Sergey L; Le-Deygen, Irina M; Uporov, Igor V; Kudryashova, Elena V; Sokolsky-Papkov, Marina; Majouga, Alexander G; Golovin, Yuri I; Kabanov, Alexander V; Klyachko, Natalia L

    2018-04-24

    Magnetomechanical modulation of biochemical processes is a promising instrument for bioengineering and nanomedicine. This work demonstrates two approaches to control activity of an enzyme, α-chymotrypsin immobilized on the surface of gold-coated magnetite magnetic nanoparticles (GM-MNPs) using a nonheating low-frequency magnetic field (LF MF). The measurement of the enzyme reaction rate was carried out in situ during exposure to the magnetic field. The first approach involves α-chymotrypsin-GM-MNPs conjugates, in which the enzyme undergoes mechanical deformations with the reorientation of the MNPs under LF MF (16-410 Hz frequency, 88 mT flux density). Such mechanical deformations result in conformational changes in α-chymotrypsin structure, as confirmed by infrared spectroscopy and molecular modeling, and lead to a 63% decrease of enzyme initial activity. The second approach involves an α-chymotrypsin-GM-MNPs/trypsin inhibitor-GM-MNPs complex, in which the activity of the enzyme is partially inhibited. In this case the reorientation of MNPs in the field leads to disruption of the enzyme-inhibitor complex and an almost 2-fold increase of enzyme activity. The results further demonstrate the utility of magnetomechanical actuation at the nanoscale for the remote modulation of biochemical reactions.

  3. Evaluation of Temperature-Dependent Effective Material Properties and Performance of a Thermoelectric Module

    NASA Astrophysics Data System (ADS)

    Chien, Heng-Chieh; Chu, En-Ting; Hsieh, Huey-Lin; Huang, Jing-Yi; Wu, Sheng-Tsai; Dai, Ming-Ji; Liu, Chun-Kai; Yao, Da-Jeng

    2013-07-01

    We devised a novel method to evaluate the temperature-dependent effective properties of a thermoelectric module (TEM): Seebeck coefficient ( S m), internal electrical resistance ( R m), and thermal conductance ( K m). After calculation, the effective properties of the module are converted to the average material properties of a p- n thermoelectric pillar pair inside the module: Seebeck coefficient ( S TE), electrical resistivity ( ρ TE), and thermal conductivity ( k TE). For a commercial thermoelectric module (Altec 1091) chosen to verify the novel method, the measured S TE has a maximum value at bath temperature of 110°C; ρ TE shows a positive linear trend dependent on the bath temperature, and k TE increases slightly with increasing bath temperature. The results show the method to have satisfactory measurement performance in terms of practicability and reliability; the data for tests near 23°C agree with published values.

  4. Teaching the Role of Mitochondrial Transport in Energy Metabolism

    ERIC Educational Resources Information Center

    Passarella, Salvatore; Atlante, Anna

    2007-01-01

    Studies from our laboratories over recent years have uncovered the existence, and established the properties of a variety of mitochondrial transporters. The properties of these transporters throw light on a variety of biochemical phenomena that were previously poorly understood. In particular the role of mitochondrial transport in energy…

  5. Automated analysis of information processing, kinetic independence and modular architecture in biochemical networks using MIDIA.

    PubMed

    Bowsher, Clive G

    2011-02-15

    Understanding the encoding and propagation of information by biochemical reaction networks and the relationship of such information processing properties to modular network structure is of fundamental importance in the study of cell signalling and regulation. However, a rigorous, automated approach for general biochemical networks has not been available, and high-throughput analysis has therefore been out of reach. Modularization Identification by Dynamic Independence Algorithms (MIDIA) is a user-friendly, extensible R package that performs automated analysis of how information is processed by biochemical networks. An important component is the algorithm's ability to identify exact network decompositions based on both the mass action kinetics and informational properties of the network. These modularizations are visualized using a tree structure from which important dynamic conditional independence properties can be directly read. Only partial stoichiometric information needs to be used as input to MIDIA, and neither simulations nor knowledge of rate parameters are required. When applied to a signalling network, for example, the method identifies the routes and species involved in the sequential propagation of information between its multiple inputs and outputs. These routes correspond to the relevant paths in the tree structure and may be further visualized using the Input-Output Path Matrix tool. MIDIA remains computationally feasible for the largest network reconstructions currently available and is straightforward to use with models written in Systems Biology Markup Language (SBML). The package is distributed under the GNU General Public License and is available, together with a link to browsable Supplementary Material, at http://code.google.com/p/midia. Further information is at www.maths.bris.ac.uk/~macgb/Software.html.

  6. [The influence of N-, S-containing chinasolone derivatives (NC-224) on the biochemical and physicochemical parameters of membrane endoplasmatic reticulum and nuclear chromatine fractions of rats liver cells in conditions of its injury by tetrachloromethane].

    PubMed

    Gubs'kyî, Iu I; Goriushko, G G; Belenichev, I F; Kovalenko, S I; Litvinova, N V; Marchenko, O M; Kurapova, T M; Babenko, L P; Velychko, O M

    2010-01-01

    Using biochemical and physicochemical methods of investigation in vivo, the effect of the substance NC-224, N-, S-chinasolone-derivative, on the lipoperoxidation activity in rat liver endoplasmatic reticulum membranes and nuclear chromatin fractions under tetrachloromethane intoxication have been studied. It was shown that NC-224 has pronounced antioxidant activity which is the biochemical basis of the substance membrane- and genome-protective effects and its ability to restore physicochemical properties of the surface and hydrophobic zones of hepatocyte membranes and structural parameter nuclear chromatin fractions in the conditions of chemical liver injury.

  7. The Thickness Effect of the Functional Film for the Fabrication of Photovoltaic Module.

    PubMed

    Shan, Bowen; Kim, Jung Hyun; Choi, Wonseok

    2018-09-01

    In this study, a functional coating technology to improve the anti-fouling properties of the photo-voltaic module is introduced. The coating was applied on the cover glass, which is the same material as the photovoltaic module. After coating the cover glass once, twice, and three times in the horizontal and vertical directions respectively, the anti-fouling properties was tested according to the coating times and the thickness of the coating film. To ensure the durability of the coating film, the annealing process was performed for 1 hour at 200 °C in a furnace after coating. Finally, the photovoltaic module will be coated with the best coating method. Compared to uncoated modules, the coated photovoltaic modules showed significantly improved anti-fouling properties and also good performance in hardness and adhesion.

  8. Hemoglobin Variants: Biochemical Properties and Clinical Correlates

    PubMed Central

    Thom, Christopher S.; Dickson, Claire F.; Gell, David A.; Weiss, Mitchell J.

    2013-01-01

    Diseases affecting hemoglobin synthesis and function are extremely common worldwide. More than 1000 naturally occurring human hemoglobin variants with single amino acid substitutions throughout the molecule have been discovered, mainly through their clinical and/or laboratory manifestations. These variants alter hemoglobin structure and biochemical properties with physiological effects ranging from insignificant to severe. Studies of these mutations in patients and in the laboratory have produced a wealth of information on hemoglobin biochemistry and biology with significant implications for hematology practice. More generally, landmark studies of hemoglobin performed over the past 60 years have established important paradigms for the disciplines of structural biology, genetics, biochemistry, and medicine. Here we review the major classes of hemoglobin variants, emphasizing general concepts and illustrative examples. PMID:23388674

  9. Isolation of Clostridium absonum and its cultural and biochemical properties.

    PubMed

    Hayase, M; Mitsui, N; Tamai, K; Nakamura, S; Nishida, S

    1974-01-01

    A new procedure for isolation of Clostridium absonum was devised. Sixtyseven strains of C. absonum were isolated from 135 soil samples, but no strain of C. absonum could be found from human fecal samples. The lecithinase, hemolysin, and lethal toxin in the culture filtrates of this species exhibited low avidity for C. perfringens type A antitoxin. The three activities were inseparable by the present method of purification. A reinvestigation of biochemical properties revealed that incomplete suppression of lecithinase reaction by C. perfringens type A antitoxin and no fermentation of raffinose, melibiose, and starch are useful criteria to differentiate C. absonum from C. perfringens, and that positive, although weak, gelatin liquefaction and fermentation of trehalose are useful to differentiate it from C. paraperfringens.

  10. A Prospective Trial of Intensity Modulated Radiation Therapy (IMRT) Incorporating a Simultaneous Integrated Boost for Prostate Cancer: Long-term Outcomes Compared With Standard Image Guided IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schild, Michael H.; Schild, Steven E., E-mail: sschild@mayo.edu; Wong, William W.

    Purpose: This report describes the long-term outcomes of a prospective trial of intensity modulated radiation therapy (IMRT), integrating a {sup 111}In capromab pendetide (ProstaScint) scan-directed simultaneous integrated boost (SIB) for localized prostate cancer. Methods and Materials: Seventy-one patients with T1N0M0 to T4N0M0 prostate cancer were enrolled, and their ProstaScint and pelvic computed tomography scans were coregistered for treatment planning. The entire prostate received 75.6 Gy in 42 fractions with IMRT, whereas regions of increased uptake on ProstaScint scans received 82 Gy as an SIB. Patients with intermediate- and high-risk disease also received 6 months and 12 months of adjuvant hormonal therapy, respectively. Results: The studymore » enrolled 31 low-, 30 intermediate-, and 10 high-risk patients. The median follow-up was 120 months (range, 24-150 months). The 10-year biochemical control rates were 85% for the entire cohort and 84%, 84%, and 90% for patients with low-, intermediate-, and high-risk disease, respectively. The 10-year survival rate of the entire cohort was 69%. Pretreatment prostate-specific antigen level >10 ng/mL and boost volume of >10% of the prostate volume were significantly associated with poorer biochemical control and survival. The outcomes were compared with those of a cohort of 302 patients treated similarly but without the SIB and followed up for a median of 91 months (range, 6-138 months). The 5- and 10-year biochemical control rates were 86% and 61%, respectively, in patients without the SIB compared with 94% and 85%, respectively, in patients in this trial who received the SIB (P=.02). The cohort that received an SIB did not have increased toxicity. Conclusions: The described IMRT strategy, integrating multiple imaging modalities to administer 75.6 Gy to the entire prostate with a boost dose of 82 Gy, was feasible. The addition of the SIB was associated with greater biochemical control but not toxicity. Modern imaging technology can be used to locally intensify the dose to tumors and spare normal tissues, producing very favorable long-term biochemical disease control.« less

  11. eQuilibrator--the biochemical thermodynamics calculator.

    PubMed

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like 'how much Gibbs energy is released by ATP hydrolysis at pH 5?' are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use.

  12. eQuilibrator—the biochemical thermodynamics calculator

    PubMed Central

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like ‘how much Gibbs energy is released by ATP hydrolysis at pH 5?’ are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use. PMID:22064852

  13. Dynamics of biochemical processes and redox conditions in geochemically linked landscapes of oligotrophic bogs

    NASA Astrophysics Data System (ADS)

    Inisheva, L. I.; Szajdak, L.; Sergeeva, M. A.

    2016-04-01

    The biological activity in oligotrophic peatlands at the margins of the Vasyugan Mire has been studied. It is shown found that differently directed biochemical processes manifest themselves in the entire peat profile down to the underlying mineral substrate. Their activity is highly variable. It is argued that the notion about active and inert layers in peat soils is only applicable for the description of their water regime. The degree of the biochemical activity is specified by the physical soil properties. As a result of the biochemical processes, a micromosaic aerobic-anaerobic medium is developed under the surface waterlogged layer of peat deposits. This layer contains the gas phase, including oxygen. It is concluded that the organic and mineral parts of peat bogs represent a single functional system of a genetic peat profile with a clear record of the history of its development.

  14. Intracellular Physiology of the Rat Suprachiasmatic Nucleus: Electrical Properties, Neurotransmission, and Effects of Neuromodulators.

    DTIC Science & Technology

    1992-08-24

    Rat Suprachiasmatic Nucleus: Electrical Properties, Neurotransmission, and Effects of Neuromodulators 12. PERSONAL AUTHOR(S) F. Edward Dudek 13a...intrinsic electrical properties, synaptic and non-synaptic transmission, and neuromodulation . We have studied the role of excitatory and inhibitory amino... Neuromodulation : Smithson. K.G.. MacVicar. B.A. and Hatton. G.I. (1983) The Biochemical Control of Neuronal Excitability. Oxford Polyethylene glycol

  15. Plant-bacterial pathogen interactions mediated by type III effectors.

    PubMed

    Feng, Feng; Zhou, Jian-Min

    2012-08-01

    Effectors secreted by the bacterial type III system play a central role in the interaction between Gram-negative bacterial pathogens and their host plants. Recent advances in the effector studies have helped cementing several key concepts concerning bacterial pathogenesis, plant immunity, and plant-pathogen co-evolution. Type III effectors use a variety of biochemical mechanisms to target specific host proteins or DNA for pathogenesis. The identifications of their host targets led to the identification of novel components of plant innate immune system. Key modules of plant immune signaling pathways such as immune receptor complexes and MAPK cascades have emerged as a major battle ground for host-pathogen adaptation. These modules are attacked by multiple type III effectors, and some components of these modules have evolved to actively sense the effectors and trigger immunity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Structural basis of AMPK regulation by adenine nucleotides and glycogen

    DOE PAGES

    Li, Xiaodan; Wang, Lili; Zhou, X. Edward; ...

    2014-11-21

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor and regulator of energy homeostasis, and a promising drug target for the treatment of diabetes, obesity, and cancer. Here we present low-resolution crystal structures of the human α1β2γ1 holo-AMPK complex bound to its allosteric modulators AMP and the glycogen-mimic cyclodextrin, both in the phosphorylated (4.05 Å) and non-phosphorylated (4.60 Å) state. In addition, we have solved a 2.95 Å structure of the human kinase domain (KD) bound to the adjacent autoinhibitory domain (AID) and have performed extensive biochemical and mutational studies. Altogether, these studies illustrate an underlying mechanism of allostericmore » AMPK modulation by AMP and glycogen, whose binding changes the equilibria between alternate AID (AMP) and carbohydrate-binding module (glycogen) interactions.« less

  17. Pan-phylum Comparison of Nematode Metabolic Potential

    PubMed Central

    Tyagi, Rahul; Rosa, Bruce A.; Lewis, Warren G.; Mitreva, Makedonka

    2015-01-01

    Nematodes are among the most important causative pathogens of neglected tropical diseases. The increased availability of genomic and transcriptomic data for many understudied nematode species provides a great opportunity to investigate different aspects of their biology. Increasingly, metabolic potential of pathogens is recognized as a critical determinant governing their development, growth and pathogenicity. Comparing metabolic potential among species with distinct trophic ecologies can provide insights on overall biology or molecular adaptations. Furthermore, ascertaining gene expression at pathway level can help in understanding metabolic dynamics over development. Comparison of biochemical pathways (or subpathways, i.e. pathway modules) among related species can also retrospectively indicate potential mistakes in gene-calling and functional annotation. We show with numerous illustrative case studies that comparisons at the level of pathway modules have the potential to uncover biological insights while remaining computationally tractable. Here, we reconstruct and compare metabolic modules found in the deduced proteomes of 13 nematodes and 10 non-nematode species (including hosts of the parasitic nematode species). We observed that the metabolic potential is, in general, concomitant with phylogenetic and/or ecological similarity. Varied metabolic strategies are required among the nematodes, with only 8 out of 51 pathway modules being completely conserved. Enzyme comparison based on topology of metabolic modules uncovered diversification between parasite and host that can potentially guide therapeutic intervention. Gene expression data from 4 nematode species were used to study metabolic dynamics over their life cycles. We report unexpected differential metabolism between immature and mature microfilariae of the human filarial parasite Brugia malayi. A set of genes potentially important for parasitism is also reported, based on an analysis of gene expression in C. elegans and the human hookworm Necator americanus. We illustrate how analyzing and comparing metabolism at the level of pathway modules can improve existing knowledge of nematode metabolic potential and can provide parasitism related insights. Our reconstruction and comparison of nematode metabolic pathways at a pan-phylum and inter-phylum level enabled determination of phylogenetic restrictions and differential expression of pathways. A visualization of our results is available at http://nematode.net and the program for identification of module completeness (modDFS) is freely available at SourceForge. The methods reported will help biologists to predict biochemical potential of any organism with available deduced proteome, to direct experiments and test hypotheses. PMID:26000881

  18. Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex

    PubMed Central

    Han, Yan; Luo, Jie; Ranish, Jeffrey; Hahn, Steven

    2014-01-01

    The conserved transcription coactivator SAGA is comprised of several modules that are involved in activator binding, TBP binding, histone acetylation (HAT) and deubiquitination (DUB). Crosslinking and mass spectrometry, together with genetic and biochemical analyses, were used to determine the molecular architecture of the SAGA-TBP complex. We find that the SAGA Taf and Taf-like subunits form a TFIID-like core complex at the center of SAGA that makes extensive interactions with all other SAGA modules. SAGA-TBP binding involves a network of interactions between subunits Spt3, Spt8, Spt20, and Spt7. The HAT and DUB modules are in close proximity, and the DUB module modestly stimulates HAT function. The large activator-binding subunit Tra1 primarily connects to the TFIID-like core via its FAT domain. These combined results were used to derive a model for the arrangement of the SAGA subunits and its interactions with TBP. Our results provide new insight into SAGA function in gene regulation, its structural similarity with TFIID, and functional interactions between the SAGA modules. PMID:25216679

  19. Dichrometer errors resulting from large signals or improper modulator phasing.

    PubMed

    Sutherland, John C

    2012-09-01

    A single-beam spectrometer equipped with a photoelastic modulator can be configured to measure a number of different parameters useful in characterizing chemical and biochemical materials including natural and magnetic circular dichroism, linear dichroism, natural and magnetic fluorescence-detected circular dichroism, and fluorescence polarization anisotropy as well as total absorption and fluorescence. The derivations of the mathematical expressions used to extract these parameters from ultraviolet, visible, and near-infrared light-induced electronic signals in a dichrometer assume that the dichroic signals are sufficiently small that certain mathematical approximations will not introduce significant errors. This article quantifies errors resulting from these assumptions as a function of the magnitude of the dichroic signals. In the case of linear dichroism, improper modulator programming can result in errors greater than those resulting from the assumption of small signal size, whereas for fluorescence polarization anisotropy, improper modulator phase alone gives incorrect results. Modulator phase can also impact the values of total absorbance recorded simultaneously with linear dichroism and total fluorescence. Copyright © 2012 Wiley Periodicals, Inc., A Wiley Company.

  20. Telmisartan as metabolic modulator: a new perspective in sports doping?

    PubMed

    Sanchis-Gomar, Fabian; Lippi, Giuseppe

    2012-03-01

    The World Antidoping Agency (WADA) has introduced some changes in the 2012 prohibited list. Among the leading innovations to the rules are that both 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (peroxisome proliferator-activated receptor-δ [PPAR-δ]-5' adenosine monophosphate-activated protein kinase [AMPK] agonist) and GW1516 (PPAR-δ-agonist) are no longer categorized as gene doping substances in the new 2012 prohibited list but as metabolic modulators in the class "Hormone and metabolic modulators." This may also be valid for the angotensin II receptor blocker telmisartan. It has recently been shown that telmisartan might induce similar biochemical, biological, and metabolic changes (e.g., mitochondrial biogenesis and changes in skeletal muscle fiber type) as those reported for the former call of substances. We suspect that metabolic modulators abuse such as telmisartan might become a tangible threat in sports and should be thereby targeted as an important antidoping issue. The 2012 WADA prohibited list does not provide telmisartan for a potential doping drug, but arguments supporting the consideration to include them among "metabolic modulators" are at hand.

  1. Acetylcholinesterase of Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi: Gene Identification, Expression, and Biochemical Properties of Recombinant Proteins

    DTIC Science & Technology

    2013-01-01

    predicted amino acid sequences of the three encoded BmAChEs were no more closely related to one another than AChEs from different organisms and their...solely on nucleotide and amino acid sequence similarity; however, the cholinesterase gene family contains a number of related enzymes and structural...acetylcholinesterase of P. papatasi was cloned, sequenced , and expressed in the baculo- virus system to generate a recombinant enzyme for biochemical

  2. Optical Fiber Sensing Using Quantum Dots

    PubMed Central

    Jorge, Pedro; Martins, Manuel António; Trindade, Tito; Santos, José Luís; Farahi, Faramarz

    2007-01-01

    Recent advances in the application of semiconductor nanocrystals, or quantum dots, as biochemical sensors are reviewed. Quantum dots have unique optical properties that make them promising alternatives to traditional dyes in many luminescence based bioanalytical techniques. An overview of the more relevant progresses in the application of quantum dots as biochemical probes is addressed. Special focus will be given to configurations where the sensing dots are incorporated in solid membranes and immobilized in optical fibers or planar waveguide platforms. PMID:28903308

  3. Experiment K-6-02. Biomedical, biochemical and morphological alterations of muscle and dense, fibrous connective tissues during 14 days of spaceflight

    NASA Technical Reports Server (NTRS)

    Vailas, A.; Zernicke, R.; Grindeland, R.; Kaplanski, A.

    1990-01-01

    Findings on the connective tissue response to short-term space flight (12 days) are discussed. Specifically, data regarding the biochemical, biomechanical and morphological characteristics of selected connective tissues (humerus, vertebral body, tendon and skeletal muscle) of growing rats is given. Results are given concerning the humerus cortical bone, the vertebral bone, nutritional effects on bone biomechanical properties, and soft tense fiber connective tissue response.

  4. Effect of hydroalcoholic extract of Aegle marmelos fruit on radical scavenging activity and exercise-endurance capacity in mice.

    PubMed

    Nallamuthu, Ilaiyaraja; Tamatam, Anand; Khanum, Farhath

    2014-05-01

    Aegle marmelos L. Corr (Rutaceae) is an important Indian Ayurvedic medicinal plant used for the treatment of various ailments. However, little information is available on the anti-fatigue properties of its fruit. Evaluation of the physical endurance and exercise-induced oxidative stress modulating properties of A. marmelos fruit in mice. Radical scavenging activity of the fruit hydroalcoholic extract was evaluated using in vitro systems. The extract was further evaluated for its endurance-enhancing properties at three oral doses (100, 200 and 400 mg/kg b.wt) in BALB/c mice for 21 d using a swimming test. The extract exhibited significant scavenging activity against DPPH (IC₅₀, 351 ± 37 µg/ml) and ABTS radicals (IC₅₀, 228 ± 25 µg/ml), respectively, with the polyphenol content of 95 µg/mg extract. It also inhibited AAPH radical-induced oxidation of biomolecules such as BSA protein (63%), plasmid DNA (81%) and lipids (80.5%). Administration of extract resulted in an increase in the duration of swimming time to exhaustion by 23.4 and 47.5% for medium and higher doses, respectively. The extract significantly normalized the fatigue-related biochemical parameters and also down-regulated the swim stress-induced over-expression of heat shock protein-70 and up-regulated the skeletal muscle metabolic regulators (GLUT-4 and AMPK1-α) by 2- and 3-fold, respectively, at the higher dose in muscle tissues. Our study demonstrates the anti-fatigue properties of A. marmelos fruit, most probably manifested by delaying the accumulation of serum lactic acid, increasing the fat utilization and up-regulating the skeletal muscle metabolic regulators.

  5. Multimodal optical setup based on spectrometer and cameras combination for biological tissue characterization with spatially modulated illumination

    NASA Astrophysics Data System (ADS)

    Baruch, Daniel; Abookasis, David

    2017-04-01

    The application of optical techniques as tools for biomedical research has generated substantial interest for the ability of such methodologies to simultaneously measure biochemical and morphological parameters of tissue. Ongoing optimization of optical techniques may introduce such tools as alternative or complementary to conventional methodologies. The common approach shared by current optical techniques lies in the independent acquisition of tissue's optical properties (i.e., absorption and reduced scattering coefficients) from reflected or transmitted light. Such optical parameters, in turn, provide detailed information regarding both the concentrations of clinically relevant chromophores and macroscopic structural variations in tissue. We couple a noncontact optical setup with a simple analysis algorithm to obtain absorption and scattering coefficients of biological samples under test. Technically, a portable picoprojector projects serial sinusoidal patterns at low and high spatial frequencies, while a spectrometer and two independent CCD cameras simultaneously acquire the reflected diffuse light through a single spectrometer and two separate CCD cameras having different bandpass filters at nonisosbestic and isosbestic wavelengths in front of each. This configuration fills the gaps in each other's capabilities for acquiring optical properties of tissue at high spectral and spatial resolution. Experiments were performed on both tissue-mimicking phantoms as well as hands of healthy human volunteers to quantify their optical properties as proof of concept for the present technique. In a separate experiment, we derived the optical properties of the hand skin from the measured diffuse reflectance, based on a recently developed camera model. Additionally, oxygen saturation levels of tissue measured by the system were found to agree well with reference values. Taken together, the present results demonstrate the potential of this integrated setup for diagnostic and research applications.

  6. Hypocholesterolemic Properties and Prebiotic Effects of Mexican Ganoderma lucidum in C57BL/6 Mice.

    PubMed

    Meneses, María E; Martínez-Carrera, Daniel; Torres, Nimbe; Sánchez-Tapia, Mónica; Aguilar-López, Miriam; Morales, Porfirio; Sobal, Mercedes; Bernabé, Teodoro; Escudero, Helios; Granados-Portillo, Omar; Tovar, Armando R

    2016-01-01

    Edible and medicinal mushrooms contain bioactive compounds with promising effects on several cardiovascular risk biomarkers. However, strains of Ganoderma lucidum of Mexican origin have not yet been studied. Standardized extracts of G. lucidum (Gl) were given to C57BL/6 mice fed a high-cholesterol diet compared with the drug simvastatin. The effects of the extracts on serum biochemical parameters, liver lipid content, cholesterol metabolism, and the composition of gut microbiota were assessed. Acetylsalicylic acid (10 mM) added to the cultivation substrate modulated properties of Gl extracts obtained from mature basidiomata. Compared to the high-cholesterol diet group, the consumption of Gl extracts significantly reduced total serum cholesterol (by 19.2% to 27.1%), LDL-C (by 4.5% to 35.1%), triglyceride concentration (by 16.3% to 46.6%), hepatic cholesterol (by 28.7% to 52%) and hepatic triglycerides (by 43.8% to 56.6%). These effects were associated with a significant reduction in the expression of lipogenic genes (Hmgcr, Srebp1c, Fasn, and Acaca) and genes involved in reverse cholesterol transport (Abcg5 and Abcg8), as well as an increase in Ldlr gene expression in the liver. No significant changes were observed in the gene expression of Srebp2, Abca1 or Cyp7a1. In several cases, Gl-1 or Gl-2 extracts showed better effects on lipid metabolism than the drug simvastatin. A proposed mechanism of action for the reduction in cholesterol levels is mediated by α-glucans and β-glucans from Gl, which promoted decreased absorption of cholesterol in the gut, as well as greater excretion of fecal bile acids and cholesterol. The prebiotic effects of Gl-1 and Gl-2 extracts modulated the composition of gut microbiota and produced an increase in the Lactobacillaceae family and Lactobacillus genus level compared to the control group, high-cholesterol diet group and group supplemented with simvastatin. Mexican genetic resources of Gl represent a new source of bioactive compounds showing hypocholesterolemic properties and prebiotic effects.

  7. Hypocholesterolemic Properties and Prebiotic Effects of Mexican Ganoderma lucidum in C57BL/6 Mice

    PubMed Central

    Meneses, María E.; Martínez-Carrera, Daniel; Torres, Nimbe; Sánchez-Tapia, Mónica; Aguilar-López, Miriam; Morales, Porfirio; Sobal, Mercedes; Bernabé, Teodoro; Escudero, Helios; Granados-Portillo, Omar; Tovar, Armando R.

    2016-01-01

    Edible and medicinal mushrooms contain bioactive compounds with promising effects on several cardiovascular risk biomarkers. However, strains of Ganoderma lucidum of Mexican origin have not yet been studied. Standardized extracts of G. lucidum (Gl) were given to C57BL/6 mice fed a high-cholesterol diet compared with the drug simvastatin. The effects of the extracts on serum biochemical parameters, liver lipid content, cholesterol metabolism, and the composition of gut microbiota were assessed. Acetylsalicylic acid (10 mM) added to the cultivation substrate modulated properties of Gl extracts obtained from mature basidiomata. Compared to the high-cholesterol diet group, the consumption of Gl extracts significantly reduced total serum cholesterol (by 19.2% to 27.1%), LDL-C (by 4.5% to 35.1%), triglyceride concentration (by 16.3% to 46.6%), hepatic cholesterol (by 28.7% to 52%) and hepatic triglycerides (by 43.8% to 56.6%). These effects were associated with a significant reduction in the expression of lipogenic genes (Hmgcr, Srebp1c, Fasn, and Acaca) and genes involved in reverse cholesterol transport (Abcg5 and Abcg8), as well as an increase in Ldlr gene expression in the liver. No significant changes were observed in the gene expression of Srebp2, Abca1 or Cyp7a1. In several cases, Gl-1 or Gl-2 extracts showed better effects on lipid metabolism than the drug simvastatin. A proposed mechanism of action for the reduction in cholesterol levels is mediated by α-glucans and β-glucans from Gl, which promoted decreased absorption of cholesterol in the gut, as well as greater excretion of fecal bile acids and cholesterol. The prebiotic effects of Gl-1 and Gl-2 extracts modulated the composition of gut microbiota and produced an increase in the Lactobacillaceae family and Lactobacillus genus level compared to the control group, high-cholesterol diet group and group supplemented with simvastatin. Mexican genetic resources of Gl represent a new source of bioactive compounds showing hypocholesterolemic properties and prebiotic effects. PMID:27438015

  8. A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress-induced membrane biogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, J.; Pei-Chen Lin, C.; Pathak, M. C.

    2016-07-06

    Lipid droplet (LD) utilization is an important cellular activity that regulates energy balance and release of lipid second messengers. Because fatty acids exhibit both beneficial and toxic properties, their release from LDs must be controlled. Here we demonstrate that yeast Sfh3, an unusual Sec14-like phosphatidylinositol transfer protein, is an LD-associated protein that inhibits lipid mobilization from these particles. We further document a complex biochemical diversification of LDs during sporulation in which Sfh3 and select other LD proteins redistribute into discrete LD subpopulations. The data show that Sfh3 modulates the efficiency with which a neutral lipid hydrolase-rich LD subclass is consumedmore » during biogenesis of specialized membrane envelopes that package replicated haploid meiotic genomes. These results present novel insights into the interface between phosphoinositide signaling and developmental regulation of LD metabolism and unveil meiosis-specific aspects of Sfh3 (and phosphoinositide) biology that are invisible to contemporary haploid-centric cell biological, proteomic, and functional genomics approaches.« less

  9. QM/MM Molecular Dynamics Studies of Metal Binding Proteins

    PubMed Central

    Vidossich, Pietro; Magistrato, Alessandra

    2014-01-01

    Mixed quantum-classical (quantum mechanical/molecular mechanical (QM/MM)) simulations have strongly contributed to providing insights into the understanding of several structural and mechanistic aspects of biological molecules. They played a particularly important role in metal binding proteins, where the electronic effects of transition metals have to be explicitly taken into account for the correct representation of the underlying biochemical process. In this review, after a brief description of the basic concepts of the QM/MM method, we provide an overview of its capabilities using selected examples taken from our work. Specifically, we will focus on heme peroxidases, metallo-β-lactamases, α-synuclein and ligase ribozymes to show how this approach is capable of describing the catalytic and/or structural role played by transition (Fe, Zn or Cu) and main group (Mg) metals. Applications will reveal how metal ions influence the formation and reduction of high redox intermediates in catalytic cycles and enhance drug metabolism, amyloidogenic aggregate formation and nucleic acid synthesis. In turn, it will become manifest that the protein frame directs and modulates the properties and reactivity of the metal ions. PMID:25006697

  10. Cytochrome P450-mediated metabolism of vitamin D

    PubMed Central

    Jones, Glenville; Prosser, David E.; Kaufmann, Martin

    2014-01-01

    The vitamin D signal transduction system involves a series of cytochrome P450-containing sterol hydroxylases to generate and degrade the active hormone, 1α,25-dihydroxyvitamin D3, which serves as a ligand for the vitamin D receptor-mediated transcriptional gene expression described in companion articles in this review series. This review updates our current knowledge of the specific anabolic cytochrome P450s involved in 25- and 1α-hydroxylation, as well as the catabolic cytochrome P450 involved in 24- and 23-hydroxylation steps, which are believed to initiate inactivation of the vitamin D molecule. We focus on the biochemical properties of these enzymes; key residues in their active sites derived from crystal structures and mutagenesis studies; the physiological roles of these enzymes as determined by animal knockout studies and human genetic diseases; and the regulation of these different cytochrome P450s by extracellular ions and peptide modulators. We highlight the importance of these cytochrome P450s in the pathogenesis of kidney disease, metabolic bone disease, and hyperproliferative diseases, such as psoriasis and cancer; as well as explore potential future developments in the field. PMID:23564710

  11. Conformational Switching of a Foldamer in a Multicomponent System by pH-Filtered Selection between Competing Noncovalent Interactions

    PubMed Central

    2015-01-01

    Biomolecular systems are able to respond to their chemical environment through reversible, selective, noncovalent intermolecular interactions. Typically, these interactions induce conformational changes that initiate a signaling cascade, allowing the regulation of biochemical pathways. In this work, we describe an artificial molecular system that mimics this ability to translate selective noncovalent interactions into reversible conformational changes. An achiral but helical foldamer carrying a basic binding site interacts selectively with the most acidic member of a suite of chiral ligands. As a consequence of this noncovalent interaction, a global absolute screw sense preference, detectable by 13C NMR, is induced in the foldamer. Addition of base, or acid, to the mixture of ligands competitively modulates their interaction with the binding site, and reversibly switches the foldamer chain between its left and right-handed conformations. As a result, the foldamer–ligand mixture behaves as a biomimetic chemical system with emergent properties, functioning as a “proton-counting” molecular device capable of providing a tunable, pH-dependent conformational response to its environment. PMID:25915163

  12. Preparative two-step purification of recombinant H1.0 linker histone and its domains.

    PubMed

    Ivic, Nives; Bilokapic, Silvija; Halic, Mario

    2017-01-01

    H1 linker histones are small basic proteins that have a key role in the formation and maintenance of higher-order chromatin structures. Additionally, many examples have shown that linker histones play an important role in gene regulation, modulated by their various subtypes and posttranslational modifications. Obtaining high amounts of very pure linker histones, especially for efficient antibody production, remains a demanding and challenging procedure. Here we present an easy and fast method to purify human linker histone H1.0 overexpressed in Escherichia coli, as well as its domains: N-terminal/globular domain and C-terminal intrinsically disordered domain. This purification protocol relies on a simple affinity chromatography step followed by cation exchange due to the highly basic properties of histone proteins. Therefore, this protocol can also be applied to other linker histones. Highly pure proteins in amounts sufficient for most biochemical experiments can be obtained. The functional quality of purified H1.0 histone and its domains has been confirmed by pull-down, gel-mobility shift assays and the nuclear import assay.

  13. Photoresponsive biomaterials for targeted drug delivery and 4D cell culture

    NASA Astrophysics Data System (ADS)

    Ruskowitz, Emily R.; Deforest, Cole A.

    2018-02-01

    Biological signalling is regulated through a complex and tightly choreographed interplay between cells and their extracellular matrix. The spatiotemporal control of these interactions is essential for tissue function, and disruptions to this dialogue often result in aberrant cell fate and disease. When disturbances are well understood, correct biological function can be restored through the precise introduction of therapeutics. Moreover, model systems with modifiable physiochemical properties are needed to probe the effects of therapeutic molecules and to investigate cell-matrix interactions. Photoresponsive biomaterials benefit from spatiotemporal tunability, which allows for site-specific therapeutic delivery in vivo and 4D modulation of synthetic cell culture platforms to mimic the dynamic heterogeneity of the human body in vitro. In this Review, we discuss how light can be exploited to modify different biomaterials in the context of photomediated drug delivery and phototunable cell culture platforms. We survey various photochemistries for their applicability in vitro and in vivo and for the biochemical and biophysical modification of materials. Finally, we highlight emerging tools and provide an outlook for the field of photoresponsive biomaterials.

  14. Functional link between plasma membrane spatiotemporal dynamics, cancer biology, and dietary membrane-altering agents.

    PubMed

    Erazo-Oliveras, Alfredo; Fuentes, Natividad R; Wright, Rachel C; Chapkin, Robert S

    2018-06-02

    The cell plasma membrane serves as a nexus integrating extra- and intracellular components, which together enable many of the fundamental cellular signaling processes that sustain life. In order to perform this key function, plasma membrane components assemble into well-defined domains exhibiting distinct biochemical and biophysical properties that modulate various signaling events. Dysregulation of these highly dynamic membrane domains can promote oncogenic signaling. Recently, it has been demonstrated that select membrane-targeted dietary bioactives (MTDBs) have the ability to remodel plasma membrane domains and subsequently reduce cancer risk. In this review, we focus on the importance of plasma membrane domain structural and signaling functionalities as well as how loss of membrane homeostasis can drive aberrant signaling. Additionally, we discuss the intricacies associated with the investigation of these membrane domain features and their associations with cancer biology. Lastly, we describe the current literature focusing on MTDBs, including mechanisms of chemoprevention and therapeutics in order to establish a functional link between these membrane-altering biomolecules, tuning of plasma membrane hierarchal organization, and their implications in cancer prevention.

  15. Structural basis for membrane targeting by the MVB12-associated [beta]-prism domain of the human ESCRT-I MVB12 subunit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boura, Evzen; Hurley, James H.

    2012-03-15

    MVB12-associated {beta}-prism (MABP) domains are predicted to occur in a diverse set of membrane-associated bacterial and eukaryotic proteins, but their existence, structure, and biochemical properties have not been characterized experimentally. Here, we find that the MABP domains of the MVB12A and B subunits of ESCRT-I are functional modules that bind in vitro to liposomes containing acidic lipids depending on negative charge density. The MABP domain is capable of autonomously localizing to subcellular puncta and to the plasma membrane. The 1.3-{angstrom} atomic resolution crystal structure of the MVB12B MABP domain reveals a {beta}-prism fold, a hydrophobic membrane-anchoring loop, and an electropositivemore » phosphoinositide-binding patch. The basic patch is open, which explains how it senses negative charge density but lacks stereoselectivity. These observations show how ESCRT-I could act as a coincidence detector for acidic phospholipids and protein ligands, enabling it to function both in protein transport at endosomes and in cytokinesis and viral budding at the plasma membrane.« less

  16. A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress-induced membrane biogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Jihui; Lin, Coney Pei-Chen; Pathak, Manish C.

    2014-07-11

    Lipid droplet (LD) utilization is an important cellular activity that regulates energy balance and release of lipid second messengers. Because fatty acids exhibit both beneficial and toxic properties, their release from LDs must be controlled. Here we demonstrate that yeast Sfh3, an unusual Sec14-like phosphatidylinositol transfer protein, is an LD-associated protein that inhibits lipid mobilization from these particles. We further document a complex biochemical diversification of LDs during sporulation in which Sfh3 and select other LD proteins redistribute into discrete LD subpopulations. The data show that Sfh3 modulates the efficiency with which a neutral lipid hydrolase-rich LD subclass is consumedmore » during biogenesis of specialized membrane envelopes that package replicated haploid meiotic genomes. These results present novel insights into the interface between phosphoinositide signaling and developmental regulation of LD metabolism and unveil meiosis-specific aspects of Sfh3 (and phosphoinositide) biology that are invisible to contemporary haploid-centric cell biological, proteomic, and functional genomics approaches.« less

  17. Molecular basis of Kar9-Bim1 complex function during mating and spindle positioning

    PubMed Central

    Manatschal, Cristina; Farcas, Ana-Maria; Degen, Miriam Steiner; Bayer, Mathias; Kumar, Anil; Landgraf, Christiane; Volkmer, Rudolf; Barral, Yves; Steinmetz, Michel O.

    2016-01-01

    The Kar9 pathway promotes nuclear fusion during mating and spindle alignment during metaphase in budding yeast. How Kar9 supports the different outcome of these two divergent processes is an open question. Here, we show that three sites in the C-terminal disordered domain of Kar9 mediate tight Kar9 interaction with the C-terminal dimerization domain of Bim1 (EB1 orthologue). Site1 and Site2 contain SxIP motifs; however, Site3 defines a novel type of EB1-binding site. Whereas Site2 and Site3 mediate Kar9 recruitment to microtubule tips, nuclear movement, and karyogamy, only Site2 functions in spindle positioning during metaphase. Site1 in turn plays an inhibitory role during mating. Additionally, the Kar9-Bim1 complex is involved in microtubule-independent activities during mating. Together, our data reveal how multiple and partially redundant EB1-binding sites provide a microtubule-associated protein with the means to modulate its biochemical properties to promote different molecular processes during cell proliferation and differentiation. PMID:27682587

  18. Inorganic polyphosphate in the microbial world. Emerging roles for a multifaceted biopolymer.

    PubMed

    Albi, Tomás; Serrano, Aurelio

    2016-02-01

    Inorganic polyphosphates (polyP) are linear polymers of tens to hundreds orthophosphate residues linked by phosphoanhydride bonds. These fairly abundant biopolymers occur in all extant forms of life, from prokaryotes to mammals, and could have played a relevant role in prebiotic evolution. Since the first identification of polyP deposits as metachromatic or volutin granules in yeasts in the nineteenth century, an increasing number of varied physiological functions have been reported. Due to their "high energy" bonds analogous to those in ATP and their properties as polyanions, polyP serve as microbial phosphagens for a variety of biochemical reactions, as a buffer against alkalis, as a storage of Ca(2+) and as a metal-chelating agent. In addition, recent studies have revealed polyP importance in signaling and regulatory processes, cell viability and proliferation, pathogen virulence, as a structural component and chemical chaperone, and as modulator of microbial stress response. This review summarizes the current status of knowledge and future perspectives of polyP functions and their related enzymes in the microbial world.

  19. A diet enriched with Mugil cephalus processed roes modulates the tissue lipid profile in healthy rats: a biochemical and chemometric assessment.

    PubMed

    Rosa, A; Atzeri, A; Putzu, D; Scano, P

    2016-01-01

    The effect of a diet enriched with mullet bottarga on the lipid profile (total lipids, total cholesterol, unsaturated fatty acids, α-tocopherol, and hydroperoxides) of plasma, liver, kidney, brain, and perirenal adipose tissues of healthy rats was investigated. Rats fed a 10% bottarga enriched-diet for 5 days showed body weights and tissue total lipid and cholesterol levels similar to those of animals fed control diet. Univariate and multivariate results showed that bottarga enriched-diet modified the fatty acid profile in all tissues, except brain. Significant increases of n-3 PUFA, particularly EPA, were observed together with a 20:4 n-6 decrease in plasma, liver, and kidney. Perirenal adipose tissue showed a fat accumulation that reflected the diet composition. The overall data suggest that mullet bottarga may be considered as a natural bioavailable source of n-3 PUFA and qualify it as a traditional food product with functional properties and a potential functional ingredient for preparation of n-3 PUFA enriched foods.

  20. The cholinergic anti-inflammatory pathway: An innovative treatment strategy for neurological diseases.

    PubMed

    Han, Bin; Li, Xiuping; Hao, Junwei

    2017-06-01

    Acetylcholine (ACh), as a classical neurotransmitter, regulates the neuronal network in response to internal and external stimuli. In recent decades, the biology of ACh has been endowed with unparalleled new insights, especially with respect to cholinergic anti-inflammatory properties in non-neuronal cells. In fact, a mechanism frequently referred to as the "cholinergic anti-inflammatory pathway" has been termed to describe interactions between the central nervous system (CNS) and the immune system via vagus nerve. As well documented, immune cells express choline acetyltransferase, a direct synthetase for ACh, and other corresponding cholinergic components. Alternatively, the ACh released from immune cells or cholinergic neurons modulates immune function in an autocrine/paracrine manner by acting on its receptors. Moreover, muscarinic or nicotinic ACh receptors on various immune cells and CNS glial cells administer the work of their respective agonists, causing functional and biochemical changes. In this review, we focus on the anti-inflammatory benefits of non-neuronal and neuronal ACh as a means of providing new insights into treating inflammation-related neurological diseases, as exemplified by those described herein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. An Adaptor Domain-Mediated Auto-Catalytic Interfacial Kinase Reaction

    PubMed Central

    Liao, Xiaoli; Su, Jing; Mrksich, Milan

    2010-01-01

    This paper describes a model system for studying the auto-catalytic phosphorylation of an immobilized substrate by a kinase enzyme. This work uses self-assembled monolayers (SAMs) of alkanethiolates on gold to present the peptide substrate on a planar surface. Treatment of the monolayer with Abl kinase results in phosphorylation of the substrate. The phosphorylated peptide then serves as a ligand for the SH2 adaptor domain of the kinase and thereby directs the kinase activity to nearby peptide substrates. This directed reaction is intramolecular and proceeds with a faster rate than does the initial, intermolecular reaction, making this an auto-catalytic process. The kinetic non-linearity gives rise to properties that have no counterpart in the corresponding homogeneous phase reaction: in one example, the rate for phosphorylation of a mixture of two peptides is faster than the sum of the rates for phosphorylation of each peptide when presented alone. This work highlights the use of an adaptor domain in modulating the activity of a kinase enzyme for an immobilized substrate and offers a new approach for studying biochemical reactions in spatially inhomogeneous settings. PMID:19821459

  2. Curcumin modulates free radical quenching in myocardial ischaemia in rats.

    PubMed

    Manikandan, Panchatcharam; Sumitra, Miriyala; Aishwarya, Srinivasan; Manohar, Bhakthavatsalam Murali; Lokanadam, Beema; Puvanakrishnan, Rengarajulu

    2004-10-01

    This study was designed to investigate the protective effect of curcumin (CUR) against isoprenaline induced myocardial ischaemia in rat myocardium. The effect of single oral dose of curcumin (15 mg kg(-1)), administered 30 min before and/or after the onset of ischaemia, was investigated by assessing oxidative stress related biochemical parameters in rat myocardium. Curcumin pre and post-treatment (PPT) was shown to decrease the levels of xanthine oxidase, superoxide anion, lipid peroxides (LPs) and myeloperoxidase while the levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) activities were significantly increased after curcumin PPT. Histopathological and transmission electron microscopical studies also confirmed the severe myocardial damage occurring as a consequence of isoprenaline induced ischaemia and they also showed the significant improvement effected by curcumin PPT. These findings provided evidence that curcumin was found to protect rat myocardium against ischaemic insult and the protective effect could be attributed to its antioxidant properties as well as its inhibitory effects on xanthine dehydrogenase/xanthine oxidase (XD/XO) conversion and resultant superoxide anion production.

  3. Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation.

    PubMed

    Minor, Daniel L; Findeisen, Felix

    2010-01-01

    Voltage-gated calcium channels (CaVs) are large, transmembrane multiprotein complexes that couple membrane depolarization to cellular calcium entry. These channels are central to cardiac action potential propagation, neurotransmitter and hormone release, muscle contraction, and calcium-dependent gene transcription. Over the past six years, the advent of high-resolution structural studies of CaV components from different isoforms and CaV modulators has begun to reveal the architecture that underlies the exceptionally rich feedback modulation that controls CaV action. These descriptions of CaV molecular anatomy have provided new, structure-based insights into the mechanisms by which particular channel elements affect voltage-dependent inactivation (VDI), calcium‑dependent inactivation (CDI), and calcium‑dependent facilitation (CDF). The initial successes have been achieved through structural studies of soluble channel domains and modulator proteins and have proven most powerful when paired with biochemical and functional studies that validate ideas inspired by the structures. Here, we review the progress in this growing area and highlight some key open challenges for future efforts.

  4. Nonreciprocal Thermal Material by Spatiotemporal Modulation

    NASA Astrophysics Data System (ADS)

    Torrent, Daniel; Poncelet, Olivier; Batsale, Jean-Chirstophe

    2018-03-01

    The thermal properties of a material with a spatiotemporal modulation, in the form of a traveling wave, in both the thermal conductivity and the specific heat capacity are studied. It is found that these materials behave as materials with an internal convectionlike term that provides them with nonreciprocal properties, in the sense that the heat flux has different properties when it propagates in the same direction or in the opposite one to the modulation of the parameters. An effective medium description is presented which accurately describes the modulated material, and numerical simulations support this description and verify the nonreciprocal properties of the material. It is found that these materials are promising candidates for the design of thermal diodes and other advanced devices for the control of the heat flow at all scales.

  5. Effects of a detergent micelle environment on P-glycoprotein (ABCB1)-ligand interactions

    PubMed Central

    Shukla, Suneet; Abel, Biebele; Chufan, Eduardo E.; Ambudkar, Suresh V.

    2017-01-01

    P-glycoprotein (P-gp) is a multidrug transporter that uses energy from ATP hydrolysis to export many structurally dissimilar hydrophobic and amphipathic compounds, including anticancer drugs from cells. Several structural studies on purified P-gp have been reported, but only limited and sometimes conflicting information is available on ligand interactions with the isolated transporter in a dodecyl-maltoside detergent environment. In this report we compared the biochemical properties of P-gp in native membranes, detergent micelles, and when reconstituted in artificial membranes. We found that the modulators zosuquidar, tariquidar, and elacridar stimulated the ATPase activity of purified human or mouse P-gp in a detergent micelle environment. In contrast, these drugs inhibited ATPase activity in native membranes or in proteoliposomes, with IC50 values in the 10–40 nm range. Similarly, a 30–150-fold decrease in the apparent affinity for verapamil and cyclic peptide inhibitor QZ59-SSS was observed in detergent micelles compared with native or artificial membranes. Together, these findings demonstrate that the high-affinity site is inaccessible because of either a conformational change or binding of detergent at the binding site in a detergent micelle environment. The ligands bind to a low-affinity site, resulting in altered modulation of P-gp ATPase activity. We, therefore, recommend studying structural and functional aspects of ligand interactions with purified P-gp and other ATP-binding cassette transporters that transport amphipathic or hydrophobic substrates in a detergent-free native or artificial membrane environment. PMID:28283574

  6. The CRM domain: an RNA binding module derived from an ancient ribosome-associated protein.

    PubMed

    Barkan, Alice; Klipcan, Larik; Ostersetzer, Oren; Kawamura, Tetsuya; Asakura, Yukari; Watkins, Kenneth P

    2007-01-01

    The CRS1-YhbY domain (also called the CRM domain) is represented as a stand-alone protein in Archaea and Bacteria, and in a family of single- and multidomain proteins in plants. The function of this domain is unknown, but structural data and the presence of the domain in several proteins known to interact with RNA have led to the proposal that it binds RNA. Here we describe a phylogenetic analysis of the domain, its incorporation into diverse proteins in plants, and biochemical properties of a prokaryotic and eukaryotic representative of the domain family. We show that a bacterial member of the family, Escherichia coli YhbY, is associated with pre-50S ribosomal subunits, suggesting that YhbY functions in ribosome assembly. GFP fused to a single-domain CRM protein from maize localizes to the nucleolus, suggesting that an analogous activity may have been retained in plants. We show further that an isolated maize CRM domain has RNA binding activity in vitro, and that a small motif shared with KH RNA binding domains, a conserved "GxxG" loop, contributes to its RNA binding activity. These and other results suggest that the CRM domain evolved in the context of ribosome function prior to the divergence of Archaea and Bacteria, that this function has been maintained in extant prokaryotes, and that the domain was recruited to serve as an RNA binding module during the evolution of plant genomes.

  7. Photodynamic therapy potentiates the paracrine endothelial stimulation by colorectal cancer

    NASA Astrophysics Data System (ADS)

    Lamberti, María Julia; Florencia Pansa, María; Emanuel Vera, Renzo; Belén Rumie Vittar, Natalia; Rivarola, Viviana Alicia

    2014-11-01

    Colorectal cancer (CRC) is the third most common cancer and the third leading cause of cancer death worldwide. Recurrence is a major problem and is often the ultimate cause of death. In this context, the tumor microenvironment influences tumor progression and is considered as a new essential feature that clearly impacts on treatment outcome, and must therefore be taken into consideration. Photodynamic therapy (PDT), oxygen, light and drug-dependent, is a novel treatment modality when CRC patients are inoperable. Tumor vasculature and parenchyma cells are both potential targets of PDT damage modulating tumor-stroma interactions. In biological activity assessment in photodynamic research, three-dimensional (3D) cultures are essential to integrate biomechanical, biochemical, and biophysical properties that better predict the outcome of oxygen- and drug-dependent medical therapies. Therefore, the objective of this study was to investigate the antitumor effect of methyl 5-aminolevulinic acid-PDT using a light emitting diode for the treatment of CRC cells in a scenario that mimics targeted tissue complexity, providing a potential bridge for the gap between 2D cultures and animal models. Since photodynamic intervention of the tumor microenvironment can effectively modulate the tumor-stroma interaction, it was proposed to characterize the endothelial response to CRC paracrine communication, if one of these two populations is photosensitized. In conclusion, we demonstrated that the dialogue between endothelial and tumor populations when subjected to lethal PDT conditions induces an increase in angiogenic phenotype, and we think that it should be carefully considered for the development of PDT therapeutic protocols.

  8. Pretreatment Endorectal Coil Magnetic Resonance Imaging Findings Predict Biochemical Tumor Control in Prostate Cancer Patients Treated With Combination Brachytherapy and External-Beam Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riaz, Nadeem; Afaq, Asim; Akin, Oguz

    Purpose: To investigate the utility of endorectal coil magenetic resonance imaging (eMRI) in predicting biochemical relapse in prostate cancer patients treated with combination brachytherapy and external-beam radiotherapy. Methods and Materials: Between 2000 and 2008, 279 men with intermediate- or high-risk prostate cancer underwent eMRI of their prostate before receiving brachytherapy and supplemental intensity-modulated radiotherapy. Endorectal coil MRI was performed before treatment and retrospectively reviewed by two radiologists experienced in genitourinary MRI. Image-based variables, including tumor diameter, location, number of sextants involved, and the presence of extracapsular extension (ECE), were incorporated with other established clinical variables to predict biochemical control outcomes.more » The median follow-up was 49 months (range, 1-13 years). Results: The 5-year biochemical relapse-free survival for the cohort was 92%. Clinical findings predicting recurrence on univariate analysis included Gleason score (hazard ratio [HR] 3.6, p = 0.001), PSA (HR 1.04, p = 0.005), and National Comprehensive Cancer Network risk group (HR 4.1, p = 0.002). Clinical T stage and the use of androgen deprivation therapy were not correlated with biochemical failure. Imaging findings on univariate analysis associated with relapse included ECE on MRI (HR 3.79, p = 0.003), tumor size (HR 2.58, p = 0.04), and T stage (HR 1.71, p = 0.004). On multivariate analysis incorporating both clinical and imaging findings, only ECE on MRI and Gleason score were independent predictors of recurrence. Conclusions: Pretreatment eMRI findings predict for biochemical recurrence in intermediate- and high-risk prostate cancer patients treated with combination brachytherapy and external-beam radiotherapy. Gleason score and the presence of ECE on MRI were the only significant predictors of biochemical relapse in this group of patients.« less

  9. From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes.

    PubMed

    Singh, Raushan Kumar; Tiwari, Manish Kumar; Singh, Ranjitha; Lee, Jung-Kul

    2013-01-10

    Enzymes found in nature have been exploited in industry due to their inherent catalytic properties in complex chemical processes under mild experimental and environmental conditions. The desired industrial goal is often difficult to achieve using the native form of the enzyme. Recent developments in protein engineering have revolutionized the development of commercially available enzymes into better industrial catalysts. Protein engineering aims at modifying the sequence of a protein, and hence its structure, to create enzymes with improved functional properties such as stability, specific activity, inhibition by reaction products, and selectivity towards non-natural substrates. Soluble enzymes are often immobilized onto solid insoluble supports to be reused in continuous processes and to facilitate the economical recovery of the enzyme after the reaction without any significant loss to its biochemical properties. Immobilization confers considerable stability towards temperature variations and organic solvents. Multipoint and multisubunit covalent attachments of enzymes on appropriately functionalized supports via linkers provide rigidity to the immobilized enzyme structure, ultimately resulting in improved enzyme stability. Protein engineering and immobilization techniques are sequential and compatible approaches for the improvement of enzyme properties. The present review highlights and summarizes various studies that have aimed to improve the biochemical properties of industrially significant enzymes.

  10. Chemical chronobiology: Toward drugs manipulating time.

    PubMed

    Wallach, Thomas; Kramer, Achim

    2015-06-22

    Circadian clocks are endogenous timing systems orchestrating the daily regulation of a huge variety of physiological, metabolic and behavioral processes. These clocks are important for health - in mammals, their disruption leads to a diverse number of pathologies. While genetic and biochemical approaches largely uncovered the molecular bases of circadian rhythm generation, chemical biology strategies targeting the circadian oscillator by small chemical compounds are increasingly developed. Here, we review the recent progress in the identification of small molecules modulating circadian rhythms. We focus on high-throughput screening approaches using circadian bioluminescence reporter cell lines as well as describe alternative mechanistic screens. Furthermore, we discuss the potential for chemical optimization of small molecule ligands with regard to the recent progress in structural chronobiology. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Spatial distribution analysis of chemical and biochemical properties across Koiliaris CZO

    NASA Astrophysics Data System (ADS)

    Tsiknia, Myrto; Varouchakis, Emmanouil A.; Paranychianakis, Nikolaos V.; Nikolaidis, Nikolaos P.

    2015-04-01

    Arid and semi-arid ecosystems cover approximately 47% of the Earth's surface. Soils in these climatic zones are often severely degraded and poor in organic carbon and nutrients. Anthropogenic activities like overgrazing and intensive agricultural practices further exacerbate the quality of the soils making them more vulnerable to erosion and accelerating losses of nutrients which might end up to surface waterways degrading their quality. Data of the geospatial distribution of nutrient availability as well as on the involved processes at watershed level might help us to identify areas which will potentially act as sources of nutrients and probably will allow us to adopt appropriate management practices to mitigate environmental impacts. In the present study we have performed an extensive sampling campaign (50 points) across a typical Mediterranean watershed, the Koiliaris Critical Zone Observatory (CZO), organized in such a way to effectively capture the complex variability (climatic, soil properties, hydrology, land use) of the watershed. Analyses of soil physico-chemical properties (texture, pH, EC, TOC, TN, NO3--N, and NH4+-N) and biochemical assays (potential nitrification rate, nitrogen mineralization rate, enzymes activities) were carried out. Geostatistical analysis and more specifically the kriging interpolation method was employed to generate distribution maps of the distribution of nitrogen forms and of the related biochemical assays. Such maps could provide an important tool for effective ecosystem management and monitoring decisions.

  12. Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization.

    PubMed

    Kufelt, Olga; El-Tamer, Ayman; Sehring, Camilla; Meißner, Marita; Schlie-Wolter, Sabrina; Chichkov, Boris N

    2015-05-01

    Fabrication of three-dimensional (3D) hydrogel microenvironments with predefined geometry and porosity can facilitate important requirements in tissue engineering and regenerative medicine. Chitosan (CH) is well known as a biocompatible hydrogel with prospective biological properties for biomedical aims. So far, microstructuring of this soft material presents a great limitation for its application as functional supporting material for guided tissue formation. Enabling photopolymerization, chemically modified CH can be applied for the biofabrication of reproducible 3D scaffolds using rapid prototyping techniques like two-photon polymerization (2PP) or others. The application of this technique allows precise serial fabrication of computer-designed microstructure geometries by scanning a femtosecond laser beam within a photosensitive material. This work explores a new synthesis of water-soluble photosensitive chitosan and the fabrication of well-defined microstructures from the generated materials. To modulate the mechanical and biochemical properties of the material, CH was combined and cross-linked with synthetic poly(ethylene glycol) diacrylate. For a biological adaption to the in vivo situation, CH was covalently crosslinked with a photosensitive modified vascular endothelial growth factor (VEGF). Performed in vitro studies reveal that modified CH is biocompatible. VEGF enhances CH bioactivity. Furthermore, a 3D CH scaffold can be successfully seeded with cells. Therefore, the established CH holds great promise for future applications in tissue engineering. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Braided and Stacked Electrospun Nanofibrous Scaffolds for Tendon and Ligament Tissue Engineering

    PubMed Central

    Rothrauff, Benjamin B.; Lauro, Brian B.; Yang, Guang; Debski, Richard E.; Musahl, Volker

    2017-01-01

    Tendon and ligament injuries are a persistent orthopedic challenge given their poor innate healing capacity. Nonwoven electrospun nanofibrous scaffolds composed of polyesters have been used to mimic the mechanics and topographical cues of native tendons and ligaments. However, nonwoven nanofibers have several limitations that prevent broader clinical application, including poor cell infiltration, as well as tensile and suture-retention strengths that are inferior to native tissues. In this study, multilayered scaffolds of aligned electrospun nanofibers of two designs–stacked or braided–were fabricated. Mechanical properties, including structural and mechanical properties and suture-retention strength, were determined using acellular scaffolds. Human bone marrow-derived mesenchymal stem cells (MSCs) were seeded on scaffolds for up to 28 days, and assays for tenogenic differentiation, histology, and biochemical composition were performed. Braided scaffolds exhibited improved tensile and suture-retention strengths, but reduced moduli. Both scaffold designs supported expression of tenogenic markers, although the effect was greater on braided scaffolds. Conversely, cell infiltration was superior in stacked constructs, resulting in enhanced cell number, total collagen content, and total sulfated glycosaminoglycan content. However, when normalized against cell number, both designs modulated extracellular matrix protein deposition to a similar degree. Taken together, this study demonstrates that multilayered scaffolds of aligned electrospun nanofibers supported tenogenic differentiation of seeded MSCs, but the macroarchitecture is an important consideration for applications of tendon and ligament tissue engineering. PMID:28071988

  14. Braided and Stacked Electrospun Nanofibrous Scaffolds for Tendon and Ligament Tissue Engineering.

    PubMed

    Rothrauff, Benjamin B; Lauro, Brian B; Yang, Guang; Debski, Richard E; Musahl, Volker; Tuan, Rocky S

    2017-05-01

    Tendon and ligament injuries are a persistent orthopedic challenge given their poor innate healing capacity. Nonwoven electrospun nanofibrous scaffolds composed of polyesters have been used to mimic the mechanics and topographical cues of native tendons and ligaments. However, nonwoven nanofibers have several limitations that prevent broader clinical application, including poor cell infiltration, as well as tensile and suture-retention strengths that are inferior to native tissues. In this study, multilayered scaffolds of aligned electrospun nanofibers of two designs-stacked or braided-were fabricated. Mechanical properties, including structural and mechanical properties and suture-retention strength, were determined using acellular scaffolds. Human bone marrow-derived mesenchymal stem cells (MSCs) were seeded on scaffolds for up to 28 days, and assays for tenogenic differentiation, histology, and biochemical composition were performed. Braided scaffolds exhibited improved tensile and suture-retention strengths, but reduced moduli. Both scaffold designs supported expression of tenogenic markers, although the effect was greater on braided scaffolds. Conversely, cell infiltration was superior in stacked constructs, resulting in enhanced cell number, total collagen content, and total sulfated glycosaminoglycan content. However, when normalized against cell number, both designs modulated extracellular matrix protein deposition to a similar degree. Taken together, this study demonstrates that multilayered scaffolds of aligned electrospun nanofibers supported tenogenic differentiation of seeded MSCs, but the macroarchitecture is an important consideration for applications of tendon and ligament tissue engineering.

  15. The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc.

    PubMed

    Fazaeli, S; Ghazanfari, S; Everts, V; Smit, T H; Koolstra, J H

    2016-07-01

    The Temporomandibular Joint (TMJ) disc is a fibrocartilaginous structure located between the mandibular condyle and the temporal bone, facilitating smooth movements of the jaw. The load-bearing properties of its anisotropic collagenous network have been well characterized under tensile loading conditions. However, recently it has also been speculated that the collagen fibers may contribute dominantly in reinforcing the disc under compression. Therefore, in this study, the structural-functional role of collagen fibers in mechanical compressive properties of TMJ disc was investigated. Intact porcine TMJ discs were enzymatically digested with collagenase to disrupt the collagenous network of the cartilage. The digested and non-digested articular discs were analyzed mechanically, biochemically and histologically in five various regions. These tests included: (1) cyclic compression tests, (2) biochemical quantification of collagen and glycosaminoglycan (GAG) content and (3) visualization of collagen fibers' alignment by polarized light microscopy (PLM). The instantaneous compressive moduli of the articular discs were reduced by as much as 50-90% depending on the region after the collagenase treatment. The energy dissipation properties of the digested discs showed a similar tendency. Biochemical analysis of the digested samples demonstrated an average of 14% and 35% loss in collagen and GAG, respectively. Despite the low reduction of collagen content the PLM images showed considerable perturbation of the collagenous network of the TMJ disc. The results indicated that even mild disruption of collagen fibers can lead to substantial mechanical softening of TMJ disc undermining its reinforcement and mechanical stability under compression. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. Beyond leaf color: Comparing camera-based phenological metrics with leaf biochemical, biophysical, and spectral properties throughout the growing season of a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Tang, Jianwu; Mustard, John F.

    2014-03-01

    Plant phenology, a sensitive indicator of climate change, influences vegetation-atmosphere interactions by changing the carbon and water cycles from local to global scales. Camera-based phenological observations of the color changes of the vegetation canopy throughout the growing season have become popular in recent years. However, the linkages between camera phenological metrics and leaf biochemical, biophysical, and spectral properties are elusive. We measured key leaf properties including chlorophyll concentration and leaf reflectance on a weekly basis from June to November 2011 in a white oak forest on the island of Martha's Vineyard, Massachusetts, USA. Concurrently, we used a digital camera to automatically acquire daily pictures of the tree canopies. We found that there was a mismatch between the camera-based phenological metric for the canopy greenness (green chromatic coordinate, gcc) and the total chlorophyll and carotenoids concentration and leaf mass per area during late spring/early summer. The seasonal peak of gcc is approximately 20 days earlier than the peak of the total chlorophyll concentration. During the fall, both canopy and leaf redness were significantly correlated with the vegetation index for anthocyanin concentration, opening a new window to quantify vegetation senescence remotely. Satellite- and camera-based vegetation indices agreed well, suggesting that camera-based observations can be used as the ground validation for satellites. Using the high-temporal resolution dataset of leaf biochemical, biophysical, and spectral properties, our results show the strengths and potential uncertainties to use canopy color as the proxy of ecosystem functioning.

  17. Bioactive glass 13-93 as a subchondral substrate for tissue-engineered osteochondral constructs: a pilot study.

    PubMed

    Jayabalan, Prakash; Tan, Andrea R; Rahaman, Mohammed N; Bal, B Sonny; Hung, Clark T; Cook, James L

    2011-10-01

    Replacement of diseased areas of the joint with tissue-engineered osteochondral grafts has shown potential in the treatment of osteoarthritis. Bioactive glasses are candidates for the osseous analog of these grafts. (1) Does Bioactive Glass 13-93 (BG 13-93) as a subchondral substrate improve collagen and glycosaminoglycan production in a tissue-engineered cartilage layer? (2) Does BG 13-93 as a culture medium supplement increase the collagen and glycosaminoglycan production and improve the mechanical properties in a tissue-engineered cartilage layer? In Study 1, bioactive glass samples (n = 4) were attached to a chondrocyte-seeded agarose layer to form an osteochondral construct, cultured for 6 weeks, and compared to controls. In Study 2, bioactive glass samples (n = 5) were cocultured with cell-seeded agarose for 6 weeks. The cell-seeded agarose layer was exposed to BG 13-93 either continuously or for the first or last 2 weeks in culture or had no exposure. Osteochondral constructs with a BG 13-93 base had improved glycosaminoglycan deposition but less collagen II content. Agarose scaffolds that had a temporal exposure to BG 13-93 within the culture medium had improved mechanical and biochemical properties compared to continuous or no exposure. When used as a subchondral substrate, BG 13-93 did not improve biochemical properties compared to controls. However, as a culture medium supplement, BG 13-93 improved the biochemical and mechanical properties of a tissue-engineered cartilage layer. BG 13-93 may not be suitable in osteochondral constructs but could have potential as a medium supplement for neocartilage formation.

  18. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes.

    PubMed

    Zhang, Meiling; Chekan, Jonathan R; Dodd, Dylan; Hong, Pei-Ying; Radlinski, Lauren; Revindran, Vanessa; Nair, Satish K; Mackie, Roderick I; Cann, Isaac

    2014-09-02

    Enzymes that degrade dietary and host-derived glycans represent the most abundant functional activities encoded by genes unique to the human gut microbiome. However, the biochemical activities of a vast majority of the glycan-degrading enzymes are poorly understood. Here, we use transcriptome sequencing to understand the diversity of genes expressed by the human gut bacteria Bacteroides intestinalis and Bacteroides ovatus grown in monoculture with the abundant dietary polysaccharide xylan. The most highly induced carbohydrate active genes encode a unique glycoside hydrolase (GH) family 10 endoxylanase (BiXyn10A or BACINT_04215 and BACOVA_04390) that is highly conserved in the Bacteroidetes xylan utilization system. The BiXyn10A modular architecture consists of a GH10 catalytic module disrupted by a 250 amino acid sequence of unknown function. Biochemical analysis of BiXyn10A demonstrated that such insertion sequences encode a new family of carbohydrate-binding modules (CBMs) that binds to xylose-configured oligosaccharide/polysaccharide ligands, the substrate of the BiXyn10A enzymatic activity. The crystal structures of CBM1 from BiXyn10A (1.8 Å), a cocomplex of BiXyn10A CBM1 with xylohexaose (1.14 Å), and the CBM from its homolog in the Prevotella bryantii B14 Xyn10C (1.68 Å) reveal an unanticipated mode for ligand binding. A minimal enzyme mix, composed of the gene products of four of the most highly up-regulated genes during growth on wheat arabinoxylan, depolymerizes the polysaccharide into its component sugars. The combined biochemical and biophysical studies presented here provide a framework for understanding fiber metabolism by an important group within the commensal bacterial population known to influence human health.

  19. An Innovative Context-Based Module to Introduce Students to the Optical Properties of Materials

    ERIC Educational Resources Information Center

    Testa, I.; Lombardi, S.; Monroy, G.; Sassi, E.

    2011-01-01

    A context-based module to introduce secondary school students to the study of the optical properties of materials and geometric optics is presented. The module implements an innovative teaching approach in which the behaviour of the chosen application, in this article, the optical fibre, is iteratively explored and modelled by means of a…

  20. Biochemical characteristics of a free cyanide and total nitrogen assimilating Fusarium oxysporum EKT01/02 isolate from cyanide contaminated soil.

    PubMed

    Akinpelu, Enoch A; Adetunji, Adewole T; Ntwampe, Seteno K O; Nchu, Felix; Mekuto, Lukhanyo

    2017-10-01

    Sustainability of nutrient requirements for microbial proliferation on a large scale is a challenge in bioremediation processes. This article presents data on biochemical properties of a free cyanide resistant and total nitrogen assimilating fungal isolate from the rhizosphere of Zea mays (maize) growing in soil contaminated with a cyanide-based pesticide. DNA extracted from this isolate were PCR amplified using universal primers; TEF1-α and ITS. The raw sequence files are available on the NCBI database. Characterisation using biochemical data was obtained using colorimetric reagents analysed with VITEK ® 2 software version 7.01. The data will be informative in selection of biocatalyst for environmental engineering application.

  1. Obtaining edaphic biostimulants/biofertilizers from sewage sludge using fermentative processes. Short-time effects on soil biochemical properties.

    PubMed

    Rodríguez-Morgado, Bruno; Caballero, Pablo; Paneque, Patricia; Gómez, Isidoro; Parrado, Juan; Tejada, Manuel

    2017-10-28

    In this manuscript, we study the manufacture and effect on soils of different edaphic biostimulants/biofertilizers (BS) obtained from sewage sludge using Bacillus licheniformis as biological tool. These BS consist of different combinations of organic matter, bacteria and enzymes that were subjected to several treatments. These BS were applied in soil in order to observe their influence on the biochemical properties (enzymatic activities and ergosterol content). Dehydrogenase, urease, β-glucosidase, phosphatase activities and ergosterol content were measured at different incubation days. Only dehydrogenase activity and ergosterol content were significantly stimulated after the application of BS1 and BS4. Rest of the extracellular activities were not stimulated probably because B. licheniformis practically has digested all organic substrates during fermentation process.

  2. Biomacromolecules as carriers in drug delivery and tissue engineering.

    PubMed

    Zhang, Yujie; Sun, Tao; Jiang, Chen

    2018-01-01

    Natural biomacromolecules have attracted increased attention as carriers in biomedicine in recent years because of their inherent biochemical and biophysical properties including renewability, nontoxicity, biocompatibility, biodegradability, long blood circulation time and targeting ability. Recent advances in our understanding of the biological functions of natural-origin biomacromolecules and the progress in the study of biological drug carriers indicate that such carriers may have advantages over synthetic material-based carriers in terms of half-life, stability, safety and ease of manufacture. In this review, we give a brief introduction to the biochemical properties of the widely used biomacromolecule-based carriers such as albumin, lipoproteins and polysaccharides. Then examples from the clinic and in recent laboratory development are summarized. Finally the current challenges and future prospects of present biological carriers are discussed.

  3. γ-Glutamyltranspeptidases: sequence, structure, biochemical properties, and biotechnological applications.

    PubMed

    Castellano, Immacolata; Merlino, Antonello

    2012-10-01

    γ-Glutamyltranspeptidases (γ-GTs) are ubiquitous enzymes that catalyze the hydrolysis of γ-glutamyl bonds in glutathione and glutamine and the transfer of the released γ-glutamyl group to amino acids or short peptides. These enzymes are involved in glutathione metabolism and play critical roles in antioxidant defense, detoxification, and inflammation processes. Moreover, γ-GTs have been recently found to be involved in many physiological disorders, such as Parkinson's disease and diabetes. In this review, the main biochemical and structural properties of γ-GTs isolated from different sources, as well as their conformational stability and mechanism of catalysis, are described and examined with the aim of contributing to the discussion on their structure-function relationships. Possible applications of γ-glutamyltranspeptidases in different fields of biotechnology and medicine are also discussed.

  4. Trauma exposure and cigarette smoking: the impact of negative affect and affect-regulatory smoking motives.

    PubMed

    Farris, Samantha G; Zvolensky, Michael J; Beckham, Jean C; Vujanovic, Anka A; Schmidt, Norman B

    2014-01-01

    Cognitive-affective mechanisms related to the maintenance of smoking among trauma-exposed individuals are largely unknown. Cross-sectional data from trauma-exposed treatment-seeking smokers (n = 283) were utilized to test a series of multiple mediator models of trauma exposure and smoking, as mediated by the sequential effects of negative affect and affect-modulation smoking motives. The sequential effects of both mediators indirectly predicted the effect of greater trauma exposure types on nicotine dependence, a biochemical index of smoking, perceived barriers to smoking cessation, and greater withdrawal-related problems during past quit attempts. Negative affect and affect-modulation motives for smoking may contribute to the trauma-smoking association.

  5. Trauma Exposure and Cigarette Smoking: The Impact of Negative Affect and Affect-Regulatory Smoking Motives

    PubMed Central

    Farris, Samantha G.; Zvolensky, Michael J.; Beckham, Jean C.; Vujanovic, Anka A.; Schmidt, Norman B.

    2014-01-01

    Cognitive-affective mechanisms related to the maintenance of smoking among trauma-exposed individuals are largely unknown. Cross-sectional data from trauma-exposed treatment-seeking smokers (n = 283) were utilized to test a series of multiple mediator models of trauma exposure and smoking, as mediated by the sequential effects of negative affect and affect-modulation smoking motives. The sequential effects of both mediators indirectly predicted the effect of greater trauma exposure types on nicotine dependence, a biochemical index of smoking, perceived barriers to smoking cessation, and greater withdrawal-related problems during past quit attempts. Negative affect and affect-modulation motives for smoking may contribute to the trauma-smoking association. PMID:25299617

  6. Cranberry Flavonoids Modulate Cariogenic Properties of Mixed-Species Biofilm through Exopolysaccharides-Matrix Disruption.

    PubMed

    Kim, Dongyeop; Hwang, Geelsu; Liu, Yuan; Wang, Yifei; Singh, Ajay P; Vorsa, Nicholi; Koo, Hyun

    2015-01-01

    The exopolysaccharides (EPS) produced by Streptococcus mutans-derived glucosyltransferases (Gtfs) are essential virulence factors associated with the initiation of cariogenic biofilms. EPS forms the core of the biofilm matrix-scaffold, providing mechanical stability while facilitating the creation of localized acidic microenvironments. Cranberry flavonoids, such as A-type proanthocyanidins (PACs) and myricetin, have been shown to inhibit the activity of Gtfs and EPS-mediated bacterial adhesion without killing the organisms. Here, we investigated whether a combination of cranberry flavonoids disrupts EPS accumulation and S. mutans survival using a mixed-species biofilm model under cariogenic conditions. We also assessed the impact of cranberry flavonoids on mechanical stability and the in situ pH at the biofilm-apatite interface. Topical application of an optimized combination of PACs oligomers (100-300 μM) with myricetin (2 mM) twice daily was used to simulate treatment regimen experienced clinically. Treatments with cranberry flavonoids effectively reduced the insoluble EPS content (>80% reduction vs. vehicle-control; p<0.001), while hindering S. mutans outgrowth within mixed-species biofilms. As a result, the 3D architecture of cranberry-treated biofilms was severely compromised, showing a defective EPS-matrix and failure to develop microcolonies on the saliva-coated hydroxyapatite (sHA) surface. Furthermore, topical applications of cranberry flavonoids significantly weaken the mechanical stability of the biofilms; nearly 90% of the biofilm was removed from sHA surface after exposure to a shear stress of 0.449 N/m2 (vs. 36% removal in vehicle-treated biofilms). Importantly, in situ pH measurements in cranberry-treated biofilms showed significantly higher pH values (5.2 ± 0.1) at the biofilm-apatite interface vs. vehicle-treated biofilms (4.6 ± 0.1). Altogether, the data provide important insights on how cranberry flavonoids treatments modulate virulence properties by disrupting the biochemical and ecological changes associated with cariogenic biofilm development, which could lead to new alternative or adjunctive antibiofilm/anticaries chemotherapeutic formulations.

  7. Biochemical modulation of 5-fluorouracil by methotrexate in patients with advanced gastric carcinoma.

    PubMed

    Pérez, J E; Lacava, J A; Dominguez, M E; Rodriguez, R; Barbieri, M R; Ortiz, E H; Romero Acuña, L A; Langhi, M J; Romero Acuña, J M; Vallejo, C T; Leone, B A; Machiavelli, M R; Romero, A O

    1998-10-01

    A phase II trial was conducted to evaluate the efficacy and toxicity of a modulation of 5-fluorouracil (5-FU) by methotrexate (MTX) (with leucovorin (LV) rescue) as first-line chemotherapy in patients with locally advanced (inoperable) or metastatic gastric carcinoma. From July 1993 through August 1996, 36 patients with advanced gastric carcinoma received a regimen that consisted of: MTX 200 mg/m2 diluted in 250 ml normal saline by intravenous infusion over 20 minutes at hour 0; 5-FU 1,200 mg/m2 intravenous push injection at hour 20. Beginning 24 hours after MTX administration all patients received LV 15 mg/m2 intramuscularly every 6 hours for six doses. Cycles were repeated every 15 days. One patient was not assessable for response. Objective regression was observed in 15 of 37 patients (43%; 95% confidence interval, 26%-60%). One patient (3%) achieved complete response and 14 (40%) achieved partial response. No change was recorded in 14 patients (40%) and progressive disease was noted in six patients (17%). The median time to treatment failure was 7 months and the median survival was 12 months. Toxicity was within acceptable limits but one therapy-related death resulting from severe leukopenia occurred. The dose-limiting toxicity was mucositis. Five episodes of grade 3 or 4 stomatitis were observed and caused dosage modifications of MTX and 5-FU. Biochemical modulation of 5-FU by MTX appears as an attractive modality in patients with advanced gastric cancer. Further investigation both in experimental and clinical fields is needed to clearly define its role and to design the best modulatory strategy.

  8. A modular microfluidic architecture for integrated biochemical analysis.

    PubMed

    Shaikh, Kashan A; Ryu, Kee Suk; Goluch, Edgar D; Nam, Jwa-Min; Liu, Juewen; Thaxton, C Shad; Chiesl, Thomas N; Barron, Annelise E; Lu, Yi; Mirkin, Chad A; Liu, Chang

    2005-07-12

    Microfluidic laboratory-on-a-chip (LOC) systems based on a modular architecture are presented. The architecture is conceptualized on two levels: a single-chip level and a multiple-chip module (MCM) system level. At the individual chip level, a multilayer approach segregates components belonging to two fundamental categories: passive fluidic components (channels and reaction chambers) and active electromechanical control structures (sensors and actuators). This distinction is explicitly made to simplify the development process and minimize cost. Components belonging to these two categories are built separately on different physical layers and can communicate fluidically via cross-layer interconnects. The chip that hosts the electromechanical control structures is called the microfluidic breadboard (FBB). A single LOC module is constructed by attaching a chip comprised of a custom arrangement of fluid routing channels and reactors (passive chip) to the FBB. Many different LOC functions can be achieved by using different passive chips on an FBB with a standard resource configuration. Multiple modules can be interconnected to form a larger LOC system (MCM level). We demonstrated the utility of this architecture by developing systems for two separate biochemical applications: one for detection of protein markers of cancer and another for detection of metal ions. In the first case, free prostate-specific antigen was detected at 500 aM concentration by using a nanoparticle-based bio-bar-code protocol on a parallel MCM system. In the second case, we used a DNAzyme-based biosensor to identify the presence of Pb(2+) (lead) at a sensitivity of 500 nM in <1 nl of solution.

  9. The diverse biological properties of the chemically inert noble gases.

    PubMed

    Winkler, David A; Thornton, Aaron; Farjot, Géraldine; Katz, Ira

    2016-04-01

    The noble gases represent an intriguing scientific paradox. They are extremely inert chemically but display a remarkable spectrum of clinically useful biological properties. Despite a relative paucity of knowledge of their mechanisms of action, some of the noble gases have been used successfully in the clinic. Studies with xenon have suggested that the noble gases as a class may exhibit valuable biological properties such as anaesthesia; amelioration of ischemic damage; tissue protection prior to transplantation; analgesic properties; and a potentially wide range of other clinically useful effects. Xenon has been shown to be safe in humans, and has useful pharmacokinetic properties such as rapid onset, fast wash out etc. The main limitations in wider use are that: many of the fundamental biochemical studies are still lacking; the lighter noble gases are likely to manifest their properties only under hyperbaric conditions, impractical in surgery; and administration of xenon using convectional gaseous anaesthesia equipment is inefficient, making its use very expensive. There is nonetheless a significant body of published literature on the biochemical, pharmacological, and clinical properties of noble gases but no comprehensive reviews exist that summarize their properties and the existing knowledge of their models of action at the molecular (atomic) level. This review provides such an up-to-date summary of the extensive, useful biological properties of noble gases as drugs and prospects for wider application of these atoms. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  10. Non-equilibrium phase transition in mesoscopic biochemical systems: from stochastic to nonlinear dynamics and beyond

    PubMed Central

    Ge, Hao; Qian, Hong

    2011-01-01

    A theory for an non-equilibrium phase transition in a driven biochemical network is presented. The theory is based on the chemical master equation (CME) formulation of mesoscopic biochemical reactions and the mathematical method of large deviations. The large deviations theory provides an analytical tool connecting the macroscopic multi-stability of an open chemical system with the multi-scale dynamics of its mesoscopic counterpart. It shows a corresponding non-equilibrium phase transition among multiple stochastic attractors. As an example, in the canonical phosphorylation–dephosphorylation system with feedback that exhibits bistability, we show that the non-equilibrium steady-state (NESS) phase transition has all the characteristics of classic equilibrium phase transition: Maxwell construction, a discontinuous first-derivative of the ‘free energy function’, Lee–Yang's zero for a generating function and a critical point that matches the cusp in nonlinear bifurcation theory. To the biochemical system, the mathematical analysis suggests three distinct timescales and needed levels of description. They are (i) molecular signalling, (ii) biochemical network nonlinear dynamics, and (iii) cellular evolution. For finite mesoscopic systems such as a cell, motions associated with (i) and (iii) are stochastic while that with (ii) is deterministic. Both (ii) and (iii) are emergent properties of a dynamic biochemical network. PMID:20466813

  11. Comparative analyses of two thermophilic enzymes exhibiting both beta-1,4 mannosidic and beta-1,4 glucosidic cleavage activities from Caldanaerobius polysaccharolyticus.

    PubMed

    Han, Yejun; Dodd, Dylan; Hespen, Charles W; Ohene-Adjei, Samuel; Schroeder, Charles M; Mackie, Roderick I; Cann, Isaac K O

    2010-08-01

    The hydrolysis of polysaccharides containing mannan requires endo-1,4-beta-mannanase and 1,4-beta-mannosidase activities. In the current report, the biochemical properties of two endo-beta-1,4-mannanases (Man5A and Man5B) from Caldanaerobius polysaccharolyticus were studied. Man5A is composed of an N-terminal signal peptide (SP), a catalytic domain, two carbohydrate-binding modules (CBMs), and three surface layer homology (SLH) repeats, whereas Man5B lacks the SP, CBMs, and SLH repeats. To gain insights into how the two glycoside hydrolase family 5 (GH5) enzymes may aid the bacterium in energy acquisition and also the potential application of the two enzymes in the biofuel industry, two derivatives of Man5A (Man5A-TM1 [TM1 stands for truncational mutant 1], which lacks the SP and SLH repeats, and Man5A-TM2, which lacks the SP, CBMs, and SLH repeats) and the wild-type Man5B were biochemically analyzed. The Man5A derivatives displayed endo-1,4-beta-mannanase and endo-1,4-beta-glucanase activities and hydrolyzed oligosaccharides with a degree of polymerization (DP) of 4 or higher. Man5B exhibited endo-1,4-beta-mannanase activity and little endo-1,4-beta-glucanase activity; however, this enzyme also exhibited 1,4-beta-mannosidase and cellodextrinase activities. Man5A-TM1, compared to either Man5A-TM2 or Man5B, had higher catalytic activity with soluble and insoluble polysaccharides, indicating that the CBMs enhance catalysis of Man5A. Furthermore, Man5A-TM1 acted synergistically with Man5B in the hydrolysis of beta-mannan and carboxymethyl cellulose. The versatility of the two enzymes, therefore, makes them a resource for depolymerization of mannan-containing polysaccharides in the biofuel industry. Furthermore, on the basis of the biochemical and genomic data, a molecular mechanism for utilization of mannan-containing nutrients by C. polysaccharolyticus is proposed.

  12. Assessing the use of treated waste water for irrigation agricultural lands by using soil quality indices

    NASA Astrophysics Data System (ADS)

    Arcenegui, V.; Morugán, A.; García-Orenes, F.; Zornoza, R.; Mataix-Solera, J.; Navarro, M. A.; Guerrero, C.; Mataix-Beneyto, J.

    2009-04-01

    The use of treated wastewater for the irrigation of agricultural soils is an alternative to utilizing better-quality water, especially in semiarid regions where water shortage is a very serious problem. However, this practise can modify the soil equilibrium and affect its quality. In this work two soil quality indices (models) are used to evaluate the effects of long-term irrigation with treated wastewater in soil. The models were developed studying different soil properties in undisturbed forest soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. Model 1, that explained 92% of the variance in soil organic carbon (SOC) showed that the SOC can be calculated by the linear combination of 6 physical, chemical and biochemical properties (acid phosphatase, water holding capacity (WHC), electrical conductivity (EC), available phosphorus (P), cation exchange capacity (CEC) and aggregate stability (AS)). Model 2 explains 89% of the SOC variance, which can be calculated by means of 7 chemical and biochemical properties (urease, phosphatase, and

  13. Preservation of kombucha tea-effect of temperature on tea components and free radical scavenging properties.

    PubMed

    Jayabalan, Rasu; Marimuthu, Subbaiya; Thangaraj, Periyasamy; Sathishkumar, Muthuswamy; Binupriya, Arthur Raj; Swaminathan, Krishnaswami; Yun, Sei Eok

    2008-10-08

    Kombucha tea is sugared black tea fermented with a consortium of acetic acid bacteria and yeasts (tea fungus) for 14 days. The tea tastes slightly sweet and acidic. The formation of tea fungal biofilms during storage is a big problem when kombucha tea is being stored and commercialized. Various thermal treatments have been tried for long-term storage of kombucha tea. The present study revealed the influence of heat on the biochemical constituents and the free radical scavenging properties of kombucha tea. Heat treatment at 60, 65, and 68 degrees C for 1 min controlled biofilm formation in kombucha tea without changing its clarity, taste, and flavor. However, tea polyphenols and black tea quality parameters showed varying stability during the storage period. A decrease in free radical scavenging properties was also found during the storage period. Because the biological activities of kombucha tea depended on the biochemical constituents, it was concluded that heat treatment was not a suitable method for kombucha tea preservation.

  14. Changes in the functional properties and antinutritional factors of extruded hard-to-cook common beans (Phaseolus vulgaris, L.).

    PubMed

    Batista, Karla A; Prudêncio, Sandra H; Fernandes, Kátia F

    2010-04-01

    The biochemical and functional properties of 2 hard-to-cook common bean cultivars (Phaseolus vulgaris, L.) were investigated after the extrusion process. Beans of BRS pontal and BRS grafite cultivars were milled and extruded at 150 degrees C, with a compression ratio screw of 3 : 1, 5-mm die, and screw speed of 150 rpm. Extrudate flours were evaluated for water solubility (WS), water absorption index (WAI), oil absorption capacity (OAC), foaming capacity (FC), emulsifying activity (EA), antinutritional factors, and in vitro protein and starch digestibility. Results indicated that the extrusion significantly decreased antinutrients such as phytic acid, lectin, alpha-amylase, and trypsin inhibitors, reduced the emulsifying capacity and eliminated the FC in both BRS pontal and BRS grafite cultivars. In addition, the WS, WAI, and in vitro protein and starch digestibility were improved by the extrusion process. These results indicate that it is possible to produce new extruded products with good functional and biochemical properties from these common bean cultivars.

  15. Fcγ1 fragment of IgG1 as a powerful affinity tag in recombinant Fc-fusion proteins: immunological, biochemical and therapeutic properties.

    PubMed

    Soleimanpour, Saman; Hassannia, Tahereh; Motiee, Mahdieh; Amini, Abbas Ali; Rezaee, S A R

    2017-05-01

    Affinity tags are vital tools for the production of high-throughput recombinant proteins. Several affinity tags, such as the hexahistidine tag, maltose-binding protein, streptavidin-binding peptide tag, calmodulin-binding peptide, c-Myc tag, glutathione S-transferase and FLAG tag, have been introduced for recombinant protein production. The fragment crystallizable (Fc) domain of the IgG1 antibody is one of the useful affinity tags that can facilitate detection, purification and localization of proteins and can improve the immunogenicity, modulatory effects, physicochemical and pharmaceutical properties of proteins. Fcγ recombinant forms a group of recombinant proteins called Fc-fusion proteins (FFPs). FFPs are widely used in drug discovery, drug delivery, vaccine design and experimental research on receptor-ligand interactions. These fusion proteins have become successful alternatives to monoclonal antibodies for drug developments. In this review, the physicochemical, biochemical, immunological, pharmaceutical and therapeutic properties of recombinant FFPs were discussed as a new generation of bioengineering strategies.

  16. Structural Basis for Prereceptor Modulation of Plant Hormones by GH3 Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westfall, Corey S.; Zubieta, Chloe; Herrmann, Jonathan

    Acyl acid amido synthetases of the GH3 family act as critical prereceptor modulators of plant hormone action; however, the molecular basis for their hormone selectivity is unclear. Here, we report the crystal structures of benzoate-specific Arabidopsis thaliana AtGH3.12/PBS3 and jasmonic acid-specific AtGH3.11/JAR1. These structures, combined with biochemical analysis, define features for the conjugation of amino acids to diverse acyl acid substrates and highlight the importance of conformational changes in the carboxyl-terminal domain for catalysis. We also identify residues forming the acyl acid binding site across the GH3 family and residues critical for amino acid recognition. Our results demonstrate how amore » highly adaptable three-dimensional scaffold is used for the evolution of promiscuous activity across an enzyme family for modulation of plant signaling molecules.« less

  17. Estradiol-dependent modulation of auditory processing and selectivity in songbirds

    PubMed Central

    Maney, Donna; Pinaud, Raphael

    2011-01-01

    The steroid hormone estradiol plays an important role in reproductive development and behavior and modulates a wide array of physiological and cognitive processes. Recently, reports from several research groups have converged to show that estradiol also powerfully modulates sensory processing, specifically, the physiology of central auditory circuits in songbirds. These investigators have discovered that (1) behaviorally-relevant auditory experience rapidly increases estradiol levels in the auditory forebrain; (2) estradiol instantaneously enhances the responsiveness and coding efficiency of auditory neurons; (3) these changes are mediated by a non-genomic effect of brain-generated estradiol on the strength of inhibitory neurotransmission; and (4) estradiol regulates biochemical cascades that induce the expression of genes involved in synaptic plasticity. Together, these findings have established estradiol as a central regulator of auditory function and intensified the need to consider brain-based mechanisms, in addition to peripheral organ dysfunction, in hearing pathologies associated with estrogen deficiency. PMID:21146556

  18. Cellular level robotic surgery: Nanodissection of intermediate filaments in live keratinocytes.

    PubMed

    Yang, Ruiguo; Song, Bo; Sun, Zhiyong; Lai, King Wai Chiu; Fung, Carmen Kar Man; Patterson, Kevin C; Seiffert-Sinha, Kristina; Sinha, Animesh A; Xi, Ning

    2015-01-01

    We present the nanosurgery on the cytoskeleton of live cells using AFM based nanorobotics to achieve adhesiolysis and mimic the effect of pathophysiological modulation of intercellular adhesion. Nanosurgery successfully severs the intermediate filament bundles and disrupts cell-cell adhesion similar to the desmosomal protein disassembly in autoimmune disease, or the cationic modulation of desmosome formation. Our nanomechanical analysis revealed that adhesion loss results in a decrease in cellular stiffness in both cases of biochemical modulation of the desmosome junctions and mechanical disruption of intercellular adhesion, supporting the notion that intercellular adhesion through intermediate filaments anchors the cell structure as focal adhesion does and that intermediate filaments are integral components in cell mechanical integrity. The surgical process could potentially help reveal the mechanism of autoimmune pathology-induced cell-cell adhesion loss as well as its related pathways that lead to cell apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Properties of a Variable-Delay Polarization Modulator

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Henry, Ross; Hui, Howard; Juarez, Aaron J.; Krenjy, Megan; Moseley, Harvey; Novak, Giles

    2011-01-01

    We investigate the polarization modulation properties of a variable-delay polarization modulator (VPM). The VPM modulates polarization via a variable separation between a polarizing grid and a parallel mirror. We find that in the limit where the wavelength is much larger than the diameter of the metal wires that comprise the grid, the phase delay derived from the geometric separation between the mirror and the grid is sufficient to characterize the device. However, outside of this range, additional parameters describing the polarizing grid geometry must be included to fully characterize the modulator response. In this paper, we report test results of a VPM at wavelengths of 350 micron and 3 mm. Electromagnetic simulations of wire grid polarizers were performed and are summarized using a simple circuit model that incorporates the loss and polarization properties of the device.

  20. Ondansetron attenuates depression co-morbid with obesity in obese mice subjected to chronic unpredictable mild stress; an approach using behavioral battery tests.

    PubMed

    Kurhe, Yeshwant; Radhakrishnan, Mahesh; Gupta, Deepali

    2014-09-01

    The aim of the present work was to investigate the role of ondansetron on the high fat diet (HFD) induced obese mice for behavioral and biochemical alterations using chronic unpredictable mild stress (CUMS) model of depression. Animals were fed with high fat diet for 14 weeks and subjected to different stress procedures for 4 weeks. Treatment with ondansetron was started on day 15. After day 28 behavioral assays and biochemical estimations were performed. Behavioral paradigms viz. sucrose preference test, locomotor score, forced swim test (FST) and elevated plus maze (EPM), whereas biochemical parameters like plasma glucose, total cholesterol, triglycerides and total proteins were estimated. Results examines that in behavioral assays, ondansetron significantly (P < 0.05) increased sucrose consumption, reduced immobility time in FST, increased the percent entries and time in open arm in EPM. In biochemical assessments elevated plasma glucose, total cholesterol, triglycerides and total proteins were significantly (P < 0.05) reversed by ondansetron treatment in HFD obese animals subjected to CUMS. The study indicates that the obese mice subjected to CUMS exhibited severe depressive-like symptoms and ondansetron significantly reversed the behavioral and biochemical alterations. In the present study the plasma glucose level indicates that, it could be "altered glucose level" playing an important role in depression co-morbid with obesity. Ondansetron through allosteric modulation of serotonergic system elevates the serotonin level and thereby regulates the insulin secretion and hence, reversing the "altered glucose level", could be the possible antidepressive-like mechanism against depression co-morbid with obesity.

  1. Orion Pad Abort 1 Crew Module Mass Properties Test Approach and Results

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia; Harding, Adam

    2012-01-01

    The Flight Loads Laboratory at the Dryden Flight Research Center conducted tests to measure the inertia properties of the Orion Pad Abort 1 (PA-1) Crew Module (CM). These measurements were taken to validate analytical predictions of the inertia properties of the vehicle and assist in reducing uncertainty for derived aero performance coefficients to be calculated post-launch. The first test conducted was to determine the Ixx of the Crew Module. This test approach used a modified torsion pendulum test setup that allowed the suspended Crew Module to rotate about the x axis. The second test used a different approach to measure both the Iyy and Izz properties. This test used a Knife Edge fixture that allowed small rotation of the Crew Module about the y and z axes. Discussions of the techniques and equations used to accomplish each test are presented. Comparisons with the predicted values used for the final flight calculations are made. Problem areas, with explanations and recommendations where available, are addressed. Finally, an evaluation of the value and success of these techniques to measure the moments of inertia of the Crew Module is provided.

  2. Microbial and chemical properties of log ponds along the Oregon Coast.

    Treesearch

    Iwan Ho; Ching Yan Li

    1987-01-01

    The microbial and chemical properties of log ponds along the Oregon coast were investigated. The log ponds were highly eutrophic, containing high concentrations of ammonium and nitrate nitrogen, phosphate, and organic compounds. Because of large microbial populations, the biochemical oxygen demand was high and dissolved oxygen was low. Bacterial species in log ponds...

  3. Interactions of Soil Order and Land Use Management on Soil Properties in the Kukart Watershed, Kyrgyzstan

    USDA-ARS?s Scientific Manuscript database

    Surveys of soil properties related to soil functioning for many regions of Kyrgyzstan are limited. This study established ranges of selected chemical [soil organic matter (SOM), pH and total N (TN)], physical (soil texture), and biochemical (six enzyme activities of C, N, P and S cycling) character...

  4. Kinetic Modeling Sheds Light on the Mode of Action of Recombinant Factor VIIa on Thrombin Generation

    DTIC Science & Technology

    2011-01-01

    Regular Article Kinetic modeling sheds light on the mode of action of recombinant factor VIIa on thrombin generation Alexander Y. Mitrophanov...its effects on the quantitative parameters of thrombin generation. For recombinant activated factor VII (rFVIIa) ― a promising hemostasis-inducing...modulate thrombin production , it is necessary to identify rFVIIa-induced effects that are compatible with the available biochemical knowledge about

  5. Modulation of Human Plasma Fibronectin Levels Following Exercise,

    DTIC Science & Technology

    1988-01-01

    forms of this large molecular weight (440 kilodaltons) glycoprotein,(17. While the tissue type is cell-associated and important to cell adhesion and...increased under conditions of pathology, such as in obesity (6). cancer (3). proteinuria (4). diabetic retinopathy (5). and preeclampsia (27). in the absence...Res. 1977: 22:709-716. 27. Stubbs. T.M.. Lazarchick. J.. and Horger. E.O. Plasma fibronectin levels in preeclampsia : A possible biochemical marker

  6. Molecular Probe Analysis of Mammalian Brain Acetylcholinesterase

    DTIC Science & Technology

    1988-09-27

    Project and Degrees Awarded During this Reporting Period: Judith K. Marquis, Principal Investigator Thomas Biagioni , Senior Research Technician Robert...binding sites in nerve membrane vesicles. Comp. Biochem. Physiol. 80C: 203-205 (1985). 5. Volpe, L.S., T.M. Biagioni & J.K. Marquis: In vitro modulation of...Saxena, Vol. 6(1988Y.8 11. Marquis, J.K. & T.M. Biagioni : Selective inhibition of acetylcholinesterase and butyrylcholinesterase in human plasma

  7. Accelerating the Rate-Limiting Step in Novel Enzymatic Carbohydrate-to-Hydrogen Technology by Enzyme Engineering

    DTIC Science & Technology

    2011-10-30

    stable phosphoglucose isomerase through immobilization of cellulose-binding module-tagged thermophilic enzyme on low- cost high-capacity celiulosic...NOVEL ENZYMATIC CARBOHYDRATE-TO-HYDROGEN TECHNOLOGY BY ENZYME ENGINEERING Grant/Contract Number: FA9550-08-1-0145 Program Manager: Dr. Walt...bbtransformation (SyPaB) is the implementation of complicated biochemical reactions by in vitro assembly of enzyme and coenzymes. Different from in vivo

  8. Biochemical Modulation of Lipid Pathway in Microalgae Dunaliella sp. for Biodiesel Production

    PubMed Central

    Talebi, Ahmad Farhad; Tohidfar, Masoud; Mousavi Derazmahalleh, Seyedeh Mahsa; Sulaiman, Alawi; Baharuddin, Azhari Samsu; Tabatabaei, Meisam

    2015-01-01

    Exploitation of renewable sources of energy such as algal biodiesel could turn energy supplies problem around. Studies on a locally isolated strain of Dunaliella sp. showed that the mean lipid content in cultures enriched by 200 mg L−1 myoinositol was raised by around 33% (1.5 times higher than the control). Similarly, higher lipid productivity values were achieved in cultures treated by 100 and 200 mg L−1 myoinositol. Fluorometry analyses (microplate fluorescence and flow cytometry) revealed increased oil accumulation in the Nile red-stained algal samples. Moreover, it was predicted that biodiesel produced from myoinositol-treated cells possessed improved oxidative stability, cetane number, and cloud point values. From the genomic point of view, real-time analyses revealed that myoinositol negatively influenced transcript abundance of AccD gene (one of the key genes involved in lipid production pathway) due to feedback inhibition and that its positive effect must have been exerted through other genes. The findings of the current research are not to interprete that myoinositol supplementation could answer all the challenges faced in microalgal biodiesel production but instead to show that “there is a there there” for biochemical modulation strategies, which we achieved, increased algal oil quantity and enhanced resultant biodiesel quality. PMID:26146623

  9. Biochemical Modulation of Lipid Pathway in Microalgae Dunaliella sp. for Biodiesel Production.

    PubMed

    Talebi, Ahmad Farhad; Tohidfar, Masoud; Mousavi Derazmahalleh, Seyedeh Mahsa; Sulaiman, Alawi; Baharuddin, Azhari Samsu; Tabatabaei, Meisam

    2015-01-01

    Exploitation of renewable sources of energy such as algal biodiesel could turn energy supplies problem around. Studies on a locally isolated strain of Dunaliella sp. showed that the mean lipid content in cultures enriched by 200 mg L(-1) myoinositol was raised by around 33% (1.5 times higher than the control). Similarly, higher lipid productivity values were achieved in cultures treated by 100 and 200 mg L(-1) myoinositol. Fluorometry analyses (microplate fluorescence and flow cytometry) revealed increased oil accumulation in the Nile red-stained algal samples. Moreover, it was predicted that biodiesel produced from myoinositol-treated cells possessed improved oxidative stability, cetane number, and cloud point values. From the genomic point of view, real-time analyses revealed that myoinositol negatively influenced transcript abundance of AccD gene (one of the key genes involved in lipid production pathway) due to feedback inhibition and that its positive effect must have been exerted through other genes. The findings of the current research are not to interprete that myoinositol supplementation could answer all the challenges faced in microalgal biodiesel production but instead to show that "there is a there there" for biochemical modulation strategies, which we achieved, increased algal oil quantity and enhanced resultant biodiesel quality.

  10. Transient Influx of Nickel in Root Mitochondria Modulates Organic Acid and Reactive Oxygen Species Production in Nickel Hyperaccumulator Alyssum murale*

    PubMed Central

    Agrawal, Bhavana; Czymmek, Kirk J.; Sparks, Donald L.; Bais, Harsh P.

    2013-01-01

    Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and non-accumulator Alyssum montanum. Evidence is presented for the rapid and transient influx of nickel in root mitochondria of nickel hyperaccumulator A. murale. In an early response to nickel treatment, substantial nickel influx was observed in mitochondria prior to sequestration in vacuoles in the roots of hyperaccumulator A. murale compared with non-accumulator A. montanum. In addition, the mitochondrial Krebs cycle was modulated to increase synthesis of malic acid and citric acid involvement in nickel hyperaccumulation. Furthermore, malic acid, which is reported to form a complex with nickel in hyperaccumulators, was also found to reduce the reactive oxygen species generation induced by nickel. We propose that the interaction of nickel with mitochondria is imperative in the early steps of nickel uptake in nickel hyperaccumulator plants. Initial uptake of nickel in roots results in biochemical responses in the root mitochondria indicating its vital role in homeostasis of nickel ions in hyperaccumulation. PMID:23322782

  11. Transient Influx of nickel in root mitochondria modulates organic acid and reactive oxygen species production in nickel hyperaccumulator Alyssum murale.

    PubMed

    Agrawal, Bhavana; Czymmek, Kirk J; Sparks, Donald L; Bais, Harsh P

    2013-03-08

    Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and non-accumulator Alyssum montanum. Evidence is presented for the rapid and transient influx of nickel in root mitochondria of nickel hyperaccumulator A. murale. In an early response to nickel treatment, substantial nickel influx was observed in mitochondria prior to sequestration in vacuoles in the roots of hyperaccumulator A. murale compared with non-accumulator A. montanum. In addition, the mitochondrial Krebs cycle was modulated to increase synthesis of malic acid and citric acid involvement in nickel hyperaccumulation. Furthermore, malic acid, which is reported to form a complex with nickel in hyperaccumulators, was also found to reduce the reactive oxygen species generation induced by nickel. We propose that the interaction of nickel with mitochondria is imperative in the early steps of nickel uptake in nickel hyperaccumulator plants. Initial uptake of nickel in roots results in biochemical responses in the root mitochondria indicating its vital role in homeostasis of nickel ions in hyperaccumulation.

  12. Co-expression of antioxidant enzymes with expression of p53, DNA repair, and heat shock protein genes in the gamma ray-irradiated hermaphroditic fish Kryptolebias marmoratus larvae.

    PubMed

    Rhee, Jae-Sung; Kim, Bo-Mi; Kim, Ryeo-Ok; Seo, Jung Soo; Kim, Il-Chan; Lee, Young-Mi; Lee, Jae-Seong

    2013-09-15

    To investigate effects of gamma ray irradiation in the hermaphroditic fish, Kryptolebias marmoratus larvae, we checked expression of p53, DNA repair, and heat shock protein genes with several antioxidant enzyme activities by quantitative real-time RT-PCR and biochemical methods in response to different doses of gamma radiation. As a result, the level of gamma radiation-induced DNA damage was initiated after 4Gy of radiation, and biochemical and molecular damage became substantial from 8Gy. In particular, several DNA repair mechanism-related genes were significantly modulated in the 6Gy gamma radiation-exposed fish larvae, suggesting that upregulation of such DNA repair genes was closely associated with cell survival after gamma irradiation. The mRNA expression of p53 and most hsps was also significantly upregulated at high doses of gamma radiation related to cellular damage. This finding indicates that gamma radiation can induce oxidative stress with associated antioxidant enzyme activities, and linked to modulation of the expression of DNA repair-related genes as one of the defense mechanisms against radiation damage. This study provides a better understanding of the molecular mode of action of defense mechanisms upon gamma radiation in fish larvae. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Palytoxin: exploiting a novel skin tumor promoter to explore signal transduction and carcinogenesis.

    PubMed

    Wattenberg, Elizabeth V

    2007-01-01

    Palytoxin is a novel skin tumor promoter, which has been used to help probe the role of different types of signaling mechanisms in carcinogenesis. The multistage mouse skin model indicates that tumor promotion is an early, prolonged, and reversible phase of carcinogenesis. Understanding the molecular mechanisms underlying tumor promotion is therefore important for developing strategies to prevent and treat cancer. Naturally occurring tumor promoters that bind to specific cellular receptors have proven to be useful tools for investigating important biochemical events in multistage carcinogenesis. For example, the identification of protein kinase C as the receptor for the prototypical skin tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) (also called phorbol 12-myristate 13-acetate, PMA) provided key evidence that tumor promotion involves the aberrant modulation of signaling cascades that govern cell fate and function. The subsequent discovery that palytoxin, a marine toxin isolated from zoanthids (genus Palythoa), is a potent skin tumor promoter yet does not activate protein kinase C indicated that investigating palytoxin action could help reveal new aspects of tumor promotion. Interestingly, the putative receptor for palytoxin is the Na(+),K(+)-ATPase. This review focuses on palytoxin-stimulated signaling and how palytoxin has been used to investigate alternate biochemical mechanisms by which important targets in carcinogenesis can be modulated.

  14. Palytoxin: Exploiting a novel skin tumor promoter to explore signal transduction and carcinogenesis

    PubMed Central

    Wattenberg, Elizabeth V.

    2006-01-01

    Palytoxin is a novel skin tumor promoter, which has been used to help probe the role of different types of signaling mechanisms in carcinogenesis. The multi-stage mouse skin model indicates that tumor promotion is an early, prolonged, and reversible phase of carcinogenesis. Understanding the molecular mechanisms underlying tumor promotion is therefore important for developing strategies to prevent and treat cancer. Naturally occurring tumor promoters that bind to specific cellular receptors have proven to be useful tools for investigating important biochemical events in multi-stage carcinogenesis. For example, the identification of protein kinase C as the receptor for the prototypical skin tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) (also called phorbol-12-myristate-13-acetate or PMA) provided key evidence that tumor promotion involves the aberrant modulation of signaling cascades that govern cell fate and function. The subsequent discovery that palytoxin, a marine toxin isolated from zoanthids (genus Palythoa), is a potent skin tumor promoter yet does not activate protein kinase C indicated that investigating palytoxin action could help reveal new aspects of tumor promotion. Interestingly, the putative receptor for palytoxin is the Na+,K+-ATPase. This review focuses on palytoxin-stimulated signaling, and how palytoxin has been used to investigate alternate biochemical mechanisms by which important targets in carcinogenesis can be modulated. PMID:16855216

  15. Distinct phylogenetic relationships and biochemical properties of Arabidopsis ovarian tumor-related deubiquitinases support their functional differentiation

    PubMed Central

    Radjacommare, Ramalingam; Usharani, Raju; Kuo, Chih-Horng; Fu, Hongyong

    2014-01-01

    The reverse reaction of ubiquitylation is catalyzed by different classes of deubiquitylation enzymes (DUBs), including ovarian tumor domain (OTU)-containing DUBs; experiments using Homo sapiens proteins have demonstrated that OTU DUBs modulate various cellular processes. With the exception of OTLD1, plant OTU DUBs have not been characterized. We identified 12 Arabidopsis thaliana OTU loci and analyzed 11 of the encoded proteins in vitro to determine their preferences for the ubiquitin (UB) chains of M1, K48, and K63 linkages as well as the UB-/RUB-/SUMO-GST fusions. The A. thaliana OTU DUBs were shown to be cysteine proteases and classified into four groups with distinct linkage preferences: OTU1 (M1 = K48 > K63), OTU3/4/7/10 (K63 > K48 > M1), OTU2/9 (K48 = K63), and OTU5/11/12/OTLD1 (inactive). Five active OTU DUBs (OTU3/4/7/9/10) also cleaved RUB fusion. OTU1/3/4 cleaved M1 UB chains, suggesting a possible role for M1 chains in plant cellular signaling. The different substrate specificities of the various A. thaliana OTU DUBs indicate the involvement of distinct structural elements; for example, the OTU1 oxyanion residue D89 is essential for cleaving isopeptide bond-linked chains but dispensable for M1 chains. UB-binding activities were detected only for OTU2 and OTLD1, with distinct linkage preferences. These differences in biochemical properties support the involvement of A. thaliana OTU DUBs in different functions. Moreover, based on the established phylogenetic tree, plant- and H. sapiens-specific clades exist, which suggests that the proteins within these clades have taxa-specific functions. We also detected five OTU clades that are conserved across species, which suggests that the orthologs in different species within each clade are involved in conserved cellular processes, such as ERAD and DNA damage responses. However, different linkage preferences have been detected among potential cross-species OTU orthologs, indicating functional and mechanistic differentiation. PMID:24659992

  16. Identification of C3b-Binding Small-Molecule Complement Inhibitors Using Cheminformatics.

    PubMed

    Garcia, Brandon L; Skaff, D Andrew; Chatterjee, Arindam; Hanning, Anders; Walker, John K; Wyckoff, Gerald J; Geisbrecht, Brian V

    2017-05-01

    The complement system is an elegantly regulated biochemical cascade formed by the collective molecular recognition properties and proteolytic activities of more than two dozen membrane-bound or serum proteins. Complement plays diverse roles in human physiology, such as acting as a sentry against invading microorganisms, priming of the adaptive immune response, and removal of immune complexes. However, dysregulation of complement can serve as a trigger for a wide range of human diseases, which include autoimmune, inflammatory, and degenerative conditions. Despite several potential advantages of modulating complement with small-molecule inhibitors, small-molecule drugs are highly underrepresented in the current complement-directed therapeutics pipeline. In this study, we have employed a cheminformatics drug discovery approach based on the extensive structural and functional knowledge available for the central proteolytic fragment of the cascade, C3b. Using parallel in silico screening methodologies, we identified 45 small molecules that putatively bind C3b near ligand-guided functional hot spots. Surface plasmon resonance experiments resulted in the validation of seven dose-dependent C3b-binding compounds. Competition-based biochemical assays demonstrated the ability of several C3b-binding compounds to interfere with binding of the original C3b ligand that guided their discovery. In vitro assays of complement function identified a single complement inhibitory compound, termed cmp-5, and mechanistic studies of the cmp-5 inhibitory mode revealed it acts at the level of C5 activation. This study has led to the identification of a promising new class of C3b-binding small-molecule complement inhibitors and, to our knowledge, provides the first demonstration of cheminformatics-based, complement-directed drug discovery. Copyright © 2017 by The American Association of Immunologists, Inc.

  17. Identification of C3b-binding Small Molecule Complement Inhibitors Using Cheminformatics

    PubMed Central

    Garcia, Brandon L.; Skaff, D. Andrew; Chatterjee, Arindam; Hanning, Anders; Walker, John K.; Wyckoff, Gerald J.; Geisbrecht, Brian V.

    2017-01-01

    The complement system is an elegantly regulated biochemical cascade formed by the collective molecular recognition properties and proteolytic activities of over two dozen membrane-bound or serum proteins. Complement plays diverse roles in human physiology which include acting as a sentry against invading microorganisms, priming of the adaptive immune response, and removal of immune complexes. However, dysregulation of complement can serve as a trigger for a wide range of human diseases which include autoimmune, inflammatory, and degenerative conditions. Despite several potential advantages of modulating complement with small molecule inhibitors, small molecule drugs are highly underrepresented in the current complement-directed therapeutics pipeline. In this study we have employed a cheminformatics drug discovery approach based on the extensive structural and functional knowledge available for the central proteolytic fragment of the cascade, C3b. Using parallel in silico screening methodologies we identified 45 small molecules which putatively bind C3b near ligand-guided functional hot-spots. Surface plasmon resonance experiments resulted in the validation of seven dose-dependent C3b-binding compounds. Competition-based biochemical assays demonstrated the ability of several C3b-binding compounds to interfere with binding of the original C3b ligand which guided their discovery. In vitro assays of complement function identified a single complement inhibitory compound, termed cmp-5, and mechanistic studies of the cmp-5 inhibitory mode revealed it acts at the level of C5 activation. This study has led to the identification of a promising new class of C3b-binding small molecule complement inhibitors, and to our knowledge, provides the first demonstration of cheminformatics-based complement-directed drug discovery. PMID:28298523

  18. Structures of Human CCL18, CCL3, and CCL4 Reveal Molecular Determinants for Quaternary Structures and Sensitivity to Insulin-Degrading Enzyme

    DOE PAGES

    Liang, Wenguang G.; Ren, Min; Zhao, Fan; ...

    2015-01-27

    CC chemokine ligands (CCL) are 8-14 kDa signaling proteins involved in diverse immune functions. While CCLs share similar tertiary structures, oligomerization produces highly diverse quaternary structures that protect chemokines from proteolytic degradation and modulate their functions. CCL18 is closely related to CCL3 and CCL4 with respect to both protein sequence and genomic location, yet CCL18 has distinct biochemical and biophysical properties. Here in this paper, we report a crystal structure of human CCL18 and its oligomerization states in solution based on crystallographic and small angle X-ray scattering (SAXS) analyses. Our data shows that CCL18 adopts an α-helical conformation at itsmore » N-terminus that weakens its dimerization, explaining CCL18’s preference for the monomeric state. Multiple contacts between monomers allow CCL18 to reversibly form a unique open-ended oligomer different from those of CCL3, CCL4, and CCL5. Furthermore, these differences hinge on proline 8, which is conserved in CCL3 and CCL4, but is replaced by lysine in human CCL18. Our structural analyses suggest that a proline 8 to alanine mutation stabilizes a type I β-turn at the N-terminus of CCL4 to prevent dimerization but prevents dimers from making key contacts with each other in CCL3. Thus, the P8A mutation induces depolymerization of CCL3 and CCL4 by distinct mechanisms. Finally, we used structural, biochemical, and functional analyses to unravel why insulin-degrading enzyme (IDE) degrades CCL3 and CCL4 but not CCL18. Lastly, our results elucidate the molecular basis for the oligomerization of three closely related CC chemokines and suggest how oligomerization shapes CCL chemokine function.« less

  19. Structures of human CCL18, CCL3, and CCL4 reveal molecular determinants for quaternary structures and sensitivity to insulin-degrading enzyme.

    PubMed

    Liang, Wenguang G; Ren, Min; Zhao, Fan; Tang, Wei-Jen

    2015-03-27

    CC chemokine ligands (CCLs) are 8- to 14-kDa signaling proteins involved in diverse immune functions. While CCLs share similar tertiary structures, oligomerization produces highly diverse quaternary structures that protect chemokines from proteolytic degradation and modulate their functions. CCL18 is closely related to CCL3 and CCL4 with respect to both protein sequence and genomic location, yet CCL18 has distinct biochemical and biophysical properties. Here, we report a crystal structure of human CCL18 and its oligomerization states in solution based on crystallographic and small-angle X-ray scattering analyses. Our data show that CCL18 adopts an α-helical conformation at its N-terminus that weakens its dimerization, explaining CCL18's preference for the monomeric state. Multiple contacts between monomers allow CCL18 to reversibly form a unique open-ended oligomer different from those of CCL3, CCL4, and CCL5. Furthermore, these differences hinge on proline 8, which is conserved in CCL3 and CCL4 but is replaced by lysine in human CCL18. Our structural analyses suggest that a mutation of proline 8 to alanine stabilizes a type 1 β-turn at the N-terminus of CCL4 to prevent dimerization but prevents dimers from making key contacts with each other in CCL3. Thus, the P8A mutation induces depolymerization of CCL3 and CCL4 by distinct mechanisms. Finally, we used structural, biochemical, and functional analyses to unravel why insulin-degrading enzyme degrades CCL3 and CCL4 but not CCL18. Our results elucidate the molecular basis for the oligomerization of three closely related CC chemokines and suggest how oligomerization shapes CCL chemokine function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Identification and mechanism of action analysis of the new PARP-1 inhibitor 2″-hydroxygenkwanol A.

    PubMed

    Dal Piaz, Fabrizio; Ferro, Piera; Vassallo, Antonio; Vasaturo, Michele; Forte, Giovanni; Chini, Maria Giovanna; Bifulco, Giuseppe; Tosco, Alessandra; De Tommasi, Nunziatina

    2015-09-01

    Poly(ADP-ribose) polymerase 1 (PARP-1) activity has been implicated in the pathogenesis of numerous diseases as cancer, inflammation, diabetes and neurodegenerative disorders, therefore the research for new PARP-1 inhibitors is still an active area. To identify new potential PARP-1 inhibitors, we performed a screening of a small-molecule library consisting of polyphenols isolated from plants used in the traditional medicine, by Surface Plasmon Resonance (SPR). Biochemical and cellular assays were performed to confirm SPR results and select the promising candidate(s). Finally, limited proteolysis and ligand docking analyses allowed defining the protein region involved in the interaction with the putative inhibitor(s). The dimeric spiro-flavonoid 2″-hydroxygenkwanol A, member of a relatively recently discovered class of flavonoids containing a spirane C-atom, has been identified as possible PARP-1 inhibitor. This compound showed a high affinity for the polymerase (KD: 0.32±0.05μM); moreover PARP-1 activity in the presence of 2″-hydroxygenkwanol A was significantly affected both when using the recombinant protein and when measuring the cellular effects. Finally, our study suggests this compound to efficiently interact with the protein catalytic domain, into the nicotine binding pocket. 2″-hydroxygenkwanol A efficiently binds and inhibits PARP-1 at submicromolar concentrations, thus representing a promising lead for the design of a new class of PARP-1 modulators, useful as therapeutic agents and/or biochemical tools. Our study has identified an additional class of plant molecules, the spiro-biflavonoids, with known beneficial pharmacological properties but with an unknown mechanism of action, as a possible novel class of PARP-1 activity inhibitors. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Myosin Light Chain Kinase and the Role of Myosin Light Chain Phosphorylation in Skeletal Muscle

    PubMed Central

    Stull, James T.; Kamm, Kristine E.; Vandenboom, Rene

    2011-01-01

    Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca2+/calmodulin-dependent serine-threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca2+ binding to calmodulin forming a (Ca2+)4•calmodulin complex sufficient for activation with a diffusion limited, stoichiometic binding and displacement of a regulatory segment from skMLCK catalytic core. The N-terminal sequence of RLC then extends through the exposed catalytic cleft for Ser15 phosphorylation. Removal of Ca2+ results in the slow dissociation of calmodulin and inactivation of skMLCK. Combined biochemical properties provide unique features for the physiological responsiveness of RLC phosphorylation, including (1) rapid activation of MLCK by Ca2+/calmodulin, (2) limiting kinase activity so phosphorylation is slower than contraction, (3) slow MLCK inactivation after relaxation and (4) much greater kinase activity relative to myosin light chain phosphatase (MLCP). SkMLCK phosphorylation of myosin RLC modulates mechanical aspects of vertebrate skeletal muscle function. In permeabilized skeletal muscle fibers, phosphorylation-mediated alterations in myosin structure increase the rate of force-generation by myosin cross bridges to increase Ca2+-sensitivity of the contractile apparatus. Stimulation-induced increases in RLC phosphorylation in intact muscle produces isometric and concentric force potentiation to enhance dynamic aspects of muscle work and power in unfatigued or fatigued muscle. Moreover, RLC phosphorylation-mediated enhancements may interact with neural strategies for human skeletal muscle activation to ameliorate either central or peripheral aspects of fatigue. PMID:21284933

  2. Streptococcus agalactiae Non-Pilus, Cell Wall-Anchored Proteins: Involvement in Colonization and Pathogenesis and Potential as Vaccine Candidates

    PubMed Central

    Pietrocola, Giampiero; Arciola, Carla Renata; Rindi, Simonetta; Montanaro, Lucio; Speziale, Pietro

    2018-01-01

    Group B Streptococcus (GBS) remains an important etiological agent of several infectious diseases including neonatal septicemia, pneumonia, meningitis, and orthopedic device infections. This pathogenicity is due to a variety of virulence factors expressed by Streptococcus agalactiae. Single virulence factors are not sufficient to provoke a streptococcal infection, which is instead promoted by the coordinated activity of several pathogenicity factors. Such determinants, mostly cell wall-associated and secreted proteins, include adhesins that mediate binding of the pathogen to host extracellular matrix/plasma ligands and cell surfaces, proteins that cooperate in the invasion of and survival within host cells and factors that neutralize phagocytosis and/or modulate the immune response. The genome-based approaches and bioinformatics tools and the extensive use of biophysical and biochemical methods and animal model studies have provided a great wealth of information on the molecular structure and function of these virulence factors. In fact, a number of new GBS surface-exposed or secreted proteins have been identified (GBS immunogenic bacterial adhesion protein, leucine-rich repeat of GBS, serine-rich repeat proteins), the three-dimensional structures of known streptococcal proteins (αC protein, C5a peptidase) have been solved and an understanding of the pathogenetic role of “old” and new determinants has been better defined in recent years. Herein, we provide an update of our current understanding of the major surface cell wall-anchored proteins from GBS, with emphasis on their biochemical and structural properties and the pathogenetic roles they may have in the onset and progression of host infection. We also focus on the antigenic profile of these compounds and discuss them as targets for therapeutic intervention. PMID:29686667

  3. Genetic and Biochemical Characterization of the MinC-FtsZ Interaction in Bacillus subtilis

    PubMed Central

    Castellen, Patricia; Nogueira, Maria Luiza C.; Bettini, Jefferson; Portugal, Rodrigo V.; Zeri, Ana Carolina M.; Gueiros-Filho, Frederico J.

    2013-01-01

    Cell division in bacteria is regulated by proteins that interact with FtsZ and modulate its ability to polymerize into the Z ring structure. The best studied of these regulators is MinC, an inhibitor of FtsZ polymerization that plays a crucial role in the spatial control of Z ring formation. Recent work established that E. coli MinC interacts with two regions of FtsZ, the bottom face of the H10 helix and the extreme C-terminal peptide (CTP). Here we determined the binding site for MinC on Bacillus subtilis FtsZ. Selection of a library of FtsZ mutants for survival in the presence of Min overexpression resulted in the isolation of 13 Min-resistant mutants. Most of the substitutions that gave rise to Min resistance clustered around the H9 and H10 helices in the C-terminal domain of FtsZ. In addition, a mutation in the CTP of B. subtilis FtsZ also produced MinC resistance. Biochemical characterization of some of the mutant proteins showed that they exhibited normal polymerization properties but reduced interaction with MinC, as expected for binding site mutations. Thus, our study shows that the overall architecture of the MinC-FtsZ interaction is conserved in E. coli and B. subtilis. Nevertheless, there was a clear difference in the mutations that conferred Min resistance, with those in B. subtilis FtsZ pointing to the side of the molecule rather than to its polymerization interface. This observation suggests that the mechanism of Z ring inhibition by MinC differs in both species. PMID:23577149

  4. Space-time-modulated stochastic processes

    NASA Astrophysics Data System (ADS)

    Giona, Massimiliano

    2017-10-01

    Starting from the physical problem associated with the Lorentzian transformation of a Poisson-Kac process in inertial frames, the concept of space-time-modulated stochastic processes is introduced for processes possessing finite propagation velocity. This class of stochastic processes provides a two-way coupling between the stochastic perturbation acting on a physical observable and the evolution of the physical observable itself, which in turn influences the statistical properties of the stochastic perturbation during its evolution. The definition of space-time-modulated processes requires the introduction of two functions: a nonlinear amplitude modulation, controlling the intensity of the stochastic perturbation, and a time-horizon function, which modulates its statistical properties, providing irreducible feedback between the stochastic perturbation and the physical observable influenced by it. The latter property is the peculiar fingerprint of this class of models that makes them suitable for extension to generic curved-space times. Considering Poisson-Kac processes as prototypical examples of stochastic processes possessing finite propagation velocity, the balance equations for the probability density functions associated with their space-time modulations are derived. Several examples highlighting the peculiarities of space-time-modulated processes are thoroughly analyzed.

  5. Cholinergic innervation of human mesenteric lymphatic vessels.

    PubMed

    D'Andrea, V; Bianchi, E; Taurone, S; Mignini, F; Cavallotti, C; Artico, M

    2013-11-01

    The cholinergic neurotransmission within the human mesenteric lymphatic vessels has been poorly studied. Therefore, our aim is to analyse the cholinergic nerve fibres of lymphatic vessels using the traditional enzymatic techniques of staining, plus the biochemical modifications of acetylcholinesterase (AChE) activity. Specimens obtained from human mesenteric lymphatic vessels were subjected to the following experimental procedures: 1) drawing, cutting and staining of tissues; 2) staining of total nerve fibres; 3) enzymatic staining of cholinergic nerve fibres; 4) homogenisation of tissues; 5) biochemical amount of proteins; 6) biochemical amount of AChE activity; 6) quantitative analysis of images; 7) statistical analysis of data. The mesenteric lymphatic vessels show many AChE positive nerve fibres around their wall with an almost plexiform distribution. The incubation time was performed at 1 h (partial activity) and 6 h (total activity). Moreover, biochemical dosage of the same enzymatic activity confirms the results obtained with morphological methods. The homogenates of the studied tissues contain strong AChE activity. In our study, the lymphatic vessels appeared to contain few cholinergic nerve fibres. Therefore, it is expected that perivascular nerve stimulation stimulates cholinergic nerves innervating the mesenteric arteries to release the neurotransmitter AChE, which activates muscarinic or nicotinic receptors to modulate adrenergic neurotransmission. These results strongly suggest, that perivascular cholinergic nerves have little or no effect on the adrenergic nerve function in mesenteric arteries. The cholinergic nerves innervating mesenteric arteries do not mediate direct vascular responses.

  6. Pharmacological and biochemical studies on protective effects of mangiferin and its interaction with nitric oxide (NO) modulators in adjuvant-induced changes in arthritic parameters, inflammatory, and oxidative biomarkers in rats.

    PubMed

    Pal, Rishi; Chaudhary, Manju J; Tiwari, Prafulla Chandra; Nath, Rajendra; Pant, Kamlesh Kumar

    2018-06-22

    Current study was designed to evaluate protective effect of mangiferin and its interaction with low dose of nitric oxide (NO) modulators in complete Freund's adjuvant (CFA) inoculated rats. Male wistar rats (200-300 g, n = 8 per group) were used in the study. On day ''0'' of study arthritis was induced in rats by injecting 0.2 ml CFA in sub-planter region of right hind paw of animals. Treatment with methotrexate (5 mg/kg), mangiferin (10-30 mg/kg) alone and in combination with NO modulators was given (i.p.) from days 14 to 28. After 28 days, blood and joint synovial fluid was collected for biochemical analysis and rat paws were excised to estimate MDA and SOD in tissue (paw) homogenates. CFA inoculation significantly increases (1) arthritic index, (2) ankle diameter, (3) paw volume, and (4) serum TNF-α, IL-6, IL-1β, and synovial TNF-α levels (p < 0.001). The serum Th 1 (IFN-γ) and Th 2 (IL-4) cytokine levels, MDA levels in rat paw tissue homogenates and serum NF-κB levels were also found significantly increased. Significant decrease in serum IL-10 levels and SOD activity was found after CFA inoculation. These CFA-induced arthritic changes, cytokine profile, and oxidative stress markers were significantly reversed by mangiferin (10-30 mg/kg) treatment alone and in combination with L-arginine and L-NAME nitric oxide modulators (p < 0.05). Treatment with methotrexate (5 mg/kg) also significantly reversed these adjuvant changes (p < 0.05). However, effect of methotrexate was less marked as compared to mangiferin (30 mg/kg) alone and in combination with L-NAME (10 mg/kg), but was comparable or slightly better than mangiferin (10 and 20 mg/kg). Thus, on the basis of our findings, we can suggest that interaction of mangiferin with nitric oxide modulators may have therapeutic value for chronic inflammatory disease such as RA.

  7. Hereditary sensory and autonomic neuropathy type 1 (HSANI) caused by a novel mutation in SPTLC2

    PubMed Central

    Murphy, Sinéad M.; Ernst, Daniela; Wei, Yu; Laurà, Matilde; Liu, Yo-Tsen; Polke, James; Blake, Julian; Winer, John; Houlden, Henry; Hornemann, Thorsten

    2013-01-01

    Objective: To describe the clinical and neurophysiologic phenotype of a family with hereditary sensory and autonomic neuropathy type 1 (HSANI) due to a novel mutation in SPTLC2 and to characterize the biochemical properties of this mutation. Methods: We screened 107 patients with HSAN who were negative for other genetic causes for mutations in SPTLC2. The biochemical properties of a new mutation were characterized in cell-free and cell-based activity assays. Results: A novel mutation (A182P) was found in 2 subjects of a single family. The phenotype of the 2 subjects was an ulcero-mutilating sensory-predominant neuropathy as described previously for patients with HSANI, but with prominent motor involvement and earlier disease onset in the first decade of life. Affected patients had elevated levels of plasma 1-deoxysphingolipids (1-deoxySLs). Biochemically, the A182P mutation was associated with a reduced canonical activity but an increased alternative activity with alanine, which results in largely increased 1-deoxySL levels, supporting their pathogenicity. Conclusion: This study confirms that mutations in SPTLC2 are associated with increased deoxySL formation causing HSANI. PMID:23658386

  8. Infrared and Raman Microscopy in Cell Biology

    PubMed Central

    Matthäus, Christian; Bird, Benjamin; Miljković, Miloš; Chernenko, Tatyana; Romeo, Melissa; Diem, Max

    2009-01-01

    This chapter presents novel microscopic methods to monitor cell biological processes of live or fixed cells without the use of any dye, stains, or other contrast agent. These methods are based on spectral techniques that detect inherent spectroscopic properties of biochemical constituents of cells, or parts thereof. Two different modalities have been developed for this task. One of them is infrared micro-spectroscopy, in which an average snapshot of a cell’s biochemical composition is collected at a spatial resolution of typically 25 mm. This technique, which is extremely sensitive and can collect such a snapshot in fractions of a second, is particularly suited for studying gross biochemical changes. The other technique, Raman microscopy (also known as Raman micro-spectroscopy), is ideally suited to study variations of cellular composition on the scale of subcellular organelles, since its spatial resolution is as good as that of fluorescence microscopy. Both techniques exhibit the fingerprint sensitivity of vibrational spectroscopy toward biochemical composition, and can be used to follow a variety of cellular processes. PMID:19118679

  9. Identification of biochemical features of defective Coffea arabica L. beans.

    PubMed

    Casas, María I; Vaughan, Michael J; Bonello, Pierluigi; McSpadden Gardener, Brian; Grotewold, Erich; Alonso, Ana P

    2017-05-01

    Coffee organoleptic properties are based in part on the quality and chemical composition of coffee beans. The presence of defective beans during processing and roasting contribute to off flavors and reduce overall cup quality. A multipronged approach was undertaken to identify specific biochemical markers for defective beans. To this end, beans were split into defective and non-defective fractions and biochemically profiled in both green and roasted states. A set of 17 compounds in green beans, including organic acids, amino acids and reducing sugars; and 35 compounds in roasted beans, dominated by volatile compounds, organic acids, sugars and sugar alcohols, were sufficient to separate the defective and non-defective fractions. Unsorted coffee was examined for the presence of the biochemical markers to test their utility in detecting defective beans. Although the green coffee marker compounds were found in all fractions, three of the roasted coffee marker compounds (1-methylpyrrole, 5-methyl- 2-furfurylfuran, and 2-methylfuran) were uniquely present in defective fractions. Published by Elsevier Ltd.

  10. Temperature-dependent modulation of regional lymphatic contraction frequency and flow.

    PubMed

    Solari, Eleonora; Marcozzi, Cristiana; Negrini, Daniela; Moriondo, Andrea

    2017-11-01

    Lymph drainage and propulsion are sustained by an extrinsic mechanism, based on mechanical forces acting from the surrounding tissues against the wall of lymphatic vessels, and by an intrinsic mechanism attributable to active spontaneous contractions of the lymphatic vessel muscle. Despite being heterogeneous, the mechanisms underlying the generation of spontaneous contractions share a common biochemical nature and are thus modulated by temperature. In this study, we challenged excised tissues from rat diaphragm and hindpaw, endowed with spontaneously contracting lymphatic vessels, to temperatures from 24°C (hindpaw) or 33°C (diaphragmatic vessels) to 40°C while measuring lymphatic contraction frequency ( f c ) and amplitude. Both vessel populations displayed a sigmoidal relationship between f c and temperature, each centered around the average temperature of surrounding tissue (36.7 diaphragmatic and 32.1 hindpaw lymphatics). Although the slope factor of the sigmoidal fit to the f c change of hindpaw vessels was 2.3°C·cycles -1 ·min -1 , a value within the normal range displayed by simple biochemical reactions, the slope factor of the diaphragmatic lymphatics was 0.62°C·cycles -1 ·min -1 , suggesting the added involvement of temperature-sensing mechanisms. Lymph flow calculated as a function of temperature confirmed the relationship observed on f c data alone and showed that none of the two lymphatic vessel populations would be able to adapt to the optimal working temperature of the other tissue district. This poses a novel question whether lymphatic vessels might not adapt their function to accommodate the change if exposed to a surrounding temperature, which is different from their normal condition. NEW & NOTEWORTHY This study demonstrates to what extent lymphatic vessel intrinsic contractility and lymph flow are modulated by temperature and that this modulation is dependent on the body district that the vessels belong to, suggesting a possible functional misbehavior should lymphatic vessels be exposed to a chronically different temperature. Copyright © 2017 the American Physiological Society.

  11. Modulating optical polarization properties of Al-rich AlGaN/AlN quantum well by controlling wavefunction overlap

    NASA Astrophysics Data System (ADS)

    Chen, X. J.; Yu, T. J.; Lu, H. M.; Yuan, G. C.; Shen, B.; Zhang, G. Y.

    2013-10-01

    Using modified k.p perturbation method, the optical polarization properties of Al-rich AlGaN/AlN quantum wells (QWs) are studied. It is found that change of wavefunction overlaps between conduction band and valance subbands of heavy hole, light hole, and crystal-field split off hole is different. Such difference leads to the overturn of polarization degree and modulates optical polarization properties as well width and strain vary. This prompts that changing wavefunction overlaps of electron and hole can lead to a way to modulate optical polarization properties of Al-rich AlGaN/AlN QWs, on no condition that valence band order changes.

  12. Inorganic phosphate uptake in unicellular eukaryotes.

    PubMed

    Dick, Claudia F; Dos-Santos, André L A; Meyer-Fernandes, José R

    2014-07-01

    Inorganic phosphate (Pi) is an essential nutrient for all organisms. The route of Pi utilization begins with Pi transport across the plasma membrane. Here, we analyzed the gene sequences and compared the biochemical profiles, including kinetic and modulator parameters, of Pi transporters in unicellular eukaryotes. The objective of this review is to evaluate the recent findings regarding Pi uptake mechanisms in microorganisms, such as the fungi Neurospora crassa and Saccharomyces cerevisiae and the parasite protozoans Trypanosoma cruzi, Trypanosoma rangeli, Leishmania infantum and Plasmodium falciparum. Pi uptake is the key step of Pi homeostasis and in the subsequent signaling event in eukaryotic microorganisms. Biochemical and structural studies are important for clarifying mechanisms of Pi homeostasis, as well as Pi sensor and downstream pathways, and raise possibilities for future studies in this field. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Self-organizing human cardiac microchambers mediated by geometric confinement

    NASA Astrophysics Data System (ADS)

    Ma, Zhen; Wang, Jason; Loskill, Peter; Huebsch, Nathaniel; Koo, Sangmo; Svedlund, Felicia L.; Marks, Natalie C.; Hua, Ethan W.; Grigoropoulos, Costas P.; Conklin, Bruce R.; Healy, Kevin E.

    2015-07-01

    Tissue morphogenesis and organ formation are the consequences of biochemical and biophysical cues that lead to cellular spatial patterning in development. To model such events in vitro, we use PEG-patterned substrates to geometrically confine human pluripotent stem cell colonies and spatially present mechanical stress. Modulation of the WNT/β-catenin pathway promotes spatial patterning via geometric confinement of the cell condensation process during epithelial-mesenchymal transition, forcing cells at the perimeter to express an OCT4+ annulus, which is coincident with a region of higher cell density and E-cadherin expression. The biochemical and biophysical cues synergistically induce self-organizing lineage specification and creation of a beating human cardiac microchamber confined by the pattern geometry. These highly defined human cardiac microchambers can be used to study aspects of embryonic spatial patterning, early cardiac development and drug-induced developmental toxicity.

  14. Effects of ammonia and hydrogen sulfide on physical and biochemical properties of the claw horn of Holstein cows

    PubMed Central

    Higuchi, Hidetoshi; Kurumado, Hisatoshi; Mori, Maya; Degawa, Aiko; Fujisawa, Hideyo; Kuwano, Atsutoshi; Nagahata, Hajime

    2009-01-01

    The effects of ammonia and hydrogen sulfide on the physical and biochemical properties of the claw horn of Holstein cows were evaluated. Significant (P < 0.05, 0.01) decreases in hardness and elasticity were found in claw horns soaked in ammonia (NH3) and hydrogen sulfide (H2S) solutions compared with those that were soaked in water for 12, 24, and 48 h. Water absorption rate, as a indicator of permeability barrier function, increased significantly (P < 0.05) over time during the soaking period and was found to be dependent on the concentrations of NH3 and H2S in the solutions. The contents of ceramide, the main lipid component for the permeability barrier system of the stratum corneum, were significantly decreased in claw horns soaked in NH3 and H2S solutions compared with the values before soaking. Quantities of eluted protein released from claw horns treated with NH3 and H2S solutions were approximately 20 times and 30 to 40 times greater than those released from claw horns treated with water alone. Interestingly, the quantities of cytokeratin 10, the main cytoskeletal protein of the stratum corneum, eluted from claw horns treated with NH3 and H2S solutions were markedly greater than the quantity released from horns soaked in water. Our results suggest that abnormal changes in the physical property of claw horn caused by NH3 and H2S treatment are due to disruption of the biochemical property of the claw horn induced by these chemical agents derived from slurry. PMID:19337390

  15. Reconstructed Ancestral Enzymes Impose a Fitness Cost upon Modern Bacteria Despite Exhibiting Favourable Biochemical Properties.

    PubMed

    Hobbs, Joanne K; Prentice, Erica J; Groussin, Mathieu; Arcus, Vickery L

    2015-10-01

    Ancestral sequence reconstruction has been widely used to study historical enzyme evolution, both from biochemical and cellular perspectives. Two properties of reconstructed ancestral proteins/enzymes are commonly reported--high thermostability and high catalytic activity--compared with their contemporaries. Increased protein stability is associated with lower aggregation rates, higher soluble protein abundance and a greater capacity to evolve, and therefore, these proteins could be considered "superior" to their contemporary counterparts. In this study, we investigate the relationship between the favourable in vitro biochemical properties of reconstructed ancestral enzymes and the organismal fitness they confer in vivo. We have previously reconstructed several ancestors of the enzyme LeuB, which is essential for leucine biosynthesis. Our initial fitness experiments revealed that overexpression of ANC4, a reconstructed LeuB that exhibits high stability and activity, was only able to partially rescue the growth of a ΔleuB strain, and that a strain complemented with this enzyme was outcompeted by strains carrying one of its descendants. When we expanded our study to include five reconstructed LeuBs and one contemporary, we found that neither in vitro protein stability nor the catalytic rate was correlated with fitness. Instead, fitness showed a strong, negative correlation with estimated evolutionary age (based on phylogenetic relationships). Our findings suggest that, for reconstructed ancestral enzymes, superior in vitro properties do not translate into organismal fitness in vivo. The molecular basis of the relationship between fitness and the inferred age of ancestral LeuB enzymes is unknown, but may be related to the reconstruction process. We also hypothesise that the ancestral enzymes may be incompatible with the other, contemporary enzymes of the metabolic network.

  16. Racial differences in cortical bone and their relationship to biochemical variables in black and white children in the early stages of puberty

    PubMed Central

    Warden, Stuart J.; Hill, Kathleen M.; Ferira, Ashley J.; Laing, Emma M.; Martin, Berdine R.; Hausman, Dorothy B.; Weaver, Connie M.; Peacock, Munro; Lewis, Richard D.

    2014-01-01

    Introduction Racial differences in bone structure likely have roots in childhood as bone size develops predominantly during growth. This study aimed to compare cortical bone health within the tibial diaphysis of black and white children in the early stages of puberty, and explore the contributions of biochemical variables in explaining racial variation in cortical bone properties. Methods A cross-sectional study was performed comparing peripheral quantitative computed tomography-derived cortical bone measures of the tibial diaphysis and biochemical variables in 314 participants (n=155 males; n=164 blacks) in the early stages of puberty. Results Blacks had greater cortical volumetric bone mineral density, mass and size compared to whites (all p<0.01), contributing to blacks having 17.0% greater tibial strength (polar strength-strain index [SSIP]) (p<0.001). Turnover markers indicated blacks had higher bone formation (osteocalcin [OC] and bone specific alkaline phosphatase) and lower bone resorption (N-terminal telopeptide) than whites (all p<0.01). Blacks also had lower 25-hydroxyvitamin D [25(OH)D], and higher 1,25-dihydroxyvitamin D [1,25(OH)2D] and parathyroid hormone (PTH) (all p<0.05). There were no correlations between tibial bone properties, and 25(OH)D and PTH in whites (all p≥0.10); however, SSIP was negatively and positively correlated with 25(OH)D and PTH in blacks, respectively (all p≤0.02). Variation in bone cross-sectional area and SSIP attributable to race was partially explained by tibial length, 25(OH)D/PTH and OC. Conclusions Divergence in tibial cortical bone properties between blacks and whites is established by the early stages of puberty with the enhanced cortical bone properties in black children possibly being explained by higher PTH and OC. PMID:23093348

  17. Label-free optical resonant sensors for biochemical applications

    NASA Astrophysics Data System (ADS)

    Ciminelli, Caterina; Campanella, Clarissa Martina; Dell'Olio, Francesco; Campanella, Carlo Edoardo; Armenise, Mario Nicola

    2013-03-01

    For a number of years, the scientific community has been paying growing attention to the monitoring and enhancement of public health and the quality of life through the detection of all dangerous agents for the human body, including gases, proteins, virus, and bacterial agents. When these agents are detected through label-free biochemical sensors, the molecules are not modified structurally or functionally by adding fluorescent or radioactive dyes. This work focuses on label-free optical ring resonator-based configurations suited for bio-chemical sensing, highlighting their physical aspects and specific applications. Resonant wavelength shift and the modal splitting occurring when the analyte interacts with microresonant structures are the two major physical aspects analyzed in this paper. Competitive optical platforms proposed in the literature are also illustrated together with their properties and performance.

  18. Litchi chinensis as a Functional Food and a Source of Antitumor Compounds: An Overview and a Description of Biochemical Pathways.

    PubMed

    Emanuele, Sonia; Lauricella, Marianna; Calvaruso, Giuseppe; D'Anneo, Antonella; Giuliano, Michela

    2017-09-08

    Litchi is a tasty fruit that is commercially grown for food consumption and nutritional benefits in various parts of the world. Due to its biological activities, the fruit is becoming increasingly known and deserves attention not only for its edible part, the pulp, but also for its peel and seed that contain beneficial substances with antioxidant, cancer preventive, antimicrobial, and anti-inflammatory functions. Although literature demonstrates the biological activity of Litchi components in reducing tumor cell viability in in vitro or in vivo models, data about the biochemical mechanisms responsible for these effects are quite fragmentary. This review specifically describes, in a comprehensive analysis, the antitumor properties of the different parts of Litchi and highlights the main biochemical mechanisms involved.

  19. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways.

    PubMed

    Kunnumakkara, Ajaikumar B; Bordoloi, Devivasha; Harsha, Choudhary; Banik, Kishore; Gupta, Subash C; Aggarwal, Bharat B

    2017-08-01

    Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  20. Thyroid Hormone Differentially Modulates Warburg Phenotype in Breast Cancer Cells

    PubMed Central

    Suhane, Sonal; Ramanujan, V Krishnan

    2011-01-01

    Sustenance of cancer cells in vivo critically depends on a variety of genetic and metabolic adaptations. Aerobic glycolysis or Warburg effect has been a defining biochemical hallmark of transformed cells for more than five decades although a clear molecular basis of this observation is emerging only in recent years. In this study, we present our findings that thyroid hormone exerts its non-genomic and genomic actions in two model human breast cancer cell lines differentially. By laying a clear foundation for experimentally monitoring the Warburg phenotype in living cancer cells, we demonstrate that thyroid hormone-induced modulation of bioenergetic profiles in these two model cell lines depends on the degree of Warburg phenotype that they display. Further we also show that thyroid hormone can sensitize mitochondria in aggressive, triple-negative breast cancer cells favorably to increase the chemotherapeutic efficacy in these cells. Even though the role of thyroid hormone in modulating mitochondrial metabolism has been known, the current study accentuates the critical role it plays in modulating Warburg phenotype in breast cancer cells. The clinical significance of this finding is the possibility to devise strategies for metabolically modulating aggressive triple-negative tumors so as to enhance their chemosensitivity in vivo. PMID:21945435

  1. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Bradley R.; Drake, Eric J.; Shi, Ce

    Nonribosomal peptide synthetases (NRPSs) produce a wide variety of peptide natural products. During synthesis, the multidomain NRPSs act as an assembly line, passing the growing product from one module to the next. Each module generally consists of an integrated peptidyl carrier protein, an amino acid-loading adenylation domain, and a condensation domain that catalyzes peptide bond formation. Some adenylation domains interact with small partner proteins called MbtH-like proteins (MLPs) that enhance solubility or activity. A structure of an MLP bound to an adenylation domain has been previously reported using a truncated adenylation domain, precluding any insight that might be derived frommore » understanding the influence of the MLP on the intact adenylation domain or on the dynamics of the entire NRPS module. Here, we present the structures of the full-length NRPS EntF bound to the MLPs from Escherichia coli and Pseudomonas aeruginosa. These new structures, along with biochemical and bioinformatics support, further elaborate the residues that define the MLP-adenylation domain interface. Additionally, the structures highlight the dynamic behavior of NRPS modules, including the module core formed by the adenylation and condensation domains as well as the orientation of the mobile thioesterase domain.« less

  2. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture*

    PubMed Central

    Miller, Bradley R.; Drake, Eric J.; Shi, Ce; Aldrich, Courtney C.; Gulick, Andrew M.

    2016-01-01

    Nonribosomal peptide synthetases (NRPSs) produce a wide variety of peptide natural products. During synthesis, the multidomain NRPSs act as an assembly line, passing the growing product from one module to the next. Each module generally consists of an integrated peptidyl carrier protein, an amino acid-loading adenylation domain, and a condensation domain that catalyzes peptide bond formation. Some adenylation domains interact with small partner proteins called MbtH-like proteins (MLPs) that enhance solubility or activity. A structure of an MLP bound to an adenylation domain has been previously reported using a truncated adenylation domain, precluding any insight that might be derived from understanding the influence of the MLP on the intact adenylation domain or on the dynamics of the entire NRPS module. Here, we present the structures of the full-length NRPS EntF bound to the MLPs from Escherichia coli and Pseudomonas aeruginosa. These new structures, along with biochemical and bioinformatics support, further elaborate the residues that define the MLP-adenylation domain interface. Additionally, the structures highlight the dynamic behavior of NRPS modules, including the module core formed by the adenylation and condensation domains as well as the orientation of the mobile thioesterase domain. PMID:27597544

  3. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture.

    PubMed

    Miller, Bradley R; Drake, Eric J; Shi, Ce; Aldrich, Courtney C; Gulick, Andrew M

    2016-10-21

    Nonribosomal peptide synthetases (NRPSs) produce a wide variety of peptide natural products. During synthesis, the multidomain NRPSs act as an assembly line, passing the growing product from one module to the next. Each module generally consists of an integrated peptidyl carrier protein, an amino acid-loading adenylation domain, and a condensation domain that catalyzes peptide bond formation. Some adenylation domains interact with small partner proteins called MbtH-like proteins (MLPs) that enhance solubility or activity. A structure of an MLP bound to an adenylation domain has been previously reported using a truncated adenylation domain, precluding any insight that might be derived from understanding the influence of the MLP on the intact adenylation domain or on the dynamics of the entire NRPS module. Here, we present the structures of the full-length NRPS EntF bound to the MLPs from Escherichia coli and Pseudomonas aeruginosa These new structures, along with biochemical and bioinformatics support, further elaborate the residues that define the MLP-adenylation domain interface. Additionally, the structures highlight the dynamic behavior of NRPS modules, including the module core formed by the adenylation and condensation domains as well as the orientation of the mobile thioesterase domain. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Haematological and biochemical effects of polyphenolics in animal models.

    PubMed

    Gnanamani, Arumugam; Sudha, Munusamy; Deepa, G; Sudha, M; Deivanai, K; Sadulla, S

    2008-07-01

    Polyphenols of natural and synthetic origin are exploited in tanning sector to convert putrescible skin/hide to non-putrescible leather. However, only 30-40% of the inputs have been taken up for processing, the remaining is released as unspent. The existing conventional wastewater treatment systems are inefficient in removing or degrading these unspent polyphenols and thus detrimental to ecosystem. The present study demonstrates the evaluation of impact of both synthetic and natural polyphenols on biochemical and haematological properties of blood and serum in animal models. The results reveal that concentrations of polyphenols play a major role. At higher concentrations, irrespective of their nature, there was a marked change in the lipid profile (81% reduction), followed by insignificant change in glucose levels, RBC and WBC counts and other haematological parameters. At lower concentrations, no significant changes in the above said properties were observed.

  5. Fauna-associated changes in chemical and biochemical properties of soil.

    PubMed

    Tripathi, G; Sharma, B M

    2006-12-01

    To study the impacts of abundance of woodlice, termites, and mites on some functional aspects of soil in order to elucidate the specific role of soil fauna in improving soil fertility in desert. Fauna-rich sites were selected as experimental sites and adjacent areas were taken as control. Soil samples were collected from both sites. Soil respiration was measured at both sites. The soil samples were sent to laboratory, their chemical and biochemical properties were analyzed. Woodlice showed 25% decrease in organic carbon and organic matter as compared to control site. Whereas termites and mites showed 58% and 16% decrease in organic carbon and organic matter. In contrast, available nitrogen (nitrate and ammonical both) and phosphorus exhibited 2-fold and 1.2-fold increase, respectively. Soil respiration and dehydrogenase activity at the sites rich in woodlice, termites and mites produced 2.5-, 3.5- and 2-fold increases, respectively as compared to their control values. Fauna-associated increase in these biological parameters clearly reflected fauna-induced microbial activity in soil. Maximum decrease in organic carbon and increase in nitrate-nitrogen and ammonical-nitrogen, available phosphorus, soil respiration and dehydrogenase activity were produced by termites and minimum by mites reflecting termite as an efficient soil improver in desert environment. The soil fauna-associated changes in chemical (organic carbon, nitrate-nitrogen, ammonical-nitrogen, phosphorus) and biochemical (soil respiration, dehydrogenase activity) properties of soil improve soil health and help in conservation of desert pedoecosystem.

  6. From Protein Engineering to Immobilization: Promising Strategies for the Upgrade of Industrial Enzymes

    PubMed Central

    Singh, Raushan Kumar; Tiwari, Manish Kumar; Singh, Ranjitha; Lee, Jung-Kul

    2013-01-01

    Enzymes found in nature have been exploited in industry due to their inherent catalytic properties in complex chemical processes under mild experimental and environmental conditions. The desired industrial goal is often difficult to achieve using the native form of the enzyme. Recent developments in protein engineering have revolutionized the development of commercially available enzymes into better industrial catalysts. Protein engineering aims at modifying the sequence of a protein, and hence its structure, to create enzymes with improved functional properties such as stability, specific activity, inhibition by reaction products, and selectivity towards non-natural substrates. Soluble enzymes are often immobilized onto solid insoluble supports to be reused in continuous processes and to facilitate the economical recovery of the enzyme after the reaction without any significant loss to its biochemical properties. Immobilization confers considerable stability towards temperature variations and organic solvents. Multipoint and multisubunit covalent attachments of enzymes on appropriately functionalized supports via linkers provide rigidity to the immobilized enzyme structure, ultimately resulting in improved enzyme stability. Protein engineering and immobilization techniques are sequential and compatible approaches for the improvement of enzyme properties. The present review highlights and summarizes various studies that have aimed to improve the biochemical properties of industrially significant enzymes. PMID:23306150

  7. Optical interconnect for large-scale systems

    NASA Astrophysics Data System (ADS)

    Dress, William

    2013-02-01

    This paper presents a switchless, optical interconnect module that serves as a node in a network of identical distribution modules for large-scale systems. Thousands to millions of hosts or endpoints may be interconnected by a network of such modules, avoiding the need for multi-level switches. Several common network topologies are reviewed and their scaling properties assessed. The concept of message-flow routing is discussed in conjunction with the unique properties enabled by the optical distribution module where it is shown how top-down software control (global routing tables, spanning-tree algorithms) may be avoided.

  8. How MAP kinase modules function as robust, yet adaptable, circuits.

    PubMed

    Tian, Tianhai; Harding, Angus

    2014-01-01

    Genetic and biochemical studies have revealed that the diversity of cell types and developmental patterns evident within the animal kingdom is generated by a handful of conserved, core modules. Core biological modules must be robust, able to maintain functionality despite perturbations, and yet sufficiently adaptable for random mutations to generate phenotypic variation during evolution. Understanding how robust, adaptable modules have influenced the evolution of eukaryotes will inform both evolutionary and synthetic biology. One such system is the MAP kinase module, which consists of a 3-tiered kinase circuit configuration that has been evolutionarily conserved from yeast to man. MAP kinase signal transduction pathways are used across eukaryotic phyla to drive biological functions that are crucial for life. Here we ask the fundamental question, why do MAPK modules follow a conserved 3-tiered topology rather than some other number? Using computational simulations, we identify a fundamental 2-tiered circuit topology that can be readily reconfigured by feedback loops and scaffolds to generate diverse signal outputs. When this 2-kinase circuit is connected to proximal input kinases, a 3-tiered modular configuration is created that is both robust and adaptable, providing a biological circuit that can regulate multiple phenotypes and maintain functionality in an uncertain world. We propose that the 3-tiered signal transduction module has been conserved through positive selection, because it facilitated the generation of phenotypic variation during eukaryotic evolution.

  9. How MAP kinase modules function as robust, yet adaptable, circuits

    PubMed Central

    Tian, Tianhai; Harding, Angus

    2014-01-01

    Genetic and biochemical studies have revealed that the diversity of cell types and developmental patterns evident within the animal kingdom is generated by a handful of conserved, core modules. Core biological modules must be robust, able to maintain functionality despite perturbations, and yet sufficiently adaptable for random mutations to generate phenotypic variation during evolution. Understanding how robust, adaptable modules have influenced the evolution of eukaryotes will inform both evolutionary and synthetic biology. One such system is the MAP kinase module, which consists of a 3-tiered kinase circuit configuration that has been evolutionarily conserved from yeast to man. MAP kinase signal transduction pathways are used across eukaryotic phyla to drive biological functions that are crucial for life. Here we ask the fundamental question, why do MAPK modules follow a conserved 3-tiered topology rather than some other number? Using computational simulations, we identify a fundamental 2-tiered circuit topology that can be readily reconfigured by feedback loops and scaffolds to generate diverse signal outputs. When this 2-kinase circuit is connected to proximal input kinases, a 3-tiered modular configuration is created that is both robust and adaptable, providing a biological circuit that can regulate multiple phenotypes and maintain functionality in an uncertain world. We propose that the 3-tiered signal transduction module has been conserved through positive selection, because it facilitated the generation of phenotypic variation during eukaryotic evolution. PMID:25483189

  10. Organic Food: A Comparative Study of the Effect of Tomato Cultivars and Cultivation Conditions on the Physico-Chemical Properties

    PubMed Central

    Araujo, Jacqueline C.; Telhado, Samuel F. P.

    2015-01-01

    The objective of this review was to present an update of the currently managed studies on the characterization physical, chemical, and sensory analysis of several tomato cultivars. This review has indicated the importance of farming system and genotype on sensory and biochemical characteristics. It is necessary to use selected genotypes responding positively to organic farming in terms of sensory, biochemical characteristics and productivity aspects and to evaluate systems over more than one year of sampling. PMID:28231203

  11. Histochemical identification of malignant and premalignant lesions

    NASA Astrophysics Data System (ADS)

    Liebow, Charles; Maloney, M. J.

    1991-06-01

    Malignant and transforming cells can be identified by biochemical parameters which can be used to localize lesions in situ for laser surgery. These cells express unique proteins, proteins in unusual quantities, or other biochemical alterations which can be utilized to image lesions of such cells. Several methods have been identified, both in vitro and in vivo, to identify such lesions. Several antibodies were examined for their properties of tissue identification, including CEA, F36/22, and AE1/AE3. F36/22, an antibody developed by M. T. Chu against human breast cancer cells, associated with two lines of oral cancer (KB and HCPC), and against two naturally occurring human oral squamous cell cancers. CEA, an antibody developed against human colon cancer, also reacted against both cell lines and both pathological samples. AE1/AE3, developed against normal fibrous components, also reacted against the samples, but in a much less regular manner. F36/22 associated with the histologically identifiably most dedifferentiated cells at the leading edge of the invading cancer. CEA, on the other hand, associated with more quiescent, older, established cancer cells. This demonstrates that antibodies developed against cancers of different organs can be used to identify a wide variety of cancers, and may have prognostic value. F36/22 coupled to fluorescein was used to identify oral cancer cells. Other properties of cancers and developing cancers can also be exploited to identify cancers, including their over-expression of tyrosine kinase and tyrosine kinase stimulating hormones such as Epidermal Growth Factor (EGF). A model of premalignant lesion produced in the hamster buccal cheek pouch with 6 week application of DMBA over-expresses constitutive tyrosine kinase which can be demonstrated biochemically. This initiated lesion can be promoted to frank cancer by growth factors released in response to laser surgery. Preliminary results suggest that these lesions can be identified by Photofrin II uptake. This work suggests that biochemical properties of cancers can be used to identify premalignant cells.

  12. Molecular Cloning, Biochemical Characterization, and Antitumor Properties of a Novel L-Asparaginase from Synechococcus elongatus PCC6803.

    PubMed

    Kebeish, R; El-Sayed, A; Fahmy, H; Abdel-Ghany, A

    2016-10-01

    L-asparaginase (EC 3.5.1.1), which catalyzes the deamidation of L-asparagine to L-aspartic acid and ammonia, has been widely used as a key therapeutic tool in the treatment of tumors. The current commercially available L-asparaginases, produced from bacteria, have signs of toxicity and hypersensitivity reactions during the course of tumor therapy. Therefore, searching for L-asparaginases with unique biochemical properties and fewer adverse effects was the objective of this work. In this study, cyanobacterial strain Synechococcus elongatus PCC6803 was found as a novel source of L-asparaginase. The L-asparaginase gene coding sequence (gi:939195038) was cloned and expressed in E. coli BL21(DE3), and the recombinant protein (Se.ASPII) was purified by affinity chromatography. The enzyme has high affinity towards L-asparagine and shows very weak affinity towards L-glutamine. The enzymatic properties of the recombinant enzyme were investigated, and the kinetic parameters (K m , V max ) were measured. The pH and temperature dependence profiles of the novel enzyme were analyzed. The work was extended to measure the antitumor properties of the novel enzyme against different human tumor cell lines.

  13. Depolarization Alters Phenotype, Maintains Plasticity of Predifferentiated Mesenchymal Stem Cells

    PubMed Central

    Sundelacruz, Sarah; Levin, Michael

    2013-01-01

    Although adult stem cell transplantation has been implemented as a therapy for tissue repair, it is limited by the availability of functional adult stem cells. A potential approach to generate stem and progenitor cells may be to modulate the differentiated status of somatic cells. Therefore, there is a need for a better understanding of how the differentiated phenotype of mature cells is regulated. We hypothesize that bioelectric signaling plays an important role in the maintenance of the differentiated state, as it is a functional regulator of the differentiation process in various cells and tissues. In this study, we asked whether the mature phenotype of osteoblasts and adipocytes derived from human mesenchymal stem cells (hMSCs) could be altered by modulation of their membrane potential. hMSC-derived osteoblasts and adipocytes were depolarized by treatment with ouabain, a Na+/K+ ATPase inhibitor, or by treatment with high concentrations of extracellular K+. To characterize the effect of voltage modulation on the differentiated state, the depolarized cells were evaluated for (1) the loss of differentiation markers; (2) the up-regulation of stemness markers and stem properties; and (3) differences in gene expression profiles in response to voltage modulation. hMSC-derived osteoblasts and adipocytes exhibited significant down-regulation of bone and fat tissue markers in response to depolarization, despite the presence of differentiation-inducing soluble factors, suggesting that bioelectric signaling overrides biochemical signaling in the maintenance of cell state. Suppression of the osteoblast or adipocyte phenotype was not accompanied by up-regulation of genes associated with the stem state. Thus, depolarization does not activate the stem cell genetic signature and, therefore, does not induce a full reprogramming event. However, after transdifferentiating the depolarized cells to evaluate for multi-lineage potential, depolarized osteoblasts demonstrated improved ability to achieve correct adipocyte morphology compared with nondepolarized osteoblasts. The present study thus demonstrates that depolarization reduces the differentiated phenotype of hMSC-derived cells and improves their transdifferentiation capacity, but does not restore a stem-like genetic profile. Through global transcript profiling of depolarized osteoblasts, we identified pathways that may mediate the effects of voltage signaling on cell state, which will require a detailed mechanistic inquiry in future studies. PMID:23738690

  14. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo

    NASA Astrophysics Data System (ADS)

    Som, Avik; Raliya, Ramesh; Tian, Limei; Akers, Walter; Ippolito, Joseph E.; Singamaneni, Srikanth; Biswas, Pratim; Achilefu, Samuel

    2016-06-01

    The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3 in tumors increases tumor pH over time. The associated induction of tumor growth stasis is putatively interpreted as a pHe increase. This study establishes an approach to prepare nano-CaCO3 over a wide particle size range, a formulation that stabilizes the nanomaterials in aqueous solutions, and a pH-sensitive nano-platform capable of modulating the acidic environment of cancer for potential therapeutic benefits.The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3 in tumors increases tumor pH over time. The associated induction of tumor growth stasis is putatively interpreted as a pHe increase. This study establishes an approach to prepare nano-CaCO3 over a wide particle size range, a formulation that stabilizes the nanomaterials in aqueous solutions, and a pH-sensitive nano-platform capable of modulating the acidic environment of cancer for potential therapeutic benefits. Electronic supplementary information (ESI) available: Summary of experiments, theoretical schema of effect, synthesis schema, X-Ray diffraction results, TEM of effects of different solvents on particles in various solvents. See DOI: 10.1039/c5nr06162h

  15. Weakly Coretractable Modules

    NASA Astrophysics Data System (ADS)

    Hadi, Inaam M. A.; Al-aeashi, Shukur N.

    2018-05-01

    If R is a ring with identity and M is a unitary right R-module. Here we introduce the class of weakly coretractable module. Some basic properties are investigated and some relationships between these modules and other related one are introduced.

  16. Cellular chromophores and signaling in low level light therapy

    NASA Astrophysics Data System (ADS)

    Hamblin, Michael R.; Demidova-Rice, Tatiana N.

    2007-02-01

    The use of low levels of visible or near infrared light (LLLT) for reducing pain, inflammation and edema, promoting healing of wounds, deeper tissues and nerves, and preventing tissue damage by reducing cellular apoptosis has been known for almost forty years since the invention of lasers. Originally thought to be a peculiar property of laser light (soft or cold lasers), the subject has now broadened to include photobiomodulation and photobiostimulation using non-coherent light. Despite many reports of positive findings from experiments conducted in vitro, in animal models and in randomized controlled clinical trials, LLLT remains controversial. This likely is due to two main reasons; firstly the biochemical mechanisms underlying the positive effects are incompletely understood, and secondly the complexity of rationally choosing amongst a large number of illumination parameters such as wavelength, fluence, power density, pulse structure and treatment timing has led to the publication of a number of negative studies as well as many positive ones. In recent years major advances have been made in understanding the mechanisms that operate at the cellular and tissue levels during LLLT. Mitochondria are thought to be the main site for the initial effects of light and specifically cytochrome c oxidase that has absorption peaks in the red and near infrared regions of the electromagnetic spectrum matches the action spectra of LLLT effects. The discovery that cells employ nitric oxide (NO) synthesized in the mitochondria by neuronal nitric oxide synthase, to regulate respiration by competitive binding to the oxygen binding of cytochrome c oxidase, now suggests how LLLT can affect cell metabolism. If LLLT photodissociates inhibitory NO from cytochrome c oxidase, this would explain increased ATP production, modulation of reactive oxygen species, reduction and prevention of apoptosis, stimulation of angiogenesis, increase of blood flow and induction of transcription factors. In particular, signaling cascades are initiated via cyclic adenosine monophosphate (cAMP) and nuclear factor kappa B (NF-κB). These signal transduction pathways in turn lead to increased cell proliferation and migration (particularly by fibroblasts), modulation in levels of cytokines, growth factors and inflammatory mediators, and increases in anti-apoptotic proteins. The results of these biochemical and cellular changes in animals and patients include such benefits as increased healing in chronic wounds, improvements in sports injuries and carpal tunnel syndrome, pain reduction in arthritis and neuropathies, and amelioration of damage after heart attacks, stroke, nerve injury and retinal toxicity.

  17. The Spectrophotometer II: A Module on the Spectral Properties of Light. Tech Physics Series.

    ERIC Educational Resources Information Center

    Frank, Nathaniel; And Others

    This module is designed to give the learner an understanding of the nature of light and how its properties are used in the design of spectrophotometers. Problems promote the use of spectrophotometers in qualitative analysis, the optical elements used in a monochromator, and the physical properties of the prism and the diffraction grating. Other…

  18. Raman spectra of single cells with autofluorescence suppression by modulated wavelength excitation

    NASA Astrophysics Data System (ADS)

    Krafft, Christoph; Dochow, Sebastian; Bergner, Norbert; Clement, Joachim H.; Praveen, Bavishna B.; Mazilu, Michael; Marchington, Rob; Dholakia, Kishan; Popp, Jürgen

    2012-01-01

    Raman spectroscopy is a non-invasive technique offering great potential in the biomedical field for label-free discrimination between normal and tumor cells based on their biochemical composition. First, this contribution describes Raman spectra of lymphocytes after drying, in laser tweezers, and trapped in a microfluidic environment. Second, spectral differences between lymphocytes and acute myeloid leukemia cells (OCI-AML3) are compared for these three experimental conditions. Significant similarities of difference spectra are consistent with the biological relevance of the spectral features. Third, modulated wavelength Raman spectroscopy has been applied to this model system to demonstrate background suppression. Here, the laser excitation wavelength of 785 nm was modulated with a frequency of 40 mHz by 0.6 nm. 40 spectra were accumulated with an exposure time of 5 seconds each. These data were subjected to principal component analysis to calculate modulated Raman signatures. The loading of the principal component shows characteristics of first derivatives with derivative like band shapes. The derivative of this loading corresponds to a pseudo-second derivative spectrum and enables to determine band positions.

  19. Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation

    PubMed Central

    Findeisen, Felix

    2010-01-01

    Voltage-gated calcium channels (CaVs) are large, transmembrane multiprotein complexes that couple membrane depolarization to cellular calcium entry. These channels are central to cardiac action potential propagation, neurotransmitter and hormone release, muscle contraction and calcium-dependent gene transcription. Over the past six years, the advent of high-resolution structural studies of CaV components from different isoforms and CaV modulators has begun to reveal the architecture that underlies the exceptionally rich feedback modulation that controls CaV action. These descriptions of CaV molecular anatomy have provided new, structure-based insights into the mechanisms by which particular channel elements affect voltage-dependent inactivation (VDI), calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF). The initial successes have been achieved through structural studies of soluble channel domains and modulator proteins and have proven most powerful when paired with biochemical and functional studies that validate ideas inspired by the structures. Here, we review the progress in this growing area and highlight some key open challenges for future efforts. PMID:21139419

  20. Nutritional modulation of immune function in broilers.

    PubMed

    Kidd, M T

    2004-04-01

    Collaborative research efforts across disciplines typically result in more insight toward the hypothesis being tested due to the omnibus nature of the projects. For example, nutritional experiments evaluating a nutrient response will benefit greatly by incorporating biochemical, physiological, and immunological endpoints for measurement. Clearly, commercial poultry producers do not have the luxury of focusing on specific disciplines when field problems occur. Hence, in practice interplay exists among nutrition, genetics, management, and diseases. Dietary composition impacts immune function of the chicken. As research in the area of nutritional immunology has increased, it is becoming apparent that nutrient needs for immunity do not coincide with those for growth or skeletal tissue accretion. This review is not a comprehensive assessment of nutrient needs for immunity in the chicken. Rather, this review is concerned with nutritional modulation of immunity in broilers that offers insight for nutritionists and researchers to implement nutritional regimens to reduce the severity of disease and to test or validate nutritional regimens that heighten immunity. Nutritional modulation of the hen diet and in ovo nutrient modulation to improve chick immunity and disease resistance are discussed.

  1. Tumor-derived exosomes modulate T cell function through transfer of RNA.

    PubMed

    House, Imran G; Petley, Emma V; Beavis, Paul A

    2018-03-01

    Tumor cells can develop a variety of mechanisms to evade and subvert the immune system for their survival. Bland et al., in this edition of The FEBS Journal, make the novel finding that the tumor line B16F0 can deliver mRNA/miRNA loaded exosomes to cytotoxic T lymphocytes and alter their metabolic function and interferon gamma production. © 2018 Federation of European Biochemical Societies.

  2. Trace amine-associated receptor 1: a promising target for the treatment of psychostimulant addiction

    PubMed Central

    Jing, Li; Li, Jun-Xu

    2015-01-01

    Abuse of and addiction to psychostimulants remains a challenging clinical issue, yet no effective pharmacotherapy is available. Trace amine associated receptor 1 (TAAR 1) is increasingly recognized as a novel drug target that participates in the modulation of drug abuse. This review analyzed existing preclinical evidence from electrophysiological, biochemical to behavioral aspects regarding the functional interactions between TAAR 1 and dopaminergic system. TAAR 1 knockout mice demonstrate increased sensitivity to dopaminergic activation while TAAR 1 agonists reduce the neurochemical effects of cocaine and amphetamines, attenuate abuse- and addiction-related behavioral effects of cocaine and methamphetamine. It is concluded that TAAR 1 activation functionally modulate the dopaminergic activity and TAAR 1 agonists appear to be promising pharmacotherapies against psychostimulant addiction. PMID:26092759

  3. Functional relevance of neurotransmitter receptor heteromers in the central nervous system.

    PubMed

    Ferré, Sergi; Ciruela, Francisco; Woods, Amina S; Lluis, Carme; Franco, Rafael

    2007-09-01

    The existence of neurotransmitter receptor heteromers is becoming broadly accepted and their functional significance is being revealed. Heteromerization of neurotransmitter receptors produces functional entities that possess different biochemical characteristics with respect to the individual components of the heteromer. Neurotransmitter receptor heteromers can function as processors of computations that modulate cell signaling. Thus, the quantitative or qualitative aspects of the signaling generated by stimulation of any of the individual receptor units in the heteromer are different from those obtained during coactivation. Furthermore, recent studies demonstrate that some neurotransmitter receptor heteromers can exert an effect as processors of computations that directly modulate both pre- and postsynaptic neurotransmission. This is illustrated by the analysis of striatal receptor heteromers that control striatal glutamatergic neurotransmission.

  4. Neural mechanisms in nitric-oxide-deficient hypertension

    NASA Technical Reports Server (NTRS)

    Sander, M.; Victor, R. G.; Blomqvist, C. G. (Principal Investigator)

    1999-01-01

    Nitric oxide is hypothesized to be an inhibitory modulator of central sympathetic nervous outflow, and deficient neuronal nitric oxide production to cause sympathetic overactivity, which then contributes to nitric-oxide-deficient hypertension. The biochemical and neuroanatomical basis for this concept revolves around nitric oxide modulation of glutamatergic neurotransmission within brainstem vasomotor centers. The functional consequence of neuronal nitric oxide in blood pressure regulation is, however, marked by an apparent conflict in the literature. On one hand, conscious animal studies using sympathetic blockade suggest a significant role for neuronal nitric oxide deficiency in the development of nitric-oxide-deficient hypertension, and on the other hand, there is evidence against such a role derived from 'knock-out' mice lacking nitric-oxide synthase 1, the major source of neuronal nitric oxide.

  5. A positive feedback at the cellular level promotes robustness and modulation at the circuit level

    PubMed Central

    Dethier, Julie; Drion, Guillaume; Franci, Alessio

    2015-01-01

    This article highlights the role of a positive feedback gating mechanism at the cellular level in the robustness and modulation properties of rhythmic activities at the circuit level. The results are presented in the context of half-center oscillators, which are simple rhythmic circuits composed of two reciprocally connected inhibitory neuronal populations. Specifically, we focus on rhythms that rely on a particular excitability property, the postinhibitory rebound, an intrinsic cellular property that elicits transient membrane depolarization when released from hyperpolarization. Two distinct ionic currents can evoke this transient depolarization: a hyperpolarization-activated cation current and a low-threshold T-type calcium current. The presence of a slow activation is specific to the T-type calcium current and provides a slow positive feedback at the cellular level that is absent in the cation current. We show that this slow positive feedback is required to endow the network rhythm with physiological modulation and robustness properties. This study thereby identifies an essential cellular property to be retained at the network level in modeling network robustness and modulation. PMID:26311181

  6. Optically tuned terahertz modulator based on annealed multilayer MoS2.

    PubMed

    Cao, Yapeng; Gan, Sheng; Geng, Zhaoxin; Liu, Jian; Yang, Yuping; Bao, Qiaoling; Chen, Hongda

    2016-03-08

    Controlling the propagation properties of terahertz waves is very important in terahertz technologies applied in high-speed communication. Therefore a new-type optically tuned terahertz modulator based on multilayer-MoS2 and silicon is experimentally demonstrated. The terahertz transmission could be significantly modulated by changing the power of the pumping laser. With an annealing treatment as a p-doping method, MoS2 on silicon demonstrates a triple enhancement of terahertz modulation depth compared with the bare silicon. This MoS2-based device even exhibited much higher modulation efficiency than the graphene-based device. We also analyzed the mechanism of the modulation enhancement originated from annealed MoS2, and found that it is different from that of graphene-based device. The unique optical modulating properties of the device exhibit tremendous promise for applications in terahertz switch.

  7. Hemato-biochemical responses to packing in donkeys administered ascorbic acid during the harmattan season.

    PubMed

    Olaifa, Folashade; Ayo, Joseph Olusegun; Ambali, Suleiman Folorunsho; Rekwot, Peter Ibrahim

    2015-02-01

    Experiments were performed to investigate the effect of ascorbic acid (AA) in reducing hemato-biochemical changes in pack donkeys during the cold-dry (harmattan) season. Six experimental donkeys administered orally AA (200 mg/kg) and six control donkeys not administered ascorbic acid were subjected to packing. Blood samples were collected from all donkeys for hematological and biochemical analyses. In the control donkeys, packed cell volume (PCV), erythrocyte count and hemoglobin concentration (Hb) decreased significantly (P<0.05) at the end of packing. In the experimental donkeys, there was no significant difference between the pre- and post-packing values of PCV, erythrocyte count and Hb. In the control donkeys, the neutrophil and neutrophil:lymphocyte ratio increased significantly (P<0.05) post packing, but in the experimental donkeys, the pre- and post-packing values were not significantly different. The eosinophil count increased significantly (P<0.05) in experimental and control donkeys post packing. In conclusion, packing exerted significant adverse effects on the hematological parameters ameliorated by AA administration. AA may modulate neutrophilia and induce a considerable alteration of erythroid markers in donkeys subjected to packing during the harmattan season.

  8. A network analysis of cofactor-protein interactions for analyzing associations between human nutrition and diseases

    PubMed Central

    Scott-Boyer, Marie Pier; Lacroix, Sébastien; Scotti, Marco; Morine, Melissa J.; Kaput, Jim; Priami, Corrado

    2016-01-01

    The involvement of vitamins and other micronutrients in intermediary metabolism was elucidated in the mid 1900’s at the level of individual biochemical reactions. Biochemical pathways remain the foundational knowledgebase for understanding how micronutrient adequacy modulates health in all life stages. Current daily recommended intakes were usually established on the basis of the association of a single nutrient to a single, most sensitive adverse effect and thus neglect interdependent and pleiotropic effects of micronutrients on biological systems. Hence, the understanding of the impact of overt or sub-clinical nutrient deficiencies on biological processes remains incomplete. Developing a more complete view of the role of micronutrients and their metabolic products in protein-mediated reactions is of importance. We thus integrated and represented cofactor-protein interaction data from multiple and diverse sources into a multi-layer network representation that links cofactors, cofactor-interacting proteins, biological processes, and diseases. Network representation of this information is a key feature of the present analysis and enables the integration of data from individual biochemical reactions and protein-protein interactions into a systems view, which may guide strategies for targeted nutritional interventions aimed at improving health and preventing diseases. PMID:26777674

  9. Hemato-biochemical responses to packing in donkeys administered ascorbic acid during the harmattan season

    PubMed Central

    OLAIFA, Folashade; AYO, Joseph Olusegun; AMBALI, Suleiman Folorunsho; REKWOT, Peter Ibrahim

    2012-01-01

    Experiments were performed to investigate the effect of ascorbic acid (AA) in reducing hemato-biochemical changes in pack donkeys during the cold-dry (harmattan) season. Six experimental donkeys administered orally AA (200 mg/kg) and six control donkeys not administered ascorbic acid were subjected to packing. Blood samples were collected from all donkeys for hematological and biochemical analyses. In the control donkeys, packed cell volume (PCV), erythrocyte count and hemoglobin concentration (Hb) decreased significantly (P<0.05) at the end of packing. In the experimental donkeys, there was no significant difference between the pre- and post-packing values of PCV, erythrocyte count and Hb. In the control donkeys, the neutrophil and neutrophil:lymphocyte ratio increased significantly (P<0.05) post packing, but in the experimental donkeys, the pre- and post-packing values were not significantly different. The eosinophil count increased significantly (P<0.05) in experimental and control donkeys post packing. In conclusion, packing exerted significant adverse effects on the hematological parameters ameliorated by AA administration. AA may modulate neutrophilia and induce a considerable alteration of erythroid markers in donkeys subjected to packing during the harmattan season. PMID:23154452

  10. Raman microscopy of bladder cancer cells expressing green fluorescent protein

    NASA Astrophysics Data System (ADS)

    Mandair, Gurjit S.; Han, Amy L.; Keller, Evan T.; Morris, Michael D.

    2016-11-01

    Gene engineering is a commonly used tool in cellular biology to determine changes in function or expression of downstream targets. However, the impact of genetic modulation on biochemical effects is less frequently evaluated. The aim of this study is to use Raman microscopy to assess the biochemical effects of gene silencing on T24 and UMUC-13 bladder cancer cell lines. Cellular biochemical information related to nucleic acid and lipogenic components was obtained from deconvolved Raman spectra. We show that the green fluorescence protein (GFP), the chromophore that served as a fluorescent reporter for gene silencing, could also be detected by Raman microscopy. Only the gene-silenced UMUC-13 cell lines exhibited low-to-moderate GFP fluorescence as determined by fluorescence imaging and Raman spectroscopic studies. Moreover, we show that gene silencing and cell phenotype had a greater effect on nucleic acid and lipogenic components with minimal interference from GFP expression. Gene silencing was also found to perturb cellular protein secondary structure in which the amount of disorderd protein increased at the expense of more ordered protein. Overall, our study identified the spectral signature for cellular GFP expression and elucidated the effects of gene silencing on cancer cell biochemistry and protein secondary structure.

  11. Oxidative Phospholipidomics in health and disease: Achievements, challenges and hopes.

    PubMed

    Reis, Ana

    2017-10-01

    Phospholipid peroxidation products are recognized as important bioactive lipid mediators playing an active role as modulators in signalling events in inflammation, immunity and infection. The biochemical responses are determined by the oxidation structural features present in oxPL modulating biophysical and biological properties in model membranes and lipoproteins. In spite of the extensive work conducted with model systems over the last 20 years, the study of oxPL in biological systems has virtually stagnated. In fact, very little is known concerning the predominant oxPL in fluids and tissues, their basal levels, and any variations introduced with age, gender and ethnicity in health and disease. In consequence, knowledge on oxPL has not yet translated into clinical diagnostic, in the early and timely diagnosis of "silent" diseases such as atherosclerosis and cardiovascular diseases, or as prognosis tools in disease stratification and particularly useful in the context of multimorbidities. Their use as therapeutic solutions or the development of innovative functional biomaterials remains to be explored. This review summarizes the achievements made in the identification of oxPL revealing an enormous structural diversity. A brief overview of the challenges associated with the analysis of such diverse array of products is given and a critical evaluation on key aspects in the analysis pipeline that need to be addressed. Once these issues are addressed, Oxidative Phospholipidomics will hopefully lead to major breakthrough discoveries in biochemistry, pharmaceutical, and clinical areas for the upcoming 20 years. This article is part of Special Issue entitled 4-Hydroxynonenal and Related Lipid Oxidation Products. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects

    PubMed Central

    Abbas, Ghulam; Murtaza, Behzad; Bibi, Irshad; Shahid, Muhammad; Khan, Muhammad Imran; Amjad, Muhammad; Hussain, Munawar; Natasha

    2018-01-01

    Environmental contamination with arsenic (As) is a global environmental, agricultural and health issue due to the highly toxic and carcinogenic nature of As. Exposure of plants to As, even at very low concentration, can cause many morphological, physiological, and biochemical changes. The recent research on As in the soil-plant system indicates that As toxicity to plants varies with its speciation in plants (e.g., arsenite, As(III); arsenate, As(V)), with the type of plant species, and with other soil factors controlling As accumulation in plants. Various plant species have different mechanisms of As(III) or As(V) uptake, toxicity, and detoxification. This review briefly describes the sources and global extent of As contamination and As speciation in soil. We discuss different mechanisms responsible for As(III) and As(V) uptake, toxicity, and detoxification in plants, at physiological, biochemical, and molecular levels. This review highlights the importance of the As-induced generation of reactive oxygen species (ROS), as well as their damaging impacts on plants at biochemical, genetic, and molecular levels. The role of different enzymatic (superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase) and non-enzymatic (salicylic acid, proline, phytochelatins, glutathione, nitric oxide, and phosphorous) substances under As(III/V) stress have been delineated via conceptual models showing As translocation and toxicity pathways in plant species. Significantly, this review addresses the current, albeit partially understood, emerging aspects on (i) As-induced physiological, biochemical, and genotoxic mechanisms and responses in plants and (ii) the roles of different molecules in modulation of As-induced toxicities in plants. We also provide insight on some important research gaps that need to be filled to advance our scientific understanding in this area of research on As in soil-plant systems. PMID:29301332

  13. Ubiquitin ligase Nedd4-2 modulates Kv1.3 current amplitude and ion channel protein targeting

    PubMed Central

    Velez, Patricio; Schwartz, Austin B.; Iyer, Subashini R.; Warrington, Anthony

    2016-01-01

    Voltage-dependent potassium channels (Kv) go beyond the stabilization of the resting potential and regulate biochemical pathways, regulate intracellular signaling, and detect energy homeostasis. Because targeted deletion and pharmacological block of the Kv1.3 channel protein produce marked changes in metabolism, resistance to diet-induced obesity, and changes in olfactory structure and function, this investigation explored Nedd4-2-mediated ubiquitination and degradation to regulate Kv1.3 channel density. Heterologous coexpression of Nedd4-2 ligase and Kv1.3 in HEK 293 cells reduced Kv1.3 current density without modulation of kinetic properties as measured by patch-clamp electrophysiology. Modulation of current density was dependent on ligase activity and was lost through point mutation of cysteine 938 in the catalytic site of the ligase (Nedd4-2CS). Incorporation of adaptor protein Grb10 relieved Nedd4-2-induced current suppression as did application of the proteasome inhibitor Mg-132. SDS-PAGE and immunoprecipitation strategies demonstrated a channel/adaptor/ligase signalplex. Pixel immunodensity was reduced for Kv1.3 in the presence of Nedd4-2, which was eliminated upon additional incorporation of Grb10. We confirmed Nedd4-2/Grb10 coimmunoprecipitation and observed an increased immunodensity for Nedd4-2 in the presence of Kv1.3 plus Grb10, regardless of whether the catalytic site was active. Kv1.3/Nedd4-2 were reciprocally coimmunoprecipated, whereby mutation of the COOH-terminal, SH3-recognition (493–498), or ubiquitination sites on Kv1.3 (lysines 467, 476, 498) retained coimmunoprecipitation, while the latter prevented the reduction in channel density. A model is presented for which an atypical interaction outside the canonical PY motif may permit channel/ligase interaction to lead to protein degradation and reduced current density, which can involve Nedd4-2/Grb10 interactions to disrupt Kv1.3 loss of current density. PMID:27146988

  14. Lycopene Protects Keratinocytes Against UVB Radiation-Induced Carcinogenesis via Negative Regulation of FOXO3a Through the mTORC2/AKT Signaling Pathway.

    PubMed

    Chen, Ping; Xu, Shina; Qu, Jinlong

    2018-01-01

    Lycopene, one of the most potent anti-oxidants, has been reported to exhibit potent anti-proliferative properties in a wide range of cancer cells through modulation of the cell cycle and apoptosis. Forkhead box O3 (FOXO3a) plays a pivotal role in modulating the expression of genes involved in cell death. Herein, we investigated the role of FOXO3a signaling in the anti-cancer effects of lycopene. Results showed that lycopene pretreatment attenuated UVB-induced cell hyper-proliferation and promoted apoptosis, accompanied by decreased cyclin-dependent kinase 2 (CDK2) and CDK4 complex in both human keratinocytes and SKH-1 hairless mice. FOXO3a is phosphorylated in response to UVB irradiation and sequestered in the cytoplasm, while lycopene pretreatment rescued this sensitization. Gene ablation of FOXO3a attenuated lycopene-induced decrease in cell hyper-proliferation, CDK2, and CDK4 complex, indicating a critical role of FOXO3a in the lycopene-induced anti-proliferative effect of keratinocytes during UVB irradiation. Transfection with FOXO3a siRNA inhibited the lycopene-induced increase in cell apoptosis, BAX and cleaved PARP expression. Moreover, loss of AKT induced further accelerated lycopene-induced FOXO3a dephosphorylation, while loss of mechanistic target of rapamycin complex 2 (mTORC2) by transfection with RICTOR siRNA induced levels of AKT phosphorylation comparable to those obtained with lycopene. In contrast, overexpression of AKT or mTORC2 decreased the effects of lycopene on the expression of FOXO3a as well as AKT phosphorylation, suggesting that lycopene depends on the negative modulation of mTORC2/AKT signaling. Taken together, our findings demonstrate that the mTORC2/AKT/FOXO3a axis plays a critical role in the anti-proliferative and pro-apoptotic effects of lycopene in UVB-induced photocarcinogenesis. J. Cell. Biochem. 119: 366-377, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Orion Pad Abort 1 Crew Module Inertia Test Approach and Results

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia; Harding, Adam

    2010-01-01

    The Flight Loads Laboratory at the Dryden Flight Research Center conducted tests to measure the inertia properties of the Orion Pad Abort 1 (PA-1) Crew Module. These measurements were taken to validate analytical predictions of the inertia properties of the vehicle and assist in reducing uncertainty for derived aero performance results calculated post launch. The first test conducted was to determine the Ixx of the Crew Module. This test approach used a modified torsion pendulum test step up that allowed the suspended Crew Module to rotate about the x axis. The second test used a different approach to measure both the Iyy and Izz properties. This test used a Knife Edge fixture that allowed small rotation of the Crew Module about the y and z axes. Discussions of the techniques and equations used to accomplish each test are presented. Comparisons with the predicted values used for the final flight calculations are made. Problem areas, with explanations and recommendations where available, are addressed. Finally, an evaluation of the value and success of these techniques to measure the moments of inertia of the Crew Module is provided.

  16. Evaluation method for the potential functionome harbored in the genome and metagenome.

    PubMed

    Takami, Hideto; Taniguchi, Takeaki; Moriya, Yuki; Kuwahara, Tomomi; Kanehisa, Minoru; Goto, Susumu

    2012-12-12

    One of the main goals of genomic analysis is to elucidate the comprehensive functions (functionome) in individual organisms or a whole community in various environments. However, a standard evaluation method for discerning the functional potentials harbored within the genome or metagenome has not yet been established. We have developed a new evaluation method for the potential functionome, based on the completion ratio of Kyoto Encyclopedia of Genes and Genomes (KEGG) functional modules. Distribution of the completion ratio of the KEGG functional modules in 768 prokaryotic species varied greatly with the kind of module, and all modules primarily fell into 4 patterns (universal, restricted, diversified and non-prokaryotic modules), indicating the universal and unique nature of each module, and also the versatility of the KEGG Orthology (KO) identifiers mapped to each one. The module completion ratio in 8 phenotypically different bacilli revealed that some modules were shared only in phenotypically similar species. Metagenomes of human gut microbiomes from 13 healthy individuals previously determined by the Sanger method were analyzed based on the module completion ratio. Results led to new discoveries in the nutritional preferences of gut microbes, believed to be one of the mutualistic representations of gut microbiomes to avoid nutritional competition with the host. The method developed in this study could characterize the functionome harbored in genomes and metagenomes. As this method also provided taxonomical information from KEGG modules as well as the gene hosts constructing the modules, interpretation of completion profiles was simplified and we could identify the complementarity between biochemical functions in human hosts and the nutritional preferences in human gut microbiomes. Thus, our method has the potential to be a powerful tool for comparative functional analysis in genomics and metagenomics, able to target unknown environments containing various uncultivable microbes within unidentified phyla.

  17. Psychometric properties of startle and corrugator response in NPU, Affective Picture Viewing, and Resting State tasks

    PubMed Central

    Kaye, Jesse T.; Bradford, Daniel E.; Curtin, John J.

    2016-01-01

    The current study provides a comprehensive evaluation of critical psychometric properties of commonly used psychophysiology laboratory tasks/measures within the NIMH RDoC. Participants (N = 128) completed the No Shock, Predictable Shock, Unpredictable Shock (NPU) task, Affective Picture Viewing task, and Resting State task at two study visits separated by one week. We examined potentiation/modulation scores in NPU (predictable or unpredictable shock vs. no shock) and Affective Picture Viewing tasks (pleasant or unpleasant vs. neutral pictures) for startle and corrugator responses with two commonly used quantification methods. We quantified startle potentiation/modulation scores with raw and standardized responses. We quantified corrugator potentiation/modulation in the time and frequency domains. We quantified general startle reactivity in the Resting State Task as the mean raw startle response during the task. For these three tasks, two measures, and two quantification methods we evaluated effect size robustness and stability, internal consistency (i.e., split-half reliability), and one-week temporal stability. The psychometric properties of startle potentiation in the NPU task were good but concerns were noted for corrugator potentiation in this task. Some concerns also were noted for the psychometric properties of both startle and corrugator modulation in the Affective Picture Viewing task, in particular for pleasant picture modulation. Psychometric properties of general startle reactivity in the Resting State task were good. Some salient differences in the psychometric properties of the NPU and Affective Picture Viewing tasks were observed within and across quantification methods. PMID:27167717

  18. Non-linear Membrane Properties in Entorhinal Cortical Stellate Cells Reduce Modulation of Input-Output Responses by Voltage Fluctuations

    PubMed Central

    Fernandez, Fernando R.; Malerba, Paola; White, John A.

    2015-01-01

    The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances. PMID:25909971

  19. Non-linear Membrane Properties in Entorhinal Cortical Stellate Cells Reduce Modulation of Input-Output Responses by Voltage Fluctuations.

    PubMed

    Fernandez, Fernando R; Malerba, Paola; White, John A

    2015-04-01

    The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances.

  20. Biochemical properties and subcellular localization of tyrosine aminotransferases in Arabidopsis thaliana.

    PubMed

    Wang, Minmin; Toda, Kyoko; Maeda, Hiroshi A

    2016-12-01

    Plants produce various L-tyrosine (Tyr)-derived compounds that are of pharmaceutical or nutritional importance to humans. Tyr aminotransferase (TAT) catalyzes the reversible transamination between Tyr and 4-hydroxyphenylpyruvate (HPP), the initial step in the biosynthesis of many Tyr-derived plant natural products. Herein reported is the biochemical characterization and subcellular localization of TAT enzymes from the model plant Arabidopsis thaliana. Phylogenetic analysis showed that Arabidopsis has at least two homologous TAT genes, At5g53970 (AtTAT1) and At5g36160 (AtTAT2). Their recombinant enzymes showed distinct biochemical properties: AtTAT1 had the highest activity towards Tyr, while AtTAT2 exhibited a broad substrate specificity for both amino and keto acid substrates. Also, AtTAT1 favored the direction of Tyr deamination to HPP, whereas AtTAT2 preferred transamination of HPP to Tyr. Subcellular localization analysis using GFP-fusion proteins and confocal microscopy showed that AtTAT1, AtTAT2, and HPP dioxygenase (HPPD), which catalyzes the subsequent step of TAT, are localized in the cytosol, unlike plastid-localized Tyr and tocopherol biosynthetic enzymes. Furthermore, subcellular fractionation indicated that, while HPPD activity is restricted to the cytosol, TAT activity is detected in both cytosolic and plastidic fractions of Arabidopsis leaf tissue, suggesting that an unknown aminotransferase(s) having TAT activity is also present in the plastids. Biochemical and cellular analyses of Arabidopsis TATs provide a fundamental basis for future in vivo studies and metabolic engineering for enhanced production of Tyr-derived phytochemicals in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Correlation Between Monoamine Oxidase Inhibitors and Anticonvulsants

    PubMed Central

    Dwivedi, Chandradhar; Misra, Radhey S.; Chaudhari, Anshumali; Parmar, Surendra S.

    1980-01-01

    Monoamine oxidase inhibitory and anticonvulsant properties of 2-substituted styryl-6-bromo-3-(4-ethylbenzoate/4 benzhydrazide)-4-quinazoles are studied. All styryl quinazolone esters except compound number 9 exhibited monoamine oxidase inhibitory properties during oxidative deamination of kynuramine. Corresponding hydrazides were found to have relatively higher activity. All these quinazolones were able to protect against pentylenetetrazol induced seizures. These observations in general do not prove that monoamine oxidase inhibitory properties represent the biochemical basis for the anticonvulsant activity of these compounds. PMID:7420438

  2. Sphingobium sp. SYK-6 LigG involved in lignin degradation is structurally and biochemically related to the glutathione transferase ω class.

    PubMed

    Meux, Edgar; Prosper, Pascalita; Masai, Eiji; Mulliert, Guillermo; Dumarçay, Stéphane; Morel, Mélanie; Didierjean, Claude; Gelhaye, Eric; Favier, Frédérique

    2012-11-16

    SpLigG is one of the three glutathione transferases (GSTs) involved in the process of lignin breakdown in the soil bacterium Sphingobium sp. SYK-6. Sequence comparisons showed that SpLigG and several proteobacteria homologues form an independent cluster within cysteine-containing GSTs. The relationship between SpLigG and other GSTs was investigated. The X-ray structure and biochemical properties of SpLigG indicate that this enzyme belongs to the omega class of glutathione transferases. However, the hydrophilic substrate binding site of SpLigG, together with its known ability to stereoselectively deglutathionylate the physiological substrate α-glutathionyl-β-hydroxypropiovanillone, argues for broadening the definition of the omega class. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Nutritional Evaluation of Australian Microalgae as Potential Human Health Supplements

    PubMed Central

    Kent, Megan; Welladsen, Heather M.; Mangott, Arnold; Li, Yan

    2015-01-01

    This study investigated the biochemical suitability of Australian native microalgal species Scenedesmus sp., Nannochloropsis sp., Dunaliella sp., and a chlorophytic polyculture as nutritional supplements for human health. The four microalgal cultures were harvested during exponential growth, lyophilized, and analysed for proximate composition (moisture, ash, lipid, carbohydrates, and protein), pigments, and amino acid and fatty acid profiles. The resulting nutritional value, based on biochemical composition, was compared to commercial Spirulina and Chlorella products. The Australian native microalgae exhibited similar, and in several cases superior, organic nutritional properties relative to the assessed commercial products, with biochemical profiles rich in high-quality protein, nutritious polyunsaturated fats (such as α-linolenic acid, arachidonic acid, and eicosapentaenoic acid), and antioxidant pigments. These findings indicate that the microalgae assessed have great potential as multi-nutrient human health supplements. PMID:25723496

  4. The compositional and evolutionary logic of metabolism

    NASA Astrophysics Data System (ADS)

    Braakman, Rogier; Smith, Eric

    2013-02-01

    Metabolism is built on a foundation of organic chemistry, and employs structures and interactions at many scales. Despite these sources of complexity, metabolism also displays striking and robust regularities in the forms of modularity and hierarchy, which may be described compactly in terms of relatively few principles of composition. These regularities render metabolic architecture comprehensible as a system, and also suggests the order in which layers of that system came into existence. In addition metabolism also serves as a foundational layer in other hierarchies, up to at least the levels of cellular integration including bioenergetics and molecular replication, and trophic ecology. The recapitulation of patterns first seen in metabolism, in these higher levels, motivates us to interpret metabolism as a source of causation or constraint on many forms of organization in the biosphere. Many of the forms of modularity and hierarchy exhibited by metabolism are readily interpreted as stages in the emergence of catalytic control by living systems over organic chemistry, sometimes recapitulating or incorporating geochemical mechanisms. We identify as modules, either subsets of chemicals and reactions, or subsets of functions, that are re-used in many contexts with a conserved internal structure. At the small molecule substrate level, module boundaries are often associated with the most complex reaction mechanisms, catalyzed by highly conserved enzymes. Cofactors form a biosynthetically and functionally distinctive control layer over the small-molecule substrate. The most complex members among the cofactors are often associated with the reactions at module boundaries in the substrate networks, while simpler cofactors participate in widely generalized reactions. The highly tuned chemical structures of cofactors (sometimes exploiting distinctive properties of the elements of the periodic table) thereby act as ‘keys’ that incorporate classes of organic reactions within biochemistry. Module boundaries provide the interfaces where change is concentrated, when we catalogue extant diversity of metabolic phenotypes. The same modules that organize the compositional diversity of metabolism are argued, with many explicit examples, to have governed long-term evolution. Early evolution of core metabolism, and especially of carbon-fixation, appears to have required very few innovations, and to have used few rules of composition of conserved modules, to produce adaptations to simple chemical or energetic differences of environment without diverse solutions and without historical contingency. We demonstrate these features of metabolism at each of several levels of hierarchy, beginning with the small-molecule metabolic substrate and network architecture, continuing with cofactors and key conserved reactions, and culminating in the aggregation of multiple diverse physical and biochemical processes in cells.

  5. Identification of novel anti-inflammatory probiotic strains isolated from pulque.

    PubMed

    Torres-Maravilla, Edgar; Lenoir, Marion; Mayorga-Reyes, Lino; Allain, Thibault; Sokol, Harry; Langella, Philippe; Sánchez-Pardo, María E; Bermúdez-Humarán, Luis G

    2016-01-01

    Probiotics are live microorganisms which when administered in adequate amounts, confer health benefits on the host. Their use is more and more widespread for both prevention and treatment of diseases, including traveler’s diarrhea and inflammatory bowel diseases (IBDs). In this work, we isolated and characterized novel candidate probiotic strains from pulque (xaxtle), a traditional Mexican alcoholic fermented beverage. A total of 14 strains were obtained from xaxtle samples isolated from three different Mexican regions. Species identification was performed by biochemical methods and 16S rRNA gene targeted PCR. The isolates belonged to the Lactobacillus plantarum, Lactobacillus paracasei, Lactobacillus brevis, and Lactobacillus composti phylogenetic groups, with L. brevis being the most dominant group. Bacteria were tested for lysozyme, low pH, and bile acid resistance. Moreover, the strains were tested for adherence to human intestinal epithelial cells and screened for their immunomodulatory properties using a cellular model. Selected bacterial strains with anti-inflammatory properties were then tested in vivo in a dinitro-benzene sulfonic acid (DNBS)-induced chronic colitis mouse model, and weight loss, gut permeability, and cytokine profiles were measured as readouts of inflammation. One of the selected strains, Lactobacillus sanfranciscensis LBH1068, improved mice health as observed by a reduction of weight loss, significant decreases in gut permeability, and cytokine modulation. Altogether, our results highlighted the potential of lactobacilli isolated from pulque and in particular the strain L. sanfranciscensis LBH1068 as a novel probiotic to treat IBD.

  6. In situ chemical functionalization of gallium nitride with phosphonic acid derivatives during etching.

    PubMed

    Wilkins, Stewart J; Greenough, Michelle; Arellano, Consuelo; Paskova, Tania; Ivanisevic, Albena

    2014-03-04

    In situ functionalization of polar (c plane) and nonpolar (a plane) gallium nitride (GaN) was performed by adding (3-bromopropyl) phosphonic acid or propyl phosphonic acid to a phosphoric acid etch. The target was to modulate the emission properties and oxide formation of GaN, which was explored through surface characterization with atomic force microscopy, X-ray photoelectron spectroscopy, photoluminescence (PL), inductively coupled plasma-mass spectrometry, and water contact angle. The use of (3-bromopropyl) phosphonic acid and propyl phosphonic acid in phosphoric acid demonstrated lower amounts of gallium oxide formation and greater hydrophobicity for both sample sets, while also improving PL emission of polar GaN samples. In addition to crystal orientation, growth-related factors such as defect density in bulk GaN versus thin GaN films residing on sapphire substrates were investigated as well as their responses to in situ functionalization. Thin nonpolar GaN layers were the most sensitive to etching treatments due in part to higher defect densities (stacking faults and threading dislocations), which accounts for large surface depressions. High-quality GaN (both free-standing bulk polar and bulk nonpolar) demonstrated increased sensitivity to oxide formation. Room-temperature PL stands out as an excellent technique to identify nonradiative recombination as observed in the spectra of heteroepitaxially grown GaN samples. The chemical methods applied to tune optical and physical properties of GaN provide a quantitative framework for future novel chemical and biochemical sensor development.

  7. Treatment of mcf-7 breast cancer cells with a red grape wine polyphenol fraction results in disruption of calcium homeostasis and cell cycle arrest causing selective cytotoxicity.

    PubMed

    Hakimuddin, Fatima; Paliyath, Gopinadhan; Meckling, Kelly

    2006-10-04

    Food components influence the physiology by modulating gene expression and biochemical pathways within the human body. The disease-preventive roles of several fruit and vegetable components have been related to such properties. Polyphenolic components such as flavonoids are strong antioxidants and induce the expression of several xenobiotic-detoxifying enzymes. The mechanism of selective cytotoxicity induced by red grape wine polyphenols against MCF-7 breast cancer cells was investigated in relation to their interference with calcium homeostasis. MCF-7 cells showed an increase in cytosolic calcium levels within 10 min of treatment with the polyphenols. Immunohistochemical localization of calmodulin with secondary gold-labeled antibodies showed similar levels of gold labeling in both MCF-7 cells and the spontaneously immortalized, normal MCF-10A cell line. MCF-7 cells treated with the red wine polyphenol fraction (RWPF) showed swelling of endoplasmic reticulum, dissolution of the nucleus, and loss of plasma membrane integrity as well as reduced mitochondrial membrane potential. These cells were arrested at the G2/M interphase. By contrast, MCF-10A cells did not show such changes after RWPF treatment. The results suggest that polyphenol-induced calcium release may disrupt mitochondrial function and cause membrane damage, resulting in selective cytotoxicity toward MCF-7 cells. This property could further be developed toward breast cancer prevention strategies either independently or in conjunction with conventional prevention therapies where a positive drug-nutrient interaction can be demonstrated.

  8. Nuclear Mechanics in Cancer

    PubMed Central

    Denais, Celine; Lammerding, Jan

    2015-01-01

    Despite decades of research, cancer metastasis remains an incompletely understood process that is as complex as it is devastating. In recent years, there has been an increasing push to investigate the biomechanical aspects of tumorigenesis, complementing the research on genetic and biochemical changes. In contrast to the high genetic variability encountered in cancer cells, almost all metastatic cells are subject to the same physical constraints as they leave the primary tumor, invade surrounding tissues, transit through the circulatory system, and finally infiltrate new tissues. Advances in live cell imaging and other biophysical techniques, including measurements of subcellular mechanics, have yielded stunning new insights into the physics of cancer cells. While much of this research has been focused on the mechanics of the cytoskeleton and the cellular microenvironment, it is now emerging that the mechanical properties of the cell nucleus and its connection to the cytoskeleton may play a major role in cancer metastasis, as deformation of the large and stiff nucleus presents a substantial obstacle during the passage through the dense interstitial space and narrow capillaries. Here, we present an overview of the molecular components that govern the mechanical properties of the nucleus and we discuss how changes in nuclear structure and composition observed in many cancers can modulate nuclear mechanics and promote metastatic processes. Improved insights into this interplay between nuclear mechanics and metastatic progression may have powerful implications in cancer diagnostics and therapy and may reveal novel therapeutic targets for pharmacological inhibition of cancer cell invasion. PMID:24563360

  9. Posttranslational nitro-glycative modifications of albumin in Alzheimer's disease: implications in cytotoxicity and amyloid-β peptide aggregation.

    PubMed

    Ramos-Fernández, Eva; Tajes, Marta; Palomer, Ernest; Ill-Raga, Gerard; Bosch-Morató, Mònica; Guivernau, Biuse; Román-Dégano, Irene; Eraso-Pichot, Abel; Alcolea, Daniel; Fortea, Juan; Nuñez, Laura; Paez, Antonio; Alameda, Francesc; Fernández-Busquets, Xavier; Lleó, Alberto; Elosúa, Roberto; Boada, Mercé; Valverde, Miguel A; Muñoz, Francisco J

    2014-01-01

    Glycation and nitrotyrosination are pathological posttranslational modifications that make proteins prone to losing their physiological properties. Since both modifications are increased in Alzheimer's disease (AD) due to amyloid-β peptide (Aβ) accumulation, we have studied their effect on albumin, the most abundant protein in cerebrospinal fluid and blood. Brain and plasmatic levels of glycated and nitrated albumin were significantly higher in AD patients than in controls. In vitro turbidometry and electron microscopy analyses demonstrated that glycation and nitrotyrosination promote changes in albumin structure and biochemical properties. Glycated albumin was more resistant to proteolysis and less uptake by hepatoma cells occurred. Glycated albumin also reduced the osmolarity expected for a solution containing native albumin. Both glycation and nitrotyrosination turned albumin cytotoxic in a cell type-dependent manner for cerebral and vascular cells. Finally, of particular relevance to AD, these modified albumins were significantly less effective in avoiding Aβ aggregation than native albumin. In summary, nitrotyrosination and especially glycation alter albumin structural and biochemical properties, and these modifications might contribute for the progression of AD.

  10. Radionuclides, radiotracers and radiopharmaceuticals for in vivo diagnosis

    NASA Astrophysics Data System (ADS)

    Wiebe, Leonard I.

    Radioactive tracers for in vivo clinical diagnosis fall within a narrow, strictly-defined set of specifications in respect of their physical properties, chemical and biochemical characteristics, and (approved) medical applications. The type of radioactive decay and physical half-life of the radionuclide are immutable properties which, along with the demands of production and supply, limit the choice of radionuclides used in medicine to only a small fraction of those known to exist. In use, the biochemical and physiological properties of a radiotracer are dictated by the chemical form of the radionuclide. This chemical form may range from elemental, molecular or ionic, to complex compounds formed by coordinate or covalent bonding of the radionuclide to either simple organic or inorganic molecules, or complex macromolecules. Few of the radiotracers which are tested in model systems ever become radiopharmaceuticals in the strictest sense. Radionuclides, radiotracers and radiopharmaceuticals in use are reviewed. Drug legislation and regulations concerning drug manufacture, as well as hospital ethical constraints and legislation concerning unsealed sources of radiation must all be satisfied in order to translate a radiopharmaceutical from the laboratory to clinical use.

  11. Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties.

    PubMed

    Shakya, Rajdeep; Adhikari, Sushil; Mahadevan, Ravishankar; Shanmugam, Saravanan R; Nam, Hyungseok; Hassan, El Barbary; Dempster, Thomas A

    2017-11-01

    Hydrothermal liquefaction (HTL) of nine algae species were performed at two reaction temperatures (280 and 320°C) to compare the effect of their biomass composition on product yields and properties. Results obtained after HTL indicate large variations in terms of bio-oil yields and its properties. The maximum bio-oil yield (66wt%) was obtained at 320°C with a high lipid containing algae Nannochloropsis. The higher heating value of bio-oils ranged from 31 to 36MJ/kg and around 50% of the bio-oils was in the vacuum gas oil range while high lipid containing algae Nannochloropsis contained a significant portion (33-42%) in the diesel range. A predictive relationship between bio-oil yields and biochemical compositions was developed and showed a broad agreement between predictive and experimental yields. The aqueous phases obtained had high amount of TOC (12-43g/L), COD (35-160g/L), TN (1-18g/L), ammonium (0.34-12g/L) and phosphate (0.7-12g/L). Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. In situ self-assembly of polarizing chromogen nanofibers catalyzed with hybrid films of gold nanoparticles and cellulose

    NASA Astrophysics Data System (ADS)

    Liu, Zhiming; Wu, Wenjian

    2017-09-01

    Hybrid materials of metal nanoparticles and biopolymers with catalytic properties are very promising to be used as detectors in biochemical reactions. In this work, the catalytic properties and relevant in situ self-assembly abilities of hybrid films of gold nanoparticles (GNPs) and cellulose for the oxidation of benign chromogen 3,3‧,5,5‧-tetramethylbenzidine (TMB) with hydrogen peroxide (H2O2) are revealed for the first time. The peroxidase-like properties of hybrid films are inherited from those of colloidal GNPs and increase with their contents of GNPs. It is discovered that the oxidized products of TMB grow in situ and assemble into rod-like and tumbleweed-like nanofiber assemblies on hybrid films. The rod-like nanofibers show a magnificent polarizing phenomenon under polarized light because of polycrystalline globular nanoparticles inside. The in situ self-assembly of polarizing nanofibers of chromogen catalyzed with hybrid films creates an opportunity for the synthesis of novel organic nanomaterials and the enhanced detection of biochemical products under polarized light.

  13. Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis.

    PubMed

    Zhang, Yanjun; Clausmeyer, Jan; Babakinejad, Babak; Córdoba, Ainara López; Ali, Tayyibah; Shevchuk, Andrew; Takahashi, Yasufumi; Novak, Pavel; Edwards, Christopher; Lab, Max; Gopal, Sahana; Chiappini, Ciro; Anand, Uma; Magnani, Luca; Coombes, R Charles; Gorelik, Julia; Matsue, Tomokazu; Schuhmann, Wolfgang; Klenerman, David; Sviderskaya, Elena V; Korchev, Yuri

    2016-03-22

    Nanometric field-effect-transistor (FET) sensors are made on the tip of spear-shaped dual carbon nanoelectrodes derived from carbon deposition inside double-barrel nanopipettes. The easy fabrication route allows deposition of semiconductors or conducting polymers to comprise the transistor channel. A channel from electrodeposited poly pyrrole (PPy) exhibits high sensitivity toward pH changes. This property is exploited by immobilizing hexokinase on PPy nano-FETs to give rise to a selective ATP biosensor. Extracellular pH and ATP gradients are key biochemical constituents in the microenvironment of living cells; we monitor their real-time changes in relation to cancer cells and cardiomyocytes. The highly localized detection is possible because of the high aspect ratio and the spear-like design of the nano-FET probes. The accurately positioned nano-FET sensors can detect concentration gradients in three-dimensional space, identify biochemical properties of a single living cell, and after cell membrane penetration perform intracellular measurements.

  14. Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis

    PubMed Central

    Córdoba, Ainara López; Ali, Tayyibah; Shevchuk, Andrew; Takahashi, Yasufumi; Novak, Pavel; Edwards, Christopher; Lab, Max; Gopal, Sahana; Chiappini, Ciro; Anand, Uma; Magnani, Luca; Coombes, R. Charles; Gorelik, Julia; Matsue, Tomokazu; Schuhmann, Wolfgang; Klenerman, David; Sviderskaya, Elena V.; Korchev, Yuri

    2016-01-01

    Nanometric field-effect-transistor (FET) sensors are made on the tip of spear-shaped dual carbon nanoelectrodes derived from carbon deposition inside double-barrel nanopipettes. The easy fabrication route allows deposition of semiconductors or conducting polymers to comprise the transistor channel. A channel from electrodeposited poly pyrrole (PPy) exhibits high sensitivity toward pH changes. This property is exploited by immobilizing hexokinase on PPy nano-FETs to give rise to a selective ATP biosensor. Extracellular pH and ATP gradients are key biochemical constituents in the microenvironment of living cells; we monitor their real-time changes in relation to cancer cells and cardiomyocytes. The highly localized detection is possible because of the high aspect ratio and the spear-like design of the nano-FET probes. The accurately positioned nano-FET sensors can detect concentration gradients in three-dimensional space, identify biochemical properties of a single living cell, and after cell membrane penetration perform intracellular measurements. PMID:26816294

  15. Characteristics of opportunistic species of the Corynebacterium and related coryneforms isolated from different clinical materials.

    PubMed

    Chudnicka, Alina; Kozioł-Montewka, Maria

    2003-01-01

    Taking into account the increasing contribution of species, which enter into the composition of purely physiological flora of the organism, of the Corynebacterium type and related coryneforms in opportunistic infections in people, the analysis of strains was made from different clinical materials from patients. Their identification was made on the basis of biochemical properties and their antibiotic sensitivity was characterized. It was found that strains with similar biochemical properties (C.striatum, C.amycolatum ) should be identified by means of genetic methods, all the more that they were isolated from clinically important materials. Out of the examined strains the biggest number of infections were caused by C.pseudodiphtheriticum, next C. striatum/C. amycolatum, Brevibacterium sp., C.propinquum, one: C.afermentans, C.jeikeium, C.group G, C.group F1, C.accolens, C.macqinleyi. The highest sensitivity of isolated strains was to Vancomycin, Teicoplanin and Imipenem.

  16. Taxonomic composition and physiological and biochemical properties of bacteria in the digestive tracts of earthworms

    NASA Astrophysics Data System (ADS)

    Byzov, B. A.; Tikhonov, V. V.; Nechitailo, T. Yu.; Demin, V. V.; Zvyagintsev, D. G.

    2015-03-01

    Several hundred bacterial strains belonging to different taxa were isolated and identified from the digestive tracts of soil and compost earthworms. Some physiological and biochemical properties of the bacteria were characterized. The majority of intestinal bacteria in the earthworms were found to be facultative anaerobes. The intestinal isolates as compared to the soil ones had elevated activity of proteases and dehydrogenases. In addition, bacteria associated with earthworms' intestines are capable of growth on humic acids as a sole carbon source. Humic acid stimulated the growth of the intestinal bacteria to a greater extent than those of the soil ones. In the digestive tracts, polyphenol oxidase activity was found. Along with the data on the taxonomic separation of the intestinal bacteria, the features described testified to the presence of a group of bacteria in the earthworms intestines that is functionally characteristic and is different from the soil bacteria.

  17. Roles for Msx and Dlx homeoproteins in vertebrate development.

    PubMed

    Bendall, A J; Abate-Shen, C

    2000-04-18

    This review provides a comparative analysis of the expression patterns, functions, and biochemical properties of Msx and Dlx homeobox genes. These comprise multi-gene families that are closely related with respect to sequence features as well as expression patterns during vertebrate development. Thus, members of the Msx and Dlx families are expressed in overlapping, but distinct, patterns and display complementary or antagonistic functions, depending upon the context. A common theme shared among Msx and Dlx genes is that they are required during early, middle, and late phases of development where their differential expression mediates patterning, morphogenesis, and histogenesis of tissues in which they are expressed. With respect to their biochemical properties, Msx proteins function as transcriptional repressors, while Dlx proteins are transcriptional activators. Moreover, their ability to oppose each other's transcriptional actions implies a mechanism underlying their complementary or antagonistic functions during development.

  18. Physiological-biochemical properties and the ability to synthesize polyhydroxyalkanoates of the glucose-utilizing strain of the hydrogen bacterium Ralstonia eutropha B8562.

    PubMed

    Volova, T G; Trusova, M Y; Kalacheva, G S; Kozhevnicov, I V

    2006-11-01

    Physiological-biochemical, genetic, and cultural properties of the glucose-utilizing mutant strain Ralstonia eutropha B8562 have been compared with those of its parent strain R. eutropha B5786. It has been shown that growth characteristics of the strain cultured on glucose as the sole carbon and energy source are comparable with those of the parent strain. Strain B8562 is characterized by high polyhydroxyalkanoate (PHA) yields on different carbon sources (CO(2), fructose, and glucose). PHA accumulation in the strain batch cultured on glucose under nitrogen deficiency reaches 90 %. The major monomer in the PHA is beta-hydroxybutyric acid (more than 99 mol %); the identified minor components are beta-hydroxyvaleric acid (0.25-0.72 mol %) and beta-hydroxyhexanoic acid (0.08-1.5 mol %). The strain is a promising PHA producer on available sugar-containing media with glucose.

  19. Physical, Chemical and Biochemical Modifications of Protein-Based Films and Coatings: An Extensive Review

    PubMed Central

    Zink, Joël; Wyrobnik, Tom; Prinz, Tobias; Schmid, Markus

    2016-01-01

    Protein-based films and coatings are an interesting alternative to traditional petroleum-based materials. However, their mechanical and barrier properties need to be enhanced in order to match those of the latter. Physical, chemical, and biochemical methods can be used for this purpose. The aim of this article is to provide an overview of the effects of various treatments on whey, soy, and wheat gluten protein-based films and coatings. These three protein sources have been chosen since they are among the most abundantly used and are well described in the literature. Similar behavior might be expected for other protein sources. Most of the modifications are still not fully understood at a fundamental level, but all the methods discussed change the properties of the proteins and resulting products. Mastering these modifications is an important step towards the industrial implementation of protein-based films. PMID:27563881

  20. Characterizing the Diversity and Biological Relevance of the MLPCN Assay Manifold and Screening Set

    PubMed Central

    Zhang, Jintao; Lushington, Gerald H.; Huan, Jun

    2011-01-01

    The NIH Molecular Libraries Initiative (MLI), launched in 2004 with initial goals of identifying chemical probes for characterizing gene function and druggability, has produced PubChem, a chemical genomics knowledgebase for fostering translation of basic research into new therapeutic strategies. This paper assesses progress toward these goals by evaluating MLI target novelty and propensity for undergoing biochemically or therapeutically relevant modulations and the degree of chemical diversity and biogenic bias inherent in the MLI screening set. Our analyses suggest that while MLI target selection has not yet been fully optimized for biochemical diversity, it covers biologically interesting pathway space that complements established drug targets. We find the MLI screening set to be chemically diverse and to have greater biogenic bias than comparable collections of commercially available compounds. Biogenic enhancements such as incorporation of more metabolite-like chemotypes are suggested. PMID:21568288

  1. Mutations causing syndromic autism define an axis of synaptic pathophysiology.

    PubMed

    Auerbach, Benjamin D; Osterweil, Emily K; Bear, Mark F

    2011-11-23

    Tuberous sclerosis complex and fragile X syndrome are genetic diseases characterized by intellectual disability and autism. Because both syndromes are caused by mutations in genes that regulate protein synthesis in neurons, it has been hypothesized that excessive protein synthesis is one core pathophysiological mechanism of intellectual disability and autism. Using electrophysiological and biochemical assays of neuronal protein synthesis in the hippocampus of Tsc2(+/-) and Fmr1(-/y) mice, here we show that synaptic dysfunction caused by these mutations actually falls at opposite ends of a physiological spectrum. Synaptic, biochemical and cognitive defects in these mutants are corrected by treatments that modulate metabotropic glutamate receptor 5 in opposite directions, and deficits in the mutants disappear when the mice are bred to carry both mutations. Thus, normal synaptic plasticity and cognition occur within an optimal range of metabotropic glutamate-receptor-mediated protein synthesis, and deviations in either direction can lead to shared behavioural impairments.

  2. Understanding force-generating microtubule systems through in vitro reconstitution

    PubMed Central

    Kok, Maurits; Dogterom, Marileen

    2016-01-01

    ABSTRACT Microtubules switch between growing and shrinking states, a feature known as dynamic instability. The biochemical parameters underlying dynamic instability are modulated by a wide variety of microtubule-associated proteins that enable the strict control of microtubule dynamics in cells. The forces generated by controlled growth and shrinkage of microtubules drive a large range of processes, including organelle positioning, mitotic spindle assembly, and chromosome segregation. In the past decade, our understanding of microtubule dynamics and microtubule force generation has progressed significantly. Here, we review the microtubule-intrinsic process of dynamic instability, the effect of external factors on this process, and how the resulting forces act on various biological systems. Recently, reconstitution-based approaches have strongly benefited from extensive biochemical and biophysical characterization of individual components that are involved in regulating or transmitting microtubule-driven forces. We will focus on the current state of reconstituting increasingly complex biological systems and provide new directions for future developments. PMID:27715396

  3. The secret life of kinases: insights into non-catalytic signalling functions from pseudokinases.

    PubMed

    Jacobsen, Annette V; Murphy, James M

    2017-06-15

    Over the past decade, our understanding of the mechanisms by which pseudokinases, which comprise ∼10% of the human and mouse kinomes, mediate signal transduction has advanced rapidly with increasing structural, biochemical, cellular and genetic studies. Pseudokinases are the catalytically defective counterparts of conventional, active protein kinases and have been attributed functions as protein interaction domains acting variously as allosteric modulators of conventional protein kinases and other enzymes, as regulators of protein trafficking or localisation, as hubs to nucleate assembly of signalling complexes, and as transmembrane effectors of such functions. Here, by categorising mammalian pseudokinases based on their known functions, we illustrate the mechanistic diversity among these proteins, which can be viewed as a window into understanding the non-catalytic functions that can be exerted by conventional protein kinases. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  4. Subunit architecture and functional modular rearrangements of the transcriptional Mediator complex

    PubMed Central

    Tsai, Kuang-Lei; Tomomori-Sato, Chieri; Sato, Shigeo; Conaway, Ronald C.; Conaway, Joan W.; Asturias, Francisco J.

    2014-01-01

    SUMMARY The multisubunit Mediator comprising ~30 distinct proteins, plays an essential role in gene expression regulation by acting as a bridge between DNA binding transcription factors and the RNA polymerase II (RNAPII) transcription machinery. Efforts to uncover the Mediator mechanism have been hindered by a poor understanding of its structure, subunit organization, and conformational rearrangements. By overcoming biochemical and image analysis hurdles, we obtained accurate EM structures of yeast and human Mediators. Subunit localization experiments, docking of partial X-ray structures, and biochemical analyses resulted in comprehensive mapping of yeast Mediator subunits and a complete reinterpretation of our previous Mediator organization model. Large-scale Mediator rearrangements depend on changes at the interfaces between previously described Mediator modules, which appear to be facilitated by factors conducive to transcription initiation. Conservation across eukaryotes of Mediator structure, subunit organization, and RNA polymerase II interaction suggest conservation of fundamental aspects of the Mediator mechanism. PMID:24882805

  5. The markup is the model: reasoning about systems biology models in the Semantic Web era.

    PubMed

    Kell, Douglas B; Mendes, Pedro

    2008-06-07

    Metabolic control analysis, co-invented by Reinhart Heinrich, is a formalism for the analysis of biochemical networks, and is a highly important intellectual forerunner of modern systems biology. Exchanging ideas and exchanging models are part of the international activities of science and scientists, and the Systems Biology Markup Language (SBML) allows one to perform the latter with great facility. Encoding such models in SBML allows their distributed analysis using loosely coupled workflows, and with the advent of the Internet the various software modules that one might use to analyze biochemical models can reside on entirely different computers and even on different continents. Optimization is at the core of many scientific and biotechnological activities, and Reinhart made many major contributions in this area, stimulating our own activities in the use of the methods of evolutionary computing for optimization.

  6. Fluorescence lifetime assays: current advances and applications in drug discovery.

    PubMed

    Pritz, Stephan; Doering, Klaus; Woelcke, Julian; Hassiepen, Ulrich

    2011-06-01

    Fluorescence lifetime assays complement the portfolio of established assay formats available in drug discovery, particularly with the recent advances in microplate readers and the commercial availability of novel fluorescent labels. Fluorescence lifetime assists in lowering complexity of compound screening assays, affording a modular, toolbox-like approach to assay development and yielding robust homogeneous assays. To date, materials and procedures have been reported for biochemical assays on proteases, as well as on protein kinases and phosphatases. This article gives an overview of two assay families, distinguished by the origin of the fluorescence signal modulation. The pharmaceutical industry demands techniques with a robust, integrated compound profiling process and short turnaround times. Fluorescence lifetime assays have already helped the drug discovery field, in this sense, by enhancing productivity during the hit-to-lead and lead optimization phases. Future work will focus on covering other biochemical molecular modifications by investigating the detailed photo-physical mechanisms underlying the fluorescence signal.

  7. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications.

    PubMed

    da Silva Ferreira, Veronica; Sant'Anna, Celso

    2017-01-01

    Chlorophyll is a commercially important natural green pigment responsible for the absorption of light energy and its conversion into chemical energy via photosynthesis in plants and algae. This bioactive compound is widely used in the food, cosmetic, and pharmaceutical industries. Chlorophyll has been consumed for health benefits as a nutraceutical agent with antioxidant, anti-inflammatory, antimutagenic, and antimicrobial properties. Microalgae are photosynthesizing microorganisms which can be extracted for several high-value bioproducts in the biotechnology industry. These microorganisms are highly efficient at adapting to physicochemical variations in the local environment. This allows optimization of culture conditions for inducing microalgal growth and biomass production as well as for changing their biochemical composition. The modulation of microalgal culture under controlled conditions has been proposed to maximize chlorophyll accumulation. Strategies reported in the literature to promote the chlorophyll content in microalgae include variation in light intensity, culture agitation, and changes in temperature and nutrient availability. These factors affect chlorophyll concentration in a species-specific manner; therefore, optimization of culture conditions has become an essential requirement. This paper provides an overview of the current knowledge on the effects of key environmental factors on microalgal chlorophyll accumulation, focusing on small-scale laboratory experiments.

  8. Epigenetic Mechanisms of Integrative Medicine

    PubMed Central

    Kanherkar, Riya R.; Stair, Susan E.; Bhatia-Dey, Naina; Mills, Paul J.; Chopra, Deepak

    2017-01-01

    Since time immemorial humans have utilized natural products and therapies for their healing properties. Even now, in the age of genomics and on the cusp of regenerative medicine, the use of complementary and alternative medicine (CAM) approaches represents a popular branch of health care. Furthermore, there is a trend towards a unified medical philosophy referred to as Integrative Medicine (IM) that represents the convergence of CAM and conventional medicine. The IM model not only considers the holistic perspective of the physiological components of the individual, but also includes psychological and mind-body aspects. Justification for and validation of such a whole-systems approach is in part dependent upon identification of the functional pathways governing healing, and new data is revealing relationships between therapies and biochemical effects that have long defied explanation. We review this data and propose a unifying theme: IM's ability to affect healing is due at least in part to epigenetic mechanisms. This hypothesis is based on a mounting body of evidence that demonstrates a correlation between the physical and mental effects of IM and modulation of gene expression and epigenetic state. Emphasis on mapping, deciphering, and optimizing these effects will facilitate therapeutic delivery and create further benefits. PMID:28316635

  9. Integrative self-assembly of functional hybrid nanoconstructs by inorganic wrapping of single biomolecules, biomolecule arrays and organic supramolecular assemblies

    NASA Astrophysics Data System (ADS)

    Patil, Avinash J.; Li, Mei; Mann, Stephen

    2013-07-01

    Synthesis of functional hybrid nanoscale objects has been a core focus of the rapidly progressing field of nanomaterials science. In particular, there has been significant interest in the integration of evolutionally optimized biological systems such as proteins, DNA, virus particles and cells with functional inorganic building blocks to construct mesoscopic architectures and nanostructured materials. However, in many cases the fragile nature of the biomolecules seriously constrains their potential applications. As a consequence, there is an on-going quest for the development of novel strategies to modulate the thermal and chemical stabilities, and performance of biomolecules under adverse conditions. This feature article highlights new methods of ``inorganic molecular wrapping'' of single or multiple protein molecules, individual double-stranded DNA helices, lipid bilayer vesicles and self-assembled organic dye superstructures using inorganic building blocks to produce bio-inorganic nanoconstructs with core-shell type structures. We show that spatial isolation of the functional biological nanostructures as ``armour-plated'' enzyme molecules or polynucleotide strands not only maintains their intact structure and biochemical properties, but also enables the fabrication of novel hybrid nanomaterials for potential applications in diverse areas of bionanotechnology.

  10. The effect of matrix composition of 3D constructs on embryonic stem cell differentiation.

    PubMed

    Battista, Sabrina; Guarnieri, Daniela; Borselli, Cristina; Zeppetelli, Stefania; Borzacchiello, Assunta; Mayol, Laura; Gerbasio, Diego; Keene, Douglas R; Ambrosio, Luigi; Netti, Paolo A

    2005-11-01

    The use of embryonic stem (ES) cells as unlimited cell source in tissue engineering has ignited the hope of regenerating any kind of tissue in vitro. However, the role of the material in control and guidance of their development and commitment into complex and viable three-dimensional (3D) tissues is still poorly understood. In this work, we investigate the role of material composition and structure on promoting ES cells growth and differentiation, by culturing mouse ES cell-derived embryoid bodies (EBs) in various semi-interpenetrating polymer networks (SIPNs), made of collagen, fibronectin (FN) and laminin (LM). We show that both composition and strength of the supportive matrix play an important role in EBs development. High collagen concentrations inhibit EBs cavitation and hence the following EBs differentiation, by inhibiting apoptosis. The presence of FN in 3D collagen constructs strongly stimulates endothelial cell differentiation and vascularization. Conversely, LM increases the ability of ES cells to differentiate into beating cardiomyocytes. Our data suggest that matrix composition has an important role in EBs development and that it is possible to influence stem cell differentiation toward preferential pattern, by modulating the physical and biochemical properties of the scaffold.

  11. Quantification of Degeneracy in Biological Systems for Characterization of Functional Interactions Between Modules

    PubMed Central

    Li, Yao; Dwivedi, Gaurav; Huang, Wen; Yi, Yingfei

    2012-01-01

    There is an evolutionary advantage in having multiple components with overlapping functionality (i.e degeneracy) in organisms. While theoretical considerations of degeneracy have been well established in neural networks using information theory, the same concepts have not been developed for differential systems, which form the basis of many biochemical reaction network descriptions in systems biology. Here we establish mathematical definitions of degeneracy, complexity and robustness that allow for the quantification of these properties in a system. By exciting a dynamical system with noise, the mutual information associated with a selected observable output and the interacting subspaces of input components can be used to define both complexity and degeneracy. The calculation of degeneracy in a biological network is a useful metric for evaluating features such as the sensitivity of a biological network to environmental evolutionary pressure. Using a two-receptor signal transduction network, we find that redundant components will not yield high degeneracy whereas compensatory mechanisms established by pathway crosstalk will. This form of analysis permits interrogation of large-scale differential systems for non-identical, functionally equivalent features that have evolved to maintain homeostasis during disruption of individual components. PMID:22619750

  12. The blood-brain barrier: an engineering perspective

    PubMed Central

    Wong, Andrew D.; Ye, Mao; Levy, Amanda F.; Rothstein, Jeffrey D.; Bergles, Dwight E.; Searson, Peter C.

    2013-01-01

    It has been more than 100 years since Paul Ehrlich reported that various water-soluble dyes injected into the circulation did not enter the brain. Since Ehrlich's first experiments, only a small number of molecules, such as alcohol and caffeine have been found to cross the blood-brain barrier, and this selective permeability remains the major roadblock to treatment of many central nervous system diseases. At the same time, many central nervous system diseases are associated with disruption of the blood-brain barrier that can lead to changes in permeability, modulation of immune cell transport, and trafficking of pathogens into the brain. Therefore, advances in our understanding of the structure and function of the blood-brain barrier are key to developing effective treatments for a wide range of central nervous system diseases. Over the past 10 years it has become recognized that the blood-brain barrier is a complex, dynamic system that involves biomechanical and biochemical signaling between the vascular system and the brain. Here we reconstruct the structure, function, and transport properties of the blood-brain barrier from an engineering perspective. New insight into the physics of the blood-brain barrier could ultimately lead to clinical advances in the treatment of central nervous system diseases. PMID:24009582

  13. "Carbon gain vs. water saving, growth vs. defence": two dilemmas with soluble phenolics as a joker.

    PubMed

    Karabourniotis, George; Liakopoulos, Georgios; Nikolopoulos, Dimosthenis; Bresta, Panagiota; Stavroulaki, Vassiliki; Sumbele, Sally

    2014-10-01

    Despite that phenolics are considered as a major weapon against herbivores and pathogens, the primal reason for their evolution may have been the imperative necessity for their UV-absorbing and antioxidant properties in order for plants to compensate for the adverse terrestrial conditions. In dry climates the choice concerning the first dilemma (carbon gain vs. water saving) needs the appropriate structural and metabolic modulations, which protect against stresses such as high UV and visible radiation or drought, but reduce photosynthesis and increase oxidative pressure. Thus, when water saving is chosen, priority is given to protection (including phenolic synthesis), instead of carbon gain and hence growth. At the global level, the different choices by the individual species are expressed by an interspecific negative relationship between total phenolics and photosynthesis. On the other hand, the accumulation of phenolics in water saving plants offers additional defensive functions because these multifunctional compounds can also act as pro-oxidant, antifeeding or toxic factors. Therefore phenolics, as biochemical jokers, can give the answer to both dilemmas: water saving involves high concentrations of phenolics which also offer high level of defence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Curcumin exerts neuroprotective effects against homocysteine intracerebroventricular injection-induced cognitive impairment and oxidative stress in rat brain.

    PubMed

    Ataie, Amin; Sabetkasaei, Masoumeh; Haghparast, Abbas; Moghaddam, Akbar Hajizadeh; Ataee, Ramin; Moghaddam, Shiva Nasiraei

    2010-08-01

    Aging is the major risk factor for neurodegenerative diseases and oxidative stress and is involved in their pathophysiology. Oxidative stress can induce neuronal damage and modulate intracellular signaling, ultimately leading to neuronal death by apoptosis or necrosis. In this study we investigated the neuroprotective properties of the natural polyphenolic antioxidant compound, curcumin, against homocysteine (Hcy) neurotoxicity. Curcumin (5, 15, or 45 mg/kg) was injected intraperitoneally once daily for a period of 10 days beginning 5 days prior to Hcy (0.2 micromol/microl) intracerebroventricular injection in rats. Biochemical and behavioral studies, including passive avoidance learning and locomotor activity tests, were evaluated 24 hours after the last injection of curcumin or vehicle. Results indicated that Hcy induces lipid peroxidation and increases malondialdehyde (MDA) and superoxide anion (SOA) levels in whole rat brain. In addition, Hcy impaired memory retention in the passive avoidance learning test. However, curcumin treatment significantly decreased MDA and SOA levels and improved learning and memory in rats. These results suggest that Hcy may induce lipid peroxidation in rat brain and that polyphenol treatment (curcumin) improves learning and memory deficits by protecting the nervous system against oxidative stress.

  15. Integrative self-assembly of functional hybrid nanoconstructs by inorganic wrapping of single biomolecules, biomolecule arrays and organic supramolecular assemblies.

    PubMed

    Patil, Avinash J; Li, Mei; Mann, Stephen

    2013-08-21

    Synthesis of functional hybrid nanoscale objects has been a core focus of the rapidly progressing field of nanomaterials science. In particular, there has been significant interest in the integration of evolutionally optimized biological systems such as proteins, DNA, virus particles and cells with functional inorganic building blocks to construct mesoscopic architectures and nanostructured materials. However, in many cases the fragile nature of the biomolecules seriously constrains their potential applications. As a consequence, there is an on-going quest for the development of novel strategies to modulate the thermal and chemical stabilities, and performance of biomolecules under adverse conditions. This feature article highlights new methods of "inorganic molecular wrapping" of single or multiple protein molecules, individual double-stranded DNA helices, lipid bilayer vesicles and self-assembled organic dye superstructures using inorganic building blocks to produce bio-inorganic nanoconstructs with core-shell type structures. We show that spatial isolation of the functional biological nanostructures as "armour-plated" enzyme molecules or polynucleotide strands not only maintains their intact structure and biochemical properties, but also enables the fabrication of novel hybrid nanomaterials for potential applications in diverse areas of bionanotechnology.

  16. Measuring shear force transmission across a biomimetic glycocalyx

    NASA Astrophysics Data System (ADS)

    Bray, Isabel; Young, Dylan; Scrimgeour, Jan

    Human blood vessels are lined with a low-density polymer brush known as the glycocalyx. This brush plays an active role in defining the mechanical and biochemical environment of the endothelial cell in the blood vessel wall. In addition, it is involved in the detection of mechanical stimuli, such as the shear stress from blood flowing in the vessel. In this work, we construct a biomimetic version of the glycocalyx on top of a soft deformable substrate in order to measure its ability to modulate the effects of shear stress at the endothelial cell surface. The soft substrate is stamped on to a glass substrate and then enclosed inside a microfluidic device that generates a controlled flow over the substrate. The hydrogel chemistry has been optimized so that it reliably stamps into a defined shape and has consistent mechanical properties. Fluorescent microbeads embedded in the gel allow measurement of the surface deformation, and subsequently, calculation of the shear force at the surface of the soft substrate. We investigate the effect of the major structural elements of the glycocalyx, hyaluronic acid and charged proteoglycans, on the magnitude of the shear force transmitted to the surface of the hydrogel.

  17. Actin assembly factors regulate the gelation kinetics and architecture of F-actin networks.

    PubMed

    Falzone, Tobias T; Oakes, Patrick W; Sees, Jennifer; Kovar, David R; Gardel, Margaret L

    2013-04-16

    Dynamic regulation of the actin cytoskeleton is required for diverse cellular processes. Proteins regulating the assembly kinetics of the cytoskeletal biopolymer F-actin are known to impact the architecture of actin cytoskeletal networks in vivo, but the underlying mechanisms are not well understood. Here, we demonstrate that changes to actin assembly kinetics with physiologically relevant proteins profilin and formin (mDia1 and Cdc12) have dramatic consequences on the architecture and gelation kinetics of otherwise biochemically identical cross-linked F-actin networks. Reduced F-actin nucleation rates promote the formation of a sparse network of thick bundles, whereas increased nucleation rates result in a denser network of thinner bundles. Changes to F-actin elongation rates also have marked consequences. At low elongation rates, gelation ceases and a solution of rigid bundles is formed. By contrast, rapid filament elongation accelerates dynamic arrest and promotes gelation with minimal F-actin density. These results are consistent with a recently developed model of how kinetic constraints regulate network architecture and underscore how molecular control of polymer assembly is exploited to modulate cytoskeletal architecture and material properties. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Actin Assembly Factors Regulate the Gelation Kinetics and Architecture of F-actin Networks

    PubMed Central

    Falzone, Tobias T.; Oakes, Patrick W.; Sees, Jennifer; Kovar, David R.; Gardel, Margaret L.

    2013-01-01

    Dynamic regulation of the actin cytoskeleton is required for diverse cellular processes. Proteins regulating the assembly kinetics of the cytoskeletal biopolymer F-actin are known to impact the architecture of actin cytoskeletal networks in vivo, but the underlying mechanisms are not well understood. Here, we demonstrate that changes to actin assembly kinetics with physiologically relevant proteins profilin and formin (mDia1 and Cdc12) have dramatic consequences on the architecture and gelation kinetics of otherwise biochemically identical cross-linked F-actin networks. Reduced F-actin nucleation rates promote the formation of a sparse network of thick bundles, whereas increased nucleation rates result in a denser network of thinner bundles. Changes to F-actin elongation rates also have marked consequences. At low elongation rates, gelation ceases and a solution of rigid bundles is formed. By contrast, rapid filament elongation accelerates dynamic arrest and promotes gelation with minimal F-actin density. These results are consistent with a recently developed model of how kinetic constraints regulate network architecture and underscore how molecular control of polymer assembly is exploited to modulate cytoskeletal architecture and material properties. PMID:23601318

  19. Ketones Prevent Oxidative Impairment of Hippocampal Synaptic Integrity through KATP Channels

    PubMed Central

    Kim, Do Young; Abdelwahab, Mohammed G.; Lee, Soo Han; O’Neill, Derek; Thompson, Roger J.; Duff, Henry J.; Sullivan, Patrick G.; Rho, Jong M.

    2015-01-01

    Dietary and metabolic therapies are increasingly being considered for a variety of neurological disorders, based in part on growing evidence for the neuroprotective properties of the ketogenic diet (KD) and ketones. Earlier, we demonstrated that ketones afford hippocampal synaptic protection against exogenous oxidative stress, but the mechanisms underlying these actions remain unclear. Recent studies have shown that ketones may modulate neuronal firing through interactions with ATP-sensitive potassium (KATP) channels. Here, we used a combination of electrophysiological, pharmacological, and biochemical assays to determine whether hippocampal synaptic protection by ketones is a consequence of KATP channel activation. Ketones dose-dependently reversed oxidative impairment of hippocampal synaptic integrity, neuronal viability, and bioenergetic capacity, and this action was mirrored by the KATP channel activator diazoxide. Inhibition of KATP channels reversed ketone-evoked hippocampal protection, and genetic ablation of the inwardly rectifying K+ channel subunit Kir6.2, a critical component of KATP channels, partially negated the synaptic protection afforded by ketones. This partial protection was completely reversed by co-application of the KATP blocker, 5-hydoxydecanoate (5HD). We conclude that, under conditions of oxidative injury, ketones induce synaptic protection in part through activation of KATP channels. PMID:25848768

  20. EFFECT OF $gamma$-RAYS ON THE BIOCHEMICAL PROPERTIES OF WHEAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sosedov, N.I.; Vakar, A.B.

    1963-01-01

    Progress in the Soviet Union on radiation effects on biochemical and baking properties of wheat is reported. biochemical analysis of the various forms of nitrogenous substances in wheat with moisture contents of 13.4 and 25.8 percent after irradiation with gamma rays shows that the radiation effects on giuten are dependent upon moisture content. Gluten in dry grain exposed to gamma rays became weak, inelastic, and too extensile while that in moist grain became excessively stiff with consequent loss of extensibility and cohesion. In dry irradiated grain increases were found in protein substance solubility and protein splitting, whereas in irradiated grainmore » with a higher moisture content, there was less protein splitting and solubility of protein substances was reduced. When the moisture content was 16.4-percent, radintion damage was least, the two opposite sets of deleterious effects being somewhat (not completely) balanced. The different effects of the same radiation doses on moist and dry grain was corfirmed by spectrophotometric examination. Large gamma doses increase the quantity of reducing sugars and decrease the starch content. These carbohydrate changes are more pronounced with dry than with moist grain. It is concluded that with present knowledge and techniques the method of radiational treatment of grain cannot be recommended for practical use. (H.M.G.)« less

  1. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma

    PubMed Central

    Chen, Yulong; Terajima, Masahiko; Yang, Yanan; Sun, Li; Ahn, Young-Ho; Pankova, Daniela; Puperi, Daniel S.; Watanabe, Takeshi; Kim, Min P.; Blackmon, Shanda H.; Rodriguez, Jaime; Liu, Hui; Behrens, Carmen; Wistuba, Ignacio I.; Minelli, Rosalba; Scott, Kenneth L.; Sanchez-Adams, Johannah; Guilak, Farshid; Pati, Debananda; Thilaganathan, Nishan; Burns, Alan R.; Creighton, Chad J.; Martinez, Elisabeth D.; Zal, Tomasz; Grande-Allen, K. Jane; Yamauchi, Mitsuo; Kurie, Jonathan M.

    2015-01-01

    Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde–derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde–derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma. PMID:25664850

  2. An Unprecedented NADPH Domain Conformation in Lysine Monooxygenase NbtG Provides Insights into Uncoupling of Oxygen Consumption from Substrate Hydroxylation

    DOE PAGES

    Binda, Claudia; Robinson, Reeder M.; Martin del Campo, Julia S.; ...

    2015-03-23

    N-hydroxylating monooxygenases (NMOs) are involved in the biosynthesis of iron-chelating hydroxamate-containing siderophores that play a role in microbial virulence. These flavoenzymes catalyze the NADPH- and oxygen-dependent hydroxylation of amines, such as those found on the side chains of lysine and ornithine. In this work we report the biochemical and structural characterization of Nocardia farcinica Lys monooxygenase (NbtG), which has similar biochemical properties to mycobacterial homologs. NbtG is also active on D-Lys although it binds L-Lys with a higher affinity. Differently from the ornithine monooxygenases PvdA, SidA and KtzI, NbtG can use both NADH and NADPH and is highly uncoupled, producingmore » more superoxide and hydrogen peroxide than hydroxylated Lys. The crystal structure of NbtG solved at 2.4 Å resolution revealed an unexpected protein conformation with a 30° rotation of the NAD(P)H domain with respect to the FAD domain that precludes binding of the nicotinamide cofactor. This “occluded” structure may explain the biochemical properties of NbtG, specifically with regard to the substantial uncoupling and limited stabilization of the C4a-hydroperoxyflavin intermediate. We discuss the biological implications of these findings.« less

  3. Beneficial effects of mangiferin isolated from Salacia chinensis on biochemical and hematological parameters in rats with streptozotocin-induced diabetes.

    PubMed

    Sellamuthu, Periyar Selvam; Arulselvan, Palanisamy; Fakurazi, Sharida; Kandasamy, Murugesan

    2014-01-01

    Salacia chinensis L. is a traditional Southeast Asian herbal medicine and used in the treatment of diabetes. To investigate the antidiabetic properties of mangiferin from Salacia chinensis and its beneficial effect on toxicological and hematological parameters in streptozotocin induced diabetic rats. Mangiferin was orally treated with the dose of 40 mg/kg body weight/day for 30 days to diabetic rats. Biochemical (blood glucose, uric acid, urea and creatinine), toxicological (AST, ALT and ALP) and hematological parameters (red and white blood cells) and their functional indices were evaluated in diabetic treated groups with mangiferin and glibenclamide. Mangiferin treated diabetic rats significantly (p<0.05) lowered the level of blood glucose, in addition, altered the levels of biochemical parameters including urea, uric acid, and creatinine. Toxicological parameters including AST, ALT and ALP were also significantly reduced after treatment with mangiferin in diabetic rats. Similarly, the levels of red blood, white blood cells and their functional indices were significantly improved through the administration of mangiferin. Thus, our results indicate that mangiferin present in S. chinensis possesses antidiabetic properties and nontoxic nature against chemically induced diabetic rats. Further experimental investigations are warrant to make use of its relevant therapeutic effect to substantiate its ethno-medicinal usage.

  4. Investigation of biochemical property changes in activation-induced CD 8 + T cell apoptosis using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Young Ju; Ahn, Hyung Joon; Lee, Gi-Ja; Jung, Gyeong Bok; Lee, Gihyun; Kim, Dohyun; Shin, Jae-Ho; Jin, Kyung-Hyun; Park, Hun-Kuk

    2015-07-01

    The study was to investigate the changes in biochemical properties of activated mature CD8+ T cells related to apoptosis at a molecular level. We confirmed the activation and apoptosis of CD8+ T cells by fluorescence-activated cell sorting and atomic force microscopy and then performed Raman spectral measurements on activated mature CD8+ T cells and cellular deoxyribose nucleic acid (DNA). In the activated mature CD8+ T cells, there were increases in protein spectra at 1002 and 1234 cm-1. In particular, to assess the apoptosis-related DNA spectral signatures, we investigated the spectra of the cellular DNA isolated from resting and activated mature CD8+ T cells. Raman spectra at 765 to 786 cm-1 and 1053 to 1087 cm-1 were decreased in activated mature DNA. In addition, we analyzed Raman spectrum using the multivariate statistical method including principal component analysis. Raman spectra of activated mature DNA are especially well-discriminated from those of resting DNA. Our findings regarding the biochemical and structural changes associated with apoptosis in activated mature T cells and cellular DNA according to Raman spectroscopy provide important insights into allospecific immune responses generated after organ transplantation, and may be useful for therapeutic manipulation of the immune response.

  5. Pyroelectric A1GaN/GaN HEMTs for ion-, gas- and Polar-Liquid Sensors

    DTIC Science & Technology

    2004-08-17

    including the manipulation of pico- and nanofluid volumes on chemical or structural modified surfaces and defining suitable interfaces to the macroworld. A... nanofluidic dispensers based on piezo actuators, the micro periphery and the electronics for measuring biochemical assay systems (in vivo and in vitro...interface without the need of a modulation doped barrier. The carrier concentration and electron mobility within the 2DEG can be very high and build

  6. Yeast culture dietary supplementation modulates gut microbiota, growth and biochemical parameters of grass carp.

    PubMed

    Liu, Han; Li, Juntao; Guo, Xianwu; Liang, Yunxiang; Wang, Weimin

    2018-05-01

    Gut microbiota contributes positively to the physiology of their host. Some feed additives have been suggested to improve livestock health and stimulate growth performance by modulating gut bacteria species. Here, we fed grass carp with 0 (control), 8% (Treat1), 10% (Treat2), 12% (Treat3) and 16% (Treat4) of yeast culture (YC) for 10 weeks. The gut microbiota was analysed by 16S rRNA gene V3-4 region via an Illumina MiSeq platform. PCoA test showed that gut bacterial communities in the control and Treat3 formed distinctly separate clusters. Although all the groups shared a large size of OTUs as a core microbiota community, a strong distinction existed at genus level. Treat3 contained the highest proportion of the beneficial bacteria and obviously enhanced the capacity of amino acid, lipid metabolism and digestive system. In addition, Treat3 significantly improved the fish growth and increased the liver and serum T-SOD activities while dramatically decreased the liver GPT and GOT. Collectively, these findings demonstrate the beneficial effects of YC feeding on gut microbiota, growth and biochemical parameters and Treat3 might be the optimal supplementation amount for grass carp, which opens up the possibility that a new feed additive can be developed for healthy aquaculture. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. LHX3 interacts with inhibitor of histone acetyltransferase complex subunits LANP and TAF-1β to modulate pituitary gene regulation.

    PubMed

    Hunter, Chad S; Malik, Raleigh E; Witzmann, Frank A; Rhodes, Simon J

    2013-01-01

    LIM-homeodomain 3 (LHX3) is a transcription factor required for mammalian pituitary gland and nervous system development. Human patients and animal models with LHX3 gene mutations present with severe pediatric syndromes that feature hormone deficiencies and symptoms associated with nervous system dysfunction. The carboxyl terminus of the LHX3 protein is required for pituitary gene regulation, but the mechanism by which this domain operates is unknown. In order to better understand LHX3-dependent pituitary hormone gene transcription, we used biochemical and mass spectrometry approaches to identify and characterize proteins that interact with the LHX3 carboxyl terminus. This approach identified the LANP/pp32 and TAF-1β/SET proteins, which are components of the inhibitor of histone acetyltransferase (INHAT) multi-subunit complex that serves as a multifunctional repressor to inhibit histone acetylation and modulate chromatin structure. The protein domains of LANP and TAF-1β that interact with LHX3 were mapped using biochemical techniques. Chromatin immunoprecipitation experiments demonstrated that LANP and TAF-1β are associated with LHX3 target genes in pituitary cells, and experimental alterations of LANP and TAF-1β levels affected LHX3-mediated pituitary gene regulation. Together, these data suggest that transcriptional regulation of pituitary genes by LHX3 involves regulated interactions with the INHAT complex.

  8. LHX3 Interacts with Inhibitor of Histone Acetyltransferase Complex Subunits LANP and TAF-1β to Modulate Pituitary Gene Regulation

    PubMed Central

    Witzmann, Frank A.; Rhodes, Simon J.

    2013-01-01

    LIM-homeodomain 3 (LHX3) is a transcription factor required for mammalian pituitary gland and nervous system development. Human patients and animal models with LHX3 gene mutations present with severe pediatric syndromes that feature hormone deficiencies and symptoms associated with nervous system dysfunction. The carboxyl terminus of the LHX3 protein is required for pituitary gene regulation, but the mechanism by which this domain operates is unknown. In order to better understand LHX3-dependent pituitary hormone gene transcription, we used biochemical and mass spectrometry approaches to identify and characterize proteins that interact with the LHX3 carboxyl terminus. This approach identified the LANP/pp32 and TAF-1β/SET proteins, which are components of the inhibitor of histone acetyltransferase (INHAT) multi-subunit complex that serves as a multifunctional repressor to inhibit histone acetylation and modulate chromatin structure. The protein domains of LANP and TAF-1β that interact with LHX3 were mapped using biochemical techniques. Chromatin immunoprecipitation experiments demonstrated that LANP and TAF-1β are associated with LHX3 target genes in pituitary cells, and experimental alterations of LANP and TAF-1β levels affected LHX3-mediated pituitary gene regulation. Together, these data suggest that transcriptional regulation of pituitary genes by LHX3 involves regulated interactions with the INHAT complex. PMID:23861948

  9. Structure versus time in the evolutionary diversification of avian carotenoid metabolic networks.

    PubMed

    Morrison, Erin S; Badyaev, Alexander V

    2018-05-01

    Historical associations of genes and proteins are thought to delineate pathways available to subsequent evolution; however, the effects of past functional involvements on contemporary evolution are rarely quantified. Here, we examined the extent to which the structure of a carotenoid enzymatic network persists in avian evolution. Specifically, we tested whether the evolution of carotenoid networks was most concordant with phylogenetically structured expansion from core reactions of common ancestors or with subsampling of biochemical pathway modules from an ancestral network. We compared structural and historical associations in 467 carotenoid networks of extant and ancestral species and uncovered the overwhelming effect of pre-existing metabolic network structure on carotenoid diversification over the last 50 million years of avian evolution. Over evolutionary time, birds repeatedly subsampled and recombined conserved biochemical modules, which likely maintained the overall structure of the carotenoid metabolic network during avian evolution. These findings explain the recurrent convergence of evolutionary distant species in carotenoid metabolism and weak phylogenetic signal in avian carotenoid evolution. Remarkable retention of an ancient metabolic structure throughout extensive and prolonged ecological diversification in avian carotenoid metabolism illustrates a fundamental requirement of organismal evolution - historical continuity of a deterministic network that links past and present functional associations of its components. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  10. Long-Term Application of Bioorganic Fertilizers Improved Soil Biochemical Properties and Microbial Communities of an Apple Orchard Soil

    PubMed Central

    Wang, Lei; Yang, Fang; E, Yaoyao; Yuan, Jun; Raza, Waseem; Huang, Qiwei; Shen, Qirong

    2016-01-01

    Soil biochemical properties and microbial communities are usually considered as important indicators of soil health because of their association with plant nutrition. In this study, we investigated the impact of long-term application of bioorganic fertilizer (BOF) on soil biochemical properties and microbial communities in the apple orchard soil of the Loess Plateau. The experiment included three treatments: (1) control without fertilization (CK); (2) chemical fertilizer application (CF); and (3) bioorganic fertilizer application (BOF). The high throughput sequencing was used to examine the bacterial and fungal communities in apple orchard soil. The results showed that the BOF treatment significantly increased the apple yield during the experimental time (2009–2015). The application of BOF significantly increased the activities of catalase and invertase compared to those in CK and CF treatments. The high throughput sequencing data showed that the application of BOF changed the microbial community composition of all soil depths considered (0–20 cm, 20–40 cm, and 40–60 cm), e.g., the relative abundance of bio-control bacteria (Xanthomonadales, Lysobacter, Pseudomonas, and Bacillus), Proteobacteria, Bacteroidetes, Ohtaekwangia, Ilyonectria, and Lecanicillium was increased while that of Acidobacteria, Chloroflexi, Gp4, Gp6 and Sphaerobacter was decreased. The increase in apple yield after the application of BOF might be due to increase in organic matter, total nitrogen and catalase and invertase activities of soil and change in the bacterial community composition by enriching Bacillus, Pseudomonas, Lysobacter, and Ohtaekwangia. These results further enhance the understanding on how BOFs alter soil microbial community composition to stimulate soil productivity. PMID:27965631

  11. Laterally confined growth of cells induces nuclear reprogramming in the absence of exogenous biochemical factors.

    PubMed

    Roy, Bibhas; Venkatachalapathy, Saradha; Ratna, Prasuna; Wang, Yejun; Jokhun, Doorgesh Sharma; Nagarajan, Mallika; Shivashankar, G V

    2018-05-22

    Cells in tissues undergo transdifferentiation programs when stimulated by specific mechanical and biochemical signals. While seminal studies have demonstrated that exogenous biochemical factors can reprogram somatic cells into pluripotent stem cells, the critical roles played by mechanical signals in such reprogramming process have not been well documented. In this paper, we show that laterally confined growth of fibroblasts on micropatterned substrates induces nuclear reprogramming with high efficiency in the absence of any exogenous reprogramming factors. We provide compelling evidence on the induction of stem cell-like properties using alkaline phosphatase assays and expression of pluripotent markers. Early onset of reprogramming was accompanied with enhanced nuclear dynamics and changes in chromosome intermingling degrees, potentially facilitating rewiring of the genome. Time-lapse analysis of promoter occupancy by immunoprecipitation of H3K9Ac chromatin fragments revealed that epithelial, proliferative, and reprogramming gene promoters were progressively acetylated, while mesenchymal promoters were deacetylated by 10 days. Consistently, RNA sequencing analysis showed a systematic progression from mesenchymal to stem cell transcriptome, highlighting pathways involving mechanisms underlying nuclear reprogramming. We then demonstrated that these mechanically reprogrammed cells could be maintained as stem cells and can be redifferentiated into multiple lineages with high efficiency. Importantly, we also demonstrate the induction of cancer stemness properties in MCF7 cells grown in such laterally confined conditions. Collectively, our results highlight an important generic property of somatic cells that, when grown in laterally confined conditions, acquire stemness. Such mechanical reprogramming of somatic cells demonstrated here has important implications in tissue regeneration and disease models. Copyright © 2018 the Author(s). Published by PNAS.

  12. Yeast mitochondrial HMG proteins: DNA-binding properties of the most evolutionarily divergent component of mitochondrial nucleoids.

    PubMed

    Bakkaiova, Jana; Marini, Victoria; Willcox, Smaranda; Nosek, Jozef; Griffith, Jack D; Krejci, Lumir; Tomaska, Lubomir

    2015-12-08

    Yeast mtDNA is compacted into nucleoprotein structures called mitochondrial nucleoids (mt-nucleoids). The principal mediators of nucleoid formation are mitochondrial high-mobility group (HMG)-box containing (mtHMG) proteins. Although these proteins are some of the fastest evolving components of mt-nucleoids, it is not known whether the divergence of mtHMG proteins on the level of their amino acid sequences is accompanied by diversification of their biochemical properties. In the present study we performed a comparative biochemical analysis of yeast mtHMG proteins from Saccharomyces cerevisiae (ScAbf2p), Yarrowia lipolytica (YlMhb1p) and Candida parapsilosis (CpGcf1p). We found that all three proteins exhibit relatively weak binding to intact dsDNA. In fact, ScAbf2p and YlMhb1p bind quantitatively to this substrate only at very high protein to DNA ratios and CpGcf1p shows only negligible binding to dsDNA. In contrast, the proteins exhibit much higher preference for recombination intermediates such as Holliday junctions (HJ) and replication forks (RF). Therefore, we hypothesize that the roles of the yeast mtHMG proteins in maintenance and compaction of mtDNA in vivo are in large part mediated by their binding to recombination/replication intermediates. We also speculate that the distinct biochemical properties of CpGcf1p may represent one of the prerequisites for frequent evolutionary tinkering with the form of the mitochondrial genome in the CTG-clade of hemiascomycetous yeast species. © 2016 Authors.

  13. Long-Term Application of Bioorganic Fertilizers Improved Soil Biochemical Properties and Microbial Communities of an Apple Orchard Soil.

    PubMed

    Wang, Lei; Yang, Fang; E, Yaoyao; Yuan, Jun; Raza, Waseem; Huang, Qiwei; Shen, Qirong

    2016-01-01

    Soil biochemical properties and microbial communities are usually considered as important indicators of soil health because of their association with plant nutrition. In this study, we investigated the impact of long-term application of bioorganic fertilizer (BOF) on soil biochemical properties and microbial communities in the apple orchard soil of the Loess Plateau. The experiment included three treatments: (1) control without fertilization (CK); (2) chemical fertilizer application (CF); and (3) bioorganic fertilizer application (BOF). The high throughput sequencing was used to examine the bacterial and fungal communities in apple orchard soil. The results showed that the BOF treatment significantly increased the apple yield during the experimental time (2009-2015). The application of BOF significantly increased the activities of catalase and invertase compared to those in CK and CF treatments. The high throughput sequencing data showed that the application of BOF changed the microbial community composition of all soil depths considered (0-20 cm, 20-40 cm, and 40-60 cm), e.g., the relative abundance of bio-control bacteria ( Xanthomonadales, Lysobacter, Pseudomonas , and Bacillus ), Proteobacteria, Bacteroidetes, Ohtaekwangia, Ilyonectria , and Lecanicillium was increased while that of Acidobacteria, Chloroflexi, Gp4, Gp6 and Sphaerobacter was decreased. The increase in apple yield after the application of BOF might be due to increase in organic matter, total nitrogen and catalase and invertase activities of soil and change in the bacterial community composition by enriching Bacillus, Pseudomonas, Lysobacter , and Ohtaekwangia . These results further enhance the understanding on how BOFs alter soil microbial community composition to stimulate soil productivity.

  14. Multi-equilibrium property of metabolic networks: SSI module.

    PubMed

    Lei, Hong-Bo; Zhang, Ji-Feng; Chen, Luonan

    2011-06-20

    Revealing the multi-equilibrium property of a metabolic network is a fundamental and important topic in systems biology. Due to the complexity of the metabolic network, it is generally a difficult task to study the problem as a whole from both analytical and numerical viewpoint. On the other hand, the structure-oriented modularization idea is a good choice to overcome such a difficulty, i.e. decomposing the network into several basic building blocks and then studying the whole network through investigating the dynamical characteristics of the basic building blocks and their interactions. Single substrate and single product with inhibition (SSI) metabolic module is one type of the basic building blocks of metabolic networks, and its multi-equilibrium property has important influence on that of the whole metabolic networks. In this paper, we describe what the SSI metabolic module is, characterize the rates of the metabolic reactions by Hill kinetics and give a unified model for SSI modules by using a set of nonlinear ordinary differential equations with multi-variables. Specifically, a sufficient and necessary condition is first given to describe the injectivity of a class of nonlinear systems, and then, the sufficient condition is used to study the multi-equilibrium property of SSI modules. As a main theoretical result, for the SSI modules in which each reaction has no more than one inhibitor, a sufficient condition is derived to rule out multiple equilibria, i.e. the Jacobian matrix of its rate function is nonsingular everywhere. In summary, we describe SSI modules and give a general modeling framework based on Hill kinetics, and provide a sufficient condition for ruling out multiple equilibria of a key type of SSI module.

  15. Multi-equilibrium property of metabolic networks: SSI module

    PubMed Central

    2011-01-01

    Background Revealing the multi-equilibrium property of a metabolic network is a fundamental and important topic in systems biology. Due to the complexity of the metabolic network, it is generally a difficult task to study the problem as a whole from both analytical and numerical viewpoint. On the other hand, the structure-oriented modularization idea is a good choice to overcome such a difficulty, i.e. decomposing the network into several basic building blocks and then studying the whole network through investigating the dynamical characteristics of the basic building blocks and their interactions. Single substrate and single product with inhibition (SSI) metabolic module is one type of the basic building blocks of metabolic networks, and its multi-equilibrium property has important influence on that of the whole metabolic networks. Results In this paper, we describe what the SSI metabolic module is, characterize the rates of the metabolic reactions by Hill kinetics and give a unified model for SSI modules by using a set of nonlinear ordinary differential equations with multi-variables. Specifically, a sufficient and necessary condition is first given to describe the injectivity of a class of nonlinear systems, and then, the sufficient condition is used to study the multi-equilibrium property of SSI modules. As a main theoretical result, for the SSI modules in which each reaction has no more than one inhibitor, a sufficient condition is derived to rule out multiple equilibria, i.e. the Jacobian matrix of its rate function is nonsingular everywhere. Conclusions In summary, we describe SSI modules and give a general modeling framework based on Hill kinetics, and provide a sufficient condition for ruling out multiple equilibria of a key type of SSI module. PMID:21689474

  16. Modulation of Mitochondrial Complex I Activity Averts Cognitive Decline in Multiple Animal Models of Familial Alzheimer's Disease

    PubMed Central

    Zhang, Liang; Zhang, Song; Maezawa, Izumi; Trushin, Sergey; Minhas, Paras; Pinto, Matthew; Jin, Lee-Way; Prasain, Keshar; Nguyen, Thi D.T.; Yamazaki, Yu; Kanekiyo, Takahisa; Bu, Guojun; Gateno, Benjamin; Chang, Kyeong-Ok; Nath, Karl A.; Nemutlu, Emirhan; Dzeja, Petras; Pang, Yuan-Ping; Hua, Duy H.; Trushina, Eugenia

    2015-01-01

    Development of therapeutic strategies to prevent Alzheimer's disease (AD) is of great importance. We show that mild inhibition of mitochondrial complex I with small molecule CP2 reduces levels of amyloid beta and phospho-Tau and averts cognitive decline in three animal models of familial AD. Low-mass molecular dynamics simulations and biochemical studies confirmed that CP2 competes with flavin mononucleotide for binding to the redox center of complex I leading to elevated AMP/ATP ratio and activation of AMP-activated protein kinase in neurons and mouse brain without inducing oxidative damage or inflammation. Furthermore, modulation of complex I activity augmented mitochondrial bioenergetics increasing coupling efficiency of respiratory chain and neuronal resistance to stress. Concomitant reduction of glycogen synthase kinase 3β activity and restoration of axonal trafficking resulted in elevated levels of neurotrophic factors and synaptic proteins in adult AD mice. Our results suggest that metabolic reprogramming induced by modulation of mitochondrial complex I activity represents promising therapeutic strategy for AD. PMID:26086035

  17. Early bioelectric activities mediate redox-modulated regeneration

    PubMed Central

    Ferreira, Fernando; Luxardi, Guillaume; Reid, Brian

    2016-01-01

    Reactive oxygen species (ROS) and electric currents modulate regeneration; however, the interplay between biochemical and biophysical signals during regeneration remains poorly understood. We investigate the interactions between redox and bioelectric activities during tail regeneration in Xenopus laevis tadpoles. We show that inhibition of NADPH oxidase-mediated production of ROS, or scavenging or blocking their diffusion into cells, impairs regeneration and consistently regulates the dynamics of membrane potential, transepithelial potential (TEP) and electric current densities (JI) during regeneration. Depletion of ROS mimics the altered TEP and JI observed in the non-regenerative refractory period. Short-term application of hydrogen peroxide (H2O2) rescues (from depleted ROS) and induces (from the refractory period) regeneration, TEP increase and JI reversal. H2O2 is therefore necessary for and sufficient to induce regeneration and to regulate TEP and JI. Epistasis assays show that voltage-gated Na+ channels act downstream of H2O2 to modulate regeneration. Altogether, these results suggest a novel mechanism for regeneration via redox-bioelectric orchestration. PMID:27827821

  18. Rapid effects of estrogens on behavior: environmental modulation and molecular mechanisms.

    PubMed

    Laredo, Sarah A; Villalon Landeros, Rosalina; Trainor, Brian C

    2014-10-01

    Estradiol can modulate neural activity and behavior via both genomic and nongenomic mechanisms. Environmental cues have a major impact on the relative importance of these signaling pathways with significant consequences for behavior. First we consider how photoperiod modulates nongenomic estrogen signaling on behavior. Intriguingly, short days permit rapid effects of estrogens on aggression in both rodents and song sparrows. This highlights the importance of considering photoperiod as a variable in laboratory research. Next we review evidence for rapid effects of estradiol on ecologically-relevant behaviors including aggression, copulation, communication, and learning. We also address the impact of endocrine disruptors on estrogen signaling, such as those found in corncob bedding used in rodent research. Finally, we examine the biochemical mechanisms that may mediate rapid estrogen action on behavior in males and females. A common theme across these topics is that the effects of estrogens on social behaviors vary across different environmental conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Glycemic modulation in neuro-oncology: experience and future directions using a modified Atkins diet for high-grade brain tumors

    PubMed Central

    Strowd, Roy E.; Cervenka, Mackenzie C.; Henry, Bobbie J.; Kossoff, Eric H.; Hartman, Adam L.; Blakeley, Jaishri O.

    2015-01-01

    Dietary glycemic modulation through high-fat, low-carbohydrate diets, which induce a state of systemic ketosis and alter systemic metabolic signaling, have been incorporated into the clinical management of patients with neurological disease for more than a century. Mounting preclinical evidence supports the antitumor, proapoptotic, and antiangiogenic effects of disrupting glycolytic metabolism through dietary intervention. In recent years, interest in incorporating such novel therapeutic strategies in neuro-oncology has increased. To date, 3 published studies incorporating novel dietary therapies in oncology have been reported, including one phase I study in neuro-oncology, and have set the stage for further study in this field. In this article, we review the biochemical pathways, preclinical data, and early clinical translation of dietary interventions that modulate systemic glycolytic metabolism in the management of primary malignant brain tumors. We introduce the modified Atkins diet (MAD), a novel dietary alternative to the classic ketogenic diet, and discuss the critical issues facing future study. PMID:26649186

  20. Investigation of thermal degradation with extrusion-based dispensing modules for 3D bioprinting technology.

    PubMed

    Lee, Hyungseok; Yoo, James J; Kang, Hyun-Wook; Cho, Dong-Woo

    2016-02-04

    Recently, numerous three-dimensional (3D) bioprinting systems have been introduced for the artificial regeneration of tissues. Among them, the extrusion-based dispensing module is the most widely used because of the processability it gives various biomaterials. The module uses high forces and temperature to dispense materials through a micro-nozzle. Generally, the harsh conditions induce thermal degradation of the material in the dispensing procedure. The thermal degradation affects the properties of the materials, and the change of the properties should be carefully controlled, because it severely affects the regeneration of tissues. Therefore, in this research, the relationship between the dispensing module and the thermal degradation of material was investigated. Extrusion-based dispensing modules can be divided into the syringe type (ST) and filament type (FT) based on working principles. We prepared a poly lactic-co-glycolic acid (PLGA) scaffold with the two methods at various time points. Then, the characteristics of the printed scaffolds were assessed by measuring molecular weight (M w), glass transition temperature (T g), in vitro degradation, compressive modulus, and cytocompatibility. The results showed that the PLGA scaffold with the FT dispensing module maintained its properties regardless of printing time points. In contrast, severe thermal degradation was observed in the scaffold group prepared by the ST dispensing module. Consequentially, it was obvious that the FT dispensing module was more suitable for producing scaffolds without severe thermal degradation.

Top